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Abstract
Rapid development of driving assistance technology and vehicular communication for
intelligent transportation systems has proved that it can improve the safety, efficiency
and sustainability of vehicles. This thesis endeavours to develop an experimental
platform to demonstrate the use of cooperative adaptive cruise control (CACC)
systems. The work analyzes existing longitudinal controllers and their string stability
in homogeneous platoons.Furthermore, field tests are carried out using the longitudinal
controller with multiple autonomous experimental vehicle platforms to verify the
effectiveness of the controller. According to the results of simulation and field tests,
the proposed CACC platooning approach shows great benefits for longitudinal vehicle
platooning.
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Symbols and abbreviations

Symbols
𝜔 Angular Velocity
𝜏 Time lag in the powertrain
Δ Time delay in the wireless communication
𝑑 Desired stand still gap
ℎ Time headway
𝑢 Throttle control signal input
𝑟 Number of preceding vehicles, directly ahead of a vehicle
𝑝 Position of a vehicle
𝑣 Velocity of a vehicle
𝑎 Acceleration of a vehicle

Operators
d
d𝑡

derivative with respect to variable 𝑡∑︁
𝑖 sum over index 𝑖

Abbreviations
CACC Cooperative Adaptive Cruise Control
V2V Vehicle-to-Vehicle
EKF Extended Kalman Filter
PLF Predecessor Leader Following
TPF Two Predecessor Following
MPF Multi Predecessor Following
ROS Robot Operating System
IMU Inertial Measurement Unit
OBC On-board Computer
WLAN Wireless Local Area Network
LAN Local Area Network
GCS Ground Control Station
IFT Information Flow Topology
EPV Experimental Platform Vehicle

7



1 Introduction

1.1 Background
Increased dependency on automobiles for transportation poses a high demand for road
infrastructure. A possible solution is the use of onboard sensors and inter-vehicular
wireless communication to allow cooperation between vehicles.

Vehicle platoons are one of the proposed Intelligent Transportation System (ITS)
solutions that are gaining popularity in recent times. Vehicle platoons employ a
form of autonomous or semi-autonomous cruise control in a group of vehicles that
move together maintaining a specified inter-vehicular distance. Such systems improve
road network throughput by reducing traffic congestion and improving traffic safety
reducing total travel time. The reduced air drag on each vehicle also reduces fuel
consumption and exhaust emissions. Thus, such systems would help road networks
accommodate increasing traffic and minimize traffic accidents [3] [4] [5].

1.2 Problem Definition
1.2.1 Vehicle Control Algorithms

Autonomous and semi-autonomous vehicles use control algorithms to set the velocity
and direction, which in turn determine the desired trajectory to follow. The right
control algorithm would prevent the vehicle from driving off the lanes and causing a
collision or traffic congestion.

This work approaches the longitudinal controller design challenge while assuming
the lateral guidance control is managed separately [11][13][14][27][41]. When multiple
vehicles use longitudinal controllers simultaneously, they form a vehicle platoon.

1.2.2 Connected Vehicle Platooning

A vehicle platoon is a group of interconnected vehicles travelling in close proximity
while maintaining inter-vehicular distance. Each vehicle is a subsystem that keeps
track of its vehicle states (position, velocity, acceleration, etc.) using measurement
sensors. Vehicle subsystems communicate their vehicle states with other subsystems
(vehicle) through an inter-vehicle wireless communication method. The platoon
consists of a lead vehicle followed by 𝑛 followers, with indexes 𝑖 = 1, 2, 3, . . . , 𝑛. The
follower vehicles maintain a set inter-vehicle distance (𝑑𝑖) to their predecessor vehicles,
closely matching their speed and manoeuvres. The leader can be human-operated or
programmed to autonomously follow a given trajectory, which would also make the
whole platoon fully autonomous. [40]

Since the vehicle systems are interconnected to a form platoon, it simultaneously
couples all their sub-system dynamics to a singular system. Therefore, along with
the understanding of a single vehicle’s dynamics, the dynamical properties in the
longitudinal and lateral domains are required for the whole platoon. [17]



If all vehicles in a platoon are identical, i.e. they have the same dynamics and
physical constraints, then it is classified as a homogeneous platoon. If a platoon
consists of non-identical vehicles then it is defined as a heterogeneous platoon.

In this thesis, all the experiments are conducted on homogeneous platoons.
Each vehicle in the platoon is equipped with the same controllers, sensors, and
communication systems to facilitate inter-vehicular cooperation [13]. Figure 1 shows
a diagram with a homogeneous connected vehicle platoon consisting of five vehicles.

Figure 1: A five-vehicle homogeneous platoon. The arrows indicate the information
flow over the wireless communication network.

1.2.3 Experimental Platform Design for Platooning

The reliability of a controller’s design can be determined when it can be verified in
scenarios in both simulation and real-world cases. Virtual simulators are inexpensive
to test the controllers but may lack the ability to accurately consider the influence of
the physical world on the system.

Since a full-size vehicle is expensive to set up and can be a safety hazard, a better
approach is to first implement a small-scale model of the scenario with a robotic
hardware platform.

This thesis describes the development of hardware and software for a vehicle
platooning system that has similar behaviour compared to full-size vehicle platoons.
The aim has been to provide an environment to test platooning control algorithms
rapidly. This experimental platform makes the transition from theory to simulation to
real-world hardware on vehicles quicker, allowing for faster improvements before they
are tested on a full-scale vehicle.

The controller on this platform consists of two parts - a high-level controller which
is being tested for the purpose of the vehicle platooning application, and a low-level
controller which controls the vehicle propulsion system based on the commands from
the high-level controller. Making the high-level controller isolated from the low-level
controller makes it easier to use the same high-level controller in a similar full-size
vehicle, where the low-level controller may be different due to the difference in vehicle
propulsion hardware. Section 4.2 discusses the details of the software developed to
implement various high-level controllers under test.

1.3 Research Motivation
There have been several research projects that demonstrate the use of a well-designed
control system for various predecessor leader following (PLF) systems in simulation
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environments, but the study of these controllers in physical environments with hardware
components has been limited. The motivation behind this project is to be able to
demonstrate distributed controllers on robot hardware platforms and provide more
compelling evidence of the benefits of vehicle platooning which can encourage both
private and public sector stakeholders to deploy this functionality in the near future.

This thesis aims to focus on the implementation of distributed controllers on
multiple-vehicle systems in a physical environment. By experimenting on vehicle
hardware, the proposal is to study the effect of communication limitations and
environmental uncertainties (disturbances) on homogeneous platoons. The comparison
would be on the basis of parameters such as spacing policy, network topology, time
headway, etc., in dynamic physical environments.

Thus, the thesis would also have the possibility to consider scenarios to determine
if the controller algorithms are able to maintain overall system stability for a platoon
leader with time-varying velocity or in the event of a change in the number of vehicles.

1.4 Objectives
To study the multiple-predecessor following topology for vehicle platoons, this thesis
would use various control parameters. The study of the effect of these parameters on
hardware systems operating in a physical test environment is the primary objective of
the thesis. Researchers have suggested multiple parameters which affect the vehicle
platoon, some are mentioned below.

• Spacing policy: It is the policy for the separation between two consecutive
vehicles.

• Communication delays: Delays caused by transmission over a wireless network.

• System stability (internal and string stability ): A platoon’s capacity to minimise
the impact of disturbances.

Other factors that influence platoons are the wireless network topologies used
by the platoon vehicles and uncertainties due to external disturbances caused by
environmental factors like wind gusts or road slopes. These factors are not analysed in
this thesis.

Another objective of this thesis is the development of the hardware and software
platform for running experiments related to vehicle platoons. This system needs to
have a similar behaviour when compared to a full-size vehicle platoon, which would
make the transition from theory to simulation to real-world hardware on vehicles
quicker, allowing for faster improvements before they are tested on a full-scale vehicle.

1.5 Thesis Outline
This thesis consisted of six chapters and two appendices. The outline of each chapter
is summarized as follows:
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• Chapter 1 introduces the thesis by describing the motivation behind this research
and its objectives.

• Chapter 2 presents an overview of vehicle platooning algorithms and reviews
previous work on controllers used for cooperative longitudinal control.

• Chapter 3 discusses the vehicle state estimation methodologies using sensor
data and presents the use of Robot Operating System (ROS) based architecture
as a framework for inter-vehicle and intra-vehicle information transportation.

• Chapter 4 introduces the hardware and software systems developed during this
thesis.

• Chapter 5 demonstrates the proposed various approaches discussed in the thesis
and presents the results of the experiments for these approaches.

• Chapter 6 summarizes the work and recommends future improvements for
research.

• Appendix A presents additional technical specifications of the experimental
platform developed in this thesis.

• Appendix B briefly describes the Robot Operating System (ROS) software
framework.
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2 Vehicle Platoon Control

2.1 Overview
In this chapter, the theoretical foundation for vehicle platooning that will be used
throughout the thesis report is introduced. Section 2.2 is a review of past work covering
the underlying concepts like graph theory followed by an explanation of cooperative
systems and platoon topologies. In section 2.5.1, we discuss the longitudinal platooning
used in this work, detailing the vehicle dynamic model, controller design, and the
methodology for the system stability analysis.

2.2 Cooperative Systems
2.2.1 Cruise Control

A real-world active automation system called cruise control keeps moving at a
predetermined speed that the driver chooses. Most highway roads are composed of
long, flat, low-curvature paths, which makes it possible for programming an embedded
system to assist the driver with the vehicle’s speed regulation task. The majority of
contemporary commercial vehicles come with cruise control and the use of cruise
control systems in long-distance vehicles is extremely common. By controlling
vehicle propulsion, this system reduces driver fatigue and improves comfort while
also maximising the vehicle’s energy efficiency [15]. Figure 2 illustrates a common
control structure for cruise control systems.

Figure 2: Control structure of a Cruise Control system.

