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Learning Objectives
 5 Understand the characteristics of reidentification deep learning and how this 

technique can be applied to promptly identify mishandled luggage at airports.
 5 Understand information sharing dynamics among employees of an organization 

by means of longitudinal social network analysis.
 5 Understand what controller area network bus technology is and what the possi-

bilities are with respect to driving behavior analysis.

10.1  Introduction

In this chapter, we present three case studies that cover a broad spectrum of prob-
lems and methods in the area of data analytics. We begin with the BagsID case 
study in 7 Sect. 10.2, which is carried out in collaboration with Vanderlande, 
PTTRNS.ai, and Eindhoven Airport. The case study illustrates how computer 
vision and reidentification deep learning can be applied to reidentify mishandled 
luggage at airports. The approach uses Re-ID neural networks that can be trained 
to predict the degree of similarity between individual objects (pieces of luggage in 
this case) rather than categorizing objects. The BagsID case study emphasizes that 
getting robust AI-powered software systems into production is quite different from 
building proof-of-concept AI prototypes.

The second case study in 7 Sect. 10.3 analyzes the effect of a business interven-
tion strategy on the employees of a multinational service company. More specifi-
cally, a European branch of the company implemented multiple interventions 
aimed at stimulating its employees to open their minds to innovation. The efficacy 
of these interventions can be assessed by investigating how they shape communica-
tion and discussions about innovation between the employees. To this end, the case 
study analyzes email communication between employees using longitudinal social 
network analysis.

The third case study in 7 Sect. 10.4 considers how vehicle sensor data can be 
used for insurance purposes. Through the standardization of the controller area 
network bus technology in modern cars, a large amount of sensor data is generated 
every day. This enables insurance industries to obtain more reliable and direct char-
acterizations of driving styles for their Pay-How-You-Drive models. If  used wisely, 
accidents can be prevented instead of restituted. This is beneficial for both the 
customers and the insurance industry.

Data Analytics in Action
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10.2  BagsID: AI-Powered Software System to Reidentify 
Baggage

BagsID 1 is a Dutch company that aims at improving baggage handling systems 
worldwide by using the bag itself  as an ID. At the core of their technology stack, 
they employ computer vision, powered by deep learning. The company is currently 
moving towards initial deployment to showcase its potential, in close collaboration 
with three organizations. These organizations are (1) Vanderlande, the global mar-
ket leader for logistic process automation at airports; (2) PTTRNS.ai, a software 
company that specializes in developing and integrating artificial intelligence (AI) 
solutions to accelerate digital innovation; and (3) Eindhoven Airport. A joint proj-
ect is set up at Eindhoven Airport to prove the proposition that baggage can be 
identified with state-of-the-art vision AI.  A scale-up of the system to other 
European airports, and in a later stage to airports worldwide, is foreseen. This case 
study describes one possible application of the BagsID reidentification system: that 
of mishandled baggage. To illustrate this application, we begin this case study with 
a short user story:

► Example

March 4, 2020: Just after midnight, Jane lands at Tromsø Airport with the last flight 
from Oslo Gardermoen. A few hours ago, she departed from Amsterdam Schiphol. 
After descending from the aircraft staircase and a short walk outdoors on the slippery 
platform, she enters the terminal. The arrival hall is divided into two public spaces. The 
first area is dominated by a conveyor belt to pick up luggage, and the other area hosts 
a few offices of car rental companies and holds the exit doors as well as a few uncom-
fortable seats. As in most airports in northern Europe, the hall is decorated with huge 
posters showing local wildlife and snowy winterscapes with northern lights skies. The 
conveyor belt runs already, and soon the first suitcases appear. One by one, the passen-
gers of SAS flight SK4438 pick up their bags and leave the hall facing the freezing cold. 
After 20 min, the conveyor belt stops and all fellow travelers are gone. Jane’s suitcase did 
not appear. She is all alone at the completely deserted airport. ◄

This is no fantasy. Regular travelers could easily feel the unease of the situation 
sketched above. Being the last person at the airport’s conveyor belt and slowly real-
izing that your bag is not coming is a traveler’s nightmare. Better baggage handling 
is not just about keeping passengers happy. Claims due to lost or mishandled lug-
gage cost airlines around the world 2.4 billion US dollars in 2018 (Air Transport 
IT, 2019). Over the past few years, most airlines have introduced a baggage track 
and trace at key points in the journey—check-in, loading onto the aircraft, trans-
fers, and arrival—in response to IATA’s Resolution 753 (IATA, 2020). Now, most 
bags are tracked from start to finish. Despite these efforts, the number of mishan-
dled bags rose to 24.8 million in 2018, a figure that translates to 5.7 bags per 1000 

1 7 https://bagsid.com.

 G. Schouten et al.

https://bagsid.com


209 10

passengers (Air Transport IT, 2019). Of all mishandled bags in 2018, 77% is 
delayed, about 17% is seriously damaged or pilfered, and 5% is stolen. Transferring 
bags from one aircraft to another, or one airline to another, is a major cause for 
delays of flights as well as late delivery of luggage.

This case study shows work in progress. It illustrates how an initial business 
idea is translated into a software-based AI solution. The BagsID case is beyond 
schoolbook AI. It clearly demonstrates that machine learning algorithms cannot 
be applied “just like that” to practical cases. We argue that a componentized 
extendable architecture, an iterative planning approach, and a solid software engi-
neering process for AI embodiment are all needed for successfully building profes-
sional and maintainable AI-powered software solutions.

10.2.1  Business Proposition

The current handling of baggage depends on stickers and paper tags, which are 
wrapped around handles of suitcases, trolleys, or other luggage items (ski boxes, 
bike bags, etc.) at check-in. These stickers and tags are labeled with a printed bar-
code and a three-letter abbreviation of the destination airport. 2 The barcode is 
uniquely coupled to the traveler. At depots where mishandled baggage is gathered, 
a human-centric exception handling process—i.e., people scanning the tags with 
line-of-sight barcode readers 3 and initiating logistic actions—is in place to identify 
the bags and resend them to their legitimate owners, either to the destination air-
port or to their home address. Serious problems with the current track and trace 
functionality arise when these tags have become unreadable or are even detached 
from the luggage. Relying on physically attached labels makes the current system 
inherently vulnerable.

In recent years, vision AI has drastically improved (Krizhevsky et  al., 2012; 
LeCun et al., 2015; Howard et al., 2017; Canziani et al., 2017). With state-of-the art 
deep learning, using convolutional neural networks (CNNs) as a backbone, a reli-
able machinery can be built to detect and identify objects in images. The ubiqui-
tous use of face recognition, from unlocking your smartphone to crowd security 
management, is probably the best known example of this progress (Ye et al., 2020). 
So, why not apply this technology to reidentify baggage? In this way, the bag itself  
can become an ID. It removes the abovementioned bottleneck, that is, the problem 
of ripped-off tags. This business opportunity of suitcase fingerprinting has the 
potential to further improve efficiency and reduce the chances of a bag being mis-
handled. It saves not only money for airlines but also agony and discomfort for 
travelers. It is to be expected that the magic number of 5.7 mishandled bags per 
1000 items can significantly be lowered by implementing this idea.

