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Abstract

This article introduces the concept of duality in financial networks. In bankruptcy
problems, in which a bankrupt entity divides its non-negative assets among a group
of claimants, duality of bankruptcy rules entails the division of losses versus gains.
Financial networks generalize bankruptcy problems by allowing for multiple agents
with individual assets interconnected by mutual claims. We show that allowing for
negative assets is imperative to adequately formulate dual financial networks and dual
bankruptcy problems. We show that there is a one-to-one correspondence between pay-
ment schemes based on bankruptcy rules in a financial network and payment schemes
based on the dual of those bankruptcy rules in the dual financial network. Moreover,
dual financial networks enable us to define dual transfer rules and dual allocation rules.
We show that transfer rules based on self-dual bankruptcy rules need not necessarily
be self-dual, whereas allocation rules based on self-dual bankruptcy rules are always
self-dual.
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1 Introduction

There exists a large body of literature on the formal analysis of problems in which a non-
negative amount is to be allocated among a finite set of claimants that each have a claim on
the estate. Formally, the analysis restricts itself to the case in which the estate is insufficient
to honor all claims. Problems of this kind are often referred to as bankruptcy problems.1 Solu-
tions to bankruptcy problems are formalized by bankruptcy rules which, for each bankruptcy
problem, prescribe a division of the estate among the claimants. For an excellent survey of
this literature, we refer the reader to Thomson (2019).

Bankruptcy problems and the associated bankruptcy rules form the basis for the financial
networks that are the focus of this article. We follow the seminal article of Eisenberg and
Noe (2001) in the sense that a financial network consists of a finite set of agents, e.g.,
financial institutions, in which each agent has an initial estate and in which agents may
have mutual claims on each other.2 Note that financial networks encompass the class of
bankruptcy problems as a financial network may have exactly one agent that is in debt
to the remaining agents. In Eisenberg and Noe (2001), agents pay in accordance with the
proportional bankruptcy rule, i.e., payments are in proportion to the claims. We follow the
convention that bankruptcy rules dictate the payments between the agents in the financial
network, although we allow for general agent-specific bankruptcy rules (cf. Csóka and Herings
(2018); Ketelaars and Borm (2021); Csóka and Herings (2023)).

The 2007-2008 financial crisis led to a surge in empirical and theoretical research on
financial contagion and financial stability of which the framework of Eisenberg and Noe
(2001) has been the foundation. The model of Eisenberg and Noe (2001) has been extended
in various ways, e.g., by applying the model to cases where a shortfall of payments is not the
root cause of contagion (Cifuentes, Ferrucci, & Shin, 2005), by allowing for different seniority
of claims (Elsinger, 2009), or by allowing for bankruptcy costs (Rogers & Veraart, 2013).
For excellent surveys on contagion in financial networks, we refer the reader to Glasserman
and Young (2016), and Jackson and Pernoud (2021).

A well-studied notion in the context of bankruptcy rules is the notion of duality, which
concerns the allocation of the amount that is missing instead of the amount that is available.
More specifically, the dual of a bankruptcy rule prescribes that claimants first receive their
full claim after which the excess amount, which is equal to the sum of claims minus the
estate, is allocated in accordance with the given bankruptcy rule based on the same claims.
Aumann and Maschler (1985) defines a bankruptcy rule to be self-dual if it coincides with
its corresponding dual bankruptcy rule.

Interestingly, it is seen in this article that allowing agents to have a negative estate is
imperative to adequately formulate dual bankruptcy problems and, more generally, dual
financial networks. In fact, negative estates in this article are of a different nature than
those arising in the literature on contagion in financial networks (see, among others, Elsinger,
Lehar, and Summer (2006), Glasserman and Young (2016), and Demange (2023)), where the
initial estate of an agent equals the difference between outside-network assets, e.g., stocks

1Alternatively, depending on the context, problems of this kind may also be called taxation problems (cf.
Young (1988)), rationing problems (cf. Moulin (2000)), or claims problems (cf. Thomson (2019)).

2However, the model of Eisenberg and Noe (2001) is similar to the model of Elimam, Girgis, and Kotob
(1996).
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or loans, and outside-network liabilities, e.g., debts or deposits. If the outside liabilities
exceed outside assets, the estate of an agent is negative, so a negative estate is interpreted
as the amount that an agent is in debt to agents outside those modeled in the network.
Hence, inside-network liabilities will be paid once outside-network liabilities are paid. In the
current context of duality however, negative estates correspond to the amount used for own
consumption before creditors in the network are paid.

Furthermore, as bilateral transfers between agents can take place in a financial network,
an agent that initially does not have enough to pay off all its debts could be able to do so
after receiving sufficiently high payments from the other agents. In other words, the funds an
agent has at its disposal to pay off its creditors may exceed its total debts, which is outside
the scope of bankruptcy problems. For this reason, we consider a larger class of bankruptcy
problems, which we call claims problems, in which the estate may be negative or may exceed
the sum of the claims. Correspondingly, bankruptcy rules are superseded by so-called claims
rules which, for each claims problem, prescribe a division of the estate among the agents.

In this article, a financial network is represented by a mutual claims problem that is char-
acterized by an estates vector, possibly with entries that are zero or negative, containing the
individual assets of the agents and a claims matrix containing the non-negative mutual claims
between the agents. We introduce to each mutual claims problem a dual mutual claims prob-
lem in which the claims matrix is the same as in the original mutual claims problem, but in
which the loss of each agent, being equal to its liabilities to the other agents minus its estate
and claims on the other agents, serves as the estate of this agent. For the special case of a
claims problem, the estate in the associated dual claims problem is defined as the sum of the
claims minus the estate and the claims are identical to the original claims. We use this notion
of a dual mutual claims problem to analyze duality of the transfers between agents, which are
formalized by transfer rules, and duality of the transfer allocation to the agents, which are
formalized by allocation rules. The results of this analysis are described in more detail below.

The payments of agents are in accordance with claims rules. These rules are represented
by a claims rules vector ϕ in which each component specifies the agent-specific claims rule
an agent uses. The basis for our analysis will be ϕ-transfer schemes that contain consistent
payments of agents in the sense that, for each agent, the payments to other agents follow
from the allocation of its estate plus incoming payments in accordance with its claims rule.
The set of ϕ-transfer schemes is shown to be a complete lattice. Therefore, there exists a
bottom ϕ-transfer scheme and a top ϕ-transfer scheme. We show a one-to-one correspondence
between transfer schemes in a mutual claims problem and in its corresponding dual problem.
That is, a payment matrix is a ϕ-transfer scheme for a mutual claims problem if and only
if the claims matrix minus this payment matrix is a ϕ∗-transfer scheme for the dual mutual
claims problem, where the components of the vector of claims rules ϕ∗ are the associated
dual claims rules of the claims rules in ϕ. In fact, we show that the relationship is more
explicit: the bottom (resp. top) ϕ-transfer scheme of a mutual claims problem is equal to
the claims matrix minus the top (resp. bottom) ϕ∗-transfer scheme of the corresponding
dual mutual claims problem.

So-called ϕ-based transfer rules prescribe, for each mutual claims problem, how payments
between agents should take place by selecting exactly one ϕ-transfer scheme. As ϕ-transfer
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schemes need not be unique, there is a choice to be made. Given a ϕ-based transfer rule, its
corresponding dual rule first settles all mutual claims, but as there may exist agents for which
the sum of the estate and all outstanding claims on other agents falls short of paying off all
debts, settling all mutual claims may be infeasible, so a loss has to be repaid in accordance
with the given ϕ-based transfer rule. In other words, a dual ϕ-based transfer rule prescribes a
payment matrix which is equal to the claims matrix minus the ϕ-transfer scheme prescribed
by the ϕ-based transfer rule with respect to the dual mutual claims problem. We show that
the dual of a ϕ-based transfer rule prescribes a ϕ∗-based transfer scheme and as such is a
ϕ∗-based transfer rule.

So-called ϕ-based allocation rules prescribe, for each mutual claims problem, a realloca-
tion of the total estate, where the allocation to each agent is equal to its initial estate plus its
net payments in accordance with a ϕ-transfer scheme. In contrast to ϕ-based transfer rules
for which a choice among the set of ϕ-transfer schemes has to be made, a ϕ-based allocation
rule prescribes a unique allocation. In other words, any choice of ϕ-transfer scheme, as pre-
scribed by a ϕ-based transfer rule, results in the same ϕ-based transfer allocation. We show
that, given a ϕ-based allocation rule, the corresponding dual rule prescribes a reallocation
of the total estate on the basis of a ϕ∗-transfer scheme. Therefore, the dual of a ϕ-based
allocation rule is a ϕ∗-based allocation rule.

Finally, we analyze self-duality of ϕ-based transfer rules and ϕ-based allocation rules in
terms of the payment matrices they prescribe and the allocations they prescribe, respec-
tively. We define a ϕ-based transfer rule and a ϕ-based allocation rule to be self-dual if they
coincide with their corresponding dual rule. We show that self-duality of claims rules in ϕ
carries over to self-duality of ϕ-based allocation rules, and vice versa. However, one should
tread carefully with respect to ϕ-based transfer rules because self-duality of such rules is a
stronger requirement. Although self-duality of a ϕ-based transfer rule implies self-duality
of the associated ϕ-based allocation rule, the reverse statement need not necessarily hold
true. In particular, we show that self-duality of a ϕ-based transfer rule is not guaranteed
if all claims rules in ϕ are self-dual. As ϕ-transfer schemes need not be unique, one should
choose ϕ-transfer schemes in an appropriate way as to make a ϕ-based transfer rule self-dual.

The article is organized as follows. Section 2 discusses duality in claims problems. Section
3 introduces duality in mutual claims problems and shows its implications for ϕ-transfer
schemes. It also contains the leading example that is used throughout the article. Section 4
introduces ϕ-based transfer rules and their dual rules. Section 5 introduces ϕ-based allocation
rules and their dual rules. Finally, Section 6 studies self-duality.