2.2.2 Adaptive Cruise Control (ACC)

Cruise control systems provide satisfactory results but fail to perform optimally in
high-traffic scenarios on highways and urban areas. In high-traffic situations, the user
must frequently change the set speed during traffic intersections, congestion, etc. The
Adaptive Cruise Control (ACC) system was developed to mitigate the shortcomings of
the cruise control system. Adaptive Cruise Control uses brake actuators and ranging
sensors, to detect preceding vehicles and dynamically set the cruising speed of the
vehicle. Figure 3 illustrates a common control structure for ACC systems.
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Figure 3: Control structure of an Adaptive Cruise Control (ACC) system.

2.2.3 Cooperative Adaptive Cruise Control (ACC)

Cheaper sensor technology has made it easier to equip cars with ACC and motivated
research in autonomous car-following systems. This improved system is called
Cooperative Adaptive Cruise Control (CACC).

Figure 4: Control structure of a Cooperative Adaptive Cruise Control (CACC) system.

Figure 4 illustrates a common control structure for CACC systems. This system
takes advantage of vehicle-to-vehicle (V2V) communication channels between ACC-
equipped vehicles to exchange data about the vehicle’s state (position, velocity and
acceleration) [16]. When there are speed oscillations in the leading vehicles, CACC
permits quicker reaction time for the following vehicle’s onboard system to control its
speed.

The objectives of CACC are listed below [35] :

• Shorter distances between vehicles travelling in the same lane are made possible
by increasing traffic throughput without sacrificing stable vehicle following.
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• By improving the ability to communicate with moving vehicles and the response
time for transmitting their changes, rear-end collision risk can be decreased.

• Enhance driver comfort by dampening propagated string disturbances and acting
as an ADAS.

• If distances are close enough, decrease fuel consumption by enhancing traffic
flow and aerodynamic drafting.

2.3 Platooning Topologies
A vehicle platoon includes a leader vehicle and 𝑁 follower vehicles, i.e. a total of
𝑁 + 1 vehicles. Vehicles in a platoon communicate with each other using various
information flow topologies. Some common information flow topologies are shown in
Figure 5, which include [43]:

(a) Predecessor following topology (PF)

(b) Predecessor-leader following topology (PLF);

(c) Bidirectional topology (BD);

(d) Bidirectional-leader topology (BDL);

(e) Two predecessors following topology (TPF);

(f) Two predecessor-leader following topology (TPLF).

(g) Multiple-predecessor following (MPF).

In the information exchanged between the vehicles can be one or more states
of vehicle systems, that is, position, velocity, and acceleration. In this thesis, we
have demonstrated results from experiments using Predecessor Following Topology
(PF), Two predecessors following topology (TPF) and Multiple-predecessor following
(MPF) topologies.

2.3.1 Multiple Predecessor Following

Multiple predecessor following (MPF) is a platooning strategy which involves the
information flow from multiple predecessor vehicles in the control loop, starting from
the immediate predecessor vehicle. This method uses weighted information from
the leading part of a vehicle platoon to achieve better performance while braking,
emerging or splitting the platoon[15].

It is ideal for scenarios where intra-platoon interruptions may occur, e.g. a
pedestrian crossing or a collision of a platoon member vehicle. It also permits
the upstream vehicles to react at the moment a perturbation occurs in the platoon
downstream, even before perceiving the perturbation from the immediate predecessor.

14



Figure 5: Platooning Topologies

Ploeg et al. [25] have discussed the two-vehicle look-ahead approach, comparing
it with the predecessor following strategy. In the two-vehicle look-ahead approach, the
controller of the 𝑖-th vehicle utilised the state of the (𝑖 − 1)-th and (𝑖 − 2)-th vehicles to
compute the motor throttle command. This approach also shows good string stability
results.

Thus, this is the approach that is the focus of this thesis, and experiments in later
sections demonstrate its advantages.
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2.4 Graph Theory
In this thesis, the information flow between networked dynamic vehicle systems is
modelled with the directed graph concept from graph theory. A directed graph is

In this thesis, the information flow between dynamic vehicle systems are modelled
with the directed graph concept from graph theory [1]. Considering a networked
dynamic vehicle system, with one leader vehicle and 𝑁 following vehicles with 𝑀
communication links. Then, the following vehicles are represented by a set of nodes
V = {𝑣1, 𝑣2, ..., 𝑣𝑁 } which are connected by edges E ⊆ V × V representing the
information flow through a between pairs of following vehicles. The resulting directed
graph is represented by G(V, E).

The dynamic vehicle system’s network topology is represented by the Laplacian
matrix L and the incidence matrix 𝐷. The Laplacian matrix L = [𝑙𝑖 𝑗 ], 𝑖, 𝑗 ∈ N𝑁 is
associated with G, where

𝑙𝑖 𝑗 =

{︄
−𝑎𝑖 𝑗 , 𝑖 ≠ 𝑗∑︁𝑁
𝑘=1 𝑎𝑖𝑘 , 𝑖 = 𝑗

(1)

where 𝑎𝑖 𝑗 = 1 represents information flow from vehicle 𝑗 to vehicle 𝑖.

𝑎𝑖 𝑗 =

{︄
1, (𝑣 𝑗 , 𝑣𝑖) ∈ E
0, otherwise

(2)

Here a uni-directional communication structure is assumed where vehicles are
able to receive information only from their predecessors, and hence 𝑎𝑖 𝑗 = 0 if 𝑗 > 𝑖.

The connections between the vehicles and the leader can be modelled by [2],

P = diag{𝑝11, 𝑝22, ..., 𝑝𝑁𝑁 } (3)

where

𝑝𝑖𝑖 =

{︄
1, if vehicle 𝑖 is connected to the leader
0, otherwise

(4)

Then, a new information topology matrix can be defined as

L𝑝 = L + P (5)

where L𝑝 is a lower triangular matrix.

2.5 Longitudinal Platooning
2.5.1 Longitudinal String Stability

The longitudinal string stability component of vehicular platooning will be the main
emphasis of this work. The longitudinal controller is used to control the distance
between two successive platoon vehicles.
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Any platoon member (vehicle 𝑖) braking or accelerating will cause oscillations
between vehicles 𝑖 and vehicle (𝑖 − 1), which can spread further down the platoon if
there is no inter-vehicle communication. The slinky effect [36], another name for this
phenomenon, is depicted in figure 6.

If the first vehicle in the platoon, i.e. the leader vehicle (𝑖 = 0) decelerates by
braking, the distance to the next vehicle (vehicle 1), 𝑑1 decreases. As a reaction to this,
the internal controller on vehicle 1 also commands its motor controller to decelerate,
causing 𝑑2 to decrease. As a result, 𝑑1 increases, and a similar oscillation motion
propagates throughout the entire platoon’s inter-vehicle distances (𝑑𝑖).

The "slinky effect" may be amplified further by wireless communication lag,
sluggish sensor data processing, and actuator lag. The platoon’s spacing policy is
maintained with stable margins by using a longitudinal controller that satisfies the
string stability criterion and guarantees that longitudinal oscillations are reduced.

It is assumed that the lateral controller present in the system is uncoupled from
the longitudinal controller, hence the idea of lateral string stability is not taken into
account in this thesis.

Figure 6: Slinky effect in the longitudinal aspect of platooning.

2.5.2 Vehicle Dynamics Model

In this thesis work, the following vehicle model is considered. The vehicle model used
in this work is referred from various previous research publications, like [25]. In a
platoon consisting of 𝑁 vehicles following the vehicle model given by,⎧⎪⎪⎪⎨⎪⎪⎪⎩

�̇�𝑖 (𝑡) = 𝑣𝑖 (𝑡),
�̇�𝑖 (𝑡) = 𝑎𝑖 (𝑡),
𝜏𝑖 �̇�𝑖 (𝑡) + 𝑎𝑖 (𝑡) = 𝑢𝑖 (𝑡),

(6)

where for vehicle 𝑖, 𝑝𝑖 (𝑡) is the position, 𝑣𝑖 (𝑡) is the velocity, 𝑎𝑖 (𝑡) is the accel-
eration, 𝑢𝑖 (𝑡) is the control input and the time-lag in the powertrain is represented
by 𝜏𝑖 > 0. In multiple predecessors following, multiple vehicles preceding vehicle 𝑖
transmit their vehicle state information to vehicle 𝑖. Figure 7 shows the nomenclature
for the predecessor and successor of vehicle 𝑖, which are all wirelessly connected to
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each other. The desired distance between vehicle 𝑖 and the 𝑙-th vehicle ahead of vehicle
𝑖 [10] is,

𝑑𝑖,𝑖−𝑙 (𝑡) =
𝑖∑︁

𝑘=𝑖−𝑙+1
(ℎ𝑘𝑣𝑘 (𝑡) + 𝑑𝑘 ), (7)

where ℎ𝑘 ≥ 0 is the time-headway of the 𝑘-th vehicle and the expected standstill
distance from the rear of vehicle 𝑘 − 1 to the front of vehicle 𝑘 is given by 𝑑𝑘 > 0.

Figure 7: Platooning Notation

2.5.3 Controller Design

The objective of to designing a controller for a vehicular platoon is to achieve individual
node stability and the platoon’s string stability.

A linear feedback controller is used to determine the control signal input to the
vehicle at the 𝑖𝑡ℎ position. [10]

𝑢𝑖 (𝑡) =
𝑟𝑖∑︁
𝑙=1

(︂
𝑘 𝑝𝑖

(︁
𝑝𝑖 − 𝑝𝑖−𝑙 +

𝑖∑︁
𝑘=𝑖−𝑙+1

(ℎ𝑘𝑣𝑘 + 𝑑𝑘 )
)︁
+ 𝑘𝑣𝑖 (𝑣𝑖 − 𝑣𝑖−𝑙) + 𝑘𝑎𝑖 (𝑎𝑖 − 𝑎𝑖−𝑙)

)︂
, (8)

where the number of the vehicles preceding vehicle 𝑖 is given by 𝑟𝑖 ≤ 𝑖. For
a heterogeneous platoon following the MPF topology, 𝑟𝑖 may be different for each
vehicle, since each vehicle’s control command can be determined by the states of a
different number of predecessors. The feedback on distance, velocity, and acceleration
errors between vehicle 𝑖 and its predecessor vehicles can be adjusted by tuning the
𝑘 𝑝𝑖, 𝑘𝑣𝑖, and 𝑘𝑎𝑖 control gains.

