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Abstract: Few epidemiological studies use exposure determinants specifically tailored to assess
pesticide or plant protection product (PPP) exposures when assessing presumed association between
occupational exposure and health outcomes among agricultural workers. This lack of exposure
specificity could lead to results that fail to detect an association. It could be related to the lack
of consensus on exposure assessment methods and the choice of exposure determinants. We con-
ducted a meta-analysis following the PRISMA checklist to identify PPP exposure determinants used
in occupational studies and identified exposure determinants that best characterized agricultural
exposures to PPPs. Out of 1436 studies identified, 71 were included. The exposure determinants
identified were active ingredients, chemical classes, types of PPP, crops, tasks, frequencies, duration,
lifetime exposure days, and intensity-weighted exposure days. Only six over 17 associations between
exposure determinants and health outcomes were found with moderate quality of evidence. Overall,
epidemiological studies had difficulty defining relevant determinants to characterize PPP exposures
for agricultural workers. We recommend that a standardized list of determinants for PPP exposures
in occupational exposure studies should include information on formulations, intensity, duration,
and frequency of PPP exposure. Harmonized data collection on exposure and health outcomes are
required as well as standard units for each exposure determinant.

Keywords: determinant of exposure; pesticides; occupational exposure

1. Introduction

Occupational risk assessment is an evaluation of the likelihood that an adverse health
effect induced by an event, such as Plant Protection Product (PPP) exposure during agricul-
tural tasks, would occur [1]. In these assessments, PPP exposure information is combined
with the hazard that derives from the active ingredient. Coformulants in the PPP for-
mulation are not considered. Agricultural workers performing PPP application-related
tasks may be exposed to PPPs. PPP exposure depends on the type of activity (e.g., mixing,
loading, applying, re-entering, harvesting), application method (e.g., backpack sprayer;
broadcast from farm vehicle; air sprayer), use of personal protective equipment (PPE), and
other parameters [2,3]. Depending on the route of entry of a given substance, i.e., via skin,
ingestion or inhalation [4], its effects may vary. These parameters lead to heterogeneous
exposure of workers, which makes risk assessment challenging.

Exposure to PPPs may cause adverse health effects such as neurological diseases,
cancer, endocrine disorders, or reproductive disorders [5]. However, there are contrary
conclusions regarding a presumed link between PPP exposure and health outcomes in
epidemiological studies [6]. We believe that this inconsistency might be due to the lack of
exposure assessment as well as disease ascertainment.
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Exposure determinants are factors that predict possible exposures to a given sub-
stance [7]. Using a set of exposure determinants specifically developed for PPP exposures
could refine exposure assessment and consequently, have a better chance of detecting
a possible association between exposures and health outcomes in epidemiological studies.
The standard method to assess occupational exposure group is the Similar Exposure Group
(SEG) approach [8,9]. The SEG approach is widely used in industrial settings to assess
possible inhalation exposure. However, it is not often used to characterize exposure for
agricultural workers, since skin has always been a major route of exposures among agricul-
tural workers. The validation of SEG is performed using air sampling. However, the main
exposure route in agricultural workers is skin exposure (around 90% of exposure) followed
by inhalation (around 10% of exposure) [4,10]. Moreover, workers are exposed to different
formulations of products (the active ingredient and other ingredients like formulants) [11].
The different formulations can have a different kinetic effect.

Several epidemiological studies evaluating the potential link between exposure to
PPPs and health outcomes are ambiguous and the reason might be that exposures to PPPs
are rarely characterized [12]. Exposures were often not evaluated on exposure intensity,
frequency, and duration. For example, an agricultural worker prepares and manually
sprays the product over many days and another worker who does not need to prepare the
product and whose sprayer is hooked up to the tractor that sprays for some hours would
be classified in the same exposed group. This leads to misclassification and a bias toward
the null [13]. Exposure determinants were used in a few epidemiological studies to assess
exposures; however, there was no consensus on the choice of exposure determinants nor
assessment methods (e.g., self-reported questionnaire, interview).

In this systematic review and meta-analysis, our objectives were to evaluate exposure
determinants identified in the occupational epidemiological studies and recommend the
most relevant based on their ability to characterize agricultural PPP exposures according
to the quality of evidence of the association between exposure determinants and health
outcomes. A focus is on the estimate of the association of the exposure determinant with
the health outcome.

2. Methods
2.1. Protocol and Registration

This review protocol is available on the international database PROSPERO (Regis-
tration number: CRD42022293243). This systematic review was conducted following the
Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) methodol-
ogy [14] (see PRISMA checklist in the Supplementary Information).

2.2. Information Sources

We performed a systematic literature search in three databases: Web of Science (main-
tained by Clarivate analytics), MEDLINE via PubMed, and Scopus, in July 2022. In order to
be exhaustive and not exclude changes over time, the search included all articles published
from 1st January 1990 to 18th July 2022. Search strings are available in Supplementary
Information (Supplementary text S1).

