
Master’s programme in Computer, Communication and Information Sciences

A Mobile App For Practicing Finnish
Pronunciation Using Wav2vec 2.0

Nhan Chi Phan

Master’s Thesis
2023

© 2023

This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Author Nhan Chi Phan
Title A Mobile App For Practicing Finnish Pronunciation Using Wav2vec 2.0
Degree programme Computer, Communication and Information Sciences
Major Machine Learning, Data Science and Artificial Intelligence
Supervisor Prof. Mikko Kurimo
Advisors Dr Tamás Grósz, MSc Ekaterina Voskoboinik
Date 29 March 2023 Number of pages 65+3 Language English

Abstract
As Finland attracts more foreign talents, there are demands for self-learning tools to
help second language (L2) speakers learn Finnish with proper feedback. However,
there are few resources in L2 data in Finnish, especially focusing on the beginner level
for adults. Moreover, since L2 adults are mainly busy studying or working in Finland,
the application must allow users to practice anytime, anywhere.

This thesis aims to address the above issues by developing a mobile app for
beginner Finnish L2 learners to practice their pronunciation. The app would evaluate
the users’ speech samples, give feedback on their pronunciation, and then provide
them with instructions in the form of text, photos, audio, and videos to help them
improve their pronunciation.

Due to the limited resources available, this work explores the wav2vec 2.0 model’s
capability for the application. We trained our models with the native Finnish speakers’
corpus and used them to provide pronunciation feedback on L2 samples without any
L2 training data. The results show that the models can detect mispronunciation on
phoneme level about 60% of the time (Recall rate) compared to a native Finnish
listener. By adding regularizations, selecting training datasets, and using a smaller
model size, we achieved a comparable Recall rate of approximately 63% with a slightly
lower Precision of around 29%. Compared to the state-of-the-art model in Finnish
Automatic Speech Recognition, the trade-off resulted in a significantly faster response
time.
Keywords Mispronunciation detection and diagnosis, mobile app, low-resource,

wav2vec 2.0 , end-to-end

Preface
As the author of this thesis and a Finnish learner, I would like to thank all the
contributors to open-sourced materials, particularly those for the Finnish language.
Accordingly, this work is also licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International license.

I would like to express my gratitude to all the Finnish teachers and members of
the Kielibuusti project. Your contribution and advice during developing the Finnish
pronunciation mobile app are highly appreciated.

I also want to thank my supervisor, Professor Mikko Kurimo, and my advisors,
MSc Ekaterina Voskonoinik and Dr Tamás Grósz, for the opportunity to work in their
research group and for their invaluable guidance.

Finally, I want to thank my 2-year-old daughter, nicknamed Chà Bông. She was a
great source of motivation for my work, and she also contributed a significant amount
of her swimming time to this project. Additionally, I would like to to thank my family
for their support during my busiest time and for helping me maintain my sanity.

Otaniemi, 29 March 2023

Nhan Chi Phan

4

Contents
Abstract 3

Preface 4

Contents 5

Symbols and abbreviations 7

1 Introduction 9

2 Background 11
2.1 Machine learning and deep learning 11

2.1.1 Supervised learning . 11
2.1.2 Unsupervised learning . 11
2.1.3 Self-supervised learning 12

2.2 End-to-end ASR . 12
2.2.1 Transformer . 12
2.2.2 CTC . 15
2.2.3 Wav2vec . 16
2.2.4 Wav2vec 2.0 . 17

3 Mispronunciation detection and diagnosis 20
3.1 Related work . 20
3.2 Goodness of Pronunciation . 21
3.3 Performance metrics . 22
3.4 Entropy regularization . 24

4 Dataset 28
4.1 Pre-trained model . 28
4.2 Training dataset . 29
4.3 Fine-tune and test data . 33

4.3.1 Test set . 33
4.3.2 Fine-tuning set . 35

5 Experiment 37
5.1 Vocabulary . 38
5.2 Hyperparameters & Entropy regularization 39
5.3 Training and fine-tuning . 40
5.4 Practical metrics . 41

6 Results 43
6.1 Settings comparison . 43
6.2 Baseline comparison . 46
6.3 Fine-tuned performance . 48

5

7 Computer-Assisted Pronunciation Training app 49
7.1 Unity development platform . 49
7.2 Server . 50
7.3 Mobile application . 51
7.4 Instructional multimedia . 54

8 Conclusion 57

A Wav2vec 2.0 model hyperparameters 66

B Vocabulary of each model type 67

C Models performance summary 68

6

Symbols and abbreviations

Symbols
𝑠𝑖𝑚 cosine similarity
E expectation
exp exponential function
L loss function
log logarithm∏︁

product
𝜎 sigmoid function∑︁

summation
⊤ transpose of a matrix
𝑊 weight matrix in a neural network

7

Abbreviations
ASR automatic speech recognition
CER character error rate
CAPT computer-assisted pronunciation training
CERF Common European Framework of Reference for Language
CTC connectionist temporal classification
CD correct diagnosis
DAR diagnosis accuracy rate
DL deep learning
DE diagnostic errors
E2E end-to-end
FN false negative
FP false positive
FFN feed-forward network
GELU Gaussian error linear units
GOP Goodness of Pronunciation
IPA International Phonetic Alphabet
KL Kullback-Leiber
L2 second language
MD mispronunciation detection
MDD mispronunciation detection and diagnosis
NA not available
NLP natural language processing
ReLU rectified linear activation unit
SD standard deviation
TN true negative
TP true positive
UI user interface
UX user experience
VAD voice activity detection
WER word error rate

8

1 Introduction
Learning to speak a second language (L2) often involves practicing with native speakers
through listening, repeating, and corrections [1]. For beginner L2 adult learners in
Finland, practicing speaking Finnish outside the classroom can be challenging,
especially since Finnish culture does not encourage small talk. They may also
have limited free time for practicing Finnish due to work or study. Even during
Finnish classes, teachers might not have resources to correct beginners’ pronunciation
mistakes, as it requires one-on-one practice. Consequently, there is a demand for a
Finnish pronunciation mobile app that L2 learners can use to practice and receive
feedback anytime, anywhere. This type of application is known as computer-assisted
pronunciation training (CAPT), and the mobile app developed for this thesis is
CaptainA. The app was inspired by earlier work by Rouhe et al. [2] under the same
name.

While there are extensive global resources for learning foreign languages, most focus
on major languages like English or Mandarin [3, 4, 5, 6]. They provide pronunciation
practice, vocabulary, and other language learning opportunities. However, there are
fewer similar applications for a smaller language, such as Finnish. Researchers have
recently collaborated to develop new applications for L2 Finnish learners [7, 8, 9].
However, these applications mostly provide feedback in the form of a holistic score
or the Common European Framework of Reference for Language (CERF) level. The
holistic score might be more useful for intermediate or advanced L2 learners. For
beginner L2 learners, who start with pronunciation, more detailed feedback is needed
[10]. Specifically, from the pronunciation practice perspective, the CAPT system
should resemble the feedback of a language teacher: identifying the error at the
phoneme level and providing instruction to improve pronunciation [11]. In other
words, a good CAPT should have the capabilities of mispronunciation detection and
diagnosis (MDD). To our knowledge, no previous research has developed a similar
app for Finnish L2 learners.

Furthermore, most applications for learning the Finnish language are developed
under low-resource settings, as there is a lack of L2 Finnish corpora. Currently, the
main dataset for L2 Finnish learners is Digitala [9]. The Digitala corpus, however,
only has holistic scores, and the transcript does not have detailed annotations at the
phoneme level. The lack of phoneme level annotation dataset makes developing a
CAPT application with analytical feedback challenging.

Finally, this thesis also focuses on the practicality of the CAPT system. To provide
a positive user experience (UX), the delay between the user’s input and the CAPT
feedback should be minimized. For example, in mobile web search, UX significantly
declines when the latency surpasses the threshold of 7 - 10 seconds [12]. Although
there is no reference for a mobile CAPT system, we aim to achieve a maximum
response time of less than 10 seconds. Consequently, an essential part of this work
is experimenting with smaller model sizes while striving for a reasonable level of
performance.

Traditionally, MDD systems were built with acoustic-based Hidden Markov
models and often required large-scale training datasets. Recent research in MDD has

shown that end-to-end systems with Connectionist Temporal Classification (CTC)
and Transformer-based architecture have promising results, even with low-resource
settings [13, 14]. Our application uses a similar architecture but with a major challenge.
While the research mentioned above is in popular languages (English, Mandarin) with
detailed annotation from experts, we work on Finnish without the same level of detail.
The main goals for this thesis are:

• Develop a read-aloud pronunciation practice application for beginner L2 Finnish
speakers with detailed feedback at the phoneme level by using the forced
alignment algorithm [15] and by leveraging the wav2Vec 2.0 architecture [16]
for the low-resource setting. Also, address the most challenging problem of
the work, developing an MDD application without a dataset annotated at the
phoneme level.

• Design constructive feedback to motivate and attract L2 learners. Apply entropy
regularization [17] during the training of our models to increase the feedback
range. Add multimedia to the application to help learners with their self-study,
based on the survey result of the CAPT application [11].

• Achieve fast response time for the app when developing our models and appli-
cation. Ensure a reasonable accuracy level of the model by comparing it with a
baseline.

The structure of this thesis is organized as follows. This section introduced the
thesis’s background, objectives, and challenges. Section 2 describes the foundation
theories for machine learning and E2E approaches we chose for our work. The next
section, Section 3, discusses the related research in MDD and how to evaluate its
performance, as well as explains the theory of the main improvement made in the thesis.
In Section 4, we explain our reasons for choosing pre-training, training, fine-tuning,
and test corpora, including our findings about the advantages and disadvantages of
each corpus. The specifications of our models and experiment are detailed in Section
5. The results of our experiments are summarized and investigated further in Section
6. For illustrations of the CaptainA app and its functionalities, please refer to 7. And
finally, Section 8 summarizes our work, followed by considerations for potential work
and discussions about its impact.

Throughout this thesis, we use alphabet letters instead of symbols from International
Phonetic Alphabet (IPA) to represent Finnish letters and their respective phonetic
pronunciation. Except for cases of “nk” with IPA [Nk] and “ng” with IPA [N:],
Finnish phonemes can be interchangeably represented with either alphabet letters or
IPA symbols. Correspondingly, the long phoneme would be replaced with an extra
duplicate letter instead of the symbol [:].

10

2 Background
While automatic speech recognition (ASR) uses many different techniques and
architectures, our project focuses on the end-to-end (E2E) system, which uses a model
to handle the entire task instead of relying on multiple components or intermediate
steps. Therefore, this section discusses the related architectures used in this paper and
the common metrics used for MDD.

2.1 Machine learning and deep learning
Machine learning is a field within artificial intelligence that focuses on building
predictive models by learning from available data. While artificial intelligence covers
a wide range of techniques that allow machines to mimic human behavior, machine
learning specifically focuses on the machine’s ability to learn independently without
explicit instructions. Machine learning is related to statistics, which the main purpose
is to analyze, interpret and present data. It is also related to data mining, in which
scientists try to extract meaningful observations from a large amount of data. One of
the subfields of machine learning is deep learning (DL).

DL is a branch of machine learning that was initially inspired by the structure of the
human brain, called artificial neural networks. These networks can automatically extract
important features during training without requiring thoroughly designed algorithms,
thus allowing machines to output optimal results with less human intervention. On the
other hand, to achieve superior results, artificial neural networks require a significant
amount of data and longer training time than other machine learning methods.

There are multiple algorithms in machine learning and artificial neural networks.
In this paper, we focus on supervised learning, unsupervised learning, and the approach
we used for our models: self-supervised learning.

2.1.1 Supervised learning

Supervised learning is a machine learning algorithm that allows machines to learn
from labeled data. The labeled data has two components: the features of a data point
and the corresponding correct label. The machine learning model then uses this
information to learn the patterns in the data and establish a mapping between the
features and labels. However, as high-quality labeled data requires manual work from
experts in the field, supervised learning performance is often limited by the amount of
data available for training.

2.1.2 Unsupervised learning

Unlike supervised learning, unsupervised learning utilizes unlabeled data for training.
Without human intervention, unsupervised learning algorithms can discern hidden
patterns in data and are primarily used for clustering tasks, association tasks, or
dimension reduction. As unsupervised learning relies on unlabeled data, its models
often require larger datasets for training and can yield lower accuracy than other

11

algorithms. Although unlabeled data can be available in large quantities, training with
a larger dataset requires more computing power.

2.1.3 Self-supervised learning

Self-supervised learning is a machine learning algorithm that bridges the gap between
supervised learning and unsupervised learning. Similar to unsupervised learning,
the algorithm is designed to learn from unlabeled data without human intervention.
Instead, self-supervised learning generates the labeled data automatically from the
data itself, hence the name self-supervised. Self-supervised learning has an advantage
over supervised learning, as it can leverage unlabeled data for training. Moreover,
self-supervised learning can perform classification tasks with limited labeled data.

2.2 End-to-end ASR
ASR is a subfield of computer science and natural language processing (NLP) focusing
on developing machine learning models that can transcribe audio speech into written
text. ASR systems can be classified into two categories: conventional ASR systems,
which often consist of multiple components such as the acoustic model, language
model, and decoder, and end-to-end (E2E) ASR system, which consist of a single
model.

The E2E approach is a newer development in ASR, gaining popularity with the
advancement of DL technology. The main difference between the traditional approach
and E2E is that the latter directly maps appropriate speech representations to the final
output. E2E ASR replaces multiple modules between the audio and the target text
with artificial neural networks, simplifying the ASR system’s pipeline.

2.2.1 Transformer

Initially introduced in 2017 as a new architecture for NLP, the Transformer [18]
has since become popular in other fields, such as computer vision [19], due to its
advantages. Transformer is a type of DL architecture that relies entirely on its
self-attention mechanism for computing data representations. This self-attention
mechanism allows the Transformer to avoid sequential algorithms or convolution,
resulting in faster computation speed through parallel computing. In NLP, Transformer
effectively extracts contextual information and, as a result, has made its place in many
state-of-the-art models [16, 20, 21, 22, 23].

The Transformer architecture consists of two main blocks: the encoder and the
decoder. Both the encoder and the decoder are formed by six fully connected layers,
with identical structures within each block. The output of the encoder block is fed into
the decoder block via the multi-head attention module. The basic structure can be
seen in Figure 1.

Each layer in the encoder block starts with a multi-head attention module followed
by a position-wise fully connected feed-forward network (FFN) module. The FFN
module is formed with two linear layers and the rectified linear activation unit (ReLU)

12

Figure 1: The basic architecture of a Transformer model [18].

activation function in the middle (Equation 1). Both the multi-head attention and FFN
module are employed with a residual connection 𝑥 + 𝑓 (𝑥) where 𝑓 (𝑥) is the module
function; the result is then normalized.

𝐹𝐹𝑁 (𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (1)

The decoder has a similar structure with the addition of another multi-head attention
module that takes the output of the encoder block. Each decoder module also includes
a residual connection, followed by layer normalization.

The multi-head attention modules (left part of Figure 2) inside the encoder and
the decoder allow the Transformer to, as the name implied, simultaneously attend
to information from different perspectives of the input at various positions. The
multi-head attention inputs are three parameters called value (V) with dimension 𝑑𝑣,
key (K), and query (Q) with the same dimension 𝑑𝑘 . These parameters are generated
from the input sequence by the Embedding and Positional Encoding modules, as
shown in Figure 1.

The original paper [18] used ℎ = 8 parallel attention layers, with each attention layer
being counted as one head, to form multi-head attention. All heads are concatenated

13

Figure 2: Multi-head attention and the scaled dot-product attention [18].

into the output with as follows:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄, 𝐾,𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 (2)

where matrix𝑊𝑂 ∈ Rℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 .
For fast and efficient computing of the attention (head), the Transformer used

dot-product attention and scaled the result by a factor of 1√
𝑑𝑘

. The algorithm is therefore
called scaled dot-product attention and can be seen in the right part of Figure 2:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑄𝐾
⊤

√
𝑑𝑘

)𝑉 (3)

And therefore, with parameters matrices 𝑊𝑄

𝑖
∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝐾

𝑖
∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 ,

𝑊𝑉
𝑖
∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 , each ℎ𝑒𝑎𝑑𝑖 in Equation 2 is calculate as:

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 , 𝑉𝑊
𝑉
𝑖) (4)

Finally, as mentioned previously, the Transformer model reduces computing
complexity by not using recurrent layers or convolutional layers. However, this means
the model cannot understand the order of the input sequence. To solve this problem,
the Transformer model includes a Positional Encoding module together with the
Input Embedding at the beginning of the encoder and decoder blocks. The Positional
Encoding injects information about the position of the tokens into the model. In their
paper, Vaswani et al. [18] use sine and cosine functions as follows:

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛(𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)
𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑠𝑖𝑛(𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)

(5)

14

where 𝑝𝑜𝑠 is the position and 𝑖 is the dimension. Each dimension of the Positional
Encoding corresponds to a sin wave, potentially allowing the Transformer model to
extend to a longer sequence than those seen in the training data.