2 Each airport in the world is characterized with a unique three-letter combination.
3 RF-ID tags and near-field RF-ID scanners could solve some of  the issues, but this solution is too 

expensive.
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10.2.2  System Overview

The task of the BagsID system is simple: Find for each mishandled luggage item its 
legitimate owner as fast as possible. The technical concept to do this is object fin-
gerprinting, that is, find for a mishandled item the matching or corresponding item 
at check-in. A simplified overview is depicted in . Fig. 10.1. This system is divided 
into three major building blocks: (1) data collection at check-in, (2) data collection 
of lost and found bags, and (3) data analysis and recommendation. Note that there 
is a human in the loop for the final visual inspection. An airport or airline baggage 
handler is still needed to narrow down the top 10 matches of the system to an 
accepted best match.

Data Collection and Storage The hardware setup of the system consists of multiple 
camera-equipped conveyor belts. Directly after either self check-in or desk check-in, 
the luggage that is put on the belt is registered with two multi-camera systems that are 
placed just after one another. The registration establishes a link between captured 
suitcase images and a boarding pass. The data of this imaging system is optionally 
enriched with luggage information that can be entered via a traveler’s app (see below). 
Each multi- camera system photographs passing luggage from different viewpoints. 
In the simplified schematic system overview of . Fig. 10.1, two camera-equipped 
conveyor belts are envisioned at check-in, and only one camera-equipped conveyor 
belt is present to handle lost-and-found luggage. The multi-camera systems are indi-
cated with A1 and A2 for conveyor belt A, B1 and B2 for conveyor belt B, and C1 for 
conveyor belt C. When a lost or mishandled bag with an unknown destination 
(because of an unreadable or ripped-off tag) is found, it will be scanned with the 
multi- camera system C1. These query images are compared with images in the gallery 
set that were previously captured at the check-in.

       . Fig. 10.1 System overview of  the baggage reidentification system. Happy flow: for a lost bag, the 
system will retrieve the top 10 matching luggage items, based on images which were taken at check-in. 
A final visual check is done by an airport or airline employee. (Author’s own)

 G. Schouten et al.



211 10

Business Logic and AI Engine The data analysis building block consists of two mod-
ules. The AI engine is responsible for finding, for each mishandled bag, the best K 
matches from the data collected at check-in. It will be discussed in more detail in the 
next section. The rule-based business logic module will be connected to the airport 
flight schedule system and takes into account various logical time-related constraints 
and statistics (e.g., performance monitoring). For instance, flights might be delayed 
or cancelled. The task of the business logic module is fourfold: (1) narrow down the 
search possibilities for the AI engine up front, that is, establish the gallery set; (2) filter 
out matches that are logically not possible; (3) monitor performance of the AI engine; 
and (4) inform airport personnel what can best be done with a positively reidentified 
bag. Can it still be boarded at the intended airplane in time? If not, what are the best 
options to send it to the final destination?

Traveler’s App The system also comes with a user-friendly smartphone app for trav-
elers. It is an extension of the onboarding process and will be developed in the second 
phase of the project. The idea of the traveler’s app is to enrich the image information 
that is captured at the airport’s check-in. Once travelers have registered for this app, 
they can create and maintain a list of personal luggage items. For each bag or suit-
case, they can specify values for a number of characteristic attributes, like luggage 
type (suitcase, trolley, backpack, guitar case, ski box, etc.), brand, color, presence of 
a lock, numbers of wheels, hardcover or soft side, and presence of damage marks 
such as scratches. These attributes correspond to the IATA baggage ID chart. 4 This 
information helps to identify unique luggage items. The app is optional, that is, the 
system should also work if this information is not, or only partly, available.

► Example

October 28, 2021: Jane attaches the printed tags to her red old suitcase and puts it on the 
conveyor belt at the luggage drop-off. The coronavirus pandemic is over, and she looks 
forward to a short autumn break in the Mediterranean. Transavia flight HV6607 to Faro 
is about to leave in an hour from Eindhoven Airport. The advantage of regional airports 
is that the waiting time is limited. After a cappuccino, Jane buys a magazine and walks 
to the gate. She looks out of the window and recognizes her suitcase on one of those 
special airport vehicles. The red suitcase is loaded to the waiting plane. What Jane did 
not know was that her suitcase fell from the conveyor belt and that the loosely attached 
tag was ripped off. An airport employee picked up the untagged suitcase and brought 
it to the lost-and-found depot. Luckily, Jane—as a frequent flyer—had registered her 
luggage item with the BagsID traveler’s app. The BagsID system was able to show ten 
possible matches within 30 s based on the photos taken and the earlier registered suitcase 
details (such as the scratch near the handle). The best match linked the red suitcase to 
Jane. The airport employee confirmed this best match, and 15 min later, Jane’s suitcase 
enters the waiting airplane that was prepared to leave to Faro in 25 min. One year ago, 
it was unthinkable to deliver a lost-and-found suitcase to the right airplane within such 
a short time frame. ◄

4 7 https://www.iata.org/en/publications/store/baggage-id/
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10.2.3  AI Engine

CNNs are a known solution for categorizing images. These feed-forward neural net-
works are inspired by human vision. They can abstract from viewpoint and illumi-
nation variations and are able to capture the very essentials of objects that are 
present in images. However, category-level object classification—where two images 
are considered similar as long as they belong to the same semantic class of objects—
is not sufficient for a search-by-example image application. Search by example 
requires a more fine-grained distinction between objects that belong to the same 
category (Wang et al., 2014). As a simplified and intuitive example, for classification, 
a “Red Samsonite Omni Spinner” (hardcover suitcase), “Green Travelpro Maxlite 
5” (soft-side suitcase), “Black Karrimor Ridge 32” (outdoor backpack), “Delsey 
Luggage Helium Aero Blue” (hardcover trolley), and “Black Briggs & Riley Baseline 
Vista Print” (soft-side trolley) are all luggage items. For luggage reidentification (Re-
ID) on the other hand, if  the query image is characterized by the phrase “red hard-
cover 4-wheeled suitcase,” it is essential to rank the “Red Samsonite Omni Spinner” 
higher than the other gallery items. Stated more formally, the objective of the Re-ID 
AI engine is as follows: Given a query baggage item of interest, determine the K best 
recommendations from the luggage gallery set. The hypothesis is that the ranking of 
top-K matches contains the bag (captured by a different camera in another place at 
a distinct time) that corresponds to the query image.

