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Chapter 1

In medical research, Randomized Controlled Trials (RCTs) are considered the gold standard

by which the effects of new treatments, therapies, and interventions are evaluated (Evans,

2003; Grol & Grimshaw, 2003; Harbour & Miller, 2001). The standard RCT compares the

experimental treatment to a control condition (usually the standard treatment or a placebo)

on one or multiple pre-selected outcomes of interest, which are often aspects of (relative)

effectiveness and safety. The control condition provides direct comparison regarding superiority

or inferiority of the treatment, and randomization allows us to draw causal conclusions. The

associated statistical analysis plan provides control over the quality of superiority and inferiority

decisions in terms of decision error rates. That is, decisions with sufficient statistical power are

targeted to select more effective treatments (i.e., avoiding Type II errors), while controlling the

rate of false superiority and inferiority conclusions (i.e., controlling Type I errors). In the RCT

setting, a priori estimates of the treatment effect often form a basis to calculate how much data

are needed for decisions with prespecified error rates. The results of RCTs are primarily used

in two ways. First, the information collected in the various phases of treatment evaluation

impacts approval by regulatory bodies such as the Food and Drug Administration and the

European Medicine Agency. Second, if the treatment stands these tests and is approved for a

broader rollout, RCT outcomes will also guide treatment prescription in clinical practice.

Although a robust standard with favorable properties, RCT methodology is challenged by

the personalization of medicine (Hamburg & Collins, 2010; Mirnezami et al., 2012; Ng et al.,

2009; Schork, 2015). Personalization refers to the ideas that a) patients with different

characteristics respond differently to treatments and b) better treatments can be prescribed

to patients if these characteristics are taken into account (Goldberger & Buxton, 2013). The

implementation of these ideas demands RCTs to answer new, more complex research

questions and to provide additional information that clinicians need to support treatment

prescriptions to individual patients with adequate evidence. More specifically, treatment

prescriptions ideally originate from a trade-off between patient-specific risks and benefits,

thus reflecting a multivariate decision procedure that considers several outcomes in relation

to each other. In such a procedure, clinicians a) weigh advantages and disadvantages and b)
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determine how many side effects are acceptable given the effectiveness of the treatment

(Murray et al., 2016). Many RCTs have data available to support these decisions with

evidence as they measure aspects of both safety and efficacy (Biswas et al., 2009).

Unfortunately, the statistical procedures of RCTs often ignore the multivariate nature of

clinical decision-making, and trial conduct is separated from clinical practice (Murray et al.,

2016). As a result, analyses remain largely univariate, relations between outcome variables

are neglected, and superiority and inferiority conclusions are based on a single primary

outcome variable (Food and Drug Administration, 2010; Murray et al., 2016; Oliveira &

Teixeira-Pinto, 2015).

In addition to these more complex research questions, personalization potentially affects

characteristics of datasets that are relevant for the choice of analysis techniques. The structure

of datasets can be affected in three major ways. First, sample sizes can be smaller due

to limited eligibility for participation because newly developed interventions are more and

more targeted at specific patient groups that are, for example, defined by a biomarker, a

disease subtype, a personal characteristic, or (combinations of) specific characteristics. Trials

to evaluate these interventions are subject to stringent inclusion and exclusion criteria that

make the recruitment of a sufficient number of patients potentially challenging (Renfro &

Sargent, 2017). The challenge to recruit sufficient participants leads to small samples, which

can have important consequences: Analyses are underpowered, decisions regarding superiority

remain inconclusive, and new treatments are left unable to demonstrate their potential. In

a worst-case scenario, patients keep being exposed to suboptimal treatments because there

are not enough data to rigorously test promising treatments among subjects with the given

patient profile. Second, datasets often contain information from multiple subgroups of patients

with potentially different (i.e., heterogeneous) treatment effects. This is the case when trials

evaluate treatments that target a more diverse group of patients. Here, RCTs should provide

insights into the effects on subpopulations of relatively similar patients, in addition to the