2 Duality in claims problems

A claims problem is a pair (e, c) ∈ R × RM
+ in which M is a finite set of claimants, e is a,

possibly negative, estate, and c = (ci)i∈M is a vector of rightful non-negative claims on the
estate. The class of all claims problems on M is denoted by CM . Claims problems on M in
which the estate is non-negative and the sum of claims exceeds the value of the non-negative
estate, i.e.,

∑
i∈M ci > e, are called bankruptcy problems.

Bankruptcy law prescribes that some assets may not be included in the bankruptcy for
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the purpose of meeting basic domestic needs or sustaining business operations. A bankrupt
entity therefore pays claimants only after its basic domestic needs are met or after its business
operations are sustained. A claims problem (e, c) ∈ CM with a negative estate, e < 0, can
thus be thought of as a problem in which claimants get paid only once −e has been honored
to the bankrupt entity. As will be seen later, this interpretation allows for a natural approach
to duality in claims problems.

Accommodating for both negative estates and for estates exceeding the sum of the claims,
we define claims rules as a generalization of bankruptcy rules in the following way.

Definition 2.1. A claims rule φ : CM → RM prescribes, for all (e, c) ∈ CM , an allocation
vector φ(e, c) that satisfies

(i) 0 ≤ φi(e, c) ≤ ci for all i ∈ M ,

(ii)
∑
i∈M

φi(e, c) = min{max{0, e},
∑
i∈M

ci}.

Condition (ii) boils down to
∑

i∈M φi(e, c) = e in a bankruptcy problem (e, c). If the estate
is negative, conditions (i) and (ii) imply φ(e, c) = 0. On the other hand, if the estate can
cover all claims, conditions (i) and (ii) imply φ(e, c) = c.

From the outset, we assume that claims rules satisfy estate monotonicity. A claims rule
φ satisfies estate monotonicity if, for all (e, c) ∈ CM and (e′, c) ∈ CM with e ≤ e′, it holds
that φ(e, c) ≤ φ(e′, c).3 It is well known that a bankruptcy rule is continuous in the estate if
it satisfies estate monotonicity, see, e.g., Thomson (2019). The extension of this implication
to the context of claims rules is straightforward.

In the examples in this article, we consider one claims rule in particular, namely the
proportional rule. The proportional rule prescribes a proportional division of the estate with
respect to the proportion of a claimant’s claim to the total claims. The proportional rule
satisfies estate monotonicity.

Definition 2.2. The proportional rule PROP is, for all (e, c) ∈ CM , and all i ∈ M , defined
by

PROPi(e, c) =



0 if e < 0,
ci∑

j∈M cj
e if 0 ≤ e <

∑
j∈M

cj,

ci if e ≥
∑
j∈M

cj.

To each claims problem corresponds a dual claims problem in which the amount to be
divided corresponds to an excess amount, or loss, i.e., the amount by which the total amount
of claims exceeds the estate. So, in particular, if the estate in a claims problem is negative,
the estate in the dual claims problem exceeds the sum of claims. And, if the estate in a
claims problem exceeds the sum of claims, the estate in the dual claims problem is negative.

3Note that the inequality here is a vector inequality, i.e., for two vectors x, y ∈ RM with M being a finite
set, we have x ≤ y if and only if xi ≤ yi for all i ∈ M . We have x < y if and only if x ≤ y and xi < yi for at
least one i ∈ M .
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Definition 2.3. Let (e, c) ∈ CM . The dual claims problem of (e, c) is given by (
∑

i∈M ci−e, c).

Similarly, to each claims rule φ corresponds a dual claims rule that first allocates to all
claimants their full claim; however, as this may be infeasible, claimants subsequently need
to return the excess amount according to the claims rule φ, which now describes how the
losses are allocated.

Definition 2.4. Given a claims rule φ, its dual claims rule φ∗ is, for all (e, c) ∈ CM , given
by

φ∗(e, c) = c− φ(
∑
i∈M

ci − e, c).

It follows that (φ∗)∗ = φ and that φ∗ is indeed a claims rule.4 The existing literature on
duality in claims problems, which does not allow for a negative estate or for an estate to
be strictly larger than the sum of claims, restricts duality of claims rules to the class of
bankruptcy problems (cf. Thomson (2019)).

Finally, note that a dual rule prescribes that each claimant receives its full claim if the
estate is strictly larger than the sum of claims. If this happens, all debts are paid which
leaves a positive leftover estate equal to e −

∑
i∈M ci. Hence, in the dual claims problem

a value of e −
∑

i∈M ci is the rightful amount to be used for own consumption before the
claimants are paid. A dual argument applies in case the estate is negative. In that case, the
dual rule prescribes zero to all claimants which leaves a negative leftover estate such that
the estate in the dual problem exceeds the sum of claims. Consequently, all claimants get
paid their full claim in the dual problem.

3 Duality in mutual claims problems

Mutual claims problems represent financial networks and generalize claims problems by al-
lowing for multiple estates and mutual claims. A mutual claims problem is a pair (E,C) ∈
RN × RN×N

+ in which N is a finite set of agents, E = (ei)i∈N is an estates vector, and
C = (cij)i,j∈N is a claims matrix. Each coordinate ei of E represents the, possibly negative,
estate corresponding to agent i ∈ N . The claims matrix C represents mutual liabilities be-
tween agents. Each cell cij of C represents the rightful non-negative claim of agent j ∈ N on
agent i ∈ N . Row i in C thus captures creditors of agent i, whereas column i of C captures
debtors of agent i. We assume that agents have no claim on themselves, i.e., cii = 0 for all
i ∈ N . No additional conditions are imposed on the claims matrix, in particular, there is no
condition on the relation between claims cij and cji for i ̸= j. The class of all mutual claims
problems on N is denoted by LN .

As we will see, negative estates turn out to be imperative to formulate duality for mutual
claims problems. From a duality perspective, a negative estate corresponds to the amount
used for own consumption before claimants are paid. Interestingly, an agent that has a

4We do not explicitly prove these two statements here because they will be proved later on in the more
general setting of mutual claims problems, see Proposition 4.3 and Proposition 4.4, respectively.

6



negative estate initially, can still make payments to other agents if its incoming payments
exceed the value of its negative estate.5

To each mutual claims problem corresponds a dual mutual claims problem. The loss of
an agent, being equal to its liabilities to the other agents minus its estate and claims on the
other agents, serves as the estate of this agent in a dual mutual claims problem. Agents for
which the loss is positive are essentially bankrupt as they are never able to pay off all debts,
even if they receive their full claims on the other agents.

Definition 3.1. Let (E,C) ∈ LN . The vector ℓ(E,C) ∈ RN of losses with respect to (E,C)
is, for all i ∈ N , given by

ℓi(E,C) =
∑
j∈N

cij − ei −
∑
j∈N

cji.

The dual mutual claims problem of (E,C) is then given by (ℓ(E,C), C).

The definition of the loss of an agent is in accordance with the claims problem setting where
the excess amount, i.e., the loss, is equal to the sum of claims minus the estate. It is more
general here because we further subtract all the claims on other agents.

Negative losses, and thus negative estates in a dual mutual claims problem, are naturally
occurring. If the value of the assets in a financial network is positive, then the value of the
losses is negative, which is why at least one agent has a negative loss. Formally, if (E,C) ∈
LN is such that

∑
i∈N ei > 0, then

∑
i∈N ℓi(E,C) < 0, which implies that ℓi(E,C) < 0 for

at least one agent i ∈ N in the dual mutual claims problem (ℓ(E,C), C).
The following example illustrates duality in mutual claims problems. In fact, the mutual

claims problem in the following example is the leading mutual claims problem throughout
this article.

Example 3.1. Consider the mutual claims problem (E,C) ∈ LN given by N = {1, 2, 3, 4},

E =


1
−3
3
0

 and C =


0 2 0 2
2 0 0 0
1 1 0 0
2 1 0 0

 .

The losses of the agents are given by

ℓ(E,C) = (4, 2, 2, 3)− (1,−3, 3, 0)− (5, 4, 0, 2) = (−2, 1,−1, 1).

Hence, the corresponding dual mutual claims problem (ℓ(E,C), C) is given by

ℓ(E,C) =


−2
1
−1
1

 and C =


0 2 0 2
2 0 0 0
1 1 0 0
2 1 0 0

 .

△
5As negative estates are intrinsic to the agents, we refrain from making them artificially non-negative by

introducing an outside sector and replacing a negative estate by a liability towards the outside sector. In
fact, as we illustrate in Appendix A, even if one were to make estates non-negative in a way that is common
in the literature, one runs into problems that make duality unnecessarily complicated.
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The following proposition states that, for each agent, the ‘loss of its loss’ equals its initial
estate. Hence, for each mutual claims problem (E,C) ∈ LN , the dual of the dual mutual
claims problem, (ℓ(ℓ(E,C), C), C), is equal to (E,C).

Proposition 3.2. Let (E,C) ∈ LN . Then, ℓ(ℓ(E,C), C) = E.

Proof. Let i ∈ N . Then,

ℓi(ℓ(E,C), C) =
∑
j∈N

cij − ℓi(E,C)−
∑
j∈N

cji

=
∑
j∈N

cij −
∑
j∈N

cij + ei +
∑
j∈N

cji −
∑
j∈N

cji

= ei.

Mutual claims problems and claims problems are related in the following way. For in-
stance, if (e, c) ∈ CM is a claims problem with M = {1, 2, . . . ,m}, then (e, c) can be associ-
ated with any mutual claims problem (E,C) ∈ L{0}∪M given by

E =


e
e1
...
em

 , C =


0 c1 . . . cm
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 , (3.1)

where, for each i ∈ M , ei is a real number that corresponds to the estate of agent i ∈ M .
Moreover, the dual mutual claims problem (ℓ(E,C), C) of the mutual claims problem (E,C)
given in (3.1), is given by

ℓ(E,C) =


∑

i∈M ci − e
c1 − e1

...
cm − em

 , C =


0 c1 . . . cm
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ,

which is a mutual claims problem associated with the dual claims problem (
∑

i∈M ci − e, c)
of (e, c).

