
Suicidal Pedestrian: Generation of
safety-critical scenarios for
autonomous vehicles

Yuhang Yang

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 17.4.2023

Supervisor

Prof. Alexander Ilin
Prof. Joni Pajarinen

Advisor

Dr. Amin Babadi
M.Sc. Kalle Kujanpää

Copyright © 2023 Yuhang Yang

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Yuhang Yang
Title Suicidal Pedestrian: Generation of safety-critical scenarios for autonomous

vehicles
Degree programme Automation and Electrical Engineering
Major Control, Robotics and Autonomous Systems Code of major ELEC3025
Supervisor Prof. Alexander Ilin

Prof. Joni Pajarinen
Advisor Dr. Amin Babadi

M.Sc. Kalle Kujanpää
Date 17.4.2023 Number of pages 53+2 Language English
Abstract
Autonomous driving is appealing due to its significant financial potential and positive
social impact. However, developing capable autonomous driving algorithms faces
the difficulty of reliability testing because some safety-critical traffic scenarios are
particularly challenging to acquire. To this end, this thesis proposes a method to
design a suicidal pedestrian agent based on the CARLA simulation engine that can
automatically generate pedestrian-related traffic scenarios for autonomous vehicle
testing. In this method, the pedestrian is formulated as a reinforcement learning
agent that spontaneously seeks collisions with the target vehicle and is trained using a
continuous model-free learning algorithm with two custom reward functions. Besides,
by allowing the pedestrian freely explore the environment with a constrained initial
distance to the vehicle, the pedestrian and autonomous car can be placed anywhere,
rendering generated scenarios more diverse. Furthermore, four collision-oriented
evaluation metrics are also proposed to verify the performance of the designed
suicidal pedestrian and the target vehicle under testing. Experiments on two state-
of-the-art autonomous driving algorithms demonstrate that this suicidal pedestrian
is effective in finding autonomous vehicle decision errors when cars are exposed to
such pedestrian-related traffic scenarios.
Keywords Autonomous Driving, Suicidal Pedestrian, Traffic Scenario Generation,

Reinforcement Learning, CARLA Simulator

iv

Preface
This thesis was conducted at the Long Term Decision Making and Transfer Learning
group, Finnish Center for Artificial Intelligence, Aalto University. I want to thank
Prof. Alexander Ilin and Prof. Joni Pajarinen for providing me with this project
and for their kind help at each step. I am grateful for this opportunity to work on
a thesis project that highly interests me. I would also like to especially thank my
advisors M.Sc. Kalle Kujanpää and Dr. Amin Babadi for their valuable comments
and guidance. Without their feedback and help, I would need much more time to
finish this thesis.

Otaniemi, 17.4.2023

Yuhang Yang

v

Contents
Abstract iii

Preface iv

Contents v

Abbreviations vii

1 Introduction 1

2 Background 3
2.1 Carla simulator . 3

2.1.1 Static environment . 4
2.1.2 Dynamic objects . 5

2.2 Reinforcement learning . 7
2.2.1 Model-free methods . 10
2.2.2 Model-based methods . 12

2.3 Autonomous driving algorithms . 14
2.3.1 Classical modular pipeline . 15
2.3.2 End-to-end autonomous driving 17

2.4 Traffic scenario simulation . 21

3 Methods 24
3.1 System description . 24

3.1.1 Walking as a Markov Decision Process 25
3.1.2 Autonomous vehicle model . 25
3.1.3 Pedestrian initialization . 26

3.2 Suicidal pedestrian design . 27
3.2.1 Input and output representations 27
3.2.2 Reward functions . 29
3.2.3 Policy optimization . 30

3.3 Evaluation metrics . 31

4 Experiments 33
4.1 Simulation setup . 33
4.2 Pedestrian agent training . 33
4.3 Effectiveness evaluation of the suicidal pedestrian 36

4.3.1 Result analysis . 37
4.3.2 Behavior visualization . 38

4.4 Finding failures in autonomous driving algorithms 39
4.4.1 Performance verification . 40
4.4.2 Failure case visualization . 41
4.4.3 Discussion . 43

vi

5 Conclusion and discussion 45
5.1 Conclusion . 45
5.2 Discussion . 45

References 47

A CARLA leaderboard rank 54

B Hyperparameter values 55

vii

Abbreviations
A3C Asynchronous Advantage Actor-Critic
AD Autonomous Driving
ALVINN Autonomous Land Vehicle In a Neural Network
AV Autonomous Vehicle
CARLA Car Learning to Act
DDPG Deep Deterministic Policy Gradient
DQN Deep Q-Learning
GNSS Global Navigation Satellite System
GTA V Grand Theft Auto V
IA Implicit Affordance
I2A Imagination-Augmented Agent
IMU Inertial Measurement Unit
InterFuser Interpretable Sensor Fusion Transformer
LAV Learning from All Vehicles
LBC Learning by Cheating
LiDAR Light Detection and Ranging
LQR Linear Quadratic Regulator
MAD-ARL Multi-Agent Driving with Adversarial Reinforcement Learning
MB-MPO Model-Based Meta-Policy-Optimization
MDP Markov Decision Process
ME-TRPO Model-Ensemble Trust-Region Policy Optimization
MPC Model Predictive Control
OU Ornstein-Uhlenbeck
PID Proportional-Integral–Derivative
PPO Proximal Policy Optimization
RL Reinforcement Learning
SAC Soft Actor-Critic
STEVE Stochastic Ensemble Value Expansion
SUMO Simulation of Urban Mobility
TD Temporal Difference
TORCS The Open Racing Car Simulation
TRPO Trust Region Policy Optimization
WOR World on Rail

1 Introduction
Autonomous driving (AD) is an appealing area of research with significant potential
for improving household mobility, optimizing traffic efficiency, and ensuring safety.
However, developing a capable AD system is not a trivial task. In order to cope
with highly complex and diverse traffic scenarios, autonomous vehicles (AVs) need
sufficient capacity to analyze the environment and make online decisions effectively,
followed by performing low-level control commands. This requires many sub-systems
to cooperate, including perception modules, prediction and planning modules, as
well as control modules.

In recent years, with the development of modern artificial intelligence, especially
in computer vision and reinforcement learning (RL) areas, AD has received much
more attention, and rapid progress has been witnessed. Despite these advancements,
AD is still challenging, and deploying it to scale is far from reality. One natural reason
is the inability of AVs to tackle the complex, dynamic, and contingent scenarios of the
real world, also known as long-tail distributions, such as vehicles running a red light,
cargo falling from vehicles in front, or the sudden emergence of pedestrians from
roadsides [1]. Traditional rule-based planning methods [2, 3] have utilized delicate
hand-designed rules to solve such diverse safety-critical scenarios. Unfortunately,
these methods suffer from generalizing unseen cases since it is impossible to enumerate
all safety-critical situations. Nevertheless, learning-based methods [4, 5] directly
learn behaviors from driving data without human-involved engineering. Since no
hand-crafted rules are involved, these methods usually perform better in unfamiliar
situations and indicate a promising direction.

Numerous studies have been developed through the second track, the learning-
based one, to solve long-tail distributions. Based on the methodology used in these
studies, they can be categorized into two distinct approaches: capacity enhancement
approaches and scenario simulation approaches. Capacity enhancement approaches
focus on improving the comprehensive scene-understanding ability and the sequential
decision-making process of AVs by using more complex sensor configurations and
more advanced learning algorithms [4, 6, 7]. In contrast, scenario simulation methods
address the creation of safety-critical scenarios using simulators to imitate the real
world and the generation of synthetic data [8, 9, 10, 11], which is one way that
forces AVs to experience more diverse situations. Although many methods from both
approaches are helpful, most of them either only consider the behaviors of vehicles
while ignoring the other important traffic participant, the pedestrians [8, 10], or
only model the motion of pedestrians in a simplistic and deterministic way [11, 12].
On the one hand, such constraints significantly degrade the capacity of vehicles to
tackle pedestrian-related traffic scenarios, especially when those cars are in the urban
environment. Another weakness is that they increase the complex and diverse gap
between the simulation and the real world, rendering the simulated scenarios less
general.

Therefore, the objective of this thesis is to design a new critical scenario with the
participation of pedestrians via simulators that can be used to evaluate the capacity
of AD algorithms dealing with such a case. Typically, this thesis is restricted to a

2

simplified urban traffic scene in which only two dynamic objects exist: one pedestrian
and one vehicle. In this scene, the pedestrian behaves like a suicidal person, meaning
that this pedestrian tries to spontaneously hit the running vehicle controlled by
some AD algorithms when that vehicle drives close to the pedestrian. However,
the development and training of driving algorithms that control the car will not
be considered in this work since the vehicle only needs to respond to this situation
rather than serve as a component of it. In order to accomplish this task, this thesis
will separate the objective into two parts. The first part focuses on constructing the
required urban traffic scene with simulators and modeling the behavior of pedestrians
using RL methods. The second part will compare a series of state-of-the-art AD
algorithms to evaluate their capacities in terms of avoiding collision with such a
suicidal pedestrian.

The rest of this thesis is organized as follows. First, Chapter 2 lays a founda-
tion to provide background knowledge on the Car Learning to Act (CARLA) [13]
open-source urban simulation platform, ideas of RL methods, state-of-the-art AD
algorithms, and trends in traffic scenario simulation. Then, Chapter 3 describes
a thorough explanation of the developed method for this proposed traffic scenario
design problem, including the scene construction, suicidal pedestrian modeling, and
evaluation criteria proposal. Next, Chapter 4 presents the experiment results and
corresponding performance analysis. Finally, Chapter 5 reviews this thesis, summa-
rizing its main contributions, pointing out shortcomings, and prospecting possible
extensions and improvements of this work.

3

2 Background
This chapter discusses the necessary theoretical knowledge for understanding the
proposed methods described in the next chapter. First, the simulation platform used
to implement the traffic scenario is explained. Second, ideas of RL are discussed.
Third, some state-of-the-art AD algorithms are described. Finally, methods for traffic
scenario simulation are argued.

2.1 Carla simulator
AD is data-hungry: in order to have sufficient capacity to deal with highly complex
traffic situations in the physical world, AVs need to expose themselves to various
scenes to collect useful driving logs. However, collecting data in the real world is not
desired. On the one hand, driving an expensive test car with well-configured sensors
to collect data is time-consuming and costly, especially when some logs in dangerous
scenarios are needed. On the other hand, training and testing developed AVs in the
physical world face logistical and management difficulties.

An alternative way is to collect data via simulation. There are many simulators to
support AD research. CarSim is a powerful commercial software package developed
by the Mechanical Simulation Company. It provides detailed and accurate dynamics
models for different passenger vehicles and light-duty trucks. Furthermore, the
commercial video game Grand Theft Auto V (GTA V) has been used to gather
diverse three-dimensional environment data due to its large world, availability of
numerous object models, and high-quality graphics [14, 15]. And the acquired data
from GTA V is then used for training perception modules [16]. In contrast to
commercial simulation platforms, there are also many open-source simulators. For
example, The Open Racing Car Simulator (TORCS) [17] is a highly portable, modular
racing simulator that could be used to verify the functions of new AD approaches.
It provides more than 50 different types of cars, more than 20 racing tracks, and
can support multi-player at the same time. In addition, the Simulation of Urban
Mobility (SUMO) [18] provides a more complex traffic flow simulation platform
with multi-modal sensor configurations and customized map generation, and a lot of
improvements have been made since its publication [19]. Moreover, AutonoVi-Sim
[20] is also a widely used simulator for AD data generation and algorithm verification.

Among those open-source simulators, a newly developed urban driving simulator
called CARLA [13] attracts great interest from the AD community since it provides
a detailed, flexible, modular, and high-quality urban driving platform. CARLA
is grounded on Unreal Engine 4 [21] and uses a scalable server-client structure to
control the interaction between the simulation and the user agent. The server is
responsible for simulation-related tasks, such as physics computation, world-state
updates, and scene rendering. The client consists of a series of modules controlling
the world condition settings and logic of actors, which is implemented by Python
API. Typically, the client sends instructions to the server to guide the simulation and
receives sensor data in return. And instructions can be divided into two types: actor
command and meta-command. Actor command controls the pedestrians, vehicles,

4

and sensors, while meta-command controls the server, including changing maps and
weather of the simulation environment, resetting the simulation, and modifying the
graphical quality.

Compared to other existing open-source simulators [17, 18, 20], CARLA [13]
has three main advantages. First, it focuses on the urban environment, providing
rich urban environmental objects such as shops, residential buildings, dustbins, and
traffic lights, allowing AVs to be exposed to more complex and dangerous traffic
scenarios. Second, a rich command set, flexible sensor configuration, and detailed
control feedback are provided, thus supporting develop more complex AD approaches
and simplifying the analysis of developed driving policies. Third, more types of
vehicles and pedestrians are modeled in the simulator, which increases the simulation
diversity.

Since the superiority for simulating urban environments of CARLA, and the thesis
work objective of designing a dangerous traffic scenario with a suicide pedestrian
that tries to hit AVs in one urban environment, the CARLA simulator is decided to
serve as the implementation platform. Therefore, a detailed introduction to CARLA
is needed. In this section, components of CARLA are provided. First, the static
environment is discussed. Then, sensors and their attributes are discussed. Finally,
pedestrians and vehicles are described.

2.1.1 Static environment

The static environment of CARLA is composed of two parts: the physical part and
the virtual part. The physical part consists of various 3D models, which serve as
basic blocks for constructing environment maps, while the virtual part is responsible
for controlling environmental weather and illumination regimes.

The physical static 3D models, such as road lines, traffic signs, buildings, walls,
traffic lights, vegetation, and other environmental objects, are all designed under the
realism guideline to reflect their physical properties. By leveraging these models,
CARLA builds eight towns covering urban, highway, and rural environments, which
significantly increases the possibility of constructing highly complex and diverse
traffic scenarios that are necessary for more advanced AD approaches.