2.3. Eligibility Criteria

The inclusion criteria of studies for the systematic review were (a) the exposed pop-
ulation was agricultural workers; (b) the investigated health outcome was neurological,
carcinogenic, mutagenic, reprotoxic (CMR), or endocrine disruption (included thyroid,
diabetes); (c) ascribed exposure levels or measured exposures during PPP use; (d) English
language; and (e) original research articles. Reviews, meta-analyses, letters to the editor
and monographs were excluded. Likewise, studies that did not report health effects or
focused on poisoning events (i.e., acute exposure) were excluded. All the papers reporting
association using ever/never use categories were excluded.
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Title, abstract, and keywords were used for a first-step screening of eligibility using
the online tool RAYYAN [15]. After the first screening, articles were read to include only
studies using exposure determinants for assessing PPP exposures. Two reviewers (C.O and
A.B.) performed the screening and selection of articles independently. At least 10% of the
articles were randomly selected and cross-checked. No automated tools were used, except
the tool for titles and abstracts screening for keywords and exclusion criteria, which was
performed using RAYYAN.

2.4. Data Extraction

Data was extracted from the articles that met the eligibility criteria after screening
the abstract and the full text. An Excel file was used to extract relevant data from each
publication and compile the following information: Authors’ names, Title, Publication year,
Study design (e.g., epidemiologic, case control, cross-sectional, etc.), Health outcome type,
Health outcome assessment type (e.g., clinical exams, registers, medical questionnaires,
etc.), Study location (country), Crop type, Study period, Study population (n), and Active
substances (Table S1, in the supplementary information). Exposure determinants were
classified into three categories: sociodemographic data, general farming information,
and PPP use practices. The relevance of this classification is discussed in the results’
section. All the results from this systematic review were analyzed for each health outcome
independently. Risk estimates related to cancer were combined for all cancer sites in order
to increase the statistical power of the results.

2.5. Quality Assessment and Grading
2.5.1. Meta-Analysis

We grouped studies depending on the outcome measured such as cancer, neurotoxicity,
or endocrine disruption (diabetes and thyroid disruption). We further divided these
four main groups into subgroups based on exposure determinants (e.g., active ingredient,
chemical class, etc.). We performed the meta-analysis on the reported ratio (hazard risk
(HR), odds ratio (OR), or relative risk (RR)) of the associations between the level in the
exposure determinants groups and health outcomes. For example, in one study [16], they
reported that the higher users (intensity-weighted lifetime days) of the herbicide 2,4,5-T
had an increased risk of renal cell carcinoma (RR = 2.9 (95% CI: 1.65–5.17)) compared
to the never users. To facilitate comparison, we converted the reported ratios (HR, OR,
or RR) from the included studies into the most commonly reported ratios (HR, OR, or
RR) when there were variations. This computation was performed using the formula
published in studies [17,18], which takes into account the sample size and the reference
rate. We used a restricted maximization likelihood model with the study ID as a random
effect. We reported the summary estimates and heterogeneity I2 for the overall meta-
analysis and subgroup analyses. In the meta-analysis, a summary estimate was obtained
by combining the individual effect estimates (in this review RR or OR) observed in the
original included studies that make up the analysis [19]. The I2 statistic quantifies the
amount of variation in a meta-analysis that can be attributed to differences between trials
rather than random sampling error. Mathematically, I2 is calculated as I2 = τ2/(σ2 + τ2),
where τ2 represents between-trial heterogeneity, σ2 represents the shared sampling error
across trials, and σ2 + τ2 represent the overall variation in the meta-analysis. Typically,
I2 is derived from the formula (Q − df)/Q × 100%, where Q is the statistic for Cochran’s
homogeneity test and df is the degree of freedom (equal to the number of trials minus
one). Higgins et al. investigated various approaches to determine 95% confidence intervals
for the I2 estimate [20]. The threshold to interpret I2 can be misleading due to the several
factors that influence the inconsistency. Above 75%, there is considerable heterogeneity [20].
The publication bias was assessed using funnel plots when there were at least 10 studies
in a subgroup [20]. Sensitivity analysis was performed by eliminating one study at a time
and assessing the effect of this elimination by comparing the summary estimates and the
heterogeneity (I2) before and after the elimination of each study [21].
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2.5.2. Risk of Bias and Quality Assessment

We used the Joanna Briggs Institute (JBI) checklist for prevalence studies to assess
the risk of bias in each article [22,23]. The JBI’s critical appraisal tools help to determine
the reliability, relevance, and outcomes of published articles. This checklist provides
observations on internal and external validities on the methodological quality of the studies.
The overall risk of bias for each study was categorized as either high risk of bias (i.e., more
than (and equal to) five criteria out of nine rated “unclear” or “missing”) or low risk of
bias (i.e., fewer than five criteria out of nine rated “unclear” or “missing”). The risk of bias
was completed for included articles by the lead author (CO), and a second reviewer (AB)
independently evaluated 10% of the articles selected randomly for cross-checking.