Let ϕ = (φi)i∈N be a vector of claims rules in which φi : CN\{i} → RN\{i} is the claims rule
associated with agent i ∈ N that prescribes how each creditor of agent i is to be paid.6 We
denote the vector of claims on agent i ∈ N by ci = (cij)j∈N\{i} ∈ RN\{i}

+ . A ϕ-transfer scheme
is a payment matrix P = (pij)i,j∈N , where, for i ̸= j, element pij denotes the payment from
agent i to agent j, in which transfers between agents are dictated by claims rules in ϕ with
an additional consistency requirement. Moreover, as agents have no claim on themselves,
they pay nothing to themselves in a ϕ-transfer scheme.

6The existing literature on financial networks that allows for agent-specific claims rules defines each claims
rule on CN . Since agent i ∈ N has no claim on itself, we define the claims rule of agent i on CN\{i} instead.
Moreover, for self-duality in Section 6, it will be necessary that, for each i ∈ N , a claims rule is defined on
CN\{i}.
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Definition 3.3. Let (E,C) ∈ LN , and let ϕ = (φi)i∈N be a vector of claims rules. The
payment matrix P = (pij)i,j∈N is a ϕ-transfer scheme for (E,C) if, for all i ∈ N , pii = 0
and, for all j ∈ N \ {i},

pij = φi
j(ei +

∑
k∈N

pki, ci). (3.2)

The set of all possible ϕ-transfer schemes for (E,C) is denoted by Pϕ(E,C).

The consistency requirement on the transfers between agents implies that, for each agent, its
payment to any other agent follows from allocating its initial estate plus incoming payments
in accordance with its claims rule.

The following example provides a PROP-transfer scheme for the leading mutual claims
problem.

Example 3.2. Reconsider the mutual claims problem (E,C) ∈ LN of Example 3.1 given by
N = {1, 2, 3, 4},

E =


1
−3
3
0

 and C =


0 2 0 2
2 0 0 0
1 1 0 0
2 1 0 0

 .

Let ϕ = (PROP,PROP,PROP,PROP) ≡ PROP. The payment matrix

P =


0 11

2
0 11

2

0 0 0 0
1 1 0 0
1 1

2
0 0


is a PROP-transfer scheme for (E,C) because, for all i ∈ N , pii = 0, and

(11
2
, 0, 11

2
) = PROP(1 + 1 + 1, (2, 0, 2)), (Agent 1)

(0, 0, 0) = PROP(−3 + 11
2
+ 1 + 1

2
, (2, 0, 0)), (Agent 2)

(1, 1, 0) = PROP(3 + 0, (1, 1, 0)), (Agent 3)

and (1, 1
2
, 0) = PROP(0 + 11

2
, (2, 1, 0)). (Agent 4)

△

In general, we will see that existence of ϕ-transfer schemes for (E,C) ∈ LN follows from
Tarski’s fixed-point theorem (Tarski, 1955) applied to the mapping fϕ(· ;E,C) : [0N×N , C] →
[0N×N , C] which is defined by setting, for all i ∈ N , fϕ

ii(P ;E,C) = 0 and, for all j ∈ N \ {i},

fϕ
ij(P ;E,C) = φi

j(ei +
∑
k∈N

pki, ci) (3.3)
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for all P ∈ [0N×N , C].7,8 Indeed, P = fϕ(P ;E,C) implies that P ∈ Pϕ(E,C), and vice versa.
The mapping fϕ is defined on [0N×N , C], which is a complete lattice with respect to ≤.9 A
lattice is a partially ordered set in which every pair of elements has a greatest lower bound
(bottom) and a least upper bound (top) within the lattice, whereas a complete lattice is a
lattice in which also every non-empty subset has a bottom and a top within the lattice. The
following proposition on the existence of ϕ-transfer schemes generalizes the existing literature
as estates may be negative.

Proposition 3.4. Let (E,C) ∈ LN , and let ϕ = (φi)i∈N be a vector of claims rules. Then,
the set of ϕ-transfer schemes Pϕ(E,C) is non-empty. Moreover, there exists a bottom ϕ-
transfer scheme P ϕ(E,C) such that, for all P ∈ Pϕ(E,C), P ϕ(E,C) ≤ P , and a top

ϕ-transfer scheme P
ϕ
(E,C) such that, for all P ∈ Pϕ(E,C), P

ϕ
(E,C) ≥ P .

Proof. To apply Tarski’s fixed-point theorem, we will show that the mapping fϕ is monotone.
Let P, P ′ ∈ [0N×N , C] with P ≤ P ′. Let i ∈ N . Then, fϕ

ii(P ;E,C) = 0 = fϕ
ii(P

′;E,C), and,
for all j ∈ N \ {i},

fϕ
ij(P ;E,C) = φi

j(ei +
∑
k∈N

pki, ci) ≤ φi
j(ei +

∑
k∈N

p′ki, ci) = fϕ
ij(P

′;E,C).

The inequality follows from estate monotonicity of φi for all i ∈ N . Tarski’s fixed-point
theorem (Tarski, 1955) consequently implies that the set of fixed points of fϕ, given by
Pϕ(E,C), is non-empty and a complete lattice with respect to ≤.

Proposition 3.4 extends existing results in the literature. Eisenberg and Noe (2001) shows
Proposition 3.4 restricted to proportional claims rules and non-negative estates, whereas
Elsinger (2009) shows the result restricted to proportional claims rules when estates may
also be negative. Csóka and Herings (2023) shows Proposition 3.4 for arbitrary agent-
specific claims rules and non-negative estates. All these articles also use Tarski’s fixed-point
theorem for the proof. Alternatively, Groote Schaarsberg, Reijnierse, and Borm (2018) uses
a constructive proof to show existence of ϕ-transfer schemes when all agents use the same
arbitrary claims rule and estates are non-negative. Ketelaars and Borm (2021) extends this
constructive proof to arbitrary agent-specific claims rules and explicitly characterize the
bottom ϕ-transfer scheme. Moreover, Csóka and Herings (2018) shows Proposition 3.4 for a
discrete setup, but not allowing for negative estates.

There exists a one-to-one correspondence between ϕ-transfer schemes in a mutual claims
problem and in its corresponding dual mutual claims problem. If the matrix P is a ϕ-transfer
scheme for (E,C) ∈ LN , with ϕ = (φi)i∈N a vector of claims rules, then the matrix C −P is
a ϕ∗-transfer scheme for the dual problem (ℓ(E,C), C), and vice versa. Here, ϕ∗ = ((φi)∗)i∈N
is the vector of dual claims rules in which (φi)∗ is the dual claims rule of φi as defined in
Definition 2.4.

7Here, [0N×N , C] = {P ∈ RN×N | for all i, j ∈ N, 0 ≤ pij ≤ cij}.
8In the notation, the mapping fϕ explicitly incorporates (E,C) as we will use fϕ with respect to

(ℓ(E,C), C) as well.
9The partial order ≤ is reflexive, antisymmetric, and transitive.
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Theorem 3.5. Let (E,C) ∈ LN , and let ϕ = (φi)i∈N be a vector of claims rules with
associated dual claims rule vector ϕ∗ = ((φi)∗)i∈N . Then, P ∈ Pϕ(E,C) if and only if
(C − P ) ∈ Pϕ∗

(ℓ(E,C), C).

Proof. Using Proposition 3.2, it readily follows that it suffices to show that (C − P ) ∈
Pϕ∗

(ℓ(E,C), C) if P ∈ Pϕ(E,C).
Let P = (pij)i,j∈N ∈ Pϕ(E,C). Let i ∈ N . Then, cii − pii = 0, and, for all j ∈ N \ {i},

cij − pij = cij − φi
j(ei +

∑
k∈N

pki, ci)

= (φi)∗j(
∑
k∈N

cik − ei −
∑
k∈N

pki, ci)

= (φi)∗j(
∑
k∈N

cik −
∑
k∈N

cki − ei +
∑
k∈N

cki −
∑
k∈N

pki, ci)

= (φi)∗j(ℓ(E,C) +
∑
k∈N

(cki − pki), ci),

where the first equality follows from P ∈ Pϕ(E,C), and the second equality follows from
duality of φi.

In other words, Theorem 3.5 states that, if we have a ϕ-transfer scheme with respect to what
is available, then we also have a corresponding ϕ∗-transfer scheme with respect to what is
missing, and vice versa.

If all agents have a strictly negative estate, then the set of ϕ-transfer schemes comprises
only of the zero matrix; conversely, if all agents have a strictly negative loss, then the set of
ϕ-transfer schemes comprises only of the claims matrix. In the latter, a strictly negative loss
means that the estate plus all claims on other agents is strictly larger than the liabilities.
These observations are formally stated in the following proposition.

Proposition 3.6. Let (E,C) ∈ LN , and let ϕ = (φi)i∈N be a vector of claims rules. Then,

(i) if, for all i ∈ N , ei < 0, then Pϕ(E,C) = {0N×N};

(ii) if, for all i ∈ N , ℓi(E,C) < 0, then Pϕ(E,C) = {C}.

Proof. Let P = (pij)i,j∈N be a ϕ-transfer scheme for (E,C). First, we explicitly show (i).
Subsequently, we will use a duality argument to show (ii).

(i). Let ei < 0 for all i ∈ N . Let

S = {i ∈ N | there is a k ∈ N such that pik > 0}.

We first prove that, for all i ∈ S, it holds that

ei ≥
∑
j∈N

pij −
∑
j∈N

pji. (3.4)
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To this end, let i ∈ S and k ∈ N be such that pik > 0. Then, since∑
j∈N

pij ≥ pik > 0,

and, by condition (ii) of claims rule φi,∑
j∈N

pij = min{max{0, ei +
∑
j∈N

pji},
∑
j∈N

cij} ≤ max{0, ei +
∑
j∈N

pji},

it follows that ∑
j∈N

pij ≤ ei +
∑
j∈N

pji.