2.5.4 Problem Formulation

The 𝑖-th vehicle’s controller has access to the states of its predecessor vehicles due to a
local wireless communication network established between the platooning vehicles. As
a result, the difference between its own states and all predecessors can be determined.
It is assumed that wireless communication has a uniform time delay Δ. The control law
can be modified to include the communication time delays in the following equation
based on the controller in equation (8) proposed in [10]. Using 𝑢′

𝑖
(𝑡) = 𝑢𝑖 (𝑡 − Δ) as
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the control input for vehicle 𝑖.

𝑢′𝑖 (𝑡) =
𝑟𝑖∑︁
𝑙=1

[︂
𝑘 𝑝𝑖

{︁
𝑝𝑖 (𝑡 − Δ) − 𝑝𝑖−𝑙 (𝑡 − Δ) +

𝑖∑︁
𝑘=𝑖−𝑙+1

(ℎ𝑘𝑣𝑘 (𝑡 − Δ) + 𝑑𝑘 )
}︁

+ 𝑘𝑣𝑖
{︁
𝑣𝑖 (𝑡 − Δ) − 𝑣 (𝑡 − Δ)

}︁
+ 𝑘𝑎𝑖

{︁
𝑎𝑖 (𝑡 − Δ) − 𝑎𝑖−𝑙 (𝑡 − Δ)

}︁]︂ (9)

2.6 Stability Analysis
In this section, we present the stability analysis studied by Abolfazli et al. [1]. The
errors in the platooning vehicle states are defined by,⎧⎪⎪⎪⎨⎪⎪⎪⎩

�̄�𝑖 (𝑡) = 𝑝𝑖 (𝑡) − 𝑝0(𝑡) + Σ𝑖
𝑘=1(ℎ𝑘𝑣𝑘 (𝑡) + 𝑑𝑘 )

�̄�𝑖 (𝑡) = 𝑣𝑖 (𝑡) − 𝑣0(𝑡)
�̄�𝑖 (𝑡) = 𝑎𝑖 (𝑡) − 𝑎0(𝑡)

(10)

The leading vehicle is assumed to be moving at a constant speed, hence 𝑢0(𝑡) = 0 and
𝑎0(𝑡) = 0.
Using equation (22), the dynamics equation is expressed as,⎧⎪⎪⎪⎨⎪⎪⎪⎩

�̇̄�𝑖 (𝑡) = 𝑣𝑖 (𝑡) + Σ𝑖
𝑘=1(ℎ𝑘 �̄�𝑘 (𝑡))

�̇̄�𝑖 (𝑡) = �̄�𝑖 (𝑡)
�̇̄�𝑖 (𝑡) = −1

𝜏
�̄�𝑖 (𝑡) + 1

𝜏
𝑢𝑖 (𝑡)

(11)

By modifying equation (10) the control law from equation (9) can be written as,

𝑢𝑖 (𝑡) = −
𝑟𝑖∑︁
𝑙=1

[︂
𝑘 𝑝𝑖

{︁
�̄�𝑖 (𝑡 − Δ) − �̄�𝑖−𝑙 (𝑡 − Δ)

}︁
+ 𝑘𝑣𝑖

{︁
�̄�𝑖 (𝑡 − Δ) − �̄� (𝑡 − Δ)

}︁
+ 𝑘𝑎𝑖

{︁
�̄�𝑖 (𝑡 − Δ) − �̄�𝑖−𝑙 (𝑡 − Δ)

}︁]︂ (12)

We define the augmented errors,

�̄� = [ �̄�1, �̄�2, ..., �̄�𝑁 ]⊤

�̄� = [�̄�1, �̄�2, ..., �̄�𝑁 ]⊤

�̄� = [�̄�1, �̄�2, ..., �̄�𝑁 ]⊤

Substituting equation (12) into equation (11). The closed-loop network dynamics
model can be written as,

ḃ = 𝐴b (𝑡) + 𝐴Δb (𝑡 − Δ), (13)
b = Φ(𝑡), 𝑡 ∈ [−Δ, 0] (14)

19



where the state vector is
b = [ �̄�⊤, �̄�⊤, �̄�⊤]⊤ (15)

the system’s initial state is given by

Φ(·) ∈ C( [−Δ, 0],Ra), (16)
and other parameters of this closed loop equation system are,

𝐴 =

⎡⎢⎢⎢⎢⎣
0 𝐼𝑁 𝐻

0 0 𝐼𝑁
0 0 −𝑇

⎤⎥⎥⎥⎥⎦ ∈ Ra×a) , a = 3𝑁 (17)

𝐴Δ =

⎡⎢⎢⎢⎢⎣
0 0 0
0 0 0

−𝑇𝐾𝑝L𝑝 −𝑇𝐾𝑝L𝑝 −𝑇𝐾𝑝L𝑝

⎤⎥⎥⎥⎥⎦ ∈ Ra×a) , a = 3𝑁 (18)

𝐾𝑚 = diag{𝑘𝑚1, . . . 𝑘𝑚𝑁 }, 𝑚 ∈ {𝑝, 𝑣, 𝑎}, (19)
𝑇 = diag{1/𝜏1, . . . 1/𝜏𝑁 }, (20)

𝐻 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ℎ1 0 · · · 0
ℎ1 ℎ2 · · · 0
...

...
. . . 0

ℎ1 ℎ2 · · · ℎ𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(21)

2.6.1 Internal Stability

The objective of designing a controller for a vehicular platoon is to guarantee the
individual node stabilities and the platoon’s overall string stability. Internal stability
indicates that the closed loop system is stable, and thus vehicles in the platoon can
track the desired inter-vehicle distance and maintain the desired velocity.

Mathematically, the following conditions are required for internal stability, with
1 ≤ 𝑙 ≤ 𝑟, ⎧⎪⎪⎪⎨⎪⎪⎪⎩

lim𝑡→∞
(︁
𝑝𝑖 (𝑡) − 𝑝𝑖−𝑙 (𝑡) +

∑︁𝑖
𝑘=𝑖−𝑙+1(ℎ𝑘𝑣𝑘 (𝑡) + 𝑑𝑘 )

)︁
= 0,

lim𝑡→∞
(︁
𝑣𝑖 (𝑡) − 𝑣 (𝑡)

)︁
= 0,

lim𝑡→∞
(︁
𝑎𝑖 (𝑡) − 𝑎𝑖−𝑙 (𝑡)

)︁
= 0

(22)

The sufficient condition for internal stability is stated according to the following
theorem [1],

Theorem 1 By selecting the control gains (𝑘 𝑝𝑖 , 𝑘𝑣𝑖 , 𝑘𝑎𝑖) such that the following
conditions hold

𝑘 𝑝𝑖 > 0, (23a)
𝑘𝑎𝑖 > 0, (23b)
𝑘 𝑝𝑖 − 𝜏𝑖 (𝑘𝑣𝑖 + 𝑘 𝑝𝑖ℎ𝑖) + 𝜏2

𝑖 𝑘 𝑝𝑖 ≠ 0, (23c)
𝑘𝑣𝑖 + 𝑘 𝑝𝑖ℎ𝑖) ≥ 𝑘 𝑝𝑖𝜏𝑖, (23d)
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the closed loop system in equation (13) is asymptotically stable for any time delay
Δ that satisfies the following inequality

Δ𝑟𝑖 (𝑘𝑣𝑖 + 𝑘 𝑝𝑖ℎ𝑖) < 1, 𝑖 ∈ N (24)

2.6.2 String Stability

It is essential for a vehicular platoon to ensure that all vehicles in the platoon perform
the same manoeuvre when an external disturbance is introduced, for example, while
changing lanes or a sudden deceleration for collision avoidance [43]. Thus, along
with following the internal stability of the individual sub-systems, the interconnected
vehicles must also respect the conditions for the stability of the complete platooning
system. This concept is called string stability which is described as; "The attenuation
of errors propagating in an upstream direction of interconnected vehicles forming a
platoon" [12]. This means that string stability is achieved when a perturbance due to
an external disturbance is introduced into the system of platooning vehicles and does
not propagate along the platoon.

In a homogeneous platoon, the vehicles are identical and the parameters can be
simplified to 𝜏𝑖 = 𝜏 = 0, 𝑟𝑖 = 𝑟, ℎ𝑖 = ℎ, 𝑘 𝑝𝑖 = 𝑘 𝑝, 𝑘𝑣𝑖 = 𝑘𝑣, 𝑘𝑎𝑖 = 𝑘𝑎,∀𝑖 ∈ Z𝑛0.

The spacing error is defined as,

𝑒𝑖 = 𝑝𝑖 − 𝑝𝑖−1 + ℎ𝑣𝑖 + 𝑑𝑖 (25)

and the laplace tranform of 𝑒𝑖 (𝑡) is

𝐸𝑖 (𝑠) =
𝑟∑︁
𝑙=1

𝐻𝑙 (𝑠)𝐸𝑖−𝑙 (𝑠) (26)

where

𝐻𝑙 (𝑠) =
𝑘𝑎𝑠

2𝑒−Δ𝑠 + {𝑘𝑣 − 𝑘 𝑝ℎ(𝑟 − 𝑙)}𝑠𝑒−Δ𝑠 + 𝑘 𝑝𝑒−Δ𝑠

𝜏𝑠3 + 𝑠2 + 𝑟𝑘𝑎𝑠2𝑒−Δ𝑠 + 𝑟 (𝑘𝑣 + 𝑘 𝑝ℎ)𝑠𝑒−Δ𝑠 + 𝑟𝑘 𝑝𝑒−Δ𝑠
(27)

Since the platoon is homogeneous, 𝐻𝑙 (𝑠) in equation 27 is identical for all member
vehicles. In the work by Bian et al., the authors mention that string stability is
guaranteed if, (substituting 𝑠 = 𝑗𝜔 in 27),

| |𝐻𝑙 ( 𝑗𝜔) | |∞ ≤ 1
𝑟
,∀1 ≤ 𝑙 ≤ 𝑟 (28)