2.5.3. Grading and Overall Quality of Evidence

We graded the quality of evidence of the associations between exposure determinants
and health outcomes following the Grading of Recommendations Assessment, Devel-
opment and Evaluation (GRADE) approach [24]. Following the GRADE, the quality of
evidence could be high, moderate, low, or very low. The overall quality of evidence was
assessed for each subgroup by evaluating the risk of bias, inconsistency, indirectness, im-
precision, and publication bias. Risk of bias being already assessed by JBI, we assessed the
remaining criteria. Inconsistency describes how consistent the effects are across included
studies. Indirectness compares differences in intervention (exposure in our case), outcome
measurements, or population in the studies. For example, there were differences between
the population of interest and those who participated in relevant studies. Our systematic
review included only farmers who met our eligibility criteria; hence, the evidence regard-
ing farmers was direct by definition. However, in some cases, there could be exceptions
and differences between the population of interest and those in the included studies [25].
Imprecision assesses the risk of random errors. We systematically started the assessment
by considering the quality of evidence as high and then downgraded it depending on the
risk of bias, inconsistency, indirectness, imprecision, and publication bias.

3. Results
3.1. Selected Studies

A total of 1,642 records were identified with the literature search in three databases:
Web of Science, PubMed, and Scopus (Figure 1). Among them, 206 were duplicates,
leaving 1436 articles for the first screening based on titles and abstracts. Following the first
screening, 364 articles were excluded because they were not original studies, 43 articles
were excluded as they were not published in English and 842 articles were judged to be
out of topic. Out of the remaining 187 original articles, 73 were excluded after the full-text
screening and 18 were excluded for eligibility (Figure 1). Additionally, 25 studies were
excluded from the meta-analysis because they did not report information (i.e., sampling
size and population size) to transform the reported ratios into RR to allow comparison
among studies (as described in Section 2.5.1). At the end, 71 studies were included in the
meta-analysis (Supplementary information, Table S1).

Among the included studies in the systematic review, 37% were published in 2015
or later, 14% between 2010 and 2014, 39% between 2005 and 2009, and 10% between 2000
and 2004. There was no publications before 2000, although studies published after 1990
were included in the systematic review. Over 80% (84.5%) focused on a North American
population, followed by a European (14.1%) and an Asian (1.4%) population. The included
studies were mainly cohort studies (92%) and some case controls (8%). The majority of
the studies (85%) focused on cancer, while endocrine disruption and neurotoxicity health
effects made up 8 and 7% of the studies, respectively.
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We could not provide a meta-analysis for the two endpoints of mutagenicity and
reprotoxicity because the identified studies did not define the outcome in comparable ways.
For example, some studies measured reprotoxicity as the number of miscarriages whereas
other studies evaluated the sperm quality.

Health outcomes were mostly extracted from registries (82%) or from self-reported
questionnaires (11%). Only a few studies integrated a medical doctor in the team to examine
participants and diagnose or label their pathologies (3%) or administer psychometric tests
to participants (3%). Even fewer studies used biomonitoring (1%).

Among the included studies, 6% were with a low risk of bias, 76% with a moderate
risk of bias and 18% with a high risk of bias (Table S2). The low risk of bias articles listed
on average several exposure determinants, and the health outcomes were mainly cancer.
Most articles with moderate risk of bias did not include a representative sample of the
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population either because of convenience sampling or an inadequate response rate. Articles
with a high risk of bias lacked detailed descriptions of the study subjects, suffered from
a lack of information, control groups, or an association measurement.

The Table 1 listed the exposure determinants used to classify participants according to
their PPP exposures in the 71 included studies. Twenty-five exposure determinants were
identified. Each determinant was defined and assessed in a specific unit of measurement.
Reported exposure determinants were very specific in some studies, such as which personal
protective equipment (PPE) is used to perform a specific task or more general ones like
spraying tasks (Yes or No). Some of the studies combined several exposure determinants
to calculate an intensity level (IL) or a cumulative exposure index (CEI) [2]. These measure-
ment tools were implemented initially in the American cohort Agricultural Health Study
(AHS) to assess an overall quantitative long-term exposure [2]. The IL and CEI combined
different exposure determinants listed in Table 1. A large number of studies considered
sociodemographic information such as gender and age as exposure determinants.

Table 1. Variable studied and their respective definition, unit of measurement and use in the intensity
level (IL) or cumulative exposure intensity (CEI) calculation in the included studies on occupational
exposure to PPPs.