The Transformer is becoming increasingly popular in MDD applications and has
demonstrated improvements over other E2E models and conventional methods [13, 14,
24]. Therefore, we aim to explore its effectiveness in the Finnish MDD task. It should
be noted that, in contrast to other research in English and Mandarin that commonly
utilizes datasets with detailed annotations at the phoneme level [13, 14, 24, 25], our
Finnish learner’s dataset is more limited.

2.2.2 CTC

Connectionist temporal classification (CTC) was first introduced as a novel method
for sequence labeling with E2E models [26]. The CTC network is used to select the
label with the highest probability from a given sequence.

Figure 3: The basic architecture of a CTC network.

With x being the utterance input and y being the target label, the conditional
probability of output sequence given input sequence x is:

𝑃(y|x) =
∑︁

ŷ∈B(y,x)

𝑇∏︂
𝑡=1

𝑃(�̂�𝑡 |x) (6)

where B(y, x) is the set of all possible labels plus the blank token, with length
|x| = 𝑇 . 𝑃(�̂�𝑡 |x) is the conditional probability of the labels at each time step, estimated
by the encoder as depicted in Figure 3.

The CTC is simpler than other E2E approaches and has been shown to outperform
traditional ASR models when combined with other E2E models [27]. Additionally,
when used together with a language model, CTC has demonstrated comparable
performance to other E2E approaches [28]. For an illustration of how the CTC
decoder work, see Figure 4. In MDD, the CTC has been used in conjunction with the
Transformer attention module to deliver outstanding results [13, 15, 24].

15

Figure 4: Illustration of CTC decoding [27]. The decoded word was “kerrostalo”.
The blank token is 𝜖 and was critical in decoding two letters “r”.

2.2.3 Wav2vec

Wav2vec is a neural network architecture that leverages the amount of unlabeled data
available in speech recognition. Wav2vec aims to address the issue faced by ASR
models when labeled data is scarce. Instead of investing resources in acquiring more
data, Schneider et al. [29] proposed a different approach by pre-training the model
with a substantial amount of labeled or unlabeled generic datasets. The results show
that pre-trained models perform better on downstream tasks than models without
pre-training on unlabeled data.

Figure 5: Illustration of wav2vec pre-training framework [29].

The goal of pre-training is to learn general representations from raw, unlabeled
audio X. As illustrated in Figure 5, the pre-trained wav2vec model is used as input
for the ASR model through the encoder network Z 𝑓 : X → Z, and the context
network 𝑔 : Z → C. The wav2vec model is optimized to predict future samples from

16

a given audio signal. By minimizing contrastive loss L for each step 𝑘 = 1, ..., 𝐾 , the
model is trained to identify the true sample z𝑖+𝑘 from the distractors z̃. With sigmoid
𝜎(z⊤

𝑖+𝑘ℎ𝑘 (c𝑖)) as the probability of z𝑖+𝑘 being the true sample, we have:

L𝑘 = −
𝑇−𝑘∑︁
𝑖=1

(︁
log𝜎(z⊤𝑖+𝑘ℎ𝑘 (c𝑖)) + _E

z̃∼𝑝𝑛
[log𝜎(−z̃⊤ℎ𝑘 (c𝑖))]

)︁
(7)

This distinguishes the wav2vec model from the conventional ASR models that rely
on acoustic features such as log-mel filterbanks. As the time of its introduction, the
wav2vec model demonstrated superior performance compared to the best character-
based model, using notably less labeled data [29]. Its outstanding performance
highlights the importance of the pre-training approach in ASR, particularly in low-
resource settings.

2.2.4 Wav2vec 2.0

After self-supervised learning appeared as a successful solution for NLP in low-
resource languages, wav2vec 2.0 was introduced as a self-supervised framework
that leverages the unlabeled raw audio data for pre-training [16]. As a successor to
wav2vec, wav2vec 2.0 share a similar concept but with the addition of the Transformer
network for better context representations and utilizes CTC for downstream tasks.
The wav2vec 2.0 are fully E2E without requiring an external module or additional
step. Since its introduction, wav2vec 2.0 have demonstrated superior performance in
various NLP tasks [13, 14, 30, 31], especially for L2 speakers in low-resource settings
[9, 24, 32].

Figure 6: Illustration of wav2vec 2.0 pre-training framework.

Similar to its predecessor, wav2vec 2.0 leverages the abundance of unlabeled
data available with its self-supervised pre-training capability. The structure of the

17

wav2vec 2.0 model can be seen in Figure 5. During pre-training, the model learns
speech representation directly from raw audio waveform X with a feature encoder. The
feature encoder is formed from multiple temporal convolution blocks, followed by a
normalization layer and a Gaussian error linear unit (GELU) activation function [33].
It takes standardized (zero mean and unit variance) raw audio X as input. The encoder
outputs are 𝑇 time-steps latent speech representations from z1 to z𝑡 as 𝑓 : X → Z.

The speech representation outputs are then used to form corresponding context
representations c1, ..., c𝑡 using the Transformer architecture (2.2.1) 𝑔 : Z → C.
To encode relative positional information, wav2vec 2.0 replace the fixed positional
embeddings with a convolutional layer resembling the relative positional embedding
described in [34]. GELU activation function and layer normalization are also applied
to the convolution output.

Furthermore, Z is also used for self-supervised training Z → Q with quantization
[35]. The quantization output q ∈ R 𝑓 is chosen from the transformation R𝑑 → R 𝑓 of
vectors 𝑒1, ..., 𝑒𝐺 . With 𝐺 representing the number of codebooks, and 𝑉 representing
the number of entries 𝑒 ∈ R𝑉×𝑑/𝐺 . To determine the probabilities for choosing entry 𝑣
in codebook 𝑔, 𝑝𝑔,𝑣 , Gumbel softmax [36] is used with the following formula:

𝑝𝑔,𝑣 =
exp(𝑙𝑔,𝑣 + 𝑛𝑣)/𝜏∑︁𝑉
𝑘=1 exp(𝑙𝑔,𝑘 + 𝑛𝑘)/𝜏

(8)

where 𝜏 is the softmax temperature, 𝑛 is independent and identically sampled from
𝑛 = − log(− log(𝑢)) with 𝑢 is uniform distribution (0,1).

During pre-training, part of the latent speech representation Z is masked before
being fed into the Transformer network. The masked time step 𝑡, corresponding to
the context network c𝑡 , is used for learning the representation of speech audio by
solving for a contrastive loss L𝑚. The contrastive loss objective is to identify the true
quantized latent speech representation q𝑡 from a set of 101 q̃ ∈ Q𝑡 :

L𝑚 = − log
exp(𝑠𝑖𝑚(c𝑡 , q𝑡)/^)∑︁

q̃∼Q𝑡
exp(𝑠𝑖𝑚(c𝑡 , q̃)/^)

(9)

where Baevski et al. [16] used ^ = 0.1, and cosine similarity is calculated as
𝑠𝑖𝑚(a, b) = a⊤b

∥a∥∥b∥
In the original setup, the configuration was 𝐺 = 2 codebooks with 𝑉 = 320

entries for a total of 𝑉𝐺 = 102400 codewords. Considering the quantity, it’s crucial
to ensure each entry in each codebook has the same probability of being chosen for
contrastive loss optimization. In the wav2vec 2.0 introduction paper, diversity loss L𝑑

was implemented as follows:

L𝑑 =
1
𝐺𝑉

𝐺∑︁
𝑔=1

−𝐻 (�̄�𝑔) =
1
𝐺𝑉

𝐺∑︁
𝑔=1

𝑉∑︁
𝑣=1

�̄�𝑔,𝑣 log �̄�𝑔,𝑣 (10)

where �̄�𝑔 is the average softmax distribution of the code codebook entries for each
codebook, and 𝐻 (�̄�𝑔) is the entropy. The objective of diversity loss is to maximize
the entropy, which ensures �̄�𝑔 is uniformly distributed.

18

Therefore, the final loss function for the pre-training task is the total of contrastive
loss L𝑚 and diversity loss L𝑑:

L = L𝑚 + 𝛼L𝑑 (11)

where 𝛼 is a hyperparameter that was set to 0.1 in the original setup.
After pre-training, the wav2vec 2.0 model needs to be fine-tuned for downstream

tasks with labeled data. During fine-tuning, the weights of the feature encoder Z
are frozen to prevent losing the speech representations learned during pre-training.
The knowledge gained during pre-training is valuable as the process typically uses
a considerable amount of data and time. Since the downstream tasks typically have
limited labeled data, freezing the feature encoder can prevent overfitting the model to
a small dataset. Instead of updating the feature encoder, for the ASR task, wav2vec
2.0 is fine-tuned with an additional linear projection on top of the network. The linear
layer is used for the classification task, with the number of classes representing the
vocabulary size. The model is optimized by minimizing CTC (mentioned previously
on 2.2.2) loss:

L𝑐𝑡𝑐 = − log(𝑃(y|x)) (12)

In the paper, because the wav2vec 2.0 was fine-tuned with few labeled data, in
addition to freezing the feature encoder, a masking strategy was applied, similar to
SpecAugment [37].

At the beginning of this subsection, we mentioned that we selected the wav2vec
2.0 architecture primarily due to its outstanding performance for MDD in low-resource
settings. Given the amount of data for Finnish L2, which is even more limited compared
to other MDD research in English L2, we believed that the pre-trained wav2vec 2.0
models would be particularly beneficial for our project. In addition, there are multiple
open-source wav2vec 2.0 models available in Hugging Face [38], with various sizes
and pre-training, fine-tuning corpora. Considering the practicality of our thesis, we
could quickly assess the latency response from each model size to select the optimal
size for our CaptainA app. Since this is a pilot work with no baseline for the Finnish
MDD task, we utilized a state-of-the-art Finnish ASR model from Hugging Face as our
baseline. And we also used the hyperparameter configurations and dataset selections
from those models as sources of inspiration to develop our own models.

19

3 Mispronunciation detection and diagnosis

3.1 Related work
Most of the MDD research has been centered around the English language, as evidenced
by several studies [13, 14, 24, 39, 40, 41]. Furthermore, recent efforts have been made
toward developing MDD models for Mandarin [42, 43, 25]. With the goal of helping
L2 speakers learn the language, their MDD research often consists of two parts: the
first focuses on the detection of mispronunciations made by the L2 speaker (the MD
task), while the second analyzes the mispronunciation errors (the diagnosis task).

The lack of MDD research on other languages may come from the scarcity of
relevant public datasets. Even for popular languages like English and Mandarin, the
resources for MDD are limited. Most MDD research uses at least one detailed L2
dataset annotated to the phoneme level by multiple experts in the field. The annotations
are tailored for the MDD, with each phoneme annotated manually, and usually include
mispronunciation tags and other diagnoses.

Figure 7: An example of the detailed annotations in the L2_ARCTIC corpus [44],
includes speech waveform, spectrogram, words, phonemes, error tags, and comments
from the annotator.

For example, the popular public L2-ARCTIC corpus [44] contains English samples
made by L2 speakers from multiple backgrounds. Aside from the orthographic
transcription at word and phoneme levels, the corpus also contains a subset that
was manually annotated by experts. The annotations include the corrected word
and phoneme boundaries; substitution, deletion, and insertion phoneme error tags
(Figure 7). Similarly, in Mandarin, when there were no public MDD dataset available,
researchers also built their own MDD corpus with phoneme-level annotations by
language experts [42, 25].

20

For the Finnish language, to the best of our knowledge, there has been no prior
research that has developed a comparable MDD application for L2 learners. The
most recent work from Al-Ghezi et al. [9] focuses on automatic speech assessment.
However, their pronunciation feedback is provided as a holistic score for the entire
task without MDD on the phoneme level. There is also an older application developed
by Rouhe et al. [2], but it was primarily developed to collect data and only provides
pronunciation statistics after the training session. It is worth noting that both of these
applications are only available via web interfaces for testing or demonstration purposes,
and have not yet been made available to the general public.

In terms of mobile applications, as far as we know, there is no such app for the
Finnish language. We found a mobile app, Duolingo [45], which offers Finnish lessons,
but it does not provide detailed Finnish pronunciation practice. In English, we found
ELSA Speak [3] is the most comparable to our project’s target. It offers English
pronunciation practice for L2 learners and is available on mobile devices. ELSA
Speak can provide phonetic ratings and detailed diagnoses for pronunciation made
by users, with later versions having more advanced features to help users practice
speaking English. BoldVoice [46] is another MDD app for English and is also similar
to ELSA Speak, with both charging a subscription fee to users.

In English, we have also noticed a gap between academic research and practical
application in the field of MDD. Most of the academic research on MDD did not
produce a publicly available MDD app. On the other hand, the research team behind
popular pronunciation practice apps, such as ESLA Speak or Duolingo, did not publish
the performance of their MDD systems.

Therefore, our research in Finnish MDD for L2 speakers is novel. Furthermore, we
not only conducted academic research but also developed a practical mobile application
utilizing the optimal model we discovered, thereby increasing the project’s practicality
and usefulness.

3.2 Goodness of Pronunciation
While we use an E2E approach for MDD, our approach closely resembles the traditional
Goodness of Pronunciation (GOP) method [47]. The GOP algorithm can be explained
with the block diagram in Figure 8. First, the speaker’s audio signal is processed by a
feature extractor. For a predetermined text, a dictionary provides the model with the
target phonemes to measure GOP. Each target phoneme is aligned to a specific acoustic
segment by applying the forced alignment algorithm on the feature sequence extracted
from the audio file. We can determine the posterior probability of the phoneme being
pronounced, using a conventional ASR model, such as the hidden Markov model. The
GOP score of a target phoneme is the log of the probability we just found, normalized
by its duration. To be accepted as correct pronunciation, the GOP score must be higher
than a subjective threshold, called ”strictness” by Witt and Young [47].

In Finnish, each phoneme is represented by exactly one grapheme, except “nk”
[Nk] and “ng” [N:]. We can use graphemes directly to represent phonemes, thus
eliminating the need for a pronunciation dictionary. As explained above, the wav2vec
2.0 model can independently extract speech representations without an additional

21

Figure 8: Block diagram of the GOP pronunciation scoring system.

feature extractor. Furthermore, the final output of the fine-tuned wav2vec 2.0 model is
an array containing the log probability of all phonemes in the model’s vocabulary. This
multi-dimensional covers all frames of the audio input. By applying forced alignment
to the output of the wav2vec 2.0 model, we can directly obtain all target phonemes
scores.

It should be noted that traditional GOP uses phoneme score and a fixed threshold
to determine mispronunciation, while our CaptainA uses the E2E model to extract
phoneme scores and only provide them as feedback to the speaker. We could not
scientifically validate our threshold due to the limitations of our dataset (read Section
4 for more detail). Additionally, the entropy regularization used in Section 3.4 altered
the phoneme scoring scale, making it impossible to determine a universally accepted
threshold for all models.

For comparison purposes, we use the CTC decoder result, the ASR prediction
transcript, and the Levenshtein algorithm [48] to determine MDD. Since CaptainA’s
phoneme score does not affect MDD results, we use the maximum (instead of
normalized) probability over the phoneme’s audio frames. The use of maximum
probability offers users more lenient feedback, primarily aimed at encouraging them
to practice more. Our decision to adopt lenient scoring is also based on our findings,
which will be discussed further in section 6, and other studies on the pronunciation
feedback [10, 11, 49, 50].

3.3 Performance metrics
There are two different metrics to measure the performance of MDD. The first focuses
on the accuracy of mispronunciation detection (MD), and the second measures the
accuracy of the diagnosis. In both cases, the predicted phone sequence (made by
the MDD model) is aligned with the ground truth (annotated by linguists) using the
Levenshtein algorithm [48] or the Needleman-Wunsch algorithm [51]. Both algorithms
generally yield the same result, but we chose Levenshtein for our project as it has

22

a shorter execution time [52]. The quantity and position of correct pronunciation
and errors (either insertion, substitution, or deletion error) are used to evaluate the
performance of MDD.

