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Chapter 7
An Illustration of Local Structural Equation
Modeling for Longitudinal Data:
Examining Differences in Competence
Development in Secondary Schools

Gabriel Olaru, Alexander Robitzsch, Andrea Hildebrandt,
and Ulrich Schroeders

Abstract In this chapter, we discuss how a combination of longitudinal modeling
and local structural equation modeling (LSEM) can be used to study how students’
context influence their growth in educational achievement. LSEM is a nonparametric
approach that allows for the moderation of a structural equation model over a
continuous variable (e.g., socio-economic status; cultural identity; age). Thus, it
does not require the categorization of continuous moderators as applied in multi-
group approaches. In contrast to regression-based approaches, it does not impose a
particular functional form (e.g., linear) on the mean-level differences and can spot
differences in the variance-covariance structure. LSEM can be used to detect
nonlinear moderation effects, to examine sources of measurement invariance viola-
tions, and to study moderation effects on all parameters in the model. We showcase
how LSEM can be implemented with longitudinal of the National Educational
Panel Study (NEPS) using the R-package sirt. In more detail, we examine the effect
of parental education on math and reading competence in secondary school across
three measurement occasions, comparing LSEM to regression based approaches and
multi-group confirmatory factor analysis. Results provide further evidence of the
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strong influence of the educational background of the family. This chapter offers a
new approach to study inter-individual differences in educational development.
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7.1 Introduction

Research on education as a lifelong process often deals with questions addressing the
trajectories of abilities and competencies across the lifetime of individuals (longitu-
dinal design) or differences between individuals of different ages (cross-sectional
design). The National Educational Panel Study (NEPS) combines both approaches
in a multi-cohort sequence design providing access to high quality, nationally
representative, longitudinal data on educational careers and on the developing
competencies of preschoolers, students, and adults in Germany (Blossfeld et al.,
2011). Educational studies are often concerned with identifying contextual factors
(e.g., Hattie, 2009; Sirin, 2005; Watermann & Baumert, 2006) that might promote or
impede learning beyond factors that can be identified on the individual level (e.g.,
prior knowledge, self-efficacy, grit).

To understand how such context variables moderate learning, it is vital to
incorporate them adequately into longitudinal data analysis techniques. However,
broadly applied traditional data analysis approaches for examining the influence of
context variables in educational research (multiple regression, differences between
extreme groups, etc.) have several major drawbacks. Regression analytic approaches
only focus on mean-level differences across the covariate. Moderating effects are
often studied categorically by comparing a small number of artificially created
groups (e.g., with low vs. high socio-economic status). Unfortunately, in such
multi-group confirmatory factor analysis, it is the statistical method and not the
nature of the observed context variable that determines the way in which the data
analysis is performed. To enrich the methodological toolbox of social and
behavioural scientists, including researchers analysing the intensive longitudinal
data of NEPS, we describe in this chapter a recently developed statistical data
analysis technique that is suitable to examine moderation effects of continuous
background variables—local structural equation models (LSEM; Hildebrandt
et al., 2009, 2016)—and apply this technique to longitudinal data.

7.2 Longitudinal Local Structural Equation Modeling

7.2.1 Longitudinal Structural Equation Models

To examine the effects of educational and familiar context on educational trajecto-
ries in a longitudinal structural equation modeling framework, we first aim to set the
methodological ground for the upcoming explanation. We neither elaborate on
issues of assessment such as the need to develop and compile theoretically sound



and age-appropriate measures (for this purpose, see e.g., Coaley, 2014; Embretson &
Reise, 2013), nor we detail core principles of structural equation modeling (see
Hoyle, 2012; Kline, 2015). Also, we refer the interested reader to excellent and
comprehensive textbooks and articles topic (e.g., Little, 2013; McArdle, 2009;
Mund & Nestler, 2019), when it comes to in-depth discussions and applications of
structural equation modeling with longitudinal data. Nonetheless, we want to men-
tion that any longitudinal data analysis within the SEM framework should start by
establishing and scrutinizing the measurement models within each measurement
occasion. The aim is to probe the stability of the measured construct and to spot
potential fluctuations in the factorial structure, which is commonly referred to as
measurement invariance testing (Meredith, 1993; Little et al., 2007). In a subsequent
step, the model is extended by specifying relations across measurement occasions.
Structural equation modeling with longitudinal data has to tackle several modeling
decisions, which will be explained in more detail in the following, including (a) the
longitudinal measurement invariance, (b) the scaling of latent factors, and (c) the
choice among different structural models to depict change.
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From a measurement point of view, the basic question in longitudinal research is
whether the same construct is being assessed over time. This is known as longitu-
dinal measurement invariance. Similar to the cross-sectional case (Cheung &
Rensvold, 1999; Meredith, 1993; Vandenberg & Lance, 2000), longitudinal mea-
surement invariance requires the specification of several parameter constraints
(e.g. Little et al., 2007; Liu et al., 2016). In general, the procedure for testing
measurement invariance consists of a sequence of models with increasingly restric-
tive constraints on the measurement parameters. As a baseline model, a model
without any constraints is specified, in which only same structure across time is
estimated (i.e., configural invariance). Next, a model with equal factor loadings
across time (i.e. metric invariance) is tested. Finally, in addition to the constrained
factor loadings, the item intercepts are also constrained to equality across time (i.e.,
scalar invariance). The scalar level of measurement invariance is required to answer
questions concerning mean level change across time. If introducing additional
equality constraints on parameters were to result in a substantial deterioration of
the model fit (e.g., Chen, 2007; Cheung & Rensvold, 2002), the assumption of
measurement invariance would have to be discarded.

