

Tilburg University

A Renewed Take on Weighted Sum in Sandwich Algorithms

Koenen, Melissa; Balvert, Marleen; Fleuren, HA

Publication date:
2023

Document Version
Early version, also known as pre-print

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Koenen, M., Balvert, M., & Fleuren, HA. (2023). A Renewed Take on Weighted Sum in Sandwich Algorithms:
Modification of the Criterion Space. (Center Discussion Paper; Vol. 2023-012). CentER, Center for Economic
Research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. Nov. 2023

https://research.tilburguniversity.edu/en/publications/795b6c0c-c7bc-4ced-9d6b-a6d9409866be

No. 2023-012

A RENEWED TAKE ON WEIGHTED SUM IN
SANDWICH ALGORITHMS:

MODIFICATION OF THE CRITERION SPACE

By

Melissa F. Koenen, Marleen Balvert, Hein Fleuren

24 May 2023

ISSN 0924-7815
ISSN 2213-9532

A renewed take on weighted sum in sandwich algorithms:

modification of the criterion space

Melissa F. Koenen 1,2,∗ Marleen Balvert 1,2 and Hein Fleuren 1,2

1 Tilburg School of Economics and Management, Zero Hunger Lab,

Tilburg University, Tilburg, The Netherlands
2 Tilburg School of Economics and Management,

Department of Econometrics and Operations Research,

Tilburg University, Tilburg, The Netherlands

Correspondence∗: m.f.koenen@tilburguniversity.edu

May 23, 2023

Abstract

Sandwich algorithms are commonly used to approximate the Pareto front of a multi-
objective (MO) convex problem by enclosing it between an inner and outer approx-
imation. By iteratively improving the approximations, the distance between them is
minimized which gives an estimate of how well the Pareto front is approximated. A well-
explainable type of sandwich algorithm is based on weighted sum scalarization (WSS),
where the next set of weights is determined by the most promising inner normal of
the inner approximation. As these normals can contain negative values, not every op-
timization will result in finding an efficient point. In order to reduce the number of
searches towards the dominated part, we propose an elegant modification of the crite-
rion space which is an advancement on the formulation of Solanki et al. In addition to
being well-explainable and easy to integrate within an existing optimization procedure,
this modification is theoretically able to obtain all nondominated points of an MO lin-
ear programming problem in a finite number of expansions of the inner approximation.
Furthermore, we propose two heuristic approaches to determine the distance between
the inner and outer approximation that can be used as an alternative for the distance
calculation of Solanki et al. These heuristics incorporate the ideas of Solanki et al. and
Craft et al. to obtain straightforward and faster methods. (218 words)

Keywords:

Convex multi-objective, sandwich algorithm, weighted sum scalarization, multi-objective
linear programming

1

Koenen et al. Modification of the Criterion Space

1 Introduction

Multi-objective optimization (MO) concerns the optimization of multiple conflicting goals,
where p ≥ 2 denotes the number of objectives. In general, one can formulate an MO
problem as follows:

minf(x) = (f1(x), . . . , fp(x))

s.t. x ∈ X ,

where fi denotes a function that belongs to objective i, with i = 1, . . . , p, and X denotes the
decision space in R

n. The criterion space Y is given by {y ∈ R
p | y = f(x) for some x ∈

X} and represents all possible combinations of objective values. Here, we refer to a solution
when it belongs to the decision space and to a point when it belongs to the criterion space.

There is in general not one solution that minimizes all objectives simultaneously; we
assume the ideal point is not attainable. This inevitably translates to trade-offs between
the objectives, and to understand whether a solution is the ‘best’ among a set of ‘similar
solutions’ a concept is needed which defines a ‘good’ solution. This concept is known as
Pareto efficiency, where a solution x̄ ∈ X is efficient if there is no other x ∈ X such that
f(x) ≤ f(x̄) [1]. That is, there exists no other solution which performs better in one of the
objectives, without worsening the other objective(s). Furthermore, a solution x̄ is called
weakly efficient if there is no other x ∈ X such that f(x) < f(x̄), i.e. there is no other
solution that improves on all objectives simultaneously.

The sets of all efficient and weakly efficient solutions are denoted by XE and XwE ,
respectively, where XE ⊆ XwE ⊆ X . The set of all efficient points, or non-dominated
points, are denoted by YN . The weakly non-dominated points are denoted with YwN .

Generally, one is not interested in finding (a part of) XE as often a vast number of
efficient solutions with the same objective function values exist, which is unnecessarily
overwhelming for the decision maker (DM) as well as computationally challenging to obtain
[2]. Instead one is interested in finding YN , as this is often more manageable in size. This
leads to both a more comprehensible overview of the trade-offs for the DM as well as a
reduced computational effort.

In this paper we focus on approximating YN of a convex MO, that is, when the set X and
all objective functions fi are convex. This implies that YN is connected and that Y +R

p
++

and YN +R
p
++ are convex as well [3], with + denoting the Minkowski sum. Besides general

convex MO, we are interested in the specific case of obtaining the exact representation of
YN of a particular instance of convex MO where the objectives and the constraint set are
linear, known as multi-objective linear programming (MOLP).

Sandwich algorithms belong to the class of polyhedral approximation techniques [4] and
are commonly used to approximate YN of a convex MO by sandwiching the non-dominated
set between an inner and an outer approximation. Here, the inner approximation is a con-
vex hull encompassed in Y formed by a set of efficient points and the outer approximation is
formed by supporting halfspaces of those efficient points. Sandwich algorithms iteratively
improve both the inner and outer approximation to minimize the distance between the
approximations. The advantages for the DM are that 1) an upper bound on the approxima-
tion error is directly provided and 2) no interference of the DM is needed as the algorithm
itself is capable of shifting its attention to a part of the non-dominated set that is currently
not approximated well.

In the literature there are four types of sandwich algorithms. These are either based on
weighted sum scalarization (WSS) [5, 6, 7], polyhedral gauge expansion [8], Benson’s outer

Koenen et al. Modification of the Criterion Space

approximation [9, 10, 11, 12] or ‘dual’ vertex enumeration [13]. In this paper we focus on
WSS for the following reasons: 1) the idea behind WSS is explainable and intuitive to DMs;
2) the WSS algorithm is easily integrated within existing (convex) optimization procedures
[6]. A caveat of the WSS sandwich approach, however, is that — unlike Benson’s outer
approximation [9] — it is not formally proven to be able to solve MOLPs to optimality.
That is, although it is stated that WSS can in principle be used to find the MOLP [4], to
the best of our knowledge, there does not exist any formal proof that a sandwich algorithm
using WSS is able to find all efficient points in a finite number of iterations. We address
this matter in our contributions.

WSS is a common technique to find efficient points, where each of the objectives receives
a weight that indicates its importance (see e.g. [1]). It is formulated as follows:

minw⊺f(x) =

p
∑

i=1

wifi(x)

s.t. x ∈ X ,

where w is a vector containing all weights wi, and wi denotes the weight belonging to
objective i. In case all weights are non-negative, i.e. w ≥ 0, then the solution is guaranteed
to be weakly efficient. In case all weights are strictly positive, i.e. w > 0, the obtained
point is even guaranteed to be efficient.

A straightforward way to obtain efficient points of the convex MO is to sample various
weights and solve the corresponding weighted sum problem. However, an even spread of
weights generally does not result in efficient points spread evenly across YN [14]. Addi-
tionally there are infinitely many weights that result in the same efficient point. A more
resourceful selection of weights is commonly achieved by integrating the WSS in a sandwich
algorithm, as it picks a weight based on the current inner approximation at a point that is
the furthest from the outer approximation.

Solanki et al. [5] are one of the first to approximate the nondominated set of a convex
MO using WSS with a sandwich algorithm. They make use of the polyhedral structure of
the inner approximation to obtain the inner normals of so far generated halfspaces. In their
formulation the inner normals for p = 2 are always positive, and using them as weights is
therefore guaranteed to find an efficient point. Either an existing efficient point is found
or a new efficient point is found that expands the inner approximation. In both cases the
outer approximation is tightened, as we cannot improve further using this inner normal.
At each iteration one needs to decide which face — and corresponding normal — of the
polyhedral inner approximation is used to obtain the next point. Solanki et al. [5] pick the
face that has maximum distance between the inner and the outer approximation, which
they determine exactly for each normal of the current inner approximation using a linear
program (LP).

In case p ≥ 3 the obtained normals of the inner approximation might contain negative
values [5]. Using these normals as weights does not guarantee to find an efficient point or
may not result in a solution if Y is unbounded. Solanki et al. [5] address the latter problem
by placing an upper bound on the objectives and argue that using negative normals can
nonetheless help in finding new positive normals as the inner approximation is expanded.

Craft et al. [6] circumvent the negative normals altogether: in case a halfspace of the
inner approximation has a negative normal, they determine a weighted combination of
previously found weights that belong to the vertices spanning the plane. This weighted
combination is found by solving a small non-linear problem that finds a weight that is
maximally different from these previously found weights. As the distance approach of

Koenen et al. Modification of the Criterion Space

Solanki et al. [5] can be time consuming, Craft et al. [6] also propose a heuristic approach
to determine the distance between the inner approximation and the outer approximation
which does not rely on solving an LP.

Rennen et al. [7] enhance the above procedures by including so-called dummy points
in the inner approximation. By extending the inner approximation, the relevant planes do
not have negative normals anymore, which helps to find efficient points. In their paper,
they compare the performances of Solanki et al. [5], Craft et al. [6] and Klamroth et al. [8]
with the approach of Solanki et al. [5] including dummy points. The overall performance
of the dummy technique outperformed the others in terms of the number of optimizations
that needs to be performed. Here, the lack of performance of Solanki et al. [5] is mainly
attributed to the algorithm describing the complete criterion space including the dominated
part, hence many unnecessary LPs are solved.

This work has several contributions. First, in order to reduce the search towards the
dominated part of the criterion space, we will propose an elegant modification of the crite-
rion space. This modification has some useful properties: (1) it allows to find all efficient
points for the MOLP in a finite number of iterations, and (2) its performance in terms of
the maximum number of WSS LPs that needs to be solved is, unlike [5], not dependent
on the chosen upper bound as long as this upper bound is larger than the nadir point.
Besides its theoretical properties and explainability, the modification can be easily incorpo-
rated within an existing optimization procedure. As a second contribution, we propose two
heuristic approaches to determine the distance between the inner and outer approximation
and address whether it is always beneficial to use a distance metric within a WSS sandwich
algorithm. The two proposed heuristic approaches combine the simplicity of the distance
approach of Solanki et al. [5] with the insights of Craft et al. [6] to obtain faster approaches
that are straightforward to implement.