Among these provided towns, Town 1 and Town 2 simulate similar residential
areas with 2-lane roads and T-junctions. They are suitable for simulating pedestrian-
related traffic situations due to the narrow roads and widespread sidewalks. Town 3
is the most complex map that simulates a central modern town with 5-lane junctions,
roundabouts, lane merge and split, and other urban traffic networks. This map is
typically used as a baseline to exhaustively evaluate the performance of AD algorithms
in city environments. Town 4 and Town 6 contain long highways. However, Town
4 also simulates a small town surrounded by a highway, while Town 6 simulates
many entrances and exits along the highway. Town 5 and Town 10 are similar to
Town 3 but with different features, where the former has multiple lanes per direction
that are preferred for testing the lane change behavior of AVs, and the latter is a
combination of various city environments such as promenade and avenue. Finally,
Town 7 simulates a rural area without traffic lights and signs. Three overviews of

5

Figure 1: The bird’s-eye view of three CARLA towns in the same weather condition.
From left to right: Town 2, Town 3, and Town 5. Town 2 simulates residential areas
with 2-lane roads, while Town 3 and Town 5 simulate central areas with both 2-lane
and multiple-lane roads.

these towns are illustrated in Figure 1.
In addition to eight town maps, CARLA also implements the control of envi-

ronmental weather and illumination. Such functions provide more diversity to each
town, further extending the capacity to simulate the changing natural environment
of the real world. The weather controller can control the cloudiness of the sky,
precipitation, wind intensity, fog intensity, and wetness. The illumination controller
is responsible for the position and color of the sun, sunlight intensity, and penetration.
Currently, CARLA provides three pre-defined light conditions: noon, sunset, and
night and nine pre-defined weather conditions, resulting in 27 different combinations
in total. However, user-defined weather-illumination combination beyond this set is
still allowed.

2.1.2 Dynamic objects

The dynamic objects provided in CARLA can be divided into three categories: pedes-
trians, vehicles, and sensors. However, sensors must be attached to one pedestrian
or vehicle, while pedestrians and vehicles could be spawned alone.

Vehicles are one of the most important entities in CARLA. Currently, 27
different vehicle models are provided, ranging from motorcycles to cars and light
trucks, and rich commands from different levels can be applied to control their
behavior. The low-level commands, such as throttle, steer, and brake, directly control
the vehicle’s motion. The high-level commands, including turn-left, turn-right, lane-
follow, go-straight, change-lane-to-left, and change-lane-to-right, are used to describe
the behavior of vehicles in a more human-kind and general way. Such a hierarchical
command structure provides sufficient command information, making it easier to
train various AD algorithms that use different control commands as supervision.
Moreover, it also provides a chance to flexibly develop various sub-modules according
to the control command, such as designing a more robust controller using the low-level
command.

In addition to the control command, CARLA also provides a path-planning

6

module and a controller module to support navigation, where the planning module
utilizes the well-known A* algorithm and the controller module utilizes the pro-
portional–integral–derivative (PID) method. Based on these two supplementary
modules, rule-based driving policies [3, 22] can be used for non-player vehicles, thus
decreasing the workload of creating a simulation world with multiple cars.

Figure 2: Some vehicles and pedestrians available in CARLA [13].

Pedestrians are the second dynamic objects in CARLA that can be spawned
alone. Similar to vehicles, the control of pedestrians can be achieved by commands
and pre-defined controllers. The pedestrian control commands include direction, speed,
and jump. In order to move pedestrians, commands should be updated and applied
during every simulation step. In contrast, the pre-defined pedestrian controller will
automatically navigate the walkers as long as their destinations are set. And walkers
are encouraged to walk along marked road crossings and sidewalks, as well as avoid
collision with vehicles once the controller rules them.

Sensors are essential for AVs to perceive the surrounding environments and their
inner states. CARLA provides different kinds of sensor modalities to allow flexible
configurations for autonomous cars. Sensors that perceive the environment include
light detection and ranging (LiDAR), camera, and radar. Moreover, To simplify the
process of training and evaluating AD approaches, cameras have three variants of
output: RGB image, ground-truth depth image, and ground-truth semantic image,
and LiDARs provide two variants of output: point cloud and ground-truth semantic
point cloud. An example of these outputs is shown in Figure 3. Sensors that estimate
the inner states of AVs are limited to the global navigation satellite system (GNSS)
and inertial measurement unit (IMU). And measurements of the inner states include
location and orientation concerning the world coordinate, speed, and acceleration.

In addition to these environmental perception and inner state estimation sensors
that send readings at every simulation step, CARLA also provides sensors associated
with collision and traffic rules that send readings only when they are triggered by
events. The collision sensor detects collision events between its parent vehicle and
objects in the world. The lane invasion sensor detects the behavior that vehicles
invade sidewalks or wrong-lane. Finally, the obstacle sensor detects objects ahead of
its parent vehicle. These sensors provide more detailed signals for evaluating AVs.

7

Figure 3: Four of the sensing modalities in CARLA. Clock-wise from top left: normal
camera, depth camera, semantic segmentation camera, and 3D LiDAR.

2.2 Reinforcement learning
RL is a subfield of machine learning that learns behavior through a trial-and-error
style without explicit human supervision [23], and it is widely used in AD area
[6, 7, 13, 24]. Its typical feature is that the RL agent learns by actively interacting
with the environment throughout the process. At each time step t, the agent observes
a particular state st from the environment, and it should choose an action at based
on the current state and its policy π(at|st), a function that maps states to actions,
to transition to a new state st+1, followed by receiving a scalar reward R(st+1, st, at).
This perception-action loop is illustrated in Figure 4.

Figure 4: The interaction process between an RL agent and environment.

According to the interaction, different policies will determine different sequences
of actions, thus resulting in different rewards. Therefore, the goal of the agent is to

8

find an optimal policy, denoted as π∗, that maximizes the expectation of cumulative
discounted reward. Typically, the cumulative discounted reward is called the return,
and it is defined as:

Gt =
T∑︂

k=0
γkR(st+k+1, st+k, at+k), (1)

where t is the time step the agent currently stays in, γ ∈ [0, 1] is the discount
factor, and T is the time horizons. However, learning an optimal policy is still very
difficult even though the return is formally formulated. The main challenges come
from two aspects. First, since the state transition dynamics are not available to
the RL agent, it needs to learn about policies by trial and error. Second, in-depth
evaluation criteria during the interaction are unknown. This leads to a situation in
which the agent learns without indicating whether the agent is in the right direction.
Considering these problems, some mechanisms are proposed, which will be discussed
in this section.

Markov decision process (MDP) is a mathematical framework to describe
discrete-time stochastic control processes [23, 25], which could be used to describe
the interaction between RL agents and environments. Formally, an MDP is denoted
as a 5-tuple (S,A,P ,R, γ), where:

• S is the set of states, called state space

• A is the set of actions, called action space

• P is the transition probability function: S ×A → P(S), which describes the
probability distribution of entering a new state st+1 ∈ S at time t + 1 from a
state-action pair (st, at) ∈ (S ×A) at time t

• R is the immediate reward function: S × S × A → R, which describes the
received scalar reward R(st+1, st, at) after transitioning from state st to state
st+1 due to the performed action at

• γ is the discount factor satisfying 0 ≤ γ ≤ 1, representing the importance of
considering long-term rewards

Most RL problems could be formulated as MDPs, and a key concept underlying
each MDP is the Markov property that the future state depends only on the current
state and action, while the past could be thrown away. This means the current state
st is a sufficient statistic for the environment that comprises all necessary information
for making an action at, or in other words, any actions made at time step t can
be based solely on the current state st rather than the sequence of previous states
{s1, s2, ..., st}.

Value functions estimates the goodness of each state or each state-action pair in
terms of return. Formally, two value functions are utilized: the state-value function

9

and the action-value function. The state-value function Vπ(s) is the expected return
from state s when following policy π:

Vπ(s) = Eπ

[︃
Gt

⃓⃓⃓
St = s

]︃
. (2)

Similar to the state-value function, the action-value function is the expected
return for taking action a at state s and then following policy π:

Qπ(s, a) = Eπ

[︃
Gt

⃓⃓⃓
St = s,At = a

]︃
. (3)

By exploiting the Markov property, the above two functions can be rewritten
into a recursive form, and the so-called Bellman equations [26] are obtained:⎧⎪⎪⎨⎪⎪⎩

Vπ(s) = Eπ

[︃
R

(︂
s′, s, π(s)

)︂
+ γ · Vπ(s′)

⃓⃓⃓
St = s

]︃
Qπ(s, a) = Eπ

[︃
R(s′, s, a) + γ ·Qπ

(︂
s′, π(s′)

)︂ ⃓⃓⃓
St = s,At = a

]︃ (4)

One significant advantage of equation 4 is that it simplifies the multi-step se-
quential summation problem into a two-step summation problem with two distinct
parts, where the first part is an immediate reward received by selecting an action at
current time step, and the second part is a value estimate of the next state. This
means the current estimations are simple combinations of the immediate reward
and the discounted future measures, and thus step-by-step updates are allowed to
approximate value functions.

As mentioned before, RL algorithms target finding an optimal policy π∗ that
receives a maximal expected return. Therefore, the optimal policy should have a
corresponding optimal state-value function and action-value function:⎧⎨⎩ V∗(s) = max

π
Vπ(s), ∀s ∈ S

Q∗(s, a) = max
π

Qπ(s, a), ∀s ∈ S, a ∈ A (5)

Exploration and exploitation are two fundamental but contradictory cores in
RL [23, 27]. On the one hand, the agent should try out more non-optimal actions to
obtain comprehensive information about the environment to reduce its uncertainty
regarding transition probabilities and the reward function. On the other hand, in
order to avoid inefficiency and make useful progress, the agent should exploit its
current estimation of the environment to choose the best action with the most reward.
One simple but effective method to deal with this exploration-exploitation trade-off
problem is to use randomized methods as policies, such as epsilon-greedy policy and
the upper confidence bound (UCB) [28] algorithm, or to add random noise to actions,
such as Gaussian noise and Ornstein-Uhlenbeck (OU) noise [29]. Moreover, advanced
methods that design intrinsic rewards [30, 31] to motivate exploration are applied to
larger, more challenging environments with sparse rewards and they have achieved
better performance.

10

2.2.1 Model-free methods

Model-free RL is a general category in the RL community that contain a series of
algorithms. It assumes that the environment is a black box that produces rewards
for agent actions. By this means, the RL agent only needs to learn a policy to
maximize the received rewards without knowing the environment, in other words,
the transition probabilities and the reward function. The main advantage of leaving
an environment model is that it is easier to implement and allows agents to learn
optimal policies with zero bias due to the absence of environment modeling errors.
According to Arulkumara et al. [27], a lot of model-free RL algorithms have been
developed, and the most notable state-of-the-art ones are DQN [32], A3C [25], PPO
[33], DDPG [29], and SAC [34].

Figure 5: Schematic illustration of the convolutional neural network used in DQN
for image inputs [35]. The input consists of an image in the shape of 84× 84× 4,
followed by three convolutional layers and two fully connected layers.

DQN: Mnih et al. [32] proposed the first practical RL algorithm involving deep
neural networks. The idea of DQN arises from the fact that deep convolutional
neural networks are powerful for compact information representation and have strong
function approximation abilities: with high-dimensional images as inputs, the network,
as shown in Figure 5, can be trained with a variant of Q-learning to directly estimate
Q values of all possible state-action pairs. This is done through two techniques:
experience replay and target networks. Experience replay is a cyclic buffer that stores
historical transitions in the form of (st, at, st+1, R(st+1, st, at)), enabling the RL agent
to sample training data offline uniformly. Such a design not only breaks down the
temporal correlations between transitions that cause instability of algorithm training
but also massively improves the data utilization efficiency so that the same data can
be used several times. The target network is a copy of the main network enacting the
policy, but with frozen weights for a long time. During training, the policy network
calculates the temporal difference (TD) error based on Q values from the fixed target

11

network instead of its own, avoiding divergence problems because of rapid changes
in TD errors. Furthermore, in order to match the policy network, the weights of the
target network are updated after a fixed number of iterations.

A3C: Mnih et al. [25] proposed the Asynchronous Advantage Actor-Critic (A3C)
algorithm, an asynchronous, multi-agent, distributed version of the Advantage Actor-
Critic. The A3C follows the actor-critic formulation and updates the advantage
estimation in parallel. It consists of several actor-critic networks with the same
architecture. The global network is a weight center in which the most recently
updated weights are stored. Other transcript networks independently control their
own agents to interact with the environments and update weights asynchronously
once enough data is collected, followed by uploading the latest weights to the global
network. This framework is illustrated in Figure 6. With the help of multiple agents
and independent environments, A3C allows more exploration and converges fast to
optimal policies.

Figure 6: The framework of A3C. Each network shares the same architecture.
The global network does not interact with the environment but merely stores the
latest weights from all worker networks. The worker networks interact with the
environments independently and improve their parameters asynchronously. During
training, each worker network firstly copies weights from the global network and then
improves parameters based on the collected data, followed by updating weights back
to the global network.

PPO: Schulman et al. [33] considered the calculation difficulty of the second-
order gradient in Trust Region Policy Optimization (TRPO) [36] and then developed
Proximal Policy Optimization (PPO) to approximate the calculation. Compared
to directly calculating a constrained quadratic problem requiring the second-order
gradient, PPO modifies the objective into an unconstrained problem with only the
first-order gradient information needed. Furthermore, it uses two main variants for
approximation: the heuristic objective clip and the adaptive penalty on the Kullback-

12

Leibler (KL) divergence. Since PPO dramatically decreases computation complexity
while retaining competitive performance and contains few hyperparameters to tune,
it is becoming more popular in many RL tasks.

DDPG: Lillicra et al. [29] extended the policy gradient theorems from stochastic
policies to deterministic policies and trained them with actor-critic architecture in
the offline mode. Similar to DQN [32], DDPG also utilizes experience replay and
target networks to guarantee stability during training. Moreover, DDPG addresses
exploration ability by adding random noise to actions. Typically, Gaussian noise and
OU noise are two suitable choices. The Gaussian noise is not temporally correlated
and widely spreads in the natural world; therefore, it is a good starting point for
many tasks. In contrast, the OU noise is temporally correlated and can give linearly
negative feedback around the mean, leading it suitable for physical control problems
with inertia.

SAC: Haarnoja et al. [34] proposed another offline algorithm with the actor-critic
architecture called Soft Actor-Critic (SAC) that provided for both data efficiency
and stability. The central idea of SAC is entropy regularization: in order to handle
very complex and high-dimensional tasks, the policy entropy needs to be maximized
to force the policy to be more stochastic; meanwhile, a high return is still desired
for finding a good policy, and thus the entropy should be limited. This is done by
adding an entropy term to the actor-network and to the calculation of TD errors
with an adaptive entropy coefficient. In addition, another key idea in SAC is that it
uses two critic networks to avoid overestimated Q values. During training, the SAC
will always choose one critic network with a smaller estimated Q to calculate the TD
error. Finally, offline techniques, such as experience replay and target networks, also
play essential roles in SAC.