Re-ID Neural Network Architecture The neural network architecture of the Re-ID AI 
engine that is able to generate a suitcase fingerprint is shown in . Fig. 10.2. It con-
sists of two parts: an encoder module and a reidentification module. This architecture 
is state of the art for reidentification learning or search-by-example problems (Ye 
et al., 2020; Wang et al., 2014). The encoder part can be seen as a feature engineering 
process. Captured images—i.e., “low-level” raw pixel data—are processed with 

       . Fig. 10.2 Architecture of  the AI engine. A top-K ranking is derived from N parallel CNN pipe-
lines and app data. The app information (dark gray blocks) will be added in a later phase of  the 
project. (Author’s own)

 G. Schouten et al.
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Google’s Inception V3 CNN framework resulting in a number of feature maps or 
“high-level” encodings that are more suitable for visual tasks. Inception V3 is a widely 
used image recognition model. The model is the culmination of many ideas devel-
oped by multiple researchers over the years; it is made up of various building blocks, 
including convolutions, average pooling, max pooling, concatenation, dropouts, and 
fully connected layers. It is based on the original paper of Szegedy et al. (2015). In the 
proposed architecture, each camera viewpoint is coupled to a separate Inception V3 
CNN encoding pipeline.

In the next step, these visual encodings are concatenated and combined with the 
information that travelers provide via the app to a so-called embedding layer. An 
embedding is a mapping of high-dimensional data, such as images (pixel data), to 
a vector. This vector is a relatively low-dimensional space that summarizes the rel-
evant information in the data into a meaningful representation. Ideally, an embed-
ding captures some of the semantics of the input by placing similar inputs close 
together in the embedding space. The embedding layer flattens, reduces, and nor-
malizes the output of all CNNs (as well as the coded app information) to a fixed- 
size vector. In terms of the neural network, an embedding is just a hidden layer and 
is learned with backpropagation during the training process.

In practice, embeddings are often used to make recommendations or to rank 
possible match candidates, that is, to find nearest neighbors in the embedding 
space. To do this, a distance metric is needed. Several options are available for this, 
such as the standard euclidean distance, Manhattan distance, or a cosine similarity 
distance metric. 5 A retrieved top 10 ranking list can then be obtained by sorting 
the calculated query-to-gallery similarity.

Training the Network: Triplets, Hinge Loss, Semiautomatic Labeling The standard 
CNN approach in supervised learning is to estimate a function f(.) that maps the 
entire set of input images as best as possible to probabilities for given category labels. 
This is done in the training phase by changing the weights of the CNN (usually a few 
million) in such a way that a so-called loss function is minimized. Usually, this is a 
cross-entropy loss or mean squared error between the CNN predictions and the 
actual labels. For Re-ID or ranking with deep learning, however, two accommoda-
tions are needed that go beyond this standard recipe (Wang et al., 2014; Hermans 
et al., 2017). First of all, it is common practice to train the network with triplets of 
input images. A triplet ti pi pi pi= + -( ), ,  contains a query image pi, a positive image pi

+ , and 
a negative image pi

- , where the positive image is more similar to the query image 
than the negative image (Wang et al., 2014).

Secondly, the loss function associated with ranking and triplets is a so-called 
hinge loss. It is defined as

l p p p D g p g p D g p g pi i i i i i i, , , , ,+ - + -( ) = + ( ) ( )( ) - ( ) ( )( ){ }max 0 W
 

(10.1)

5 The latter is the dot product between the two normalized embeddings and ranges from −1, most 
dissimilar, to +1, most similar.
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where the function g(.) represents the embedding and D is a distance metric: in our 
case, the dot product between two normalized embeddings. As explained by Schroff 
et al. (2015), the hinge loss tries to bring the query image and the positive image 
close together in the embedding space and at the same time as far away as possible 
from the embedding of the negative image. As long as D g p g pi i( ) ( )( )-,  is larger 
than W+ ( ) ( )( )+D g p g pi i, ,  there will be no gain for the algorithm to condense the 
query and positive image any further. The learning process boils down to finding 
the best embedding g(.) for generating fine-grained baggage sensitivity, that is, 
enabling similarity ranking. Note that the distance metric itself  is given up front 
and not modified by the training process.

For the triplets, a semiautomatic labeling process will be bootstrapped, where a 
priori similarity information is exploited. This semiautomatic labeling process is 
extended with random triplet sampling from the large image database of stored 
luggage photographs combined with human labeling. A labeling service like the 
CloudFactory platform 6 or the Amazon Mechanical Turk crowdsourcing market-
place 7 can be used to obtain these human labels. Crowdsourcing is a good way to 
break down a manual, time-consuming task—such as labeling thousands of 
images—into smaller, more manageable “microtasks” to be completed by distrib-
uted workers over the Internet. Traditionally, tasks like this have been accom-
plished by hiring a large temporary workforce, which is time consuming, expensive, 
and difficult to scale or to undo. These platforms offer APIs to upload your data, 
to carefully describe the requested task, and to ask for specific skill levels.

Inference with the Network: Reidentify a Mishandled Bag Once the AI engine is 
trained, it can be used in inference mode, that is, in operation. The fixed weights of 
the model produce an embedding for a mishandled luggage item. This embedding 
will be compared with other embeddings of luggage items that are in the gallery. The 
business logic provides filters and other constraints for items that will be put in the 
gallery. Based on the chosen distance metric, a top- K ranking will be made of the 
most similar embeddings.

10.2.4  Software Engineering Aspects

The BagsID system includes several software components that interact with the AI 
engine: data collection software, business logic software, user interfaces, traveler’s 
app, etc. For the AI engine to be successful in a production environment with mul-
tiple airports and multiple camera systems per airport, it is of utmost importance 
that its deployment strategy is carefully designed and integrated with the  deployment 
strategy for the other software components. This integrated approach is often 
referred to as MLOps. 8

6 7 https://www.cloudfactory.com
7 7 https://www.mturk.com
8 MLOps is a practice for collaboration and communication between data scientists and operations 

professionals to help manage the production machine learning life cycle; see 7 https://
en.wikipedia.org/wiki/MLOps
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The development of software systems with AI components has several intrica-
cies (Heck, 2019) that also apply to the BagsID system. Some issues and questions 
that have to be addressed when designing the system are the following:
 1. Collecting high-quality data is crucial for the success of the model training. 

That is why the BagsID system makes use of custom-built industry-grade cam-
era systems (hardware and software). This ensures a constant image quality and 
robust recording from the luggage belts.

 2. After the deployment of the trained AI model, it needs to be monitored for 
performance (so-called online testing and logging (Heck, 2020)) because with 
new images coming in, the generalization capability of the model may drop and 
periodical retraining might be needed.

 3. When the system will be scaled up (i.e., will be installed at other airports), a 
multi-site deployment strategy will be needed. In particular, issues that have to 
be discussed and settled are when and how to introduce new models in the live 
systems and how to version both models and data.

 4. Huge amounts of data will be collected. It needs to be decided how and where 
to store this (on premise or in the cloud?), for how long to keep the data, which 
privacy laws are applicable, how to be compliant with local legislation, if  air-
ports are willing to share data for better models, etc.

 5. There needs to be a scalable way of serving the model to the BagsID system for 
inference purposes. The model needs to be decoupled from the rest of the sys-
tem such that it can be more easily updated to new algorithms or new versions. 
It might be necessary to have multiple versions of the model running simultane-
ously, for example, for different countries. State-of-the-art software engineering 
practices will be used for this. It is planned to deploy the AI model(s) as a REST 
API with Docker containers in a cloud environment.