Factor scaling (also called factor identification) means that a metric needs to be
established for the latent variable (or factor). There are several options for scaling
latent variables. Preferably, the choice of scaling is led by considerations related to
parameter interpretation according to the scientific hypotheses to be addressed. The
factor identification method in longitudinal modeling also determines the metric in
which changes in parameters across time are expressed and have to be interpreted
(see Little et al., 2006). For instance, when using the reference variable method, in
which the factor loading and the item intercept of a single indicator per factor is
constrained to 1 and 0, respectively, the metric of the latent variable is equivalent to
that of the chosen reference indicator. In the case of constraining the variance of the
factor to 1 and its mean to 0 at the first measurement occasion (i.e., reference-group
scaling), factor variances and means at subsequent measurement occasions are



identified and scaled relative to the first measurement occasion. Both scaling
methods have some disadvantages: Differences cannot be interpreted in the original
item metric and constraining the factor mean at the first measurement time point to
0 discards the possibility of examining factor mean differences across the moderator
at baseline. One potential way to overcome these disadvantages is the so called
effects coding method for scaling latent variables (Little et al., 2006). According to
this approach, factors are taken to reflect a weighted composite of all items (i.e.,
weighted by the factor loadings). This is implemented by constraining factor load-
ings of a common factor to an average of 1 and item intercepts belonging to the same
factor to an average of 0. This procedure allows researchers to estimate factor means
and variances that correspond to the metric of the items at every measurement
occasion.
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Finally, there is a wide range of longitudinal modeling approaches from which
researchers are expected to select the one that best fits their analysis objectives (for
overviews, see McArdle, 2009; Mund & Nestler, 2019; Usami et al., 2019). These
include autoregressive models (Selig & Little, 2012), cross-lagged panel models
(Mund & Nestler, 2019), change score models (Ferrer & McArdle, 2010), latent
growth curve models (McArdle & Bell, 2000), and their variants. These modeling
approaches differ in how they conceptualize and assess sources of variance (i.e.,
between-person variance, within-person variance, and error variance; see Bainter &
Howard, 2016). Thus, depending on the specific research question and the number of
time points available, researchers have to select the most appropriate model: For
example, autoregressive models are suitable for testing rank-order stability and
variability across time, whereas change score models are suitable for investigating
general developmental trajectories and individual differences therein. Some models
incorporate both within- and between-persons differences, as well as inter-individual
differences in intra-individual change (e.g., autoregressive latent trajectory model
with structured residuals; Mund & Nestler, 2019).

For the application described in this chapter, we used a bivariate latent growth
curve model (LGCM; see Fig. 7.1), because we aimed to examine academic
achievement and growth and co-development in two core competencies (math and
reading) from 5th to 9th grade. The focus is on modeling the influence of a
contextual variable (educational background) on the structural parameters. A
LGCM allows differentiating between the initial level of academic competencies
(the intercept) and its growth (the slope) across the study period. Moreover, they are
suitable to examine how the initial level is related to subsequent growth, or how
initial values and growth on one competence are associated with the other compe-
tence and its growth. However, the data-analytic methods with respect to the
moderator variable we describe in this chapter can be similarly applied to other
families of longitudinal structural equation models.
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Fig. 7.1 Weighting functions for parental education (HISCED)

7.2.2 Including Covariates in a Longitudinal Structural
Equation Model

The influence of background or context variables on parameters in a longitudinal
model can be examined in various ways. The most broadly used approach is to
include the context variable (e.g., parental SES) as a predictor of all latent variables.
Thus, the (linear) relation of the context variable is accounted for, and factor
residuals are interpreted as latent variables that were adjusted for the influence of
the context variable. The downside of this approach is that it estimates only mean
differences in the factor across the covariate. However, the covariates may also
modulate other model parameters such as factor variances or factor covariances. In
many applications, it is highly relevant to examine how individual differences in
covariates are associated with the constructs and their growth, because this will help
understand the processes of development more comprehensively than by examining
a simple mean difference.