2 Notation

In general, let conv {X} denote the convex hull of X, |X| denote the cardinality of X and
‖x‖ denote the Euclidean norm of x. Let ei denote the standard unit vector, where the i-th
element is 1 and all others are zero. In case + is used in context of polytopes, it denotes
the Minkowski sum. Furthermore, let

⊕

denote the sum of Minkowski sums.
In line with the notation of Rennen et al. [7], let IPS denote the inner approxima-

tion, and let OPS denote the outer approximation, where it holds that the non-dominated
criterion space YN is sandwiched between IPS and OPS. That is, IPS ⊆ YN + R

p
++ and

YN ⊆ OPS+R
p
++. Furthermore, let H(w, b) = {y | w⊺y = b} be a hyperplane where w is

the normal vector and b the offset, and let H≥(w, b) = {y | w⊺y ≥ b} denote a halfspace
where w is the inner normal. In case ‖w‖ = 1, w is an inner unit normal.

Let yAi be the anchor point of objective i = 1, . . . , p, that is, yAi is the point that min-
imizes objective i individually such that yAi = argmin {yi | y ∈ Y}. Let yI =

(

yI1, . . . , y
I
p

)

be the ideal point that is constructed using the the minimum of all objectives, where
yIi = yAi

i . Here, we assume the ideal point to be unattainable. Let yUB denote an up-
per bound on the objective function values. An insightful choice for yUB is the nadir
point yN =

(

yN1 , . . . , y
N
p

)

which is the maximum of each objective over YN . That is,

yNi = max {yi | y ∈ YN} for i = 1, . . . , p. However, as YN is unknown beforehand it is diffi-
cult to determine this when p > 2 [1]. A practical choice of yUB is usually determined by ei-

ther using the expertise of a DM or by finding the pseudonadir point ypN =
(

y
pN
1 , . . . , y

pN
p

)

,

where y
pN
i = max

{

y
Aj

i | j = 1, . . . , p
}

[15]. The drawback of these choices for yUB is that

Koenen et al. Modification of the Criterion Space

they do not guarantee to find the complete YN front.

3 WSS sandwich algorithm

Section 3.1 describes the general steps of a WSS sandwich algorithm and Section 3.2 explains
the decisions to be made within the algorithm.

3.1 General steps of a WSS sandwich algorithm

The general procedure of a WSS sandwich algorithm is:

0. Initialize IPS and OPS.

Find the anchor points yAi , . . . ,yAp and obtain an upper bound value yUB to con-
struct the convex hull of the IPS. That is, IPS = conv

{

yAi , . . . ,yAp ,yUB
}

. The OPS

is constructed as OPS =
{

y | yAi

i ≤ yi ≤ yUB
i

}

. Obtain all relevant halfspaces that

belong to the IPS.

1. Expand the IPS based on its distance to the OPS.

For each relevant halfspace determine the distance to the OPS and find the halfspace
H≥ (

w̄, b̄
)

for which the current distance δ from the IPS to the OPS is maximal. Solve
the weighted sum method using w̄, and obtain ȳ = argmin {w̄⊺y | y ∈ Y}.

2. Update IPS and OPS.

Add ȳ to the IPS, such that IPS = conv {IPS, ȳ}. Add w̄⊺y ≥ w̄⊺ȳ to the OPS.
Update the relevant halfspaces.

3. Check stopping criterion.

Repeat the above procedure from step 1 onwards until a stopping criterion is met (e.g.
ε-distance between IPS and OPS, number of iterations or time).

In Figure 1 a few iterations of the WSS sandwich algorithm are shown for an example
with p = 2, where the IPS and OPS are iteratively improved.

(a) (b) (c)

Figure 1: Illustration of the WSS sandwich algorithm. In (a) the initial approximations
are based on the anchor points. In (b) the approximations are improved after one iteration.
Here, δ denotes the maximum distance between the inner and the outer approximation. In
(c) the approximations are further improved in the second iteration.

Koenen et al. Modification of the Criterion Space

3.2 Decisions within WSS sandwich algorithms

In the general procedure there are several decisions that can impact the algorithm’s per-
formance. The most significant ones are how to deal with negative or mixed normals, i.e.
halfspaces of the inner approximation that contain negative values, and how to determine
the distance between the IPS and the OPS. In this section we discuss the current literature’s
view on these topics.

3.2.1 Handling mixed and negative normals

As indicated before, the inner normals of the inner approximation can contain negative
values when p ≥ 3. We refer to an inner normal containing some negative values as a
mixed normal, and to an inner normal with solely negative values as a negative normal.
Because of the efficiency property of the WSS, it holds that an inner normal containing
only strictly positive elements will result in finding an efficient solution. As we do not have
this guarantee for the mixed or negative normal, the question is: is such a normal still
worth exploring? To answer this question, we provide an example, which is a simplification
of an example in [5], to show the relevance of a normal that contains negative values.

Consider a small example with p = 3 objectives that has extreme points A = (0, 1, 1),
B = (1, 0, 2), C = (1, 1, 0), D = (1.5, 0.55, 0.55) and E = (2, 2, 2), where Y = conv {A,B,C,D,E}.
This is represented in Figure 2a. The set of nondominated points YN is given by faces ABC
and BCD. Note that of the extreme points only E is not nondominated. To initialize the
IPS, we need at least p + 1 = 4 vertices to create a convex hull. We initialize our algo-
rithm with the anchor points and our upper bound E. Thus, the current IPS is found by
conv {A,B,C,E}, see Figure 2b. Here only the inner normal of face ABC is positive. Using
this normal as weight vector will not generate a new efficient point. So, in case one only
considers positive normals, vertex D will not be found.

(a) (b)

Figure 2: Mixed and negative normals help to find more nondominated points. Efficient
faces are indicated with gray. In (a) Y is represented. In (b) the IPS is shown after
initialization. Only using the single positive inner normal of face ABC does not result in
finding efficient vertex D. The mixed normal of face BCE does find D.

Since each optimization is expensive, Craft et al. [6] do not optimize over mixed or
negative normals to ensure that each optimization contributes to the IPS by finding an
efficient point. Instead of disregarding those normals, they construct a new weight based

Koenen et al. Modification of the Criterion Space

on the weights that were used to find the vertices of the corresponding face. In the example
of Figure 2b this concerns face BCE. The goal is to still find efficient points that can not
be found with the current set of positive normals, i.e. to find point D. The new weights
are constructed such that they are maximally different from the weights corresponding
to the vertices of the considered face, given that the new weights are positive and are a
convex combination of the weights corresponding to the vertices of the considered face. In
the initialization of Craft et al. [6], point E is found using the outer normal of face ABC.
Combining this normal with the normals used to find B and C, gives the maximally different

weight
[

0, 1√
2
, 1√

2

]

. Optimizing the WSS with this weight results in point C. Despite the

newly constructed weight, the approach is not able to find point D.
Solanki et al. [5] allow for the optimization over normals with negative values, as they

advocate that mixed and negative normals can help to find efficient points and to improve
the overall distance between the IPS and OPS as more points and therefore more normals
are available. In our example, using the mixed normal of face BCE results in finding
extreme point D. After this, the IPS is updated and face BCE is replaced by the faces
BCD, BDE and CDE. Although using a mixed normal or negative normal as a weight does
not necessarily result in finding a nondominated point, it indeed helps to find efficient points
which are not found if they are disregarded or altered using the method of Craft et al. [6].

In conclusion, using mixed and negative normals as weights are helpful to find efficient
points that are otherwise not found. Using them, however, might result in many more
optimizations that might not find new efficient points.

3.2.2 Determining the next face

In step 1 of the general WSS sandwich algorithm all of the unexplored relevant faces are
of interest. However, optimizing over all these weights simultaneously can result in an
exponential growth of the number of faces. As some weights may tighten the gap between
the IPS and YN more than others, it could be beneficial to find the face that has the best
potential to improve the current IPS. Generally, the most promising face is the one that
has the largest distance to YN . As it is usually not possible to determine the distance from
the IPS to YN , the OPS can be used as a proxy for YN . Then, using the weight of the most
promising face, the IPS will be expanded and the OPS tightened maximally, making the
gap smaller.

Solanki et al. [5] select the most promising face, and thus weight, by determining which
halfspace of the faces of the IPS has the largest distance to the OPS. Using ‖w‖ = 1, they
define the distance for each halfspace H≥(w̄, b̄) of the IPS to the OPS as follows:

δ(w̄, b̄) = b̄−min {w̄⊺y | y ∈ OPS} , (1)

where the OPS is a convex polyhedron by construction. Then, the inner normal of the
halfspace for which the distance to the OPS is the largest, is used as weight in the next
iteration. This distance is then easily determined by solving an LP for each halfspace of
the IPS.

Based on the newly found point, the distance from the OPS to the IPS might change,
even for faces of the former IPS which are still part of the updated IPS. Thus, in [5] the
distance from each halfspace of the IPS to the OPS is (re)calculated in each iteration. In
addition to an exponential growth in the number of distance calculations due to the growing
number of faces, the size of the LPs to be solved will grow as well as in each iteration a
constraint is added to the OPS.

Koenen et al. Modification of the Criterion Space

To reduce the size of the problem, Craft et al. [6] determine the distance between a face
of the IPS and the OPS based on previously used inner normals. That is, for each vertex of
the IPS that lies on our halfspace there is a corresponding halfspace of the OPS. To obtain
the distance between the IPS and the OPS, one needs to determine the maximum distance
between a face of the IPS and the intersection point between the halfspaces corresponding
to the vertices of that specific IPS face, which is a subset of the OPS. Craft et al. [6] do so by
solving a system of inequalities using these halfspaces. However, there are many scenarios
in which these halfspaces intersect non-uniquely, do not intersect at all or in which the
intersection overestimates the distance measure introduced in [5]. For the latter we have
provided an example in Appendix A. In case the halfspaces intersect non-uniquely or do
not intersect, the closed form expression cannot be determined. To resolve this, an angle
between the halfspaces is calculated corresponding to the vertices of the face of the IPS,
such that the one with the smallest angle is chosen as the next facet [6]. Computing the
angles makes the approach complex and computationally expensive.