Variable Definition Measure Used in IL
or CEI 1

Socio-professional
information

Age Date of birth Years

Gender Men/Women (M/W) or Male/Female (M/F) M/W or M/F

Job title Employment status (e.g., Manager; Workers; Employee) or
Self-reported status

Title

General farming
information

Crop Category of cultivated plants (e.g., cereals;
fruits; vegetables)

Crop type

Cultivated Surface Land area used for crops Acres/Hectare

Task Piece of work performed within the job (e.g., PPP
spraying; harvesting; re-entering)

Category of job or task

PPP use

Active ingredient Biological active chemical compound Chemical name

Chemical class Group of compounds with similar features (i.e.,
organophosphates, pyrethroids, carbamates, . . . )

Chemical class

Type of PPP Target pest category of PPP (e.g., fungicide;
herbicide; insecticide)

Classification X

PPP license Obtained date of permit to apply PPP years

Read instruction Operator read the use instruction provided on the label
(e.g., dilution; personal protective equipment; mixing)

yes/no

Mixing/loading Operator prepared the PPP solution and filled the
spraying tank

yes/no X
Detailed

Application method Spraying tank type (e.g., backpack sprayer; broadcast
from farm vehicle; air sprayer)

Categories X
Detailed
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Table 1. Cont.

Variable Definition Measure Used in IL
or CEI 1

Tank volume Amount of PPP solution contained in a tank Gallon: liter (3.8:1)

Cleaning Operator washed the application material yes/no Detailed

Repair Operator repaired engine yes/no X

Re-entry Operator entered in field following treatment yes/no

Duration Amount of time spent on application hours or days

Frequency

Number of years an operator applied PPP
or

Number of days per year an operator applied PPP
or

Number of months an operator applied PPP per
cropping season

or
Number of application events per day/week/season

or
Number of application events over the last 12 months

or
Date of first PPP application

year

number

number

number

number

date

Percentage of treated area Percentage of cultivated surface treated by an
operator

percentage

PPE use Use of PPE while performing PPP tasks
and/or

Use of PPE while cleaning
and/or

Use of PPE after a PPP spill
and/or

Duration of use before changing gloves

yes/no

yes/no

yes/no

hours

X

Detailed

Detailed

Detailed

Personal hygiene Operator washed their hands after PPP application yes/no Detailed

PPE: Personal protective equipment; PPP: Plant protection product. 1 Variable used in the calculation of the IL
(Intensity Level) or CEI (Cumulative Exposure Index) [2]. “X” means that the variable is taken in the calculation
of IL or CEI, and “detailed” means that the variable is taken in the detailed calculation of IL or CEI.

3.2. Meta-Analysis Results

The meta-analysis was first performed for each of the four health outcomes (i.e., Cancer:
60 studies; Neurotoxicity: five studies; Endocrine disruptions: thyroid: three studies,
diabetes: three studies). Since heterogeneity was high (I2 > 60%) [26], we then divided
these disease groups into subgroups by exposure determinants (Table 2). The subgroup
analysis provided results with reduced heterogeneity below 30% for the cancer for active
ingredient, PPP type, task, frequency, duration, and intensity weighted exposure days
as well as for endocrine disruption outcomes and active ingredient and frequency. In
some cases, when only two to three studies were included in the subgroup analysis, the
heterogeneity equals zero, which means that heterogeneity might not be important [20]. The
overall heterogeneity in the subgroup analysis for neurotoxicity was considered moderate
(I2 = 43–63%).
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Table 2. Summary of the results of meta-analysis of the association between exposure determinants and four outcomes with the quality of evidence grouped per
health outcome. The overall quality of evidence is based on the GRADE approach, taking into account the risk of bias, inconsistency, impression, and indirectness.
The reporting publication bias was not assessed for groups with fewer than 10 studies. (Na: not applicable.).

Exposure Determinant Sorted
per Health Outcome

Number of
Studies 1

Heterogeneity
“I2 Estimate”

Summary
Estimate of the

Association
with Health

Outcome

Effect 95% Confidence
Interval Risk of Bias Inconsistency Imprecision Indirectness Publication

Bias 2
Overall Quality

of Evidence 3

Cancer 60

Active Ingredient 14 17.17 1.009 Harmful 0.992–1.027 Moderate No Yes No Yes Very low
Chemical class 5 60.94 1.053 Harmful 0.898–1.208 High No No No Na Moderate

Type of PPP 6 22.96 1.033 Harmful 0.936–1.13 Moderate No Yes No Na Low
Crops 9 44.25 1.006 Harmful 0.984–1.028 Moderate No No No Na Moderate
Task 2 0 0.856 Protective 0.715–0.998 Moderate No Yes No Na Low