Next, we show that either S = ∅ or S = N . Let S ̸= ∅ and suppose that S ̸= N . Then,
since ∑

i∈S

ei < 0,

and, by (3.4), ∑
i∈S

ei ≥
∑
i∈S

∑
j∈N

pij −
∑
i∈S

∑
j∈N

pji =
∑
i∈S

∑
j∈N\S

pij −
∑
i∈S

∑
j∈N\S

pji,

it would follow that

0 =
∑
i∈S

∑
j∈N\S

pji >
∑
i∈S

∑
j∈N\S

pij ≥ 0.

However, if S = N , then we arrive at a contradiction as well because (3.4) would imply that

0 >
∑
i∈N

ei ≥
∑
i∈N

∑
j∈N

pij −
∑
i∈N

∑
j∈N

pji = 0,

Hence, we can conclude that S = ∅, so pij = 0 for all i, j ∈ N .
(ii). Let ℓi(E,C) < 0 for all i ∈ N , and let ϕ∗ be the dual claims rule vector associated

with ϕ. Then, as we have shown in part (i), Pϕ∗
(ℓ(E,C), C) = {0N×N}, so Theorem 3.5

implies that Pϕ(E,C) = {C}.

Note, however, that Proposition 3.6 cannot be extended to situations where estates are zero
or losses are zero.10

10For example, consider the three-agent mutual claims problem (E,C) given by

E =

0
0
0

 and C =

0 1 0
1 0 0
0 0 0

 .

Then, for all i ∈ N , ei = 0 and ℓi(E,C) = 0. In this case, for any ϕ, Pϕ(E,C) = {λC |λ ∈ [0, 1]}.
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The following theorem shows that there is a natural relation between the bottom (resp.
top) ϕ-transfer scheme of a mutual claims problem and the top (resp. bottom) ϕ∗-transfer
scheme of the corresponding dual mutual claims problem. That is, the bottom (resp. top)
ϕ-transfer scheme based on the estates is equal to the claims matrix minus the top (resp.
bottom) ϕ∗-transfer scheme based on the losses.

Theorem 3.7. Let (E,C) ∈ LN , and let ϕ be a vector of claims rules with associated dual
claims rules vector ϕ∗. Then,

(i) P ϕ(E,C) = C − P
ϕ∗

(ℓ(E,C), C);

(ii) P
ϕ
(E,C) = C − P ϕ∗

(ℓ(E,C), C).

Proof. First, we show that C − P
ϕ∗

(ℓ(E,C), C) is the bottom ϕ-transfer scheme for (E,C).

For all P ∈ Pϕ∗
(ℓ(E,C), C), it holds that P ≤ P

ϕ∗

(ℓ(E,C), C), and consequently that

C −P
ϕ∗

(ℓ(E,C), C) ≤ C −P . From Theorem 3.5 it follows that (C −P ) ∈ Pϕ(E,C) if and

only if P ∈ Pϕ∗
(ℓ(E,C), C). Therefore, it follows that P ϕ(E,C) = C − P

ϕ∗

(ℓ(E,C), C).
Second, by applying the same arguments to (ℓ(E,C), C) with respect to ϕ∗, we obtain

that P ϕ∗
(ℓ(E,C), C) = C − P

(ϕ∗)∗

(ℓ(ℓ(E,C), C), C) = C − P
ϕ
(E,C).

It is well known that ϕ-transfer schemes for a mutual claims problem need not necessarily
be unique, so there may exist agents that pay differently under the bottom ϕ-transfer scheme
and the top ϕ-transfer scheme.

Definition 3.8. Let (E,C) ∈ LN , and let ϕ be a vector of claims rules. Let P ϕ(E,C) =

(pϕ
ij
)i,j∈N and P

ϕ
(E,C) = (pϕij)i,j∈N . Then, the set Iϕ(E,C) ⊆ N is defined by

Iϕ(E,C) = {i ∈ N | pϕ
ij
< pϕij for some j ∈ N}.

From Theorem 3.7 it directly follows that ϕ-transfer schemes for a mutual claims problem
are unique if and only if ϕ∗-transfer schemes for the corresponding dual mutual claims prob-
lem are unique. In fact, the set of agents for which payments are not uniquely determined
in a mutual claims problem with respect to ϕ coincides with the set of agents for which
payments are not uniquely determined in the corresponding dual mutual claims problem
with respect to ϕ∗.

Corollary 3.9. Let (E,C) ∈ LN , and let ϕ be a vector of claims rules with associated dual
claims rules vector ϕ∗. Then, Iϕ(E,C) = Iϕ∗

(ℓ(E,C), C).

Eisenberg and Noe (2001) introduces the fictitious default algorithm that computes the
top PROP-transfer scheme for (E,C) ∈ LN efficiently in at most |N | iterations. However,
the algorithm may fall apart in the case that some agents have a negative estate, see, e.g.,
Example 2 in Elsinger (2009). In the discrete setup, also for the case with non-negative
estates, Csóka and Herings (2018) introduces a decentralized clearing process that converges
to the bottom ϕ-transfer scheme in a finite number of iterations.

In general, the bottom (resp. top) ϕ-transfer scheme for (E,C) ∈ LN with respect to ϕ
can be characterized by a, possibly infinite, iterative procedure with respect to the mapping
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fϕ as defined in (3.3). More specifically, let (E,C) ∈ LN , let ϕ be a vector of claims rules,
and, for all k ∈ N, define P k+1 = fϕ(P k;E,C). Ketelaars and Borm (2021) shows that,
in the case all estates are non-negative, the bottom ϕ-transfer scheme is the limit of the
sequence (P k)k∈N with starting point P 1 = 0N×N . In the following theorem, we generalize
this result by allowing for negative estates. Moreover, as the following theorem states, a
characterization of the top ϕ-transfer scheme follows when the starting point P 1 of the
iterative procedure is the claims matrix C. Our proof for the characterization of the top
ϕ-transfer scheme is based on a duality argument.

Theorem 3.10. Let (E,C) ∈ LN , and let ϕ = (φi)i∈N be a vector of claims rules. Then,

(i) P ϕ(E,C) = limk→∞ P k, where, for all k ∈ N, P k+1 = fϕ(P k;E,C) with P 1 = 0N×N ;

(ii) P
ϕ
(E,C) = limk→∞ P k, where, for all k ∈ N, P k+1 = fϕ(P k;E,C) with P 1 = C.

Proof. (i). Let the sequence (P k)k∈N be such that, for all k ∈ N, P k+1 = fϕ(P k;E,C)
with P 1 = 0N×N . We will show that the sequence (P k)k∈N is monotonically increasing, i.e.,
P 1 ≤ P 2 ≤ P 3 ≤ . . . , and converges to P ϕ(E,C).

Clearly, 0N×N = P 1 ≤ fϕ(P 1;E,C) = P 2. Let k ∈ N. Assume that P ℓ ≤ P ℓ+1 for all
ℓ ∈ {1, . . . , k}. Then, as the mapping fϕ is monotone, which was shown in the proof of
Proposition 3.4, P k+1 = fϕ(P k;E,C) ≤ fϕ(P k+1;E,C) = P k+2. Therefore, by induction,
the sequence (P k)k∈N is monotonically increasing. As the sequence is bounded from above
by C, the monotone convergence theorem for sequences implies that it has a limit. Let
P ′ = limk→∞ P k. Then, P ′ = limk→∞ P k = limk→∞ fϕ(P k;E,C) = fϕ(limk→∞ P k;E,C) =
fϕ(P ′;E,C), in which the third equality follows from the fact that, for all i ∈ N , φi is
continuous in the estate, so that fϕ is continuous. Hence, it holds that P ′ ∈ Pϕ(E,C).

We will now show that P ′ = P ϕ(E,C). Because 0N×N = P 1 ≤ P ϕ(E,C), it holds that
P 2 = fϕ(P 1;E,C) ≤ fϕ(P ϕ(E,C);E,C) = P ϕ(E,C), in which the last equality follows
from the fact that P ϕ(E,C) ∈ Pϕ(E,C). Let k ∈ N. Assume that P ℓ+1 ≤ P ϕ(E,C) for
all ℓ ∈ {1, . . . , k}. Therefore, P k+2 = fϕ(P k+1;E,C) ≤ fϕ(P ϕ(E,C);E,C) = P ϕ(E,C).
Hence, by induction, it holds that P k ≤ P ϕ(E,C) for all k ∈ N, which implies that P ′ ≤
P ϕ(E,C). The payment matrix P ϕ(E,C) is the bottom ϕ-transfer scheme for (E,C), i.e.,
P ′ ≥ P ϕ(E,C), so it must hold that P ′ = P ϕ(E,C).

(ii). Applying (i) to (ℓ(E,C), C) with respect to ϕ∗, where ϕ∗ = ((φi)∗)i∈N is the dual
claims rule vector associated with ϕ, we obtain that

P ϕ∗
(ℓ(E,C), C) = lim

k→∞
Qk,

where, for all k ∈ N, Qk = (qkij)i,j∈N with Qk+1 = fϕ∗
(Qk; ℓ(E,C), C) and Q1 = 0N×N . From

Theorem 3.7 it follows that P ϕ∗
(ℓ(E,C), C) = C − P

ϕ
(E,C), which implies that

P
ϕ
(E,C) = lim

k→∞
(C −Qk).