A caveat to this definition of distance, not mentioned in [5] and [6], is that the maximum
distance determined with (1) is not necessarily decreasing over the iterations. We conjecture
that this effect does not occur in 2 dimensions, due to its geometrical properties. For ease
of explanation, however, we show a small 2D example that shows why (1) is not exact. In
Figure 3a the maximum distance of the IPS to the OPS, according to (1), is indicated with
a dotted line from the face of the IPS. Expanding this face results in finding a new point,
and therefore the IPS is expanded as well. Assuming that our relevant part of the OPS was
not affected, the distance of the adjusted face to the OPS has decreased but the maximum
distance of the halfspace to the OPS has increased. Note that in 2 dimensions the relevant
part of the OPS will change, and thus this point would have been cut off, however in more
than 2 dimensions this is not necessarily the case.

(a) (b)

Figure 3: Using the distance definition used in [5] the maximum distance can increase. In
(a) the maximum found distance from the IPS to the OPS is indicated with a dotted line
from the halfspace. The inner normal of this halfspace is used to find a new point. In
(b) the found point expands the IPS, where the adjusted face is now closer to the OPS.
This face corresponds to the halfspace which has the largest distance to the OPS, which
increased compared to the maximum distance in (a).

4 Methodology

We propose an alternative modification of the dominated part of the criterion space, which
we refer to as the modified criteron space (MCS). This means that only Y \YN is modified,
whereas YN and X remain unchanged. In Section 4.1 we first explain the formulation of

Koenen et al. Modification of the Criterion Space

Solanki et al. [5] and its drawbacks, and then we present our modification and explain how
it differs from the former formulation. In Section 4.2 we suggest two alternative approaches
to approximate the distance between the IPS and the OPS combining the ideas of Solanki
et al. [5] and Craft et al. [6] to obtain simpler procedures that need fewer recalculations.
Then, in Section 4.3 we present an algorithm that contains the above ideas about the MCS,
where a distance approach can be incorporated. Finally, in Section 4.4 we show several
properties of the MCS.

4.1 Modified criterion space (MCS)

Solanki et al. [5] modify the criterion space by including upper bounds on the objectives,
which prevents ending up in an unbounded part of the criterion space while optimizing over
a negative normal. The resulting convex MO is formulated as:

minw⊺f(x) =

p
∑

i=1

wifi(x)

s.t. x ∈ X
f(x) ≤ yUB.

A drawback of this approach is that if the dominated part of the criterion space has a
complicated description, many different dominated points will be found while searching with
negative normals. That way, one describes the criterion space almost completely instead of
focusing on the Pareto front. This is also apparent from the results of Rennen et al. [7]1,
where the method of Solanki et al. [5] finds many dominated points.

The algorithm spends a lot of computations on describing the dominated part particu-
larly when the chosen upper bound yUB is larger than the nadir point. To show this we con-
sider an MOLP with three objectives and ε = 0 based on an instance of Bensolvehedron2,
which is described in more detail in Section 5. Figure 4a shows the representation of Y,
where the gray area represents YN . For this example it holds that the nadir point is
yN = (−1,−1,−1).

Figure 4b shows the IPS found with the modification method of Solanki et al. [5] with
yUB = (10, 10, 10), which is larger than the nadir point yN. Although the method is able
to find the complete YN front, it also describes a large part of Y \ YN . As we are only
interested in finding YN , many uninformative LPs are solved.

In our suggested modification we still want to use mixed and negative normals as they
help to construct the IPS and OPS and ensure that we find the complete YN front, but we
want to reduce unnecessary searches towards the dominated part. Therefore, we modify the
criterion space by extending and flattening the dominated part of Y by means of conification.
That is, we end up with

(

Y + R
p
++

)
⋂
{

y | yi ≤ yUB
i

}

, which has the same Pareto front as
Y. This conification can be incorporated within the WSS by formulating the problem as
follows:

1Here, we refer to figure 15 in [7].
2Instance is p = 3 and m = 0.

Koenen et al. Modification of the Criterion Space

(a) Representation of Y. (b) Modified Y with [5]. (c) Modified Y with MCS.

Figure 4: Complete and modified descriptions of Y. The gray area represents YN with
yN = (−1,−1,−1). The modified descriptions use yUB = (10, 10, 10).

(MCS) minw⊺ (f(x) + u) =

p
∑

i=1

wi (fi(x) + ui)

s.t. x ∈ X
f(x) + u ≤ yUB

u ≥ 0,

where u is a p × 1 vector containing additional decision variables. Here, ui measures
the maximum allowed deviation of objective i. As previously mentioned, we refer to this
formulation as the MCS. Note that the two formulations are similar in size, and will therefore
have similar performance for a given weight.

Figure 4c illustrates the approximated area of Y of our previous example using the MCS
with the same yUB. In this case the description of the dominated part is less detailed than
for the modification method of Solanki et al. [5], whereas the complete YN front is still
obtained. In this case fewer uninformative LPs are solved.

4.2 Selecting the next face

As explained in Section 3.2, a distance measure could help to guide the algorithm towards
selecting IPS faces, and thus weights, that have the largest potential to decrease the gap
between the IPS and the OPS.

In this section we continue to work with the definition of distance as used in [5] and [6],
as the concept is well-explainable and comprehensible to DMs, and the distance is solved
with a relatively simple LP. For readability we refer to the distance calculation in [5], where
in each iteration the distance to the OPS for each halfspace of the IPS is (re)calculated, as
SOL.

We propose two alternatives to determine the maximum distance, inspired by the ap-
proach of Craft et al. [6]. For the first alternative, the distance is calculated using a relevant
subset of the OPS inequalities instead of all OPS inequalities. Only when the relevant sub-
set of a face is altered based on a newly found point, the distance is recalculated. The
second alternative uses the current set of OPS inequalities to determine the distance of new
halfspaces of the IPS. Once the distance is calculated, it is not recalculated even when the
OPS changes. Both alternatives focus in varying degrees on the reduction of the size of the

Koenen et al. Modification of the Criterion Space

LP in terms of number of constraints as well as the number of LPs to be solved. We refer
to the first alternative and the second alternative as SUB and CUR, respectively.

The first alternative, SUB, is formally described as follows: let w be a weight and let v
be the corresponding found point in Y with objective value β. That is,

β = min
{

w⊺ (f(x) + u) | x ∈ X , f(x) + u ≤ yUB, u ≥ 0
}

.

Then, the OPS inequality corresponding to this weight is w⊺y ≥ β. Now, let H≥(w, b)
be the halfspace of the IPS for which we want to determine the distance to the OPS and
let V =

{

v1, . . . ,vk
}

contain the vertices of the IPS that are on the hyperplane H(w, b).
As just described, these vertices were found before using WSS where w1, . . . ,wk are the
weights used to find these vertices and β1, . . . , βk the respective objective values. Then,
the considered halfspaces of the OPS — in line with the idea of Craft et al. [6] — are
{(

wi
)

⊺
y ≥ βi | vi ∈ V

}

. Additionally, the initial bounding box of the OPS is included to
reduce the overestimation of the distance as explained in Appendix A. Together these sets
form a subset of halfspaces of the OPS and they are used to solve (1).

Using this approach, we only need to recalculate the distance in case the vertices of
the face have changed, i.e. when new vertices are part of the same halfspace. This is
different from SOL where in each iteration of the WSS all distances have to be recalculated.
Furthermore, as we use a subset of the OPS halfspaces, the LPs to be solved will consist
of a relatively constant number of inequalities in comparison to the size of the OPS, which
grows in each iteration.

As briefly explained, the second alternative, CUR, determines the distance only for
halfspaces of the IPS which have not been considered before and for which the distance has
not yet been determined. So, in case the distance for H≥(w, b) has not yet been determined,
CUR uses the current OPS to solve the LP corresponding to (1).

For CUR it holds that the size of the solved LP will be larger than for SUB and equal
to that of SOL. Its main distinction is that it does not apply any recalculation as SOL and
SUB do. Note that both approaches can overestimate the distance definition of SOL, as
they do not take the complete OPS into account. Table 1 provides a brief overview of the
different features of the three different distance measures.

Table 1: Differences in features of the three distance approaches.

SUB CUR SOL

Recalculation Some faces No All faces
Nr. of OPS inequalities used Stable Increases Increases
Dist. relative to (1) Overestimation Overestimation Exact

Abbreviations: nr. for number and dist. for distance.

4.3 MCS algorithm

Algorithm 1 describes how to obtain the MCS to ε-precision. Note that the numbers of
the provided comments correspond to the general steps of a WSS sandwich algorithm as
explained in Section 3.1. In line 11 the halfspace is determined which has the largest
distance to the OPS. Here, one could use SOL, SUB, CUR or a different distance measure
depending on the preference of the user. We refer to Appendix B for implementation choices
and details of the algorithm.

Koenen et al. Modification of the Criterion Space

Algorithm 1 Modified criterion space (MCS)

Result: Obtain the modified criterion space, and thus YN , to ε-precision.
Input: yUB, ε

⊲ /* 0. Initialize IPS and OPS. /*

1: IPS←
{

yUB
}

2: OPS←
{(

e1
)

⊺
y ≤ yUB

1 , . . . , (ep)⊺ y ≤ yUB
p

}

3: for i← 1 to p do

4: x̃ ← argmin {fi(x) | x ∈ X}
5: β̃ ← fi(x̃)
6: Add

(

ei
)

⊺
y ≥ β̃ to OPS

7: IPS← conv {IPS,f(x̃)}
8: end for

9: H ← Set of all halfspaces of IPS
10: while H 6= ∅ do

⊲ /*1. Expand the IPS based on its distance to the OPS./*

11: Find halfspace H≤(w, b) ∈ H of IPS with largest distance δ to the OPS
⊲ /*3. Check stopping criterion./*

12: if δ > ε then

13: x̄, ū← argmin
{

w⊺ (f(x) + u) | x ∈ X , f(x) + u ≤ yUB, u ≥ 0
}

14: β̄ ← w⊺ (f(x̄) + ū)
⊲ /*2. Update IPS and OPS/*

15: Add w⊺y ≥ β̄ to OPS
16: IPS← conv {IPS,f(x̄)}
17: else

18: break

19: end if

20: H ← Set of all halfspaces of IPS not visited before
21: end while

22: return IPS

4.4 Properties of WSS sandwich and MCS

In this section we prove that under certain conditions a WSS sandwich algorithm is able to
describe all Pareto points of an MOLP in a finite number of iterations. Furthermore, we
show that for the MCS, the maximum number of WSS LPs of the MOLP is not affected
by yUB, as long as yUB > yN. Finally, for the MCS we provide an upper bound on the
number of WSS LPs needed to find all efficient points of an MOLP.