To examine the effect of a covariate on other model parameters than the mean, the
covariate needs to be modelled as a moderator, which is often done with multi-group
confirmatory factor analysis (MGCFA). In MGCFA, differences in model parameter
are tested across a categorical moderator such as gender. For this purpose, model
parameters are typically fixed to equality across groups, and deterioration in model



fit is tested following a straightforward procedure (for a detailed explanation, see
Schroeders & Gnambs, 2018). MGCFAs are widely used and accepted for investi-
gating model parameter differences across categorical context variables. However,
to employ this method for continuous context variables such as SES, MGCFAs
require one to first artificially categorize the context variable (e.g., into low vs. high
SES groups by median split). But, artificially categorizing a continuous moderator
has several disadvantages (see MacCallum et al., 2002; Preacher et al., 2005). First,
nonlinear trends and complex patterns of moderation effects might be overlooked if
too few groups have been analysed (e.g., Hildebrandt et al., 2016). Second, catego-
rization results in a loss of any information on individual differences within a given
moderator group. That means, when observations that differ across the range of a
continuous variable are grouped, variation within these groups can no longer be
detected. Third, setting cut-offs to split the distribution of a moderator into several
parts is often arbitrary and might severely affect the results (e.g., Hildebrandt et al.,
2009; MacCallum et al., 2002).
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7.2.3 Local Structural Equation Modeling

In the following, we extend a recently developed method, local structural equation
modeling (LSEM; Hildebrandt et al., 2009, 2016; Olaru et al., 2019), to longitudinal
data aiming to overcome the aforementioned methodological issues. LSEM does not
require an artificial categorization of moderators, renounces a pre-analytical speci-
fication of the relationship between moderator and psychological constructs, and can
moderate both the mean and covariance structure. For these reasons, LSEM provides
a very powerful approach with which to examine educational development across a
wide range of background variables.

Next, we explain LSEM along an empirical example, demonstrating how
researchers can examine contextual effects across a wide range of continuous
moderators such as socio-economic status, years of formal education, or cultural
embeddedness and a wide variety of models. LSEM has already been applied
successfully to cross-sectional data to examine structural and mean-level differences
in cognitive abilities across age or years of education (e.g., Gnambs & Schroeders,
2020; Hartung et al., 2018; Hülür et al., 2011; Schroeders et al., 2015) or to study
age-related differences in personality (Olaru et al., 2019; Wagner et al., 2019). For
instance, Wagner et al. (2019) and Olaru and Allemand (2022) used a combination
of longitudinal models and LSEM to examine differences in the stability of person-
ality traits and correlated change across the adult lifespan, respectively. In contrast to
the current gap in the literature for such applications, combining LSEM and longi-
tudinal SEMs is particularly important in educational research in which a wide range
of different contexts (e.g., class, schools, peers, families) are theorized to have an
important impact on the academic and extracurricular development of students and
adults.
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To achieve sufficiently stable parameter estimations, LSEM needs sufficiently
large samples at each potential moderator value. Note that sample size restrictions
are often the reason why naturally continuous moderators are categorized for
MGCFA. This is because estimating a model at each moderator value (e.g., for
each SES level) is not possible if only very few observations are available along
single moderator values. As an alternative to achieve sufficiently stable parameter
estimates, LSEM uses a sample weighting function to include observations from the
neighbouring values on the moderator, albeit with smaller weights. The samples are
weighted so that persons close to the targeted moderator value are weighted more
strongly than persons farther away from this point. More specifically, the weighting
function follows a Gaussian kernel function with a maximum of 1 at the focal point
of the moderator considered (e.g., HISCED1 = 6) and increasingly smaller weights
for persons with a larger distance to the relevant moderator value (see Fig. 7.1). This
approach assumes that observations close to each other on the moderator are more
similar than distal observations. Figure 7.1 shows exemplarily (for three weight
functions) that observations at the focal points receive a weight of 1, whereas
observations with increasing distance from a focal point receive smaller weights.
Because the Gaussian kernel function always attains values larger than zero, all
observations will enter all models at each focal point in LSEM; but distant observa-
tions have very small values (below 0.01) resulting in no practical influence on the
model parameter estimation at a given focal point.

After introducing the general idea of LSEM (for more details, see Hildebrandt
et al., 2016; Olaru et al., 2019), we shall now illustrate the usefulness and versatility
of the approach for analysing educational achievement outcomes in combination
with contextual factors. More precisely, we apply LSEM to investigate mean,
variance, and covariance differences in math and reading competencies2 from the
5th to 9th grade of school (Starting Cohort 3; Blossfeld et al., 2011; https://doi.org/
10.5157/NEPS:SC3:9.0.0) across educational levels of the family. To model mean-
level performance and growth in the two domains as well as their interaction, we
apply a bivariate latent growth curve model (see Fig. 7.2). Subsequently, we used
LSEM to study the moderating effects of parental education within this model. We
also compared the findings to a model in which the HISCED was included as a linear
predictor of the factors, and to a model in which the HISCED was included as a
categorical moderator (i.e., a multi-group confirmatory factor analysis across a low
and high parental education group).