Let the sequence (P k)k∈N be such that, for all k ∈ N, P k+1 = fϕ(P k;E,C) with P 1 = C.
To show (ii), it suffices to show that, for all k ∈ N, P k = C − Qk. Clearly, P 1 = C =

C − 0N×N = C − Q1. Let k ∈ N. Assume that P ℓ = C − Qℓ for all ℓ ∈ {1, . . . , k}. Then,
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P k+1 = fϕ(P k;E,C) = fϕ(C −Qk;E,C) = C −Qk+1, where the last equality follows from
the fact that, for all i ∈ N , cii − qk+1

ii = 0 = fϕ
ii(C −Qk;E,C), and, for all j ∈ N \ {i},

cij − qk+1
ij = cij − fϕ∗

ij (Q
k; ℓ(E,C), C)

= cij − (φi)∗j(ℓi(E,C) +
∑
h∈N

qkhi, ci)

= φi
j(
∑
h∈N

cih − ℓi(E,C)−
∑
h∈N

qkhi, ci)

= φi
j(
∑
h∈N

cih + ei +
∑
h∈N

chi −
∑
h∈N

cih −
∑
h∈N

qkhi, ci)

= φi
j(ei +

∑
h∈N

(chi − qkhi), ci)

= fϕ
ij(C −Qk;E,C),

in which the third equality follows from the definition of (φi)∗ as the dual of φi. Hence, by
induction, it holds that P k = C −Qk for all k ∈ N.

Theorem 3.10 and the dual relationship as given in Theorem 3.7 highlight that one obtains
the top (resp. bottom) ϕ-transfer scheme for the primal problem by computing the bottom
(resp. top) ϕ∗-transfer scheme for the dual problem.

As the following example shows, even if agents pay their claimants in accordance with
the proportional rule, ϕ-transfer schemes for a mutual claims problem need not necessarily
be unique. Under the assumption that all estates are non-negative, multiplicity of PROP-
transfer schemes can only occur when at least one agent has an estate of zero (cf. Eisenberg
and Noe (2001), and Csóka and Herings (2023)). However, as the dual mutual claims prob-
lem in the following example demonstrates, when allowing for possibly negative estates,
multiplicity may also occur when some agents have a negative estate, and the remaining
agents have a positive estate.

Example 3.3. Reconsider the mutual claims problem (E,C) ∈ LN of Example 3.1 given by
N = {1, 2, 3, 4},

E =


1
−3
3
0

 and C =


0 2 0 2
2 0 0 0
1 1 0 0
2 1 0 0

 .

Let ϕ = (PROP,PROP,PROP,PROP) ≡ PROP. Using Theorem 3.10, we can determine
the bottom PROP-transfer scheme and the top PROP-transfer scheme for (E,C), which are
given by

PPROP(E,C) =


0 11

2
0 11

2

0 0 0 0
1 1 0 0
1 1

2
0 0

 and P
PROP

(E,C) =


0 2 0 2
2
3

0 0 0
1 1 0 0
11
3

2
3

0 0

 ,
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respectively. The set of agents that pay differently under both PROP-transfer schemes is
given by IPROP(E,C) = {1, 2, 4}. Note that agent 2 pays a positive amount under the top
PROP-transfer scheme, even though its initial estate is negative.

Now, consider the corresponding dual problem (ℓ(E,C), C), given by

ℓ(E,C) =


−2
1
−1
1

 and C =


0 2 0 2
2 0 0 0
1 1 0 0
2 1 0 0

 .

Since PROP = PROP∗,

PPROP(ℓ(E,C), C) = C − P
PROP

(E,C) =


0 0 0 0
11
3

0 0 0
0 0 0 0
2
3

1
3

0 0

 ,

P
PROP

(ℓ(E,C), C) = C − PPROP(E,C) =


0 1

2
0 1

2

2 0 0 0
0 0 0 0
1 1

2
0 0

 ,

and IPROP(ℓ(E,C), C) = IPROP(E,C) = {1, 2, 4}. Finally, note that agent 3 pays off all
its claims in every PROP-transfer scheme for (E,C), whereas agent 3 pays nothing in every
PROP-transfer scheme for (ℓ(E,C), C). △

4 Duality of transfer rules

In financial networks, a clearing mechanism prescribes how payments between agents should
take place to settle their mutual liabilities. We formalize a clearing mechanism by means of
a ϕ-based transfer rule, which assigns to each mutual claims problem exactly one ϕ-transfer
scheme.

Definition 4.1. Let ϕ be a vector of claims rules. A ϕ-based transfer rule τϕ on LN assigns
to each (E,C) ∈ LN exactly one transfer scheme P ∈ Pϕ(E,C).

We associate to each ϕ-based transfer rule τϕ a dual ϕ-based transfer rule. A dual ϕ-based
transfer rule first lets all agents settle all their mutual claims, but as there may exist agents
for which the estate plus outstanding claims are insufficient to pay off all debts, settling all
claims may be infeasible, so an excess amount, i.e., a loss, has to be returned in accordance
with τϕ.

Definition 4.2. Given a ϕ-based transfer rule τϕ, its dual transfer rule (τϕ)∗ is, for all
(E,C) ∈ LN , given by

(τϕ)∗(E,C) = C − τϕ(ℓ(E,C), C).
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Agents with a positive loss are essentially bankrupt because the amount they have at
their disposal is insufficient to pay off their debts, even if they are paid in full by their
debtors. Such agents have a positive estate in the dual problem and therefore always make
repayments. Nevertheless, agents with a negative loss, and thus a negative estate in the
dual problem, may not always make repayments because repaying some of the excess they
received is of lower priority; this is also what Example 3.3 demonstrates with respect to
agents 1 and 3.

As the following proposition states, the dual of a dual ϕ-based transfer rule (τϕ)∗ coincides
with τϕ.

Proposition 4.3. Let (E,C) ∈ LN , and let ϕ be a vector of claims rules. Then, ((τϕ)∗)∗(E,C) =
τϕ(E,C).

Proof. It holds that

((τϕ)∗)∗(E,C) = C − (τϕ)∗(ℓ(E,C), C)

= C − (C − τϕ(ℓ(ℓ(E,C), C), C))

= τϕ(E,C),

where the third equality follows Proposition 3.2.

Furthermore, a dual ϕ-based transfer rule (τϕ)∗ is a ϕ∗-based transfer rule because it
prescribes a ϕ∗-transfer scheme.

Proposition 4.4. Let (E,C) ∈ LN , and let ϕ be a vector of claims rules with associated
dual claims rules vector ϕ∗. Then, (τϕ)∗(E,C) ∈ Pϕ∗

(E,C).

Proof. As τϕ(ℓ(E,C), C) ∈ Pϕ(ℓ(E,C), C), Theorem 3.5 implies that (τϕ)∗(E,C) = (C −
τϕ(ℓ(E,C), C)) ∈ Pϕ∗

(E,C).

Note that, even though τϕ
∗
and (τϕ)∗ both prescribe a ϕ∗-transfer scheme, they need not

necessarily prescribe the same ϕ∗-transfer scheme. The following example illustrates this
and additionally illustrates an approach to construct all ϕ-transfer schemes when ϕ is given
by PROP.

Example 4.1. Reconsider the mutual claims problem (E,C) ∈ LN of Example 3.1 given by
N = {1, 2, 3, 4},

E =


1
−3
3
0

 and C =


0 2 0 2
2 0 0 0
1 1 0 0
2 1 0 0

 ,

in which all agents use the proportional rule as their underlying payment mechanism, i.e.,
ϕ ≡ PROP.
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Any PROP-transfer scheme for (E,C) can be written as an element-wise convex combina-
tion of the bottom PROP-transfer scheme and the top PROP-transfer scheme. More specif-

ically, if PPROP(E,C) = (p
ij
)i,j∈N and P

PROP
(E,C) = (pij)i,j∈N , consider P λ = (pλij)i,j∈N ,

where, for all i, j ∈ N ,

pλij = (1− λij)pij + λijpij

with λij ∈ [0, 1]. By doing so, we obtain

P λ =


0 11

2
+ 1

2
λ12 0 11

2
+ 1

2
λ14

2
3
λ21 0 0 0
1 1 0 0

1 + 1
3
λ41

1
2
+ 1

6
λ42 0 0

 .

Condition (3.2) of a ϕ-transfer scheme requires that

(11
2
+ 1

2
λ12, 0, 1

1
2
+ 1

2
λ14) = PROP(1 + 2 + 2

3
λ21 +

1
3
λ41, (2, 0, 2)), (Agent 1)

(2
3
λ21, 0, 0) = PROP(−3 + 3 + 1

2
λ12 +

1
6
λ42, (2, 0, 0)), (Agent 2)

(1, 1, 0) = PROP(3 + 0, (1, 1, 0)), (Agent 3)

and (1 + 1
3
λ41,

1
2
+ 1

6
λ42, 0) = PROP(0 + 11

2
+ 1

2
λ14, (2, 1, 0)). (Agent 4)

It follows that λ12 = λ14 = λ21 = λ41 = λ42. Therefore, the set of PROP-transfer schemes
for (E,C) comprises of

P λ =


0 11

2
+ 1

2
λ 0 11

2
+ 1

2
λ

2
3
λ 0 0 0
1 1 0 0

1 + 1
3
λ 1

2
+ 1

6
λ 0 0

 (4.1)

with λ ∈ [0, 1]. Note that P λ = PPROP(E,C) if λ = 0 and P λ = P
PROP

(E,C) if λ = 1.
Since PROP = PROP∗, both τPROP∗

(E,C) and (τPROP)∗(E,C) select exactly one PROP-
transfer scheme of the form (4.1). However, note that they need not necessarily prescribe

the same one, e.g., τPROP∗
(E,C) = P

1
3 , whereas (τPROP)∗(E,C) = P

2
3 . △

5 Duality of allocation rules

In the previous section, we focused on ϕ-based transfer rules that prescribe a payment matrix
to settle the mutual liabilities between agents in a mutual claims problem. In this section,
we focus on the allocations that are the result of transfers between agents in accordance with
a ϕ-based transfer rule τϕ. As ϕ-based transfer schemes form the basis for a reallocation of
the total estate, we call these reallocations ϕ-based transfer allocations.