Table 1: Confusion matrix for MD.

Ground truth

Mispronunciation Correct pronunciation

Mispronunciation True positive False positive
Model (TP = CD + DE) (FP)

prediction Correct pronunciation False negative True negative
(FN) (TN)

Recall, Precision, and 𝐹1 are popular metrics for evaluating the performance of
MD[13, 14, 24, 25, 41, 40]. Based on the confusion matrix in Table 1, with correct
MD counted as true positive (TP), those metrics are calculated as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (13)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (14)

𝐹1 = 2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (15)

From the formula, Recall measures the percentage of mispronunciations that our
model correctly detected. Precision measures how many percent of mispronunciations
detected by the model that are actual mispronunciations. The two metrics typically
exhibit an inverse relationship, as we can aim for higher Recall by increasing the
strictness of the model to detect more mispronunciation; however, as a consequence,
Precision will decrease. It is more meaningful to look at both Recall and Precision by
using 𝐹1, which is the harmonic mean of Recall and Precision.

Furthermore, depending on the contexts, the social cost of Recall and Precision
carries different weights [49]. From a language learning perspective, Precision is
considered more practically impactful than Recall. Telling the speaker that they
mispronounced a phoneme when they pronounced it correctly (FP) will have a more
detrimental effect on their learning than failing to detect their mispronunciation (FN)
[50]. In other words, higher Precision encourages users to practice more with CaptainA,
but higher Precision can lead to lower Recall, as reducing FP would have the tradeoff
effect of increasing FN. Consequently, even though CaptainA focuses on detecting
mispronunciation with the Recall metric, as long as Recall is higher than a baseline,
we chose the model that offers higher Precision and a more lenient phoneme score.

For mispronunciation diagnosis, we also use a common metric, diagnosis accuracy
rate (DAR), as follows:

23

𝐷𝐴𝑅 =
𝐶𝐷

𝐶𝐷 + 𝐷𝐸 (16)

where correct diagnosis (CD) and diagnostic error (DE) are cases of correct MD,
so that TP = CD + DE, with CD being when the predicted phoneme is the same as the
ground truth, and DE being when the predicted phoneme is different from the ground
truth.

In MDD, the gold standard for the dataset is that the phonemes used as ground
truth are annotated by language experts. If the annotator is not a language expert, it
will cast doubt on the reliability of the performance metrics. In our case, the experts
only rated the overall task and did not annotate individual phonemes. We rely on
the transcripts made by the transcribers to calculate MDD metrics; however, the
transcribers were not guaranteed to be language experts and were not required to
annotate individual phonemes (see Section 4 below). It becomes more complex when
there is a disagreement between the transcriber and the models regarding the phoneme
diagnosis.

(In this section and generally, we use graphemes to explain the correct and incorrect
pronunciation instead of the IPA. In the Finnish language, graphemes can generally be
used to represent phonemes. The short and long vowels, therefore, are replaced with
double graphemes.)

For example, the word “pyöreä” has three front vowels (y, ö, and ä) that are often
mispronounced as back vowels. Knowing the target word, the transcriber could quickly
mark the mispronunciation as three back vowels “puorea”. For wav2vec 2.0 models,
however, without prior knowledge of the target word, their common predictions are
“purea”. From the MD perspective, it does not change the performance metrics, as
“purea” has three mispronunciation errors at the same position (one deletion and two
substitutions). Nevertheless, the diagnosis metrics DAR is lower, even though the
transcriber and models agree that the speaker misspoke with the back vowels.

Another example is “ruokapöytä”, with the mispronunciation marked by the
transcriber as “ruokapyotä”. Our models also agree with the transcriber but marked
the mispronunciation as “ruokapuutä”. In this case, it is difficult to tell which is
better, as they sound similar. One remedy is constructing a confusable phone list
for phonological error analysis between native speakers and L2 speakers, as done
by Wang, Feng, and Meng [39]. The confusable phone list would allow two easily
confusable pairs to be recognized as the same MDD error. Another option is to
fine-tune our models with the transcript, thus allowing us to learn the annotation style
of the transcriber. Both options were not possible due to the lack of data, but they are
feasible solutions in the future when we collect more data.

Therefore, we only used DAR as a reference and did not use it to select the optimal
model for CaptainA.

3.4 Entropy regularization
We use the output of the fine-tuned wav2vec 2.0 models for phoneme scoring. At
that stage, the models are trained with CTC loss. However, this tends to produce

24

overconfident results, where phoneme predictions are either 100% or 0%, and the rest
is predicted as blank, creating a spiky output shown in Figure 9. This peaky behavior
of CTC output is a common problem [53]. As a result, the phoneme score derived
from CTC can only determine whether the user’s pronunciation is correct or incorrect,
without recognizing any improvement efforts made during practice. This problem is
noticeable in difficult sounds, like the Finnish [r], in which a speaker unfamiliar with
the rolled R can only make small improvements but will not be able to pronounce it
correctly. If CaptainA can not recognize learner’s efforts, it can severely discourage
them from practicing [11, 49].

Figure 9: The CTC output [54]. The color lines represent the probability output of
individual labels, and the grey dots indicate the blank token.

To make the feedback more robust, we need to reduce the overfitting problem of
CTC. Liu, Jin, and Zhang [17] proposes adding a negative maximum conditional
entropy regularization term to the CTC loss function 𝐿𝑐𝑡𝑐. This regularization
term reduces the dominance of one specific path, allowing more exploration and
generalization. Recall Equation 6, the set of all paths mapping x to y is B(y, x), with
x being the phoneme input and y being the target phoneme, plus the blank token. The
calculation of CTC can be rewritten as:

𝑃(y|x) =
∑︁

𝜋∈B(y,x)
𝑃(𝜋 |x) (17)

where the probability of path 𝜋 is define as:

𝑃(𝜋 |x) =
𝑇∏︂
𝑡=1

𝑃(�̂�𝑡 |x) (18)

Because there are many combinations of feasible paths 𝜋, once the CTC algorithm
finds a path that decreases the loss quickly, it will raise the probability of that path and
ignore others, causing peaky behavior. By introducing entropy, other less dominant
paths can have a higher probability of being explored. The entropy of the feasible
paths knowing input label x and target label y is defined as follows:

25

𝐻 (𝑃(𝜋 |y, x)) = −
∑︁

𝜋∈B(y,x)
𝑃(𝜋 |x, y) log 𝑃(𝜋 |x, y)

= − 1
𝑃(y|x)

∑︁
𝜋∈B(y,x)

𝑃(𝜋 |x) log 𝑃(𝜋 |x) + log 𝑃(y|x)
(19)

Adding entropy to the CTC loss in Equation 12 as a negative term would prevent
the CTC loss from converging quickly:

L𝑒𝑛𝑐𝑡𝑐 = L𝑐𝑡𝑐 − 𝛽𝐻 (𝑝(𝜋 |y, x)) (20)

with the hyperparameter 𝛽 controlling the strength of the entropy regularization.
Lower entropy means the CTC algorithm focuses on only one single path and

ignores the others. Higher entropy, on the other hand, results in lower regularized
CTC loss and implies more uncertainty and randomness in selecting the optimal paths.
Entropy regularization, thus, would slow the convergence to one specific path.

The benefit of entropy regularization is not limited to pronunciation scoring. As
entropy increases generation, it also reduces overfitting. Since wav2vec 2.0 models
often work in low-resource settings, training could result in overfitting and would
benefit from using entropy regularization.

For the MDD objective, it is highly practical to encourage exploration of the less
dominant paths. For example, the Finnish vowel harmony rules require that the front
vowels (ä, ö, y) and the back vowels (a, o, u) are not used together in a single word.
Therefore, a model trained with a native Finnish corpus would overlook the paths
containing both front vowels and back vowels. L2 language speakers, however, can
break the harmony rule and form impossible paths. Hence, the MDD model should be
stimulated to explore those trivial paths in order to detect the learner’s mistake.

An example of the effect of entropy regularization on the wav2vec 2.0 model
can be seen in Figure 10, with both models having exact same hyperparameters
except for entropy regularization. The target word was “ruokapöytä” but the speaker
mispronounced it as “ruokapöydä”. While both models reached the same MDD
conclusion that the speaker mispronounced “t” as “d”, the model without entropy
was overly confident in its assessment, giving 100% probability for all phonemes in
“pöydä”. In contrast, the entropy 𝛽 = 10% model also predicts with 100% probability
for “p”, “ö”, “y” and “ä”, but only gives 75% for “d”, with the remaining 25%
recognized as “t”. From the learner’s viewpoint, the former model would give them
a score of 0 for the phoneme “t”, and it would take a more significant improvement
for their effort to be recognized. On the other hand, the later model can recognize a
speaker’s effort to pronounce the phoneme “t”, even though it is clear that the speaker
mispronounced it.

Because entropy regularization reduces the peaky behavior, it correspondingly
reduces the blank labels predicted by the model, as we can see on the right part of
Figure 10. The [PAD] label is the blank label used in our wav2vec 2.0 model; with
a higher value of 𝛽, the probabilities of the [PAD] tokens are lowered. The CTC
algorithm relies on the blank token to decode the predicted labels from the probability

26

Figure 10: Wav2vec 2.0 labels probability output of an audio sample that mispro-
nounced “pöytä” as “pöydä”. The vertical axis is all labels in the vocabulary, with
[PAD] as padding or blank label. The horizontal axis is the frame number in the audio.
The color represents the probability of individual label per frame. The left output is
from X-G0 with no entropy 𝛽 = 0, and the right output is from X-G10 with entropy
𝛽 = 10%. For more information on each model configuration, see Table 6.

output. Therefore, there is an upper limit for 𝛽 until the benefit from generalization is
offset by the error in decoding. Liu, Jin, and Zhang [17] suggested 𝛽 = 20%, however,
their experiment was not applicable to our use case, and therefore we need to find the
optimal 𝛽 value for our MDD task.

27

4 Dataset
The main challenge of this project is the lack of spoken L2 corpora for the Finnish
language. Moreover, for MDD purposes, the L2 corpus needs to be rated by language
experts, who should also provide annotations of mispronunciation at the phoneme
level. There are multiple L2 corpora with detailed phoneme annotation for English
[44, 55, 56, 57]. Notable, the L2_ARCTIC and the speechocean762 are publicly
available and include phoneme pronunciation annotations by experts for MDD tasks
(see Figure 7 for an example of the annotation).

However, for the Finnish language, the availability of L2 speech dataset is more
limited. The only dataset we have comes from the Digitala project [9], with the
majority of the samples from Digitala being free-form spontaneous speech, which is
unsuitable for pronunciation practice for beginners. Furthermore, Digitala samples
were not annotated at the phoneme level, which makes MDD more challenging.
Additionally, we did not have the resources to create our own MDD dataset.

As a result, the selection of datasets becomes an experimental and deliberate task.
For datasets, there are two distinguished groups: the publicly available pre-training
and training data from native-level speakers in multiple languages without any rating
on their pronunciation, and the fine-tuning and test set from L2 Finnish speakers in
the Digitala project, with task-level rating.

As we investigated and explained below, the corpora used in this project were
not the perfect match for the MDD task, but they were the best alternative options
available. After the pilot phase to gather users’ opinions, we could collect better data
from L2 speakers, potentially improving CaptainA’s performance in the future.

4.1 Pre-trained model
Since we use the wav2Vec 2.0 model for our project to benefit from the speech
representation learned during pre-training, we need to select our pre-training dataset.
There are two options: XLS-R [58] and Uralic.

Table 2: The seven most popular languages in the XLR-R unlabeled pre-trained model,
in thousand hours.

English German French Spanish Italian Polish Dutch
Hours 69.5 25.4 24.0 22.3 21.9 20.9 20.1

The XLS-R corpus contains approximately 436,000 hours of unlabeled speech data
from multiple language groups, with the majority of data from VoxPopuli [59]. The
VoxPopuli corpus comprises samples from European parliament speeches, resulting in
a significant number of samples being at a native or near-native level and used in the
political domain. While XLS-R mainly includes high-resource languages (see Table
2), it also covers other low-resource languages for a total of 128 languages.

The Uralic pre-trained data in Table 3 is another subset of VoxPopuli that only
covers the Uralic language family, including Hungarian, Finnish, and Estonian,

28

Table 3: Uralic pre-trained model’s unlabeled data in thousand hours.

Hungarian Finnish Estonia Total
Hours 17.7 14.2 10.6 42.5

totaling approximately 42,500 hours. In terms of quantity, the Uralic dataset is
only approximately one-tenth of the XLS-R. However, Uralic focuses solely on the
Finnish-related group and could potentially provide better results for Finnish NLP
tasks.

We did not pre-trained the models by ourselves. Instead, we used pre-trained models
from Facebook for both XLS-R1 and Uralic2 models. We primarily experimented with
large models (those with about 300 million parameters) as the larger models (1 billion
parameters or more) require significantly more computing and memory resources
to be delivered to our users. Instead, we used public models from an independent
group, Finnish-NLP [60], for our baseline. The 1BIL model3 has 1 billion parameters
and was reported as the best model for Finnish ASR. The 300M model4 has about
300 million parameters, the same size as our models, and was used for comparison
purposes. These models were also pre-trained with XLS-R. While Finnish-NLP used
a language model for decoding, their performance in the Common Voice 7.0 [61] test
set was also superior when used without the language model. As our thesis is for
MDD and not ASR, no language model was used in our work.

4.2 Training dataset
Since we did not have enough L2 data, we instead used the native Finnish dataset
to train our wav2vec 2.0 model. Our rationale is based on the fact that the wav2vec
2.0 model can learn speech representations from the dataset. By learning speech
features from native Finnish speakers, the models are expected to be able to identify
deviations from the standard speech; thus, they can detect mispronunciations made by
L2 speakers. However, not all deviations are from mispronunciation. They could arise
from differences in spontaneous speech and read-aloud speech [62], differences in
dialects, or differences in speakers’ backgrounds. Therefore, it is crucial to select a
corpus that aligns with our target use case of short read-aloud samples made by young
speakers.

There were two spoken Finnish corpora available for consideration. The first one
is the Lahjoita puhetta (“Donate Speech”) [63]. While the corpus contains native and
non-native speakers, we can filter by the metadata to select the best samples for our
purpose. However, the dataset was not considered for our project, for several reasons.
Firstly, the dataset comprises spontaneous spoken Finnish, which has significant
differences compared to read-aloud Finnish [62]. Secondly, the recording duration for

1https://huggingface.co/facebook/wav2vec2-xls-r-300m
2https://huggingface.co/facebook/wav2vec2-large-uralic-voxpopuli-v2
3https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2
4https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm

29

this dataset is longer, with a median value of about 40 seconds, and over 50% of the
samples are longer than one minute. For reference, CaptainA aimed to limit recordings
to a maximum of 8 seconds due to server limitations. Thirdly, speakers who donated
their speech to the corpus were encouraged to use their colloquial speech. Using the
Lahjoita puhetta dataset could make classifying the speech deviations made by L2
speakers into mispronunciation and other errors more complicated.

After careful consideration, we selected the Finnish Parliament corpus [64] for
training our wav2Vec 2.0 models. The corpus and speakers’ metadata are publicly
available together, allowing us to selectively choose samples to match our target use
case:

• The dataset does not have statistically significant dialect problems [65]. This
would help our model provide feedback based on the standard Finnish accent.

• We only take samples with a maximum duration of 15 seconds to fit with
CaptainA’s maximum recording length of 8 seconds.

• We filter for read-aloud samples by choosing only slow or average speech
samples.

• We select the speaker’s age (publicly available) to fit with our target users (50
years old or younger).

Figure 11: Training set distribution by gender.

After filtering, we observed that there was no significant difference in the number
of samples between genders (Figure 11). In total, we had approximately 281 hours of
the Finnish Parliament corpus for training, split into a 75% training set and a 25%
evaluation set. Our training data have a median duration of 5.59 seconds, and the

30

interquartile range (the difference between the 75% and 25% of the samples) of audio
length fell within [2.95, 8.34] seconds.