The project started with a data collection/data preparation phase (Rollins, 2015). 
For this, a first camera system is set up at Eindhoven Airport where real baggage is 
recorded. As said, the camera system is custom-built and also contains software to 
preprocess the recorded images. The collected images are used to train the AI 
model. The training is done using Jupyter Notebooks with Python and Tensor-
Flow 2.0 in an AWS cloud environment. Amazon SageMaker is used to support 
the training process and deploy the trained models for testing purposes. Next to 
improving the model, time is spent on preparing the deployment phase of the proj-
ect for both the AI engine and other software components.

 Discussion and Conclusion
Reidentification learning is a challenging and fast-growing field within the computer 
vision community. Most Re-ID applications deal with human faces, persons, or vehi-
cles. In this case study, it is applied to another use case: reidentification of luggage. A 
system based on this technology enables airports and airlines to provide more reli-
able information on the whereabouts of baggage at each step in the journey. The 
main message of this case study is that in practice AI innovations typically (1) com-
bine or concatenate multiple known AI concepts in a specific setting that is new and 
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never tried before and (2) have a mixed design of known (well-established) algo-
rithms (such as CNNs) and principles (such as embeddings) complemented with 
unique business rules that have to be derived from case-specific requirements. Like 
the wheels in a clockwork, hardware, software, and AI components should be syn-
chronized and fit together smoothly. The design and implementation of these com-
ponents should be balanced and tuned carefully. We would like to emphasize that 
taking an AI model into production and maintaining it demand a serious effort and 
might be as complicated as designing the model itself. We also see in practice that for 
various reasons—e.g., safety, security, accountability, and trust—AI-powered solu-
tions often need a human in the loop.

10.3  Understanding Employee Communication 
with Longitudinal Social Network Analysis of Email Flows

Innovation is the spice of life for organizations and is generally seen as a require-
ment for long-term survival and attaining and sustaining above-average perfor-
mance. Yet, innovation can be hard to accomplish.

In this case study, we consider the innovation struggle of a European branch of 
a multinational service company (referred to in the case study as STRATSERV). 
Innovation typically requires a company’s employees to change the way they do 
their work, either by doing different things (such as providing a new service or 
engaging in new procedures) or by doing things differently (such as using new tech-
nology to do the work more efficiently). This means that, especially in service orga-
nizations, innovation can hardly be successful without the willingness of employees 
to change (the way they do) their work. This realization stimulated STRATSERV’s 
management to attempt to open the minds of their employees to innovation. 
Hence, they organized various events where employees could suggest innovative 
ways of working, offered prizes for the best ideas, and provided resources to 
employees to explore their ideas further. In sum, the approach was to first open the 
minds of employees to the idea of innovation, stimulate the employees to come up 
with innovative suggestions, and then build on that joint openness to the innova-
tion in order to implement new services and new procedures. Of course, this 
assumes that the minds of the STRATSERV employees would respond favorably 
and long-lasting to the company’s innovative wishes.

Although the STRATSERV management believed in this approach, they also 
realized that they needed a way to test whether their approach was working. Did 
their efforts indeed create an innovation mindset in the heads of their employees 
and did that mindset last? Moreover, they wondered if  all employees responded 
alike or whether the competitions, gatherings, newsletters, challenges, and other 
activities organized by the company’s task force only affected certain employees 
but not others.

In this situation, it makes little sense to send out a survey to the employees, 
asking them whether they were thinking about innovation regularly. This would 
likely trigger socially acceptable answers and could not provide the detailed 
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insight into the effect of  the activities that the company was looking for. In 
addition, surveys are poorly suited to monitor how employees respond over 
time, including repeated surveys. The company reached out for help to an exter-
nal team of  researchers. Below, we will show part of  the analysis that was per-
formed.

10.3.1  Digital Innovation Communication Networks

When employees discuss innovation, an innovation communication network 
emerges within the company. The structure and pervasiveness of this network are 
key indicators whether STRATSERV’s approach is working. In addition, innova-
tive activity is essentially a network activity (Aalbers & Leenders, 2016; Kratzer & 
Leenders, 2004; Leenders et al., 2003). Innovation is, by necessity, a collaborative 
effort. Existing knowledge and ideas merge into new combinations, and as for-
merly separated knowledge comes together, new knowledge emerges. Although the 
imagery of the lone inventor profoundly developing is appealing, it is an image 
rarely found in modern times. Innovation is a “team sport,” where individuals work 
together in teams, teams work together in projects, organizations work together in 
alliances, and countries work together in international technology agendas. In fact, 
even the mythical lone inventor probably rarely operated in splendid isolation any-
way, since it is likely that much of the inventor’s inspiration came from interaction 
with other people or organizations, the financial resources may have been granted 
by banks or friends, the actual development of the product often involved the help 
of factories, and customers had to become involved in order to test the product for 
feasibility. No matter which (great) innovation one would look at, it is bound to be 
couched in network interaction of some sort (Leenders, 2016). In sum, an ideal 
approach to see if  innovation was catching on as a core topic and activity inside 
STRATSERV was to measure how the innovation communication network devel-
oped.

Networks can be measured in a number of ways. The most common approach 
is to administer surveys to ask who communicates with whom. Alternatively, one 
could observe the interactions of employees throughout their working activities. 
These methods do not work in our case, since we wanted to follow the interactions 
of employees in real time for a full year. Alternative tools such as using video to see 
who interacts with whom or collecting data from proximity badges would not pro-
vide information on whether the conversation included innovation as a topic. 
Hence, the choice was made to analyze the email interaction between the employ-
ees over the course of a year.

Digital communication, in particular email, has become one of the most impor-
tant means of communication in organizations. As email leaves digital traces about 
senders, receivers, and timing, these rich network data contain high-resolution 
information to understand how communication structures change when working 
teams reach deadlines, to understand new employee integration processes (and 
how these are affected by cultural differences and team compositions), or to under-
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stand how ideas spread through a network of employees (and how this is affected 
by the actors’ hierarchical positions, for example). Besides the academic/theoretical 
interest, these insights are also useful from a practical point of view as they can be 
used to optimize communication structures in deadline situations, they can be used 
to optimize the integration processes of new employees, and they can be used to 
reach all employees regarding certain working topics as fast as possible.

In this case study, we show one approach that can be used to study and under-
stand how networks evolve over time, in real time, and how this knowledge can be 
leveraged in practice.

10.3.2  The Relational Event Modeling Framework

Description of the Data Our analysis focuses on the innovation communication net-
works in a European branch of STRATSERV. After developing and implementing 
procedures to ensure employee privacy and informed consent was received from the 
parties involved, we used text mining techniques to score the email messages on 
whether the exchanged text addressed innovation-related topics. The empirical data 
in this case study consist of a time-ordered sequence of M = 1340 email messages that 
were exchanged between 153 employees over the course of a year. An example of the 
data is given in . Table 10.1 where each row represents the 3-tuple (tm, sm, rm) with, 
respectively, the time, the sender, and the receiver of the mth email in the sequence of 
emails E = {(t1, s1, r1), …, (tM, sM, rM)}.