2.2.2 Model-based methods

All algorithms described above are model-free, where the RL agent directly learns
optimal value functions or policies without knowing the environment dynamics.
Although they have achieved outstanding performance in many tasks, applying them
to practical problems in the real world is still a challenge. The main reason lies in
the requirement for a massive amount of data. For example, in order to learn to
walk on uneven ground, the legged robot should try thousands of episodes to collect
enough data in the simulation, which is quite time-consuming and costly in the
real world. Therefore, another type of RL algorithm, model-based RL, is proposed
to reduce the number of required interactions. The key idea of model-based RL
is to learn a transition function and a reward function that can describe how the
environment changes. Furthermore, once the agent knows the environment model,
it is straightforward to find an optimal policy using some online methods without
interacting with the environment directly.

However, modeling the environment takes much work. The biggest challenge
is that the model should be zero bias; otherwise, the agent will find policies that
perform well with respect to the learned model but behave terribly in the real world.
Recently, a series of model-based RL algorithms with excellent performance have

13

been developed, and some representative methods are I2A [37], ME-TRPO [38],
MB-MPO [39], and STEVE [40].

Imagination-Augmented-Agent (I2A) [37] is a Deep-RL architecture that
combines model-free and model-based aspects. It assumes the learned environment is
imperfect and the direct interaction with the environment plays an important role in
optimal policy search even though the model is known. I2A consists of three key com-
ponents: environment modeling, imagination policy rollout, and policy combination.
The environment modeling part approximates the transition probabilities and reward
functions based on the data obtained by interacting with the true environment. The
imagination policy rollout part trains a rollout policy to generate different trajectories
using the trained environment model. Given a state, the rollout policy will choose
actions to transition to new states inside the environment model. This process
continues for several steps and thus generates some imaginary trajectories. Although
these trajectories may not give high rewards, they can provide more information than
true data, since they are sampled from much more diverse distributions. Finally, the
policy combination part utilizes both the true and imagined data to generate an
optimal policy using some model-free RL algorithms mentioned above. The overall
architecture of I2A is illustrated in Figure 7.

Figure 7: The overall framework of I2A [37].

Model-Ensemble TRPO (ME-TRPO) [38] assumes that an ensemble of en-
vironment models can help reduce the model bias and policy can be trained with
model-free algorithms purely on imaginary data. It inherits from the vanilla method
but with some modifications. Firstly, ME-TRPO uses a model ensemble, a set of
environment models learned using the same real data, to alleviate potential sparse
distributions that cause bias, and these models only differ from the initial weights and
the order in which mini-batches are sampled during training. Additionally, the TRPO
[36] algorithm is applied to optimize the policy over the model ensemble. During
optimization, each model inside the model ensemble will generate a trajectory so
that the policy will not overfit a particular model. Finally, the policy’s performance
is monitored on validation data generated by the model ensemble. Once there are
few performance improvements for the policy, ME-TRPO will stop and return to the
current model ensemble and policy.

14

Model-Based Meta-Policy Optimization (MB-MPO) [39] is another deep
model-based RL architecture with the idea of using an ensemble in an orthogonal
way: the learned environment models do not need to be sufficiently accurate since
policies optimized by the meta-learning technique can quickly adapt to any of the
fitted environment models with one gradient step. In MB-MPO, the environment
models are trained via a standard supervised learning framework, while the policy
optimization is defined as a meta-learning problem. First, the target policy generates
new policies with adapted parameters to each model dynamics. Then, those adapted
policies will collect trajectories by interacting with their models and be optimized.
Finally, the target policy is trained with optimized policies. This process continues
until the target policy does not improve further. With the help of meta-learning, MB-
MPO provides a solution to the policy optimization problem with inaccurate model
dynamics and significantly enhances the policy robustness to model imperfections.

Stochastic Ensemble Value Expansion (STEVE) [40] further extends the
ensemble idea to both the models and action-value functions. The key idea behind
STEVE is to interpolate between different horizon lengths so that the imaginary
trajectory length can be adjusted dynamically to fit various tasks or environments. In
STEVE, each model and action-value function will generate one imaginary trajectory
with a fixed rollout length. By approximating the uncertainty of each trajectory
with different lengths, there is only one segment with the lowest uncertainty could
be chosen as the target, while others need to be trained to minimize the difference
to that target. Compared to other model-based RL algorithms, such as I2A [37] and
ME-TRPO [38], STEVE achieves better performance in more noisy and complex
environments.

2.3 Autonomous driving algorithms
AD is a highly complex system composed of many subsystems working together to
achieve autonomy in diverse, dynamic, and contingent traffic scenarios of the real
world. These subsystems include perception, planning, and control. The perception
system aims to help AVs understand the surrounding environment. It takes raw data
from different sensors, such as cameras, LiDARs, Radars, and GNSS, outputting the
ego-vehicle location and velocity, poses and motions of obstacles, states of traffic
lights, and road maps. The planning system decides and plans the behavior of
AVs with the information obtained from the perception module to ensure safe and
comfortable driving. Lastly, the control system is responsible for converting the
trajectory generated by the planning system into accurate execution commands to
control the vehicles to reach specific targets in a finite time. These subsystems and
their tasks are illustrated in Figure 8.

Considering the functions of different modules, many researchers have conducted
in-depth studies into these three subsystems separately in the last decades and formed
one category of AD algorithms: the modular pipeline. However, there is another
mainstream in the AD community called the end-to-end driving method. In contrast
to the modular pipeline method that designs and trains each module in separation, the
end-to-end driving method believes all modules can be integrated without individual

15

Figure 8: High-level autonomous driving stack. The mapping task in the perception
module is optional since HD maps can be provided. The prediction task is painted
red because it is the basis of other tasks.

design and be trained together, thus resulting in a more straightforward training
and evaluation procedure for AVs. Since both methods are popular and provide
state-of-the-art performance nowadays, this section will discuss them in the following,
separately.

2.3.1 Classical modular pipeline

Environment perception provides a mediated representation of the scene by
detecting a self-drive vehicle’s nearby objects and road layouts. This system is mainly
driven by computer vision, and many researchers have further separated the whole
task into smaller pieces: detection, mapping, and localization.

The detection task involves two key components: lane detection and dynamic
object detection. Typical lane detection algorithms take RGB images as inputs and
output splines of detected lane markings [41, 42]. Huval et al. [43] detected the
lanes on the highway environment using a regression method with a six-dimension
vector, where the first four dimensions indicated the positions of two endpoints of a
local lane segment, and the remaining two dimensions provided the relative depth of
the endpoints toward the camera. Chen et al. [44] predicted a binary segmentation
image to offer rich semantic information for lanes based on VGG architecture [45].
Similar to lane detection, dynamic object detection algorithms aim to detect cars
and pedestrians, outputting bounding boxes to specify their positions, orientations,
classes, and confidences from single or multi-modal sensors [46, 47, 48]. For example,
Lang et al. [46] proposed their LiDAR-based PointPillars network in 2019 to extract
vehicles and pedestrians using only 2D convolutional networks. Moreover, Liang
et al. [49] fused LiDAR point cloud and RGB images to obtain a more accurate
detection result in a 3D environment.

The mapping task either generates high-resolution maps offline or predicts road
structure online. In offline settings, the maps are generated iteratively. By passing
through the same scene several times with a specific data collection car, mapping
algorithms gradually modify their wrong estimations, thus producing high-resolution
maps step by step [50, 51]. Notably, one key advantage of offline mapping is that

16

the generated maps contain rich semantic information about the topology of roads,
traffic lights, and crossroads in the global area, which can significantly increase
the safety of trajectory planning. However, building high-resolution maps usually
needs human experts’ manual labeling, and maintaining them is a tedious task. On
the contrary, online mapping directly predicts map elements around the ego-vehicle
without explicitly outputting a final map [52, 53]. Homayounfar et al. [53] introduced
a hierarchical recurrent neural network to predict the road area and lane boundaries
in highway scenes. Similarly, Chen et al. [5] utilized image inputs to predict road
affordances in which vehicles can drive safely.

The localization task aims to localize AVs in the global coordinate with centimeter-
level precision. To achieve this goal, existing localization algorithms usually fuse
different methods with two-level precision: global localization and relative localization.
Global localization first uses classical algorithms, such as Particle filter, Kalman
filter, and its variants [54, 55], to estimate the position of LVs with data obtained
from IMU, GNSS, and wheel odometry, generating a rough result with errors in
meters. Then, relative localization uses landmark features extracted from visual
sensors [56, 57] to tune the result to the desired precision.

Motion planning uses information from the perception layer to plan future
trajectories. As is shown in Figure 8, this module includes three different tasks:
Route planning, Trajectory planning, and Behavior planning.

Route planning defines an optimal and safe path from the starting position to the
target position with the help of road maps. Traditionally, Dijkstra and A* and their
variants are applied to find such paths. However, they are incapable of pathfinding
in large-scale maps because of the exhaustive search. Considering the high time
complexity, recent algorithms [58] either represent the path as a function with a
finite-dimensional parameter vector to accelerate the convergence to a local optimal
or discretize the configuration space of AVs as a graph and incrementally sample and
build a path toward the lowest cost direction.

Trajectory planning is a generalization form of route planning and has been shown
to be more complicated than route planning. It involves reaching a fixed position at a
particular time in dynamic environments. This requires the computation to consider
the dynamics of AVs and the feasibility of actuation commands, as well as the effects
of possible dynamic obstacles. Moreover, high computation complexity makes it
impossible to obtain exact solutions, and therefore, numerical approximation methods
directly in the time domain or in the configuration space with a time dimension [59]
have become a popular choice.

Behavior planning determines how the AV interacts with the environment and
other dynamic objects. By considering the planned route, traffic rules, and other
vehicles, the behavior planning layer selects a short-term strategy to guide the self-
drive car in a high-level maneuver, such as lane-following, overtaking, lane-changing,
and braking.

Vehicle control module converts the planning into actual commands, such as
steer, throttle, and brake, to transition the vehicle from its current state to another
desired state. In order to precisely move the vehicle according to the planning
results, the controller should satisfy two essential attributes: stability and robustness.

17

Therefore, closed-loop controllers with feedback and others that have been proven
their stability and robustness using complete mathematical theorems are preferred.
Among them, the PID controller and its variants are the most widely used due
to their low cost and simple architecture. Furthermore, more advanced control
methods, such as Sliding Mode Control and Fuzzy Logic Control [60] that can handle
uncertainty about the vehicle state, are also utilized to control AVs. Due to their
superior performance, the AVs are under a precise control process with a fast response
frequency. Lastly, some optimal control methods, such as Linear Quadratic Regulator
(LQR) and Model Predictive Control (MPC) [61], are playing a more important role
in the field of controlling AVs.

2.3.2 End-to-end autonomous driving

End-to-end autonomous driving aims to directly map sensor signals to control com-
mands for steering, throttle, and brake without separately fine-tuning any subsystems
as it does in the modular pipeline. Its key advantage is that all parameters of a
whole driving model can be optimized jointly with respect to a shared end goal using
differentiable optimizers. Furthermore, based on their training methodology, these
end-to-end driving algorithms can be divided into imitation learning-based ones and
Deep-RL-based ones.

Imitation learning-based AD learns driving policies via supervised training from
trajectories collected by human experts, aiming at reproducing experts’ behavior in
different traffic scenarios. Since Pomerleau [62] first pioneered this technique in the
real world with Autonomous Land Vehicle In a Neural Network (ALVINN), many
works have extended imitation learning to more complicated and more challenging
environments, some of which are LBC [63], LAV [64], and InterFuser [65].

Figure 9: Overview of LBC [63]. The left shows the privileged agent directly learns
to imitate expert demonstrations with access to ground-truth data. In this scene, the
privileged agent is cheating. The right shows the vision-based agent learns to mimic
the privileged agent without access to ground-truth data. The privileged agent acts
as a teacher and provides high-capacity on-policy supervision. Thus, the vision-based
agent does not cheat.

LBC: Chen et al. [63] decomposed the problem of perceiving and acting in

18

the world into two stages and proposed the vision-based driving model, Learning
by Cheating (LBC). As illustrated in Figure 9, the first stage trains a privileged
behavior cloning agent that can access all ground-truth data, such as the position of
all traffic participants and the environment layout. The second stage trains another
purely vision-based to mimic the privileged agent. Obviously, such an inverse acting-
perceiving procedure has three advantages. First, the learning to see and learning to
act problems are decomposed and can be solved easily. Second, the privileged agent
accesses and operates on a compact bird’s-eye view representation of the environment,
enabling efficient data augmentation and fast generalization. Finally, the trained
privileged agent is a white box, allowing query states not only visited in the original
trajectories but also rolled out.

LAV: Chen et al. [64] introduced their driving model, Learning from All Vehicles
(LAV), which utilized three RGB cameras and one 3D LiDAR in 2022. The basic idea
is that driving logs experienced by other vehicles may contain safety-critical scenarios
and thus can help the ego-vehicle increase the chance to see more situations. This is
done through a vehicle-centered map representation that does not distinguish the
ego-vehicle and other vehicles. In LAV, the sensor data is fused via point-painting [48]
and each vehicle is extracted using CenterPoint [66] with PointPillars [46] backbone,
followed by a rotated ROI extraction to obtain fixed-size representations. Once
the features of vehicles are obtained, they are fed into motion planner equally to
mimic their trajectories with supervised training. This is illustrated in Figure 10.
An evaluation of several testing criteria presented by Chen et al. [64] shows that
LAV can get great results in both training conditions and unknown environments.

Figure 10: Overview of LAV [64]. The images and point cloud data are fused
via point-painting [48] and then fed into PointPillars [46] 3D backbone to perform
detection and mapping. Once vehicles are detected, ROI extraction is applied to
fetch fixed-size features, followed by predicting their future trajectories separately.
Lastly, refined trajectories are sent to two PID controllers to generate low-level
control commands. Additionally, another convolutional network is responsible for
hazard brake prediction directly from image inputs.