Training with the Finnish Parliament corpus means our model inherits the same
biases identified by Virkkunen et al. [65]. Regarding ASR, we expect female speakers,
younger speakers, and speakers with a Master’s degree or higher will be recognized
better by our models. While ASR performance is measured in word error rate (WER) or
character error rate (CER), it could be indirectly related to Recall and Precision. Lower
CER signifies better speech recognization, which could result in higher Precision in
samples with multiple mistakes. As beginner Finnish learners tend to make more
pronunciation errors, we expect the corpus biases to affect them the most.

Furthermore, over 50% of the samples in the Finnish Parliament corpus have a
duration of 5 to 10 seconds, with samples shorter than 5 seconds making up less
than 15% of the corpus [65]. We expect our MDD model to work best for sentence
pronunciation or long words. Short word pronunciation that takes 2 to 3 seconds
might not have the same performance as longer samples. Unfortunately, the Finish
Parliament corpus was the best alternative available at the time. The fact that our
models work best with long audio samples was taken into account when developing
CaptainA, and we provide multiple examples that encourage the user to practice with
longer phrases or sentences.

The Finnish Parliament corpus also has various linguistic and editorial practices
in parliamentary reporting [66]. While the main principle is to minimize alterations,
the transcripts contain several changes from spoken language to written language to
maintain consistency, comprehensiveness, and flexibility in the parliamentary reports.
A summary of the types of speech changes is in Table 4. Because the editorial rules in
the Finnish Parliament data affect the wav2vec 2.0 model output and subsequently
influence MDD results, it is critical to thoroughly understand these rules.

The first two rules practically convert all spoken varieties of Finnish into their
formal written form. Alhough CaptainA aims to provide MDD for read-aloud written
Finnish, the result might confuse users who are not aware of these conversions. For
example, a user could try to practice pronouncing “mennään”, but they may receive
an incorrect assessment as the model tends to understand the sound as “menemme”
(as it turned out, the final “n” in “mennään” is often omitted by the MDD model).
Furthermore, spoken Finnish is currently taught at beginner levels [67], but any effort to
practice spoken Finnish will be rated as their written form (“mä” will be automatically
converted as “minä”).

The remaining rules cause other problems for short words. Short words like “tääl”,
“oli”, or “tota” are intentionally ignored in MDD. However, even for a word that is not
changed by the Finnish Parliament practices, it could potentially be misunderstood
as self-corrections or blunders when the speaker is not fluent in pronouncing them.
The word “yritys” is one clear example; as the combination of “y” and “r” into [yr] is
difficult to pronounce for an L2 beginner, the speaker may sound similar to making
a slip of the tongue or self-correction. The MDD model often ignores the speaker’s
effort to pronounce the word “yritys”. The problems are more obvious in short words;
as the speaker uses longer words or a sentence, it becomes clear that they are not
making any mumbling sound or self-correction.

31

Table 4: Changes between speech and transcript, as summarized from language-
regulatory practices in Finnish parliamentary reporting [66].

What is changed Example
Regional dialect in

phonological features
mä, mää, mie → minä (“I”)

Some morphological
features more typical of

spoken varieties

me mennään → me menemme (“we go”)

Certain syntactic features
of spontaneous speech

tääl oli edustaja Turunen epäili (“here was MP
Turunen suspected”) → edustaja Turunen epäili (“MP

Turunen suspected”)
Omission of selected

particles
tota (“kind of”), niinku (“like”)

Self-corrections päästöttö-...päästöllisen (“one witho-...with emission”
→ päästöllisen (“one with emission”)

Minor blunders and slips of
the tongue

sukupuolennvaihdos (“sex change”) →
sukupolvenvaihdos (“generational turnover”)

Aside from the reporting practices, the construction of the Finnish Parliament
corpus also causes some problems for the MDD task. As there are multiple ways to
pronounce numbers in spoken Finnish, the corpus assumes that every speaker only
uses the standard pronunciation for numbers. While this is standard procedure for
ASR, it could cause problems in MDD if speakers want to use spoken language. For
example, when pronouncing 5.80 using spoken Finnish as “viis kaheksankyt”, the
models predict the audio sample as standard Finnish “viisi kahdeksankymmentä”.
This affects the probability output of the wav2vec 2.0 models, and as a result, both the
MD and diagnosis will not be correct.

These disadvantages are not limited to MDD. ASR models primarily trained
with the Finnish Parliament corpus will presumably exhibit similar behaviors in their
predictions, especially since ASR is more likely to process spoken Finnish than MDD.
Nevertheless, the combination of parliamentary reporting practices and the lack of
speech fluency by L2 speakers make these problems become more noticeable in MDD.
As we explained in Section 3.3, for CaptainA, high FP errors and low Precision can
frustrate L2 speakers and discourage learning.

It is important to note that even though we discussed the drawbacks in MDD of
the Finnish Parliament records and the construction of the corresponding corpus, it
does not mean we criticize any of those works. They provide an incredibly valuable
dataset for the public, and the difficulties in MDD arise because they have different
objectives. The Finnish Parliament record strives to accurately record in written form
what happened in the parliamentary sessions, while the corpus construction mainly
seeks to publicly provide the largest Finnish transcribed speech data for the ASR task.
Ideally, we would prefer to train the model with a short, read-aloud dataset constructed
specifically for MDD. In the early steps of constructing our MDD corpus, the Finnish

32

Parliament corpus was the nearest alternative we could find. Also, the initial goal of
this project is mainly for read-aloud Finnish, whereas most of the problems mentioned
above stem from using spoken Finnish in MDD.

4.3 Fine-tune and test data
For fine-tuning and testing, we use data from the Digitala project [8]. The corpus
consists of data from digitized language tests taken by L2 students in Finnish and
Swedish. The Digitala project has different phases, and we mainly use newer data
described in Al-Ghezi et al. [9], as these data have short Finnish read-aloud samples
that fit with our target. The Digitala dataset consists of free-form speech, long read-
aloud speech, and short read-aloud speech. Each audio sample has holistic scores
made by a group of specialized human raters on the following criteria: CEFR, fluency,
and pronunciation. It is important to mention that the scores, even for pronunciation,
are for the whole task, not individual phonemes.

4.3.1 Test set

Since the mispronunciation app requires the user to read a written word/sentence
aloud, we only use the short read-aloud part as our test set. The CEFR levels are not
applicable for all read-aloud tasks, and fluency is only available when reading aloud
a phrase or sentence. For reference, we only use the median pronunciation score,
rounded down into four levels from 1 to 4, with 4 being the best (Table 5). As data is
not annotated at the phoneme level by experts, we could not use the pronunciation
level in the Digitala corpus to determine our MDD pronunciation ratings. However,
the dataset was also transcribed by transcribers. While we cannot guarantee the
transcribers are language experts, it should be noted that the transcripts did capture
mispronunciations made by the speakers.

Table 5: Test set distribution for overall pronunciation level, with 4 being the best.

Level Number of phonemes
1 2,183
2 7,097
3 6,934
4 576

In total, we used 768 short read-aloud samples from the Digitala dataset as our test
set, with a total duration of about 60 minutes. It consists of the following read-aloud
tasks:

• kahviautomaatti.

• pyöreä ruokapöytä.

• korkea kerrostalo.

33

• fazer toimii kahdeksassa maassa.

• myöhemmin yritys on kasvanut huimasti.

• pupu puhuu puppua.

• tuuli tuli kotiin.

Besides the problem with the phoneme annotation, we also noticed several future
improvements that can increase the quality of our test set. The first problem we
noticed is that the short read-aloud test set did not cover all phonemes in the Finnish
language; specifically, the test set is missing “nk” [Nk] and “ng” [N:]. The first three
tasks in the test set were the most suitable for testing read-aloud pronunciation for L2
beginners. And the 4th and 5th tasks were used to expand our application to lengthy
sentences for advanced learners. However, the last two tasks focused on tongue twisters
or phonetically challenging phrases instead of proper read-aloud tests and were not
suitable for testing read-aloud pronunciation. Despite that, as we lack data for testing
model performance, we included all tasks in our test set but noted that the test set
quality could be improved further with more L2 data collected.

We also found cases where different models, trained with different datasets, agreed
with each other but disagreed with the transcript. Checking the audio sample, we tend
to agree with the models’ prediction when paying attention to individual phonemes. For
example, studying a sample when an L2 speaker tried to pronounce the word “pyöreä”,
the wav2vec 2.0 models predicted “puoria” while the transcript was “puorea”, with a
distinct “i” sound pronounced in the record. In this particular case, the models and
transcript agree on the basis of the pronunciation mistakes (front vowels and back
vowels), but on the phoneme level, the transcript is less reliable as it missed another
mispronunciation.

Figure 12: Percent of read-aloud samples without any mispronunciation marked,
grouped by overall pronunciation level. The lower percentage indicates a stricter level.
Models are defined in Table 6.

34

When studying the quality of the transcript for MDD purposes, we note that the
transcribers are more lenient in detecting mispronunciation mistakes. This is expected,
as it was not their primary task. A comparison of the strictness of transcribers and
wav2vec 2.0 models is shown in Figure 12. We can see that while wav2vec 2.0
models have differences, they are noticeably stricter than human transcribers. Because
strictness directly affects performance metrics, it is expected that all models will have
low Precision and high Recall.

4.3.2 Fine-tuning set

For the test set, the quality of the phonemes error detected by the transcribers is less
impactful, as all models would share the same problem. However, it is meaningful to
investigate the quality of the test set for MDD, as we would use the rest of the Digitala
corpus for fine-tuning. For example, mispronunciations for [r] are often ignored by
transcribers but are easily detected by our models. Fine-tuning models with those
samples would potentially lead to our models not detecting mispronunciation for [r]
made by L2 speakers.

Therefore, choosing which samples from the rest of the data in Digitala for
fine-tuning also depend on the quality of the phoneme annotations. For reference,
from Figure 12, we can look at the number of samples without any errors for
median pronunciation level 2. Median pronunciation level 2 means that, even with
disagreement, experts would rate the sample with a maximum score of 3 (cases where
one expert rates a pronunciation score of 1 and the other rates 4 rarely occur in the test
set). This means that for the median pronunciation level 2, according to the experts,
the samples must have some problems (score of 2) or at least minor problems (score
of 3) in pronunciation. Instead, the transcripts indicate at least 20% of those samples
did not contain any mistakes.

The results in Figure 12 are from the short read-aloud samples, where the tran-
scribers only needed to pay attention to a few seconds of recording and had the
knowledge of the target transcript. The free-form spontaneous tasks in Digitala are
typically longer than 30 seconds without any target transcript, and thus potentially
contain more unmarked mispronunciations. Fine-tuning with unmarked mispronun-
ciations could cause our models to fail to detect mispronunciations. As a result, we
could not use the free-form speech, a large part of the Digitala corpus, for fine-tuning.

Consequently, we can only select the best pronunciation samples, with a median
pronunciation level of 4, from the long read-aloud speech in Digitala for fine-tuning.
The long read-aloud samples generally have a duration of 6 to 8 seconds, with the
shortest task being “fazerin tuotevalikoima on monipuolinen” with about 4 seconds
of recording. After selection, the fine-tuning dataset contains 364 samples made by
L2 speakers whose samples were not included in the short read-aloud test set. All
samples have a pronunciation rating of 4, totaling about 42 minutes, split into a 90%
fine-tuning set and a 10% evaluation set.

However, note that even the pronunciation samples with the highest rating still have
mispronunciations. As seen in Figure 12, for rounded-down median pronunciation
level 4 (the samples with the best score), the lenient transcribers also mark about 30%

35

samples with mispronunciations. This is mainly because the rubrics for the Digitala
project did not require perfect pronunciation for the highest pronunciation score.

36

5 Experiment
Recent works have shown that E2E systems are effective in ASR in general and MDD
for L2 speakers [13, 25, 68, 69]. As we explained in Section 2, while there are multiple
approaches to E2E ASR and MDD systems, we focus on Transformer, CTC, and the
state-of-the-art wav2vec 2.0 model for our application. The main reason is that the
Digitala dataset has limited data and would benefit from wav2vec 2.0 advantages in a
low-resource setting.

Since our work in MDD for Finnish L2 speakers is novel, we could not find a
baseline to evaluate our models’ performance. Instead, we use the reported best ASR
model at the time of this thesis, the 1BIL model mentioned in Section 4 as our baseline.
We also use the 300M model, a similar model with the same number of parameters
as our models, to estimate the impact of the different configurations on the MDD
performance.

The short read-aloud test set was not available at the start of the project, and
initially, the long read-aloud set was used as both the fine-tuning set and the test set.
With the short read-aloud data from Digitala, we have a larger and better-matching
test set, and subsequently can arrange a larger fine-tuning set for our experiment.

We experimented with multiple combinations for MDD, mainly pre-training
dataset, vocabulary type, and entropy strength 𝛽%. Descriptions of the models’ names
and their configurations are summarized in Table 6.

Table 6: Models configuration summary

Model Type Pretrain Vocabulary Parameters Entropy 𝜷
1BIL Baseline XLS-R Grapheme 1bil 0%300M 300mil
X-G0

Train

XLS-R Grapheme

300mil

0%
X-G5 XLS-R Grapheme 5%
X-G10 XLS-R Grapheme 10%
X-G20 XLS-R Grapheme 20%
X-P10 XLS-R Phoneme 10%
X-H10 XLS-R Hybrid 10%
U-G10 Uralic Grapheme 10%
U-P10 Uralic Phoneme 10%
X-G10-FT Fine-tune XLS-R Grapheme 300mil 10%

We started our experiment with Facebook’s XLS-R pre-trained model available
in HuggingFace [38]. According to the model performance comparison made by
Finnish-NLP [60], we found that the Uralic pre-trained models outperformed the
XLS-R in Finnish ASR, with or without a language model. Therefore, we also
conducted our experiment with the Uralic models to evaluate their performance in
MDD.

We also experimented with a smaller model size5, the 95 million parameters

5https://huggingface.co/facebook/wav2vec2-base

37

BASE model used in the wav2vec 2.0 paper [16]. The model was pre-trained with
about 53,000 hours of unlabeled English speech from Libri-light [70]. However, the
lack of language diversity, smaller model size, and less pre-trained data resulted in
significantly lower performance in MDD. The results of the 95 million parameters
models were not included in this thesis, as we did not find a similar pre-trained model
that could be compared with the XLS-R or Uralic pre-trained models.

Our experiment aims to find the most practical model for MDD. The model size is
not for consideration, as the 1 billion parameters model required too many computing
resources, and the 95 million parameters model underperformed. Our wav2vec 2.0
model size is the large model with about 300 million parameters. As explained in
Section 3.3, our main metrics are Recall, Precision, and 𝐹1 on the short read-aloud
test set. As Finnish words can generally be formed by compounding multiple words
together, we use CER instead of WER for a better understanding of the MDD models.
We also look at DAR for reference, but it is not used to select the optimal model.
There was no ultimate metric to select the model, as we also need to consider the
ability to recognize the learner’s efforts, measured by the strength of the entropy
regularization (explained in Section 3.4). Eventually, we decided that the optimal
model is the one that has a reasonable Recall (at least comparable to the baseline),
with the best combination of Precision and high 𝛽% entropy parameter.

5.1 Vocabulary
To take advantage of the phonetic character of the Finnish language, and to ensure
compatibility with other ASR models, we first developed our models using graphemes.
Using phonemes, however, would give users a better understanding of their pronunci-
ation. We also noted that, while the foreign alphabet like “z” and “x” are included in
the grapheme models, they rarely had high probability and instead were predicted as
other letters. For example, “x” was often predicted as “ks” with Finnish samples. Our
objective was Finnish beginner pronunciation practices without the need for practicing
loanwords. Moreover, changing to phonemes would reduce our model vocabulary size
by swapping foreign letters with their alternative Finnish counterpart. The rules to
change from grapheme to phoneme are as follows:

• add “N” to represent “nk” (Nk) and “ng” (NN).

• “å” will be replaced with “oo”.

• remove “c”.

• “q” will be replaced with “k”.

• “w” will be replaced with “v”.

• “x” will be replaced with “ks”.

• “z” will be replaced with “ts”.

38

The rules are applied to all datasets used in the project. As a result, we reduced
our vocabulary size from 33 to 27 for phoneme models. After our preliminary result,
we also tested with a hybrid model, which is similar to grapheme models but with
the symbol “N” added to the vocabulary. The inclusion of “N” was recommended
by Finnish teachers in the Kiebuusti project and is used to provide correct phonetic
feedback to learners.