We assume that email interaction is regulated and driven by factors that can 
depend either on workers’ characteristics (e.g., one’s status or outgoingness), on the 
dyadic characteristics of sender and receiver (e.g., hierarchy differences, co- 
location), on the history of workers’ past interactions (e.g., the exchange of email 
that occurred in the past), or on the workers’ location in the social structure (e.g., 
interaction with joint colleagues, norms of reciprocity). In particular, we will focus 
on modeling whether and how this email stream depends on working in the same 
building, the difference in hierarchy level between sender and receiver of the email, 
the tenure of the sender, the tendency of sender and receiver to continue to exchange 
email messages among each other (i.e., persistence or inertia), and the norms of 

.       Table 10.1 Example of  longitudinal network of  emails

Time Sender Receiver

03 Jan 2010 08:21:33 Marco Jane

03 Jan 2010 08:43:09 Jane Marco

⁝ ⁝ ⁝

31 Dec 2010 18:39:22 Paul Jane

Compiled by authors
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reciprocity between employees. Moreover, we allow a possible memory effect where 
recent email activity may have a relatively large effect on the future activity between 
actors.

The Model The novel modeling framework that is well suited to analyze time-to-
event sequence data in networks is the so-called relational event model (REM) (Butts, 
2008; Mulder & Leenders, 2019; Leenders et  al., 2016). This framework aims to 
model the rate at which specific directed interaction (i.e., a given email being sent) 
between two actors (here: employees) occurs; in other words, we model the emailing 
rate among any pair of employees. In social network terms, such a pair is called a 
dyad. Within this framework, each email message constitutes a relational event char-
acterized by the sender (s), who initiates the action (i.e., who sends the email); the 
receiver (r), to whom the action is targeted (i.e., who receives the email); and time (t), 
the exact time point at which the relational event occurs. At each time point in the 
sequence, 153 potential senders can send an email to 152 potential receivers (exclud-
ing email messages people send to themselves), which means that at any point in time 
153 × 152 = 23,256 email dyads can potentially occur. The aim of the analysis is to 
model who sends an email message to whom at what point in time over the course of 
1 year. Mathematically, the joint probability to model the whole sequence of emails is 
similar to the well-known event history model or survival model (Lawless, 2003; Cox, 
1972).

In the REM, we model the rate at which an email is sent from a given sender to 
a given receiver at a given point in time as a loglinear model that (apart from the 
exponent that occurs in the equation) resembles the well-known linear regression 
structure. The model then takes into account every possible sender, every possible 
receiver, and every possible point in time, for the entire observation period. One of 
our substantive interests in this study is whether the emailing rates of employees 
depend only (or mainly) on the recent email interactions of the employees or 
whether they also take into account email exchanges that happened longer ago. 
This is important for STRATSERV, as it shows how long the effects of interven-
tions last. If  it turns out that employees mainly respond to innovation-related mes-
sages they received recently, and much less to messages received or exchanged 
longer ago, this is a sign that employees apparently need to be “reminded” of inno-
vation constantly and that it has not become a routine part of their conversations.

In particular, we will investigate this for inertia and reciprocity (see . Table 10.2). 
In order to accomplish this, both the inertia and reciprocity variables are calculated 
according to two different event history lengths. For both variables, we include in 
the model a short-run version where only past events that occurred until 30 days 
before the time of the email are included (recent past) and a long-run version that 
includes the past events that occurred more than 30 days before the email was sent 
(less recent past) (cf. Quintane et al., 2013). A complete description of the variables 
used in our analysis can be found in . Table 10.2.

Model Comparison We estimate two models: in Model 1, all the variables in 
. Table 10.2 are embedded in the loglinear predictor; in Model 2, only the short-run 
and long-run versions of inertia and reciprocity are included. Via this model com-
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.       Table 10.2 Predictor variables and their interpretations

Predictor 
variable

Description

ShortInertia The number of messages a potential sender sent to a potential receiver in the 
last 30 days

LongInertia The number of messages a potential sender sent to a potential receiver more 
than 30 days ago

ShortReci-
procity

The number of messages a potential sender received from a potential receiver 
in the last 30 days

LongReci-
procity

The number of messages a potential sender received from a potential receiver 
more than 30 days ago

SameBuild-
ing

A binary variable which indicates whether potential sender and potential 
receiver work in the same building (1) or not (0)

DiffHierar-
chy

The hierarchical difference between the sender and receiver on a scale from 1 
to 9

LogSender-
Tenure

The number of years a potential sender works in the organization on a log 
scale

Compiled by authors

parison, we can learn whether a simpler model without exogenous effects may be 
enough for a good fit for the data. Considering the specification of Model 1, the email 
rate (λ) at time tm for the dyad (sender, receiver) = (Marco, Jane) is

l b btm t( = +{, , ) expMarco Jane ShortInertiaIntercept ShortInertia mm

tm

( +

( +

, , )

, , )

Marco Jane

LongInertia Marco JaneLongInertia Shb b oortReciprocity

LongRecipr

ShortReciprocity Marco Janetm( +, , )

b oocity SameBuildingLongReciprocity Marco Jane SameBuiltm( +, , ) b dding Marco, Jane

DiffHierarchy Marco,JaneDiffHierarchy

( ) +
( ) +b bbLogSenderTenureLogSenderTenure Marco( )}  

(10.2)

where β = (βIntercept, βShortInertia, βLongInertia, βShortReciprocity, βLongReciprocity, βSameBuilding, βDiffHierarchy, 
βLogSenderTenure) is the vector of effects describing the impact of the variables on the 
rate of occurrence of an email being sent from a sender to a receiver. Positive 
effects (negative effects) imply that as the variable increases in value, it increases 
(decreases) the email rate. As regards Model 2, the rate of an email sent from 
Marco to Jane at time tm becomes

l b bt tm( = +{, , ) expMarco Jane ShortInertiaIntercept ShortInertia mm

mt

( +

( +

, , )

, , )

Marco Jane

LongInertia Marco JaneLongInertia Shb b oortReciprocity

LongRecipr

ShortReciprocity Marco Janetm( +, , )

b oocityLongReciprocity Marco Janetm( )}, , .
 

(10.3)

The results of both models can be found in . Table 10.3. Model 1 seems to be bet-
ter supported by the data since the BIC and AIC for Model 1 are lower than for 
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Model 2. In addition to this, the email rate is mainly affected by recent email his-
tory, that is, by the short-run effects of inertia and reciprocity. Although the effect 
of long- run inertia (LongInertia) is statistically significant, the effects of long-run 
inertia and long-run reciprocity (LongReciprocity) are negligibly small and hence 
barely affect the email rate. The results of Model 2 (which only includes inertia and 
reciprocity) show that these effects are stable and unaffected by the other variables. 
In other words, the employees tend to repeat their recent behavior and mainly 
respond to innovation-related messages received in the recent past, while innova-
tion messages that were sent or received more than 30 days ago seem to no longer 
affect emailing behavior today. In other words, employees appear to discuss inno-
vation because it is what they recently discussed, not because it is something that is 
on their minds in the long run. This is a sign that STRATSERV has not been able 
to make innovation an integral part of their employees’ mindset.

