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Abstract

We consider a model of influence over a network with finite-horizon opinion dynamics. The network
consists of agents that update their opinions via a trust structure as in the DeGroot dynamics (De-
Groot (1974)). The model considers two potential external influencers that have fixed and opposite
opinions. They aim to maximally impact the aggregate state of opinions at the end of the finite
horizon by targeting one agent in one specific time period. In the case of only one influencer, we
characterize optimal targets on the basis of two features: shift and amplification. Also, conditions
are provided under which a specific target is optimal: the maximum-amplification target. In the case
of two influencers, we focus on the existence and characterization of pure strategy equilibria in the
corresponding two-person strategic zero-sum game. Roughly speaking, if the initial opinions are not
too much in favour of either influencer, the influencers’ equilibrium behaviour is also driven by the
amplification of targets.

Keywords: Opinion dynamics - Networks - Influence - Targeting - Nash equilibria
JEL Classification: C72 - D72 - D85

1 Introduction

This paper studies the decision making of influencers of social networks. Social networks are instrumental
in the performance of modern democracies, as they have become the main arena for the formation of
public opinion and therefore the predominant playground for interference by actors in pursuit of political
or commercial goals. Consequently, this is an active research area of institutes such as the EU Special
Committee on Foreign Interference, which investigates the EU’s main vulnerabilities and recommends
steps to address them (cf. Russell (2022)). Identifying optimal targets in opinion networks is a crucial
problem for those trying to impact societies or those trying to shield themselves from unwanted actors
doing so. Many real-life situations concern actors who are not necessarily interested in the state of
opinions in general, but who have an interest in influencing the state of opinions on a specific date, such
as election day.
While most existing contributions have as their objective of investigation the long-term convergence

of opinions in social networks, our aim is to characterize optimal strategies of influencers that wish to
impact the state of opinions at a specific point in time: the end of a finite horizon. We develop a model
for the opinion dynamics in a set of agents, which we can think of representing a society. To study
optimal targets of influencers, we conduct an optimization analysis, where we first consider the case
with a single influencer, and then a strategic situation, where we consider two influencers with opposite
interests.
Our model takes as point of departure a set of agents and a finite time horizon, consisting of a number

of discrete time instances. In each time period, every agent holds an opinion, which is a real number
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between 0 and 1. The agents start with a given opinion in the initial period. Then, from each period to
the next, agents update their opinions through the word-of-mouth dynamics introduced in the seminal
work of DeGroot (1974). Given the opinions in a period, an agent’s opinion in the next period is a
weighted average of their own and their neighbours’ current opinions, where the weights remain fixed
throughout the time horizon and reflect the level of trust that agents have in each other. At the end of
the time horizon, we evaluate the aggregate state of opinions in the network. We consider two potential
influencers that are not themselves agents of the society, but external actors. One influencer has the
extreme opinion 1 and wants to maximize the aggregate state of opinions at the end of the finite horizon,
and the other has opinion 0 and wants to minimize it. The act of influencing is modelled through
the LINCAP model. Influencers have a budget and choose one specific agent in one specific period to
target. Consequently, the opinion of this agent in this time period increases, in case of a target of the
maximizing influencer, or decreases, in case of a target of the minimizing influencer. The size of the
increase or decrease induced by a target is linear in the respective influencer’s budget, which is indicated
by the qualifier “LIN”. The qualifier “CAP” indicates that targeted opinions are capped at 0 or 1, if the
change induced by the target moved the opinions beyond these boundaries.

The work whose setup is the most similar to ours is Lever (2010). Motivated by the problem of
campaign spending in elections, that paper studies a game with two persuaders (political parties) that
allocate resources to sway voters. Their framework considers T rounds, where voters begin with a given
initial opinion in round 0 and update their opinions until round T according to the DeGroot dynamics. In
period T , an election takes place in which each voter casts a vote for one of the two persuaders, where the
probability of voting for either party is dictated by their opinion in the final period T . What distinguishes
our contribution from Lever (2010) is that we explicitly analyse a finite time horizon. Despite defining a
final time period T , that paper lets T tend to infinity to derive results. Also, they allow the persuaders
to spend their resources only in the first period, whereas we allow influencers to select any agent in any
period of the time horizon. Moreover, they acknowledge that the persuaders’ influencing actions are
modelled with a functional form that is chosen for tractability. Our LINCAP model offers an intuitive
alternative.

There are several other contributions that study a game in which players compete for prominence over
the state of opinions in a society, and that take the DeGroot dynamics as a point of departure. Bimpikis
et al. (2016) consider a network of consumers that hold a level awareness for two firms at each point
in time of an discrete infinite time horizon. The two firms allocate marketing budgets to individuals to
influence the word-of-mouth communication process. The firms wish to maximally impact the limiting
behaviour of this system. Similar in spirit is the work by Grabisch et al. (2018), where two players with
extreme opinions 0 and 1 seek to maximize their long-term influence in a society where opinions evolve
according to the the DeGroot dynamics. To exert influence, each of Grabisch’ players target exactly one
agent by inserting an additional agent that is a neighbour to only the targeted agent. The inserted agent
immutably holds the extreme opinion of the respective player, and thereby directly affects the opinion
of the targeted agent in each updating step of the DeGroot dynamics. Two major differences between
our work are that Bimpikis et al. (2016) and Grabisch et al. (2018) let the players modify the structure
of the opinion dynamics, and that their players compete over the limiting behaviour of the system.

Goyal et al. (2014) also study a game where two players exert influence over a social network with
opinion dynamics, but opt for a different type of dynamics. In their model, each agent in the network has
a state (Red, Blue, or Uninfected). From each period to the next, the probability that an agent’s state
changes depends on the outcome of two functions that take as input their neighbours’ states. Similar
in spirit to the contribution of Lever (2010), the players have budgets with which they can “seed” the
initial states, after which they let the system dynamics do its job and observe the outcome. Other types
of opinion dynamics have been studied by Grabisch and Li (2020), who consider binary opinions, and
Grabisch et al. (2019), who consider agents that are not organized in a network structure.

What most distinguishes our paper is the treatment of time. First, we consider opinion dynamics
through a finite horizon. Second, we let the time horizon be an integral part of the influencers’ strategy
spaces. Other works either allow players to make time-invariant structural changes to the network (e.g.,
Bimpikis et al. (2016)), or allow players to exert influence at only one moment in the time horizon (e.g.,
Lever (2010), Goyal et al. (2014)). Consequently, the emphasis of their analyses is mostly in terms of
the network structure and many of their results are expressed in notions of centrality. Several other
game-theoretic studies do not contain a time element and instead have a primary focus on the structural
properties of the network, often making use of centrality measures (e.g., Husslage et al. (2015), del Pozo
et al. (2011)). Furthermore, an interested reader may wish to consult the introduction to models for
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dynamics of directed networks by Snijders et al. (2010).