1HISCED is an acronym for highest international standard classification of education.
2For similarities and possible differences between the terms ability, skill, competence, and so forth,
please see Schroeders (2018). In the present case, we use the terms synonymously.

https://doi.org/10.5157/NEPS:SC3:9.0.0
https://doi.org/10.5157/NEPS:SC3:9.0.0
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Fig. 7.2 Bivariate latent growth curve model of reading and math competence from Grade 5 to
9. Numbers show the estimated factor loadings, covariances, and means (triangles) on the full
sample. Numbers in italics represent the standardized parameters; those in bold, constrained
parameters

7.3 Method

7.3.1 Sample

The following illustration is applied to data from the National Educational Panel
Study (NEPS): Starting Cohort Grade 5 (Blossfeld et al., 2011; https://doi.org/10.
5157/NEPS:SC3:9.0.0). From 2008 to 2013, NEPS data was collected as part of the
Framework Programme for the Promotion of Empirical Educational Research
funded by the German Federal Ministry of Education and Research (BMBF). As
of 2014, NEPS is carried out by the Leibniz Institute for Educational Trajectories
(LIfBi) in cooperation with a nationwide network. Of the Starting Cohort Grade
5 sample, we used only the 2037 students who had provided complete data on math

https://doi.org/10.5157/NEPS:SC3:9.0.0
https://doi.org/10.5157/NEPS:SC3:9.0.0


and reading competencies across the three measurement occasions together with
their parents’ education. Gender was balanced (50% female students). The mean age
was 10.75 (SD = 0.51) in 5th grade, 12.75 (SD = 0.49) in 7th grade, and 14.92
(SD = 0.46) in 9th grade. Note that LSEM requires moderator values for each case
used for model estimation, but can account for missing values in the indicators using
pairwise estimation, imputed datasets, or model-based imputation (e.g., full infor-
mation maximum likelihood; for an overview, see Lüdtke et al., 2007).3 Because
missing values in the data used for this demonstration indicated that some students
did not participate in one or more measurement occasions (thus not being missing at
random), we used only cases with full data.
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7.3.2 Measures

7.3.2.1 Mathematical Competence

Mathematical competence in NEPS is a measure of mathematical literacy (OECD,
2009) requiring students to apply mathematics in realistic everyday situations. It
combines content-related components (i.e., quantity, space, and shape; change and
relationships; data and chance) with process-related components (i.e., applying
technical skills, modeling, arguing, communicating, representing, and problem
solving). For instance, the content-related facet of ‘quantity’ ranges from basic
arithmetic operations (e.g., adding), over the use of different units, to simple
equation systems. On the process-related side, the component ‘technical skills’
encompasses using known algorithms and calculation methods. The process
‘representing’ requires students to interpret tables, charts, or graphs, whereas ‘prob-
lem solving’ assesses students’ ability to solve a problem with no obvious solution,
typically by trying, generalizing, or examining exceptional cases.

7.3.2.2 Reading Competence

Reading competence is conceptualized in NEPS as competent handling of texts in
different typical everyday situations. This operationalization of reading competence
is based on the Anglo-Saxon literacy concept (also see OECD, 2009). The NEPS
reading competence test combines different text forms, tasks, and response formats.
Text forms consist of (a) factual texts (e.g., educational texts), (b) commenting texts
(e.g., texts discussing a controversial question), (c) literary texts (e.g., short stories),
(d) instructions (e.g., engineering manuals, cooking recipes), and (e) advertising

3Note that an imputation model has to be at least as flexible as the analysis model. For LSEM, the
imputation of variables appearing in the SEM should allow relationships among variables to depend
nonlinearly on moderators.



texts (e.g., job advertisements, recreational programmes) for which the lexical,
semantic, and grammatical properties have been adapted to fit different age groups.
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The reading comprehension tests require students to fulfil three types of tasks that
were identified based on the reading comprehension literature (e.g., Kintsch, 1998;
Richter & Christmann, 2002). These tasks are specified as (a) ‘finding information in
the text’ (e.g., identifying information and recognizing statements), (b) ‘drawing
text-related conclusions’ (e.g., relating several statements to each other in order to
identify general propositions or the thoughts expressed in the text), and
(c) ‘reflecting and assessing’ (e.g., deriving a situation model or understanding the
central message of the text). Tasks and text forms are combined in a balanced
manner to cover all possible text–task combinations.

7.3.2.3 Parental Education

We used the international standard classification of education (ISCED) as an
indicator of parental educational levels. The ISCED provides information on edu-
cational attainment in terms of both the highest school certificate and the highest
occupational qualification. The ISCED used in the NEPS study ranges from 0 = no
formal education to 10= doctoral degree. We used the highest ISCED (HISCED) of
both parents at the first measurement occasion as an indicator of educational levels in
the family. If the ISCED was not measured in the first wave, we used the ISCED
from subsequent measurement occasions. The average HISCED in the sample was
6.60 (SD = 2.55). It remained stable across the 4 years examined in this study (i.e.,
95% of participants did not change in their value).