general effect among the broader, more diverse target population. Treatment heterogeneity is

frequently ignored, and the focus of trials is typically on average treatment among the study
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population, preventing researchers from distinguishing between patients who are expected to

benefit from the treatment from those who do not (Thall, 2020). Subgroups of patients

who are actually adversely affected by the treatment can be overlooked and unintentionally

prescribed a harmful treatment. Third, datasets more often consist of clusters of patients more

similar to each other than to patients from other clusters. Trials are increasingly conducted

among multiple treatment centers and countries, as expanding the (geographical) recruitment

region can a) help to speed up enrollment and b) answer substantive questions regarding

treatment effects in different recruitment locations (Gallo, 2000; Lin, 1999). Datasets with

such a so-called multilevel structure complicate analysis as they require analysis methods

that correct for the clustered structure (Gelman & Hill, 2007; Hox et al., 2017). Ignoring

the multilevel structure compromises statistical validity, potentially up to the point where

treatments are incorrectly approved or dismissed due to inflated decision error rates.

Datasets with combinations of these three characteristics are becoming more standard in

contemporary medical research. In an overview of several hundred trials, a multivariate and

multilevel structure was commonly observed (Biswas et al., 2009): More than half of the

trials were executed in multiple treatment centers, and the majority of these trials assessed

multiple outcome variables. Further, treatment heterogeneity is increasingly targeted, for

example, via subgroup analysis or via so-called master protocols that conduct several sub

trials in parallel (Simon, 2010; Thall, 2020; Woodcock & LaVange, 2017). Examples of

such protocols are umbrella or basket trials, which distinguish subtrials by disease subtype or

biomarker respectively (Renfro & Sargent, 2017; Renfro & Mandrekar, 2017). Unfortunately,

we lack statistical methodology to accommodate these changing data features and to answer

more comprehensive research questions in a flexible way. In this dissertation, we address this

gap and develop methods to target the changing nature of RCTs in the personalization of

medicine.
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1.1 Motivating example

We will illustrate potential consequences of the introduced complexities in more detail with

the Cognition and Radiation Study B (CAR-Study B; Schimmel et al., 2018). CAR-Study B

is an RCT that investigated the effects on the cognitive performance of cancer patients with

multiple (11 − 20) brain metastases after these intracranial tumors have been treated with

one of the two radiation-based interventions used for comparison. The target population of

this study has a poor prognosis: The expected survival time without treatment is less than

three months (Khalsa et al., 2013; Niranjan et al., 2012). For a long time, radiation of the

whole brain (Whole Brain Radiation Therapy; WBRT) has been the standard treatment for

these patients (Eisuke & Aoyama, 2011). WBRT may improve intracranial tumor control

and survival, but comes with severe side effects in the form of irreparable damage to cognitive

functioning (Brown et al., 2016; Ellis et al., 2012; Habets et al., 2015). The decline in memory,

concentration, and attention can be invalidating as these functions are highly important to

navigate through daily life and profoundly influence the quality of life (Schimmel et al., 2018).

At the start of CAR-Study B, local treatment of individual metastases (Gamma Knife

Radiosurgery; GKRS) was increasingly used as an alternative treatment to WBRT among

patients with multiple brain metastases (Yamamoto et al., 2014). Local radiation spares more

healthy brain tissue, is expected to better preserve cognitive functioning, and has been adopted

as an initial treatment option for patients with a smaller number of brain metastases (Chang

et al., 2009; Eisuke & Aoyama, 2011; Schimmel et al., 2018). CAR-Study B aimed to evaluate

whether local radiation indeed causes less damage to the cognitive functions of the specific

group of cancer patients with multiple brain metastases. Despite the earlier promising results of

GKRS among related subpopulations, testing the treatment among patients with multiple brain

metastases was challenging. The researchers struggled with a troublesome inclusion process,

had to deal with a substantial dropout that is inherent to the population, and managed to

enroll less than one-thirds of the required number of patients in over a year.
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1.2 Goals of the current dissertation