Theorem 2 Consider the system in equation (6) with the input given by equation (9)
that is internally stable. Then, the string stability specification in equation (28) holds
if all the following conditions are satisfied:
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𝑘𝑣 + 𝑘 𝑝 (ℎ − 𝜏) ≥ 0, (29a)
2𝜏Δ − Δℎ − 𝜏ℎ ≤ 0, (29b)

𝑘𝑎 − 𝜏(𝑘𝑣 + 𝑘 𝑝ℎ) ≤ 0, (29c)
𝜏 − 2𝑟𝑘𝑎Δ ≥ 0, (29d)
1 + 2𝑟

(︁
𝑘𝑎 − 𝜏(𝑘𝑣 + 𝑘 𝑝ℎ)

)︁
+ 2𝑟Δ

(︁
𝑘 𝑝 (𝜏 − ℎ) − 𝑘𝑣) − 𝑘𝑣

)︁
0, (29e)

𝑟2𝑘2
𝑝ℎ2

(︁
1 − (𝑟 − 𝑙)2)︁ + 2𝑟2𝑘 𝑝𝑘𝑣ℎ(1 + 𝑟 − 𝑙) − 2𝑟𝑘 𝑝 ≥ 0, 1 ≤ 𝑙 ≤ 𝑟

(29f)
𝑘𝑎 > 0, (29g)
𝑘 𝑝 > 0, (29h)

(29i)

for the region defined by equation (29), there exists a set of feedback gains 𝑘 𝑝, 𝑘𝑣
and 𝑘𝑎, such that string stability specification in equation 28 holds if,

ℎ ≥ ℎ𝑚𝑖𝑛 =
2(𝜏 + Δ)
2𝑟𝑘𝑎 + 1

(30)
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3 Vehicle State Estimation

3.1 Overview
This chapter introduces the method required to achieve an accurate state estimation of
each vehicle in the platoon using the Cooperative Adaptive Cruise Control (CACC)
system. The chapter discusses the sensors used on the vehicles and the sensor fusion
algorithms.

3.2 Sensors for State Estimation
A vehicle operating with the Cooperative Adaptive Cruise Control (CACC) can be
considered an autonomous mobile robot vehicle, which needs to act intelligently to
develop a map of its surroundings and maintain localisation to remain in a stable
vehicle platoon formation with the other member vehicles in the platoon.

Sensory organs in animals, allow them to sense and interact with their surroundings.
Similarly, autonomous mobile vehicles are equipped with popular sensor systems that
provide them with the ability to sense their environment and navigate through it safely.
The following is a list of some of the most popular sensors installed in autonomous
vehicles [7].

• Ultrasonic Rangefinder emits sound pulses that bounce off objects and are
received by the receiver. The distance between the objects is determined by the
time of flight of the reflected pulse. The ultrasonic rangefinder system is simple
to use but only provides accurate distance measurements for large, solid objects
at close ranges.

• IMU (Inertial Measurement Unit) consists of sensors which are used to
detect the physical motion of the vehicle. Typically, an IMU had 6 degrees of
freedom (6 DoF), i.e. three accelerometers and three gyroscopes, measuring
the corresponding values in the x, y and z axis. Accelerometers measure the
acceleration values and the gyroscope measures the angular velocities. Thus,
with these measurements, it is possible to calculate the three-dimensional
position and orientation of the IMU.

• Odometry (Wheel encoders): are mounted on the wheels of vehicles, to count
the number of turns of the rotating wheels while the robot is in motion. By
accumulating the information about wheel rotation, it is possible to use a method
called ’dead reckoning’ to trace the path taken by the vehicle with respect to
the initial position of the vehicle. The dead reckoning algorithm has a high
chance of accumulating large errors due to reasons like - wheel slipping, road
conditions, or the resolution of the encoder.

• LIDAR (Light Detection and Ranging) is a sensor that emits pulsed laser light
beams and monitors the reflected beams to detect objects in its surroundings.
LIDAR sensors can be focused on smaller areas at greater distances with much
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higher accuracy than radar. LIDAR sensors are expensive, but the cost is
decreasing as the demand for autonomous vehicles is increasing steadily.

• RADAR (Radio Detection and Ranging) systems on autonomous vehicles
emit radio waves with radar transmitters that reflect off environmental objects
and return to the receiver of the RADAR system. The information can be used
to model environmental objects. RADAR operates well in long ranges and in
most weather types, but isn’t useful in object identification.

• GNSS (Global Navigation Satellite System) is a system on an autonomous
vehicle consisting of a GNSS receiver which obtains time and location informa-
tion in numerical coordinates (e.g. latitude, longitude) from a global satellite
network.

• Stereo Cameras is capable of providing image and video data which could
be used to recognise objects. Using stereo cameras, it is possible to get depth
information about the surroundings and model real-time 3D scenes.

Each type of sensor has its strengths and weaknesses, making it imperative for
autonomous vehicle systems to combine data from multiple sensors to generate the
best model of its environment and make the best decision to navigate around obstacles.

Figure 8: Sensors for vehicle state estimation on an autonomous vehicle.

3.3 Sensor Fusion
An autonomous vehicle in a connected platoon moves on the road and its environment
is not static, thus it uses sensor fusion to merge data from its various sensors to improve
its own localization. Based on the localisation information, it calculates the best
trajectory to follow the desired path. Sensor fusion provides numerous advantages to
autonomous robots [18]:
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• increases the accuracy, reliability, and fault tolerance of sensor data;

• extends spatial and temporal coverage of sensor systems;

• by improving the resolution, it allows better recognition of the robot’s surround-
ings, which is critical in dynamic environments;

• by using algorithms for data preprocessing, sensor fusion reduces the cost and
complexity of a robot;

• allows multiple sensors to be used without modifying the robot’s software or
hardware architecture.

3.3.1 Bayesian Filters

The most popular algorithm for the state estimation of a robot is using Bayesian state
estimation. These filters are named after their application of Bayes’ law, [23]:

𝑃(𝐴|𝐵) = 𝑃(𝐵 |𝐴)
𝑃(𝐵) 𝑃(𝐴) (31)

Bayes’ law states that “𝑃(𝐴|𝐵) [the probability of event 𝐴 occurring given that
event 𝐵 has occurred], can be calculated by 𝑃(𝐵 |𝐴)/𝑃(𝐵) [the normalised probability
of event 𝐵 occurring given that event 𝐴 has occurred], multiplied by 𝑃(𝐴) [the
probability of event 𝐴 occurring]".

Bayes’ law allows the estimation of an unobservable event based on the information
in the observable data. For example, to estimate the likelihood of having a disease
given a positive result, Bayes’ law is applied with the observable quantities, i.e. false
positives and false negatives, as input for the calculations.

The equation for a Bayesian Filter can be derived using equation (31), which states
Baye’s law, and considering the Markov assumption, where the current state depends
purely on the previous state and not on any other state before it ([23]).

𝑃(𝑠𝑡 |𝑧𝑡 , 𝑢𝑡) = [𝑃(𝑧𝑡 |𝑠𝑡−1)𝑃(𝑠𝑡−1 |𝑢𝑡) (32)

In this case, [ is a normalization factor, 𝑧𝑡 is a system observation, 𝑢𝑡 is a transition
that modifies the state, and 𝑠𝑡 is the current state vector. According to Montella,
equation (32) is the basis of all Bayesian state estimators [23]. There are many popular
Bayesian Filter algorithms like the Kalman Filter, Extended Kalman Filter (EKF) and
Particle Filter, which are used based on the scenario.

The Kalman Filter algorithm propagates a system’s state, characterised by a
Gaussian distribution, using linear transition functions over time[23]. The Kalman
Filter is one of the few algorithms that have been proven to be an optimal solution for
its domain.

The Kalman Filter only applies to a strict set of problems consisting of linear state
transition and linear measurements with added Gaussian noise. This condition applies
to many real-world problems, but some problems consist of non-linear transitions. To
address these problems, the Extended Kalman Filter (EKF) was invented. The EKF
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includes the step to linearise non-linear transition functions and observation functions
using Taylor Series expansion. [19] [23]

In this work, the Extended Kalman Filter has been used to fuse sensor data and
estimate the robot’s states (position, velocity and acceleration).
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4 Experimental Platform: Design and Development
While designing a longitudinal controller for a Cooperative Adaptive Cruise Control
system it is necessary to conduct a series of experiments, which should demonstrate
results that are close to practical scenarios. Therefore, a reliable vehicle dynamics
model must be used. This chapter presents the CACC algorithm used for this thesis.
Then the physical constraints and limitations are considered to make realistic hardware
in a loop experimental environment. Finally, the experimental vehicle model is
explained.

4.1 Hardware Platform
The goal of this project is to analyse and improve platooning algorithms used in
autonomous vehicles. As a result, the experimental platform vehicle must be designed
to fulfil the following requirements in order to simulate an experiment analogous to
vehicle platooning on the real world highways.[33]

1. The dynamics of the hardware experimental platform must be similar to that of
a full-scale vehicle. (For this experiment, the dynamics must be similar at least
in the longitudinal direction).

2. The experimental platform must be able to achieve the speeds necessary to
demonstrate platooning.

3. In the event of a controller failure, the robot must be strong enough to withstand
collisions with other robots travelling.

Taking these requirements into account, the Magni robot platform of Ubiquity
Robotics was selected. The Magni robot has a metal frame, which can withstand
collisions. Even though the Magni robot model is a differential drive robot, rather than
an Ackermann model steering system, the dynamics are similar to a full-scale vehicle
in the longitudinal direction, which is the scope of the experiments in this project.
The robot can achieve speeds of up to 1m/s (or higher with software updates), which
is enough to simulate experimental results in a closed lab environment. A detailed
description of the experimental platform vehicle is available in Appendix A.
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Figure 9: A side view of the Magni robot with sensors and actuators.

4.2 Software System
The software system would complement the hardware components of the experimental
platform, which would together make the system complete. This section discusses the
software architecture and the choices for the components used to design the system’s
software.

4.2.1 Software Architecture

The software system for the experimental platform must be designed to accommodate
the various requirements of the experimental setup. Some of the most important
requirements are listed below:

• The experimental platform shall have the ability to run various CACC controllers
with minimal effort in configuring new controllers.

• The software system must allow the functionality to record sensor data and
control commands.