Frequency 2 0 0.68 Protective 0.085–1.275 Moderate No Yes No Na Low
Duration 3 0 1.096 Harmful 0.993–1.198 Moderate No Yes No Na Low

Lifetime exposure days 28 40.67 0.932 Protective 0.906–0.959 Low No No No Yes Moderate
Intensity-weighted exposure

days 31 15.57 0.964 Protective 0.947–0.982 Low No No No Yes Moderate

Neurotoxicity 5

Active Ingredient 3 43.39 1.014 Harmful 0.979–1.050 High No No Yes Na Low
Type of PPP 2 63.44 1.181 Harmful 1.109–1.254 High No No Yes Na Low

Duration 2 0 1.353 Harmful 1.160–1.547 High No No Yes Na Low

Endocrine disruptor—
Diabetes 3

Active Ingredient 2 8.01 1.034 Harmful 1.010–1.057 High Yes No No Na Low
Duration 2 0 1.192 Harmful 1.006–1.377 High No No No Na Moderate

Frequency 2 13.04 0.940 0.796–1.084 High No No Yes Na Low

Endocrine disruptor—
Thyroid 3

Active Ingredient 2 47.23 1.078 Harmful 1.047–1.110 Moderate Yes No No Na Low
Intensity-weighted exposure

days 3 16.56 1.090 Harmful 1.061–1.120 Moderate No No Yes Na Moderate

1 Number of studies grouped by heath outcome and determinant of exposure. The quality of evidence was assessed when at least two studies had similar determinant of a health
outcome. 2 Funnel plots is available in the Supplementary information: Figures S1–S3. 3 Based on the GRADE, which takes into account the risk of bias, inconsistency, indirectness,
imprecision, and publication bias of all studies for a given predictor.
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The quality of evidence was moderate for the association between two subgroups
of exposure determinants with significant results: lifetime exposure days (HR = 0.93,
95%CI = 0.91–0.96, I2 = 40.67), intensity-weighted exposure days (HR = 0.96, 0.95–0.98,
I2 = 15.57), and cancer. We found a low quality of evidence for the effect of “task” as an ex-
posure determinant on protecting (HR < 1) from cancer (HR = 0.86, 0.71–0.99) in two studies
with heterogeneity I2 = 0. The associations between active ingredient (HR = 1.01, 0.99–1.03),
chemical class (HR = 1.05, 0.89–1.2), type of PPP (HR = 1.03, 0.93–1.1), crops (HR = 1.01,
0.98–1.03), frequency (HR = 0.68, 0.08–1.27), and duration (HR = 1.09, 0.99–1.19) with cancer
were not significant. We found q low quality of evidence for the type of PPP harmful
effect (OR > 1) associated with neurotoxicity (OR = 1.18, 1.11–1.25) in two studies with
heterogeneity I2 = 63.44. However, there was no significant association between active
ingredient and neurotoxicity (HR = 1.01, 0.98–1.05). There was a low quality of evidence
for the association of active ingredient with diabetes (HR = 1.03, 1.01–1.06, I2 = 8.01) in
two studies as well as with thyroid disruption (HR = 1.08, 1.05–1.11, I2 = 47.23) in two stud-
ies. We found a moderate quality of evidence for the harmful effect of longer duration
and diabetes (OR = 1.19, 1.01–1.38) in two studies with heterogeneity I2 = 0. There was no
significant association between the frequency and diabetes (HR = 0.94, 0.79–1.08). There
was a moderate quality of evidence between harmful effects of intensity-weighted expo-
sure days with thyroid disorder (HR = 1.09, 1.06–1.12) in three studies with heterogeneity
I2 = 16.56 (Table 2). Overall, the indirectness had a negative impact and downgraded the
quality of evidence for the associations of all subgroups of exposure determinants due to
the difference in outcomes assessment, especially for the outcome of neurotoxicity.

3.2.1. Effects of the PPP Exposure Determinants on the Health Outcome Association

Combining several exposure determinants may improve the results of the meta-
analysis for the outcome of cancer specifically (Table 3). For example, the heterogeneity
decreased for the association between active ingredient and cancer outcome, but the
summary estimate was significant when restricting active ingredient with duration (Table 3).
This estimate indicated harmful effects of a longer duration of exposure to the active
ingredient in developing cancer among exposed farmers.

Table 3. Results of the meta-analysis of the association between exposure determinants and cancer
when restricting some exposure determinants with another exposure determinants. The significant
results are highlighted in italics.