From Model 1, we see that employees send emails at lower rates to other 
employees who are lower in the organizational hierarchy than they are themselves 
and send their email messages at higher rates to those who have higher hierarchy 
levels than they have themselves ˆ .bDiffHierarchy =-( )0 3003 . In other words, email mes-
sages about innovation are more readily sent up the organizational hierarchy than 
down. This is consistent with the idea that the STRATSERV employees are willing 
to inform their superior about potential innovation but are less likely to put their 
ideas into action themselves by discussing it with those lower in the chain of com-
mand. Conversely, employees who enjoy higher hierarchical positions are more 
popular targets for such email messages than are those who occupy low status posi-
tions in the organization. Again, innovation discussion is directed up the chain, but 
much less to the lower levels.

Except for DiffHierarchy, all other variables in Model 1 have positive effects on 
the emailing rates. For instance, the email rate of a sender to a receiver who works 
in the same building (SameBuilding  =  1) is around two and a half  times 
exp{ } .b


SameBuilding =( )2 679  higher than the email rate from that same sender to a col-

league working in a different building, holding constant all the other variables. This 
is an important finding, as it suggests that physical boundaries (i.e., working in a 
different building) also appear to function as communication boundaries: 
STRATSERV employees more intensely discuss innovation-related topics with 
those whom they routinely meet at the coffee machine, and much less with those 
they do not run into that often.

We also observe that the rate at which employees send innovation-related email 
increases with the time they have been at the organization. Conversely, newcomers 
and juniors turn out less active in communicating about innovation than are the 
seniors of the firm, which makes sense.

 Discussion and Conclusion
The relative importance of the different effects can be used to improve and optimize 
information sharing. For example, as there is a large positive (negative) effect of 
interaction when employees work in the same (in different) buildings, interaction 
may be greatly improved by setting up interventions in the organizations that stimu-
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late discussions across employees in different buildings. In addition, it is important 
to know for managers that STRATSERV’s employees are less likely to share innova-
tion-related communication with colleagues they are not co-located with. Although 
this can partly be addressed by strategically placing employees in their various loca-
tions, it is also important for managers to realize where communication may flow 
more easily and where it is likely to be hampered.

Furthermore, STRATSERV learns from this analysis that a temporary silence in 
innovation-related activity tends to remove the topic from the active attention of its 
employees. This could potentially be addressed by organizing activities around inno-
vation, but it also signals that the current activities have not been successful in mak-
ing innovation part of the normal conversation of STRATSERV’s employees. This 
may be a reason to reevaluate the effectiveness of the current strategy while, at the 
same time, taking into account that it may take a long time to establish an innovation 
mindset.

Thanks to the relational event model, we are able to understand which factors 
play a role in employee interaction. Specifically, the observed differences in intensi-
ties and signs of the relative effects showed that certain characteristics can impact 
the email rate to different degrees and in different directions. Using targeted inter-
ventions, these insights can be used to reach more employees in a shorter amount of 
time. For further reading on relational event models, we refer interested readers to 
Leenders et al. (2016), Schecter et al. (2017), and Pilny et al. (2016).

10.4  Using Vehicle Sensor Data for Pay-How-You-Drive 
Insurance

The emergence and growth of connected technologies and big data are changing 
the face of all industries. An example of an industry which is expected to avail 
tremendous benefits from the relevant data generated by the billions of connected 
devices is the insurance industry. One of the most popular cases of big data adop-
tion within the insurance industry is the Pay-How-You-Drive (PHYD) paradigm 
(Carfora et al., 2019). This means that instead of calculating insurance premiums 
based on only demographic characteristics, personal driving characteristics—either 
exposure or behavioral—are also incorporated in the insurance models (Tselentis 
et al., 2016).

In order to understand people’s driving behavior, data is gathered about, for 
example, the driver’s speeding and braking behavior. State-of-the-art research 
about modeling human driving behavior is mostly based on GPS data (Grengs 
et al., 2008), including variables such as the GPS location, traveled distance, and 
coarse-grained speed profile. However, nowadays, the standardization of the con-
troller area network (CAN) bus technology and the increase of the electronic con-
trol units (ECUs) in modern cars offer a large availability of sensor data, enabling 
a more reliable and direct characterization of driving styles (Fugiglando et  al., 
2017). Considering the car as a human body, the CAN bus is the nervous system 
enabling communication between the different body parts (ECUs). Modern cars 
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may have up to 70 ECUs, such as the cruise control, audio systems, and engine 
control unit. Hence, the ability to connect the different ECUs and sensors in a 
vehicle through CAN bus technology enables the gathering of valuable informa-
tion about, for example, the state of the vehicle and the driving behavior of the 
driver.

Despite the useful data provided by the numerous sensors in modern cars, the 
interpretation of data is cumbersome due to the different implementations of the 
CAN messaging system (de Hoog et al., 2019). Whereas the CAN protocol is stan-
dardized, the actual implementation differs for every manufacturer and even for 
every car model. So, in order to obtain the useful information, CAN bus traffic has 
to be analyzed and reverse engineered for every car type separately (Huybrechts 
et al., 2017). As this is a very time-consuming task, the use of CAN bus data to 
model driving behavior for PHYD insurance is barely adopted so far (Fugiglando 
et al., 2018).

With the flexible CAN solutions established by Beijer Automotive B.V., 9 one is 
able to access the complex vehicle sensor data hidden in cars. This enables the 
analysis of an enormous amount of informative data about not only the drivers 
(e.g., speed, brake, steering position, wheel speed, odometer, left/right direction 
indicator), but also their surroundings (e.g., fog/hazard lights, wipers, ambient air 
temperature). Although this overload of data may be promising concerning the 
reliability of driving-style characterization, it remains a complex concept influ-
enced by a burdensome number of factors and possible interpretations of the 
driver response (Martinez et al., 2017). In other words, due to many (external) con-
ditions affecting the driving behavior, it is difficult to understand what factors 
exactly caused a certain driving behavior. Did the driver brake suddenly because of 
an unexpected event caused by another driver or because he or she was distracted 
by his or her phone? This and many other questions could arise while analyzing all 
the variables. What can actually be learned from all these variables and should they 
be analyzed separately or simultaneously?

10.4.1  Time Series

Before continuing with discussing some interesting applications, a bit more should 
be mentioned about the data. As the measurements from the CAN bus are col-
lected at uniformly spaced time instants, the gathered data can be considered as a 
time series:

A time series T = {t1, …, tn} is an ordered sequence of  n real-valued numbers, often 
measured at fixed time intervals.

9 7 https://www.beijer.com/en/
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The series can be univariate as described above or multivariate when several series 
simultaneously span multiple dimensions within the same time range (Esling & 
Agon, 2012). As all the data from the sensors and ECUs in the car are measured at 
the same time, they can be considered as multivariate time series.