• The performance of the controller can be affected by large delays, so the software
system shall be designed to minimise the overhead due to data processing and
other software applications.

• The software shall be modular, making it easier to accommodate prototyping
and allowing the development of sub-components for future updates.

Taking into account these requirements, the Robot Operating System (ROS) was chosen
as a framework for the implementation of the software architecture. ROS is an open-
source middleware system which supports modules developed using C++ and Python,
making it extremely useful for prototyping experimental platforms. This framework
facilitates message passing and the scheduling of task execution. It also provides a
simple data-logging interface and the flexibility to choose computer hardware. Due
to these advantages, ROS suits the requirements of the experimental platform, and
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it was selected as the software framework for this system. A description of the ROS
framework is presented in Appendix B.

In the work by Rajamani [28], the usage of a split-controller configuration is
discussed for automotive applications. In this configuration, a high-level controller
commands the linear and angular velocity/acceleration, while a low-level controller
achieves the commanded velocities and accelerations to the necessary motors. To
capture the commands from the high-level controller and relay them to the motors
effectively, the low-level controller must run at a significantly higher rate (∼50 Hz),
compared to the high-level controller (∼10 Hz).

The system is categorized into two parts: the experimental platform vehicle and
the ground control station (GCS). The details of the software architecture and its
various modules are described in the following subsections. Figure 10 illustrates
the system architecture of the software running on the onboard computer in each
experimental platform vehicle. It also shows the network interface modules that run in
the experimental vehicle to facilitate data exchange with other vehicles in the platoon
and at the GCS.

4.3 Experimental Platform Vehicle Software
The experimental vehicle’s software system consists of four main categories, which
are

• Physical Level (Sensor-Actuator Level)

• Low Level (Hardware Interfaces/Drivers)

• High Level (Perception, Localisation and Navigation)

• Application Level (Control and Network)

4.3.1 Sensor-Actuator Level

The sensors and motor controller are supplied with pre-installed firmware software
provided by the Magni robot platform manufacturer. The experimental platform is
installed with the following sensors:

• 2D Lidar

• Depth Camera

• Inertial Measurement Unit (IMU)

• Sonar Rangefinders

• IR Sensor Array

The motor controller is the only actuator in the experimental platform vehicle.
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Figure 10: System Architecture Diagram
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4.3.2 Hardware Interfaces

These modules consist of the hardware interfaces to communicate with the sensor
and actuator firmware software. This includes the drivers for reading sensor data and
sending command signals to the wheel motor controllers.

1. Sensors

• 2D LIDAR Node: The rplidar open-source ROS package runs the rpli-
darNode which provides the basic interface with the 2D Laser Scanner
(RP-LIDAR A1) which is used on the experimental platform vehicle.
This node converts the raw RP-LIDAR sensor measurements to the
sensor_msgs/LaserScan ROS message format and publishes it on the
/scan topic data stream [32].

• Camera Node: The camera node (camera_node) uses the open source
ROS package raspicam_node which publishes the raw RGB image
data as a ROS topic called /image_raw of the ROS message type
sensor_msgs/Image [38].

• Inertial Measurement Unit (IMU): The IMU ROS package comprises
a wrapper ROS node developed in this project for interfacing with the
Altimu10v5 IMU module using the open source python package. Through
this interface, it is possible to read the accelerometer, gyroscope, and
magnetometer sensor measurements and publish them as the ROS message
of type sensor_msgs/Imu on the /imu topic [20].

• SonarRangefinders: The measurements from the onboard sonar rangefind-
ers on the vehicle are published as ROS topics using the open-source Pi
Sonar ROS Node by Ubiquity Robotics [37].

• IR Array Node: The IR sensors were calibrated to detect the black line
marking the test path. The node reads the IR sensor array measurements
through GPIO pins and publishes the data as a topic (/ir_states) of
ROS message type std_msgs/Int32MultiArray.

2. Actuators

• Low-Level Controller: The low-level controller is a velocity controller
which uses the PID control algorithm. It receives the control command
from the high-level controller. The PID controller’s equation is [6]

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖
∫ 𝑡

0
𝑒(𝜏)𝑑𝜏 + 𝐾𝑑

𝑑

𝑑𝑡
𝑒(𝑡) (33)

where time is represented by t and e(t) is the error between the desired state
and the current state of the system at the time instance t. The proportional,
integral and derivative gains of the system are shown as 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 .
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4.3.3 Perception, Localisation and Safety

This category of software modules consists of software algorithms that use sensor
data to perceive the vehicle environment, improve its localisation and ensure the safety
of the system. The following is a description of the modules in this section:

1. Predecessor Identifier: Each vehicle has an Aruco code printed tag pasted
on the back of the robot frame. Using the open-source Aruco detection ROS
package, based on the shape and size of the tag, it is possible to identify an
Aruco code tag and its relative position with respect to the camera. Thus,
this information is used to identify the predecessor vehicle robot and publish
the /predecessor_id topic, which is used by other ROS node modules to
determine the arrangement of the vehicles in the platoon.

2. Sensor Fusion: This module’s function is to subscribe to various sensor
data sources and perform sensor fusion to improve the localization of the
vehicle. Here, the open-source package robot_localization has been
used to utilize its state estimation node consisting of an Extended Kalman
Filter(EKF) ekf_localization_node to fuse the IMU readings, LIDAR
scans and odometry data provided by the experimental robot vehicle’s sensors.
The resulting estimated state of the vehicle is published as filtered odometry
data (/odometry/filtered), i.e. position, velocity (linear and angular), and
filtered acceleration data (/accel/filtered) [24] [29].

3. Line Tracker: This module’s main functionality is to determine the lateral
displacement of the vehicle with respect to the marked path. The IR sensor
array has been calibrated to detect the black line that marks the test path. Based
on the measurements of the /ir_states given by the IR Array Node, this
module determines the lateral displacement. This module also subscribes to the
RGB image data from the Camera Node, processes the image to identify the
line marking and calculates the lateral displacement with respect to the marked
trajectory. The module then publishes the lateral displacement as a topic called
/lateral_displacement of the ROS message type std_msgs/Int8

4. Safety Bumper: To prevent any collisions, based on rangefinder readings of
nearby environmental objects from the LIDARs and the sonar sensor array, this
node performs an emergency stop by disabling the motors if the obstacles are
too close to the vehicle.

4.3.4 High-Level Applications: Vehicle Software

The high-level applications consist of most of the vehicle platooning-related software.
This also includes applications used to communicate with other vehicles in the network.

1. Platooning Applications
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(a) Platooning System State Publisher: The system state publisher node
processes the sensor data to publish a custom system state ROS mes-
sage consisting of the position, velocity, and acceleration of the robot
vehicle system. These measurements are required for vehicle platooning
controllers.

(b) Platooning Network Application: Since each vehicle on the platoon’s
network publishes its individual system state, each robot system must
compile the necessary robot states of its predecessor and leader according
to the required platoon topology. This node performs this function and
republishes the required system states for a given robot vehicle.

(c) Platooning High-Level Controller: The high-level controller node is the
primary controller of the platooning vehicle, and it consists of the various
controllers under test, discussed in section 2.5.3. By varying the controller
parameters on follower robot vehicles, the platoon stability study is carried
out. The output is published as an acceleration/throttle command
value in the range 0 to 1, which is an input to the low-level controller for
the robot’s motor control. The high-level controller for the leader robot
just follows a predefined path. Therefore, it does not use the controller
under test to determine the acceleration/throttle command.

(d) Lateral Controller - Line Follower: To evaluate the longitudinal platoon-
ing controller, all the experimental robot vehicles travel in a straight path
marked with a black coloured line on the floor. Thus, each vehicle system
must be calibrated to reduce the influence of the lateral motion controller.
The implementation of a single vehicle path tracking was achieved by
tuning the PID controller gains of each vehicle, such that the deviation from
the marked line is minimised. The lateral controller gives the necessary
turn command to the motors such that the vehicle returns back to the
marked path when a lateral displacement is detected. Figure 11 illustrates
the turn commands (marked in green) given to the motor controllers when
(i) the vehicle is on the right path, (ii) the vehicle deviates from the path
in the left direction and (iii) the vehicle deviates from the path in the
right direction. The best performance in the test path was observed with
the maximum steady state speed of 0.7 m/s, thus in the experiment the
parameters were tuned assuming the robot runs with the speed of 0.7 m/s.

Figure 11: Line follower - Lateral controller

(e) Acceleration to Velocity Controller: The high-level controllers publish
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the command as an acceleration value in the range of 0 to 1, but the
low-level controller for the vehicle is a velocity set point controller. This
node integrates the acceleration commands over a given time interval to
calculate and publish the set point velocity required as input to the low-level
motor controller.

2. Controller Utility Application

(a) ROS Multi-Master Discovery and Master Synchronisation: The FKIE
Multimaster package offers the Master Discovery and Master Synchroni-
sation nodes to initiate and manage a ROS network with multiple ROS
masters on various computers. The topics and services on each ROS
Master’s computer are automatically detected and synchronised with the
other ROS masters on the network. In this case, the computer of each
robot vehicle runs a ROS Master and ROS network independent of the
computers of the other vehicles. It allows the addition and removal of
vehicles to the ROS network very easily, with minimal configuration.

(b) Command Velocity Multiplexer: The mux node in the topic_tools
ROS package subscribes to N incoming topics and publishes a single
output topic. The input and output messages have the same ROS message
format. The node republishes the message data from a selected topic out
of the many subscribed topics to the single output topics, i.e., it switches
the output among 1 of N inputs. The node handles ROS service requests
to switch between input topics and to add or delete input topics. The
cmd_vel_mux ROS node subscribes to the /robotXX/joy/cmd_vel,
/robotXX/platooning/cmd_vel, etc. topics and publishes its output
as the /robotXX/cmd_vel topic, where robotXX refers to the vehicle ID
in the platoon.

4.4 Ground Control Station Software
The ground control station (GCS) coordinates vehicle operations and visualizes system
state data collected from all vehicles in the platoon. The GCS is powered by Ubuntu
and a locally hosted ROS master node. The following modules are running on the
GCS computer:

1. ROS Multi-Master Discovery and Master Synchronization: Similar to each
vehicle computer, the GCS runs the FKIE Multimaster package’s Master
Discovery and Master Synchronization nodes to manage a ROS network with
multiple ROS masters on various computers.