Cumulative Exposure
Determinant Sorted per

Health Outcome

Number of
Studies

Heterogeneity “I2

Estimate”

Summary Estimate of
the Association with

Health Outcome

95% Confidence
Interval

Cancer

Chemical class + Duration 2 0 1.285 0.985; 1.046
Type of PPP + Duration 3 0 1.039 0.996; 1.042

Crops + Duration 4 3.06 1.016 0.959; 1.120
Active ingredient + Duration 11 11.88 1.019 1.153; 1.418

3.2.2. Publication Bias

The results of publication bias for three groups of determinants (i.e., active ingredient,
lifetime exposure days, and intensity-weighted exposure days) associated with cancer
are presented in the supplementary material (Supplementary Materials Figures S1–S3).
The funnel plots showed an asymmetry in the distribution of studies on both sides of the
plots. Consequently, we considered there is evidence for publication bias based on the
funnel plots.
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4. Discussion
4.1. Main Findings

This systematic review identified 25 exposure determinants (Table 1) in 71 original
studies published in the last 30 years. PPP exposure is not comparably assessed in epidemio-
logical studies because they used different exposure determinants. This review highlighted
the difficulty in characterizing exposures with specific PPP exposure determinants for
agricultural workers. We included only nine exposure determinants in the meta-analysis as
these were the only ones evaluated in a minimum of two studies. Two exposure determi-
nants were exposure indices for an intensity level (IL): intensity-weighted exposure days
and the cumulative exposure index (CEI) using lifetime exposure days [2]. They combined
several exposure determinants. The IL- or CEI-exposure calculation provided a scale to
estimate the PPP exposures. The difference between the IL and CEI is that the CEI takes into
consideration the duration and frequency of application [27]. As exposure determinants,
IL or CEI provided a moderate quality of evidence for their association with cancer and
a moderate quality of evidence for their association with thyroid disruption. In our review,
60% of the included studies used a combination of exposure determinants (IL or CEI) to
assess the risk of exposure. All these studies used data from the AHS cohort. This approach,
using a combination of exposure determinants, could be a tool for epidemiological studies
and should be recommended for assessing the overall risk associated with PPP practices.
In several other studies, an extensive questionnaire completed by the agricultural workers
was used to characterize PPP exposures but not all the data collected were used to assess
exposure. Most of the exposure studies reported their results based on a dichotomous
category (i.e., exposed and nonexposed). Although, some studies listed exposure deter-
minants in their methodology to assess exposures, they did not necessarily analyze these
data [28–30]. This emphasized that information requested of participants is not used for
assessing PPP exposure even when available.

Out of nine determinants, only lifetime exposure days and intensity-level exposure
days had a moderate quality of evidence and a statistically significant association with
cancer. This could be explained by the fact that these two determinants combine several
exposure determinants (i.e., mixing status, application method, and PPE use). Similarly,
the meta-analysis showed that the combination of exposure determinants in the analysis
decrease the heterogeneity of the results.

4.2. Results’ Interpretation

Socio-professional data are reported in the selected articles as exposure determinants
although they are covariates or adjustment variables. They do not imply any particular
effect on the exposure level among agricultural workers [31]. For example, the association
between gender and health outcome among agricultural workers has not been evaluated in
the literature due to the low number of women applying PPPs. In our meta-analysis, some
studies (n = 4) used female gender as one of the exclusion criteria. Likewise, age used as
a cumulative value to define exposure duration cannot be considered as a determinant of
exposure.

Job title may also induce a bias in exposure determinant when used as a proxy of
exposure [28,32]. This exposure misclassification groups people who are assumed to be
comparably exposed to the substance of interest based on an individual characteristic, while
exposure is an external one [33,34]. Similar conclusions were drawn when job title was used
as an exposure assessment method such, as Job Exposure Matrices (JEMs), concerning PPP
exposure [35]. Indeed, not all the tasks performed by an operator are considered in the JEMs,
possibly leading to an underestimation. For example, few JEMs considered re-entry tasks
even though these tasks are suspected of leading to high PPP exposures similar to spraying
and mixing tasks [33,36]. However, JEMs are validated tools, more effective for assessing
health risks related to occupational exposures than self-reported questionnaires [33] and
help to cover a large population at a lower cost [37]. In addition, most of the occupational
epidemiological studies evaluated PPP exposures using a self-reported questionnaire [38].
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It may be perceived as the easiest and quickest approach to collect information on PPP
exposures; however, response and recall bias are known to occur. The main advantage of
self-reported questionnaires is that it is a simple way to collect extensive information or
data from many participants. Nonetheless, answers may be subjective or invalid depending
on the individual’s tendency to respond to questions. This response bias may affect the
validity and the reliability of the collected data [39]. Moreover, there is a poor correlation
between the estimates from crop-based job-exposure matrices (CEMs) and the self-reported
exposure assessment [40]. This can lead to an underestimate of PPP exposure prevalence
from self-reported questionnaires. These questionnaires evaluate a qualitative exposure
whereas CEMs evaluate semiquantitative or quantitative exposures. In summary, the
exposure assessment using proxy or self-reported questionnaire is not accurate and can
lead to misclassification.