CAR-Study B exemplifies how increasing personalization of medicine can make it hard to find

enough eligible participants. Inspired by the promising development of personalized medicine

and motivated by the cumbersome inclusion process of CAR-Study B, novel methods are

needed a) to create more extensive overviews of treatment effects among a range of diverse

patient populations and/or b) to reduce the required number of participants without

compromising decision error rates. Specifically, we argue that trials can improve the value of

collected data and can target both goals simultaneously when using available information

differently. As noted earlier, trials usually have more information available than included in

the analyses. Attempts to incorporate these resources are often inefficient, and hence they

are treated in isolation. This is unfortunate, since sharing information more efficiently within

trials has two major advantages: It helps to answer more complex research questions, and it

is known to improve the statistical power of decision-making thereby allowing for sample size

reduction (Biswas et al., 2009; Leon-Novelo et al., 2012). For example, analyzing multiple

dependent variables simultaneously provides insight into their co-occurrences. In contrast,

their common disjoint analysis can paradoxically require larger samples to achieve the same

power as preselecting a single outcome variable (Food and Drug Administration, 2010; Senn

& Bretz, 2007; Sozu et al., 2010). A similar problem is seen with heterogeneous treatment

effects. Modeling heterogeneity directly reveals the relation between subpopulations and

their treatment effects and is more powerful than the common subgroup analysis (i.e.,

stratified analysis; Food and Drug Administration, 2010; Kaptein, 2014; Kaptein et al., 2015;

Thall, 2020). Thus, sharing information between outcome variables and subpopulations can

greatly improve the value of RCTs in personalized medicine since it a) borrows strength from

other variables to improve the efficiency of clinical trial methodology, b) enables more refined

decisions thereby facilitating alignment of trial conduct and clinical decision-making, and c)

creates more comprehensive insights into the way treatment effects vary over related but

different subpopulations.

We implemented the idea of information sharing in a Bayesian multivariate framework for
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RCT data with multiple correlated binary outcome variables. The focus on outcome variables

of a binary measurement level was motivated by their frequent use in medical research and

medical practice. Central to the framework are three components:

1. a multivariate analysis model for multiple binary outcome variables to benefit from the

correlation between outcome variables;

2. a transformation procedure to make the resulting model parameters interpretable in

terms of (multivariate) success probabilities and the differences between them;

3. a decision procedure to make treatment comparisons and draw conclusions regarding

superiority and inferiority with prespecified frequentist error rates.

Together, these three components form a comprehensive framework for statistical analysis and

decision-making with multiple (correlated) binary outcome variables.

The Bayesian approach was adopted for several reasons. First, Bayesian analysis naturally

works with distributions and posterior samples of model parameters. Transformation of these

posterior samples to other parametrizations provides point estimates, spread, and other

distributional characteristics of the transformed parameters. The latter were convenient for

the transformation and decision procedures of our framework as they enabled

decision-making and inference with the transformed parameters while controlling frequentist

decision error rates (Marsman & Wagenmakers, 2016; Schönbrodt et al., 2017). Second,

working with a posterior sample of transformed parameters also provided much flexibility in

defining decision criteria, such as superiority and inferiority, and consequently, in the

formalization of decision rules. The desirability of different outcome scenarios can be

specified in a natural way (Berger, 2010) while maintaining good frequentist properties, e.g.,

Type I errors (Food and Drug Administration, 2010). Finally, information external to the trial

can be integrated via prior information. When desired, new data can be combined and

weighed with available historical data in different ways (e.g., Ibrahim & Chen, 2000).
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1.3 Overview of the current dissertation

Throughout the dissertation, three increasingly complex variations of the framework are

presented:

1. modeling multiple binary outcome variables and the relation between them;

2. modeling multiple binary outcome variables, the relation between them, and the relation

with observed covariates;

3. modeling multiple binary outcome variables, the relation between them, and the relation

with observed covariates in clustered data.