We also removed other extra tokens used in ASR models, like the “start of sentence”
token and the “end of sentence” token. A summary of vocabulary for each model
type can be found in Appendix B. The grapheme models have a similar vocabulary to
the 1BIL and 300M models for comparison purposes, whereas the phoneme models
would have the minimal vocabulary possible for Finnish MDD, to reduce computing
power.

5.2 Hyperparameters & Entropy regularization
Our hyperparameters are the same as the 1BIL model made by Finnish-NLP [60]
whenever applicable. Firstly, we want our models to be comparable with the baseline
models. Secondly, the Finnish-NLP group applied several dropout settings in their
hyperparameters. Similar to entropy regularization, higher dropout reduces overfitting
during training and encourages generalization. As our models are mainly trained on
native Finnish samples and tested on unseen L2 Finnish samples, we found that the
dropout applied by Finnish-NLP improves our MDDs performance. Dropout reduced
overfitting and expanded the scoring range for our application (see Figure 13). Unless
stated otherwise, all models use the same hyperparameter configuration. The detail of
hyperparameters is included in Appendix A.

For entropy regularization, we experimented with several configurations for 300
million parameters models, with 𝛽 = 5%, 𝛽 = 10%, and 𝛽 = 20%. Initially, we prefer
a bigger 𝛽 value, as they provide a better rating system for CaptainA. However, we
noticed that a small amount of entropy regularization also improves MDD evaluation.
For our work, we found that 𝛽 within the range of [5%, 10%] yields the best overall
result in MDD. Considering the main purpose of entropy regularization is to provide an
extra scoring range, and the added benefit of better MDD performance, we experiment
mainly with 𝛽 = 10%.

The entropy regularization loss 𝐻 (𝑝(𝜋 |y, x)) from Equation 19 is based on the
code provided by Liu, Jin, and Zhang [17]. We implemented the entropy loss into
the model by using a customized model, extended from the standard wav2vec 2.0
model in the Transformers library [71]. The loss, L𝑒𝑛𝑐𝑡𝑐 is the standard CTC loss
function combined with entropy regularization and 𝛽 following Equation 20. During
training and fine-tuning, the customized model minimizes the L𝑒𝑛𝑐𝑡𝑐 loss instead of
the standard L𝑐𝑡𝑐 loss.

We also tested entropy regularization with the 1 billion parameter model. However,
we found that the optimal range of 𝛽 may not be the same. Due to the limitation of
computing resources and the impracticality of a bigger model, we did not tune for
optimal 𝛽 value. It should be noted that models with different configurations may
need different 𝛽 values to obtain the optimal result.

39

Figure 13: Phoneme score distribution for short read-aloud phonemes with a score
less than 0.5. The model without dropout is an internal model with the same size as
1BIL, trained on the Lahjoita puhetta dataset. The model without dropout tends to
be overconfident and mainly gives close to 0 to all mispronunciations, whereas 1BIL
with dropout can seldom give different scores.

5.3 Training and fine-tuning
The training for our project was performed using computer resources within the Aalto
University School of Science “Science-IT” project. Due to the amount of training
data, we used the Nvidia Tesla A100 with 80GB memory. One model would generally
take two days for training with entropy regularization. For comparison, we fixed the
number of epochs in training to 10 epochs for all models. Larger epochs also did not
improve the models’ performance in MDD, as it led to overfitting.

We also fine-tuned our trained models with the long read-aloud dataset from
Digitala, and included the result for a fine-tuned model (X-G10-FT) in Table C1.
Because the data for fine-tuning is limited, the resources we spend on fine-tuning are
minimal. Appendix A contains details on the hyperparameters we used for fine-tuning.
Generally, we tried to use the same hyperparameters, but since our data is smaller, we
also used a smaller batch size and epochs. We found that large epochs in fine-tuning,
while improving the model’s CER, did not significantly improve MDD performance.
Since the fine-tuning dataset potentially has undetected mispronunciations, the fine-
tuned model has much lower Recall compared with the additional gain in Precision.
Since the fine-tuning dataset contains possible wrong labels, we would prefer our
models retain the knowledge they learn during training with native Finnish speakers.
Therefore, we also experimented with a much lower learning rate; however, we
experienced the same trade-off behavior between Recall and Precision.

40

5.4 Practical metrics
As we mentioned in Section 3.3 and Section 4.3, our dataset was not ideal for MDD,
especially for providing phoneme diagnosis. From our experiment, the DAR of our
models shows that the diagnostic accuracy was not high, and we would want to avoid
providing incorrect diagnoses to the users. Furthermore, when looking at the type of
error from the Levenshtein algorithm, we found that it is more practical to focus on
substitution errors for diagnosis. The insertion error is generally caused by skipping
a target phoneme, or pronouncing a short phoneme instead of the long phoneme.
Similarly, deletion errors are often caused by pronouncing extra phonemes not in the
target word, or pronouncing the phoneme longer than they should.

The Finnish language has distinct short and long durations for vowels and conso-
nants, and MDD applications should be able to deliver diagnoses on those types of
errors. However, beginner speakers tend to easily make those mistakes, as they often
speak too fast or too slowly. When providing corrective feedback in CAPT, Engwall
and Bälter [11] recommended focusing on the main error type. We, therefore, focus
on the diagnosis quality of mispronouncing a phoneme as another phoneme, e.g. front
vowels mispronounced as corresponding back vowels, and skip other errors. In other
words, we should concentrate on diagnostic accuracy for substitution errors with a
practical metric:

𝐷𝐴𝑅𝑆 =
𝐶𝐷𝑆

𝐶𝐷𝑆 + 𝐷𝐸𝑆
(21)

where 𝐶𝐷𝑆 and 𝐷𝐸𝑆 are similar to CD and DE, but only in case of substitution
errors.

We found that, for our case, 𝐷𝐴𝑅𝑆 is higher than 𝐷𝐴𝑅, and the mispronunciation
diagnosis based on substitution errors is more reliable. The diagnosis function provided
by CaptainA is optional, so we only show the diagnoses in obvious cases when we
detect substitution errors from the mispronunciation.

Readers should be reminded that, while CaptainA’s diagnosis is only for substitution
errors, other errors are still identified with the basic MD. For example, if the user
pronounces only one “a” instead of the target “aa”, the mispronunciation is marked in
the second “a”; however, CaptainA will not provide any detailed diagnosis for that
type of mispronunciation.

We also use another set of practical metrics to measure the ability to give positive
feedback by CaptainA. As explained in Section 4, the dataset only provides binary
ground truth, with either correct or incorrect pronunciation. And in Section 3.4, we
use entropy regularization to be able to give additional score feedback as a middle
ground to the user, to encourage them to practice. However, we could not verify the
correctness of the new score range as the dataset does not provide such information.
Instead, we practically aim for the distribution of phoneme scores with smaller peaks
in scores of 0 and 1. For example, in Figure 13, we would prefer the distribution on
the left to the distribution on the right.

For that purpose, we calculated the standard deviation (SD), kurtosis, and skewness
of the phoneme score distribution for each model. SD is the square root of the

41

variance, and both measure the general dispersion of phoneme scores. We would
prefer a large SD as it indicates the pronunciation scores are not concentrated.
However, as the distribution is concentrated on the two tails (near 0 and 1), SD
might not correctly capture the score dispersion. Kurtosis and skewness metrics offer
quantitative information about the shape of our score distribution [72]. Compared to a
normal distribution which has kurtosis of 3, we would prefer smaller kurtosis as it
indicates lighter (thin) tails, and heavier (thicker) shoulders. The preferred skewness
values are dependent on the type of pronunciation. We use Skew𝑀 to measure the
skewness of the score distribution of all mispronounced phonemes. By definition, the
phoneme scores would be less than 0.5, and the distribution would be skewed to the
right, concentrated on 0; we would prefer a lower skewness number, as it indicates less
skewness to the right [73]. On the other hand, we use Skew𝑃 to measure the skewness
of the score distribution of all correct phonemes. The score distribution is skewed
to the left, concentrated on 1; and we prefer a bigger skewness value. Effectively,
for skewness on mispronunciation score distribution and correct pronunciation score
distribution, the closer the value to 0 (normal distribution skewness), the better.

42

6 Results

6.1 Settings comparison
All results of our experiment are summarized in Table C1 and Table C2. As we
experimented with multiple settings, it is also beneficial to look at the result with a
change in configuration. Table 7 shows the difference in MDD performance from
different pre-trained models and different vocabulary.

Table 7: Speech models’ performance with different pre-train models and different
vocabulary settings.

Model CER Recall Precision F1 DAR
X-G10 21.2% 63.1% 29.4% 40.1% 55.3%
U-G10 30.4% 64.3% 23.4% 34.3% 40.3%
X-P10 21.3% 63.2% 27.3% 38.1% 54.9%
U-P10 29.6% 66.8% 22.6% 33.8% 40.3%

The Uralic pre-trained models’ significant underperformance in both ASR and
MDD was unexpected. Although U-G10 and U-P10 showed a slightly higher Recall
rate, this could be an unintended consequence of their significantly worse CER rather
than better MD. We believe the XLS-R outperformed Uralic because of its exposure
to non-Uralic languages. The test set contains multiple L2 speakers with different
backgrounds, with the majority not familiar with the Uralic family. Because we trained
our models with a native Finnish dataset, our models can only be exposed to the foreign
language groups via the pre-trained model. Recall the literature review on the wav2vec
2.0 model in Section 2; the features learned during pre-training are frozen during
training and fine-tuning. Therefore, the XLS-R models retained some non-Uralic
features learned from the pre-training. The pre-trained Uralic model does not offer
that valuable exposure.

A similar situation occurred when we looked at the performance of phonetic models
in Table 7. The grapheme model X-G10 outperformed the phoneme model X-P10 in
MDD, with distinctly higher Precision. We were expecting a similar performance,
as there were no significant differences between grapheme and phoneme in the test
set. Investigate the training data, we found that Finnish parliament speakers often use
foreign phonetics for foreign words, e.g., the “z” in “Fazer” is pronounced as Finnish
[ts], but both the “z” in “Zyskowicz” can be pronounced as English [z]. Therefore,
even though uncommon alphabet like “z” or “c” were not used in the test set, leaving
them in the vocabulary helped models learn the correct features of Finnish phonetics
during training.

On the positive side, we also benefited from the generalization of entropy regu-
larization. From Table 8, we can clearly see that a small amount of entropy 𝛽 within
[5%, 10%] increases the MDD performance. The increase in Recall is promising, as
we can see that the X-G5 and X-G10 did not have worse CER, suggesting the higher
Recall is from better MDD and not worse ASR. The most valuable and practical
increase is in Precision, as we considered the cost of FP to be more severe than FN (see

43

Table 8: Speech models’ performance with different 𝛽 entropy strengths.

Model CER Recall Precision F1 DAR
X-G0 20.9% 61.1% 26.7% 37.2% 59.4%
X-G5 19.5% 63.1% 30.0% 40.6% 59.9%
X-G10 21.2% 63.1% 29.4% 40.1% 55.3%
X-G20 29.5% 66.6% 23.3% 34.5% 40.3%

Section 3.3). However, X-G20 showed that higher 𝛽 value results in worse performance
in MDD. X-G20 has significantly worse Precision, and the higher Recall could be
caused by higher CER. As mentioned in the previous section, one possible explanation
is that the stronger entropy parameter can remove the blank token predictions, while
the CTC algorithm needs the black tokens for decoding (see Figure 4). It could also
be possible that bigger entropy strength needs different hyperparameters than what we
used for our experiments.

Table 9: Advantages of higher entropy regularization in providing diverse scores.

Model DARS SD Kurtosis Skew𝑀 Skew𝑃

1BIL 71.8% 0.14 3.53 1.37 -3.73
300M 63.3% 0.14 3.60 1.40 -3.50
X-G0 68.9% 0.14 3.80 1.45 -3.50
X-G5 69.2% 0.16 2.71 1.07 -3.09
X-G10 68.9% 0.16 2.54 0.99 -2.75
X-H10 67.7% 0.16 2.59 1.04 -3.16

It should be noted that, while the entropy 𝛽 = 5% yielded the best MDD perfor-
mance, we instead chose the higher entropy 𝛽 = 10% models. Recalling that the initial
purpose of entropy regularization is to obtain a better scoring range for our MDD
application, the small difference in performance between X-G5 and X-G10 allows us to
focus more on the practicality of those models. Looking at Table 9, we can see that all
models with entropy have higher SD, indicating entropy disperses the phoneme scores.
Looking at kurtosis combined with Skew𝑀 and Skew𝑃, we can see X-G10 has a better
score distribution shape than X-G5, with light tails and fat shoulders. The Skew𝑀 for
mispronunciation scores is lower in X-G10, indicating the model gives fewer 0 scores
in mispronunciation (less right-skewed) compared with other models. This would
allow us to provide more positive feedback to the users. On the other hand, the Skew𝑃

for correct pronunciation scores is higher in X-G10, indicating the model gives fewer
100% scores for correct pronunciation (less left-skewed). Overall, the X-G10 with
higher entropy provides the best score ranges for CaptainA, allowing us to give the
user an additional score in the middle of “incorrect” and “correct” pronunciation.

The difference is not visually observable between X-G5 and X-G10. Therefore,
the impact of entropy in the score distribution is illustrated in Figure 14 and Figure 15
between X-G0 and X-G10. The only difference between the two models is the entropy
regularization. And we can clearly see that the score distribution for mispronunciations

44

Figure 14: Phoneme score distribution for short read-aloud phonemes with a score
less than 0.5.

Figure 15: Phoneme score distribution for short read-aloud phonemes with a score
greater than or equal to 0.8.

is more dispersed with X-G10, while X-G0 is more concentrated near 0. X-G10 has
lower Skew𝑀 , and is less skewed to the right, with lower kurtosis indicating a thinner
tail. Both measures indicate less concentration on the tail near 0 compared with

45

X-G0. For the score distribution of correct pronunciations, as most of the samples are
pronounced well, both models are concentrated near 1. However, we can still see that
the X-G10 is less concentrated than X-G0.

The hybrid model, H-G10, has an additional symbol, “N”, for pronunciation of
“nk” and “ng”. It is our target model for CaptainA as we expect the H-G10 would have
similar performance to X-G10, while also providing better pronunciation feedback
for phoneme [N]. Looking at Table C1, we can see that X-H10 is better in ASR than
X-G10, with lower CER by 2%. However, all other metrics between the two models
are similar, even for practical metrics in Table C2. This is because the test set did
not have any test samples containing “nk” or “ng” (see Section 4.3). Even though we
could not evaluate whether X-H10 has any advantages over X-G10 or not, the X-H10
has similar MDD performance to X-G10, so we can use X-H10 for CaptainA. We will
be able to evaluate the effectiveness of the X-H10 with phoneme [N] with more L2
data collected in the future.

6.2 Baseline comparison
It is also important to compare our models with the baselines of the state-of-the-art
models in Finnish ASR. In Table 10, it can be observed that the performance of the
300M and the X-G0 is similar, with the exception of the 300M being slightly worse in
L2 ASR, and potentially leading to higher Recall. Given that both models have the
same size and hyperparameters, it appears that our careful selection of read-aloud
training samples may not be as important as we initially believed. This suggests that
instead of restricting ourselves to the read-aloud samples of the Finnish Parliament
data, we can expand our training set to include all samples in the dataset, or other
spontaneous corpora like Lahjoita puhetta. If spontaneous speech does not reduce
MDD performance, using the Lahjoita puhetta corpus could help provide better
evaluation for spoken Finnish, as mentioned in Section 4.

Table 10: Speech models’ performance compared with baselines.

Model CER Recall Precision F1 DAR
1BIL 15.4% 59.8% 33.3% 42.8% 64.9%
300M 22.3% 65.0% 26.1% 37.2% 57.5%
X-G0 20.9% 61.1% 26.7% 37.2% 59.4%
X-G10 21.2% 63.1% 29.4% 40.1% 55.3%
X-H10 19.2% 63.7% 29.3% 40.1% 58.5%

Compared with the 300M, the X-G10 and X-H10 have outstanding performance in
MDD. While 300M has better Recall, the result could arguably be due to lower ASR
performance. The notable improvement is in Precision while maintaining a reasonable
level of Recall. With Recall higher than the baseline set by the 1BIL model, Precision
is more valuable as we want to avoid FN detections (correct pronunciations being
treated as mispronunciations).