In the case of only one influencer, we characterize the effect of an influencer’s target on the aggregate
state of opinions at the end of the time horizon, as the product of two features: the shift and amplification.
The amplification of a target depends on the network structure and the target’s place in the finite time
horizon. The shift of a target depends on the the opinions at the start of the time horizon, as well as
on the size of the influencer’s budget. Consequently, we identify optimal targets in terms of shift and
amplification. It turns out that, under certain conditions on the initial opinions, a certain type of target
achieves the maximal effect: a target that attains the highest amplification. Loosely speaking, if the
opinions at the start of the time horizon were not already too much in favor of the influencer’s opinion,
then targeting a maximum-amplification target is optimal.
In the case of two influencers with opposite interests, we identify the two-sided effect of a pair of

targets by the two influencers. This effect will be the input for the payoff function of a corresponding
strategic zero-sum game. To analyze this game, we decompose the two-sided effect into the respective
players’ one-sided effects and two well-interpretable interaction terms. We provide a sufficient condition
under which there exists a specific type of Nash equilibrium in pure strategies, where both players choose
a maximum-ampfication target. Roughly speaking, the existence of such an equilibrium depends on the
initial opinions being not too much in favour of either influencer.

Section 2 defines networks with finite-horizon opinion dynamics. The one-sided LINCAP model is
defined in Section 3, where we study a single influencer’s optimization problem. We formulate the shift
and amplification concepts to analyse the effect of a target. In Section 4, we consider two influencers
and define the two-sided LINCAP model. We derive a decomposition result of the two-sided effect and
use it to derive a specific type of pure Nash equilibrium for the corresponding strategic game. Section 5
concludes.

2 Networks with finite-horizon opinion dynamics

We denote a network with finite-horizon opinion dynamics by

P =
(
N,W, x0, T

)
.

Here the set N = {1, ..., n} corresponds to agents that make up a social network. The n× n matrix W
captures the trust structure in the social network. For every pair of agents (i, j) ∈ N × N , the weight
Wij ∈ [0, 1] specifies how much agent i values the opinion of agent j. The trust matrix W collects these
weights, that add up to 1 for each agent i, so that∑

j∈N

Wij = 1, for all i ∈ N.

The set of agents N and the trust matrix W correspond to a weighted directed graph G = (N,A,w),
where A represents the set of all possible arcs, given by

A = {(i, j) : i ∈ N, j ∈ N},

and the mapping w : A −→ [0, 1] assigns the weight Wij(= wij) to each arc (i, j) ∈ A. In the description
of P , period T ∈ N defines the end of a discrete time horizon, where the time periods are represented by
0, 1, ..., T . Finally, x0 is a vector of opinions in which x0

i ∈ [0, 1] is the initial opinion of agent i ∈ N .
We assume the opinions evolve through the horizon according to the DeGroot dynamics (DeGroot

(1974)). We denote the opinions at times 0,1,...,T by a series of vectors x0, x1, ..., xT . Agent i ∈ N
recursively updates his opinion by considering a weighted combination of the opinions in the previous
period of the agents that he trusts:

xt
i =

∑
j∈N

Wij · xt−1
j for all i ∈ N, t ∈ {1, ..., T}.

We will address the evolution of the initial opinions through the time horizon as the natural opinions.
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Definition 2.1. Let P = (N,W, x0, T ) be a network with finite-horizon opinion dynamics. The natural
opinions of P are given by1

xt = W tx0 for t = 0, ..., T.

At the end of the horizon, in period T , we assess the state of opinions in the network. In particular,
throughout this paper, the sum of final opinions

∑
i∈N xT

i will be used as an evaluation criterion.

Example 2.1. Consider a network with finite-horizon opinion dynamics P = (N,W, x0, T ) with agents
N = {1, 2, 3}, trust matrix

W =

1/2 0 1/2
1/3 1/3 1/3
0 1/2 1/2

 ,

initial opinions x0 = (0.5, 0.7, 0.3) and T = 2. Using the weights in the trust matrix W we construct a
graph G that captures the social network and its internal trust structure. Figure 1 depicts G.

1 2

3

1/2 1/3

1/2

1/3

1/21/2 1/3

Figure 1: The graph G corresponding to trust matrix W .

In period t = 0, the sum of opinions is
∑

i∈N x0
i = 1.5. The natural opinions evolve through periods

t = 0, 1, 2 as follows:

x0 =

0.50.7
0.3

 ,

x1 = Wx0 =

0.40.5
0.5

 ,

x2 = W 2x0 =

0.450.47
0.5

 .

In period T = 2, the sum of opinions equals
∑

i∈N x2
i = 1.42.

◁

3 One-sided influence: optimization

We consider a network with finite-horizon opinion dynamics P = (N,W, x0, T ) and we introduce one
influencer. For now, we think of the influencer as a person or organization that wants to maximize the
opinions in period T ; later, we will consider a minimizing influencer. The influencer targets an agent
j ∈ N in a period τ ∈ {0, 1, ..., T}. We denote the action of targeting agent j in period τ by µ = (τ, j).

1Throughout this paper, we adopt the convention that W 0 = I, where I denotes the n× n identity matrix.
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Definition 3.1. Let P = (N,W, x0, T ) be a network with finite-horizon opinion dynamics. A target is
a tuple µ = (τ, j), with period τ ∈ {0, ..., T} and agent j ∈ N . We denote the set of all targets by

M = {0, 1, ..., T} ×N .

Notice in particular that opinions can also be targeted in the first period τ = 0 and in last period τ = T .
The influencer is assumed to have a budget δ > 0 and uses it to increase the targeted opinion. When

targeted by µ = (τ, j), the natural opinion xτ
j is increased by δ and is capped at 1 if xτ

j + δ exceeds 1.
In other words, the amount by which xτ

j is increased is either the full budget δ, if the natural opinion
leaves enough room to be increased by δ, or by 1− xτ

j , which is the room available for increase.

Definition 3.2. Let P = (N,W, x0, T ) be a network with finite-horizon opinion dynamics and consider
a maximizing influencer with the target µ = (τ, j) ∈ M and budget δ > 0. The shift of opinion xτ

j due
to target µ is given by

shift(µ) = min{δ, 1− xτ
j } .