InterFuser: Shao et al. [65] considered the importance of comprehensive scene
understanding and the interpretability of control command generation, proposing their
Interpretable Sensor Fusion Transformer (InterFuser) driving model. As illustrated in
Figure 11, the InterFuser is composed of three parts. The first part is a transformer
encoder that takes multi-modal multi-view sensor inputs, outputting a compact

19

information integration. The second part is another transformer decoder with three
parallel prediction headers to predict future waypoints, object density maps, and
traffic rules, respectively. Furthermore, different queries and positional embeddings
are also utilized to distinguish the outputs. The last part is a safety controller, which
utilizes information from the decoder and historical trackers to forecast the motion
of other vehicles, avoiding potential dangerous driving behaviors of the ego-vehicle.
Notably, in order to ensure the safety controller can consider all participants in the
recovered object density maps, InterFuser uses a two-threshold trick on the object
density map to maintain uncertain objects and remove repeated detection: the lower
threshold detects as many as objects, while the higher threshold removes repetition.

Figure 11: Overview of InterFuser [65]. The encoder fuses multi-modal sensor data
into a compact representation. Next, the decoder predicts future waypoints, the
object density map, and traffic rules with the help of queries. Lastly, the safety
controller recovers the scene with the density map and predicts other vehicles’ motion
from the historical trackers, producing safe low-level control commands that can
avoid the collision.

However, imitation learning-based driving algorithms suffer from heavily long-tail
distributions and upper-bound capacity limitations. On the one side, since the
behavior cloning agents try to mimic the experts, they are naturally limited to the
expert actions, which means that the behavior cloning agents can at most perform as
well as the expert demonstration. On the other side, obtaining expert demonstrations
in every traffic scenario is an impossible task, and therefore the imitated policy has
a strong confidence to example situations but generalizes poorly to unseen cases.
Although excellent works like LAV [64] and InterFuser [65] have attempted to address
these issues and achieved remarkable results, they have not been solved yet. Hence,
many researchers have turned to Deep-RL-based methods.

Deep-RL is a combination of deep learning and RL, where deep neural networks
are used to approximate value functions in the RL problem framework. Different
from imitation learning that guides the agent to mimic an expert, Deep-RL teaches
the agent to explore the environment itself and drive safely. Thus, the agent will not
have a bias in terms of encountering different scenarios and can have a much higher
capacity boundary. Nevertheless, as other RL problems need a massive amount
of data to train the agent, Deep-RL-based autonomous car also requires a more

20

considerable amount of data than supervised imitation learning to converge, which
is why many studies are conducted in simulation. Kendall [67] first introduced
Deep-RL into AD in urban situations and showed great potential. Since then, a lot
of impressive works have been completed, some of which are WOR [6], IA [24], and
Latent DRL[68].

WOR: Chen et al. [6] proposed the model-based RL method World on Rails
(WOR) in 2021. They assume the agent’s action influences only its own state while the
environment will not change, factorizing the world dynamics into a low-dimensional
ego-vehicle model and a non-reactive world model. Furthermore, the transition of
the world model is deterministic and purely depends on its previous state, meaning
that one whole trajectory is confirmed once its initial state is known. About the
driving policy, WOR first estimates the action-value function using the Bellman
equation with a tabular dynamic programming evaluation. This is possible since the
forward world model can roll out all trajectories based on selected actions. Then,
the estimated action-value function is used to supervise the desired driving policy
that takes a single image as input. This pipeline is illustrated in Figure 12. As
Chekroun [7] argued, although the assumption of a static world was not realistic
both in simulation and the real world, it showed a way to decompose a complex
urban driving task into an easy deterministic environment model learning task and
a more straightforward policy search task, and such decomposition could achieve
state-of-the-art performance.

Figure 12: Overview of World on Rails [6]. First, the forward model is learned based
on all trajectories and the world. Then, the action-value function is updated using
dynamic programming of the Bellman equation. Finally, the policy distillation is
performed for a single image.

IA: Toromanoff et al. [24] considered the difficulty of training a large Deep-
RL network with raw image inputs, introducing the Implicit Affordances (IAs)
method in dealing with urban driving problems. They argue, for urban driving, the
difficulty of applying Deep-RL approaches comes from two aspects: the convergence
problem of training a larger network with larger images and the limitation of replay
buffer size. Therefore, it is better to encode the raw images into a more compact
representation to serve as the RL state. To do so, they split the driving system into
two subsystems. First, a visual encoder is trained on some auxiliary tasks, such as
semantic segmentation, traffic light detection, and road classification, to output some
affordance features of the environment. Then, the encoder is frozen, and a Deep-RL
framework takes the output features of this encoder to produce an optimal driving
policy. The experiment provided by Toromanoff [24] shows that their method takes
20 times less memory and converges 5 times faster rather than inputting raw images.

21

Latent DRL: Chen et al. [68] further extended the idea of encoding raw inputs
to reduce the sample complexity. Their work divides the urban driving task into two
smaller but highly correlated subtasks: environment modeling and driving policy
search. Due to their sequential observation property, both subtasks can be formulated
as a probabilistic graphical model with latent variables, as shown in Figure 13. For
the environment modeling, they use a sequential variational auto-encoder to embed
the observations that contain one RGB image and one LiDAR image, and produce an
immediate bird’s eye view mask for reasoning interpretation and driving policy search,
where the generated mask includes road maps, routing, other road participants, and
the position of the ego-vehicle. For driving policy search, the SAC [34] algorithm is
selected because it is an extension of entropy maximization. The comparison result
to other driving baselines, such as DQN [32] and DDPG [29], shows that the Latent
DRL method has great potential for complex urban driving.

Figure 13: A probabilistic graphical model of Latent DRL [68]. The latent variable
z contains the sensor input x and can be decoded into the bird’s eye view mask m.

2.4 Traffic scenario simulation
Traffic scenario simulation aims to construct diverse traffic situations using simulators,
reproducing some scenes that are dangerous or rare in the real world, such as vehicles
running a red light, falling cargo from front driving tracks, or the sudden emergence
of pedestrians from roadsides. Typically, its development arises from two reasons.
First, simulation is cheap and can cover all potential situations. According to a
recent survey [69], one difficult challenge that hinders the development of AD is
the requirement for a considerable amount of driving data. Because it is extremely
costly to drive an expensive test car with well-configured sensors to collect drive
logs in the real world, only some big companies with a fortune can afford it and
obtain enough data, which significantly limits the AD community from exploring
more practical driving algorithms. However, with the help of simulation, any research
group can build diverse traffic scenes to collect driving logs without buying a real

22

car, thus breaking through the harsh data threshold. Second, simulation is easy to
evaluate AD algorithms in some edge cases. Since AD is a safety-critical application,
it must be fully guaranteed that it can handle all possible situations encountered
safely. However, testing a developed AD algorithm in the real world is a dangerous
task, and it is often impossible to validate the AV in all traffic scenarios. Therefore,
a new method for safe and comprehensive testing is to design rich traffic simulation
scenarios in simulation. By doing this, the performance of AV can be analyzed in
any critical case without being deployed in practice, thus not only improving safety
during tests but also saving costs.

A lot of research has been proposed on traffic scenario simulation [10, 11, 12, 70, 71].
For example, Abeysirigoonawardena et al. [11] propose an automatic adversarial
driving scenario generation method for testing AVs. Their work involves training
adversarial cars and pedestrians using Bayesian optimization and modeling the
unknown cumulative performance of the test agent as a Gaussian process. However,
their work exposes some drawbacks. First, the behavior of adversarial pedestrians is
restricted. In order to avoid wasteful exploration of adversarial agents, they manually
define reachable areas of pedestrians and use a graph to describe those areas, in which
nodes are possible targets that pedestrians can reach, and edges are trajectories that
pedestrians must follow. Such human specification renders pedestrian behavior simple
and easy to predict. Second, the generated scenario is limited to intersections. This
is because the adversarial car is not allowed to cross lanes, resulting in a situation
that it can only try to collide with the test vehicle when it changes its directions at
intersections.

Figure 14: The framework of MAD-ARL [10]. Each agent uses a PPO-based model
to generate driving policies. The top row is the first step to finding failure scenarios,
while the bottom row is the second step to retraining victims based on those failures.

23

Another similar work proposed by Sharif et al. [10] introduces a Multi-Agent
Driving with Adversarial Reinforcement Learning (MAD-ARL) framework to not
only test AVs for finding decision errors but also improve the performance of AVs
to those errors. As is shown in Figure 14, this framework consists of two steps. In
the first step, one adversarial car, called the adversary, is trained with the PPO [33]
algorithm to create natural and adversarial observations to degrade the performance
of the AV under test. Moreover, the corresponding adversarial policy is guided either
to maximize the collision rate with the test AV, or to maximize the offroad steering
rate. In the second step, the test AV, also called the victim, is retrained with the
adversarial car to defend against those attacks by freezing the adversarial policy.
Similar to the training procedure of the adversary, the victim also uses the PPO [33]
algorithm to improve its driving policy. The experiment provided by Sharif et al.
[10] shows that the MAD-ARL framework is beneficial for detecting driving errors
and improving against those errors in terms of collisions and offroad steering.

More recent works have further studied the behavior of pedestrians. Karunakaran
et al. [12] train pedestrians to cross roads through the crosswalk when the test
vehicle is approaching. However, the pedestrian trajectory is scripted, constraining
the proposed method from being generalized to other environments. Inspired by
existing various pedestrian models [71, 72, 73], Priisalu et al. [70] propose to train a
model to learn to place pedestrians such that they are prone to collide with a test
AV rather than to control their actions or trajectories. Their method consists of
three parts. The first two parts are the AV algorithm and the pedestrian behavior
model, which are both frozen and will not be updated. The last part is the learnable
adversarial test synthesizer that learns to initialize the pedestrian in a proper place
according to the selected pedestrian behavior model, occlusions, and scene semantics.
This is illustrated in Figure 15. Compared to other works [12, 71], this method
offers two main advantages. Firstly, the adversarial test synthesizer is independent of
the pedestrian behavior model, and therefore it is free to select different pedestrian
models according to the situation. Secondly, the generated traffic scenario is more
challenging and realistic since the pedestrian is initialized in occluded spaces, leading
the test vehicle difficult to perceive it in advance.

Figure 15: Overview of the safety-critical scenario generating model with pedestrians
[70]. The adversarial test synthesizer learns a distribution µ to select the initialization
position of a pedestrian with a given behavior model π.

24

3 Methods
This chapter describes the proposed method used in this thesis. First, the over-
all framework is introduced. Second, the methodology for designing the suicidal
pedestrian is described, including input and output representations, reward function
formulation, and policy search mechanism. Third, the evaluation metrics are defined
to verify the effectiveness of the designed pedestrian agent.

3.1 System description
This thesis addresses the problem of generating a pedestrian-related safety-critical
traffic scenario that can be used to test the capacity of AVs. Specifically, the proposed
traffic scene contains two agents: the pedestrian and the AV. The pedestrian observes
the location and motion of the AV and tries to hit the car from an unpredictable
direction, causing the AV failure. On the other hand, The AV is controlled by
some state-of-the-art driving algorithms, which take sensor observations as inputs
and produce low-level commands to drive the car without causing any collision.
Furthermore, no prior assumptions about the vehicle model have been made. Hence,
theoretically, any AD algorithm can be used to cooperate with the suicidal pedestrian.
This is illustrated in Figure 16.

Figure 16: Overview of the proposed suicidal pedestrian traffic scenario. The AV is
driven by some AD algorithms with fixed parameters, while the pedestrian performs
actions to hit the car with some learnable policies.

In this framework, the AV model and the suicidal pedestrian play an indirectly
constrained minimax game. This means the vehicle will try to avoid collisions,
while the pedestrian seeks the opposite situation. However, finding solutions to this
indirectly constrained minimax game could be either very trivial or totally impossible,
depending on the situation. For example, suppose the suicidal pedestrian is initialized
arbitrarily close to the front of the AV. In this case, it can easily lead to a collision
whether the car drives forward or stands. Otherwise, if the suicidal pedestrian is
initialized infinitely far from the AV, it is impossible to lead to crashes with finite
timesteps. Therefore, in order to avoid such unpleasant cases, some constraints about

25

the initial distance and direction between the pedestrian and the vehicle are needed,
and they will be discussed later in this section.

3.1.1 Walking as a Markov Decision Process

According to descriptions mentioned above, one of the core challenges is to model
the suicidal behavior, and it is natural to view this challenge as an RL task with two
agents, in which one agent is the AV under test, and the other agent is an adversarial
suicidal pedestrian agent whose goal is trying to exploit the weakness of the test AV.
However, since training the AV is out of the scope of this thesis work, this task can
be further simplified to a single-agent RL problem with an NPC vehicle.

Therefore, a one-player MDP framework is suitable to formally describe this RL
problem. Denote the corresponding MDP framework as Mα = (Sα, Pα, Rα, Aα, γ),
where Sα is the state set, Aα is the action set, Rα is the reward function, γ ∈ [0, 1] is
the discount factor, and Pα is the transition dynamics. At timestep t ∈ {0, T − 1},
the pedestrian walks by taking actions a(t)

α from its policy πα(·|s(t)
α), followed by

receiving a reward. Hence, the goal of the suicidal pedestrian is to learn a policy
that maximizes the sum of discounted rewards:

πα =
T∑︂

t=0
γtRα(s(t), a(t)

α , s(t+1)), (6)

where s(t+1) ∼ Pα(s(t), a(t)
α) is the next state given the transition probability. Notably,

the MDP dynamics model Pα is unknown because no assumption about the state
transition has been made.

However, even though the MDP framework is established, the problem is still
unsolvable since the reward function, the action set, and the state set are not yet
defined. Thus, in order to fix the remaining issue, some dictated design is needed,
which will be discussed in detail in Section 3.2.

3.1.2 Autonomous vehicle model

As illustrated in Figure 16, the AV model is the other important component of this
framework. However, unlike the pedestrian model that must be designed, the AV
model is only intentionally simple to demonstrate the structure empirically since this
thesis aims to prove that the suicidal pedestrian behavior model can be successfully
used to evaluate vehicle capacity in some pedestrian-related scenarios. Thus, existing
AD algorithms can be directly utilized in this framework, and no further assumptions
or constraints about the AV are required. Nevertheless, it is still beneficial to illustrate
how the AV works in this framework from a general perspective without knowing its
technical details.