7.3.3 Statistical Analysis

7.3.3.1 Latent Growth Curve Model

As a starting point for our analyses, we used a bivariate latent growth curve model
(LGCM; McArdle, 2009) on the math and reading competence ability estimates
from an item response model linked across measurement occasions included in the
NEPS SC3 dataset (Blossfeld et al., 2011). We modelled an intercept factor with
loadings of 1 on all indicators. For the slope factor, we constrained the factor
loadings to 0 and 1 for the first and the second measurement occasion respectively,
while freely estimating the loading for the third measurement occasion. In contrast
to other LGCM applications, the last slope loading was not constrained to 2 in order
to allow nonlinear growth trajectories across time. All indicator intercepts were fixed
to 0, so that factor means could be estimated. We allowed the intercept and slope
factors of math and reading competence to covary. The model was estimated in
lavaan (Rosseel, 2012) with maximum likelihood estimation. The lavaan code for



the model specification was as follows (please note that we use the original variable
labels so that readers can replicate our example):
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LGCM <- "
# model intercept and slope factors
math.inter =~ 1*mag5_sc1u + 1*mag7_sc1u + 1*mag9_sc1u
math.slope =~ 0*mag5_sc1u + 1*mag7_sc1u + mag9_sc1u
read.inter =~ 1*reg5_sc1u + 1*reg7_sc1u + 1*reg9_sc1u
read.slope =~ 0*reg5_sc1u + 1*reg7_sc1u + reg9_sc1u

# fix indicator intercepts to 0
mag5_sc1u ~ 0*1
mag7_sc1u ~ 0*1
mag9_sc1u ~ 0*1
reg5_sc1u ~ 0*1
reg7_sc1u ~ 0*1
reg9_sc1u ~ 0*1

# estimate factor means
math.inter ~ 1
math.slope ~ 1
read.inter ~ 1
read.slope ~ 1"

7.3.3.2 Examining the Effect of Parental Education

We then compared three different approaches to examining the effect of parental
education on math and reading competence: (a) a model with parental education as a
linear predictor of the factors, (b) a MGCFA across two groups (constructed by
median split), and (c) the LSEM approach. For the first approach, we regressed the
intercept and slope factors on the HISCED (for the commented syntax, please see
online supplement https://osf.io/vn297/). For the MGCFA approach aiming to
examine differences in all model parameters, we split the sample into two groups
around the median of 8 (participants with HISCED>7 were allocated to the group of
individuals with higher education) and estimated the model simultaneously for the
two groups without equality constraints across groups.

For LSEM, the lsem.estimate() function has been implemented in the sirt
R-package (Robitzsch, 2019). We moderated the LGCM across HISCED values
ranging from 3 to 9 in steps of 0.25 to provide a more nuanced picture than
estimating the models only at full HISCED values. We excluded values at the
borders of the distribution (0, 1, 2, and 10), because the effective sample size was
low for these moderator values. Thus, the symmetric weighting function used in
LSEMwould create weighted samples skewed towards the middle of the distribution
(because no participants can be found beyond the extremes; for an illustration see

https://osf.io/vn297/


Olaru et al., 2019). Based on suggestions in the literature (Hildebrandt et al., 2016),
we used a bandwidth parameter of 2. The code used to run LSEMwas as follows (for
more information on the arguments of the function sirt::lsem.estimate,
please refer to the manual or Olaru et al., 2019).
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lsem.fit <- sirt::lsem.estimate(

# data set
data = mydata,

# name of moderator
moderator = 'hisced',

# moderator levels to estimate model on
# here from 3 to 9 in steps of 0.25
moderator.grid = seq(3,9,0.25),

# lavaan model syntax
lavmodel = LGCM,

# bandwidth parameter
h = 2,

# additional settings to estimate factor means
residualize = FALSE,
meanstructure = TRUE)

# return and plot the results
summary(lsem.fit)
plot(lsem.fit)

7.4 Results

The sample size for the baseline model used for the regression-based approach was
N = 2,037. For the MGCFA approach, the sample was split into two groups with
n= 922 (low education) and n= 1,115 (high education). In the LSEM approach, the
weighted sample sizes ranged from n = 479.15 at HISCED = 3 to n = 937.79 at
HISCED = 9 (the lowest weighted sample size was n = 401.77 at HISCED = 6).

Figure 7.2 shows the bivariate LGCM estimated on the full sample. Baseline
performance in math and reading competence were strongly related (ρ = .81). The
intercept factors were negatively related to growth, indicating that initially lower-
performing students showed a higher increase in the competencies across school
years. The growth of math competency was approximately linear (as indicated by the
second slope factor loading of λ= 2.08), and the growth of reading competence was
slightly smaller from Grade 7 to 9 (second slope factor loading of λ = 1.72).
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7.4.1 Mean Level Differences

Figure 7.3 shows mean-level differences in the math and reading intercept and slope
factors across parental education that can be displayed using the generic plot()
function on the LSEM object (note that we also included the MGCFA and regression
results in the figures). The LSEM plots of parameter estimates across parental
education show that baseline math and reading competence are generally higher
for students from families with a higher educational background providing a cogni-
tively stimulating environment. Whereas math competence also shows a higher

Fig. 7.3 Comparison of mean-level differences in mathematical and reading competence across
three different methods. The dashed black line represents estimates based on the regression model.
The black horizontal lines show estimates in the median-split MGCFA. The dotted black lines
represent LSEM point estimates (i.e. each dot is the parameter estimate from a SEM at the
corresponding moderator level). The dashed grey lines show the 95% confidence intervals for
LSEM estimates



growth for these students, the effect seems to be negative for reading competence.
Generally speaking, all three methods indicate the same pattern. However, the
LSEM estimates show that the mean-level differences in the intercept factors are
not perfectly linear across parental education, but have the steepest slope in the
mid-range of the HISCED.
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7.4.2 Differences in Variances and Covariances