While winning data from the CAN bus is already challenging, the actual prob-
lem begins when one wants to decode the gathered data. As mentioned before, this 
is due to the many different implementations of the CAN messaging system. 
However, imagine that you possess the information to make the right translation 
and thus that you can transform the raw data into long time series representing the 
variables of interest. Even when one is able to arrive at this stage, understanding 
the actual driving behavior remains challenging. This is due to the volume of the 
data; almost every 10  ms, a signal is sent through the CAN messaging system. 
Consequently, one ride of ±1.5 h results in time series including over half  a million 
data points. Hence, efficient algorithms are needed in order to analyze this data.

There are many different methods to analyze time series data, summarized by 
Esling and Agon (2012). As the obtained data is high-dimensional, algorithms 
directly applied to the raw time series would be computationally too expensive. To 
reduce the data dimensionality, one can use representation techniques. A widely 
used method for this is called Symbolic Aggregate approXimation (SAX) intro-
duced by Lin et al. (2007). The method consists of two stages. First, the time series 
is converted into a piecewise aggregate approximation of a predefined number of 
segments. Afterwards, the average value of each segment is transformed into a 
symbol according to a set of break points. As a result, the time series is trans-
formed into a string consisting of, for example, 3 symbols (see . Fig. 10.3). With 
string compression algorithms such as GrammarViz (Senin et al., 2018), grammar 
rules (e.g., bba in acbbaaccbba) can be inferred from the newly created string. These 
rules represent repeating patterns (motifs) in the time series. In a similar way, also 
anomalous patterns (discords) can be detected.

       . Fig. 10.3 SAX is used to transform a time series into a sequence of  letters (a string). This figure 
illustrates a time series of  130 data points which is converted into a string cbab of  4 letters (i.e., seg-
ments). (Author’s own)
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Although dimensionality reduction techniques may increase the efficiency of 
time series data mining tasks, the downside is that details may be overlooked. In 
cases where those details play an important role, analysis can be better done on the 
raw time series. Depending on the application, the right technique should be cho-
sen. Examples of applications in which motif  or discord discovery could be of 
interest and situations in which dimensionality reduction techniques are not favor-
able are discussed in the coming sections.

10.4.2  Driving Behavior Analysis

One insurance company in the Netherlands calculates its premiums based on their 
customers’ driving behavior. For this task, they use four variables: speed, curves, 
brake, and acceleration. Although this provides insight into the driving style of a 
client, it is still very general. What exactly defines safe (or dangerous) driving 
behavior? Safety is a vague concept and could become more tangible when it is 
known what the patterns actually represent. In other words, only using those four 
variables does not include anything about the context of the ride. When more vari-
ables are included, maybe the cause of certain behavior can be detected and thus 
safety can be based on those events rather than on a variable like speed.

One of the main contributing factors to the road safety problem is an inatten-
tive driving style, often caused by distracting activities (Meiring & Myburgh, 2015). 
Potential distracting activities may include attention to a person, object, or event 
outside the car, eating or drinking, talking, texting, and distracting weather condi-
tions. Note that an inattentive driving style differs from an aggressive driving style 
due to its instantaneous and sporadic nature. Aggressive driving can be often 
observed as a pattern of misbehavior over a longer period of time (Meiring & 
Myburgh, 2015). The main challenge is how to use the gathered variables to detect 
such inattentive driving behavior. This contradiction serves well as an example for 
how the corresponding time series data should be analyzed: the detection of aggres-
sive driving behavior may ask for motif  discovery, while discords are of higher 
interest for the detection of inattentive driving behavior due to its anomalous 
nature.

Phone Usage Lately, especially the use of mobile phones is considered to be a threat 
to the safety on the road. Motivated by the impact on the overall safety, governments 
have enacted regulations that prohibit mobile phone usage while driving. But how 
can it be controlled? Is it possible to detect people being distracted in the car by using 
their mobile phone? Although previous methods promise to be effective in detecting 
the use of mobile phones while driving, they are dependent on either camera systems 
or on radars (Leem et al., 2017). As these attributes do not belong to the standard car 
equipment, they were specifically installed for the controlled experiment setup. The 
data from the CAN bus, however, is accessible in every car and could also be obtained 
from uncontrolled environments. Below, two variables from the CAN bus are 
described which could help to detect (or get insights into) phone usage or, more gen-
erally, driver inattentiveness.
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Steering position. Beijer Automotive B.V. conducted an experiment in which 
they let people drive the same route twice: the first time without any instructions 
and the second time with the instruction to read a text message which was sent to 
them. The time interval in which the message was read is indicated by the green 
arrows in . Fig. 10.4. This figure shows the steering wheel position on the y-axis 
versus the time on the x-axis. A high peak corresponds to turning to the right or 
left. 10 Although at first sight no difference was visible in the two different rides, 
when zoomed in, the difference came to light. Everyone who drives in a straight 
line moves the steering wheel lightly, resulting in a pattern similar to the left black 
curve in . Fig. 10.4. When distracted—in this case by reading the text message—
people move the steering wheel more heavily, as shown in the right black curve in 
. Fig. 10.4.

As the motion is very detailed, it may not be advantageous to use dimensional-
ity reduction techniques. On the other hand, when many rides need to be analyzed, 
it would become computationally too expensive to analyze the entire time series. 
Nonetheless, during this experiment, it became clear that one can use one variable 
(i.e., univariate time series) to get insights into the driving behavior of the driver. 
Although it was easy to identify the different patterns during this experiment, it 
becomes more challenging when no knowledge exists about the exact time slot in 
which a phone is used. When much data is generated in uncontrolled environments, 
it could be therefore useful to include more variables. In this way, the context can 
be used to understand a certain steering wheel action. Moreover, other variables 
like the brake may increase the accuracy of detecting people using their phone.

10 The peaks for both steering actions are positive as the signal is unsigned.

       . Fig. 10.4 The red curve shows the steering position during the route which was driven twice. The 
green arrows indicate a time interval, and the two black boxes show the steering position during that 
time interval for the two different rides. The left black curve represents a normal steering behavior 
when the driver did not receive a text message, and the right black curve represents the interval when 
the driver was distracted by his or her phone while driving. (Author’s own)
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Wheel speed. Another way to detect potential inattentive driving behavior is by 
analyzing the wheel speeds. At the top of . Fig. 10.5, the speeds of the four wheels 
(front left, front right, rear left, and rear right) are visualized. While these variables 
separately may not seem informative, they include valuable information when ana-
lyzed simultaneously. The dark blue curve shows the difference in speed between 
the front and rear wheels (front–rear: (FL + FR) − (RL + RR)), and the other blue 
curve shows the difference in speed between the left and right wheels (left–right: 
(FL + RL) − (FR + RR)). The latter includes similar information as the steering 
position (gray curve): every time the steering wheel is moved to, for example, the 
right, the difference of the wheel speeds between left and right increases. While 
turns to the left or right are clearly visible through the big peaks, more detailed 
actions are also captured by the difference in the wheel speeds and can be used to 
detect anomalous driving patterns.