Let xρ be the inner state vector of the AV, calculated based on data obtained
from sensors such as GNSS, IMU, and odometry. This state vector contains its
position, orientation, and velocity in a global reference coordinate. Let sρ be the
state vector of pedestrians, other vehicles, and static obstacles in this simulated traffic
scenario. Similar to the AV state vector, each element in sρ includes the position and

26

orientation of the corresponding object. Assume the policy generated by a particular
driving algorithm is πρ ∼ (·|oρ), which depends on the observation of the vehicle.
The actions of the vehicle aρ are determined by this policy. The observation model
of the AV is denoted as oρ ∼ h(o|xρ, sρ), which is a conditional distribution of the
traffic scenario scene viewed from the AV perspective. Since this thesis uses CARLA
[13] as the simulation platform, the observation can include camera images, LiDAR
point clouds, radar data, and other relevant sensor readings.

Therefore, the AV model can be modeled and integrated into the proposed
framework by using the following equations:

o(t)
ρ ∼ h(o|x(t)

ρ , s(t)
ρ)

a(t)
ρ ∼ πρ(aρ|o(t)

ρ)
x(t+1)

ρ ∼ p(xρ|x(t)
ρ , a(t)

ρ)
s(t+1)

ρ ∼ q(sρ|s(t)
ρ)

(7)

where p(xρ|x(t)
ρ , a(t)

ρ) is the transition probability of the AV state, which is fully
determined by the current AV state and the performed action. The q(sρ|s(t)

ρ) is the
transition probability of other objects in the scene, except the AV. This transition
probability is controlled by the simulation and is unknown.

3.1.3 Pedestrian initialization

As discussed at the beginning of this section, the initial location of the suicidal
pedestrian agent plays an important role in whether the pedestrian can successfully
hit the vehicle in finite timesteps. On the one hand, if the pedestrian and the vehicle
are too close to each other, the vehicle cannot detect the pedestrian in time and
perform actions to avoid collisions, resulting in crashes always happening. Oppositely,
if the pedestrian is far from the vehicle, it becomes highly possible that the pedestrian
cannot catch the car, and therefore no collision happens.

Regarding these problems, the initial location of the pedestrian is restricted to an
area close to the vehicle varying from 7 meters to 30 meters. The motivation behind
this distance variety is that within a distance increasing, the pedestrian can show
more complex behaviors when approaching the car, thus enhancing the diversity of
the simulated traffic scene.

Furthermore, to avoid the vehicle driving away from the pedestrian, this thesis
intentionally initializes the pedestrian in the front areas of the AV. Specifically, this
area covers a sector ranging from −60 degrees to 60 degrees based on the forward
direction of the vehicle.

Finally, small random offsets sampled from a Uniform distribution are added to
the initial location of the pedestrian to ensure that the pedestrian is initialized at
walkable areas rather than static obstacles such as flowerbeds or stone piers.

The detailed process of initializing the pedestrian is illustrated in Algorithm 1.

27

Algorithm 1 Suicidal Pedestrian Initialization
Input: Pose of the test vehicle (xvel, yvel, θvel)

1: Initialization: Flag ← False
2: while Flag = False do
3: Randomly select a spawn point p from the map
4: Calculate the distance d and relative direction α to the vehicle pose
5: if 7m ≤ d ≤ 30m and −60◦ ≤ α ≤ 60◦ then
6: for i = 1, .., 10 do
7: Generate an offset xoff from a Uniform distribution
8: Update p← p + xoff

9: Spawn the pedestrian at p. If succeed, set Flag ← True and end algorithm
10: end for
11: end if
12: end while
Output: Initialization localization p of the pedestrian

3.2 Suicidal pedestrian design
In this section, the detailed methods of designing the suicidal pedestrian agent will
be described. Since this design problem has been formulated as an MDP in Section
3.1, the focus of this section is narrowed to the definition of reward functions, agent
action space, agent state space, and policy search method.

3.2.1 Input and output representations

Input representations: the input state of the suicidal pedestrian agent represents
how this agent observes the environment. Typical inputs include RGB images
from different perspectives. However, such image input is highly dimensional and
contains much useless information, which requires significant effort, such as a series
of convolutions and Variational Autoencoders (VAEs) to extract critical components.
Moreover, except for the suicidal pedestrian, the proposed traffic scenario contains
only one dynamic vehicle and some other static environmental objects. This means
the pedestrian can finish the collision task without being affected by other dynamic
objects if the positions, orientations, and velocities of the target vehicle and the
pedestrian are known. Therefore, considering these factors, this thesis will define the
input state of the suicidal pedestrian with a finite-dimensional vector rather than
the RGB image.

Inspired by the work from Priisalu et al. [70] and the property of the simulation,
i.e., it is easy to access all information about each object in the scene, one simple but
effective way to define this state vector is to contain relative distance, direction, and
velocity information between the vehicle and the pedestrian and represent them in
the pedestrian coordinate. However, since all information is represented based on the
world coordinate, some transformation tricks are required to calculate these desired
elements. Take the relative distance and relative direction as an example. Given the
vehicle position vector W Pcar and the vehicle orientation vector W θcar in the world

28

coordinate W , as well as the pedestrian position and orientation vectors W Pwalker

and W θwalker, the transformation matrix W
P T and the rotation matrix W

P R of the
pedestrian coordinate P based on the world coordinate W can be firstly calculated.
Then, treat the pedestrian coordinate P as the base and both the position and
orientation of the vehicle can be represented in the pedestrian coordinate P using
the following transformation equations:⎧⎨⎩

P Pcar = (W
P T)−1 · W P car

P θcar = (W
P R)−1 · W θcar

(8)

where P Pcar and P θcar are the position and orientation of the target vehicle represented
in the pedestrian coordinate P . Furthermore, based on the transformed vehicle
position P Pcar and orientation P θcar, the required relative distance and relative
direction are obtained: ⎧⎨⎩α = arctan 2

(︂
P P (y)

car,
P P (x)

car

)︂
d = || P P car||2

(9)

where P P (x)
car is the element in x-axis, and P P (y)

car is the element in y-axis. A similar
operation can be applied to the velocity. Suppose the scalar velocities of the vehicle
and the pedestrian in the world coordinate is W Scar and W Swalker respectively. The
transformed velocity vectors represented in the pedestrian coordinate are calculated
by: ⎧⎪⎨⎪⎩

P Scar = W Scar ·
(︂
(W

P R)−1 · W θcar

)︂
P Swalker = W Swalker ·

(︂
(W

P R)−1 · W θwalker

)︂ (10)

Then the relative velocity and relative velocity direction can be obtained:⎧⎨⎩β = arctan 2
(︂

P S(y)
car − P S

(y)
walker,

P S(x)
car − P S

(x)
walker

)︂
v = || P Scar − P Swalker||2

(11)

Therefore, the final input state vector of the suicidal pedestrian agent can be
defined as:

s = [α, d, β, v], (12)

where α, d, β, v are calculated from Equations 9 and 11.
Output representations: the output of the pedestrian agent is actions to be

performed. Considering the allowed control commands for pedestrians provided by
CARLA, this thesis designs an output vector with two elements:

a = [θtarget, vtarget], (13)

where θtarget is the forward direction angle that specifies which direction the pedestrian
will walk forward to, and vtarget is the scalar velocity that defines the speed of the
pedestrian.

29

Notably, since the input state is represented in the pedestrian coordinate P , the
output action is also represented in this coordinate. However, the suicidal pedestrian
agent walks in the environment defined in the world coordinate W . Hence, the output
action must be transformed from the pedestrian coordinate to the world coordinate
to avoid potential errors. Similar to the input state operations, the transformed
direction vector represented in the world coordinate can be calculated by:

Wdirection = W θwalker · cos θtarget + W θwalker · sin θtarget. (14)

3.2.2 Reward functions

The reward function plays an essential role in training the pedestrian policy. In order
to illustrate that a pedestrian with a velocity-proportional and collision-part-different
reward function can lead to creating a more complex and unpredictable adversarial
behavior than the collision-focus pedestrian agent, this thesis defines two different
types of reward functions: the constant reward function and the combinational
reward function.

The constant reward function, denoted as Rconstant, is inspired by the fact that
the goal of the pedestrian agent is to create collision cases, rendering AV failures.
Therefore, one simple but effective way is to design a reward function that can
maximize the collision rate without considering anything else, i.e., the pedestrian is
rewarded only when it hits the vehicle. To this end, Rconstant can be formulated as:

Rconstant =
{︄

1, if the pedestrian hits the vehicle
0, otherwise

(15)

On the other hand, the combinational reward function Rcomb considers more
conditions when maximizing the collision rate. First, the pedestrian should behave
more positively to hitting the vehicle. This means the pedestrian needs to collide with
a vehicle driving at high speed as much as possible. Second, the pedestrian should
perform more complex and unpredictable behaviors to cheat the vehicle. Rather than
hitting the car from the rear, it is preferred to create collisions from some occluded
space, such as the intersection of the front and the side parts of the vehicle. Hence,
Rcomb is formulated as:

Rcomb =

⎧⎪⎪⎨⎪⎪⎩
max(3, 1.5 · v), if pedestrian hits the front part of vehicle
max(1, 0.5 · v), if pedestrian hits other parts of vehicle

0, otherwise
(16)

where v is the velocity of the vehicle when the collision happens.
As described in Equation 16, different rewards are designed for different collision

parts, and the vehicle velocity is considered in the reward function. For simplification,
this thesis only distinguishes the front collision part of the vehicle and the other
collision part. However, in order to ensure collision diversity and complexity, the
front collision part is intentionally designed to contain some areas from the sides,
which is illustrated in Figure 17.

30

Figure 17: Visualization of collision area of the vehicle. The front collision part
includes the central front and some side areas close to the front. Such design is based
on the fact that human drivers can see both the front and parts of their sides when
driving.

3.2.3 Policy optimization

This thesis uses the PPO [33] algorithm to learn a walking policy for the designed
suicidal pedestrian. As described by Schulman et al. [33], the PPO performs online
learning in each training episode and outputs a probability distribution function
to represent the strategy. Furthermore, the PPO is a policy-based RL algorithm.
It uses the policy gradient principle to update its current strategy and utilizes the
received reward to weaken or enhance the probability of chosen behaviors so that
behaviors that bring higher returns are more likely to be selected. Moreover, the
PPO loss consists of three parts: the clipped policy loss, the value loss, and the
regularization entropy loss.

The clipped policy loss is calculated based on the policy gradient principle and is
used to update the policy parameters. This loss is defined as:

L(θ) = −E
[︂

min(rt(θ)At
ˆ , clip(rt(θ), 1− ϵ, 1 + ϵ)At

ˆ
]︂

(17)

where At
ˆ is the estimated advantage function, ϵ is a clip factor, and rt(θ) = πθ(at|st)

πθold
(at|st)

is the probability ratio under the new and old policies.
The value loss is a squared error that is responsible for updating the value state

network parameterized by ω, which is defined as:

L(ω) = E
[︂
(rt + γV (st+1)− V (st))2

]︂
(18)

31

where rt is the received reward, γ is the discount factor, and V (s) is the state value
function.

Lastly, the entropy loss ENT (πθ) serves as a regularization term, ensuring that
the algorithm performs sufficient exploration. Therefore, the total loss function of
PPO can be written as:

LOSS = c1L(θ) + c1L(ω)− c3ENT (πθ) (19)

where c1, c2, c3 are loss coefficients.
However, since implementing the PPO algorithm is not in the scope of this thesis,

it is straightforward to use some open-source implementations to train the suicidal
pedestrian. Among those already-made versions, the PPO provided by the stable-
baselines3 [74] is selected due to its high-quality implementation, clean interface,
excellent performance, and reader-friendly documents.

Finally, the detailed hyperparameters used to train the suicidal pedestrian agent
are illustrated in Table 1.

Hyperparameter Value

Number of total training steps 70000

Number of epochs when optimizing the surrogate loss 10

Number of steps to run for each environment per update 150

Batch size 64

λ Learning rate for actor and critic networks 3 · 10−4

γ Discount factor for calculating the return 0.98

λgae Bias-variance trade-off factor for Generalized Advantage Estimator 0.95

λclip Objective clipping value 0.2

Value loss coefficient 0.5

Entropy regularization coefficient 0.01

Table 1: The PPO algorithm parameters used for training the suicidal pedestrian.

3.3 Evaluation metrics
Considering the goal of the pedestrian is to hit the AV to cause car decision failures,
it is natural to use the collision rate to evaluate the performance of the designed
suicidal pedestrian. However, since the behavior complexity of the pedestrian is
also of interest, other metrics focusing on different aspects are needed. Therefore,
this thesis designs the following metrics to evaluate the performance of the suicidal
pedestrian:

32

• CV : collision rate with the target vehicle

• CR: collision rate with the running target vehicle

• CF : front part collision rate with the target vehicle

• CS: side part collision rate with the target vehicle

Notably, different from CV and CR which are absolute collision rates calculated
based on all test episodes, CF and CS are relative collision rates calculated over
episodes that the collision happens. Furthermore, the front collision area covers some
side parts of the vehicle, which is shown in Figure 17.

33

4 Experiments
In this chapter, the experiments for simulation environment setup, suicidal pedestrian
training and testing, as well as state-of-the-art AD algorithm evaluation using the
trained pedestrian agent are described, followed by discussions about their results.
First, the environment simulation setup is discussed. Second, the procedure for
training the suicidal pedestrian agent is illustrated. Third, an effectiveness evaluation
for the pedestrian agent is performed, and the corresponding results are discussed.
Finally, two state-of-the-art AD algorithms are tested with the adversarial suicidal
pedestrian, exposing their weaknesses and pointing out possible improvements.

4.1 Simulation setup
As discussed in previous chapters, this thesis uses the CARLA [13] urban driving
simulation platform to train and validate the designed suicidal pedestrian, as well as
evaluate some state-of-the-art AD algorithms using the created traffic scenario with
the participation of the pedestrian agent. Furthermore, in order to utilize the PPO
[33] algorithm provided by the stable-baselines3 [74] toolkit, this thesis also uses the
OpenAI Gym [75] framework, a standard toolkit for developing and comparing RL
algorithms using a series of virtual environments, to wrap up the designed suicidal
pedestrian.