4.4.1 WSS sandwich can find all Pareto points for MOLP

Although not proven in [5] and, to the best of our knowledge, not proven in the literature
so far, one can prove that all Pareto points of an MOLP can be found in a finite number of
expansions of the IPS using WSS in a sandwich algorithm. For this the considered criterion
space has to be polyhedral, bounded and contain all Pareto points where YN is bounded. In
case the considered criterion space is unbounded, one can consider a modification method
such as the MCS.

In order to prove this statement, we first need some additional notation. Let Y denote
the original criterion space for which YN is bounded and let YMCS denote the modified
criterion space. For simplicity, we use the MCS to ensure that YMCS is bounded and

Koenen et al. Modification of the Criterion Space

polyhedral by construction, that is, YMCS =
(

Y + R
p
++

)
⋂
{

y | yi ≤ yUB
i

}

. Here, we assume
that yUB ≥ yN such that YN ⊆ YMCS . Note that it is also possible to use the method of [5]
to obtain a criterion space that adheres to these assumptions. Then, let V = {v1, . . . ,vq}
be the set of q vertices of YMCS . As YMCS is convex, each point y ∈ YMCS can be written
as a convex combination of the vertices in V . That is, y = a1v

1+ · · ·+aqv
q where a1, . . . , aq

are the coefficients of this combination. Here, we let V + (a) ⊆ V denote the set of vertices
that have a strictly positive coefficient for this particular convex combination. Finally, let
IPS denote the current IPS such that IPS = {Wy ≥ d | y ∈ Y}, where W = (w1, . . . ,wl)
consists of l inner normals and d = (d1, . . . , dl) contains the corresponding offsets.

Lemma 4.1. IPS 6= YMCS ⇐⇒ there exists an inner normal of the IPS that will expand

the IPS.

Proof. If IPS 6= YMCS , there exists at least one point y ∈ YMCS such that y 6∈ IPS. For
this point it must hold that ∃i such that

(

wi
)

⊺
y < di. Thus, using weight wi in the WSS

will result in finding a new point not yet in IPS, hence expanding the IPS. The reverse of
the proof is trivial.

Note that in Lemma 4.1 we do not necessarily find y as there might be other points
such as y′ ∈ YMCS for which

(

wi
)

⊺
y′ ≤

(

wi
)

⊺
y.

Lemma 4.2. If wi is a weight that expands the current IPS where y = a1v
1 + · · ·+ aqv

q

is its corresponding found point, then this specific combination of vertices v ∈ V + (a) has

not been considered before while expanding the IPS.

Proof. As the current IPS can be expanded, according to Lemma 4.1, it holds that IPS 6=
YMCS and that

(

wi
)

⊺
y = β < di. For all v ∈ V + (a) it also holds that

(

wi
)

⊺
v = β.

That is,
(

wi
)

⊺
v ≥ β as y is optimal for (MCS). Combining the previous statement with

(

wi
)

⊺
y =

(

wi
)

⊺
(

a1v
1 + · · ·+ aqv

q
)

= β, it must hold that
(

wi
)

⊺
v = β. As a result, it

follows that all v ∈ V + (a) lie on the same hyperplane H(wi, β).
In order to show that this combination of vertices has not been considered before, let

us assume per contradiction that this specific combination of vertices v ∈ V + (a) has been
considered before to expand the IPS. Then it must hold for a point ŷ = â1v

1+ · · ·+ âqv
q ∈

IPS to be a convex combination of exactly these vertices in V + (a). Thus,

(

wi
)⊺

ŷ =
(

wi
)⊺

∑

v∈V +(a)

âv v

=
∑

v∈V +(a)

âv
(

wi
)⊺

v

=
∑

v∈V +(a)

âv β

= β
∑

v∈V +(a)

âv

= β,

where âv is the positive coefficient of v. This is a contradiction since ŷ ∈ IPS implies that
(

wi
)

⊺
ŷ ≥ di > β.

Thus, it must hold that this specific combination of vertices v ∈ V + (a) has not been
considered before when expanding the IPS.

Koenen et al. Modification of the Criterion Space

Theorem 4.1. The WSS sandwich algorithm can find all Pareto efficient points of an

MOLP in a finite number of expansions of the IPS.

Proof. From Lemma 4.1 we conclude that the WSS method will always expand the IPS if
it does not yet contain YMCS and per extension YN . Furthermore, from Lemma 4.2 we
can conclude that as YMCS has a finite number of vertices q there are a finite number of
combinations 2q of positive coefficients for the vertices. Therefore, we conclude that there
are only a finite number of expansions of the IPS possible before it finds YMCS and thus
YN .

4.4.2 Upper bound yUB does not affect maximum number of WSS LPs of the

MCS for MOLP

In this section we show that the MCS formulation for the MOLP is not impacted by the
choice of yUB if yUB > yN. That is, the number of found vertices will be constant to obtain
YN 3. In order to prove this we first have to rewrite YMCS into another expression and
prove some properties of the number of vertices of a polytope. Then, we show that the
number of vertices of the MCS for the MOLP stays constant as long as yUB > yN.

Define YM (ỹ) ≡
(

Y + R
p
++

)
⋂ {y | yi ≤ ỹi}. Note that YMCS = YM

(

yUB
)

, in line
with Section 4.1. Also note that YM (ỹ) is a bounded convex polyhedron if Y is a convex
polyhedron bounded from below.

Lemma 4.3. y ∈ YM (ỹ)⇐⇒ y = z + u where z ∈ YN , u ≥ 0 and z + u ≤ ỹ.

Proof. By the definition of the Minkowski sum and set intersection, we get y ∈ YM (ỹ) ⇐⇒
y = z′ + u′ with z′ ∈ Y, u′ ≥ 0 and z′ + u′ ≤ ỹ. However, note that z′ = z + u′′ with
z ∈ YN and u′′ ≥ 0. Thus, y = z + (u′ + u′′) = z + u with u ≥ 0.

Note that Lemma 4.3 immediately implies YM (ỹ) =
(

YN + R
p
++

)
⋂ {y | yi ≤ ỹi}.

Theorem 4.2. If yUB ≥ yN, then YM
(

yUB
)

= YM
(

yN
)

+
⊕p

i=1 conv
{

0, ei
} (

yUB
i − yNi

)

.

Proof. Define YC ≡ YM
(

yN
)

+
⊕p

i=1 conv
{

0, ei
} (

yUB
i − yNi

)

. We first show that YM (yUB) ⊆
YC . Take y ∈ YM

(

yUB
)

, then according to Lemma 4.3 this can be formulated as y = z+u

with z ∈ YN , u ≥ 0 and z + u ≤ yUB. Now, we rewrite this to

zi + ui = zi +min
{

ui, y
N
i − zi

}

+max
{

zi + ui − yNi , 0
}

= zi + αi + βi,

where αi = min
{

ui, y
N
i − zi

}

and βi = max
{

zi + ui − yNi , 0
}

. Thus,

z + u = z +α+ β = z +α+ e1 β1 + · · ·+ ep βp,

for which we argue that z +α ∈ YM
(

yN
)

and ei βi ∈ conv {0, ei}
(

yUB
i − yNi

)

and thereby
linking it to YC . To show this, we list all relevant properties:

1. z ∈ YN ,

2. α ≥ 0 as ui ≥ 0 and yNi − zi ≥ 0,

3. z +α ≤ yN as zi + αi ≤ zi + yNi − zi = yNi

4. ei βi ∈ conv {0, ei}
(

yUB
i − yNi

)

, since βi ∈
[

0, yUB
i − yNi

]

and yUB
i ≥ yNi .

3Ignoring numerical precision.

Koenen et al. Modification of the Criterion Space

It follows from 1. to 3. that z+α ∈ YM
(

yN
)

by Lemma 4.3. By the definition of Minkowski
sum and 4., we have y = z +α+ β ∈ YC .

Now, we show that YC ⊆ YM (yUB). Take y ∈ YC , then this can be rewritten to
y = z + α + e1 β1 + · · · + ep βp, with z ∈ YN , α ≥ 0, z + α ≤ yN, by Lemma 4.3, and
βi ∈

[

0, yUB
i − yNi

]

. Define
u = α+ e1 β1 + · · ·+ ep βp

and note that
zi + ui = zi + αi + βi ≤ yNi + yUB

i − yNi = yUB
i

together with u ≥ 0, we conclude that y = z + u ∈ YM
(

yUB
)

by Lemma 4.3.

The idea behind the above proof is visualized in Figure 5.

Figure 5: Example with p = 2 for Theorem 4.3, where YM
(

yUB
)

is the Minkowski sum of

YM
(

yN
)

and
⊕2

i=1 conv
{

0, ei
} (

yUB
i − yNi

)

.

Definition 4.1 ([16]). Let P be a convex polyhedron, then x ∈ P is a vertex ⇐⇒ ∃γ s.t.

γ⊺x < γ⊺x̃ for all other points x̃ ∈ P .

Let A be a bounded convex polyhedron and let V (A) denote the vertices of A, that is
{v1, . . . ,vk}. Define B(a) = A+ conv {0, au} for some fixed vector u.

Theorem 4.3. |V (B(a))| = |V (B(b))| for all a, b > 0.

Proof. Fix some a, b > 0. By the definition of Minkowski sum, the only possible vertices
are vi and vi+au with i = 1, . . . , k for B(a) and vi and vi+ bu with i = 1, . . . , k for B(b).
We now show that every vertex of B(a) corresponds to a vertex of B(b) and vice versa.

1. Assume vi is a vertex of B(a). Then, using Definition 4.1 we get

∃γ s.t. γ⊺vi < γ⊺vj ∀j 6= i, (2)

γ⊺vi < γ⊺
(

vj + au
)

∀j. (3)

Setting j = i we derive from (3)

γ⊺u > 0, (4)

Koenen et al. Modification of the Criterion Space

as a > 0. Thus, we obtain the following properties, aligning with Definition 4.1,

γ⊺vi < γ⊺vj ∀j 6= i use (2),

γ⊺vi < γ⊺vj < γ⊺vj + bγ⊺u = γ⊺
(

vj + bu
)

∀j 6= i use (2) and (4),

γ⊺vi < γ⊺vi + bγ⊺u = γ⊺
(

vi + bu
)

use (4),

from which we conclude that vi is also a vertex of B(b).