To obtain the influenced opinions in period T , we trace the opinions through the finite time horizon. The
opinions in the periods leading up to period τ are not affected by target µ = (τ, j), so that they coincide
with the natural opinions. In period τ , the jth entry of the opinion vector is increased by shift(µ). In
following periods, the opinions again evolve through time according to the opinion dynamics. We define
this evolution of opinions under one-sided influence as the LINCAP model, where LINCAP stands for
“linear with capping”. To reflect that the opinions are influenced by µ, we denote the opinion vectors
throughout the horizon by x̃1(µ), ..., x̃T (µ).

Definition 3.3. Let P = (N,W, x0, T ) be a network with finite-horizon opinion dynamics and consider
a maximizing influencer with target µ = (τ, j) and budget δ > 0. The one-sided LINCAP model defines
the influenced opinions as2

x̃t(µ) =


W tx0 if t < τ

W τx0 + shift(µ) · ej if t = τ

W t−τ x̃τ (µ) if t > τ

for t = 0, 1, ..., T.

In order to analyze the impact of a target µ ∈ M , it is not sufficient to consider only the vector x̃T (µ)
of influenced opinions in period T , because they contain the natural opinions as well as an additional
amount of opinion due to the target. The effect of a target measures the amount by which the sum of
opinions in period T is increased as a result of the target, by subtracting the natural opinions.

Definition 3.4. Let P = (N,W, x0, T ) be a network with finite-horizon opinion dynamics and let µ ∈ M
be a target. The effect of µ is given by

Effect(µ) =
∑
i∈N

x̃T
i (µ)−

∑
i∈N

xT
i .

It is easily verified that the effect of a target of a maximizing influencer is always nonnegative.
The maximizing influencer aims to choose a target µ∗ that maximizes the effect.

Definition 3.5. Let P = (N,W, x0, T ) be a network with finite-horizon opinion dynamics and consider
a maximizing influencer with budget δ > 0. A target µ∗ ∈ M is optimal if

Effect(µ∗) ≥ Effect(µ) for all targets µ ∈ M.

The key technique that we employ to characterize optimal targets is to decompose the effect of a target
into the product of its shift and amplification. The shift was given in Definition 3.2 and measures the
immediate impact of the target µ = (τ, j), which is the increment in the targeted opinion xτ

j . Between
the period τ in which the target brings about the increase given by shift(µ) and the final period T in
which the sum of opinions in the network is evaluated, the impact of the target trickles down to other
agents in the network. During these periods τ, ..., T , the total impact of the target can either augment or
diminish. The amplification of the target will be the factor by which the shift is multiplied to measure
the total impact of the target on the opinions in period T . The amplification of a target is the column
sum of the trust matrix W raised to the number of remaining periods until the end of the horizon (T−τ),
where the column corresponds to the targeted agent j.

2We denote the jth unit vector of length n by ej , where ejk = 1 if k = j and ejk = 0 if k ̸= j.
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Definition 3.6. Let P = (N,W, x0, T ) be a network with finite-horizon opinion dynamics and let
µ = (τ, j) be a target. The amplification of µ is given by

ampl(µ) =
∑
i∈N

(WT−τ )ij .

For conciseness, and to reflect more visibly the period τ and agent j of the target, we interchangeably
write the amplification of a target as

ampl(µ) = aτj for all targets µ = (τ, j).

Moreover, observe in particular that in period T , the amplification aTi of targeting any agent i ∈ N
always equals 1. If an agent is targeted at the end of the horizon, the shift does not trickle down to other
agents and is immediately evaluated into the sum of final opinions.

It turns out that the effect of a target is the product of its shift and amplification.

Lemma 3.1. Let P = (N,W, x0, T ) be a network with finite-horizon opinion dynamics and let µ ∈ M
be a target of a maximizing influencer. Then, the effect of µ is given by

Effect(µ) = shift(µ) · ampl(µ) .

Proof. Let µ = (τ, j). We first rewrite the effect of µ in vector notation and develop the influenced
opinions of period T according to the one-sided LINCAP model as follows:3

Effect(µ) =
∑

i∈N x̃T
i (µ)−

∑
i∈N xT

i

= e⊺
(
x̃T (µ) −xT

)
= e⊺

(
WT−τ x̃τ (µ) −xT

)
= e⊺

(
WT−τ

(
W τx0 + shift(µ) · ej

)
−xT

)
= e⊺

(
xT + shift(µ) ·WT−τej −xT

)
= shift(µ) · e⊺WT−τej

= shift(µ) · ampl(µ) .

Observe that in Definition 3.3, the first case (t < τ) is superfluous if the target takes place in period
τ = 0 and the last case (t > τ) is superfluous if τ = T . For such targets, the latter derivation could
be written more concisely as well. In particular, we note that for τ = T we could skip several steps by
writing that

x̃T (µ) = xT + shift(µ) · ej .

In the following example, we illustrate the notions of effect, shift and amplification.

Example 3.1. Consider a network with finite-horizon opinion dynamics P = (N,W, x0, T ) and a max-
imizing influencer with budget δ = 0.2. The set of agents is N = {1, 2, 3} and the trust-matrix is

W =

1/2 0 1/2
1/3 1/3 1/3
0 1/2 1/2

 . (1)

The initial opinions are x0 = (0.1, 0.9, 0.6) and the time horizon is T = 2. The shift, amplification and
effect are provided in Table 1.

3We denote the all-ones vector of length n by e.
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Shift

τ
j

1 2 3

0 0.20 0.10 0.20
1 0.20 0.20 0.20
2 0.20 0.20 0.20

Amplification

τ
j

1 2 3

0 0.69 0.94 1.36
1 0.83 0.83 1.33
2 1.00 1.00 1.00

Effect

τ
j

1 2 3

0 0.14 0.09 0.27
1 0.17 0.17 0.26
2 0.20 0.20 0.20

Table 1: The shift, amplification and effect of all targets µ = (τ, j) ∈ M .

Observe that the target µ∗ = (τ∗, j∗) with τ∗ = 0 and j∗ = 3 is optimal, because it attains the maximum
effect.
As an illustration, we explicitly compute the effect 0.17 of target µ = (τ, j) with τ = 1 and j = 2.

First we compute the sum of natural opinions in period T and the sum of influenced opinions in period
T . The natural opinions are

x0 =

0.100.90
0.60

 , x1 =

0.350.53
0.75

 , x2 =

0.550.54
0.64

 .