Not only the steering behavior of the driver is captured in the wheel speeds, but 
they also include additional information. In . Fig. 10.5, there are two anomalies 
visible in between the two black vertical lines halfway in the blue curves. When 
considering the separate wheel speeds, this is unexpected as the driver drove a con-
tinuous speed during that moment. Moreover, the steering position during that 
time period indicates that no steering action was performed. What these anomalies 
could represent is discussed in the next section.

Road Conditions Another important aspect of road safety is the monitoring of the 
road conditions (Meiring & Myburgh, 2015). Fazeen et al. (2012) demonstrated in 
their paper that by using mobile smartphones one is able to evaluate overall road 
conditions, including bumps, potholes, and rough, uneven, and smooth road. By 

       . Fig. 10.5 At the top of  this figure, the speeds of  the four wheels are visualized. The blue curves 
show the differences in speed between the front and rear wheels (dark blue) and the left and right 
wheels (light blue). The gray curve represents the steering position. All curves share the same x-axis, 
which represents the time. The two black vertical lines highlight a time interval including two anoma-
lies. (Author’s own)
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using the mobile phone’s accelerometer, subtle or extreme vibrations were recorded 
inside the vehicle. Combining these accelerometer readings with GPS coordinates 
enabled them to make an accurate (85.6%) road condition mapping. However, to 
achieve accurate measurements, the location and orientation of five phones inside the 
car needed configuration.

By analyzing the wheel speeds, one is also able to detect road anomalies. Peaks 
as highlighted between the two black vertical lines in . Fig.  10.5 could indicate 
such anomalies. When exposed to a bump or pothole in the road, the speed of one 
wheel changes significantly compared to the other wheels. This leads to an anomaly 
in the differences between the wheel speeds. How accurate the detection of road 
anomalies via wheel speeds is has been hardly researched yet and is an interesting 
topic for future research. Nonetheless, with signals every 10 ms, small vibrations 
caused by either driving behavior or road conditions could be captured. Moreover, 
with many cars on the road, an enormous amount of data can be gathered and ana-
lyzed on a daily basis. 11 This enables a more reliable detection of road anomalies.

External Factors As all journeys differ considerably, the driver gets exposed every 
single journey to different external factors. Although variables like the wheel speed or 
steering position may include useful information, it still may be hard to detect anom-
alies in uncontrolled environments. One of the main advantages of using CAN bus 
data is that it includes informative data not only about the drivers, but also about 
their surroundings. Sensors like fog lights, hazard lights, wipers, and temperature pro-
vide insights into the climate, and other sensors like the direction indicator, the brake, 
and the throttle may include information about certain events. If, for example, the 
driver brakes heavily after driving 120 km/h, it may be more interesting to analyze the 
steering wheel position prior to this event than when someone is driving 30 km/h and 
uses the left direction indicator to turn to the left. Likewise, stormy days may elicit 
other driving responses than calm and sunny days, and so forth. By utilizing the infor-
mation included in the overload of data retrieved from the CAN bus, one is able to 
understand the context of the driving scene and external conditions. This enables a 
more reliable and direct characterization of the driving behavior (Fugiglando et al., 
2017). Note that in this case, there is no longer only dependency of one variable on its 
past values, but there is also some dependency between the other variables that has to 
be captured. Hence, techniques are needed which not only do have to deal with 
abnormal values or subsequences in each time series separately, but are also able to 
detect the relationships among the variables (Li et al., 2017).

 Discussion and Conclusion
Whereas most car insurance companies quantify accident risk based on either demo-
graphic characteristics or GPS data, CAN bus data is expected to better characterize 
human driving behavior and thus accident risk (Fugiglando et  al., 2018). Before 

11 An example of  a platform which brings together CAN bus data of  many cars is Vetuda (7 https://
www.vetuda.com/en/). Not only road conditions can be analyzed, but it also provides informa-
tion for applications such as incident, weather, and traffic management.
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driving profiles of customers can be determined, many experiments should be con-
ducted. By matching patterns in uncontrolled environments with the ground truth 
from controlled experiments, one is enabled to characterize inattentive and aggressive 
driving behavior. It is important to note that in uncontrolled environments, only 
rough proxies of inattentive driving behavior can be detected. Due to the lack of 
labels (ground truth), it is hard to determine the exact cause of anomalous driving 
patterns. Sometimes, people chose for an unsafe driving environment themselves 
(e.g., by using their phone), but also external factors such as other drivers can play a 
role in the decisions made by the driver. However, by focusing on steering actions 
such as corrections and unstable steering positions as depicted in . Fig. 10.4, it is 
possible to get a general overview of the driving behavior of customers.

Using this rich information not only is interesting for calculating the premiums of 
car insurance customers, but may also help insurance companies to understand the 
exact circumstances of accidents. Are there certain scenarios or places which cause 
many drivers to be distracted? Such information could be used to warn their custom-
ers and influence them to drive more safely. Ultimately, this could even lead to a shift 
in the core of their business model: a shift from restitution to prevention. Customers 
may also benefit from this new business model. With a reduction in restitution costs 
through prevention, discounts on premiums can be offered to those who drive safely. 
Using this information to adopt the Pay-How-You-Drive paradigm can be beneficial 
for the customers as they can now directly impact their paid premium. The safer you 
drive, the less you pay, and maybe even more importantly, the less we all pay.

 Conclusion
In this chapter, we presented three case studies showing data analytics in action. The 
case studies considered diverse problems and provided an insight into the data ana-
lytical toolkit that is available to solve these problems. Of course, the data analytical 
toolkit is vast and there are many tools that we did not cover in this chapter. Never-
theless, the case studies illustrated how powerful modern data analysis techniques 
are for answering intricate questions that would otherwise remain open. We also 
emphasized that these techniques require careful adaption to the problem at hand in 
order to deliver the desired results. However, if  this adaption is done right, data ana-
lytics can provide deep insights and produce practical outcomes that are highly valu-
able for businesses and consumers.

 Discussion Points
 1. AI education should be enriched with practical cases.
 2. The inclusion of specific behavioral patterns in the dynamic social network anal-

ysis improves the understanding of the information flow between employees and 
helps refining business strategies.

 G. Schouten et al.
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 3. In uncontrolled environments, only rough proxies of, for example, inattentive 
driving behavior can be detected. Due to the lack of labels (ground truth), it is 
hard to determine the exact cause of anomalous driving patterns. This should be 
taken into consideration when driving profiles are determined.

 Take-Home Messages
 5 It takes a serious engineering effort to get an AI-powered software system into 

production. This is quite different from building AI demonstrators.
 5 It is an illusion to believe that a business intervention strategy affects all employ-

ees equally. Analyzing the communication between employees can help the man-
agement understand how, where, and for how long interventions carry an effect. 
Cutting-edge developments in longitudinal social network analysis can help tar-
get interventions more effectively and assess policy effectiveness realistically and 
in real time.

 5 By analyzing the enormous amount of informative data from CAN bus technol-
ogy, human driving behavior—and thus accident risk—can be better character-
ized.
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