The core of this dissertation is written as four separate articles that can be read independently

from each other. We chose to preserve the writing of the original articles where possible, which

induces some inconsistency in notation and cross-referencing throughout the dissertation.

Chapter 2 provides a non-technical introduction to the multivariate analysis and

treatment comparison procedure with multiple correlated binary outcome variables. Intuitive

explanations are given of the underlying multinomial model and the choice of prior

parameters, the meaning of the resulting posterior (multinomial) joint response probabilities

is discussed, and the transformation to (multivariate) success probabilities and treatment

differences are explained. Further, multiple suggestions to define superiority in the

multivariate context are given and an additional decision rule is proposed that a) is suitable

to weigh different outcome variables differently and b) naturally has a compensatory

mechanism that allows small negative treatment differences to be compensated for by larger

positive treatment differences. The framework is introduced in the context of adaptive trial

methodology where the concept of interim monitoring is explained. The chapter is

supplemented with an R Shiny app to perform the analysis, which is explained in a tutorial.

Chapter 3 extends Chapter 2 with a technical introduction. The multivariate analysis

procedure is introduced as a conjugate combination of a multivariate Bernoulli likelihood and

a Dirichlet prior distribution. The model relies on a multinomial parametrization and results

in a posterior distribution with a known functional form. We demonstrate that a multivariate
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analysis procedure provides better decision error control compared to multiple univariate

analyses and allows for more flexible and more efficient options for the choice of a decision

rule. An extensive simulation study demonstrated frequentist operational characteristics of

the framework a) with various multivariate decision rules, b) in adaptive as well as fixed

designs with a priori estimated sample sizes, and c) with several non-informative and

informative prior specifications.

Chapter 4 presents the framework with a different model that can analyze multiple

correlated binary outcome variables and heterogeneous treatment effects simultaneously.

This is useful for trials that assess multiple dichotomous treatment effects and include

different but related groups of patients. Although the modeling procedure in Chapters 2 and

3 can be used to perform independent subgroup analyses, these analyses treat subgroups in

isolation, are quite inefficient in terms of sample size, and can be less informative. Therefore,

a more efficient alternative is presented that uses the relation between patient groups: a

multivariate logistic regression model to account for observable treatment heterogeneity.

This model allows sharing of information between outcome variables and borrowing strength

from other subgroups, resulting in more comprehensive insights into the relation between

treatment effects and subpopulations and in more efficient multivariate treatment

comparisons among subpopulations of the study population while including information from

the entire study sample. We included an illustration with real-world data from the

International Stroke Trial (International Stroke Trial Collaborative Group, 1997).

In Chapter 5, the multivariate logistic regression model from Chapter 4 is extended

to the multilevel context. These days, trials are increasingly executed in collaboration with

different treatment centers and/or in different countries. In these situations, research subjects

from one center or country could well be more similar to each other than to subjects from

another center or country, giving the data a clustered (or hierarchical or multilevel) structure

and implying that subjects within such a cluster are not independent. Such a clustered data

structure requires specific analysis techniques that can deal with non-independent data whilst

naively applying standard techniques result in inaccurate decision error rates. The proposed
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multilevel multivariate logistic regression model is suitable for estimation and inference among

different subpopulations and different clusters. We illustrated this model in a re-analysis of

data from the third International Stroke Trial (The International Stroke Trial-3 Collaborative

Group, 2012).

In Chapter 6, a general discussion on the presented framework is provided. First, the

proposed framework is briefly summarized, followed by a discussion of various openings for

critical evaluation of unexplored aspects and extensions. Directions for future research and

implementation in practice are presented as well. Finally, we address several topics that are

worth debating for the advancement of the medical field in an era of personalization.