Hence, the sum of natural opinions in period T = 2 is∑
i∈N

x2
i = 1.73.

Next, we compute the influenced opinions using the one-sided LINCAP model:

x̃0(µ) = W 0x0 =

0.10.9
0.6

 ,

x̃1(µ) = W 1x0 + shift(µ) · e2 =

0.350.53
0.75

+

 0
0.2
0

 =

0.350.73
0.75

 ,

x̃2(µ) = W 1x̃1(µ) =

0.550.61
0.74

 .

Hence, the sum of affected opinions in period T = 2 is∑
i∈N

x̃2
i (µ) = 1.90.

Indeed, the effect of target µ = (1, 2) is therefore

Effect(µ) = 1.90− 1.73 = 0.17.

◁

As a direct consequence of the decomposition of the effect given in Lemma 3.1, targets with maximum
amplification are logical candidates for optimality.

Definition 3.7. Let P = (N,W, x0, T ) be a network with finite-horizon opinion dynamics. A target µ̂
is a maximum-amplification target (MAT) if

ampl(µ̂) ≥ ampl(µ) for all targets µ ∈ M.

The main result of this section is that a MAT µ = (τ, j) is optimal if the corresponding natural opinion
xτ
j is such that the influencer can choose this target and spend the full budget δ effectively. It follows

directly from Lemma 3.1 and is stated without proof.

Theorem 3.1. Let P = (N,W, x0, T ) be a network with finite-horizon opinion dynamics and consider
a maximizing influencer with budget δ > 0. Let target µ∗ = (τ∗, j∗) be a MAT. If the corresponding
natural opinion xτ∗

j∗ satisfies

xτ∗

j∗ ≤ 1− δ , (2)

then µ∗ is optimal for the maximizing influencer.
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In the previous Example 3.1, one can verify that condition (2) holds and the MAT µ̂ = (0, 3) is optimal.
The following example provides a case where condition (2) is violated and the MAT is not optimal.

Example 3.2. Consider a network with finite-horizon opinion dynamics P = (N,W, x0, T ) and a max-
imizing player with budget δ = 0.2. The set of agents is N = {1, 2, 3} and the trust-matrix is given
in equation (1). The initial opinions are x0 = (0.1, 0.5, 0.9) and the time horizon is T = 2. The shift,
amplification and effect of all targets are given in the following Table 2 (rounded to two decimals). Notice
that we obtain the same the amplification values as in Example 3.1, because the trust matrix is the same.

Shift

τ
j

1 2 3

0 0.20 0.20 0.10
1 0.20 0.20 0.20
2 0.20 0.20 0.20

Amplification

τ
j

1 2 3

0 0.69 0.94 1.36
1 0.83 0.83 1.33
2 1.00 1.00 1.00

Effect

τ
j

1 2 3

0 0.14 0.19 0.14
1 0.17 0.17 0.27
2 0.20 0.20 0.20

Table 2: The shift, amplification and effect of all targets µ = (τ, j) ∈ M .

The amplification values indicate that the unique MAT is µ̂ = (0, 3). However, the effect values imply
that the unique optimal target is µ∗ = (1, 3).

◁

So far, we have considered a maximizing influencer. For a minimizing influencer, we follow a similar line
of reasoning and obtain similar results.
The crucial dissimilarity is a different definition of the shift a target, which is negative for a minimiz-

ing influencer. Henceforth, to distinguish the shifts caused by influencers with opposite objective, we
denote the shift of a target µ of a maximizing and a minimizing influencer by shift+(µ) and shift−(µ),
respectively. Given a minimizing player with budget δ > 0 and target µ = (τ, j), the shift is given by

shift−(µ) = −min{δ, xτ
j } .

The definitions of the LINCAP model and the effect remain unchanged, apart from the substitution of
shift−(µ). For targets of the minimizing influencer, the effect is always nonpositive. The minimizing
influencer aims to minimize the effect, for which we have a decomposition result that is similar to Lemma
3.1.

Lemma 3.2. Let P = (N,W, x0, T ) be a network with finite-horizon opinion dynamics and let µ ∈ M
be a target of a minimizing influencer. Then, the effect of µ is given by

Effect(µ) = shift−(µ) · ampl(µ) .

Consequently, a MAT is optimal if it admits a minimizing influencer to spend the full budget δ effectively.

Theorem 3.2. Let P = (N,W, x0, T ) be a network with finite-horizon opinion dynamics and consider
a minimizing influencer with budget δ > 0. Let target µ∗ = (τ∗, j∗) be a MAT. If the corresponding
natural opinion xτ∗

j∗ satisfies

xτ∗

j∗ ≥ δ ,

then µ∗ is optimal for the minimizing influencer.

In the next section, we examine the strategic interaction that emerges when a maximizing influencer and
a minimizing influencer operate in the same network with finite-horizon opinion dynamics.

4 Two-sided influence: games

We consider a network with finite-horizon opinion dynamics P = (N,W, x0, T ) with a maximizing and
a minimizing influencer, whom we will now address as players 1 and 2, respectively. We introduce
the corresponding influencing game in which the two players, with budgets δ1 > 0 and δ2 > 0, want to
influence the sum of opinions in period T . Both players choose a target independently and simultaneously
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and we assume that the players choose their target before the start of the time horizon. In other words,
the players are non-reactive and engage in a silent duel. Due to the target µ1 = (τ1, j1) of player 1 the
opinion of agent j1 in period τ1 increases. Due to the target µ2 = (τ2, j2) of player 2 the opinion of agent
j2 in period τ2 decreases. The opinions evolve from period 0 up to period T under influence of the two
targets. At the end of the horizon, in period T , we evaluate the sum of opinions, which player 1 aims to
maximize and player 2 aims to minimize.

The influencing game is a strategic zero-sum game. The possible pure strategies of both players are
all targets, so that the strategy sets of player 1 and player 2 are given by

M1 = M2 = {0, ..., T} ×N .

Given a target combination (µ1, µ2) ∈ M1 ×M2, we compute the sum of opinions in period T∑
i∈N

x̃T
i (µ1, µ2) .

We will later define the influenced opinions (x̃t(µ1, µ2))t∈{0,...,T} exactly. The influenced opinion vector
x̃T (µ1, µ2) in period T comprises the natural opinions and the impact of the targets µ1 and µ2. To
separate the influence of the targets from the natural opinions we consider the two-sided effect

Effect(µ1, µ2) =
∑
i∈N

x̃T
i (µ1, µ2)−

∑
i∈N

xT
i .