Biomonitoring, on the contrary, gives quantifiable internal exposure measurements [41].
The use of specific biomarkers and a suitable biological matrix (e.g., hair, urine, blood)
are key elements to target exposure [42,43]. Biomonitoring measures the PPP active sub-
stance or its metabolites in the body following exposure. Biomonitoring results are the
dose absorbed by the workers in a biological matrix independently of the route of expo-
sure, absorption variation, and timing [44–46]. Biomonitoring may be a useful tool in
epidemiological studies to interpret health-based biological results for short and mid-term
effects [47,48]. Biomonitoring can associate the internal dose with exposure determinants.
The most relevant exposure determinants can then be included within toxicokinetic models
to predict exposures for a larger cohort without collecting samples. Furthermore, biomoni-
toring results are quantified exposure doses, while questionnaires are exposure estimates
prone to response bias. Very few studies in this review (n = 3) used the biomonitoring
approach. Furthermore, variation within the outcome measures make it difficult to com-
pare between several original studies (indirectness assessed in Table 2). It is more difficult
to link exposure biomarkers to chronic health outcomes. Nonetheless, questionnaires or
sampling information are required to interpret biomonitoring data. A study with direct
(biomonitoring) and indirect exposure assessment methods will most likely reduce expo-
sure misclassification. Overall, molecular epidemiological studies should include both
biomonitoring for quantification of present exposures and questionnaires to characterize
past exposures. Some questionnaires should be added to assess the overall risk associated
with PPP practices. For example, to build a combination of exposure determinants, such as
IL and CEI. Correlation between the IL and CEI intensity scores and urinary biomarker
concentrations were investigated in several studies leading to divergent results [13,49–52].
These findings lead to the similar conclusion than the meta-analysis that several exposure
determinants are required to evaluate occupational exposures. Some findings highlighted
missing information in the algorithm, which could explain possible misclassifications such
as the PPP formula (i.e., powder, granular), the use of adjuvant, or the condition of spaying
(i.e., orchard) [13,51,52].

The hazard of a PPP active ingredient is defined as the inherent property that can
cause a health effect [53]. Few studies considered specific active ingredients of PPPs in their
exposure assessment. The ones that did showed low or very low quality of evidence for
active ingredient association with any health outcome. All studies included in this system-
atic review disregarded the chemical properties of the active ingredient (e.g., partitioning
coefficient, volatility, etc.) as an exposure determinant. The hypothesis is that quantifying
PPP exposure does not depend on the active ingredient in occupational exposure itself but
rather on how it is used [54]. Moreover, agricultural workers are exposed to a cocktail of
active ingredients repeatedly and over many years [55]. The mixture effects of PPPs on
human health are not well-established yet [56]; however, the active ingredient remains
an important variable to associate exposure to a health outcome. Furthermore, PPP pro-
ducers and companies formulate their own mixtures of surfactants and active ingredients.
Hence, each formulation has its specific trade name and composition. Trade names were
not directly used as an exposure determinant in the included studies. Instead, they used
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trade names to categorize PPPs under an active ingredient or a type of PPP. However, the
potential toxicity of surfactants used in PPP formulations might be higher than the active
ingredient itself [57]. A recent systematic review emphasized that the toxicological hazards
of the mixtures should not be underestimated [58]. It would be important to compare
the toxicity between different PPP formulations including similar active ingredient and
similar application practices. It might be challenging in epidemiological studies on chronic
exposure due to changes of formulation over time. In summary, the active ingredient
property itself is not sufficient to assess the exposure risk.

When selecting relevant exposure determinants, it is important to consider the major
routes of exposure. Even though it is known that agricultural workers are mainly exposed
via skin, none of the studies considered here included exposure determinants to assess
specifically the skin exposure. Furthermore, in vitro studies have shown that skin perme-
ation varies depending on the PPP formulation and the dose [11]. The American Health
Study (AHS) included dermal exposure assessed as PPE status (e.g., long sleeves, gloves,
and goggles.). The PPE status was assessed with a score in this study. Exposures were
assessed using certain criteria and grouped into exposure levels that were given a score
(1, 1.4, . . . ). To take into account skin exposure, they used an algorithm to reduce the
exposure level scores according to PPE status. However, this algorithm simplifies the use
of PPE by applying the same reduction factor to all three tasks assessed (mixing, applying
and repairing) [2]. Inadvertent ingestion is another poorly assessed route although it could
influence the exposure assessment [59]. For example, agricultural workers may not clean
the equipment after using PPPs. One typical example is the contamination of PPPs found
on the tractor steering wheel [60,61]. They might not have access to water while working
in the field and might have their break eating without washing their hands.

In short, to accurately determine PPP exposure, exposure determinants should include
the main route of exposure depending on the task and the active ingredient as well as the
formulation.