2. Joystick Apps: A joystick controller is wirelessly connected to the GCS as
a user interface to receive commands for robot control. To map the joystick
controller buttons to commands, an open-source ROS node called joy_node
is used. These joystick commands are then translated to cmd_vel topic to be
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communicated to the motor controller. A detailed description of the joystick
applications is explained in the appendix A

3. Diagnostics UI: The GCS uses open-source user interface packages for ROS -
Foxglove and Plot Juggler, to display various plots and sensor measurements for
each robot in real time. The user interface makes it easier to study the platooning
system during an experiment and record experimental results. A screenshot of
the user interface view is shown in Figure 12.

Figure 12: Groundstation UI

4.4.1 Network Architecture

For this experiment, all experimental platform vehicles and the GCS computer are
on a WLAN network as shown in Figure 13. A network router handles network
traffic consisting of the connected vehicle system computers and the GSCC computer.
These computer systems have been configured with a virtual network service, which
is described in more detail in appendix A.
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Figure 13: Platooning Network Topology
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5 Experimental Evaluation

5.1 Overview
The primary goal of this thesis is to conduct experimental evaluations of the CACC
platooning controllers on the experimental platform vehicle. It is necessary for the
experimental platform’s hardware, controller software and inter-vehicular network
communication to function reliably for a successful platooning experiment. Prior to
the implementation on the hardware platform, simulation experiments were performed
to verify the stability of the parameters used in the control algorithms.

5.2 Experiment Setup

Figure 14: Two-Predecessor Following - Experiment Setup

In the platooning experiment, the aim is to evaluate the multiple predecessors following
(MPF) controller. The experiment is set up using the experimental platform vehicles
designed in this work and described in Chapter 4. In this experiment, the lead vehicle
is followed by identical vehicles, in the order: Lead Vehicle, Vehicle 1, Vehicle 2,
Vehicle 3, etc. Figure 14 illustrates the arrangement of these experimental vehicles
and their direction of data flow according to the MPF methodology. The longitudinal
controller on each vehicle is described below:

• Leader Vehicle: The controller on the leader vehicle executes a predefined
acceleration control input command, i.e. of 0.1𝑚/𝑠2 acceleration at 𝑡 = 5𝑠.
A short disturbance deceleration is introduced at 𝑡 = 15𝑠 acting on the leader
vehicle’s throttle input with 𝑢0 = 𝐴𝑑𝑠𝑖𝑛(𝜔0𝑡 + 𝜋) for the duration of half a cycle,
i.e. ( 𝜋

𝜔0
seconds). To bring the platoon to a stop, a constant braking deceleration

is applied at 𝑡 = 40𝑠. The plot in figure 15 shows the leader controller’s throttle
(acceleration) input command.
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Figure 15: Leader Vehicle : Acceleration Input Command

• Vehicle 1: The controller on this vehicle is running the MPF controller described
in equation (8)
with 𝑟 = 1, where 𝑢1(𝑡) = 𝑢1, ℎ = ℎ1, 𝑑 = 𝑑1, 𝑘 𝑝 = 𝑘 𝑝1, 𝑘𝑣 = 𝑘𝑣1 and 𝑘𝑎 = 𝑘𝑎1.
The controller input (𝑢1) calculation is simplified to the following equation:

𝑢1 = −𝑘 𝑝 (𝑝1 − 𝑝0 + ℎ𝑣1 + 𝑑) − 𝑘𝑣 (𝑣1 − 𝑣0) − 𝑘𝑎 (𝑎1 − 𝑎0) (34)

• Vehicle 2: The controller on this vehicle is running the MPF controller described
in equation (8) with 𝑟 = 2, where 𝑢2(𝑡) = 𝑢2, ℎ = ℎ1 = ℎ2, 𝑑 = 𝑑1 = 𝑑2,
𝑘 𝑝 = 𝑘 𝑝2, 𝑘𝑣 = 𝑘𝑣2 and 𝑘𝑎 = 𝑘𝑎2. The controller input (𝑢2) calculation is
simplified to the following equation:

𝑢2 = −𝑘 𝑝 [(𝑝2 − 𝑝1 + ℎ𝑣2 + 𝑑) + (𝑝2 − 𝑝0 + ℎ𝑣2 + 𝑑 + ℎ𝑣1 + 𝑑)]
− 𝑘𝑣 [(𝑣2 − 𝑣1) + (𝑣2 − 𝑣0)] − 𝑘𝑎 [(𝑎2 − 𝑎1) + (𝑎2 − 𝑎0)] (35)

• Vehicle 3, Vehicle 4, etc.: The controller on these vehicles can run the MPF
controller described in equation (8) where 𝑢3(𝑡) = 𝑢3, ℎ = ℎ1 = ℎ2 = ℎ3,
𝑑 = 𝑑1 = 𝑑2 = 𝑑3, 𝑘 𝑝 = 𝑘 𝑝3, 𝑘𝑣 = 𝑘𝑣3 and 𝑘𝑎 = 𝑘𝑎3. For 𝑟 = 2, the controller
input (𝑢3) is given by a similar equation like (35). For 𝑟 = 3, the controller input
(𝑢3) is simplified to the following equation:

𝑢3 = −𝑘 𝑝 [(𝑝3 − 𝑝2 + ℎ𝑣3 + 𝑑) + (𝑝3 − 𝑝1 + ℎ𝑣3 + 𝑑 + ℎ𝑣2 + 𝑑)
+ (𝑝3 − 𝑝0 + ℎ𝑣3 + 𝑑 + ℎ𝑣2 + 𝑑 + ℎ𝑣1 + 𝑑)]
− 𝑘𝑣 [(𝑣3 − 𝑣2) + (𝑣3 − 𝑣1) + (𝑣3 − 𝑣0)]

− 𝑘𝑎 [(𝑎3 − 𝑎2) + (𝑎3 − 𝑎1) + (𝑎3 − 𝑎0)] (36)

5.2.1 Simulation Setup

Initially, a software simulation of the experiment setup is created to test the expected
performance of the platoon controller and tune the parameters, before the experiment

38



can be accomplished on the experimental vehicles’ hardware. Matlab and Simulink
are used to create a subsystem block diagram of each platoon vehicle’s high-level
controllers. The model is designed to handle up to five vehicles in the platoon. It
follows the previously discussed vehicle arrangement for the platoon: Leader Vehicle,
Vehicle 1, Vehicle 2, Vehicle 3 and Vehicle 4.

This is a homogeneous platoon, where all vehicles in the platoon are identical to
each other. The vehicle plant model, common to all the vehicles are designed as a
Simulink subsystem block diagram. The model is designed based on the work by
Abolfazli et al. in [1].

Figure 16 shows the complete Simulink model block diagram with the vehicle
subsystem and the controllers under test.
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Figure 16: Simulink Model - Experiment Block Diagram
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Figure 17 shows the expanded view of the plant model with the vehicle dynamics
block diagram for each of the five vehicles blocks, according to the vehicle model
equations discussed in section 2.5.2.

Figure 17: Simulink Model - Vehicle Plant Model Block Diagram

MPF controllers on each follower vehicle are designed as a subsystem model
according to the equations (34), (35) and (36).

The MPF controller block in Figure 16 consists of the MPF controllers for all five
vehicles in the simulated platoon. An expanded view of this block is shown in the
Simulink block diagram in Figure 18. Each vehicle’s controller block will follow the
equations (34), (35) or (36) based on the value of the block’s input parameter r=1, 2,
or 3, etc.
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Figure 18: Simulink Model - Controller Subsystem Block Diagram.

5.3 Results: Two-Predecessor Following (TPF)
The platooning in this experiment involves a four-vehicle platoon and the experiment
setup shown in figure 14 is according to the description in Section 5.2. This
experiment evaluates the TPF controller (with 𝑟 ≤ 2 in each vehicle’s controller). For
this experiment, the values chosen for each system parameter are given in Table 1.

The (𝑘 𝑝, 𝑘𝑣, 𝑘𝑎) parameters are chosen to be (0.1, 0.61, 0.4)1 such that the con-
dition in (23) is fulfilled. The values for the parameters 𝜏 = 0.9 and Δ = 0.05 are
determined through measurements on the experimental platform vehicle. Thus, with
these parameters for 𝑟 = 2, the internal stability specification (24) and the string
stability criteria (29) are fulfilled. The minimum time headway for these parameters
is ℎ𝑚𝑖𝑛 = 0.719, and the chosen value ℎ = 0.78 is greater than ℎ𝑚𝑖𝑛 which satisfies (30).
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Table 1: Two Predecessor Following - Experiment Parameters

Parameter Value Description
N 4 Total Number of Vehicles in the Platoon
r 2 Number of predecessor vehicles
𝜏 0.9 Timelag in the power train, 𝜏 > 0
h 0.78 Time headway, ℎ > 0
d 0.6 Desired standstill gap, 𝑑 > 0
𝑘 𝑝 0.1 Tunable gain for feedback distance
𝑘𝑣 0.61 Tunable gain for feedback velocity
𝑘𝑎 0.41 Tunable gain for feedback acceleration
Δ 0.05 Time delay
A0 0.05 Amplitude of throttle to leader vehicle’s controller
A𝑑 0.25 Amplitude of disturbance

5.3.1 Simulation Results

The simulation results after running the Simulink model in 16 are presented in this
section. Firstly, to perform stability analysis, figure 19 shows the magnitude-frequency
diagram of the function |𝐻𝑖 ( 𝑗𝜔) |. In each case |𝐻1( 𝑗𝜔) | and |𝐻2( 𝑗𝜔) | (for 𝑙 = 1 and
𝑙 = 2, respectively) do not exceed the maximum tolerable value for string stability,
i.e.,1

𝑟
according to (28). This satisfies the (28) and the platoon is string stable.