For building the RL simulation framework, many hyperparameters need to be
specified, including the episode length, simulation speed, and control command
frequency. In this thesis, the CARLA simulator is designed to run at a speed of 20
timesteps per second. Furthermore, each episode is set to terminate at most after
600 timesteps. This means each episode equals a 30-second simulation in the real
world if no other termination condition, i.e., the suicidal pedestrian collides with
the AV, is triggered earlier. Moreover, considering the pedestrian and vehicle speed
difference, this thesis utilizes different control frequencies to navigate them. For the
pedestrian, each control command is repeated for 20 timesteps, which is equal to a
1-second simulation in the real world. The motivation behind this action repeat is
that pedestrians occasionally change their directions and speed during walking, and
such repeat will not cause serious sequences. On the other hand, for the vehicle, the
control command is updated every timestep to avoid accidents caused by delayed
controls. The detailed hyperparameters are illustrated in Table 2.

Additionally, all experiments in this thesis are developed in Python and performed
with a computer with Intel i7-11800H central processing unit @ 2.3 Gz × 8, 16 GB
RAM, and NVIDIA GeForce RTX 3060 GPU.

4.2 Pedestrian agent training
This thesis uses Town 2 provided by CARLA to build up the traffic scenario and to
train the suicidal pedestrian agent. This town contains some T-intersections and
2-lane roads. The motivation behind this town choice comes from two aspects. The
first is that T-intersections can provide more complex traffic scenarios. The other

34

Hyperparameter Value

f Maximal simulation time per frame for Carla 0.05 s

L Maximal episode length 600

dmin Minimal initial distance between the vehicle and the pedestrian 7 m

dmax Maximal initial distance between the vehicle and the pedestrian 30 m

αmin Clockwise minimal initial relative direction from the vehicle to the pedestrian -60◦

αmax Clockwise maximal initial relative direction from the vehicle to the pedestrian 60◦

rwalker Action repeat for the pedestrian 20

rcar Action repeat for the vehicle 1

Table 2: Parameters used for building the suicidal pedestrian RL environment.

motivation is that 2-lane roads are the main road structure in residential areas where
pedestrians are more likely to appear.

As for the AV agent, this thesis uses a rule-based expert during the training
procedure. The reasons for this choice are the following. Firstly, this expert, called
the CARLA behavior agent, is fast in action inferring and contains the sufficient
capacity to deal with scenarios in the training process. Secondly, this expert agent
can access privileged information in the CARLA simulator, thus simplifying and
accelerating the training task. Thirdly, two state-of-the-art AD algorithms to be
tested with the trained pedestrian in later sections strongly connect with the CARLA
behavior agent. Due to these connections, it is enough to use a pedestrian trained
with the CARLA expert to test their capacities and find failures. However, to force
the vehicle agent to behave more aggressively, i.e., the vehicle is more prone to
collide with the pedestrian at high speed, its maximal driving speed is set faster, and
the minimal hard brake distance is decreased. Moreover, other parameters are also
modified, which are shown in Table 3.

Hyperparameter Value

vmax Maximal velocity of the vehicle 30 km/h

ddecrease Velocity decrease for vehicle following 8 km/h

dlimit Minimal velocity decrease under safety time distance 2 km/h

tsafe Safety time for vehicle following 3 s

dbrake Minimal distance to perform hard brakes 4 m

dthreshold Minimal distance to be alerted of possible collisions 8 m

Table 3: The parameters used for CARLA behavior agent.

Finally, instead of randomly initializing the vehicle over the whole town, this

35

thesis selects four positions and orientations to spawn the vehicle for the purpose of
reproducing the training procedure. These starting locations and orientations are:

• location 1: [104.3, 241.3, 0.5], orientation 1: [0, 0, 0]

• location 2: [88.8, 302.6, 0.5], orientation 2: [0, −π, 0]

• location 3: [190.0, 293.5, 0.5], orientation 3: [0, π
2 , 0]

• location 4: [193.8, 218.8, 0.5], orientation 4: [0,−π
2 0]

where components of the location are [x, y, z], and components of the orientation are
[pitch, yaw, roll]. All of these locations and orientations are represented in the world
coordinate. On the contrary, the pedestrian agent is initialized nearby the vehicle,
which is described in detail in Algorithm 1.

Figure 18: Training performance of the suicidal pedestrian against the CARLA
behavior agent using two different reward functions. Each policy is trained three
times with the same conditions. The solid line represents the mean average over three
trains, and the light-colored area represents the standard deviation. Furthermore, all
plots are smoothed by the moving average over 9 data points.

Following the settings mentioned above, the pedestrian is trained separately
with two different reward functions defined in Equations 15 and 16. In addition,
each reward function is trained three times to avoid occasional cases. The training
performance of the suicidal pedestrian using two designed reward functions are

36

illustrated in Figure 18. Overall, by training the pedestrian policies for 70000 steps
(each episode equals 30 steps at most due to the pedestrian action repeat), both the
policy πconstant incented by the constant reward and the policy πcomb incented by the
combinational reward converge to some specific behaviors. Moreover, some general
conclusions can be drawn from this figure.

Considering the convergence rate, the policy πconstant converges faster than the
policy πcomb. Policy πconstant gets to a stable episodic mean reward state after 50000
steps of training. In contrast, policy πcomb only converges almost at the end of the
training phase. This is unsurprising since the combinational reward function is much
more complex than the constant reward.

Considering the resulting behavior, policy πcomb performs better than policy
πconstant in terms of average steps needed to hit the vehicle. This indicates that
behaviors from policy πcomb are more aggressive in searching for and hitting the
vehicle, while behaviors from policy πconstant are not. Furthermore, surprisingly, the
standard deviation and entropy loss from Figure 18 suggest that the policy πcomb is
more stable than the policy πconstant. This is probably because the policy πconstant

only provides simple behaviors such that it cannot handle some complex traffic
scenarios.

4.3 Effectiveness evaluation of the suicidal pedestrian
In order to analyze the effectiveness of the suicidal pedestrian in detail such that the
pedestrian is ensured to have the ability to find failures for different state-of-the-art
AD algorithms, this thesis conducts additional evaluation experiments in two towns:
Town 1 and Town 2. Notably, the start positions and orientations of the vehicle in
Town 2 for evaluation are different from those used during the training phase: the
vehicle is randomly initialized over the whole town during evaluation, while during
training, it is spawned at four selected locations. In addition, the CARLA behavior
agent is still the target AV.

For each evaluation experiment, testing is carried out over 100 episodes. Each
episode follows the settings described in Table 2 and is considered successful only
if the pedestrian hits the target AV. Moreover, each experiment is repeated three
times in the corresponding town.

The effectiveness of the suicidal pedestrian is measured by metrics defined in
Section 3.3: collision rate CV , collision running rate CR, front collision rate CF , and
side collision rate CS. For the first metric CV , having values closer to 1 indicates that
the pedestrian is performing adversarial suicidal behaviors that can cause the vehicle
decision error, whereas closer to 0 means a failed suicidal policy. For the second
metric CR, a higher value indicates a more complex and unpredictable pedestrian
behavior in terms of the fact that the vehicle does not perform hard brakes in time
before the collision happens. Finally, the last two metrics CF and CS are a detailed
analysis of the collision rate CV to illustrate the exact collision areas.

37

4.3.1 Result analysis

The evaluation results are shown in Table 4 and Table 5. Based on these two
tables, several significant findings can be concluded. First, both two reward functions
can render excellent policies that have enough capacity to hit the vehicle. Second,
generalizing the pedestrian agent to a new town only leads to a slight performance
decline. Third, the combinational reward function outperforms the constant reward
function on almost all metrics. The following will discuss these key conclusions in
detail.

Reward type Collision rate Front collision Side collision Collision running

% ↑ % ↑ % ↓ % ↑

constant reward 0.84± 0.05 0.77± 0.04 0.16± 0.04 0.42± 0.09

combinational reward 0.90± 0.03 0.82± 0.05 0.15± 0.03 0.55± 0.01

Table 4: Performance evaluation of the pedestrian in the same town (Town 2) in terms
of metrics CV , CR, CF , and CS, averaged across 3 runs, with each run containing 100
episodes. Values shown in the table are the mean and the corresponding standard
deviation. ↑ and ↓ denote that a higher/lower value represents better performance.
The results suggest that the pedestrian trained using both reward functions can
successfully collide with the target vehicle.

Reward type Collision rate Front collision Side collision Collision running

% ↑ % ↑ % ↓ % ↑

constant reward 0.79± 0.00 0.73± 0.05 0.22± 0.05 0.43± 0.04

combinational reward 0.86± 0.02 0.80± 0.04 0.17± 0.01 0.54± 0.05

Table 5: Performance evaluation of the pedestrian in a new town (Town 1). The
results illustrate that the pedestrian trained with both reward functions can generalize
to new environments.

Performance. Both two reward functions perform well in guiding the pedestrian
to hit the target AV. Regarding the collision rate, it fluctuates between 75% and
90% in the two towns with small deviations. Furthermore, more than half of all
collisions happen when the AV does not stop in time, meaning that the pedestrian
has successfully cheated the vehicle. As for the collision areas, the front part of the
vehicle receives almost 80% of collisions.

However, none of the methods can perfectly hit the vehicle. Most possible
reasons for this situation come from two aspects. On the one hand, the pedestrian
directly observes the relative location and velocity of the target AV while ignoring
all environmental obstacles, such as dustbins, billboards, and traffic lattices. Due
to this limitation, the pedestrian may be blocked by these barriers when it tries

38

to walk close to the vehicle. Another important reason is that the pedestrian and
the vehicle are independent non-communicating players, rendering a very limited
ability for the pedestrian to predict the future trajectory of the AV. Therefore, the
suicidal pedestrian may sometimes fail to hit the car because of insufficient or wrong
predictions.

Generalization. The generalization experiment focuses on deploying the suicidal
pedestrian agent to a previously unknown environment. Surprisingly, the performance
of both reward functions declines slightly, where the collision rate of the constant
reward decreases from 84% to 79%, and the collision rate of the combinational reward
decreases from 90% to 86%. Similarly, other metric values also reduce with small
amounts.

Obviously, the suicidal pedestrian shows an excellent generalization capacity,
which indicates a potential that the pedestrian can be further extended to various traf-
fic scenarios. One explanation for this phenomenon is the environment-independent
property of the pedestrian input and output representations. For the pedestrian agent
generalized to a new environment, the most challenging thing is how to represent
the necessary information as it does in familiar environments. Luckily, the designed
input state vector represents valuable information in the pedestrian coordinate, thus
eliminating related problems caused by environmental changes.

Policy comparison. Interestingly, the performance of the two reward functions
is similar under two testing towns in terms of collision rate, front collision rate, and
side collision rate. These metric values of the two methods differ by less than 10%.
However, the collision running rate is an exception. In Town 2, the collision running
rate of the constant reward function is 13% less than that of the combinational
reward function. In Town 1, this value differs by 11%. This difference in collision
running rate implies that behaviors produced by the combinational reward function
are more complex and unpredictable such that they can cause the AV decision error
more easily. In this sense, the combinational reward function is preferred.

On the other hand, although the performance of both reward functions does
not dramatically differ, policies produced by the combinational reward function
always perform better regarding all four evaluation metrics. This is because the
combinational reward function is more instructive in the training phase due to its
reward ranking and increment mechanism.

4.3.2 Behavior visualization

In order to intuitively understand the typical behaviors of the suicidal pedestrian,
a visualization of some successful episodes gathered from two towns is provided in
Figure 19. This figure shows the process of the pedestrian approaching the target AV
from a bird-eye view. Based on the visualization, behaviors of the suicidal pedestrian
are categorized into three modes: simple mode, cheating mode, and chasing mode.
The simple mode means that the pedestrian directly hits the AV from the central
front without any other cheating actions. This mode is straightforward, and therefore
it is easy for the AV to avoid decision errors. The cheating mode refers to the
pedestrian hitting the vehicle with cheating or unpredictable actions, such as walking

39

close to the vehicle from occluded areas or pretending to walk away. Compared to
the simple mode, this cheating mode can result in more AV decision failures. Lastly,
the chasing mode indicates that the pedestrian fails to collide with the target AV.
The reason for this manner is that the pedestrian has wrongly predicted the future
trajectories of the target AV.

Figure 19: Typical behaviors of the trained pedestrian agent using the combinational
reward function. The top row illustrates that the pedestrian directly hits the vehicle
from the central front. The middle row demonstrates that the pedestrian crashes
the car from the side. Finally, the bottom row illustrates that the pedestrian first
misses the vehicle due to a wrong prediction and then chases the missed car. Both
behaviors displayed in the top and middle rows are desired because these behaviors
would challenge the ability of AVs facing such sudden emergence. In contrast, the
behavior illustrated in the bottom row is ineffective since the vehicle does not need
to avoid collisions with pedestrians behind it while driving forward.

4.4 Finding failures in autonomous driving algorithms
Considering that one important goal of this thesis is to test various AD algorithms
using the designed suicidal pedestrian and find their potential improvements, this
section selects some state-of-the-art end-to-end AD models to illustrate how this goal
can be done. Because it is easier to integrate CARLA-implementation-based AD
algorithms into the designed testing environment, all AD algorithms are selected from
the CARLA leaderboard [76], an open platform for the AD community to evaluate
and compare various autonomous agents. Besides, two additional criteria are applied
during the selection: the method rank and the source code availability. The method

40

rank, illustrated in Appendix A, is an intuitive indicator of the performance of each
AD algorithm. Usually, a method with a higher rank can have better performance,
whereas methods with lower ranks perform worse. Therefore, it is more valuable
to test some higher-ranked AD algorithms. On the other hand, the decision of
source code availability criteria is from practical considerations rather than technical
concerns: since developing AD algorithms is not in the scope of this thesis, using
available driving algorithms is sufficient for performance testing purposes.

Based on these selection criteria, two algorithms are chosen. The first selected
driving algorithm is LAV [64], an imitation learning-based method in which the
AV agent is trained to imitate the CARLA behavior agent with a dataset collected
from all vehicles it observes. The second algorithm is InterFuser [65], which aims to
develop a comprehensive scene understanding ability with the help of sensor-fusion
to interpret the decision process of the AV and ensure driving safety. Furthermore,
both methods use their pre-trained models and parameters submitted in the CARLA
leaderboard, which can be seen in Appendix B. Lastly, the CARLA behavior agent
is used as a baseline to verify whether these two algorithms can better tackle the
designed suicidal pedestrian-related traffic scenarios.