2. Assume vi + au is a vertex of B(a). Then, using Definition 4.1 we get

∃γ s.t. γ⊺
(

vi + au
)

< γ⊺vj ∀j, (5)

γ⊺
(

vi + au
)

< γ⊺
(

vj + au
)

∀j 6= i. (6)

From (5) if we set j = i we derive

γ⊺u < 0, (7)

as a > 0 and from (6) we derive

γ⊺vi < γ⊺vj ∀j 6= i. (8)

Thus, we obtain the following properties, aligning with Definition 4.1,

γ⊺
(

vi + bu
)

= γ⊺vi + bγ⊺u

< γ⊺vi use (7),

γ⊺
(

vi + bu
)

= γ⊺vi + bγ⊺u

< γ⊺vi < γ⊺vj ∀j 6= i use (7) and (8),

γ⊺
(

vi + bu
)

= γ⊺vi + bγ⊺u

< γ⊺vj + bγ⊺u = γ⊺
(

vj + bu
)

∀j 6= i use (8),

from which we conclude that vi + bu is a vertex of B(b).

From 1. and 2. it follows that |V (B(a))| ≤ |V (B(b))|. By swapping a and b and reapply-
ing the above reasoning, we obtain |V (B(b))| ≤ |V (B(a))| and thus we find |V (B(a))| =
|V (B(b))|.

Combining the above Theorems we can now prove that the number of vertices of the
MCS stays constant as long as yUB > yN.

Theorem 4.4. If yUB, ỹUB > yN and YN a bounded polyhedron, then
∣

∣V
(

YM
(

yUB
))∣

∣ =
∣

∣V
(

YM
(

ỹUB
))∣

∣.

Proof. Define

Y i ≡ YM
(

yN
)

+
i

⊕

j=1

conv
{

0, ej
} (

yUB
j − yNj

)

+

p
⊕

j=i+1

conv
{

0, ej
} (

ỹUB
j − yNj

)

.

Koenen et al. Modification of the Criterion Space

Using Theorem 4.2, it holds that Yp = YM
(

yUB
)

and Y0 = YM
(

ỹUB
)

. For some i =
1, . . . , p− 1, let us consider Y i and Y i+1, which can be rewritten as follows

Y i = YM
(

yN
)

+

p
⊕

j=i+1

conv
{

0, ej
} (

ỹUB
j − yNj

)

+

+
i

⊕

j=1

conv
{

0, ej
} (

yUB
j − yNj

)

= YM
(

yN
)

+

p
⊕

j=(i+1)+1

conv
{

0, ej
} (

ỹUB
j − yNj

)

+

+
i

⊕

j=1

conv
{

0, ej
} (

yUB
j − yNj

)

+ conv
{

0, ei+1
} (

ỹUB
i+1 − yNi+1

)

Y i+1 = YM
(

yN
)

+

p
⊕

j=(i+1)+1

conv
{

0, ej
} (

ỹUB
j − yNj

)

+

+
i+1
⊕

j=1

conv
{

0, ej
} (

yUB
j − yNj

)

= YM
(

yN
)

+

p
⊕

j=(i+1)+1

conv
{

0, ej
} (

ỹUB
j − yNj

)

+

+
i

⊕

j=1

conv
{

0, ej
} (

yUB
j − yNj

)

+ conv
{

0, ei+1
} (

yUB
i+1 − yNi+1

)

.

As
(

ỹUB
i+1 − yNi+1

)

,
(

yUB
i+1 − yNi+1

)

> 0 and YN is a bounded polyhedron, it follows from

Theorem 4.3 that
∣

∣V
(

Y i
)
∣

∣ =
∣

∣V
(

Y i+1
)
∣

∣. By assumption it holds that yUB − yN, ỹUB −
yN > 0, and therefore the above reasoning can be repeated to conclude that

∣

∣V
(

Y0
)∣

∣ =
∣

∣V
(

Y1
)∣

∣ = · · · = |V (Yp)|. In particular it holds that
∣

∣V
(

Y0
)∣

∣ = |V (Yp)|.

4.4.3 Maximum number of WSS LPs of the MCS for MOLP

In order to bound the maximum number of WSS LPs solved by the MCS, we use McMullen’s
upper bound theorem [17] which states that there is a general upper bound on the number
of faces of a convex polyhedron P given a particular dimension p and number of vertices
q. Let φi denote the number of i-dimensional faces of P , then it holds for p ≥ 2 and
i = 0, . . . , p− 1 that

φi ≤
⌊ p2⌋
∑

r=0

(

r

p− i− 1

)(

q − p+ r − 1

r

)

+

p
∑

r=⌊ p2⌋+1

(

r

p− i− 1

)(

q − r − 1

p− r

)

, (9)

which follows from rewriting McMullen’s theorem (see e.g. [18]). Based on equation (9) φi

is bounded by O
(

q⌊ p2⌋
)

for all i = 0, . . . , p− 1.

During the WSS sandwich procedure, if the considered criterion space is bounded or
modified to be bounded, two types of outcomes can occur:

Koenen et al. Modification of the Criterion Space

1. No expansion of the IPS.

In this case using the weight of the face of the IPS does not result in finding a new
point that will expand the IPS, and thus the OPS will be updated to coincide with
this particular face of the IPS. To verify whether the IPS is equal to the OPS, in the
worst case every face of the IPS has to be used as a weight. As there are φp−1 faces,

it holds that the number of times this outcome can occur is bounded by O
(

q⌊ p2⌋
)

.

2. Expansion of the IPS.

From the proof of Theorem 4.1 it follows that each combination of strictly positive
coefficients of the vertices can be encountered only once. Therefore, at most

∑p−1
i=0 φi

WSS LPs are performed which is again bounded by O
(

q⌊ p2⌋
)

, as p is fixed.

Based on these outcomes, the maximum number of WSS LPs solved by the sandwich

procedure is bounded by O
(

q⌊ p2⌋
)

.

For the MCS it holds that q ≤ m 2p, where m represents the number of efficient points
of YN , as each efficient point can be projected 2p times on each of the spanning vectors of
{

y | yi ≤ yUB
i

}

. Combined with the results of the WSS sandwich algorithm, the number

of WSS LPs solved by the MCS is bounded by O
(

m⌊ p2⌋ 2p⌊ p2⌋
)

which is O
(

m⌊ p2⌋
)

.

5 Instances

In this section we describe two types of instances that are used to test the validity and
numerical performance of the MCS.

5.1 Bensolvehedron

Bensolvehedron is a class of MOLP problems introduced on bensolve.org where the
MOLP is denoted as:

min C⊺x

s.t. Ax ≤ b,

where cost matrix C, constraint matrix A and constraint vector b have a fixed structure
based on the input parameter p for the number of objectives and m for the complexity
of the polyhedron. In general, the larger m is, the more facets in Y there are and the
more variables n the MOLP has, where n = (p+ 2m)p. The problem is then defined as
A = [In×n;−In×n], b = [1n 0n]

⊺ and C ∈ R
p×n where each element in C ranges from

{

−p+ 2m− 1

2
, . . . ,

p+ 2m− 1

2

}

with increments of 1 considering all possible combina-

tions.

5.2 Rennen

In [7] a convex problem is analyzed with the following objectives and constraints:

bensolve.org

Koenen et al. Modification of the Criterion Space

f1(x) = x1

f2(x) = x2

f3(x) = x3

x1 ≥ (x2 − 9)2 + (x3 − 3)2

x2 ≥ (x1 − 4)2 + (x3 − 3)2

x3 ≥ (x1 − 4)2 + (x2 − 9)2.

Note that for this problem there is a one-to-one relationship between the decision space
and the criterion space. This problem instance is referred to as REN.

6 Results

The goal of this section is to show the performance of the MCS and the proposed distance
approaches. In Section 6.1 we verify for certain instances whether all efficient points of
the MOLP are found. In Section 6.2 we compare the performance of the MCS with the
modification method of Solanki et al. [5] for an MOLP and convex MO, respectively. As
their WSS LPs are fairly similar in the number of constraints and variables, the comparison
is based on the number of WSS LPs needed to obtain the modified criterion space. Lastly,
we investigate the use of a distance approach on the distance between the IPS and the OPS
in Section 6.3. Here, we first compare the distance approaches SUB and CUR with SOL,
the approach of [5]. Then, we investigate whether it is always beneficial to use a distance
approach by comparing MCS without a distance calculation, referred to as NON, to the
best performing approach that does use a distance calculation.

All results are obtained using an Intel Core i7-9700 3.00 GHz with 16GB RAM, and are
implemented in Python 3.9.7 where Gurobi 9.5.2 is used to solve the WSS problems and
the distance calculations.

6.1 Verification that MCS obtains YN

We validate that MCS indeed finds YN for several instances of Bensolvehedron by com-
paring YN obtained with MCS to YN obtained with the solver of bensolve.org, which
uses Benson’s outer approximation [9]. As the latter method is able to find all efficient
points for the MOLP, we know that the resulting YN is correct, which makes it well-suited
for validation. Although there are alterations possible to the algorithm that allow for the
optimization of convex instances as well [10], this is not implemented in the solver. There-
fore, this solver is only used to validate the MOLP. As we aim to compare the exact fronts,
we use ε = 0. The investigated instances are (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (3, 0), (3, 1),
(3, 2) and (4, 0), where the first digit represents p and the second digit represents m. For
all these instances MCS was able to obtain YN .

6.2 Comparison of modification methods

6.2.1 MOLP

We compare the performance of the MCS with the method of Solanki et al. [5] when gener-
ating YN for an MOLP, i.e. ε = 0, for the Bensolvehedron instance with (p,m) = (3, 0)4.

4This is the same instance as in Section 4.1 with nadir point yN = (−1,−1,−1).

bensolve.org

Koenen et al. Modification of the Criterion Space

Here, we focus on the effect of the choice of yUB on the generated IPS of the different models.
As the formulations of both WSS LPs are similar in size, its performance for a given weight
will be comparable. Therefore, it is reasonable to compare the performance of MCS and [5]
based on the number of WSS LPs solved. As the choice of distance calculation can affect
the number of WSS LPs needed, we consider the number of WSS LPs using no distance
calculation and the distance calculation in [5], which are NON and SOL, respectively. Here,
NON serves as an upper bound on the number of WSS LPs needed to obtain the modified
criterion space for the MCS and the modification method in [5].