The only moderation effect detected on the variance level was for the math intercept
factor on which variance decreased across HISCED levels. Because of space restric-
tions here, we refrain from a detailed description, but point out that differences in
factor variance might lead to biased results and should be investigated carefully.
Additionally, they can also indicate meaningful differences in the distribution of
inter-individual differences across the moderator. Concerning the correlations
between the intercept and slope factors across parental education (see Fig. 7.4), the
relation between math and reading growth decreases substantially across educational
levels. This pattern suggests that growth trajectories in both competencies are more
strongly related for students from a lower educational background. However, the
large confidence intervals indicate that this effect might not be significant (for
significance tests, see the section on ‘Testing parameter equivalence’). The relation-
ship between all other factor combinations remains stable across the HISCED.
Again, the MGCFA and LSEM generally yield the same trends, but LSEM provides
a much more detailed picture of the moderating effect.

7.4.3 Testing Moderation Effects

LSEM is primarily an exploratory method used to uncover potential effects across a
continuous moderator. In general, examining potential moderations should start by
examining the graphs provided by the plot() function on the output of the lsem.
estimate() function. The plotted confidence intervals indicate whether parame-
ter differences may be significant across the moderator. If point estimates at one
moderator value are outside the confidence intervals at another moderator value,
moderation effects can be concluded to be substantial. However, model parameter
equivalence or measurement invariance cannot be tested by traditional means of
inference testing (e.g., χ2 difference tests) because the weighted samples used by
LSEM overlap. Hence, alternative methods have been proposed to examine whether
moderation effects are statistically significant: a permutation test (lsem.
permutationTest() function) that has been used previously (Hildebrandt
et al., 2016; Hülür et al., 2011; Schroeders et al., 2015) and joint estimation (setting
the argument est_joint = TRUE within the lsem.estimate() function).
The latter method is described for the first time in this chapter.
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Fig. 7.4 Comparison of factor covariances across parental education for MGCFA and LSEM.
Black horizontal lines show the estimates in the median-split MGCFA; dashed black lines, the
linear approximation of the MGCFA differences; dotted black lines, the LSEM point estimates
(i.e. each dot derives from a SEM). The dashed grey lines show the 95% confidence intervals for the
LSEM estimates

The permutation test resembles traditional significance testing approaches in
which the parameter values are tested against a distribution that can be expected to
occur because of sampling error. To create such a distribution, the permutation test
creates 1000 resampled copies of the dataset (on default settings). Within each
dataset, the moderator values are shuffled around randomly across individuals
(Hülür et al., 2011; Jorgensen et al., 2018). This removes all systematic moderation
effects from the data. LSEM is then run on each dataset to derive the model
parameters. This procedure results in a distribution of estimates for each parameter
in which the parameter is independent of the moderator. The original LSEM
parameter estimates are then compared to the corresponding distribution under the



null hypothesis. The permutation test function provides mean average distance,
linear slope, and p values for each model parameter along the moderator. This allows
users to identify which parameters change significantly across the values of the
moderator, and whether the shape is linear or nonlinear. The permutation test can be
run in R using the lsem.permutationTest() function on the lsem.esti-
mate() object:
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lsem.perm <- sirt::lsem.permutationTest(

# lsem.estimate fit object
lsem.object = lsem.fit,

# number of permutations
B = 1000,

# allow mean-level differences
residualize = FALSE)

# examine results
summary(lsem.perm)

The permutation test indicated that the reading and math intercept factor means
differ significantly across parental education (see Table 7.1). As indicated by the
significant linear slope value, the trajectories are approximately linear. The only
other parameter that shows a significant moderation effect is the math intercept factor
variance (M = 0.970; mean absolute distance = 0.131; mean absolute distance
p-value = .008; linear slope = -0.066; linear slope p-value = .006) that decreases
linearly across parental education. Whereas the decrease in the correlation between
the growth factors from approximately ρ= .70 to .40 seems substantial, this effect is
not significant, as also indicated by the large confidence intervals (Fig. 7.4).

Whereas the permutation test can be used to test moderation effects for each
parameter separately, a more global approach of equivalence testing—similar to
traditional MGCFA approaches—using a joint estimation procedure has been
implemented recently in the sirt R-package (Robitzsch, 2019). The joint estimation
procedure mirrors the approach used in MGCFA measurement invariance testing.