46

The higher Precision was an unexpected but positive consequence of applying
entropy. When looking at the practical metrics in Table 9, we can see that the diagnosis
based solely on substitution errors has better accuracy, closely on par with the baseline
from 1BIL. This is one of the reasons we only provide diagnoses for substitution
errors, as we find DAR𝑆 to be more reliable. The kurtosis and skewness metrics show
the main advantages of our model compared with the baseline. While our models’
performance is lower than the bigger model 1BIL, we can provide a broader range of
scoring to the users as feedback. From the practical point of view, recognizing user’s
progress is also an important factor for a CAPT system [11].

Table 11: MD metrics for the pronunciation levels from 1 to 4 in the short read-aloud
test set. Pronunciation levels are rated by experts for the whole task. Metrics for level
4 are less reliable due to the lack of samples.

Model Level CER Recall Precision
1BIL 1 26.9% 72.6% 38.7%
X-G10 33.5% 78.5% 36.8%
1BIL 2 20.0% 61.5% 32.7%
X-G10 24.7% 63.2% 28.9%
1BIL 3 11.6% 42.4% 27.2%
X-G10 17.6% 45.7% 22.2%
1BIL 4 6.0% 18.8% 20.0%
X-G10 13.6% 25.0% 10.0%

Furthermore, our target user group is beginner Finnish L2 learners, and we found
that our models have slightly better performance for that group. Examining the
performance metrics for each pronunciation level in Table 11, we can observe that
the X-G10 model outperformed the 1BIL model in Recall and performed similarly in
Precision for pronunciation level 1. However, as the pronunciation level increases, the
X-G10 model starts to lose ground in Precision compared to the 1BIL model. While
X-G10 continues to maintain its superiority in Recall, the gap in Precision between
X-G10 and 1BIL becomes more pronounced with increasing pronunciation levels.
This is expected as X-G10 has a much higher CER, which contributes to the widening
difference in Precision as the level increases.

Overall, considering the computing resources required for the 1 billion parameters
models and the practicality of our MDD application, the X-G10 and its alternative
X-H10 demonstrated significant improvements compared to our baseline. The perfor-
mance of the 300M indicated that, if the baseline had the same model size, our models
would outperform in all important metrics. These models would be well-suited for
use in the initial public release of our CaptainA MDD app and set a new baseline for
further development. As more data is collected from the app, we can develop better
models in the future.

47

6.3 Fine-tuned performance
The performance of the fine-tuned model, X-G10-FT, is reported in Table C1 and
Table C2 in Appendix C. The model demonstrated superior performance in multiple
metrics, including CER, Precision, DAR, and DAR𝑆, even when compared to the
1BIL. Despite its impressive results, we ultimately decided against using it for our
application due to its leniency in detecting mispronunciations, as evidenced by the
significantly lower Recall rate. Compared with the baseline model 1BIL, the Recall
rate is also lower, while CER is similar, suggesting the much lower Recall is not
because the model has better ASR. This is likely the trade-off result between Recall
and Precision as the model adapted to the lower strictness level of the transcribers.
Model’s Skew𝑃 is also the lowest, indicating the X-G10-FT is very generous in the
scoring of correct pronunciations, with more scores concentrated around 1.

Investigating the results in the test set, we found that the fine-tuned model tended
to ignore the errors caused by accents, as intended, but also failed to detect MD caused
by clearly different phonemes, particularly in the pronunciation of Finnish [r]. We
found multiple cases in which X-G10-FT rated the [l] pronunciation as the correct
pronunciation of Finnish [r], whereas other models and even the transcribers marked
the [l] as mispronunciation. There are also some cases where the fine-tuned model
could not detect the differences between the front vowels and the back vowels, while
other models and the transcribers did.

The initial plan was to use the X-G10-FT for beginner L2 speakers struggling with
the Finnish [r], while the X-G10 or X-H10 would be used for other users. However,
due to the limitations of our server, we could only use one model, and thus we could
not use the less reliable X-G10-FT.

We attempted to use a lower learning rate to prevent the model from adapting to
unmarked mispronunciations. Although the impact was less severe, the fine-tuned
model still exhibited the same behavior. Using a lower learning rate is a naive approach
to ensure the high quality of the native Finnish model is not compromised by the
undetected Finnish L2 samples. A better approach would be to implement the Kullback-
Leibler (KL) divergence during fine-tuning. Based on the work done by Zhuang
et al. [74], the fine-tuning model is constrained by the KL divergence to maintain
the similarity between the probability outputs before and after fine-tuning. Instead
of minimizing the KL divergence, we can set up our fine-tuning so that any changes
that cause the divergence to be larger than a predetermined threshold are rejected.
However, we did not have enough resources to implement the KL divergence and tune
the threshold to achieve the best result. If we cannot find or collect higher-quality
fine-tuning data in the future, KL divergence will be our potential solution to improve
the fine-tuning models.

48

7 Computer-Assisted Pronunciation Training app
Initially, our project aimed to develop a simple mobile application for demonstration
purposes. However, as we progressed, we realized that it was feasible to provide
a reliable MDD application with the resources available to us. A functional MDD
application would also allow us to gather more L2 data and improve our models.
Moreover, since there was no equivalent CAPT for the Finnish language, CaptainA
could serve as a practical learning tool for L2 speakers.

Therefore, we focused more on the practicality of the MDD application and devoted
a significant portion of our efforts to the development of the CaptainA mobile app.
The flowchart of CaptainA is illustrated in Figure 16. It is comprised of three main
components: a server responsible for MDD and other processing tasks, a modern user
interface (UI) mobile app for Android and iOS devices, and instructional multimedia
content that is partly integrated into the mobile app and partly hosted on an ad-free
video platform.

Figure 16: CaptainA’s flowchart.

7.1 Unity development platform
Our CaptainA was first prototyped with Android Studio [75] and for Android mobile
devices only. As the development continued further, there was a demand for support
on other platforms, such as iOS or Windows. Furthermore, as CaptainA provided
instructional materials in multiple formats, the integration of those multimedia made
the app development became more complex. Consequently, we switched our main
development tool to the Unity engine [76]. Compared with others, Unity has multiple
benefits that help us swiftly develop our CaptainA.

The Unity Editor allows the CaptainA app to reach a broader audience with
cross-platform development, including but not limited to Android, iOS, and Windows.
Apps developed by Unity can be effortlessly converted and published to other platforms

49

using the same interface and settings. Unity also supports development on different
devices, such as smartphones, tablets, or computers. Additionally, the Editor comes
with a device simulation function, allowing us to test CaptainA’s interface on various
handheld devices with different resolutions.

Unity’s main programming language is C#, which is efficient in application
development [77]. Moreover, Unity Editor is capable of drag-and-drop UI, facilitating
rapid development for our mobile app. With Unity Engine, we can design a modern
UI for CaptainA swiftly, without the need to devote significant time to updating our
knowledge with the latest mobile development practices. As we will discuss later in this
section, CaptainA contains a large number of audio, photos, and videos as instructional
materials. Unity’s multimedia integration tools also streamline the process of adding
and managing the multimedia in our app.

In addition to the aforementioned benefits, Unity comes with an animation system,
which allows us to rapidly animate our photos for mobile users. Animation is a
lightweight and faster alternative to video materials, which permits users to quickly
refer to our visualization guides when using CaptainA. Through animation, we can
also draw the user’s attention to the important part of articulation configuration, and
help them understand the difference between correct and incorrect pronunciations (see
Figure 19, 20).

7.2 Server
Our back end is built with Nginx, an open-source web server with its main advantage
being fast response speed in handling simultaneous requests [78]. Our main program-
ming language is Python [79], with core libraries including Levenshtein [80], Pytorch
[81], and Transformers [71]. Python allows us to utilize those libraries for MDD,
without the need to implement our own wav2vec 2.0 model architecture. CaptainA
server is deployed using the open-source container engine Podman [82]. By using a
container engine, we improve CaptainA mobility, and can quickly deploy our back
end to a more powerful server if the number of users unexpectedly increases. The
container engine also supports CaptainA smoothly integrating with MongoDB [83]
for data collection in the later stages of this project.

The server of CaptainA handles all requests from the mobile app (see Figure 16).
At the pilot stage, a request consists of a recording in waveform audio file format
(WAV), and a target text indicating the user’s intended pronunciation. The server’s
wav2vec 2.0 model processes the recording to get the rating for individual phonemes
in the target text. The server then sends the results, which include transcript prediction
from the wav2vec 2.0 model, phoneme ratings, and other assessments, back to the
mobile app.

Additionally, the server detects potential biases caused by the nature of the Finnish
Parliament corpus (Section 4. It also identifies potential problems caused by the
difference between read-aloud and spontaneous Finnish. The most notable issue is
the potential boundary gemination cases (“loppukahdennus” or “rajageminaatio”) for
spoken Finnish. Our model does not differentiate boundary gemination between written
or spoken language and treats both pronunciations as correct. For example, “mene

50

pois” (go away) is pronounced as “meneppois” [menep:ois], but our model would
recognize both “meneppois” and “mene pois” as correct pronunciations. Whenever
the server detects such complicated case, it sends a warning to the user.

It is important to note that, at the time of this thesis work, no data is being collected.
All data is deleted from the server after processing. However, the server is capable
of collecting data with MongoDB software. In the later phase of the project, with
the user’s permission, we intend to collect valuable L2 data to improve our model
performance in MDD. The model already receives the audio recording and the target
transcript for the MDD task, and its output includes the user’s pronunciation score,
thus collecting those data would be straightforward.

Since we provide the CaptainA application as a free product, we used an idle
server with limited hardware. The audio input was processed by Intel® Xeon® X5670
2.93GHz, launched in early 2010. For a model with 300 million parameters, the
server time complexity is proportional to the audio length with a constant factor of
approximately 1 (it takes about five seconds to process one sample with a five-second
duration). CaptainA has both word and sentence pronunciation practice and has a
cap of eight seconds maximum recording length. A single request sent to the server,
therefore, takes around 2 to 8 seconds to process. For reference, with mobile web
search, UX greatly decreases when the delay is more than seven seconds [12]. Since
the latency for one user was just acceptable, using models with more than 300 million
parameters was not practical. We also experimented with even smaller model sizes,
but the results were not encouraging.

7.3 Mobile application
In section 5, we mentioned that Finnish is a phonetic language, which allows for
easy conversion from graphemes to phonemes. We leveraged this characteristic in
CaptainA’s “Freestyle” mode, making it possible for users to practice any words or
sentences they can type, as long as the recording time is not too long. The app
automatically handles the necessary conversion between grapheme and phoneme
(mainly for “ng” and “nk”). Compared to other applications, allowing users to practice
any word or sentence they want is a unique feature of CaptainA. It enables users to
extend the app’s usability beyond the number of samples provided by us. However,
it also means that users may use CaptainA in an undesirable way, such as practicing
spoken Finnish while the app focuses on written Finnish. Moreover, the “Freestyle”
mode lacks audio samples and translations, which need to be added manually to the
app. Improving MDD for spoken language and providing automatic translations and
examples are potential future updates for CaptainA.

Meanwhile, users can also practice with more tailored exercises in “Topic” mode,
which often includes translations and audio samples from native speakers. The audio
samples are natural human voices from fluent Finnish speakers, manually selected and
edited from open-source or public-domain data sources: Finnish Parliament data [64],
Mozilla Common Voice [61], and LibriVox [84]. Aalto University Language Centre
also contribute practice samples from their language courses. In total, CaptainA offers
approximately 180 practice samples, with around 60 samples having example audio,

51

divided into categories such as Easy, Hard, Greetings, Pair (two similar words with
contrasting pronunciations), or AudioBooks. The AudioBooks category is particularly
interesting, as it introduces learners to classic Finnish literature in the public domain,
along with hand-picked audio samples for practice.

Figure 17: Detail feedback on user’s pronunciation of the target word “mustikka” as
“pustikeä”. The screenshot is cropped to reduce vertical length.

After users record their practice attempt, CaptainA sends the audio recording and
the target transcript to the server. The app then waits for a maximum of 20 seconds to
receive the pronunciation score information from the server. This number is subject to
change depending on the server hardware and the volume of server requests. If the app
receives the result, it displays the target word or sentence, with each phoneme having
a different color depending on its rating (see the word “mustikka” in Figure 17).

The blue color indicates a pronunciation close to the level of a native Finnish speaker,
while red marks flawed pronunciation. Yellow represents a phoneme pronunciation
that falls in between. The yellow rating serves as positive feedback to encourage users
in their practice and is the result of entropy regularization. Initially, we targeted four
different ratings. However, measuring the accuracy of the rating scale was challenging,
as we only had a binary test set with correct or incorrect ratings. From a practical
standpoint, it can be difficult to distinguish four different colors on a phone screen.

CaptainA also provides an experimental pronunciation diagnosis whenever the
user presses on the colored text. A small window will appear, containing detailed
feedback on their pronunciation (see Figure 17). Users can see what they are supposed
to say (correct sound) and compare it with what a native Finnish speaker would hear
(what you said). We based the diagnosis on the actual prediction of the recording made
by our model and the Levenshtein distance [48] between the target and the prediction.

52

As explained in Section 5.4, since we lacked suitable data to improve the diagnosis in
the pilot phase of the app, we only used substitution errors to identify the pronounced
phonemes. For the X-H10 model, the tested accuracy of such diagnosis was 67.7%.

The detailed feedback also includes a brief explanation of the appropriate man-
ner of articulation to produce the accurate phoneme, along with a button link to
the instructional multimedia with more information. In the future, with L2 data
collected by CaptainA, we intend to implement more practical diagnoses, such as
explaining common pronunciation mistakes based on the user’s background, and
providing personalized comparisons between the target phoneme and the user’s actual
pronunciation.

Figure 18: Learners’ average score for each phoneme is saved on their phone. The
score is colored based on their proficiency (red, yellow, blue). The screenshot is cut in
the middle to reduce vertical length.

The user’s average score for each phoneme (Figure 18) is stored locally on their
device. Each phoneme is also colored so the user can easily see their strengths and
weaknesses. Each entry also includes the timestamp when the user practiced. The data
can be collected later, with the user’s permission, to evaluate the app’s effectiveness in
pronunciation practice.

As the app records audio, implementing a voice activity detection (VAD) system

53

was necessary. An efficient VAD system would help the server deliver feedback
quickly and reduce its workload. However, we could not employ advanced VAD
methods due to limited server capacity. On the mobile side, with limited hardware,
implementing a good VAD system in Unity would have also required extended work.
As our CaptainA will not charge any fees, using a third-party system was not an
option. After considering all the factors, we opted for a manual VAD system, where
users control the recording time by pressing and holding the record button. During
internal tests, we noted that the manual VAD system was not intuitive, as people are
accustomed to recording without having to hold a button. A more user-friendly VAD
system would only require the user to press the record button and automatically detect
when to end the recording. To address this issue, we implemented more audio and
visual cues to help users become familiar with our manual VAD system. Despite its
limitations, it was the best solution, given our limited server capacity and resources.

7.4 Instructional multimedia

Figure 19: Phoneme assistant for A (left) and Ä (right), with a flashing red arrow
pointing at the tongue to show the main difference.

A good CAPT app should not only detect pronunciation errors made by the speakers
but also provide instructional material to help learners understand and self-correct
their mistakes [11]. During our app development, we also found that users might not

54

be able to correct their own mistakes without assistance. Consequently, with the help
of the Aalto University Language Center and members of the Kielibuusti project, we
added several photos, animations, and video links to help users understand the correct
articulation configuration (the shape and position of speech organs such as lips, mouth,
and tongue). Studies on the CAPT system have suggested that a combination of textual
instruction and articulatory animations or videos would be beneficial to L2 learners
[11, 85].

Figure 20: Phoneme assistant for Ö. The animation shows the mouth changing to the
correct shape (from the left picture to the right picture). A flashing red arrow pointing
at the tongue reminds the user that Ö is a front vowel.

The text instruction and photos are included inside the app. The first version of
CaptainA has materials covering all Finnish phonemes, primarily focusing on vowels.
The lateral view illustrations of correct articulatory configuration are created by Aino
Huhtaniemi6. The author has permitted us to use and edit those illustrations for this
project. As mentioned in subsection 7.1, we also animate some instructions to help
users see the critical points in their articulation. For example, A, Ä, O, and Ö will have
a flashing red arrow to focus users on the correct tongue position, while O, Ö, U, and
Y will show the mouth movement to form the correct shape (see Figure 19 and 20). It
should be noted that at this stage, we only show instruction for individual phonemes.