18



Chapter 2

Going multivariate in clinical trial

studies: A Bayesian framework for

multiple binary outcomes

Based on Kavelaars, X. (2020). Going multivariate in clinical trial studies: A Bayesian

framework for multiple binary outcomes. In R. Van de Schoot & M. Miočević (Eds.), Small

sample size solutions: A guide for applied researchers and practitioners. Routledge.

https://doi.org/10.4324/9780429273872
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Chapter 2

Abstract

In an era where medicine is increasingly personalized, clinical trials often suffer from small

samples. As a consequence, treatment comparison based on the data of these trials may result

in inconclusive decisions. Efficient decision-making strategies are highly needed so decisions can

be made with smaller samples without increasing the risk of errors. The current chapter centers

around one such strategy: Including information from multiple outcomes in the decision,

thereby focusing on data from binary outcomes. Key elements of the approach are (1) criteria

for treatment comparison that are suitable for two outcomes, and (2) a multivariate Bayesian

technique to analyze multiple binary outcomes simultaneously. The conceptual discussion of

these elements is complemented with software to implement the approach. To further facilitate

trials with small samples, the chapter also outlines how interim analyses may result in more

efficient decisions compared to the traditional sample size estimation before data collection.
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2.1 Introduction

Clinical trials often compare a new treatment to standard care or a placebo. If the collected

data provide sufficient evidence that the new treatment is better than the control treatment,

the new treatment is declared superior. Since these superiority decisions ultimately

contribute to a decision about treatment adoption, proper error control is crucial to ensure

that better treatments are indeed selected. Key to regulating decision errors is collecting

sufficient information: A quantity that is often expressed in terms of a minimum number of

participants, or required sample size.

Recruiting sufficiently large samples can be challenging, however. This is especially true

in an era in which medicine is increasingly personalized (Hamburg & Collins, 2010; Ng et al.,

2009). Personalization of medicine refers to the targeting of treatments at specific patient

and/or disease characteristics under the assumption that patients with different (disease)

characteristics respond differently to treatments (Goldberger & Buxton, 2013). Since

personalization limits the target population of the treatment, inclusion and exclusion criteria

for trials become more stringent and the eligible number of participants decreases. This

inherently decreases the sample size of studies conducted with the same resources.

Consequences of small samples may be substantial: Trials may be left underpowered and

decisions about superiority might remain inconclusive.

The problem associated with small sample sizes due to stringent inclusion criteria is

illustrated by CAR-Study B (Schimmel et al., 2018). CAR-Study B aims to improve

treatment for cancer patients with 11–20 metastatic brain tumors (i.e., tumors that originate

from another site in the body and have spread to the brain). These patients have a life

expectancy of one or two months and are currently treated with whole-brain radiation

therapy. However, whole-brain radiation has adverse side effects: The treatment damages

brain tissue and results in severe cognitive impairment. Local radiation of the individual

tumors (stereotactic surgery) is a promising alternative that spares healthy tissue and

prevents cognitive decline without increasing mortality. The protective effect on cognition

has been demonstrated in a related population of patients with fewer brain tumors (Chang
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et al., 2009; Yamamoto et al., 2014). However, investigating whether local radiation reduces

side effects in the current target population is difficult: Clinicians are reluctant to prescribe

the alternative treatment and not all referred patients are eligible for participation, leaving

the researchers unable to recruit the required sample.

To improve decision-making with limited samples, studies such as CAR-Study B might

combine information from multiple outcomes. The current chapter introduces a Bayesian

decision-making framework to combine two binary outcomes. Since superiority with two

outcomes can be defined in multiple ways, several criteria to evaluate treatments are

discussed in the Decision rules section. Evaluation of these decision rules requires a

statistical analysis procedure that combines the outcomes. The Data analysis section outlines

such a multivariate approach for Bayesian analysis of binary outcomes. The proposed

decision-making strategy is illustrated in the Computation in practice section, which

introduces an online app to analyze real data1. Since trials with limited access to participants

aim for the smallest sample possible, the chapter continues with Sample size considerations

to explain how interim analyses during the trial may improve efficiency compared to

traditional sample size estimation before running the trial. The Concluding remarks section

highlights some extensions of the framework. Throughout the chapter, the comparison of

local and whole -brain radiation in CAR-Study B serves as an example with cognitive

functioning and quality of life as the outcomes under consideration.