Table 7.1 Results of the permutation test for factors means

par M SD SD_p MAD MAD_p lin_slo lin_slo_p

math.inter~1 0.235 0.320 0.000 0.306 0.000 0.153 0.000
math.slope~1 0.730 0.016 0.532 0.014 0.547 0.007 0.480
read.inter~1 0.247 0.337 0.000 0.322 0.000 0.161 0.000
read.slope~1 0.687 0.042 0.146 0.036 0.185 -0.015 0.248

Note. M = average parameter estimate across models, SD = standard deviation of parameter
estimates, MAD = average absolute distance of parameter estimates from overall average, lin_slo
= linear slope of the parameter estimates across the moderator, _p = corresponding global
significance values



More specifically, each weighted sample in LSEM is treated as an independent
group. By using a common likelihood function across groups, parameter estimates
can then be derived across all moderator values simultaneously. In contrast, in the
regular LSEM application, models are estimated separately, and parameter values
can be constrained to equivalence only by specifying the values manually in the
model. The joint estimation function allows users to estimate one parameter value
across the moderator instead (if invariance assumptions are desired). Rather than
providing model fit indices for each model across the moderator (e.g., CFI at each
moderator level), the joint estimation procedure will also provide global fit indices
(e.g., one global CFI value). By constraining parameters and examining the resulting
model fit differences between the constrained and unconstrained model, measure-
ment invariance or parameter equivalence in general can be evaluated in a similar
way to MGCFA procedures. To use the joint estimation instead, the corresponding
argument within the lsem.estimate() function has to be set to est_joint =
TRUE. The resulting output will then correspond to a model with configural invari-
ance (i.e., all parameters are unconstrained across the weighted samples). To con-
strain parameters to equality across the moderator, these need to be specified in the
par_invariant argument. Parameters can also be constrained to follow a linear
pattern by specifying the respective parameters with the par_linear argument.
To constrain a parameter, it has to be included in the aforementioned
arguments with the lavaan terminology. For instance, par_invariant =
c("factor1=~item1", "factor1=~item2") will constrain the loadings
of Factor 1 on Item 1 and 2 to equality across the moderator. LSEM will then return
only one value for these parameters. The following code shows how LSEM with
joint estimation and invariant parameters can be run:
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lsem.fit.joint <- sirt::lsem.estimate(

# LSEM parameters (see first code example)
data = mydata,
moderator = 'hisced',
moderator.grid = seq(3,9,.25),
lavmodel = LGCM,
h=2,
residualize = FALSE,
meanstructure = TRUE,

# joint estimation options
est_joint = TRUE,

# parameter equality constraints (examples)
par_invariant = c(

# invariant loading
"math.slope=~mag9_sc1u",
# invariant mean/intercept
"math.slope~1",

(continued)



# invariant covariance
"math.slope~~math.inter",
# invariant variance
"math.slope~~math.slope",
# invariant residual variance
"mag9_sc1u~~mag9_sc1u")

)

# examine results
summary(lsem.fit.joint)
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The summary() output resembles the standard LSEM output except for global
model fit indices. Both the permutation test and joint estimation can be used to
investigate parameter equivalence, but the approach by which they do so differs
between the methods. The strength of the permutation test is that it provides easy-to-
use functionality for testing moderation effects on each parameter separately. The
test results can be interpreted easily because they provide p values for each parameter
moderation effect. The joint estimation procedure provides a global indication (e.g.,
CFI or RMSEA differences) of parameter equivalence that can be used to detect
whether sets of parameters (e.g., all factor loadings) are equivalent across the
moderator. Similar to MGCFA measurement invariance testing approaches, this
can be done by comparing the model fit indicators across nested models (e.g., CFI
differences between nested models should be below a value of .01; Cheung &
Rensvold, 2002). Generally, it is advisable to run the permutation test first to identify
which parameters are affected by the moderator. The joint estimation function can be
used to impose constraints on the measurement model to investigate moderation
effects in the structural model without bias—for example, by constraining all factor
loadings before examining factor covariances. If the increase in misfit is too large as
a result of the additional constraints, the most problematic parameters—as indicated
by the permutation test—can be freed to achieve partial measurement invariance.
Because both procedures can be used to test moderation effects on all model
parameters, the two approaches can also be used to test invariance beyond traditional
levels of measurement invariance that generally focus on factor loadings, item
intercepts, and item residuals.

7.5 Discussion

This chapter illustrated different methodological approaches to the study the influ-
ence of contextual factors on educational achievement longitudinally. Traditional
data analytic approaches—such as controlling for their influence by means of
regressions or categorizing a continuous moderator and using MGCFA—are asso-
ciated with a number of methodological limitations. LSEM, however, enables a
detailed examination by providing nonlinear moderation effects on all parameters of



a SEM. The readily implemented functions of the sirt R-package allow educational
researchers to scrutinize and test for measurement invariance. In the current exam-
ple, we found that at Grade 5, students from families with higher education were
better in math and reading than students from lower educational backgrounds. These
differences due to parental education remained stable up to Grade 9, as indicated by
the stable slope factor means. That is, the initial differences in the students’math and
reading competencies across educational backgrounds remained stable in secondary
school. Moreover, no moderation effect was found for the relation between initial
competencies and growth. Formal education, however, seemed to help initially less
capable students to catch up (see the stable negative correlations between the
intercept and slope factors in both reading and math; Fig. 7.4), but this effect was
similar across all educational backgrounds. On a more general stance, examining
such structural differences in models of educational development is important to
understand the processes underlying education and learning. For instance, one can
assess whether the relation between mother-language competence and other aca-
demic competencies changes as a function of SES or cultural integration. Such an
investigation would help to understand which students’ language competence acqui-
sition needs to be supported to improve knowledge in other academic fields.
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7.5.1 Extensions of the LSEM Method