Given the target combination (µ1, µ2), the Effect(µ1, µ2) is the payoff that player 1 receives and that
player 2 pays. For a network with finite-horizon opinion dynamics P and budget vector δ = (δ1, δ2), we
denote the corresponding influencing game by ΓP,δ and we capture the effect of all target combinations
(µ1, µ2) ∈ M1 ×M2 in a matrix EP,δ. For an influencing game ΓP,δ, a Nash equilibrium (Nash (1951))
is a strategy combination (µ∗

1, µ
∗
2) ∈ M1 ×M2 whose targets µ1 and µ2 are each others’ unilateral best

response, i.e.,

Effect(µ∗
1, µ

∗
2) ≥ Effect(µ1, µ

∗
2) for all µ1 ∈ M1 ,

Effect(µ∗
1, µ

∗
2) ≤ Effect(µ∗

1, µ2) for all µ2 ∈ M2 .

The two-sided LINCAP model defines the influenced opinions (x̃t(µ1, µ2))t∈{0,...,T} throughout the
finite time horizon. From each period t to the next period t+1, for t ∈ {0, ..., T −1}, the opinions evolve
according to the dynamics in the network P , that is, through weighted combinations prescribed by the
trust matrix W . Before the first target, the opinions coincide with the natural opinions (xt)t∈{0,...,T}. In
period τ1 of target µ1 = (τ1, j1), opinion x̃τ1

j1
is increased by δ1 and capped at 1 if necessary. In period

τ2 of target µ2 = (τ2, j2), opinion x̃τ2
j2

is decreased by δ2 and capped at 0 if necessary. We distinguish
four cases: (i) target µ1 occurs in an earlier period than target µ2; (ii) target µ1 occurs in a later period
than target µ2; (iii) targets µ1 and µ2 occur in the same period and they influence different agents; (iv)
targets µ1 and µ2 influence the same agent in the same period.

Definition 4.1. Let P = (N,W, x0, T ) be a network with finite-horizon opinion dynamics, let µ1 =
(τ1, j1) ∈ M1 with budget δ1 > 0 be a target of player 1, and let µ2 = (τ2, j2) ∈ M2 with budget
δ2 > 0 be a target of player 2. Then, the two-sided LINCAP model defines the influenced opinions
(x̃t(µ1, µ2))t∈{0,...,T} as follows.

If τ1 < τ2,

x̃t(µ1, µ2) =



xt if t < τ1

xτ1 +min{δ1, 1− xτ1
j1
} · ej1 if t = τ1

Wx̃t−1(µ1, µ2) if τ1 < t < τ2

Wx̃τ2−1(µ1, µ2)−min
{
δ2, (e

j2)⊺ Wx̃τ2−1(µ1, µ2)
}
· ej2 if t = τ2

Wx̃t−1(µ1, µ2) if t > τ2

for t = 0, ..., T.

If τ1 > τ2,
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x̃t(µ1, µ2) =



xt if t < τ2

xτ2 −min{δ2, xτ2
j2
} · ej2 if t = τ2

Wx̃t−1(µ1, µ2) if τ2 < t < τ1

Wx̃τ1−1(µ1, µ2) + min
{
δ1, 1− (ej1)⊺ Wx̃τ1−1(µ1, µ2)

}
· ej1 if t = τ1

Wx̃t−1(µ1, µ2) if t > τ1

for t = 0, ..., T.

If τ1 = τ2 = τ and j1 ̸= j2,

x̃t(µ1, µ2) =


xt if t < τ

xτ +min{δ1, 1− xτ
j1
} · ej1

−min{δ2, xτ
j2
} · ej2 if t = τ

Wx̃t−1(µ1, µ2) if t > τ

for t = 0, ..., T.

If (τ1, j1) = (τ2, j2) = (τ, j),

x̃t(µ1, µ2) =


xt if t < τ

xτ +min{δ1 − δ2, 1− xτ
j } · ej if t = τ and δ1 ≥ δ2

xτ −min{δ2 − δ1, x
τ
j } · ej if t = τ and δ1 < δ2

Wx̃t−1(µ1, µ2) if t > τ

for t = 0, ..., T.

The following is a example of an influencing game. For two target combinations the payoff is computed
explicitly.

Example 4.1. Consider a network with opinion dynamics P = (N,W, x0, T ) with agents N = {1, 2, 3},
initial opinions x0 = (0.1, 0.9, 0.6), time horizon T = 1, and trust matrix

W =

1/2 0 1/2
1/3 1/3 1/3
0 1/2 1/2

 .

Moreover, consider players 1 and 2 with budget vector δ = (δ1, δ2) = (0.3, 0.2).
Then, the corresponding influencing game can be described by the matrix EP,δ given by

EP,δ =

(0, 1) (0, 2) (0, 3) (1, 1) (1, 2) (1, 3)


(0, 1) 0.09 0.09 −0.01 0.05 0.05 0.05
(0, 2) 0 0.09 −0.18 −0.11 −0.11 −0.11
(0, 3) 0.32 0.24 0.14 0.20 0.20 0.20
(1, 1) 0.22 0.14 0.04 0.10 0.10 0.10
(1, 2) 0.22 0.14 0.04 0.10 0.10 0.10
(1, 3) 0.17 0.14 0.04 0.05 0.05 0.10

.

For any target combination (µ1, µ2) ∈ M1 × M2, the computation of the Effect(µ1, µ2) requires the
sum of natural opinions in period T = 1. Here, the natural opinions and the sum of natural opinions in
period T = 1 are given by

x1 = Wx0 =

0.350.53
0.75

 and
∑
i∈N

x1
i = 1.63 . (3)

Now we consider the strategy combination (µ1, µ2) = ((0, 3), (1, 1)). The two-sided LINCAP model
defines the opinions

(
x̃t(µ1, µ2)

)
t∈{0,1} as follows:

x̃0(µ1, µ2) = x0 +min{δ1, 1− x0
3} · e3︸ ︷︷ ︸

µ1

=

0.100.90
0.60

+min{0.30, 1− 0.60} ·

00
1

 =

0.100.90
0.90

 ,

x̃1(µ1, µ2) = Wx̃0(µ1, µ2)−min
{
δ2, (e

1)⊺Wx̃0(µ1, µ2)
}
· e1︸ ︷︷ ︸

µ2

=

0.500.63
0.90

−min{0.20, 0.50} ·

10
0

 =

0.300.63
0.90

 .
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Hence, the sum of influenced opinions in period T = 1 is given by∑
i∈N

x̃1
i (µ1, µ2) = 1.83 . (4)

By subtracting the sum of natural opinions (3) from the influenced opinions (4), the cell (EP,δ)(µ1,µ2)

for (µ1, µ2) = ((0, 3), (1, 1)) is therefore given by

Effect(µ1, µ2) =
∑
i∈N

x̃1
i (µ1, µ2)−

∑
i∈N

x1
i = 1.83− 1.63 = 0.20 .