Definition 5.1. Let (E,C) ∈ LN , let ϕ be a vector of claims rules, and let P = (pij)i,j∈N ∈
Pϕ(E,C). The vector aϕ(P ) ∈ RN is the ϕ-based transfer allocation corresponding to P if,
for all i ∈ N ,

aϕi (P ) = ei +
∑
j∈N

pji −
∑
j∈N

pij.
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Note that, indeed, a ϕ-based transfer allocation is a reallocation of the total estate, because,
for all P ∈ Pϕ(E,C), ∑

i∈N

aϕi (P ) =
∑
i∈N

ei.

The following lemma states that an agent has paid off all its debts if it has a strictly
positive ϕ-based transfer allocation, whereas an agent has paid nothing to all agents if it has
a strictly negative ϕ-based transfer allocation.

Lemma 5.2. Let (E,C) ∈ LN , let ϕ = (φi)i∈N be a vector of claims rules, let P =
(pij)i,j∈N ∈ Pϕ(E,C), and let i ∈ N . Then,

(i) if aϕi (P ) > 0, then pij = cij for all j ∈ N ;

(ii) if aϕi (P ) < 0, then pij = 0 for all j ∈ N .

Proof. We will first show (i) and subsequently use a duality argument to show (ii).
Let aϕi (P ) > 0. Then,

0 ≤
∑
j∈N

pij < ei +
∑
j∈N

pji. (5.1)

Condition (3.2) of a ϕ-transfer scheme and condition (ii) of claims rule φi imply that∑
j∈N

pij =
∑
j∈N

φi
j(ei +

∑
k∈N

pki, ci) = min{max{0, ei +
∑
j∈N

pji},
∑
j∈N

cij}. (5.2)

From (5.1) and (5.2) it follows that
∑

j∈N pij =
∑

j∈N cij. Condition (i) of claims rule φi

consequently implies that pij = cij for all j ∈ N .

Second, let aϕi (P ) < 0. Then,

−ei −
∑
j∈N

pji +
∑
j∈N

pij > 0,

which is equivalent to

ℓi(E,C) +
∑
j∈N

(cji − pji)−
∑
j∈N

(cij − pij) > 0. (5.3)

Theorem 3.5 implies that (C−P ) ∈ Pϕ∗
(ℓ(E,C), C), where ϕ∗ is the dual claims rules vector

associated with ϕ. Therefore, the left-hand side of (5.3) is a ϕ∗-based transfer allocation for
(ℓ(E,C), C) with respect to (C − P ), and by result (i) we must have that cij − pij = cij for
all j ∈ N , which means that pij = 0 for all j ∈ N .

Although a mutual claims problem may lead to different ϕ-transfer schemes, their result-
ing ϕ-based transfer allocations are identical. Groote Schaarsberg et al. (2018) shows this
result for mutual claims problems (E,C) ∈ LN with E ≥ 0 and ϕ = (φi)i∈N with φi = φ
for all i ∈ N . Csóka and Herings (2023) shows this result for arbitrary φ. The proof of
Proposition 5.3 extends existing proofs to deal with the case of negative estates.
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Proposition 5.3. Let (E,C) ∈ LN , let ϕ = (φi)i∈N be a vector of claims rules, and let
P, P ′ ∈ Pϕ(E,C). Then, aϕ(P ) = aϕ(P ′).

Proof. Let P = (pij)i,j∈N and P ′ = (p′ij)i,j∈N . For notational convenience, set a = aϕ(P ) and
a′ = aϕ(P ′).

The proof follows by contradiction. We will assume that ak < a′k for some k ∈ N and
show that it implies that ai ≤ a′i for all i ∈ N \ {k}, which leads to a contradiction because
then ∑

i∈N

ei =
∑
i∈N

ai <
∑
i∈N

a′i =
∑
i∈N

ei.

So, let k ∈ N be such that ak < a′k. If a′k > 0, then, by Lemma 5.2, p′kj = ckj for all
j ∈ N and consequently pkj ≤ p′kj for all j ∈ N . On the other hand, if a′k ≤ 0, then ak < 0,
and Lemma 5.2 implies that pkj = 0 for all j ∈ N ; again, pkj ≤ p′kj for all j ∈ N .

Let

S = {i ∈ N | pij ≤ p′ij for all j ∈ N and ai ≤ a′i}.

Clearly, k ∈ S. It suffices to prove that S = N .
Suppose that S ̸= N . Since

∑
i∈S ai <

∑
i∈S a

′
i, we have∑

i∈S

∑
j∈N

pji −
∑
i∈S

∑
j∈N

pij <
∑
i∈S

∑
j∈N

p′ji −
∑
i∈S

∑
j∈N

p′ij.

This implies that

0 ≤
∑
i∈S

∑
j∈N\S

(p′ij − pij) <
∑
i∈S

∑
j∈N\S

(p′ji − pji),

and so we have ∑
i∈S

∑
j∈N\S

pji <
∑
i∈S

∑
j∈N\S

p′ji.

Therefore, there must exist an i ∈ S and h ∈ N \ S such that phi < p′hi.
From phi < p′hi ≤ chi and (i) of Lemma 5.2 it follows that ah ≤ 0; from p′hi > phi ≥ 0 and

(ii) of Lemma 5.2 it follows that a′h ≥ 0.
Hence, as h ∈ N \ S, there exists an ℓ ∈ N , ℓ ̸= h, such that phℓ > p′hℓ.
Moreover, since phi < p′hi,

phi = φh
i (eh +

∑
j∈N

pjh, ch) < φh
i (eh +

∑
j∈N

p′jh, ch) = p′hi.

So, estate monotonicity of φh implies that

eh +
∑
j∈N

pjh < eh +
∑
j∈N

p′jh.

However, as a consequence this would imply that

phℓ = φh
ℓ (eh +

∑
j∈N

pjh, ch) ≤ φh
ℓ (eh +

∑
j∈N

p′jh, ch) = p′hℓ,

which contradicts phℓ > p′hℓ.
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From Proposition 5.3 it follows that the reallocation of the total estate according to a
ϕ-transfer scheme depends only on ϕ and not on the exact underlying ϕ-transfer scheme.

Definition 5.4. Let ϕ be a vector of claims rules. The ϕ-based allocation rule µϕ on LN

assigns to each (E,C) ∈ LN the ϕ-based transfer allocation aϕ(P ), in which P ∈ Pϕ(E,C).11

A ϕ-based allocation rule is thus defined as the rule that maps, for all mutual claims problems,
the corresponding ϕ-based transfer rules into a single allocation. More specifically, for all
(E,C) ∈ LN and τϕ(E,C), µϕ(E,C) = aϕ(τϕ(E,C)).

Given a mutual claims problem (E,C) ∈ LN , a ϕ-based allocation rule µϕ prescribes a
reallocation of the total estate

∑
i∈N ei on the basis of a ϕ-transfer scheme P ∈ Pϕ(E,C). We

define the corresponding dual allocation rule (µϕ)∗ as the rule that prescribes a reallocation
of the total estate

∑
i∈N ei as well, however from the perspective of the corresponding dual

problem (ℓ(E,C), C) by allocating the losses with respect to µϕ.

Definition 5.5. Given a ϕ-based allocation rule µϕ, its dual allocation rule (µϕ)∗ is, for all
(E,C) ∈ LN , given by

(µϕ)∗(E,C) = −µϕ(ℓ(E,C), C).

In both a mutual claims problem (E,C) ∈ LN and its corresponding dual problem (ℓ(E,C), C),
the total estate

∑
i∈N ei is reallocated among the agents because

−
∑
i∈N

ℓi(E,C) =
∑
i∈N

(ei +
∑
j∈N

cji −
∑
j∈N

cij) =
∑
i∈N

ei.

The following theorem states that (µϕ)∗ is a ϕ∗-based allocation rule because the allo-
cation that it prescribes is associated with a ϕ∗-transfer scheme prescribed by a ϕ∗-based
transfer rule (τϕ)∗. In this way, the theorem also shows that the definition of a dual alloca-
tion rule (µϕ)∗ is natural and consistent in the sense that (µϕ)∗ corresponds to (τϕ)∗ in the
same way as µϕ corresponds to τϕ as discussed earlier.

Theorem 5.6. Let (E,C) ∈ LN , let ϕ be a vector of claims rules with associated dual claims
rules vector ϕ∗, and let τϕ be a ϕ-based transfer rule. Then, (µϕ)∗(E,C) = aϕ

∗
((τϕ)∗(E,C)).

Proof. Let i ∈ N . Then,

(µϕ)∗i (E,C) = −µϕ
i (ℓ(E,C), C)

= −aϕi (τ
ϕ(ℓ(E,C), C))

= −(ℓi(E,C) +
∑
j∈N

τϕji(ℓ(E,C), C)−
∑
j∈N

τϕij(ℓ(E,C), C))

= ei +
∑
j∈N

cji −
∑
j∈N

cij −
∑
j∈N

τϕji(ℓ(E,C), C) +
∑
j∈N

τϕij(ℓ(E,C), C)

= ei +
∑
j∈N

(cji − τϕji(ℓ(E,C), C))−
∑
j∈N

(cij − τϕij(ℓ(E,C), C))

11In the literature on mutual claims problems, a ϕ-based allocation rule is also called a ϕ-based mutual
claims rule or a ϕ-based mutual liability rule.
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= ei +
∑
j∈N

(τϕ)∗ji(E,C)−
∑
j∈N

(τϕ)∗ij(E,C)

= aϕ
∗

i ((τϕ)∗(E,C)).

The first equality follows from the definition of (µϕ)∗ as the dual of µϕ; the sixth equality
follows from the definition of (τϕ)∗ as the dual of τϕ.

One can take the dual of µϕ as in Definition 5.5, which gives (µϕ)∗. However, one can
also take the dual of ϕ as in Definition 2.4, which gives µϕ∗

. In fact, from Proposition 5.3
and Theorem 5.6 it follows that the dual ϕ-based allocation rule (µϕ)∗ coincides with the ϕ∗-
based allocation rule µϕ∗

. Recall from Example 4.1 that a similar result does not necessarily
hold for ϕ-based transfer rules.