Next, the plots in figure 20 show the absolute distances travelled by each vehicle
in the platoon after running the vehicle platooning simulation for 60 seconds. In this
case, the platoon vehicles are initially stationary, and the platoon leader vehicle starts
accelerating at 𝑡 = 5 seconds. A disturbance is introduced as a deceleration to the
leader vehicle’s throttle input at 𝑡 = 15 seconds, which introduces perturbations to the
platoon in the longitudinal direction. The spacing error of the vehicles with respect to
their predecessor vehicles is plotted in figure 22(a).

The plots of the states (relative position with respect to leader vehicle, velocity and
acceleration) of the simulated platoon vehicles are shown in figure 21(a). Similarly,
figure 22(a) shows the spacing errors of the follower vehicles according to data from
the simulation.
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Figure 19: Two-Predecessor Following Simulation - String Stability

Figure 20: Two-Predecessor Following Simulation - Distance travelled by each vehicle
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Figure 21: Two-Predecessor Following - System States
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Figure 22: Two-Predecessor Following - Spacing Errors

5.3.2 Practical Experiment Results

The practical experiment is performed on the experimental platform vehicle and the
results are discussed in this section.

The results for this experiment are in figure 21(b) which show the vehicles’ relative
position with respect to the platoon leader, velocities and acceleration of each vehicle
in the platoon.

The LIDAR sensor is placed at the center of the experimental vehicle’s roof, i.e.
0.2 m with respect to its front. Thus, the plot of the vehicles’ relative position with
respect to the platoon leader is the distance from the rear of the leader vehicle to the
center of the 𝑖-th vehicle.

Similar to the simulation, in this experiment, the platoon vehicles are initially
stationary and the platoon’s leader vehicle starts accelerating at 𝑡 = 5 seconds. Similar
to the simulation, a disturbance is introduced as a deceleration to the leader vehicle’s
throttle input at 𝑡 = 15 seconds, which introduces perturbations to the platoon in
the longitudinal direction. The spacing error of the vehicles with respect to their
predecessor vehicles is plotted in figure 22(b).
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5.4 Results: Three-Predecessor Following

Figure 23: Three-Predecessor Following - Experiment Setup

As described in the experiment setup in section 5.2, this platooning experiment involves
a four-vehicle platoon according to the arrangement in figure 23. This experiment
evaluates the multiple predecessor following controller (with the member vehicles
having 𝑟 ≤ 3). For this experiment, the values chosen for each system parameter are
given in Table 2.

The (𝑘 𝑝, 𝑘𝑣, 𝑘𝑎) parameters are chosen to be (0.1, 0.39, 0.41) such that the con-
dition in (23) is fulfilled. The values for the parameters 𝜏 = 0.9 and Δ = 0.05 are
determined through measurements on the experimental platform vehicle. Thus, with
these parameters for 𝑟 = 3, the internal stability specification (24) and the string
stability criteria (29) are fulfilled. The minimum time headway for these parameters is
ℎ𝑚𝑖𝑛 = 0.549, and the chosen value ℎ = 0.78 is greater than ℎ𝑚𝑖𝑛 which satisfies (30).

Table 2: Three Predecessor Following - Experiment Parameters

Parameter Value Description
N 4 Total Number of Vehicles in the Platoon
r 3 Number of predecessor vehicles
𝜏 0.9 Timelag in the power train, 𝜏 > 0
h 0.78 Time headway, ℎ > 0
d 0.6 Desired standstill gap, 𝑑 > 0
𝑘 𝑝 0.1 Tunable gain for feedback distance
𝑘𝑣 0.39 Tunable gain for feedback velocity
𝑘𝑎 0.41 Tunable gain for feedback acceleration
Δ 0.05 Time delay
A0 0.05 Amplitude of throttle to leader vehicle’s controller
A𝑑 0.25 Amplitude of disturbance
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5.4.1 Simulation Results

The simulation results after running the Simulink model in 16 are presented in this
section. Firstly, to perform stability analysis, figure 24 shows the magnitude-frequency
diagram of the function |𝐻𝑖 ( 𝑗𝜔) |. In each case |𝐻1( 𝑗𝜔) | and |𝐻2( 𝑗𝜔) | (for 𝑙 = 1 and
𝑙 = 2, respectively) do not exceed the maximum tolerable value for string stability,
i.e.,1

𝑟
according to (28). This satisfies the (28) and the platoon is string stable.

Next, the plots in figure 25 show the absolute distances travelled by each vehicle
in the platoon after running the vehicle platooning simulation for 60 seconds. In this
case, the platoon vehicles are initially stationary, and the platoon leader vehicle starts
accelerating at 𝑡 = 5 seconds. A disturbance is introduced as a deceleration to the
leader vehicle’s throttle input at 𝑡 = 15 seconds, which introduces perturbations to the
platoon in the longitudinal direction. The spacing error of the vehicles with respect to
their predecessor vehicles is plotted in figure 27(a).

The plots of the states (relative position with respect to leader vehicle, velocity and
acceleration) of the simulated platoon vehicles are shown in figure 26(a). Similarly,
figure 27(a) shows the spacing errors of the follower vehicles according to data from
the simulation.

Figure 24: Three-Predecessor Following Simulation - String Stability
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Figure 25: Three-Predecessor Following Simulation - Distance travelled by each
vehicle
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Figure 26: Three-Predecessor Following - System States
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Figure 27: Three-Predecessor Following - Spacing Errors

5.4.2 Practical Experiment Results

The practical experiment is performed on the experimental platform vehicle and the
results are discussed in this section.

The results for this experiment are in figure 26(b) which show the vehicles’ relative
position with respect to the platoon leader, velocities and acceleration of each vehicle
in the platoon.

The LIDAR sensor is placed at the center of the experimental vehicle’s roof, i.e.
0.2 m with respect to its front. Thus, the plot of the vehicles’ relative position with
respect to the platoon leader is the distance from the rear of the leader vehicle to the
center of the 𝑖-th vehicle.

Similar to the simulation, in this experiment, the platoon vehicles are initially
stationary and the platoon’s leader vehicle starts accelerating at 𝑡 = 5 seconds. Similar
to the simulation, a disturbance is introduced as a deceleration to the leader vehicle’s
throttle input at 𝑡 = 15 seconds, which introduces perturbations to the platoon in
the longitudinal direction. The spacing error of the vehicles with respect to their
predecessor vehicles is plotted in figure 27(b).

Figure 28: Three-Predecessor Following - Robot States

5.5 Discussion
Control algorithms for the platoon were introduced and discussed in chapter 2. In
chapter 5, the chosen control algorithms were implemented in simulation and on
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the experimental robot platform. Finally, this section compares and analyses the results.

Figure 19 and figure 24 show that the platoon satisfies the conditions of string
stability for the chosen parameter configurations for both the two-predecessor following
and three-predecessor following platoon experiments. These plots represent the
expected results according to the work by Abolfazli et al. [1].

In the experiments on the experimental platform vehicle, figure 21 and figure 26
show that the vehicle controllers produce the necessary acceleration commands to
follow the predecessor vehicle, similar to the simulation results. On comparing the
spacing errors in the practical experiment with the simulation results (as shown in
figure 22 and figure 27) it is evident that the expected spacing error does not translate
perfectly from the simulation to the practical scenario. Thus the system has internal
stability and is string-stable, but the effectiveness of the MPF controller depends on
various other factors which might not be considered in its control input equation.

The error in the spacing might be due to physical interactions with the environment,
some of the factors can be:

• Sensor Fusion and Measurement Errors: All sensors have error margins,
including the lidars, IMUs and odometers used in the vehicle designed for this
experiment. These errors are considered in the sensor fusion model, yet they
can lead to some inaccuracies over time.

• Friction: Interaction with the floor of the experiment area, may cause the vehicle
to experience uneven friction on each wheel. This can lead to the slipping of
each wheel differently, and even though the same command is given to both
the wheels of the vehicle, the slipping can lead to the vehicle turning rather
than moving forward, due to the differential dynamics of the experiment vehicle
platform used.

• Communication: The vehicles in this experiment communicate over the wireless
LAN network using the TCP/IP communication protocol. The transmission
over the wireless medium is subject to lots of noise and delays, which in turn
leads to further delays in the processing of the controller’s throttle command in
each follower vehicle.

These experiment results give a good opportunity to study the MPF controller
in the physical environment and improve the controller based on feedback from the
external environment.
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6 Conclusion
CACC is regarded as a promising solution for smart mobility. By improving on the ACC
algorithm, this system allows vehicles to exchange their system state information with
other vehicles in the platoon permitting vehicles to cruise with short inter-vehicular
distances. This comes with the benefit of increasing traffic flow without increasing any
road infrastructure. Reducing the net aerodynamic drag in platooning vehicles and
optimizing their individual speeds, CACC systems also reduce the fuel consumption
of those vehicles, lowering carbon emissions [21].

The CACC system still needs to overcome some technical challenges before its
application becomes widespread in the automotive industry. Improvements in the
distributed longitudinal controller for platoons is one such ongoing topic for research.
The analysis of interconnected dynamics of platoon vehicles is used to determine the
stability of the system.

6.1 Recommendations for further research
CACC was created with the goal of reducing traffic congestion and increasing fuel
efficiency. Though, CACC might be a very useful system to improve safety but is
primarily not designed to be a safety system. Regardless, safety should be guaranteed
since the CACC systems will be used on public roads with heavy vehicles [34].

In platooning vehicles, the inter-vehicular distance is small, which increases the
possibility of collisions within the platoon and with surrounding vehicles, in case of
disturbances or failures. Hazards associated with platooning systems can be due to
external disturbances; internal component failures in wireless communication; and
human errors [8].

External disturbances include cut-in manoeuvres from vehicles in the surrounding
traffic, bad roads and poor weather conditions. These scenarios are not favourable for
the platoon to be operating. The forward-facing range sensor (typically a radar) is the
most crucial sensor for CACC controllers because it measures the distance between
the vehicles and their relative speeds. Research on implementing redundant systems
for taking these measurements can improve the measurements and serve as a backup
in case of internal sub-system failures [9].

Wireless communication is an important feature of CACC controllers. These
controllers rely on receiving the most recent information from other vehicles in the
platoon in order to operate in real time. In the results of this thesis, it can be observed
that the packet losses and delays increase in the local network of the experimental
setup, once the number of platooning vehicles is more than three. It would be useful
to research the effect of packet losses and delays in the communication network [8].