Next, we consider the strategy combination (µ1, µ2) = ((0, 2), (0, 2)). We compute the opinions
(
x̃t(µ1, µ2)

)
t∈{0,1}

with the two-sided LINCAP model as follows:

x̃0(µ1, µ2) = x0 +min{δ1 − δ2, 1− x0
2} · e2︸ ︷︷ ︸

µ1, µ2

=

0.100.90
0.60

+min{0.30− 0.20, 1− 0.90} ·

01
0

 =

0.101.00
0.60

 ,

(5)

x̃1(µ1, µ2) = Wx̃0(µ1, µ2) =

0.300.57
0.80

 . (6)

Hence, the sum of influenced opinions in period T = 1 is given by∑
i∈N

x̃1
i (µ1, µ2) = 1.72 , (7)

and the cell (EP,δ)(µ1,µ2) is therefore given by

Effect(µ1, µ2) =
∑
i∈N

x̃1
i (µ1, µ2)−

∑
i∈N

x1
i = 1.72− 1.63 = 0.09 .

◁

Now we establish a decomposition of the two-sided effect into the one-sided effects of the two players in
combination with two player-specific interaction terms.

Proposition 4.1. Let P = (N,W, x0, T ) be a network with finite-horizon opinion dynamics and consider
players 1 and 2 with targets µ1 = (τ1, j1) ∈ M1 and µ2 = (τ2, j2) ∈ M2 and budgets δ1 > 0 and δ2 > 0.
The two-sided effect can be written as

Effect(µ1, µ2) = Effect(µ1) + Ω1(µ1, µ2) + Effect(µ2) + Ω2(µ1, µ2) ,

where, if µ1 = µ2, the interaction terms are given by

Ω1(µ1, µ2) =

{
0 if xτ1

j1
≤ 1− δ1

min{xτ1
j1

+ δ1 − 1, δ2} · aτ1j1 if xτ1
j1

> 1− δ1
, (8)

Ω2(µ1, µ2) =

{
0 if xτ2

j2
≥ δ2

−min{δ2 − xτ2
j2
, δ1} · aτ2j2 if xτ2

j2
< δ2

, (9)

and, if µ2 ̸= µ1, the interaction terms are given by

Ω1(µ1, µ2) =


0 if τ1 ≤ τ2

min
{
max{xτ1

j1
+ δ1 − 1, 0},

min{δ2, xτ2
j2
} ·W τ1−τ2

j1,j2

}
· aτ1j1 if τ1 > τ2

, (10)

Ω2(µ1, µ2) =


0 if τ2 ≤ τ1

−min
{
max{δ2 − xτ2

j2
, 0},

min{δ1, 1− xτ1
j1
} ·W τ2−τ1

j2,j1

}
· aτ2j2 if τ1 < τ2

. (11)
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The proof of Proposition 4.1 requires several straightforward case distinctions and is uninformative.
Therefore, it is omitted.
Several observations will help us interpret the interaction terms. First, it is useful to observe that the

interaction term with respect to player 1 is always nonnegative and the interaction term with respect to
player 2 is always nonpositive. This can be verified directly by reviewing the possible evaluations of the
minimum and maximum operators in equations (8), (9), (10) and (11).

Lemma 4.1. Let P = (N,W, x0, T ) be a network with finite-horizon opinion dynamics with players 1
and 2 with budget vector δ = (δ1, δ2). Then, for all target combinations (µ1, µ2) ∈ M1 ×M2, we have
that

Ω1(µ1, µ2) ≥ 0 ,

Ω2(µ1, µ2) ≤ 0 .

Consequently, recalling that the one-sided effects of players 1 and 2 can also be only nonnegative and
nonpositive, respectively, we observe that for all target combinations (µ1, µ2) ∈ M1 ×M2 the two-sided
effect consists of a nonnegative and nonpositive part, i.e.,

Effect(µ1, µ2) = Effect(µ1) + Ω1(µ1, µ2)︸ ︷︷ ︸
≥0

+Effect(µ2) + Ω2(µ1, µ2)︸ ︷︷ ︸
≤0

.

The latter expression clarifies the strategic interaction in the influencing game. The evaluation criterion
is the sum of opinions in period T , upon which the target µ1 applies an upward force, the target µ2 applies
a downward force, and the two-sided effect measures the net upward or downward force. Apparently, the
total upward force that target µ1 generates is the sum of two elements, namely, the one-sided Effect(µ1)
that target µ1 could generate individually without target µ2, and the additional thrust Ω1(µ1, µ2) that
target µ1 is able to produce due to the presence of target µ2. Hence, we can interpret the interaction
term Ω1(µ1, µ2) of player 1 as how much target µ2 ‘helps’ target µ1 achieve an additional upward force
in the influencing game, as compared to the one-sided optimization setting. Similarly, we can interpret
the interaction term Ω2(µ1, µ2) of player 2 as how much target µ1 causes target µ2 to be more effective.
It follows from equations (8), (9), (10) and (11) that a target can only acquire such additional force if it
does not occur earlier in the time horizon than the other target. This could drive the players to choose a
target that occurs later in the time horizon. On the other hand, high amplification values tend to occur
at earlier stages in the time horizon, incentivizing players to choose a target that occurs earlier in the
time horizon.
To see how one target can help the other target become more effective, we first explain the interaction

term Ω1(µ1, µ2) of player 1 (equation (8)). Suppose that the players choose equal targets µ1 = µ2. The
one-sided effect of a target µ1 = (τ1, j1) can be curbed by capping if the natural opinion xτ1

j1
is too high.

If xτ1
j1

> 1− δ1, then the targeted opinion is raised by only 1− xτ1
j1
, instead of the full budget δ1. Now,

with µ1 = µ2 in the two-sided setting, µ2 decreases the same opinion that µ1 targets, so that µ1 has
more room to bring about a larger shift and thus be more effective. If xτ1

j1
≤ 1−δ1, then player 1’s target

is already maximally effective in the one-sided setting, so a decrease in xτ1
j1

due to µ2 does not make µ1

additionally effective in the two-sided setting, so that Ω1(µ1, µ2) = 0. However, if xτ1
j1

> 1− δ1, then the
amount xτ1

j1
+ δ1 − 1 of player 1’s budget is lost in the one-sided setting due to capping. Hence, if µ2

decreases xτ1
j1

by δ2, then player 1 can achieve an additional shift of at most δ2, of which the effect in
period T is obtained by multiplication with the amplification aτ1j1 , so that equation (8) states that

Ω1(µ1, µ2) = min{xτ1
j1

+ δ1 − 1, δ2} · aτ1j1 if µ1 = µ2 and xτ1
j1

> 1− δ1 .