2.2 Decision rules

A key element of decision-making is the decision rule: A procedure to decide whether a

treatment is considered superior. When dealing with two outcomes, superiority can be defined

in several ways (Food and Drug Administration, 2017), such as a favorable effect on:

1. The most important outcome (“Single outcome rule”)

2. Both outcomes (“All rule”)

1http://utrecht-university.shinyapps.io/multiple_binary_outcomes/ – for the annotated R code and
potential newer versions go to http://www.github.com/XynthiaKavelaars
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3. Any of the outcomes (“Any rule”)

4. The sum of outcomes (“Compensatory rule”)

Each of these decision rules weighs the effects of the two outcomes differently. The Single

outcome rule evaluates the data from one outcome and ignores the other outcome in the

decision procedure. In CAR-Study B, local radiation would be the treatment of preference if

it impairs cognitive functioning less than whole brain radiation, irrespective of the effects on

quality of life. The All rule evaluates both outcomes, and requires favorable effects on each

of them. Compared to whole brain radiation, more patients should maintain both cognitive

functioning and quality of life after local radiation. The Any rule requires a beneficial effect on

at least one outcome and ignores any result on the other outcome. Local radiation would be

considered superior if fewer patients experience cognitive side effects, a lower quality of life,

or both. The Compensatory rule also requires at least one favorable treatment effect, but the

compensatory mechanism poses a restriction on the second outcome. The new treatment may

perform better, similarly or even worse than the control treatment on this outcome, but the

rule takes the size of the treatment differences into account to weigh beneficial and adverse

effects. A net advantage on the sum of outcomes is required, such that several outcome

combinations would result in a preference for local radiation. Superiority is concluded as long

as favorable effects on cognitive functioning outweigh unfavorable effects on quality of life or

vice versa.

The aforementioned decision rules ultimately lead to a conclusion about the treatment

difference: The new treatment is considered superior if the difference between the new and the

control treatment is larger than zero according to the decision rule of interest. For each of the

decision rules, the corresponding superiority region is plotted in Figure 2.1. These superiority

regions graphically represent how the treatment differences on both individual outcomes should

be related to result in superiority: If the probability that the treatment difference falls in the

marked area is sufficiently large, the treatment would be declared superior.
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Figure 2.1: Superiority regions (shaded areas) for different decision rules.

2.2.1 Selecting a decision rule

The choice for a decision rule should be guided by the researcher’s standard for superiority. To

illustrate this, consider the following situations (see Figure 2.2 for a graphical representation):

1. Local radiation performs better on cognitive functioning as well as quality of life

2. Local radiation performs better on cognitive functioning and similarly on quality of life

3. Local radiation performs much better on cognitive functioning and slightly worse on

quality of life

4. Local radiation performs slightly better on cognitive functioning and much worse on

quality of life

If outcomes are equally important, most researchers would either (a) set a high standard

and consider local radiation superior if both outcomes demonstrate an advantage (situation

1), or (b) balance outcomes and consider local radiation superior if advantages outweigh

disadvantages (situations 1–3). Situation 4 is unlikely to result in a preference for local

radiation, unless cognitive functioning is much more important than quality of life.

While the All rule applies to the high standard and differentiates situation 1 (superior)
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Figure 2.2: Example posterior distributions (left panels) and distributions of
the treatment difference (right panels) for four different potential treatment
differences (local radiation-whole brain radiation) in CAR-Study B.
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from situations 2–4 (not superior), the Compensatory rule balances results and distinguishes

situations 1–3 (superior) from situation 4 (not superior). The Single and Any rules do not

meet these standards and would conclude that local radiation performs better in all situations,

including the fourth. These rules should be used only when unfavorable effects can safely be

ignored in the presence of a specific (Single rule) or any (Any rule) favorable effect.

2.3 Data analysis

To evaluate the decision rules discussed in the previous section, treatment comparison requires

a procedure to quantify evidence in favor of the new treatment. The current section introduces

the elements of a Bayesian approach to analyze data from two binary outcomes: likelihood,

prior, and posterior distributions.