Table 2 reports for the Bensolvehedron instance with (p,m) = (3, 0) the number of
WSS LPs solved given a particular yUB using NON or SOL with either the modification
method in [5] or the MCS. Furthermore, the table reports the number of vertices and
the number of dominated points of the IPS. Note that the generated structure of the IPS
given ε = 0 is predetermined, and therefore the number of vertices of the IPS — and per
extension the number of efficient points of the IPS — will always be the same irrespective
of the chosen distance measure. Note that for yUB = (−2,−2,−2) a part of YN is cut off.

In general, the table shows that when yUB is poorly chosen, the modification method
in [5] can result in the optimization of many uninformative LPs. As shown in Section 4.4.3,
for the MCS it holds that the maximum number of WSS LPs is not dependent on yUB as
long as yUB > yN, as the number of IPS vertices will stay constant.

In particular, the table shows for this instance that if no distance calculation is used
and yUB > yN, the number of WSS LPs solved for the MCS is smaller than or equal to the
number of WSS LPs solved with [5]. Furthermore, it shows that the IPS representation of
the MCS contains fewer dominated points. In case SOL is used, the difference in perfor-
mance is less defined but still notable. Here, exploiting the structure of the OPS helps to
reduce the number of WSS LPs solved compared to not using a distance calculation.

Table 2: Number of WSS LPs solved using the modification method of Solanki et al. [5]
and MCS for the Bensolvehedron with (p,m) = (3, 0) and ε = 0 given a certain yUB using
NON and SOL.

Solanki et al. MCS
WSS LPs IPS WSS LPs IPS

yUB NON SOL Vert. Not eff. NON SOL Vert. Not eff.

(−2,−2,−2) 50 40 19 4 58 37 19 4
(−1,−1,−1) 47 32 16 4 52 33 16 4

(0, 0, 0) 52 34 22 10 52 36 22 10
(10, 10, 10) 205 168 85 73 52 41 22 10

(100, 100, 100) 178 167 73 61 52 39 22 10

Abbreviations: vert. is the number of vertices of the IPS and not eff. denotes the number of dominated
points of the generated IPS.

6.2.2 Convex MO

We use the instance in [7], REN, to compare the performance of the MCS with the modi-
fication method of Solanki et al. [5]. Again, we focus on the effect of the selection of yUB

on the generated IPS of the different models. For the first selection of yUB, we use the

Koenen et al. Modification of the Criterion Space

pseudonadir point, i.e. yUB = ypN ≈ (4.88, 9.00, 4.38)5. Figure 6 shows the IPS obtained
after 50 iterations, excluding the initialization, using the modification method of Solanki
et al. [5] and the MCS. Although both methods result in 19 dominated points and 35
efficient points on the IPS, MCS obtained a better ε using SOL of 0.0170 vs. 0.0206 for the
modification method of [5]. Here, the structure of the OPS as used in MCS helps to reduce
the distance.

(a) Solanki (b) MCS

Figure 6: IPS of REN using yUB = ypN with 50 iterations. The dots depict all found points
of the IPS, where the white dots and the gray area represent the efficient part of the IPS.

For our second selection of yUB we use a point that is larger than the nadir point,
namely (7.5, 10, 5). This results in 21 dominated points and ε = 0.0151 for the MCS and
31 dominated points with ε = 0.0254 using the modification method of [5], see Figure 7.
Again, we see that a poor choice of yUB heavily impacts the performance of the modification
method of [5], whereas it does not affect MCS.

6.3 Impact of a distance approach

6.3.1 Comparison of distance approaches

Based on our findings in Section 6.2 we use the MCS to compare the three different distance
approaches introduced in Section 4.2: SUB, CUR and SOL. To evaluate their performance
we compare them based on the required solution time and the number of WSS and distance
LPs solved given a particular ε for the Bensolvehedron instance with (p,m) = (3, 2) and
REN.

Table 3 reports for both instances for several choices of ε the total solution time, which is
split into time required for solving the WSS LPs and time required for solving the distance
calculation LPs, and denotes the number of LPs solved for WSS and the distance calculation.
Furthermore, the table specifies additional information related to the distance calculation
such as the average number of constraints and the average time to solve the corresponding
distance LP. Bold marked rows indicate the method that has the shortest algorithm time,
measured by summing the time for the solution of the WSS LPs and the distance LPs.
Overhead time is not taken into account.

5See Figure 15 in [7].

Koenen et al. Modification of the Criterion Space

(a) Solanki (b) MCS

Figure 7: IPS of REN using yUB = (7.5, 10, 5) with 50 iterations. The dots depict all found
points of the IPS, where the white dots and the gray area represent the efficient part of the
IPS.

For both instances it holds that for all choices of ε the number of WSS LPs solved is
smaller using SOL compared to SUB and CUR. This makes sense, as SUB and CUR take
less information from the OPS into account and may therefore overestimate the distance
as defined by [5]. This has two consequences. First of all, more iterations might be needed
to ensure that ε is below the set threshold, even though the desired maximum distance
may have already been reached. This effect, however, seems limited as the found ε using
SUB and CUR is not substantially smaller than the one reported for SOL. Note that the
found ε is determined with SOL, therefore they are comparable. Second, a face that did not
maximally decrease the distance between the OPS and IPS might be selected. Therefore,
for smaller choices of ε the time spent on solving the WSS using SOL is significantly smaller.

The general downside of SOL, however, is that many more LPs need to be solved for
the distance calculation. Especially for ε = 0.001 the number of LPs solved grows fast.
Combined with the fact that the time spent on solving each distance LP increases fast
as well, almost all of the solution time for SOL is spent on solving distance LPs when ε

becomes small.
For the Bensolvehedron instance, CUR seems to perform the best as it is able to balance

the time spent on solving WSS LPs and distance LPs. By incorporating more information
about the OPS than SUB, CUR needs to solve fewer WSS LPs than SUB while requiring
fewer distance recalculations than SOL. However, for sufficiently small ε it seems that SUB
is still an acceptable method as for CUR the distance time increases more rapidly as the
time spent per distance LP increases with smaller ε.

For REN, SUB seems to outperform the other distance approaches. The main difference
is that in comparison to the previous instance, the WSS LP is solved much faster. Therefore,
the approach that has the fastest distance calculation will perform the best in terms of
time. As the average size of the distance LP of SUB is the smallest, these LPs remain more
tractable than those for CUR and SOL. This reduces the solution time of the distance LPs,
even though SUB solves more WSS and distance LPs than CUR.

In order to compare the overall outcomes of the three distance approaches, we have

Koenen et al. Modification of the Criterion Space

Table 3: Comparison of several distance approaches for different choices of ε. Here, the
solution time in seconds is reported for two categories: time to solve the WSS LP and
distance LP. Bold indicates the method which has the fastest algorithm, measured by
summing the time for WSS and distance LP. The number of LPs solved is reported both
for the WSS and the distance calculation. In addition, we report the final found ε using
SOL and for the distance calculation we report the average number of constraints in the
solved distance LP and the average time in milliseconds to solve this LP.

ε Sol. time LPs solved Dist. calc.
Inst. Mth. Crit. Found WSS Dist. WSS Dist. Cstr. t/LP

(3, 2) SUB 0.100 0.0953 12.8 0.1 23 72 9.4 1.6
(3, 2) SUB 0.050 0.0479 21.0 0.2 35 125 9.5 1.5
(3, 2) SUB 0.025 0.0247 48.3 0.5 74 304 9.7 1.5
(3, 2) SUB 0.010 0.0092 100.0 1.0 147 637 9.8 1.5
(3, 2) SUB 0.005 0.0050 206.2 2.0 299 1,321 9.7 1.5
(3, 2) SUB 0.001 0.0010 685.3 6.1 898 3,404 9.9 1.8
(3, 2) SUB 0 0 1,442.8 7.7 2,058 4,643 10.5 1.7
(3, 2) CUR 0.100 0.0953 10.4 0.2 20 56 13.0 3.0
(3, 2) CUR 0.050 0.0490 18.2 0.4 31 100 18.5 3.7
(3, 2) CUR 0.025 0.0247 35.2 1.0 55 196 30.5 5.3
(3, 2) CUR 0.010 0.0099 79.1 4.5 116 482 61.0 9.2
(3, 2) CUR 0.005 0.0049 144.6 12.9 207 875 106.0 14.8
(3, 2) CUR 0.001 0.0010 535.5 115.1 750 2,675 358.5 43.0
(3, 2) CUR 0 0 1,500.6 202.9 2,101 3,428 712.0 59.2
(3, 2) SOL 0.100 0.0953 10.5 0.7 21 304 13.5 2.3
(3, 2) SOL 0.050 0.0492 18.1 2.3 31 754 18.5 3.1
(3, 2) SOL 0.025 0.0247 34.8 13.4 56 2,724 31.0 4.9
(3, 2) SOL 0.010 0.0099 74.6 107.8 113 11,617 59.5 9.3
(3, 2) SOL 0.005 0.0050 135.5 562.3 199 36,001 102.0 15.6
(3, 2) SOL 0.001 0.0010 499.5 18,549.2 685 362,694 334.0 51.1
(3, 2) SOL 0 0 OOT OOT OOT OOT OOT OOT

REN SUB 0.100 0.0902 0.0 0.2 22 72 9.4 2.2
REN SUB 0.050 0.0497 0.1 0.4 38 145 9.4 2.5
REN SUB 0.025 0.0243 0.1 0.6 60 247 9.7 2.3
REN SUB 0.010 0.0090 0.2 1.5 135 585 11.5 2.6
REN SUB 0.005 0.0048 0.4 3.5 275 1,257 14.2 2.8
REN SUB 0.001 0.0010 2.0 24.1 1,215 5,990 27.4 4.0
REN SUB 0 0.0000 NA NA NA NA NA NA
REN CUR 0.100 0.0887 0.0 0.2 21 65 13.5 2.9
REN CUR 0.050 0.0497 0.0 0.4 31 105 18.5 3.8
REN CUR 0.025 0.0245 0.1 0.7 44 161 25.0 4.6
REN CUR 0.010 0.0094 0.1 3.0 91 376 48.5 8.0
REN CUR 0.005 0.0049 0.2 7.2 146 624 76.0 11.6
REN CUR 0.001 0.0010 0.9 97.8 551 2,547 278.5 38.4
REN CUR 0 0 NA NA NA NA NA NA
REN SOL 0.100 0.0887 0.0 0.9 20 270 13.0 3.2
REN SOL 0.050 0.0497 0.0 2.2 28 598 17.0 3.7
REN SOL 0.025 0.0245 0.1 7.4 42 1,480 24.0 5.0
REN SOL 0.010 0.0098 0.1 53.0 82 6,160 44.0 8.6
REN SOL 0.005 0.0049 0.2 266.4 143 19,458 74.5 13.7
REN SOL 0.001 0.0010 0.8 11,784.8 512 258,570 259.0 45.6
REN SOL 0 0 NA NA NA NA NA NA

Abbreviations: sol. for solution, dist. for distance, calc. for calculation, inst. for instance, mth. for
method, crit. for criterion, cstr. for constraints, t/LP for time per LP, OOT for out-of-time and NA for
not available.