One can explain the interaction Ω1(µ1, µ2) under unequal targets µ1 ̸= µ2 in equation (10) similarly. If
τ1 ≤ τ2, then µ2 clearly does not reduce the opinion xτ1

j1
before it is targets by µ1, so that the effectiveness

of µ1 is not heightened due to µ2 and thus Ω1(µ1, µ2) = 0. If τ1 > τ2, then µ2 may reduce the opinion
targeted by µ1. Due to µ2, the opinion xτ2

j2
is reduced by (min{δ2, xτ2

j2
}), which propagates through the

periods (τ2 +1), ..., τ1 to reduce the opinion targeted by µ1 by (min{δ2, xτ2
j2
} ·W τ1−τ2

j1,j2
). This gives player

1 more room than in the one-sided setting to raise the opinion of agent j1 in period τ1. The amount by
which capping curbs the shift of µ1 in the one-sided setting is given by (max{xτ1

j1
+ δ1 − 1, 0}), so that

the additional effect of µ1 due to µ2 is given by

Ω1(µ1, µ2) = min
{
max{xτ1

j1
+ δ1 − 1, 0},

min{δ2, xτ2
j2
} ·W τ1−τ2

j1,j2

}
· aτ1j1 if τ1 > τ2 and xτ1

j1
> 1− δ1 .
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The interaction terms Ω2(µ1, µ2) in equations (9) and (11) can be explained analogously.
Having observed that the capping mechanism is the driver of strategic interaction in the influencing

game, we now show that if the natural opinions are distant enough from both extreme opinions 0 and
1, then both players can choose any target without losing any of their budget through capping. In
such cases, the players of the influencing game will choose their targets identically as in the one-sided
optimization setting.

Theorem 4.1. Let P = (N,W, x0, T ) be a network with finite-horizon opinion dynamics with players 1
and 2 with budget vector δ = (δ1, δ2). If

δ2 ≤ x0
i ≤ 1− δ1 (12)

for all i ∈ N , then

Effect(µ1, µ2) = Effect(µ1) + Effect(µ2) .

for all target combinations (µ1, µ2) ∈ M1 ×M2.

Proof. Let P and δ = (δ1, δ2) be such that condition (12) holds for all i ∈ N . Recall that the natural
opinions in periods t ∈ {1, ..., T} are defined recursively as

xt
i =

∑
j∈N

Wij · xt−1
j

for all i ∈ N, t ∈ {1, ..., T}. Since the natural opinions in periods t ∈ {1, ..., T} are convex combinations
of the natural opinions in the previous period t − 1, it can be proven inductively that if condition (12)
holds for the initial opinions, then we also have

δ2 ≤ xt
i ≤ 1− δ1

for the periods t ∈ {1, ..., T}, for all i ∈ N . Hence, by equations (8), (9), (10) and (11), we have for all
target combinations (µ1, µ2) ∈ M1 ×M2 that

Ω1(µ1, µ2) = Ω2(µ1, µ2) = 0 ,

and therefore, by Proposition 4.1,

Effect(µ1, µ2) = Effect(µ1) + Effect(µ2) .

Of particular interest is the situation in which both players 1 and 2 target a maximum-amplification
target (MAT), so that µ1 = µ2 = µ∗, where µ∗ is a MAT. If the natural opinions admit both players to
spend their full budgets by targeting this MAT, then (µ∗, µ∗) is a Nash equilibrium.

Theorem 4.2. Let P = (N,W, x0, T ) be a network with finite-horizon opinion dynamics with players
1 and 2 with budget vector δ = (δ1, δ2) and let ΓP,δ be the associated strategic influencing game. Let
target µ∗

1 = µ∗
2 = (τ∗, j∗) be a MAT. If the natural opinion xτ∗

j∗ satisfies

δ2 ≤ xτ∗

j∗ ≤ 1− δ1 , (13)

then (µ∗
1, µ

∗
2) is a Nash equilibrium of ΓP,δ.

Proof. Assume that P is such that condition (13) is satisfied. We assume that player 2 chooses target
µ∗
2 and show that

Effect(µ1, µ
∗
2) ≤ Effect(µ∗

1, µ
∗
2) for all µ1 ∈ M1.

If player 1 chooses target µ∗
1, then he obtains the payoff

Effect(µ∗
1, µ

∗
2) = Effect(µ∗

1) + Ω1(µ
∗
1, µ

∗
2)︸ ︷︷ ︸

=0

+Effect(µ∗
2) + Ω2(µ

∗
1, µ

∗
2)︸ ︷︷ ︸

=0

= δ1 · aτ
∗

j∗ − δ2 · aτ
∗

j∗ .
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If player chooses any other target µ1 ̸= µ∗
1, then he obtains at most this payoff Effect(µ∗

1, µ
∗
2). For

targets µ1 = (τ1, j) with τ1 ≤ τ∗, or with τ1 > τ∗ and xτ1
j1

≤ 1− δ1, we have by Theorem 3.1, Proposition
4.1 and Lemma 4.1 that

Effect(µ1, µ
∗
2) = Effect(µ1) + Ω1(µ1, µ

∗
2)︸ ︷︷ ︸

=0

+Effect(µ∗
2) + Ω2(µ1, µ

∗
2)︸ ︷︷ ︸

≤0

≤ δ1 · aτ
∗

j∗ − δ2 · aτ
∗

j∗ .

For targets µ1 = (τ1, j1) with τ1 > τ∗ and xτ1
j1

> 1− δ1, the one-sided effect and the interaction term of
player 1 satisfy

Effect(µ1) = (1− xτ1
j1
) · aτ1j1

≤ (1− xτ1
j1
) · aτ

∗

j∗ ,

Ω1(µ1, µ
∗
2) = min

{
xτ1
j1

+ δ1 − 1, min{δ2, xτ2
j2
} ·W τ1−τ2

j1,j2

}
· aτ1j1

≤ (xτ1
j1

+ δ1 − 1) · aτ
∗

j∗ ,

so that

Effect(µ1, µ
∗
2) = Effect(µ1) + Ω1(µ1, µ

∗
2) + Effect(µ∗

2) + Ω2(µ1, µ
∗
2)︸ ︷︷ ︸

=0

≤ (1− xτ1
j1
) · aτ

∗

j∗ + (xτ1
j1

+ δ1 − 1) · aτ
∗

j∗ − δ2 · aτ
∗

j∗

= δ1 · aτ
∗

j∗ − δ2 · aτ
∗

j∗ .