6https://ainohuhtaniemi.com/

55

With potential data to be collected from users, we could show a combination of photos
to help users better understand their personal pronunciation problems.

To keep the size of CaptainA compact, instead of integrating the instruction videos
directly into the app, we have uploaded them onto Panopto [86]. Panopto is supported
by Aalto University and allows us to provide high-quality videos to the public free of
charge or advertisements. While other video hosting platforms are also possible, they
come with the risk of advertisements being added to the video without our consent,
or additional costs to maintain the videos. Redirecting users to external links may
negatively impact UX. However, considering our goal is to have at least one video per
phoneme and the possibility of adding other open-source video materials later, it is
more favorable to maintain a small app size with external videos.

56

8 Conclusion
Our pilot study investigated the feasibility of developing an MDD app for Finnish L2
learners, using low-resource data without detailed annotation at the phoneme level.
By training with native Finnish samples and combining state-of-the-art wav2vec 2.0
models with regularization techniques, we were able to generate a more diverse rating
system beyond a simple binary decision, providing users with more positive feedback.
By designing our app with data collection capabilities, we could potentially gather
more L2 data and improve the model’s performance in the future.

Our model was trained solely with the Finnish Parliament corpus and achieved
63.7% Recall and 29.3% Precision for the MD task, and a practical diagnosis accuracy
of 67.7%, with about 30% size of the baseline model. Furthermore, with entropy
regularization, our model provided a wider range of scoring, allowing us to offer
users extra ratings besides just correct/incorrect. The extra rating encourages users to
practice and continue using the app while also reducing the social cost of incorrect
MD.

Despite encountering some challenges with short and mumbled recordings, spoken
Finnish, and number pronunciation, CaptainA has achieved excellent results in
evaluating read-aloud written Finnish for L2 beginner speakers, thus meeting the
initial target of our project. The performance is impressive, given the limited data
available for MDD tasks. However, since we allow users to practice with any Finnish
word they want in “Freestyle” mode, we found that, in practice, they also want to
test their spoken Finnish pronunciation. Additionally, without fine-tuning with an L2
corpus, CaptainA could not recognize pronunciation from heavy accent L2 speakers
or L2 speakers with speech difficulties. The diagnosis functionality is still limited to
substitution errors and does not consider the speaker’s background. We are confident
that with more samples and metadata from L2 speakers, we can improve our model’s
performance and minimize those drawbacks.

The results obtained from our experiments during this project also provide valuable
insights for similar research. By training our models on native language speakers’
corpus and testing on L2 corpus, we demonstrated the feasibility of building an MDD
app for low-resource languages with minimal L2 data. We discovered that applying
entropy regularization, with 𝛽% around 5%-10%, improved not only MD but also ASR
results. We found that using pre-trained data from multiple languages, such as XLS-R,
can be more beneficial for MDD involving speakers with different backgrounds. In
contrast, using pre-trained data from one language family, such as Uralic, may be more
useful for ASR tasks involving only speakers from that language family.

The slight improvement observed when using a grapheme vocabulary, including
both native Finnish letters and non-native ones, indicates that a multilingual model
may be beneficial for MDD. By employing a multilingual model, we could leverage
the L2 corpus from different languages, which is particularly valuable in low-resource
settings. An intriguing research topic would be to explore the benefits of training an
MDD model with similar languages that share a significant portion of their phonetics,
such as developing an MDD app for Finnish using datasets from corpora in the Uralic
language family.

57

In addition to exploring different datasets, there are several potential research
directions to improve our models. One potential approach is to decrease model
size with quantization [87], which could lead to faster app response times. Another
interesting avenue is to investigate the MDD performance of models trained on a
combination of Finnish corpora, such as the Lahjoita puhetta dataset [63]. While using
the Lahjoita puhetta dataset could improve performance for spoken Finnish, it may
have an adverse effect on read-aloud samples. Another intriguing area of research is
the combination of audio and video for MDD, as changes in the shape and position
of lips and tongue result in different phonemes. The visual cues are more obvious
in vowel pairs such as A-Ä, E-I, E-Ö, or O-Ö and are valuable in mispronunciation
diagnosis.

Due to the time limitation of the project, CaptainA only provides very limited
functionality, with English translation and practice samples manually added to the app.
We noted that users also want to learn about different forms of the word, and examples
of word usage in a full sentence. Such requirements can be fulfilled automatically by
using Verbix [88] or Wiktionary [89]. Furthermore, integrating vocabulary learning
tools like Anki [90] and pronunciation practice within CaptainA would appeal to L2
learners and increase the app’s usefulness for higher proficiency speakers. CaptainA’s
unique feature of enabling users to practice with their own set of vocabularies could
further enhance app usability while reducing our workload. If CaptainA gains more
public interest, we could devote more resources to implementing more practical
functions in CaptainA during future updates.

With the publication of the CaptainA app for Finnish L2 learners and the promising
initial results of the MDD model, we hope to garner more support for developing
language learning tools for L2 students, not only in Finnish but also for other low-
resource languages. The Finnish CaptainA lays a foundation for creating similar CAPT
apps, such as Finland Swedish CAPT. Ultimately, CaptainA’s effectiveness will be
measured by its usefulness in assisting immigrants to learn Finnish and successfully
integrate into Finnish society. The project’s success can be evaluated in the future,
upon the public release of CaptainA.

58

References
1. O’malley JM, O’Malley MJ, and Chamot AU. Learning strategies in second

language acquisition. Cambridge university press, 1990
2. Rouhe A, Karhila R, Elg A, Toivola M, Khandelwal M, Smit P, Smolander AR,

and Kurimo M. Captaina: Integrated pronunciation practice and data collection
portal. Conference of the International Speech Communication Association
2018 Jan :1051–2. doi: 10.21437/interspeech.2018-3015. Available
from: https://research.aalto.fi/files/29058322/ELEC_rouhe_et_
al_Captaina_interspeech.pdf

3. Becker K and Edalatishams I e. ELSA Speak - Accent Reduction. Pronunciation
in Second Language Learning and Teaching Proceedings 2019; 10

4. Kacetl J and Klimova B. Use of smartphone applications in english language
learning—A challenge for foreign language education. Education Sciences
2019 Jul; 9:179. doi: 10.3390/educsci9030179. Available from: https:
//www.mdpi.com/2227-7102/9/3/179/pdf?version=1562847655

5. Hasan M, Hoon TB, et al. Podcast applications in language learning: A review
of recent studies. English language teaching 2013; 6:128–35

6. Hu R and Xu X. Mobile experience in learning Chinese: Review and recom-
mendations. Impacts of mobile use and experience on contemporary Society
2019 :182–92

7. Zansen Av and Huhta A. Developing automated feedback on spoken performance:
Exploring the functioning of five analytic rating scales using many-facets Rasch
measurement. Digital Research Data and Human Sciences. Jyväskylän yliopisto.
2022

8. Kallio H, Hilden R, Kurimo M, Vainio M, Karhila R, and Lindroos E. Developing
a high-stake digital spoken language proficiency assessment: Results from pilot
tests. International Technology, Education and Development Conference. 2016

9. Al-Ghezi R, Getman Y, Voskoboinik E, Singh M, and Kurimo M. Automatic
Rating of Spontaneous Speech for Low-Resource Languages. 2022 IEEE Spoken
Language Technology Workshop (SLT). IEEE. 2023 :339–45

10. Jakobson L. Holistic perspective on Feedback for adult beginners in an online
course of Swedish. Apples: journal of applied language studies 2015; 9

11. Engwall O and Bälter O. Pronunciation feedback from real and virtual language
teachers. Computer Assisted Language Learning 2007; 20:235–62

12. Arapakis I, Park S, and Pielot M. Impact of Response Latency on User
Behaviour in Mobile Web Search. Proceedings of the 2021 Conference on
Human Information Interaction and Retrieval. 2021 :279–83

13. Wu M, Li K, Leung WK, and Meng H. Transformer Based End-to-End
Mispronunciation Detection and Diagnosis. Interspeech. 2021 :3954–8

59

https://doi.org/10.21437/interspeech.2018-3015
https://research.aalto.fi/files/29058322/ELEC_rouhe_et_al_Captaina_interspeech.pdf
https://research.aalto.fi/files/29058322/ELEC_rouhe_et_al_Captaina_interspeech.pdf
https://doi.org/10.3390/educsci9030179
https://www.mdpi.com/2227-7102/9/3/179/pdf?version=1562847655
https://www.mdpi.com/2227-7102/9/3/179/pdf?version=1562847655

14. Xu X, Kang Y, Cao S, Lin B, and Ma L. Explore wav2vec 2.0 for Mispronunci-
ation Detection. Interspeech. 2021 :4428–32

15. Kürzinger L, Winkelbauer D, Li L, Watzel T, and Rigoll G. CTC-segmentation
of large corpora for german end-to-end speech recognition. International
Conference on Speech and Computer. Springer. 2020 :267–78

16. Baevski A, Zhou Y, Mohamed A, and Auli M. wav2vec 2.0: A framework
for self-supervised learning of speech representations. Advances in Neural
Information Processing Systems 2020; 33:12449–60

17. Liu H, Jin S, and Zhang C. Connectionist temporal classification with maximum
entropy regularization. Advances in Neural Information Processing Systems
2018; 31

18. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł,
and Polosukhin I. Attention is all you need. Advances in neural information
processing systems 2017; 30

19. Han K, Wang Y, Chen H, Chen X, Guo J, Liu Z, Tang Y, Xiao A, Xu C, Xu Y,
et al. A survey on vision transformer. IEEE transactions on pattern analysis and
machine intelligence 2022; 45:87–110

20. Raisi Z, Naiel MA, Younes G, Wardell S, and Zelek JS. Transformer-based text
detection in the wild. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2021 :3162–71

21. Kanda N, Ye G, Gaur Y, Wang X, Meng Z, Chen Z, and Yoshioka T. End-
to-End Speaker-Attributed ASR with Transformer. Conference of the Inter-
national Speech Communication Association 2021 Apr. doi: 10.21437/
interspeech.2021-101

22. Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A,
Shyam P, Sastry G, Askell A, et al. Language models are few-shot learners.
Advances in neural information processing systems 2020; 33:1877–901

23. Chowdhery A, Narang S, Devlin J, Bosma M, Mishra G, Roberts A, Barham
P, Chung HM, Sutton C, Gehrmann S, Schuh P, Shi K, Tsvyashchenko S,
Maynez J, Rao A, Barnes P, Tay Y, Shazeer N, Prabhakaran V, Reif E, Du N,
Hutchinson B, Pope R, Bradbury JT, Austin J, Isard M, Gur-Ari G, Yin P,
Duke T, Levskaya A, Ghemawat S, Dev S, Michalewski H, Garcia X, Misra
V, Robinson KG, Fedus L, Zhou D, Ippolito D, Luan D, Lim H, Zoph B,
Spiridonov A, Sepassi R, Dohan D, Agrawal S, Omernick M, Dai AM, Pillai TS,
Pellat M, Lewkowycz A, Moreira E, Child R, Polozov O, Lee KJ, Zhou Z,
Wang X, Saeta B, Diaz MA, Firat O, Catasta M, Wei JZ, Meier-Hellstern K,
Eck D, Dean J, Petrov S, and Fiedel N. PaLM: Scaling Language Modeling
with Pathways. 2022. doi: 10.48550/arxiv.2204.02311. Available from:
http://arxiv.org/pdf/2204.02311

60

https://doi.org/10.21437/interspeech.2021-101
https://doi.org/10.21437/interspeech.2021-101
https://doi.org/10.48550/arxiv.2204.02311
http://arxiv.org/pdf/2204.02311

24. Jiang SWF, Yan BC, Lo TH, Chao FA, and Chen B. Towards robust mispronun-
ciation detection and diagnosis for L2 English learners with accent-modulating
methods. 2021 IEEE Automatic Speech Recognition and Understanding Work-
shop (ASRU). IEEE. 2021 :1065–70

25. Shen Y, Liu Q, Fan Z, Liu J, and Wumaier A. Self-Supervised Pre-Trained Speech
Representation Based End-to-End Mispronunciation Detection and Diagnosis of
Mandarin. IEEE Access 2022; 10:106451–62

26. Graves A, Fernández S, Gomez F, and Schmidhuber J. Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural net-
works. Proceedings of the 23rd international conference on Machine learning.
2006 :369–76

27. Hannun A. Sequence Modeling withCTC. Distill 2017. https://distill.pub/2017/ctc.
doi: 10.23915/distill.00008

28. Prabhavalkar R, Rao K, Sainath TN, Li B, Johnson L, and Jaitly N. A Comparison
of sequence-to-sequence models for speech recognition. Interspeech. 2017
:939–43

29. Schneider S, Baevski A, Collobert R, and Auli M. wav2vec: Unsupervised
Pre-Training for Speech Recognition. Conference of the International Speech
Communication Association 2019 Sep. doi: 10.21437/interspeech.2019-
1873

30. Pepino L, Riera P, and Ferrer L. Emotion Recognition from Speech Using
wav2vec 2.0 Embeddings. Conference of the International Speech Communica-
tion Association 2021 Apr. doi: 10.21437/interspeech.2021-703

31. Tak H, Todisco M, Wang X, Jung Jw, Yamagishi J, and Evans N. Automatic
Speaker Verification Spoofing and Deepfake Detection Using Wav2vec 2.0 and
Data Augmentation. Proc. The Speaker and Language Recognition Workshop
(Odyssey 2022). 2022 :112–9. doi: 10.21437/Odyssey.2022-16

32. Bannò S and Matassoni M. Proficiency assessment of L2 spoken English using
wav2vec 2.0. 2022 IEEE Spoken Language Technology Workshop (SLT). IEEE.
2023 :1088–95

33. Hendrycks D and Gimpel K. Gaussian Error Linear Units (GELUs). 2020.
arXiv: 1606.08415 [cs.LG]

34. Mohamed A, Okhonko D, and Zettlemoyer L. Transformers with convolutional
context for ASR. 2020. arXiv: 1904.11660 [cs.CL]

35. Jegou H, Douze M, and Schmid C. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and machine intelligence 2010;
33:117–28

36. Jang E, Gu S, and Poole B. Categorical reparameterization with Gumbel-
Softmax. International Conference on Learning Representations 2016 Nov.
Available from: https://openreview.net/pdf?id=rkE3y85ee

61

https://doi.org/10.23915/distill.00008
https://doi.org/10.21437/interspeech.2019-1873
https://doi.org/10.21437/interspeech.2019-1873
https://doi.org/10.21437/interspeech.2021-703
https://doi.org/10.21437/Odyssey.2022-16
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1904.11660
https://openreview.net/pdf?id=rkE3y85ee

37. Park DS, Chan W, Zhang Y, Chiu CC, Zoph B, Cubuk ED, and Le QV.
SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition. Proc. Interspeech 2019. 2019 :2613–7. doi: 10.21437/
Interspeech.2019-2680

38. HuggingFace. Filter wav2vec2 models by Finnish language. 2023. Avail-
able from: https://huggingface.co/models?language=fi&other=
wav2vec2 [Accessed on: 2023 Feb 20]

39. Wang L, Feng X, and Meng HM. Mispronunciation detection based on cross-
language phonological comparisons. 2008 International Conference on Audio,
Language and Image Processing. IEEE. 2008 :307–11

40. Qian X, Meng H, and Soong F. Capturing L2 segmental mispronunciations
with joint-sequence models in Computer-Aided Pronunciation Training (CAPT).
2010 7th International Symposium on Chinese Spoken Language Processing.
IEEE. 2010 :84–8

41. Lee A and Glass J. A comparison-based approach to mispronunciation detection.
2012 IEEE Spoken Language Technology Workshop (SLT). IEEE. 2012 :382–7

42. Zhang F, Huang C, Soong FK, Chu M, and Wang R. Automatic mispronunciation
detection for Mandarin. 2008 IEEE International Conference on Acoustics,
Speech and Signal Processing. IEEE. 2008 :5077–80

43. Li W, Chen NF, Siniscalchi SM, and Lee CH. Improving Mispronunciation
Detection for Non-Native Learners with Multisource Information and LSTM-
Based Deep Models. Interspeech. 2017 :2759–63