2.3.1 Description of the data and specification of the likelihood

Binary data have two values, traditionally labeled as 1 for success and 0 for failure. In general,

success refers to improvement or absence of decline, and failure indicates the opposite: decline

or absence of improvement respectively. Considering two outcomes together results in two

binary responses per participant that can take four different combinations (see Table 2.1).

The patient can have successes on both outcomes (xobs
11 ); a success on one outcome, but

not on the other (xobs
10 or xobs

01 ); or failures on both outcomes (xobs
00 ). The total number of

successes on a particular outcome equals the sum of simultaneous and separate successes on

that outcome, such that xobs
1 = xobs

11 + xobs
10 , etc.

Table 2.1: Response combinations for two binary outcomes

Outcome 2

Outcome 1 Success Failure Total

Success x11 x10 x1
Failure x01 x00 n 9 x1
Total x2 n 9 x2 n

The multivariate likelihood of the outcomes is based on the four response frequencies.
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These four response frequencies reflect (a) the individual success rates, and (b) the relation

between outcomes. The latter serves as an additional source of information that may contribute

to more efficient decision-making (Food and Drug Administration, 2010).

2.3.2 Specification of prior information

Prior information represents prior beliefs about success rates of individual treatments as well

as the difference between treatments. These prior beliefs can, for example, incorporate

information from comparable studies into the current one. Prior beliefs about two binary

outcomes are quantified by four prior frequencies, expressed as xprior
11 , xprior

10 , xprior
01 and

xprior
00 (Olkin & Trikalinos, 2015). Each of these individual prior frequencies incorporates

information about one of the response frequencies in the data (xobs
11 , xobs

10 , xobs
01 and xobs

00 ).

Conveniently, one can think of these prior observations as an extra dataset, where the total

number of observations in this prior dataset reflects the strength of the prior beliefs. Strong

prior beliefs are translated to many prior observations, whereas weak prior beliefs can be

expressed through small numbers of prior observations. An uninformative prior specification

for the analysis of two binary outcomes would be a half observation for each response

combination, such that the total number of prior observations equals two (Berger et al.,

2015). This specification is also called Jeffreys prior and conveys virtually no information

about the success rates of individual outcomes or the correlation between outcomes. If both

treatments have this specification, no prior information about the treatment difference is

provided either.

2.3.3 The posterior distribution

The posterior distribution reflects prior beliefs after they have been updated with the data

and indicate the posterior success rates of individual outcomes in relation to each other; see

also Miočević et al. (2020b), Miočević et al. (2020a), and Van de Schoot et al. (2020). The

posterior response frequencies equal the sum of prior and observed frequencies, such that

xpost
11 = xprior

11 + xobs
11 , etc. Examples of posterior distributions for treatment effects with two
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outcomes are graphically presented in Figure 2.2.

Comparison of the two posterior distributions allows for decision-making about treatment

superiority, by quantifying evidence for a relevant treatment difference as a posterior probability.

This posterior probability depends on the definition of superiority as defined via the decision

rule and allows for two decisions. If the posterior probability exceeds a prespecified-specified

threshold (often .95 or .99 in clinical trials (Food and Drug Administration, 2010), evidence

is strong enough to consider the treatment superior. If the posterior probability is lower than

the threshold, there is not sufficient evidence to conclude superiority.

2.4 Computation in practice

The online supplement offers a Shiny app to analyze real data using the framework proposed in

the previous sections. If the researcher enters the prior (xprior
11 , xprior

10 , xprior
01 , xprior

00 ) and observed

(xobs
11 , xobs

10 , xobs
01 , xobs

00 ) response frequencies for two treatments, the application:

(a) Computes the posterior probability of a treatment difference given the introduced

decision rules

(b) Plots the posterior treatment distributions

(c) Plots the posterior distribution of the treatment difference

(d) Computes the prior, observed and posterior correlations between outcomes.