In this section, three metrics are used to evaluate the performance of the AV
agent: the pedestrian average episodic reward, the collision rate CV , and the collision
running rate CR. Notably, since the evaluation entity is now the AV agent, both
collision rate and collision running rate are explained from the perspective of the
vehicle. For the collision rate, a value closer to 0 means the vehicle has enough
capacity to avoid collisions with the suicidal pedestrian, whereas a value closer to
1 means the opposite. For the running collision rate, lower values suggest that the
vehicle tries to reduce collision hazards by stopping early, thus proving the capacity
of the AV to deal with the sudden emergence of pedestrians by performing hard
brakes. Furthermore, the pedestrian average episodic reward is a general metric to
describe the collision, with lower values implying that it is more difficult to result in
crashes or cause severe consequences. This metric is affected by both the collision
rate and the collision running rate.

Finally, as has been done in Section 4.3, all AD algorithms are tested three times
in each town, with each test containing 100 episodes. The results and corresponding
analysis are described in the following.

4.4.1 Performance verification

Table 6 illustrates the performance of LAV and InterFuser against the suicidal
pedestrian. Notably, these quantitative results of the three driving models shown in
this table are not comparable, i.e., it cannot be concluded that LAV and InterFuser
perform better than CARLA behavior agent even though they achieve the lowest
pedestrian reward and collision running rate. This is because the suicidal pedestrian
is trained with the CARLA behavior agent, rendering that the pedestrian has learned
to exploit the CARLA agent specifically. Once the pedestrian is trained with LAV
or InterFuser, its behavior may change significantly.

However, some helpful information can still be obtained. Overall, the trained

41

pedestrian can generate collisions with LAV and InterFuser, showing potential
weaknesses of these two driving algorithms. For LAV, the collision rate reaches 93%
in Town 2 and 90% in Town 1, with 47% and 61% collision running rates, respectively.
For InterFuser, the collision rates in the two towns are a bit higher, but the collision
running rates are much lower. This suggests that most crashes of InterFuser are not
severe, while LAV is more likely to cause hazardous consequences when a collision
happens.

Same town (Town 2) New town (Town 1)

Method Pedestrian reward Collision rate Collision running Pedestrian reward Collision rate Collision running

% ↓ % ↓ % ↓ % ↓ % ↓ % ↓

Baseline 4.57± 0.15 0.90± 0.03 0.55± 0.02 4.29± 0.29 0.86± 0.02 0.54± 0.05

LAV [64] 3.56± 0.26 0.93± 0.02 0.47± 0.04 3.94± 0.26 0.90± 0.03 0.61± 0.01

InterFuser [65] 3.77± 0.38 0.94± 0.02 0.32± 0.06 3.82± 0.16 0.92± 0.02 0.37± 0.02

Table 6: Evaluation results of two state-of-the-art AD algorithms using the trained
suicidal pedestrian in terms of metrics pedestrian average episodic reward, collision
rate, and collision running rate.

4.4.2 Failure case visualization

In order to better understand the decision failures of LAV and InterFuser such that
advice can be given to improve them, it is necessary and instructive to visualize their
working process.

(a) (b)

Figure 20: Visualization of two detection errors of LAV with three concatenated
RGB images, detection and motion predictions, and predicted road geometries. (a)
Visualization of incorrect detection error that predicts the pedestrian as a vehicle.
(b) Visualization of unsuccessful detection error that fails to find the pedestrian due
to insufficient fusion of images.

42

Figure 21: Visualization of one failure episode of LAV in which the vehicle agent does
not perform hard brakes in time to avoid the pedestrian when it is turning. The left
column shows the pedestrian is incorrectly detected as a vehicle. The middle column
illustrates the vehicle fails to detect the pedestrian. Lastly, the right column shows
that LAV successfully finds the pedestrian but is already late to avoid a hazardous
collision.

In Figure 20, two typical errors of LAV are illustrated: incorrect detection and
unsuccessful detection. The incorrect detection error shown in Figure 20(a) means
that LAV detects the pedestrian as a vehicle, thus applying unreasonable dynamic
models to the pedestrian to predict the corresponding trajectories. In contrast, the
unsuccessful detection error refers to a case where LAV fails to detect the pedestrian
due to technical flaws, which is shown in Figure 20(b). Interestingly, both errors can
happen at different stages of one episode. For example, Figure 21 provides a failure
case of LAV to deal with the designed suicidal pedestrian. In this case, the AV agent
first incorrectly detects the pedestrian as a vehicle and predicts inappropriate future
trajectories of the pedestrian. Then, the unsuccessful detection error occurs after
some timesteps, resulting in the tracking failure of that pedestrian. Finally, LAV
recovers its accurate predictions and decides on proper control commands, though
severe collision is already unavoidable.

Figure 22 and Figure 23 illustrate two failure episodes of InterFuser, where the
former one shows that the vehicle agent does not perform any actions to avoid collisions
with the suicidal pedestrian even if the pedestrian is always detected, whereas the
latter one shows a late and unsuccessful survival action when the pedestrian is too
close to the vehicle. In addition, these two failures expose a common property:
both of them successfully and accurately detect the pedestrian but perform the
corresponding prediction extremely poorly. For example, according to RGB images
shown in Figure 22, the pedestrian is walking close to the vehicle; however, InterFuser
predicts the opposite, i.e., the pedestrian will walk away from the car. Therefore,
this property suggests that the flaws of InterFuser lie in its prediction and subsequent

43

decision-making modules rather than the detection part, and potential improvements
should focus on its prediction process.

Figure 22: Visualization of one failure episode of InterFuser in which the AV agent
does not perform any actions to avoid collisions. Each row visualizes three RGB
images, detected traffic scenes at the current timestep, and predicted traffic scenes
at the next two timesteps. The yellow rectangle in the last two rows represents the
ego vehicle, while white rectangles represent other detected objects. Green dots are
the future trajectory of the ego vehicle.

4.4.3 Discussion

As discussed in previous sections, AD algorithm evaluation aims to find weaknesses
and propose potential improvements such that the developed algorithms can achieve
better performance. According to Figure 20 and Figure 21, most failures of LAV to
deal with the designed suicidal pedestrian-related traffic scenarios are caused by its
detection errors. By analyzing the structure of the detection module in detail, it is
found that the information loss during multi-view image fusion is the main reason
for these errors. In LAV, three RGB images without perspective overlapping are
directly concatenated along the channel dimension, which loses critical information
at the edges of each concatenating image. Therefore, one possible improvement is
to enhance the multi-view sensor fusion ability by either overlapping parts of the
camera perspective or adding a more powerful information-grasping mechanism to
this module.

As for InterFuser, its main weakness is that it needs more sufficient predic-
tions about the future trajectories of detected vehicles and pedestrians. Currently,
InterFuser assumes constant and deterministic models for observed vehicles and
pedestrians, predicting their future motion purely based on their moving average

44

Figure 23: One failure episode of InterFuser in which the ego vehicle has continuously
detected the suicidal pedestrian but performed wrong predictions, rendering a late
brake that causes the hazardous collision. Red dots represent that the future trajectory
is currently not reachable.

states over several historical timesteps. Therefore, in order to improve the perfor-
mance of InterFuser, more advanced trajectory prediction methods can be considered.
One easiest way is to follow the technique used in LAV that takes trajectories of
other detected vehicles into the training process and produces a model to predict
their future movements.

45

5 Conclusion and discussion

5.1 Conclusion
Autonomous driving is an important area of research. Developing capable autonomous
driving methods can bring extensive and profound practical significance. Regarding
the safety concerns of autonomous vehicles, this thesis has developed a suicidal
pedestrian model to automatically generate some simulated safety-critical traffic
scenarios to perform extensive adversarial testing of various AD algorithms. The
main work is concluded in the following.

First, this thesis builds an urban traffic environment with the participation of
one vehicle and one pedestrian based on the CARLA simulator [13], where the
vehicle could be controlled by any AD algorithms, while the pedestrian is designed
to hit this vehicle spontaneously. In this environment, the pedestrian is limited to
being initialized in the front of the vehicle with a finite distance such that both the
pedestrian and the vehicle can observe each other. Moreover, the OpenAI Gym
toolkit [75] is used to standardize the constructed environment as a general RL
framework.

Second, this thesis models the suicidal pedestrian as an RL problem and trains it
with a standard RL algorithm, as well as analyzes the performance of this trained
pedestrian using proposed evaluation metrics. By properly defining the input state,
output action, and reward functions of the pedestrian, the PPO [33] algorithm is
successfully utilized to help the pedestrian find some suicidal behaviors that can cause
the autonomous car to perform failure decisions. Besides, evaluation experiments for
two proposed reward functions suggest that a function giving rewards proportional to
the collision speed and the collision area can help the pedestrian find more complex
and unpredicted behaviors.

Finally, this thesis also evaluates LAV [64] and InterFuser [65], two state-of-the-
art AD algorithms from the CARLA leaderboard [76], using the designed suicidal
pedestrian. Experimental results of these two driving algorithms demonstrate that
the suicidal pedestrian can be effective in finding decision errors in different driving
algorithms.

5.2 Discussion
Although the suicidal pedestrian is effective for AV testing, some limitations exist.
Firstly, the input state of the suicidal pedestrian only contains information about the
target vehicle while ignoring the environmental obstacles. Due to this simplification,
the pedestrian may be blocked by those obstacles when it tries to walk close to the
vehicle, resulting in the pedestrian failing to hit the car. One future extension is to
utilize raw image inputs for replacing the hand-crafted state vector, thus allowing the
pedestrian to plan movements according to the surroundings. However, since images
are highly dimensional and contain much useless information, dimension-reduction
and feature-extraction techniques, such as variational autoencoders or generative
adversarial networks, should be considered in the future.

46

Furthermore, the simulated traffic scenarios are simplified to contain one pedes-
trian and one vehicle, which significantly constrains the application scope of these
scenarios. Therefore, future work can focus on extending the simulated scenarios
having more pedestrians and cars. In such complex scenarios, the suicidal pedes-
trian should distinguish between the target vehicle and other vehicles, as well as
pedestrians.

47

References
[1] B. Helou, A. Dusi, A. Collin, N. Mehdipour, Z. Chen, C. Lizarazo, C. Belta,

T. Wongpiromsarn, R. D. Tebbens, and O. Beijbom, “The reasonable crowd:
Towards evidence-based and interpretable models of driving behavior,” in Pro-
ceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2021, pp. 6708–6715.

[2] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer et al., “Autonomous driving
in urban environments: Boss and the urban challenge,” Journal of
Field Robotics, vol. 25, no. 8, pp. 425–466, 2008. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20255

[3] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search techniques
in path planning for autonomous driving,” Ann Arbor, vol. 1001, no. 48105, pp.
18–80, 2008.

[4] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy, “End-to-end
driving via conditional imitation learning,” in Proceedings of the 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2018,
pp. 4693–4700.

[5] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affor-
dance for direct perception in autonomous driving,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2015, pp. 2722–2730.

[6] D. Chen, V. Koltun, and P. Krähenbühl, “Learning to drive from a world on
rails,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2021, pp. 15 590–15 599.

[7] R. Chekroun, M. Toromanoff, S. Hornauer, and F. Moutarde, “Gri: General
reinforced imitation and its application to vision-based autonomous driving,”
arXiv, 2021. [Online]. Available: https://arxiv.org/abs/2111.08575

[8] Z. Peng, Q. Li, K. M. Hui, C. Liu, and B. Zhou, “Learning to simulate self-driven
particles system with coordinated policy optimization,” Advances in Neural
Information Processing Systems, vol. 34, pp. 10 784–10 797, 2021.

[9] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner, “Microscopic
traffic simulation using sumo,” in Proceedings of the 2018 IEEE 21st International
Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018, pp.
2575–2582.

[10] A. Sharif and D. Marijan, “Adversarial deep reinforcement learning for improving
the robustness of multi-agent autonomous driving policies,” in Proceedings of
the 2022 29th Asia-Pacific Software Engineering Conference (APSEC). IEEE,
2022, pp. 61–70.

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20255
https://arxiv.org/abs/2111.08575

48

[11] Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek, “Generating adversarial
driving scenarios in high-fidelity simulators,” in Proceedings of the 2019 Inter-
national Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
8271–8277.

[12] D. Karunakaran, S. Worrall, and E. Nebot, “Efficient statistical validation
with edge cases to evaluate highly automated vehicles,” in Proceedings of the
2020 IEEE 23rd International Conference on Intelligent Transportation Systems
(ITSC), 2020, pp. 1–8.

[13] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An
open urban driving simulator,” in Proceedings of the 1st Annual Conference on
Robot Learning (CoRL). PMLR, 2017, pp. 1–16.

[14] B. Hurl, K. Czarnecki, and S. Waslander, “Precise synthetic image and lidar
(presil) dataset for autonomous vehicle perception,” in Proceedings of the 2019
IEEE Intelligent Vehicles Symposium (IV), 2019, pp. 2522–2529.

[15] M. Martinez, C. Sitawarin, K. Finch, L. Meincke, A. Yablonski, and
A. Kornhauser, “Beyond grand theft auto v for training, testing and
enhancing deep learning in self driving cars,” arXiv, 2017. [Online]. Available:
https://arxiv.org/abs/1712.01397

[16] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data: Ground
truth from computer games,” in Proceedings of the 2016 European Conference
on Computer Vision (ECCV). Springer, 2016, pp. 102–118.

[17] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and A. Sum-
ner, “Torcs, the open racing car simulator,” Citeseer, 2015.

[18] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo–simulation
of urban mobility: an overview,” in Proceedings of SIMUL 2011, The Third
International Conference on Advances in System Simulation. ThinkMind, 2011.

[19] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent development
and applications of sumo-simulation of urban mobility,” International Journal
on Advances in Systems and Measurements, vol. 5, no. 3&4, 2012.

[20] A. Best, S. Narang, L. Pasqualin, D. Barber, and D. Manocha, “Autonovi-
sim: Autonomous vehicle simulation platform with weather, sensing, and traffic
control,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 2018, pp. 1048–1056.

[21] E. Games. Unreal engine 4. [Online]. Available: https://www.unrealengine.com

[22] A. Best, S. Narang, D. Barber, and D. Manocha, “Autonovi: Autonomous vehicle
planning with dynamic maneuvers and traffic constraints,” in Proceedings of the
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017, pp. 2629–2636.

https://arxiv.org/abs/1712.01397
https://www.unrealengine.com

49

[23] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[24] M. Toromanoff, E. Wirbel, and F. Moutarde, “End-to-end model-free reinforce-
ment learning for urban driving using implicit affordances,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

[25] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in
Proceedings of The 33rd International Conference on Machine Learning (ICML).
PMLR, 2016, pp. 1928–1937.