Koenen et al. Modification of the Criterion Space

summarized our findings based on the two instances in Table 4. Note that, even though
we do not report overhead times, SUB will in general have more overhead than CUR and
SOL.

Table 4: Comparison of distance approaches based on the perceived outcomes in Table 3,
where ◦◦◦ denotes a relatively stable amount and + denotes an increase in time spent/number
LPS solved if ε is smaller (more +’s indicate a steeper increase).

SUB CUR SOL

Overhead for recalculation Yes No No
Time per OPS LP w.r.t. ε ◦◦◦ + +

Number of OPS LPs w.r.t. ε ++ + +++

Number of WSS LPs w.r.t. ε ++/+++ ++ +

6.3.2 Relevance of a distance approach

In the previous section we investigated which of the suggested distance approaches works
best, i.e. has the best solution time to reach ε. However, the question remains whether
the use of a distance calculation is always beneficial compared to not using a distance
calculation. As seen in Section 6.3.1, a considerable amount of time can be spent on solving
the distance LPs, which could have been spent on solving WSS LPs otherwise. This is
especially the case for REN where the WSS LPs are solved relatively quickly.

To investigate whether and when the distance calculation is useful, we run the WSS
sandwich algorithm without using a distance approach where we set a maximum time limit
for the total solution time of the WSS LPs. This time limit is based on the best found
approach in Section 6.3.1 — CUR for the Bensolvehedron instance and SUB for REN —
where the time limit is based on the total solution time for both the WSS and the distance
calculation. Afterwards we determine ε using the distance definition of [5] and compare it
to the reference ε.

Table 5 reports for both instances the ε obtained with a given time limit, for which
we also report the total number of WSS LPs performed. Note that, as SUB and CUR
overestimate the maximum distance, the maximum distance of the reference is likely to be
lower than the reference ε.

For the Bensolvehedron instance it holds that ε obtained without distance calculation
is significantly higher than the reference value, although a fairly similar amount of WSS
LPs is solved for NON compared to the reference. For this instance it is indeed beneficial
to select the most promising face to be able to decrease the distance between the IPS and
the OPS as much as possible.

The conclusion for REN is different, as the obtained ε is smaller than the reference
value. Previously we concluded that the distance calculation takes up most of the total
computation time. Allowing this time to be spent on WSS LPs can result in a factor
10 more WSS LPs solved compared to the reference. In this case the added benefit of a
distance approach is limited.

Koenen et al. Modification of the Criterion Space

Table 5: The found ε using no distance calculation given a certain time limit based on the
best performing distance approach in Section 6.3.1. Additionally the number of WSS LPs
are reported.

Reference NON
Inst. Time Limit ε WSS ε WSS

(s)

(3, 2) 10.6 0.0953 20 0.129 21
(3, 2) 18.6 0.0490 31 0.073 32
(3, 2) 36.3 0.0247 55 0.061 58
(3, 2) 83.5 0.0099 116 0.057 124
(3, 2) 157.5 0.0049 207 0.047 233
(3, 2) 650.6 0.0010 750 0.006 912
(3, 2) 1,703.5 0 2,101 0 2,400

REN 0.2 0.0902 22 0.018 112
REN 0.4 0.0497 38 0.006 279
REN 0.7 0.0243 60 0.005 447
REN 1.8 0.0090 135 0.003 1,137
REN 3.9 0.0048 275 0.002 2,299
REN 26.1 0.0010 1,215 0.001 13,386
REN NA 0 NA NA NA

Abbreviations: inst. for instance and NA for not available.

7 Discussion

This work provides an elegant modification of the criterion space that helps to reduce the
number of WSS LPs to be solved in a WSS sandwich algorithm. This modification, referred
to as the MCS, is an advancement on the formulation of Solanki et al. [5], as it reduces
the number of unnecessary searches towards dominated areas. Besides its explainability,
a great advantage of the MCS is that its principles can be easily incorporated within an
existing framework to solve convex problems. Therefore, the MCS is an accessible method
for DMs.

Based on the structure of the MCS we have shown several useful properties. First,
the MCS is able to obtain all nondominated points of an MOLP in a finite number of
expansions of the IPS, which is bounded in terms of the number of nondominated vertices.
We validated that the MCS is indeed able to obtain all nondominated points for a couple of
MOLP instances using Benson’s outer approximation [9], which is a method that is proven
to be able to find all nondominated points of an MOLP. Second, the maximum number of
WSS LPs of the MCS is not dependent on the choice of yUB as long as yUB > yN, whereas
the modification method of Solanki et al. [5] is. In comparison to [5], the MCS is especially
useful in case it is difficult to get a good estimation of yN , and as shown in our results
reduces the number of WSS LPs that is necessary to obtain the non-dominated set up to
ε-precision.

Furthermore, we have proposed two heuristic approaches to calculate the distance be-
tween the inner and outer approximation, referred to as SUB and CUR, that can be used as
an alternative for the distance calculation of Solanki et al. [5], SOL. SUB, CUR and SOL

Koenen et al. Modification of the Criterion Space

can be used to select the next weight used in the next WSS iteration. SUB and CUR ap-
proximate SOL by providing overestimations to SOL, resulting in overall faster approaches.
As apparent from our results, when using SOL almost all computation time is spent on
determining which weight to select, especially when ε is small. SUB and, to a lesser extent,
CUR only spend a fraction of their total solution time on the distance calculation. In fact,
even though the number of WSS LPs solved increases using SUB and CUR, the total solu-
tion time of the LPs of SUB and CUR is much faster than of SOL. Based on our findings,
SUB is a better option than CUR if either ε is very small or if the WSS LP is relatively
quick to solve.

We do like to make some remarks regarding the distance calculation. First, the distance
definition which forms the basis of SOL, SUB and CUR does not determine the weight for
which the Euclidean distance between the IPS and the OPS is the largest, but it selects
the weight of the corresponding halfspace that is furthest from the OPS. This difference in
interpretation is important, as the maximum determined distance using the definition of [5]
can sometimes increase over the iterations, which might be counterintuitive. An alternative
distance definition would be the Hausdorff distance as used in [13], however computing this
distance metric is computationally expensive.

Second, we do like to point out that for the above results we did not parallelize our code.
If we would parallelize for example the distance calculation procedure, the performance of
CUR will most likely benefit more from this than SUB. For smaller ε, CUR has a larger
fraction of total time spent on the distance LPS, parallelizing this will drastically decrease
the time required for distance calculation.

Third, although a distance calculation will in general help to select promising weights,
the added benefit can be limited in case the WSS LP is solved very quickly in comparison
to the distance calculation LP. In those cases it is better to not use a distance calculation
and use the additional time to generate a lot of WSS solutions to improve the granularity
of the generated non-dominated set. Then, for the resulting solution, ε could be deter-
mined (or approximated with SUB or CUR) in order to get an idea of the accuracy of the
approximation.

In our paper we do not necessarily focus on providing a method that is the fastest to ob-
tain an ε distance, such as [13]. Instead, our overall intention is to make MO methods more
appealing to be incorporated in applied fields and we do so by proposing comprehensible
algorithms. A great example for this is the use of MO for diet optimization, our main mo-
tivation for this work, as there are multiple conflicting goals which impact the composition
of a food basket [19]. That is, an ideal food basket has to be culturally appropriate, afford-
able, nutritious and environmentally friendly. By showing trade-offs between these various
goals, organizations such as the World Food Programme can enhance their analyses that
use diet optimization [20, 21, 22]. We think that the current diet optimization literature
can still improve upon its MO analyses, as most research either focuses on methods that
can overlook relevant trade-offs, such as epsilon constraint methods [23, 24, 25] or WSS
with a fixed weight only [26], suboptimal methods such as lexicographic optimization [27]
or methods specifically designed for two objectives [22]. Highlighting algorithms that are
explainable, while at the same time having useful properties, such as the MCS will help
applied fields to obtain more useful insights from their analyses.

As a last remark, we would like to discuss the (dis)similarities between the MCS and the
dummy points method as proposed in [7]. The dummy points method is an augmentation
of the general WSS sandwich algorithm, where it artificially alters the IPS by adding
dominated points in each step of the algorithm. This resulting structure is somewhat
similar to the structure of the MCS, as the MCS also flattens the dominated side. The

Koenen et al. Modification of the Criterion Space

main advantage of the MCS over the dummy point method is that one does not need to
keep track which dummy points are redundant, i.e. that are linear combinations of other
dummy points, and that it requires less effort to be well-implemented.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

Author contributions

MK was responsible for the overall research and writing. MB had an advisory role through-
out the research. MB and HF helped to structure and revise the text. HF initiated the
research. All authors contributed to the manuscript and approved the submitted version.

Funding

The Zero Hunger Lab is funded by the Ministry of Foreign Affairs of the Netherlands and
Tilburg School of Economics and Management.

Data availability

All data generated or analysed during this study are included in this manuscript or publicly
available.

Koenen et al. Modification of the Criterion Space

References

[1] Matthias Ehrgott. Multicriteria optimization, volume 491. Springer Science & Business
Media, Berlin, Heidelberg, 2005.

[2] Harold P Benson. Hybrid approach for solving multiple-objective linear programs in
outcome space. Journal of Optimization Theory and Applications, 98(1):17–35, 1998.

[3] Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science
& Business Media, New York, 1999.

[4] Margaret M Wiecek, Matthias Ehrgott, and Alexander Engau. Continuous multiob-
jective programming. In Multiple criteria decision analysis, pages 739–815. Springer,
Boston, 2016.