The nonparametric influence of moderators on parameters has a long tradition in
varying coefficient regression models (Park et al., 2015). However, the principle of
local estimation based on weights can be applied to any other model class that allows
the use of sampling weights such as multilevel models (Wu & Tian, 2018), item
response models, latent class models, mixture models, or survival models, to name a
few. For longitudinal data, continuous-time models (Voelkle et al., 2012) are
particularly attractive alternatives to the discrete-time models that were discussed
in this chapter. In our empirical application, we also focused on only one moderator
variable. Multiple moderator variables can be handled by replacing the unidimen-
sional Gaussian kernel function for computing the weights with a multivariate
Gaussian kernel function (see Hartung et al., 2018, for such an application). With
many moderators, such an approach would lead to very sparse data, because only a
few combinations of values would be available for multiple moderator values.
Moreover, the interpretation of LSEM findings would be intricate in the
multidimensional setting. One possibility would be to assume that only a subset of
moderators affects a particular parameter. Essentially, this means that this parameter
would be invariant with respect to the complementary set of moderators. This
strategy can be implemented by using the joint estimation approach (see section
‘Testing moderation effects’). Bolsinova and Molenaar (2019) discuss an LSEM
application in which each item has its own moderator. They circumvent the problem
of high dimensionality in the estimation by proposing an alternative estimation
algorithm (Bolsinova & Molenaar, 2019). In their model, the set of parameters is



partitioned into subsets that depend on only one moderator variable (i.e. all param-
eters referring to an item depend only on the moderator corresponding to this item).
The LSEM estimation is conducted by cycling through conditional estimation steps
concerning the subsets of item parameters. Thereby only one subset of parameters is
estimated, while holding all other parameters fixed. This principle can be generalized
to LSEM applications with multiple moderators. This then results in an additive
nonparametric model for the moderated parameter functions.
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In the present demonstration, we used parental education (i.e., HISCED) at the
first measurement occasion as a moderator that differs between participants but not
within participants (i.e., across time). Because the HISCED values changed for only
about 5% of the sample across the 4 years examined in this study, treating it as time-
invariant was, in our opinion, a reasonable approximation. However, when using
NEPS cohorts with younger participants (e.g., newborns and Kindergarten) and
moderators with potentially stronger fluctuations across time (e.g., parental involve-
ment; SES), the moderator values for each participant may change across time. It
seems reasonable for model parameters referring to a particular time point to depend
only on the moderator variable at this time point, as is done in the approach by
Bolsinova and Molenaar (2019). For example, in a latent growth curve model,
residual variances at a time point should depend only on the moderator assessed at
this time point. However, it is less clear how intercept and slope variances depend on
the time-varying moderator variables. One could argue that they depend only on the
mean across time of the time-varying moderators, but they could alternatively
depend on a measure of within-subject variability of the moderator or even depend
on the moderator variables at all time points.

7.5.2 Alternative Modeling Approaches

Occasionally, the LSEM approach is computationally demanding, especially in
cases with large models or more than one moderator variable. Alternatively, a
computationally more parsimonious approach based on individual parameter con-
tribution regressions (IPC) can be used to investigate relationships of model param-
eters to moderators (Arnold et al., 2019; Oberski, 2013). Both nonparametric
approaches, LSEM and IPC, can be utilized to investigate whether a parametric
approach such as moderated factor analysis (MFA) can be used (Hessen & Dolan,
2009; Molenaar et al., 2010; see also Hildebrandt et al., 2016, for a comparison).
MFA allows for the inclusion of single or multiple parameter moderation effects in a
structural equation model. For example, Molenaar et al. (2010) used it to study
differentiation in a higher-order model of intelligence by examining moderation
effects of age and ability levels on the factor and residual variances. MFA has the
advantage that the test of moderation effects and model comparisons follows
standard maximum likelihood or Bayesian theory. For example, moderation effects
can be tested using χ2-difference tests between nested models (e.g., by dropping or
including single moderation effects in the model).
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7.5.3 Conclusion

In our opinion, LSEM is an important tool for educational research because it can
help to understand the underlying conditions of learning and to optimize education
from the perspective of education policy. Uncovering which school, family, or child-
related characteristics or backgrounds have a detrimental or favourable effect on
learning is vital when it comes to identifying disadvantaged students and offering
support that is targeted on the underlying mechanisms. Because the majority of these
background variables are either continuous or are being understood increasingly as
continuous concepts (e.g., cultural identity instead of categorical migration status),
continuous moderation procedures are required to study these effects adequately.
Whereas traditional measurement invariance approaches often focus only on the
item level (i.e., factor loadings, item intercepts, and residuals), the procedures
presented here provide equivalence tests for all model parameters that can be used
to uncover differences across persons in the structure and mean levels of the latent
variables as well.
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