The current software architecture uses the robot operating system (ROS) as a
communication framework. The information exchange using ROS messages over
the network is not the most efficient option. The current networking subsystem
developed in ROS can be upgraded to use more optimal protocols. Research on
efficient information flow topologies(IFTs) combined with standardized Vehicle-to-
vehicle (V2V) communication protocols can be an effective method to improve the
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information transfer reliability of this experimental setup [39].
CACC is categorized as “level-1” in terms of driving automation level. In such

semi-autonomous vehicle systems, where human drivers are still responsible for
monitoring the vehicle’s environment and taking control of the vehicle when needed.
Thus, during the transition between manual and automated driving modes, there are
possibilities of human error. Neglecting human factors can lead to accidents if the
driver is not aware of when the transition occurs. Human error analysis may become
an important research topic to improve the human-machine interface of CACC systems
in the future. [22].

A basic version of the automatic emergency braking system has been implemented
in the experimental platform developed in this thesis. Further research on the sensor
data processing for the automatic triggering of emergency brakes in a platooning
vehicle can be an improvement to the vehicle’s safety.

This work uses an experimental vehicle platform using the differential drive system,
which is simple but also comes with its drawbacks which have been discussed in
section 5.5. The Ackerman steering model is used in most commercial road vehicles.
This system ensures proper handling of the vehicles by preventing the tyre from
slipping outward during turns and also increasing controllability. Using an Ackerman
model-based experimental vehicle platform can be very beneficial to observe the
behaviour of the CACC controllers in the scenario where lateral motion is involved
[42].

Lastly, the experimental platform developed in this thesis is a useful resource for
testing various CACC controllers but it must be validated and developed further. It
should be tested in real traffic scenarios and its performance can be compared with a
benchmark before it can be implemented on full-scale vehicles.
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A System Specifications
The Magni Silver mobile robot platform by Ubiquity Robotics is used as the base
robot to develop the experimental platform for this work. The Magni Silver robot
provides all the basic functionalities of a mobile robot including a chassis, motors and
some basic sensors. In addition to this additional components were integrated into
the robot to make it function analogous to a full-scale vehicle. This section describes
the experimental platform robot’s hardware and software technical specifications in
detail. Furthermore, the section also contains a description of the network topology
used in the experimental setup. The entire software outlined in this thesis is accessible
as an open-source project repository on:
https://github.com/niladut/connected_vehicle_platooning_ros

Figure A1: Front view of the Magni Silver robot with sensors and actuators.

Figure A1 displays the front view of the Experimental Platform Vehicle, indicating
the position of sensors and actuators. The software bumper comprises ultrasonic
sensors and LIDAR, while white styrofoam boards are also mounted at the robot’s
front and rear acting as a fail-safe, to prevent harm to the structure in case of accidental
collisions.
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A.1 Experimental Platform Vehicle

Table A1: Experimental Platform Vehicle (Magni Silver) - Hardware Specifications
[26]

Category Component Description

Mechanical
Specifications

Size (w/l/h) in mm 417.40 x 439.09 x 265

Weight in kg 13.5

Actuator
Motor Drive System 2 X 200W hub motors – differen-

tial drive

Maximum Linear Speed 1 m/s

Maximum Angular
Speed

0.5 rad/s

Computer
System

OBC Quad Core ARM A9 – Raspberry
Pi 4

Operating System Ubuntu 16.04

Middleware Framework ROS Kinetic

Connectivity/Ports WLAN, Ethernet, 4x USB, Rasp-
berry Pi GPIO socket

Sensors

LIDAR RP Lidar A1 by Slamtec

Camera (front) Raspberry Pi Camera Module V2

Sonars HC-SR04 5-point sonar array

IMU Pololu AltIMU-10 v5
(LSM6DS33 gyro and ac-
celerometer and LIS3MDL
magnetometer)

Odometer Hall sensor odometer (accurate to
2mm)
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A.2 Ground Control Station

Table A2: Ground Control Station - Hardware Specifications

Category Component Description

Computer
System

OBC Quad Core ARM A9 – Rasp-
berry Pi 4

Operating System Ubuntu 16.04

Middleware Framework ROS Kinetic

Connectivity/Ports WLAN, Ethernet, 4x USB,
Raspberry Pi GPIO socket

User Interface Joystick Controller Logitech Wireless Gamepad
F710

A.2.1 User Interface: Joystick Controller

A joystick controller is connected to the ground control station with the objective of
remotely controlling the experimental vehicle platform while testing. The joystick
controller system involves multiple application nodes to convert the joystick controller’s
button inputs to manual control commands which are transmitted to the vehicle’s
motion controller. The following is a list of these application modules, describing
them in detail.

Figure A2: Joystick controller button mapping

1. Joy Node: The joy_node is a ROS node that runs a driver to interface between
a generic Linux joystick and ROS. This node publishes a ROS message of type
sensor_msgs/Joy containing the current state of each button and axes on the
joystick controller. For this experiment the wireless joystick Logitech Wireless
Gamepad F710 was used.
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Figure A3: Ground Control Station - Joystick Velocity Controller modules

2. Joy Teleoperation for Command Velocity: This package subscribes to the
/joy topic published by the joy_node and publishes geometry_msgs/Twist
ROS messages (consisting of linear and angular velocity command) on the
topic called /gcs/cmd_vel. The node facilitates the teleoperation of a velocity
controller-based ROS robot using a standard joystick. It is possible to control
multiple vehicles in the platoon with one controller. So, this module also maps
the buttons of the joystick controller for changing the current vehicle under
manual control, i.e. switching manual control from vehicle 𝑖 to vehicle (𝑖 + 1)
or vehicle (𝑖 − 1). Furthermore, during experimentation, the joystick buttons
(A and B, respectively) are mapped to trigger the starting and stopping of the
platooning controllers on each vehicle. The R1 and R2 buttons of the controller
are also mapped to perform braking and emergency stop (E-Stop). Figure A2
shows the controller button mappings for the joystick controller.

3. Joystick DeMultiplexer - Cmd Vel: The demux node in the topic_tools
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ROS package subscribes to a single incoming topic and publishes a set of
N topics of the same message format as the input topic. The node repub-
lishes the message data from the subscribed topic to one out of the many
output topics, i.e., it switches the input among 1 of N outputs. The node
handles ROS service requests to switch between output topics and to add
and delete output topics. The joystick_cmd_vel_demux ROS node sub-
scribes to the /control_center/cmd_vel topic and demultiplexes between
the robotXX/joy/cmd_vel topics, where robotXX refers to the various vehicles
in the platoon.

A.3 Network Configurations
The network configuration of the experimental platform is done using the Tailscale
VPN service, which allows network devices and applications to be accessible over
a private network within a local network (LAN) or even over the internet (WAN).
Tailscale provides the MagicDNS service through which the devices on the private
VPN can be accessed just based on the hostname, without keeping track of their IP
addresses. These features make use of this service ideal for this experimental platform,
where the number of vehicles in the platoon under test can vary for each experimental
test.
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B Robot Operating System (ROS)

B.1 Overview
The Robot Operating System (ROS) is an open-source framework for building robotics
applications. ROS provides the necessary middleware for communication between
programs in distributed robotic systems. Since the collection of conventions, tools,
and libraries provided by the ROS framework is standardized, it simplifies the task
of creating complex and robust robotics software for various robotic platforms.
Developers or researchers can use ROS standards to develop ROS packages which
they can contribute to the global open source community and reuse code developed by
other members of the ROS community.

Here we discuss a brief overview of the main concepts which are required to
understand the concepts of ROS used in this thesis.

B.2 ROS Structure
ROS uses packages containing executables and libraries to organise the system
software. The ROS Computation Graph manages the software at runtime. [30]

Some of the fundamental concepts in ROS are:

• Nodes: are the vertices of the ROS graph consisting of the runtime programs
(processes) which perform computation for a particular functionality of a robot
system.

• Master: It is the main program that provides the name registration and lookup
for the various nodes in the computation graph. This allows the nodes to locate
other nodes and interact with them by exchanging data.

• Parameter Server: It is a dictionary storing universal parameters which are
publically available across the ROS Computation Graph. It is a part of the
Master system, which allows the storage to be in a central location.

• Messages: Data is transferred between node packages in the form of data
structures called messages. The messages can consist of various types of fields
(integer, floating point, boolean, string, etc.) and can include nested structures
like arrays or other messages.

• Topics: Messages a published from a node via asynchronous channels called
topics. The published topics can be subscribed by other nodes in the ROS
Computation Graph, after which the transmitted messages can be received by
it. For a given topic, there can be multiple subscribers and publishers (though
usually, it is only one publisher).

• Services: When a request-reply-based interaction between nodes is required,
then the synchronous communication approach is done through services. Nodes
can offer services under a certain name, other nodes can send requests to these
services and wait for a response.
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• Bags: ROS provides a mechanism to store messages in the form of ROS bags.
Bags allow storing of sensor data and other messages transferred over the ROS
Graph. Recording messages in this format allow reproducing logged data and
facilitates easier diagnosis of issues or testing new features remotely.

Figure B1: ROS Computation Graph - topics and services

Figure B1 shows an example of the ROS Computation Graph for a system that
runs on two computers: one on the robot’s onboard computer and one for the ground
station computer. The ROS Master is running on the robot. Each node on the ROS
graph has to register to the ROS Master to be accessible to other nodes. This system
functions to record images from a camera sensor mounted on robot. Three nodes are
running in the system [31]:

• the Camera Node captures raw image data from the camera,

• the Image Processing Node performs image processing(filtering, compression,
etc) on the raw image data

• the Image Display Node displays the images on the ground station machine.

There are two ways that the Image Processing Node can acquire the images from the
Camera Node:

i Firstly, the Camera Node uses a topic publisher to publish the images packaged as
messages on a named topic, to which the other nodes are subscribed.

ii Alternatively, the Camera Node offers a ROS service server. The ROS service
client on the Image Processing Node uses a service request call to the server on
the camera node and waits for the response message.
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