[5] Rajendra S Solanki, Perry A Appino, and Jared L Cohon. Approximating the nonin-
ferior set in multiobjective linear programming problems. European Journal of Opera-

tional Research, 68(3):356–373, 1993.

[6] David L Craft, Tarek F Halabi, Helen A Shih, and Thomas R Bortfeld. Approximat-
ing convex pareto surfaces in multiobjective radiotherapy planning. Medical Physics,
33(9):3399–3407, 2006.

[7] Gijs Rennen, Edwin R van Dam, and Dick den Hertog. Enhancement of sandwich algo-
rithms for approximating higher-dimensional convex pareto sets. INFORMS Journal

on Computing, 23(4):493–517, 2011.

[8] Kathrin Klamroth, Jørgen Tind, and Margaret M Wiecek. Unbiased approximation in
multicriteria optimization. Mathematical Methods of Operations Research, 56(3):413–
437, 2003.

[9] Harold P Benson. An outer approximation algorithm for generating all efficient extreme
points in the outcome set of a multiple objective linear programming problem. Journal
of Global Optimization, 13(1):1–24, 1998.

[10] Lizhen Shao and Matthias Ehrgott. Approximately solving multiobjective linear pro-
grammes in objective space and an application in radiotherapy treatment planning.
Mathematical Methods of Operations Research, 68(2):257–276, 2008.

[11] Matthias Ehrgott, Lizhen Shao, and Anita Schöbel. An approximation algorithm
for convex multi-objective programming problems. Journal of Global Optimization,
50(3):397–416, 2011.

[12] Matthias Ehrgott, Andreas Löhne, and Lizhen Shao. A dual variant of Benson’s “outer
approximation algorithm” for multiple objective linear programming. Journal of Global

Optimization, 52(4):757–778, 2012.

[13] Rasmus Bokrantz and Anders Forsgren. An algorithm for approximating convex pareto
surfaces based on dual techniques. INFORMS Journal on Computing, 25(2):377–393,
2013.

[14] Indraneel Das. Nonlinear multicriteria optimization and robust optimality. Rice Uni-
versity, Houston, Texas, 1997.

Koenen et al. Modification of the Criterion Space

[15] Bernd Schandl, Kathrin Klamroth, and Margaret M Wiecek. Norm-based approxi-
mation in multicriteria programming. Computers & Mathematics with Applications,
44(7):925–942, 2002.

[16] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6.
Athena scientific, Belmont, MA, 1997.

[17] Peter McMullen. The maximum numbers of faces of a convex polytope. Mathematika,
17(2):179–184, 1970.

[18] Komei Fukuda. Polyhedral computation. 2020.

[19] Corné van Dooren. A review of the use of linear programming to optimize diets,
nutritiously, economically and environmentally. Frontiers in Nutrition, 5:48, 2018.

[20] Amy Deptford and Andrew Hall. Cost of the Diet. A practitioner’s guide. Version 2.,
2014.

[21] Indira Bose, Giulia Baldi, Lynnda Kiess, and Saskia de Pee. The “Fill the Nutrient
Gap” analysis: An approach to strengthen nutrition situation analysis and decision
making towards multisectoral policies and systems change. Maternal & Child Nutrition,
15(3):e12793, 2019.

[22] Melissa F Koenen, Marleen Balvert, and Hein Fleuren. Bi-objective goal programming
for balancing costs vs. nutritional adequacy. Frontiers in Nutrition, 9, 2022.

[23] Corné van Dooren, Marcelo Tyszler, Gerard FH Kramer, and Harry Aiking. Combining
low price, low climate impact and high nutritional value in one shopping basket through
diet optimization by linear programming. Sustainability, 7(9):12837–12855, 2015.

[24] Jingjing Yin, Xinhuan Zhang, Wei Huang, Lingxuan Liu, Yufang Zhang, Degang Yang,
Yun Hao, and Yaning Chen. The potential benefits of dietary shift in China: Synergies
among acceptability, health, and environmental sustainability. Science of The Total

Environment, 779:146497, 2021.

[25] Eliseu Verly-Jr, Aline Martins de Carvalho, Dirce Maria Lobo Marchioni, and Nicole
Darmon. The cost of eating more sustainable diets: A nutritional and environmental
diet optimisation study. Global Public Health, 17(6):1073–1086, 2022.

[26] Hassan Eini-Zinab, Seyyed Reza Sobhani, and Arezoo Rezazadeh. Designing a healthy,
low-cost and environmentally sustainable food basket: an optimisation study. Public

health nutrition, 24(7):1952–1961, 2020.

[27] Louise Seconda, Hélène Fouillet, Jean-François Huneau, Philippe Pointereau, Julia
Baudry, Brigitte Langevin, Denis Lairon, Benjamin Allès, Mathilde Touvier, Serge
Hercberg, et al. Conservative to disruptive diets for optimizing nutrition, environmen-
tal impacts and cost in French adults from the nutrinet-santé cohort. Nature Food,
2(3):174–182, 2021.

[28] C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. The quickhull algorithm
for convex hulls. ACM Transactions on Mathematical Software, 22(4):469–483, 1996.

Koenen et al. Modification of the Criterion Space

Appendix

A Overestimation distance calculation of Craft et al. [6]

Here, we show that the distance calculation introduced in Craft et al. [6] can result in an
overestimation of (1). We provide a small example based on Bensolvehedron with p = 3
and m = 0, where the intersection of the OPS halfspaces of the vertices of the current
considered face of the IPS does not result in the correct distance. That is, the closed form
expression results in an overestimation. This example shows that only using a subset of the
OPS halfspaces can result in an overestimation of the distance, even though the intersection
of this subset of OPS halfspaces is unique. For clarity we do not scale the objectives.

Let us assume that our current IPS consists of the anchor points (−9, 0, 0), (0,−9, 0),
(0, 0,−9), upper bound (0, 0, 0) and an efficient point (−5,−5,−5) found during the first
iteration of the algorithm. Figure 8a shows the current IPS. The corresponding OPS halfs-
paces of the anchor points are [1 0 0]⊺y ≥ −9, [0 1 0]⊺y ≥ −9 and [0 0 1]⊺y ≥ −9, the OPS

halfspace of (−5,−5,−5) is
[

1√
3

1√
3

1√
3

]

⊺

y ≥ −8.66025 and the other OPS halfspaces are

[1 0 0]⊺y ≤ 0, [0 1 0]⊺y ≤ 0, and [0 0 1]⊺y ≤ 0.
Now, let us consider the inner normal of the IPS face that belongs to point (−5,−5,−5)

and anchor points (−9, 0, 0) and (0,−9, 0). This face defined as [45 45 − 9]⊺y ≤ −405
is highlighted white in Figure 8a. To determine the distance from this IPS face to the
OPS, Craft et al. [6] use the OPS halfspaces that correspond to these points to find an
intersection point. As these halfspaces intersect uniquely, they can use their closed form
expression. The found intersection point (−9,−9, 3) is indicated as a square in Figure 8b.
Using the distance approach of Craft et al. [6], the distance between the square and the
face of the IPS is ≈ 6.721.

If we now consider the distance calculation according to Solanki et al. [5], we find a
distance of ≈ 4.200. Here, the OPS inequality [001]⊺y ≤ 0 cuts away the former intersection
point, which is shown in Figure 8c. This OPS inequality is not one of the OPS inequalities
that belong to the vertices of the white IPS face, and is therefore not included in the
distance calculation of Craft et al. [6]. This results in the correct distance from the IPS
to the OPS, where we find point (−6,−9, 0) indicated with a star. Note that all points
on the line indicated with the black dotted line in Figure 8c result in the correct distance.
Thus, this example shows that the closed form expression of Craft et al. [6] may result in
an overestimation of the distance.

Note that in this example the white face has a mixed normal. After determining the
distance to the OPS, Craft et al. [6] modify this normal to obtain a non-negative normal
for the WSS sandwich algorithm. The fact that it is a mixed normal does not alter the
distance calculation.

Koenen et al. Modification of the Criterion Space

(a) (b) (c)

Figure 8: In (a) the current IPS is shown. In (b) the intersection point, indicated with a
square, is determined with the OPS halfspaces corresponding to the vertices of the white
face. In (c) the distance to the intersection point is 6.721, whereas the correct distance
from the white face to the OPS is 4.200. In the optimization we find the point indicated
with a star, however all points on the black dotted line will result in the same distance.

Koenen et al. Modification of the Criterion Space

B Implementation choices and details

In this section we provide comments related to the implementation of Algorithm 1 of Section
4.3:

• In general it is common practice to normalize the criterion space to avoid a bias
towards objectives with a higher magnitude [6, 13], which increases numerical stability
of the algorithm as well;

• In the initialization we use yUB to construct the IPS and the OPS. An often used
option for yUB is the pseudonadir point, which is relatively easy to determine although
it does not guarantee to find the complete YN front as it might cut off some efficient
points;

• In order to determine the convex hull of the IPS and to obtain its halfspaces, we make
use of qhull6 based on the work of [28];

• In case the initialization from Line 1-8 does not contain p + 1 linearly independent
points, it is not possible to construct a convex hull and H in Line 9 will be empty
resulting in a premature termination of the algorithm;

• In Line 16 the algorithm always adds f(x̄) to the IPS, however similar to [5] one can
also first check whether f(x̄) will expand the current IPS. If that is not the case, find
the next halfspace that has the lowest distance to the OPS that does expand the IPS.

6
www.qhull.org

www.qhull.org

	voorkant 012.pdf
	No. 2023-012

	centER_discussion_MCS_Koenen.pdf
	Introduction
	Notation
	WSS sandwich algorithm
	General steps of a WSS sandwich algorithm
	Decisions within WSS sandwich algorithms
	Handling mixed and negative normals
	Determining the next face

	Methodology
	Modified criterion space (MCS)
	Selecting the next face
	MCS algorithm
	Properties of WSS sandwich and MCS
	WSS sandwich can find all Pareto points for MOLP
	Upper bound yUB does not affect maximum number of WSS LPs of the MCS for MOLP
	Maximum number of WSS LPs of the MCS for MOLP

	Instances
	Bensolvehedron
	Rennen

	Results
	Verification that MCS obtains YN
	Comparison of modification methods
	MOLP
	Convex MO

	Impact of a distance approach
	Comparison of distance approaches
	Relevance of a distance approach

	Discussion
	Overestimation distance calculation of Craft et al. craft2006
	Implementation choices and details