44. Zhao G, Sonsaat S, Silpachai A, Lucic I, Chukharev-Hudilainen E, Levis J,
and Gutierrez-Osuna R. L2-ARCTIC: A non-native English speech corpus.
Interspeech. 2018 :2783–7. doi: 10.21437/Interspeech.2018-1110.
Available from: http://dx.doi.org/10.21437/Interspeech.2018-
1110

45. Shortt M, Tilak S, Kuznetcova I, Martens B, and Akinkuolie B. Gamification in
mobile-assisted language learning: A systematic review of Duolingo literature
from public release of 2012 to early 2020. Computer Assisted Language Learning
2021 :1–38

46. BoldVoice. BoldVoice | Pronunciation App for Non-Native English Speakers.
2023. Available from: https://www.boldvoice.com/ [Accessed on: 2023
Mar 18]

47. Witt SM and Young SJ. Phone-level pronunciation scoring and assessment for
interactive language learning. Speech communication 2000; 30:95–108

48. Levenshtein VI et al. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet physics doklady. Vol. 10. 8. Soviet Union. 1966 :707–10

49. Bachman LF et al. Fundamental considerations in language testing. Oxford
university press, 1990

62

https://doi.org/10.21437/Interspeech.2019-2680
https://doi.org/10.21437/Interspeech.2019-2680
https://huggingface.co/models?language=fi&other=wav2vec2
https://huggingface.co/models?language=fi&other=wav2vec2
https://doi.org/10.21437/Interspeech.2018-1110
http://dx.doi.org/10.21437/Interspeech.2018-1110
http://dx.doi.org/10.21437/Interspeech.2018-1110
https://www.boldvoice.com/

50. Eskenazi M. An overview of spoken language technology for education. Speech
Communication 2009; 51:832–44

51. Likic V. The Needleman-Wunsch algorithm for sequence alignment. Lecture
given at the 7th Melbourne Bioinformatics Course, Bi021 Molecular Science
and Biotechnology Institute, University of Melbourne 2008 :1–46

52. Aung KMM. Comparison of levenshtein distance algorithm and needleman-
wunsch distance algorithm for string matching. PhD thesis. MERAL Portal,
2019

53. Zeyer A, Schlüter R, and Ney H. Why does CTC result in peaky behavior?
2021. arXiv: 2105.14849 [cs.LG]

54. Graves A and Graves A. Supervised sequence labelling. Springer, 2012
55. Meng H, Lo YY, Wang L, and Lau WY. Deriving salient learners’ mispronunci-

ations from cross-language phonological comparisons. 2007 IEEE Workshop on
Automatic Speech Recognition & Understanding (ASRU). IEEE. 2007 :437–42

56. Weinberger S. Speech Accent Archive. George Mason University, 2015.
Available from: http://accent.gmu.edu

57. Zhang J, Zhang Z, Wang Y, Yan Z, Song Q, Huang Y, Li K, Povey D, and
Wang Y. speechocean762: An Open-Source Non-native English Speech Corpus
For Pronunciation Assessment. 2021. doi: 10.48550/ARXIV.2104.01378.
Available from: https://arxiv.org/abs/2104.01378

58. Babu A, Wang C, Tjandra A, Lakhotia K, Xu Q, Goyal N, Singh K, von Platen P,
Saraf Y, Pino J, Baevski A, Conneau A, and Auli M. XLS-R: Self-supervised
Cross-lingual Speech Representation Learning at Scale. Proc. Interspeech 2022.
2022 :2278–82. doi: 10.21437/Interspeech.2022-143

59. Wang C, Riviere M, Lee A, Wu A, Talnikar C, Haziza D, Williamson M,
Pino J, and Dupoux E. VoxPopuli: A Large-Scale Multilingual Speech Corpus
for Representation Learning, Semi-Supervised Learning and Interpretation.
Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Online: Association for Computational
Linguistics, 2021 Aug :993–1003. doi: 10.18653/v1/2021.acl-long.80.
Available from: https://aclanthology.org/2021.acl-long.80

60. Tanskanen A, Rasmus T, and Vehviläinen T. Finnish-NLP. 2023. Available
from: https://huggingface.co/Finnish-NLP [Accessed on: 2023 Feb
27]

61. Mozilla. Mozilla Common Voice is an initiative to help teach machines how real
people speak. 2023. Available from: https://commonvoice.mozilla.org
[Accessed on: 2023 Feb 15]

62. Lennes M. Segmental features in spontaneous and read-aloud Finnish. Phonetics
of Russian and Finnish 2009

63

https://arxiv.org/abs/2105.14849
http://accent.gmu.edu
https://doi.org/10.48550/ARXIV.2104.01378
https://arxiv.org/abs/2104.01378
https://doi.org/10.21437/Interspeech.2022-143
https://doi.org/10.18653/v1/2021.acl-long.80
https://aclanthology.org/2021.acl-long.80
https://huggingface.co/Finnish-NLP
https://commonvoice.mozilla.org

63. Moisio A, Porjazovski D, Rouhe A, Getman Y, Virkkunen A, AlGhezi R, Lennes
M, Grósz T, Lindén K, and Kurimo M. Lahjoita puhetta: a large-scale corpus of
spoken Finnish with some benchmarks. Language Resources and Evaluation
2022 :1–33

64. Aalto University, Department of Signal Processing and Acoustics. Aalto Finnish
Parliament ASR Corpus 2008-2020, version 2. text corpus. Available from:
http://urn.fi/urn:nbn:fi:lb-2022052002

65. Virkkunen A, Rouhe A, Phan N, and Kurimo M. Finnish parliament ASR corpus:
Analysis, benchmarks and statistics. Language Resources and Evaluation 2023
:1–26. doi: 10.1007/s10579-023-09650-7

66. Voutilainen ERJ. The regulation of linguistic quality in the official speech-to-text
reports of the Finnish parliament. CoMe: Studies on Communication and
Linguistic and Cultural Mediation 2017 :61–73

67. Kuparinen K and Tapaninen T. Oma Suomi 1. Otava, 2015
68. Vazhenina D and Markov K. End-to-end noisy speech recognition using Fourier

and Hilbert spectrum features. Electronics 2020; 9:1157
69. Li J et al. Recent advances in end-to-end automatic speech recognition. APSIPA

Transactions on Signal and Information Processing 2022; 11
70. Kahn J, Riviere M, Zheng W, Kharitonov E, Xu Q, Mazaré PE, Karadayi J,

Liptchinsky V, Collobert R, Fuegen C, et al. Libri-light: A benchmark for
ASR with limited or no supervision. ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2020
:7669–73

71. Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault
T, Louf R, Funtowicz M, Davison J, Shleifer S, Platen P von, Ma C, Jernite
Y, Plu J, Xu C, Scao TL, Gugger S, Drame M, Lhoest Q, and Rush AM.
Transformers: State-of-the-Art Natural Language Processing. Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. Online: Association for Computational Linguistics,
2020 Oct :38–45. Available from: https://www.aclweb.org/anthology/
2020.emnlp-demos.6

72. DeCarlo LT. On the meaning and use of kurtosis. Psychological methods 1997;
2:292

73. Groeneveld RA and Meeden G. Measuring skewness and kurtosis. Journal of
the Royal Statistical Society: Series D (The Statistician) 1984; 33:391–9

74. Zhuang F, Cheng X, Luo P, Pan SJ, and He Q. Supervised representation
learning: Transfer learning with deep autoencoders. Twenty-fourth international
joint conference on artificial intelligence. 2015

75. Hagos T and Hagos T. Android studio. Learn Android Studio 3: Efficient
Android App Development 2018 :5–17

64

http://urn.fi/urn:nbn:fi:lb-2022052002
https://doi.org/10.1007/s10579-023-09650-7
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

76. Juliani A, Berges VP, Teng E, Cohen A, Harper J, Elion C, Goy C, Gao Y,
Henry H, Mattar M, and Lange D. Unity: A General Platform for Intelligent
Agents. 2020. arXiv: 1809.02627 [cs.LG]

77. Hejlsberg A, Wiltamuth S, and Golde P. C# language specification. Addison-
Wesley Longman Publishing Co., Inc., 2003

78. Reese W. Nginx: the high-performance web server and reverse proxy. Linux
Journal 2008; 2008:2

79. Van Rossum G and Drake Jr FL. Python tutorial. Vol. 620. Centrum voor
Wiskunde en Informatica Amsterdam, The Netherlands, 1995

80. Bachmann M. Levenshtein module. 2021. Available from: https://
maxbachmann.github.io/Levenshtein/levenshtein.html [Accessed
on: 2023 Feb 15]

81. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z,
Gimelshein N, Antiga L, et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing systems 2019;
32

82. Gantikow H, Walter S, and Reich C. Rootless containers with Podman for
HPC. High Performance Computing: ISC High Performance 2020 International
Workshops, Frankfurt, Germany, June 21–25, 2020, Revised Selected Papers.
Springer. 2020 :343–54

83. Banker K, Garrett D, Bakkum P, and Verch S. MongoDB in action: covers
MongoDB version 3.0. Simon and Schuster, 2016

84. LibriVox. Free public domain audiobooks. 2023. Available from: https:
//librivox.org/ [Accessed on: 2023 Feb 15]

85. Neri A, Cucchiarini C, Strik H, and Boves L. The pedagogy-technology interface
in computer assisted pronunciation training. Computer assisted language learning
2002; 15:441–67

86. Panopto. Stop Typing. Start Recording. 2023. Available from: https:
//www.panopto.com/ [Accessed on: 2023 Feb 12]

87. Peng Z, Budhkar A, Tuil I, Levy J, Sobhani P, Cohen R, and Nassour J. Shrinking
bigfoot: Reducing wav2vec 2.0 footprint. arXiv preprint arXiv:2103.15760
2021

88. Verbix. Verbix Verb Conjugator. 2023. Available from: https://www.
verbix.com/ [Accessed on: 2023 Feb 11]

89. Wiktionary. Wiktionary, the free dictionary. 2023. Available from: https:
//en.wiktionary.org/ [Accessed on: 2023 Feb 11]

90. Elmes D. Anki. Powerful, intelligent flash cards. Remembering things just
became much easier. 2023. Available from: https://apps.ankiweb.net/
[Accessed on: 2023 Feb 11]

65

https://arxiv.org/abs/1809.02627
https://maxbachmann.github.io/Levenshtein/levenshtein.html
https://maxbachmann.github.io/Levenshtein/levenshtein.html
https://librivox.org/
https://librivox.org/
https://www.panopto.com/
https://www.panopto.com/
https://www.verbix.com/
https://www.verbix.com/
https://en.wiktionary.org/
https://en.wiktionary.org/
https://apps.ankiweb.net/

A Wav2vec 2.0 model hyperparameters
The following hyperparameters were used for training our 300 million parameters
models, including X-G0, X-G5, X-G10, X-G20, X-P10, X-H10, U-G10, U-P10:

learning_rate: 5e-5
num_train_epochs: 10
per_device_train_batch_size: 128
per_device_eval_batch_size: 128
warmup_steps: 500
lr_scheduler_type: linear
save_steps: 500
eval_steps: 500
layerdrop: 0.041
activation_dropout: 0.055
mask_time_prob: 0.082
attention_dropout: 0.094
hidden_dropout: 0.047
feat_proj_dropout: 0.04
optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
seed: 1011

The following hyperparameters were used for fine-tuning our 300 million parameters
model, X-G10-FT:

num_train_epochs: 5
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
warmup_steps: 10
save_steps: 10
eval_steps: 10

66

B Vocabulary of each model type
The following are the vocabulary inside the “vocab.json” file of the wav2vec 2.0
models. Different model type have different vocabulary, and all related datasets are
converted accordingly. [PAD] is the padding token, and [UNK] is the unknown token.

Grapheme model: "’": 1, "a": 2, "b": 3, "c": 4, "d": 5, "e": 6, "f": 7, "g": 8, "h": 9,
"i": 10, "j": 11, "k": 12, "l": 13, "m": 14, "n": 15, "o": 16, "p": 17, "q": 18, "r": 19,
"s": 20, "t": 21, "u": 22, "v": 23, "w": 24, "x": 25, "y": 26, "z": 27, "ä": 28, "å": 29,
"ö": 30, "|": 32, "[UNK]": 31, "[PAD]": 0

Phoneme model: "a": 1, "ä": 2, "b": 3, "d": 4, "e": 5, "f": 6, "g": 7, "ŋ": 8, "h": 9, "i":
10, "j": 11, "k": 12, "l": 13, "m": 14, "n": 15, "o": 16, "ö": 17, "p": 18, "r": 19, "s":
20, "t": 21, "u": 22, "v": 23, "y": 24, "|": 25, "[UNK]": 26, "[PAD]": 0

Hybrid model: "ŋ": 1, "a": 2, "b": 3, "c": 4, "d": 5, "e": 6, "f": 7, "g": 8, "h": 9, "i":
10, "j": 11, "k": 12, "l": 13, "m": 14, "n": 15, "o": 16, "p": 17, "q": 18, "r": 19, "s":
20, "t": 21, "u": 22, "v": 23, "w": 24, "x": 25, "y": 26, "z": 27, "ä": 28, "å": 29, "ö":
30, "|": 32, "[UNK]": 31, "[PAD]": 0

67

C Models performance summary

Table C1: Speech models’ performance in ASR and MDD on Digitala short read-aloud
set.

Model CER Recall Precision F1 DAR
1BIL 15.4% 59.8% 33.3% 42.8% 64.9%
300M 22.3% 65.0% 26.1% 37.2% 57.5%
X-G0 20.9% 61.1% 26.7% 37.2% 59.4%
X-G5 19.5% 63.1% 30.0% 40.6% 58.7%
X-G10 21.2% 63.1% 29.4% 40.1% 55.3%
X-G20 29.5% 66.6% 23.3% 34.5% 40.3%
X-P10 21.3% 63.2% 27.3% 38.1% 54.9%
X-H10 19.2% 63.7% 29.3% 40.1% 58.5%
U-G10 30.4% 64.3% 23.4% 34.3% 40.3%
U-P10 29.6% 66.8% 22.6% 33.8% 40.3%
X-G10-FT 15.0% 55.5% 33.8% 42.0% 75.4%

Table C2: Speech models’ practical performance in diagnosis on Digitala short read-
aloud set.

Model DARS SD Kurtosis Skew𝑀 Skew𝑃

1BIL 71.8% 0.14 3.53 1.37 -3.73
300M 63.3% 0.14 3.60 1.40 -3.50
X-G0 68.9% 0.14 3.80 1.45 -3.50
X-G5 68.5% 0.16 2.71 1.07 -3.42
X-G10 68.9% 0.16 2.54 0.99 -2.75
X-G20 54.9% 0.16 2.58 1.00 -2.05
X-P10 66.6% 0.16 2.63 1.05 -2.92
X-H10 67.7% 0.16 2.59 1.04 -3.16
U-G10 57.7% 0.15 3.15 1.22 -2.20
U-P10 57.1% 0.15 2.53 0.98 -1.96
X-G10-FT 75.4% 0.16 2.82 1.15 -3.88

68

	Abstract
	Preface
	Contents
	Symbols and abbreviations
	1 Introduction
	2 Background
	2.1 Machine learning and deep learning
	2.1.1 Supervised learning
	2.1.2 Unsupervised learning
	2.1.3 Self-supervised learning

	2.2 End-to-end ASR
	2.2.1 Transformer
	2.2.2 CTC
	2.2.3 Wav2vec
	2.2.4 Wav2vec 2.0

	3 Mispronunciation detection and diagnosis
	3.1 Related work
	3.2 Goodness of Pronunciation
	3.3 Performance metrics
	3.4 Entropy regularization

	4 Dataset
	4.1 Pre-trained model
	4.2 Training dataset
	4.3 Fine-tune and test data
	4.3.1 Test set
	4.3.2 Fine-tuning set

	5 Experiment
	5.1 Vocabulary
	5.2 Hyperparameters & Entropy regularization
	5.3 Training and fine-tuning
	5.4 Practical metrics

	6 Results
	6.1 Settings comparison
	6.2 Baseline comparison
	6.3 Fine-tuned performance

	7 Computer-Assisted Pronunciation Training app
	7.1 Unity development platform
	7.2 Server
	7.3 Mobile application
	7.4 Instructional multimedia

	8 Conclusion
	A Wav2vec 2.0 model hyperparameters
	B Vocabulary of each model type
	C Models performance summary