Similarly, it can be shown that

Effect(µ∗
1, µ

∗
2) ≤ Effect(µ∗

1, µ2) for all µ2 ∈ M2.

Therefore, (µ∗
1, µ

∗
2) is a pure Nash equilibrium of ΓP,δ.

The following example illustrates Theorem 4.2.

Example 4.2. Reconsider the influencing game of Example 4.1. To find the MAT, we compute the
amplification for all targets, provided in Table 3.

τ
j

1 2 3

0 0.83 0.83 1.33
1 1 1 1

Table 3: The amplification of all targets µ = (τ, j).

From the amplification values we conclude that the MAT of this example is given by µ∗ = (τ∗, j∗) = (0, 3)
with a03 = 1.33. The corresponding natural opininion is given by x0

3 = 0.6 and the budget vector is given
by δ = (δ1, δ2) = (0.3, 0.2). Hence, condition (13) of Theorem 4.2 is satisfied and the strategy combination
(µ∗, µ∗) is a pure Nash equilibrium of EP,δ. Indeed, this can be verified with Example 4.1.

◁

If condition (13) of Theorem 4.2 is violated, then a (pure) equilibrium may not exist in the corresponding
influencing game. This is illustrated in Example 4.3.

Example 4.3. Reconsider the same network with opinion dynamics P = (N,W, x0, T ) as in Example
4.1 with players 1 and 2 with budget vector δ = (δ1, δ2) = (0.3, 0.2). We redefine the initial opinions as
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x0 = (0.1, 0.6, 0.9). Then, the corresponding influencing game ΓP,δ is given by the matrix

EP,δ =

(0, 1) (0, 2) (0, 3) (1, 1) (1, 2) (1, 3)


(0, 1) 0.09 0.09 −0.01 0.05 0.05 0.05
(0, 2) 0.17 0.09 −0.01 0.05 0.05 0.05
(0, 3) 0.05 −0.03 0.14 −0.06 −0.06 −0.06
(1, 1) 0.22 0.14 0.04 0.10 0.10 0.10
(1, 2) 0.22 0.14 0.04 0.10 0.10 0.10
(1, 3) 0.17 0.14 0.04 0.05 0.05 0.10

.

One can readily verify that this influencing game has no pure Nash equilibrium.

◁

5 Concluding Remarks

In this paper we study the strategic behaviour of opinion network influencers. Our starting point is the
DeGroot (1974) dynamics where agents iteratively update their opinions as weighted combinations of
other agents whom they trust. We trace the opinions through a finite horizon, during which one or two
influencers target the opinion of one specific agent in one specific period. The influencers’ capacity for
impact is limited by a given budget, which they aim to spend in a manner that maximally affects the state
of opinions at the end of the horizon. If we consider only one influencer, this induces an optimization
problem, for which we characterize optimal targets for minimizing and maximizing influencers. In the
case of two influencers, we provide conditions under which a special Nash equilibrium of the corresponding
strategic influencing game exists, where both players target the time-agent combination where an opinion
shift is maximally amplified up to the end of the horizon.

The model we propose most naturally resembles elections, in which political parties with conflicting
opinions compete for dominance over the opinions held on a specific date: election day. It would be
interesting to investigate empirically if political campaigners’ strategies resemble those characterized by
our results.

In this paper we have adopted the sum of opinions in the final period as an evaluation criterium.
Alternatively, if one wished to model real-life elections more closely, one could adopt a discrete evaluation
criterion of the state of opinions at the end of the time horizon. Then the agents of the social network,
holding real-valued opinions between 0 and 1 throughout the time horizon, would convert their opinion
into a discrete vote on election day. Undoubtedly, in such a model, the influencers would place more
importance on the ‘swing voters’ that can, in principle, be attracted to vote for either side with relative
ease.

Alternatively, one could loosen the assumption that influencers have to spend their entire budget on a
single target, and instead undertake a multiple-target approach. If one allowed the influencers to divide
their budgets among as many targets as they wish, then some of our results would be maintained. In
particular, if the opinions in the network are such that the influencers’ full budget can be spent on the
maximum-amplification target, then doing so will dominate any multiple-target strategy. However, in
other cases, optimization becomes far more complex, as is illustrated in Example 5.1.

Example 5.1. Consider the network with finite-horizon opinion dynamics P = (N,W, x0, T ) with agents
N = {1, 2, 3}, trust matrix

W =

1/2 0 1/2
1/3 1/3 1/3
0 1/2 1/2

 ,

initial opinions x0 = (0.1, 0.9, 0.6) and time horizon T = 3. Then, we have the natural opinions and
amplification values as provided in Table 4 (rounded to three decimals).
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Natural opinions

t
i

1 2 3

0 0.100 0.900 0.600
1 0.350 0.533 0.750
2 0.550 0.544 0.642
3 0.596 0.579 0.593

Amplification

τ
j

1 2 3

0 0.662 0.995 1.342
1 0.694 0.944 1.361
2 0.833 0.833 1.333
3 1.000 1.000 1.000

Table 4: The natural opinions and amplification values for all time-agent combinations.

We consider a maximizing influencer with budget δ = 0.5 and allow her to divide the budget among
multiple targets. In the spirit of our single-target characterization of optimal targets, it seems prudent
to spend 0.25 of the budget on the maximum-amplification target (MAT) given by µ̂ = (1, 3), and the
remaining 0.25 on the target µI = (0, 3) with the second highest amplification. Then, she would achieve
the effect

Effect(µ̂(0.25), µ
I
(0.25)) = 0.506,

where we specify the budget spent on targets in their respective subscript. However, she could notice
that the shift of the target µI hampers the shift of the MAT µ̂ and thus decide to relocate the budget
of 0.25 of target µ̂ to another target, for instance µII = (3, 1). If she spends 0.25 on µI and 0.25 on µII ,
she would achieve the higher effect

Effect(µII
(0.25), µ

III
(0.25)) = 0.585.

We observe that allocating part of the budget to preceding targets may hamper the MAT’s effectiveness.

◁
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