Corollary 5.7. Let (E,C) ∈ LN , and let ϕ be a vector of claims rules with associated dual
claims rules vector ϕ∗. Then, (µϕ)∗(E,C) = µϕ∗

(E,C).

Finally, the following proposition states that the dual of a dual ϕ-based allocation rule
(µϕ)∗ coincides with µϕ.

Proposition 5.8. Let (E,C) ∈ LN , and let ϕ be a vector of claims rules. Then, ((µϕ)∗)∗(E,C) =
µϕ(E,C).

Proof. It holds that

((µϕ)∗)∗(E,C) = −(µϕ)∗(ℓ(E,C), C)

= −(−µϕ(ℓ(ℓ(E,C), C), C))

= µϕ(E,C),

where the third equality follows from Proposition 3.2.

6 Self-duality of transfer and allocation rules

Claims rules that coincide with their corresponding dual rule, are called self-dual. Three
well-known self-dual claims rules in the literature are the proportional rule, the Talmud rule
(Aumann & Maschler, 1985), and the random-arrival rule (O’Neill, 1982).

Definition 6.1. A claims rule φ on CM is self-dual if, for all (e, c) ∈ CM , it holds that
φ(e, c) = φ∗(e, c).

In the special case that the estate e in a claims problem (e, c) ∈ CM equals the total loss∑
i∈M ci − e, i.e., if e = 1

2

∑
i∈M ci, then, for any self-dual claims rule φ,

φ(e, c) = φ∗(e, c) = c− φ(
∑
i∈M

ci − e, c) = c− φ(e, c),

which implies that

φ(e, c) =
1

2
c.

22



We want to extend the notion of self-duality to the mutual claims problem setting. If
(E,C) ∈ LN is such that the estate of each agent equals its loss, i.e., if E = ℓ(E,C), then
half the claims matrix is a ϕ-transfer scheme for (E,C). However, note that this may not
be the only ϕ-transfer scheme for (E,C).

Proposition 6.2. Let (E,C) ∈ LN , and let ϕ = (φi)i∈N be a vector of claims rules in which,
for all i ∈ N , φi is self-dual. If E = ℓ(E,C), then 1

2
C ∈ Pϕ(E,C).

Proof. Let E = ℓ(E,C). Then, for all i ∈ N ,

ei =
1

2
(
∑
j∈N

cij −
∑
j∈N

cji). (6.1)

Clearly, for all i ∈ N , 1
2
cii = 0. Therefore, we need to show that, for all i, j ∈ N with i ̸= j,

1

2
cij = φi

j(ei +
∑
k∈N

1

2
cki, ci).

Let i, j ∈ N with i ̸= j. Then,

1

2
cij =

1

2
φi
j(ei +

∑
k∈N

1

2
cki, ci) +

1

2
(φi)∗j(

∑
k∈N

cik − ei −
∑
k∈N

1

2
cki, ci)

=
1

2
φi
j(ei +

∑
k∈N

1

2
cki, ci) +

1

2
φi
j(
∑
k∈N

cik − ei −
∑
k∈N

1

2
cki, ci)

=
1

2
φi
j(ei +

∑
k∈N

1

2
cki, ci) +

1

2
φi
j(ei +

∑
k∈N

1

2
cki, ci)

= φi
j(ei +

∑
k∈N

1

2
cki, ci).

The first equality follows from the definition of (φi)∗ as the dual of φi; the second equality
follows from self-duality of φi; the third equality follows from (6.1).

The notion of self-duality can be extended to ϕ-based allocation rules and ϕ-based transfer
rules.

Definition 6.3. A ϕ-based allocation rule µϕ on LN is self-dual if, for all (E,C) ∈ LN , it
holds that µϕ(E,C) = (µϕ)∗(E,C).

Thus, self-duality of ϕ-based allocation rules entails that, for all mutual claims problems, the
allocation prescribed by µϕ is equal to the allocation prescribed by its corresponding dual
rule (µϕ)∗.

In the special case that the estate of each agent coincides with its loss in a mutual claims
problem (E,C) ∈ LN , i.e., if E = ℓ(E,C), then a self-dual ϕ-based allocation rule will always
allocate zero to all agents.

Proposition 6.4. Let (E,C) ∈ LN , and let µϕ be a self-dual ϕ-based allocation rule. If
E = ℓ(E,C), then µϕ(E,C) = (µϕ)∗(E,C) = 0.
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Proof. Let E = ℓ(E,C). Then,

µϕ(E,C) = (µϕ)∗(E,C) = −µϕ(ℓ(E,C), C) = −µϕ(E,C), (6.2)

where the first equality follows from self-duality of µϕ, the second equality follows from the
definition of (µϕ)∗ as the dual of µϕ, and the last equality follows from E = ℓ(E,C). From
(6.2) it follows that µϕ(E,C) = 0.

In particular, E = ℓ(E,C) implies that
∑

i∈N ei = 0. In that case, there may exist an i ∈ N
such that ei ̸= 0. Nevertheless, a reallocation of the total estate with respect to a self-dual
ϕ-based allocation rule always yields an allocation of zero to all agents.

The following theorem states that self-duality of the claims rules in ϕ carries over to
self-duality of a ϕ-based allocation rule µϕ, and vice versa.

Theorem 6.5. Let ϕ = (φi)i∈N be a vector of claims rules. The ϕ-based allocation rule µϕ

is self-dual if and only if, for all i ∈ N , φi is self-dual.

Proof. First, let (E,C) ∈ LN and assume that, for all i ∈ N , φi is self-dual, so ϕ = ϕ∗.
Then, it holds that

µϕ(E,C) = µϕ∗
(E,C) = (µϕ)∗(E,C).

Here, the second equality follows from Corollary 5.7. Therefore, µϕ is self-dual.
Second, assume that µϕ is self-dual. Let i ∈ N , and let (e, c) ∈ CN\{i}. Define (E,C) ∈

LN , where ei = e, ej = 0 for all j ∈ N \ {i}, cii = 0, cij = cj for all j ∈ N \ {i}, and cjk = 0
for all j ∈ N \ {i} and k ∈ N . Then, P ϕ(E,C) = {P}, in which P = (pjk)j,k∈N with pjk = 0
for all j ∈ N \ {i} and k ∈ N , pii = 0, and pij = φi

j(e, ci) = φi
j(e, c) for all j ∈ N \ {i}.

Therefore, for all j ∈ N \ {i},

µϕ
j (E,C) = ej +

∑
k∈N

pkj −
∑
k∈N

pjk = pij = φi
j(e, c). (6.3)

Moreover, let ϕ∗ = ((φj)∗)j∈N be the vector of dual claims rules associated with ϕ. Then,
P ϕ∗

(E,C) = {P ∗}, in which P ∗ = (p∗jk)j,k∈N with p∗jk = 0 for all j ∈ N \ {i} and k ∈ N ,
p∗ii = 0, and p∗ij = (φi)∗j(e, ci) = (φi)∗j(e, c) for all j ∈ N \ {i}. Therefore, for all j ∈ N \ {i},

µϕ∗

j (E,C) = ej +
∑
k∈N

p∗kj −
∑
k∈N

p∗jk = p∗ij = (φi)∗j(e, c). (6.4)

Hence, for all j ∈ N \ {i},

φi
j(e, c) = µϕ

j (E,C) = (µϕ)∗j(E,C) = µϕ∗

j (E,C) = (φi)∗j(e, c).

The first equality follows from (6.3); the second equality follows from self-duality of µϕ; the
third equality follows from Corollary 5.7; the fourth equality follows from (6.4). Thus, φi is
self-dual.
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Hence, a ϕ-based allocation rule µϕ is not self-dual if the claims rule of at least one agent is
not self-dual.12

We now turn our attention to self-duality of ϕ-based transfer rules. We will see that
self-duality of ϕ-based transfer rules is a stronger requirement than self-duality of ϕ-based
allocation rules.

A ϕ-based transfer rule τϕ is self-dual if it coincides with its corresponding dual rule
(τϕ)∗.

Definition 6.6. A ϕ-based transfer rule τϕ on LN is self-dual if, for all (E,C) ∈ LN , it
holds that τϕ(E,C) = (τϕ)∗(E,C).

A self-dual ϕ-based transfer rule τϕ thus prescribes, for each mutual claims problem, the
same ϕ-transfer scheme as its corresponding dual ϕ-based transfer rule (τϕ)∗.

Indeed, as the following theorem states, self-duality of ϕ-based transfer rules is a stronger
requirement than self-duality of ϕ-based allocation rules. In the proof, we use the correspon-
dence between µϕ and τϕ as was discussed in Section 5.

Theorem 6.7. Let ϕ = (φi)i∈N be a vector of claims rules. If a ϕ-based transfer rule τϕ is
self-dual, then the ϕ-based allocation rule µϕ is self-dual.

Proof. Let τϕ be self-dual, let (E,C) ∈ LN , and let i ∈ N . Then,

µϕ
i (E,C) = aϕi (τ

ϕ(E,C))

= aϕi ((τ
ϕ)∗(E,C))

= ei +
∑
j∈N

(τϕ)∗ji(E,C)−
∑
j∈N

(τϕ)∗ij(E,C)

= ei +
∑
j∈N

(cji − τϕji(ℓ(E,C), C))−
∑
j∈N

(cij − τϕij(ℓ(E,C), C))

= −ℓi(E,C)−
∑
j∈N

τϕji(ℓ(E,C), C) +
∑
j∈N

τϕij(ℓ(E,C), C)

= −aϕi (τ
ϕ(ℓ(E,C), C))

= −µϕ
i (ℓ(E,C), C)

= (µϕ)∗i (E,C).

The second equality follows from self-duality of τϕ; the fourth equality follows from the
definition of (τϕ)∗ as the dual of τϕ; the last equality follows from the definition of (µϕ)∗ as
the dual of µϕ.