Finally, the exposure determinant definition should be discussed. According to
Burstyn and Teschke [7], exposure determinants are used by occupational hygienists and
can be applied in epidemiological investigations. Each exposure determinant should always
be carefully described and defined with qualifiers of evaluation. As illustrated in Table 1,
frequency of application is a good example of inconsistent definition of an exposure determi-
nant. Some studies collected the number of application event per days/week/season [62–65],
while others reported the date of the first PPP application [66,67]. The lack of standard-
ized frequency measurement makes comparisons difficult. The maximum frequency of
application determined by regulation could be used to model frequency. It determines how
often a PPP can be sprayed per growing season. However, this assumption is based on the
worst-case scenario and does not always reflect reality. From our point of view, the most
accurate definition for PPP application frequency is the number of applications per day
using the hour units. This includes the total period of time worker may be in contact with
the PPPs, namely from the beginning to the end of work, regardless of PPE use and types
of tasks.

4.3. Strengths and Limitations

This review was based on three of the largest scientific databases and included various
keywords using different synonyms to identify relevant studies. Although 25 exposure
determinants were listed in the studies, we only included those that were evaluated in
a minimum of two studies. Conducting a systematic review of occupational epidemiology,
particularly on pesticides, is challenging due to the inherent limitations of the original
studies and the heterogeneity of available evidence. The first limitation was the missing
information in the studies: 18% of the articles included in this systematic review were of
high risk of bias due to missing detailed description of the study participants or appro-
priate statistical analysis. Further studies should address these issues by providing the
information (i.e., open-source publication). Other limitations are the response and recall
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bias from self-reported questionnaires, the exposure assessment and/or health outcomes
assessment that could lower the quality of a study. Risk of bias assessment and the GRADE
tools provide to be useful to assess quality studies and therefore the review overall quality.

4.4. Implications of the Findings

This review emphasized a lack of exposure characterization in epidemiological studies.
This leads to difficulties in interpreting or associating PPP exposures to health outcomes.
A standardized list of exposure determinants for PPP occupational exposures would be
of great interest to harmonize occupational studies as well as to increase relevance in pro-
tecting human health. Although many studies with valuable exposure data were available,
they were not always used by the study authors. Instead, the participants are grouped into
dichotomous groups (exposed vs. nonexposed) for comparison. Studies including groups
with different exposure levels required a sufficiently high number of participants to obtain
a statistically significant result. Data collected from different studies should be combined
to improve PPP exposure characterizations. Open-source publications could facilitate
better use of these data especially by creating a global registry framework as suggested for
human biomonitoring [48]. Harmonized data collection on exposures and health outcomes
are required. With a consensus from the scientific community, exposure determinants
pertaining to PPP exposures should be listed, units harmonized, and ranked for relevance.
To characterize the occupational PPP exposures appropriate data on intensity, duration,
and frequency such as IL and CEI exposure calculation, frequency in hours, and amount of
PPP applied, are necessary to scale and quantitatively estimate long-term exposures. Data
on PPP formulations should be favored over data on active ingredients, because of the
higher toxicity of some adjuvants added to formulations compared to the active ingredient
itself [57]. PPP formulations combined with other parameters, such as dosage per surface
and surface treated, will give a better estimate for PPP exposure. In future studies, biomon-
itoring could be an alternative to measure internal dose as it takes into account all sources
of exposure (occupational as well as environmental exposures and uptake through food or
other contaminants) [68]. Before collecting samples in biomonitoring, knowledge on toxi-
cokinetic processes of the active ingredients should be documented to accurately interpret
biomonitoring results (internal dose) and define PPP exposures (external dose). Ideally,
biomonitoring should include exposure biomarkers and early-effects markers related to
health outcomes. This approach would add to the existing health-based data and improve
risk assessments. Finally, to reduce reporting bias, health outcome should be as much as
possible diagnosed from a physician instead of extracted from self-reported questionnaire.

Overall, there is a need for a standardized list of exposure determinants for PPP expo-
sures in occupational exposure studies. Cohorts may be used to carry out risk assessments,
however, specific uniformed data allowing pooling studies are required. Therefore, we
recommend defining a standardized list of exposure determinant to collect as initiated by
Dosemeci [2].

5. Conclusions

This review highlighted the high variability in epidemiologic studies (e.g., indirectness)
and the importance of collecting PPP exposure determinants. The most frequent exposure
determinants are the lifetime exposure days and the intensity-weighted exposure days,
and we found a moderate quality of evidence for their protective effects against cancer
occurrence. A standardized list should at least include intensity, duration, and frequency of
PPP exposure as well as formulations. Biomonitoring should also be added to assess PPP
exposure and health outcomes when relevant in epidemiological studies because it takes
into account dermal uptake which is the main route of exposure in agricultural workers.
This could further support to assess the risk for user health, including agricultural worker,
for PPP exposure.
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