[26] R. Bellman, “On the theory of dynamic programming,” Proceedings of the
National Academy of Sciences, vol. 38, no. 8, pp. 716–719, 1952.

[27] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“A brief survey of deep reinforcement learning,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017. [Online]. Available:
https://doi.org/10.1109/MSP.2017.2743240

[28] T. L. Lai, H. Robbins et al., “Asymptotically efficient adaptive allocation rules,”
Advances in Applied Mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[29] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv,
2015. [Online]. Available: https://arxiv.org/abs/1509.02971

[30] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration
by random network distillation,” arXiv, 2018. [Online]. Available:
https://arxiv.org/abs/1810.12894

[31] R. Raileanu and T. Rocktäschel, “Ride: Rewarding impact-driven exploration
for procedurally-generated environments,” arXiv, 2020. [Online]. Available:
https://arxiv.org/abs/2002.12292

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv,
2013. [Online]. Available: https://arxiv.org/abs/1312.5602

[33] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv, 2017. [Online]. Available:
https://arxiv.org/abs/1707.06347

[34] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,” in
Proceedings of the 35th International Conference on Machine Learning (ICML).
PMLR, 2018, pp. 1861–1870.

https://doi.org/10.1109/MSP.2017.2743240
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1810.12894
https://arxiv.org/abs/2002.12292
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1707.06347

50

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level
control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp.
529–533, 2015.

[36] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region
policy optimization,” in Proceedings of the 32nd International Conference on
Machine Learning (ICML). PMLR, 2015, pp. 1889–1897.

[37] S. Racanière, T. Weber, D. Reichert, L. Buesing, A. Guez, D. Jimenez Rezende,
A. Puigdomènech Badia, O. Vinyals, N. Heess, Y. Li et al., “Imagination-
augmented agents for deep reinforcement learning,” Advances in Neural Infor-
mation Processing Systems, vol. 30, 2017.

[38] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel, “Model-ensemble
trust-region policy optimization,” in Proceedings of the 6th International
Conference on Learning Representations (ICLR), 2018. [Online]. Available:
https://openreview.net/forum?id=SJJinbWRZ

[39] I. Clavera, J. Rothfuss, J. Schulman, Y. Fujita, T. Asfour, and P. Abbeel, “Model-
based reinforcement learning via meta-policy optimization,” in Proceedings of
the 2nd Conference on Robot Learning (CoRL). PMLR, 2018, pp. 617–629.

[40] J. Buckman, D. Hafner, G. Tucker, E. Brevdo, and H. Lee, “Sample-efficient
reinforcement learning with stochastic ensemble value expansion,” Advances in
Neural Information Processing Systems, vol. 31, 2018.

[41] J. Kim and M. Lee, “Robust lane detection based on convolutional neural
network and random sample consensus,” in Proceedings of the 21st International
Conference on Neural Information Processing (ICONIP). Springer, 2014, pp.
454–461.

[42] A. Gurghian, T. Koduri, S. V. Bailur, K. J. Carey, and V. N. Murali, “Deeplanes:
End-to-end lane position estimation using deep neural networksa,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, 2016, pp. 38–45.

[43] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil,
M. Andriluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue, F. Mujica,
A. Coates, and A. Y. Ng, “An empirical evaluation of deep learning on highway
driving,” arXiv, 2015. [Online]. Available: https://arxiv.org/abs/1504.01716

[44] P.-R. Chen, S.-Y. Lo, H.-M. Hang, S.-W. Chan, and J.-J. Lin, “Efficient road
lane marking detection with deep learning,” in Proceedings of the 2018 IEEE
23rd International Conference on Digital Signal Processing (DSP), 2018, pp.
1–5.

https://openreview.net/forum?id=SJJinbWRZ
https://arxiv.org/abs/1504.01716

51

[45] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv, 2014. [Online]. Available:
https://arxiv.org/abs/1409.1556

[46] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Pointpillars:
Fast encoders for object detection from point clouds,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 12 697–12 705.

[47] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.

[48] S. Vora, A. H. Lang, B. Helou, and O. Beijbom, “Pointpainting: Sequential
fusion for 3d object detection,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020, pp. 4604–4612.

[49] M. Liang, B. Yang, S. Wang, and R. Urtasun, “Deep continuous fusion for
multi-sensor 3d object detection,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 641–656.

[50] F. Bastani, S. He, S. Abbar, M. Alizadeh, H. Balakrishnan, S. Chawla, S. Madden,
and D. DeWitt, “Roadtracer: Automatic extraction of road networks from aerial
images,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 4720–4728.

[51] G. Mattyus, W. Luo, and R. Urtasun, “Deeproadmapper: Extracting road topol-
ogy from aerial images,” in Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2017, pp. 3438–3446.

[52] S. Casas, A. Sadat, and R. Urtasun, “Mp3: A unified model to map, perceive,
predict and plan,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2021, pp. 14 403–14 412.

[53] N. Homayounfar, W.-C. Ma, S. K. Lakshmikanth, and R. Urtasun, “Hierarchical
recurrent attention networks for structured online maps,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018,
pp. 3417–3426.

[54] M. Lin, J. Yoon, and B. Kim, “Self-driving car location estimation based on a
particle-aided unscented kalman filter,” Sensors, vol. 20, no. 9, p. 2544, 2020.

[55] F. Ma, J. Shi, Y. Yang, J. Li, and K. Dai, “Ack-msckf: Tightly-coupled acker-
mann multi-state constraint kalman filter for autonomous vehicle localization,”
Sensors, vol. 19, no. 21, p. 4816, 2019.

[56] G. Bresson, M.-C. Rahal, D. Gruyer, M. Revilloud, and Z. Alsayed, “A coop-
erative fusion architecture for robust localization: Application to autonomous

https://arxiv.org/abs/1409.1556

52

driving,” in Proceedings of the 2016 IEEE 19th International Conference on
Intelligent Transportation systems (ITSC). IEEE, 2016, pp. 859–866.

[57] L. Li, M. Yang, C. Wang, and B. Wang, “Road dna based localization for
autonomous vehicles,” in Proceedings of the 2016 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2016, pp. 883–888.

[58] B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,” arXiv,
2016. [Online]. Available: https://arxiv.org/abs/1604.07446

[59] T. Fraichard, “Trajectory planning in a dynamic workspace: a’state-time
space’approach,” Advanced Robotics, vol. 13, no. 1, pp. 75–94, 1998.

[60] J. Jaafar, E. McKenzie, and A. Smaill, “A fuzzy action selection method for
virtual agent navigation in unknown virtual environments,” in Proceedings of
the 2007 IEEE International Fuzzy Systems Conference, 2007, pp. 1–6.

[61] S. Dixit, S. Fallah, U. Montanaro, M. Dianati, A. Stevens, F. Mccullough, and
A. Mouzakitis, “Trajectory planning and tracking for autonomous overtaking:
State-of-the-art and future prospects,” Annual Reviews in Control, vol. 45, pp.
76–86, 2018.

[62] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,”
Advances in Neural Information Processing Systems, vol. 1, 1988.

[63] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl, “Learning by cheating,” in
Proceedings of the Conference on Robot Learning (CoRL). PMLR, 2020, pp.
66–75.

[64] D. Chen and P. Krähenbühl, “Learning from all vehicles,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2022, pp. 17 222–17 231.

[65] H. Shao, L. Wang, R. Chen, H. Li, and Y. Liu, “Safety-enhanced autonomous
driving using interpretable sensor fusion transformer,” arXiv, 2022. [Online].
Available: https://arxiv.org/abs/2207.14024

[66] T. Yin, X. Zhou, and P. Krahenbuhl, “Center-based 3d object detection and
tracking,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021, pp. 11 784–11 793.

[67] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D. Lam,
A. Bewley, and A. Shah, “Learning to drive in a day,” in Proceedings of the 2019
International Conference on Robotics and Automation (ICRA). IEEE, 2019,
pp. 8248–8254.

[68] J. Chen, S. E. Li, and M. Tomizuka, “Interpretable end-to-end urban au-
tonomous driving with latent deep reinforcement learning,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 6, pp. 5068–5078, 2021.

https://arxiv.org/abs/1604.07446
https://arxiv.org/abs/2207.14024

53

[69] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous
driving: Common practices and emerging technologies,” IEEE Access, vol. 8,
pp. 58 443–58 469, 2020.

[70] M. Priisalu, A. Pirinen, C. Paduraru, and C. Sminchisescu, “Generating scenarios
with diverse pedestrian behaviors for autonomous vehicle testing,” in Proceedings
of the 5th Conference on Robot Learning (CoRL). PMLR, 2022, pp. 1247–1258.

[71] W. Ding, B. Chen, M. Xu, and D. Zhao, “Learning to collide: An adaptive safety-
critical scenarios generating method,” in Proceedings of the 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE,
2020, pp. 2243–2250.

[72] A. Rasouli and J. K. Tsotsos, “Autonomous vehicles that interact with pedes-
trians: A survey of theory and practice,” IEEE Transactions on Intelligent
Transportation Systems, vol. 21, no. 3, pp. 900–918, 2020.

[73] M. Priisalu, C. Paduraru, A. Pirinen, and C. Sminchisescu, “Semantic synthesis
of pedestrian locomotion,” in Proceedings of the Asian Conference on Computer
Vision (ACCV), 2020.

[74] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann,
“Stable-baselines3: Reliable reinforcement learning implementations,” Journal
of Machine Learning Research, vol. 22, no. 268, pp. 1–8, 2021.

[75] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” arXiv, 2016. [Online]. Available:
https://arxiv.org/abs/1606.01540

[76] C. team. Carla autonomous driving leaderboard. 2022. [Online]. Available:
https://leaderboard.carla.org/

[77] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao, “Trajectory-guided control
prediction for end-to-end autonomous driving: A simple yet strong baseline,”
arXiv, 2022. [Online]. Available: https://arxiv.org/abs/2206.08129

https://arxiv.org/abs/1606.01540
https://leaderboard.carla.org/
https://arxiv.org/abs/2206.08129

54

A CARLA leaderboard rank
This section provides the performance comparison on the public CARLA leaderboard
[76] to illustrate why LAV [64] and InterFuser [65] are selected as the testing algo-
rithms. In Table A1, although ReasonNet ranks first with the highest driving score
of 79.95 and the highest infraction score of 0.89, its submission is anonymous. Hence,
no research paper and corresponding source code are provided. Among the remaining
three methods, InterFuser achieves the highest driving score, TCP [77] achieves the
highest infraction score, and LAV reaches the highest route completion. However,
since InterFuser and TCP share some similarities in their design and perform almost
the same in all three metrics, maintaining one of them is enough for the testing
purpose in this thesis. Therefore, considering these factors, InterFuser and LAV are
finally selected.

Rank Method Source code Driving score Route completion Infraction score

1 ReasonNet No 79.95 89.89 0.89

2 InterFuser [65] Yes 76.18 88.23 0.84

3 TCP [77] Yes 75.14 85.63 0.87

4 LAV [64] Yes 61.85 94.46 0.64

Table A1: CARLA leaderboard [76] evaluation of different driving algorithms (ac-
cessed Jan 2023). Route completion measures the distance percentage completed by
the agent. Infraction score is a discount value that measures the safety of the vehicle
agent. Driving score is a weighted product of route completion and infraction score.
All metrics are higher the better.

55

B Hyperparameter values
This section provides some fundamental hyperparameter values used in LAV and
InterFuser, respectively.

Notation Description Value

turnKP Proportional coefficient value for steering PID controller 1.0

turnKI integral coefficient value for steering PID controller 0.5

turnKD Derivative coefficient value for steering PID controller 0.2

speedKP Proportional coefficient value for throttle PID controller 5.0

speedKI integral coefficient value for throttle PID controller 0.5

speedKD Derivative coefficient value for throttle PID controller 1.0

vmax Maximal allowed speed 35 km/h

niter Number of iterations to produce the future trajectory 5

nplan Number of future waypoints in one predicted trajectory 10

rvehicle Maximal distance to detect the vehicle 15 m

rpedestrian Maximal distance to detect the pedestrian 10 m

Table B1: Key parameters used for LAV.

56

Notation Description Value

turnKP Proportional coefficient value for steering PID controller 2.35

turnKI integral coefficient value for steering PID controller 0.65

turnKD Derivative coefficient value for steering PID controller 0.45

speedKP Proportional coefficient value for throttle PID controller 5.0

speedKI integral coefficient value for throttle PID controller 0.5

speedKD Derivative coefficient value for throttle PID controller 1.0

vmax Maximal allowed speed 25 km/h

amax Maximal allowed acceleration 1.0 m/s2

Size of detected area 20 m × 20 m

Higher threshold for filtering object in the density map 0.9

Lower threshold for filtering object in the density map 0.5

Table B2: Key parameters used for InterFuser.

	Abstract
	Preface
	Contents
	Abbreviations
	1 Introduction
	2 Background
	2.1 Carla simulator
	2.1.1 Static environment
	2.1.2 Dynamic objects

	2.2 Reinforcement learning
	2.2.1 Model-free methods
	2.2.2 Model-based methods

	2.3 Autonomous driving algorithms
	2.3.1 Classical modular pipeline
	2.3.2 End-to-end autonomous driving

	2.4 Traffic scenario simulation

	3 Methods
	3.1 System description
	3.1.1 Walking as a Markov Decision Process
	3.1.2 Autonomous vehicle model
	3.1.3 Pedestrian initialization

	3.2 Suicidal pedestrian design
	3.2.1 Input and output representations
	3.2.2 Reward functions
	3.2.3 Policy optimization

	3.3 Evaluation metrics

	4 Experiments
	4.1 Simulation setup
	4.2 Pedestrian agent training
	4.3 Effectiveness evaluation of the suicidal pedestrian
	4.3.1 Result analysis
	4.3.2 Behavior visualization

	4.4 Finding failures in autonomous driving algorithms
	4.4.1 Performance verification
	4.4.2 Failure case visualization
	4.4.3 Discussion

	5 Conclusion and discussion
	5.1 Conclusion
	5.2 Discussion

	References
	A CARLA leaderboard rank
	B Hyperparameter values