12Furthermore, in Theorem 6.5 it is necessary that, for each i ∈ N , the claims rule φi is defined on CN\{i},
which is unlike the existing literature that defines φi on CN . To see this, consider i ∈ N , and a claims
problem (e, c) ∈ CN with ci > 0. The claim ci of agent i in (e, c) can not be incorporated as a claim on itself
in a mutual claims problem in LN , so the claims matrix of a mutual claims problem in LN associated with
(e, c) does not contain information about ci. As a consequence, a self-dual ϕ-based allocation rule imposes
restrictions only on how φi should divide e among N \ {i} and not on how it should divide e among N .
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Since self-duality of τϕ implies self-duality of µϕ which, in turn, implies self-duality of
the claims rules in the corresponding claims rules vector, we obtain the following corollary.

Corollary 6.8. Let ϕ = (φi)i∈N be a vector of claims rules. If a ϕ-based transfer rule τϕ is
self-dual, then, for all i ∈ N , φi is self-dual.

At the same time, even if all claims rules in the claims rules vector ϕ are self-dual, a
ϕ-based transfer rule need not be self-dual, as the following example demonstrates.

Example 6.1. Reconsider the mutual claims problem (E,C) ∈ LN of Example 3.1 given by
N = {1, 2, 3, 4},

E =


1
−3
3
0

 and C =


0 2 0 2
2 0 0 0
1 1 0 0
2 1 0 0

 ,

in which all agents use the proportional rule as their underlying payment mechanism, i.e.,
ϕ ≡ PROP.

To guarantee self-duality of τPROP with respect to (E,C), it is required that τPROP(E,C) =
(τPROP)∗(E,C). Proposition 4.4 implies that the dual PROP-transfer rule (τPROP)∗ pre-
scribes a PROP-transfer scheme because the proportional rule is self-dual.

Let τPROP(E,C) = P λ for some λ ∈ [0, 1], in which P λ is given by (4.1). Similarly,
let (τPROP)∗(E,C) = P λ∗

for some λ∗ ∈ [0, 1]. For example, if λ = 1
3
and λ∗ = 2

3
, then

τPROP(E,C) = P
1
3 ̸= P

2
3 = (τPROP)∗(E,C). Therefore, to guarantee self-duality with

respect to (E,C), it is required that λ = λ∗. Furthermore, as

(τPROP)∗(E,C) = C − τPROP(ℓ(E,C), C),

it must hold that τPROP(ℓ(E,C), C) = C − P λ∗
= C − P λ. △

The following proposition states that any self-dual ϕ-based transfer rule prescribes half
the claims matrix if the estate of each agent equals its loss. Note that such a prescription is
valid by Proposition 6.2.

Proposition 6.9. Let (E,C) ∈ LN , and let τϕ be a self-dual ϕ-based transfer rule. If
E = ℓ(E,C), then τϕ(E,C) = (τϕ)∗(E,C) = 1

2
C.

Proof. Let E = ℓ(E,C). Then,

τϕ(E,C) = (τϕ)∗(E,C) = C − τϕ(ℓ(E,C), C) = C − τϕ(E,C), (6.5)

where the first equality follows from self-duality of τϕ, the second equality follows from the
definition of (τϕ)∗ as the dual of τϕ, and the last equality follows from E = ℓ(E,C). From
(6.5) it follows that τϕ(E,C) = 1

2
C.

Finally, provided that the claims rules in ϕ are self-dual, a self-dual ϕ-based transfer
rule sϕ can be constructed as follows. For each pair {(E,C), (ℓ(E,C), C)} of mutual claims
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problem (E,C) ∈ LN and its corresponding dual (ℓ(E,C), C) ∈ LN , choose P ∈ Pϕ(E,C)
and define

sϕ(E,C) =


1

2
C if E = ℓ(E,C),

P if E ̸= ℓ(E,C),

and

sϕ(ℓ(E,C), C) =


1

2
C if E = ℓ(E,C),

C − P if E ̸= ℓ(E,C).

Note that the pair {(E,C), (ℓ(E,C), C)} consists of exactly one element if E = ℓ(E,C),
in which case it holds that sϕ(E,C) = sϕ(ℓ(E,C), C). Let Sϕ denote the set of all ϕ-
based transfer rules of the form sϕ as described above. Please note that the collection
containing all pairs {(E,C), (ℓ(E,C), C)} as elements forms a partition of the class of all
mutual claims problems LN . In the special case that E = ℓ(E,C), a ϕ-based transfer rule
of the form sϕ prescribes 1

2
C in both (E,C) and (ℓ(E,C), C), as is required by Proposition

6.9. If E ̸= ℓ(E,C), a ϕ-based transfer rule of the form sϕ selects any ϕ-transfer scheme
P ∈ Pϕ(E,C) for (E,C), whereas it prescribes C − P for (ℓ(E,C), C). Moreover, the
payment matrix C − P is ϕ-transfer scheme for (ℓ(E,C), C) because Theorem 3.5 implies
that (C − P ) ∈ Pϕ∗

(ℓ(E,C), C), and, because the claims rules in ϕ are self-dual, it holds
that Pϕ∗

(ℓ(E,C), C) = Pϕ(ℓ(E,C), C).
By construction, ϕ-based transfer rules of the form sϕ are self-dual, because, for all

(E,C) ∈ LN ,

sϕ(E,C) = C − sϕ(ℓ(E,C), C) = (sϕ)∗(E,C),

which proves the following theorem.

Theorem 6.10. Let ϕ = (φi)i∈N be a vector of claims rules. If, for all i ∈ N , φi is self-dual,
then a ϕ-based transfer rule τϕ is self-dual if and only if τϕ ∈ Sϕ.

Hence, provided that agents use self-dual claims rules, only ϕ-based transfer rules of the
form sϕ are the self-dual, whereas the ϕ-based allocation rule µϕ is always self-dual as per
Theorem 6.5. The fact that ϕ-transfer schemes need not necessarily be unique but nonethe-
less lead to the same ϕ-based transfer allocation is the reason for this difference. Indeed, as
there is a choice to be made, self-duality of ϕ-transfer rules is a stronger requirement than
self-duality of ϕ-based allocation rules, which is confirmed by Theorem 6.7 and illustrated
in Example 6.1.
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A Ruling out negative estates is not harmless

In the existing literature, negative estates are often modeled by introducing an artificial
agent with an initial estate of zero, no liabilities to other agents, but claims on agents with
a negative estate equal to the absolute value of their negative estate (cf. Eisenberg and Noe
(2001)). Formally, this approach of dealing with possibly negative estates is as follows. Let
(E,C) ∈ LN be a mutual claims problem. The augmented mutual claims problem (E ′, C ′)
on N ′ = {0} ∪ N is defined by E ′ = (e′i)i∈N ′ with e′i = max{ei, 0} for all i ∈ N , e′0 = 0,
C ′ = (c′ij)i,j∈N ′ with c′ij = cij for all i, j ∈ N , c′0j = 0 for all j ∈ N ′, and c′i0 = max{−ei, 0}
for all i ∈ N . In (E,C), an agent with a negative estate can only pay agents if its incoming
payments exceed the value of its negative estate. Hence, to preserve this priority structure
in the augmented mutual claims problem, agents in N are paid only once the liabilities to
agent 0 are paid in full.

The following example shows that such an approach is less suitable in the context of
duality because, by definition, each time an artificial agent is introduced to obtain the aug-
mented mutual claims problem, this artificial agent has a negative estate in the corresponding
dual mutual claims problem, which makes it necessary to define a new artificial agent and
a new augmented mutual claims problem, and so on. In this way, the set of agents expands
throughout. In particular, to assert that the dual of the dual coincides with the original
mutual claims problem, one has to know which agents are artificial and at which point they
were introduced.

Example A.1. Consider the mutual claims problem (E,C) ∈ LN of Example 3.3 given by
N = {1, 2, 3, 4},

E =


1
−3
3
0

 and C =


0 2 0 2
2 0 0 0
1 1 0 0
2 1 0 0

 .

Then, as the estate of agent 2 is negative, we should augment the mutual claims problem
by introducing an artificial agent, agent zero, such that we obtain a mutual claims problem
(E ′, C ′) on N ′ = {0, 1, 2, 3, 4}, which is given by

E ′ =


0
1
0
3
0

 and C ′ =


0 0 0 0 0
0 0 2 0 2
3 2 0 0 0
0 1 1 0 0
0 2 1 0 0

 ,

with corresponding dual problem (ℓ(E ′, C ′), C ′), given by

ℓ(E ′, C ′) =


−3
−2
1
−1
1

 and C ′ =


0 0 0 0 0
0 0 2 0 2
3 2 0 0 0
0 1 1 0 0
0 2 1 0 0

 .
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Note that, indeed, the dual problem (ℓ(E ′, C ′), C ′) on N ′ restricted to N is the dual problem
as given in Example 3.3; however, as agents 0, 1, and 4 have a negative estate, we should
augment the problem (ℓ(E ′, C ′), C ′) to obtain the mutual claims problem (E ′′, C ′′) on N ′′ =
{0′, 0, 1, 2, 3, 4}, which is given by

E ′′ =


0
0
0
1
0
1

 and C ′′ =


0 0 0 0 0 0
3 0 0 0 0 0
2 0 0 2 0 2
0 3 2 0 0 0
1 0 1 1 0 0
0 0 2 1 0 0

 .

The corresponding dual problem (ℓ(E ′′, C ′′), C ′′) = (E ′′′, C ′′′) is given by

E ′′′ =


−6
0
1
0
3
0

 and C ′′′ =


0 0 0 0 0 0
3 0 0 0 0 0
2 0 0 2 0 2
0 3 2 0 0 0
1 0 1 1 0 0
0 0 2 1 0 0

 ,

in which the artificial agent 0′ has a negative estate. Hence, the dual of the augmented
dual problem (E ′′, C ′′) is equal to (E ′′′, C ′′′). Without knowing that agent 0 is an artificial
agent introduced in the first step, it is not straightforward to conclude that the appropriate
restriction of (E ′′′, C ′′′) indeed corresponds to (E,C). △
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