The Shiny app including user guide can be found at http://utrecht-university.shinyapps.io/

multiple_binary_outcomes/ – for the annotated R code and potential newer versions go to

http://www.github.com/XynthiaKavelaars.

The method and app are illustrated with artificial data from two treatment distributions

with two negatively correlated binary outcome variables (n = 100 cases per treatment). The

true success probabilities of the experimental and control treatments were .60 and .40 on

both outcomes respectively, such that the experimental treatment performs better on both

individual outcomes. The data were used to quantify evidence in favor of the experimental

treatment according to the different decision rules (Single, Any, All, Compensatory).
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Figure 2.3: Screenshot of Data tab

The observed response frequencies were entered in the four upper-left cells of the table in

the Data tab (see Figure 2.3). The app subsequently computed the total observed successes

and failures in the margins as well as the observed correlations.
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Figure 2.4: Screenshot of Prior tab

Without any prior knowledge about the treatments or treatment differences, Jeffreys prior

served as a prior distribution, such that each response category was assigned a half observation.

After entering the prior frequencies in the Prior tab, the app provided the successes and failures

per outcome and the prior correlation between outcomes (Figure 2.4).
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Figure 2.5: Screenshot of Treatment distributions tab

The Treatment distributions tab showed the posterior treatment distributions and posterior

correlations of both treatments (Figure 2.5).
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Figure 2.6: Screenshot of Treatment difference tab.

The Treatment difference tab (Figure 2.6) presented the distribution of the posterior

treatment difference and the evidence in favor of the experimental treatment according to

the proposed decision rules.
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2.5 Sample size considerations

When the availability of participants is limited, a highly relevant question is how much data are

minimally needed to make a sufficiently powerful decision. Since the sample size traditionally

determines when to stop data collection, researchers often estimate the required number of

participants before running the trial. Efficient a priori sample size estimation is difficult due to

uncertainty about one or multiple treatment differences, regardless of the number of outcomes,

since treatment differences are unknown in advance and need to be estimated. However,

small inaccuracies in their estimation may have important consequences. Overestimating a

treatment difference results in too small a sample to make a powerful decision, while (limited)

underestimation needlessly extends the trial.
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Figure 2.7: Example of evidence collection as data accumulate for different
decision rules and two different decision criteria (dots = .95; dashes = .99)
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In trials with multiple outcomes, the required sample size also depends on the decision

rule as illustrated in Figure 2.7. The figure shows how evidence in favor of the decision rule

under consideration changes for the example data from the Computation in practice section,

while increasing the sample size in steps of one observation per group. Although the posterior

probabilities of all decision rules ultimately approach one and conclude superiority as the data

accumulate, different decision rules require different numbers of observations to arrive at that

conclusion. With the data presented in Figure 2.7, the Any rule requires fewest observations

to cross decision thresholds, followed by the Compensatory and Single outcome rules. The All

rule requires the largest sample.

The relative efficiency of decision rules displayed in Figure 2.7 is specific to the particular

scenario, since different relations between outcomes require different sample sizes to evaluate

a specific decision rule (Food and Drug Administration, 2010). To provide an idea of the

influence of the correlation between the outcomes, posterior treatment distributions for three

correlation structures are displayed in Figure 2.8. This influence affects the proportion of

overlap between the distribution of the posterior treatment difference and the superiority

region of a decision rule, such that evidence in favor of the new treatment (i.e., posterior

probability) as well as the required sample size to reach the decision threshold differ.

Figure 2.9 illustrates how the amount of evidence for each decision rule depends on the

correlation when treatment differences are identical. The Single rule is not sensitive to the

correlation: The proportion of the difference distribution that overlaps with the superiority
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region is similar for each correlation structure. The required sample size to conclude

superiority will be the same. The All rule has a (slightly) larger proportion of overlap

between the distribution of the difference and the superiority region when the correlation is

positive. Compared to negatively correlated outcomes, the same amount of evidence can

thus be obtained with a smaller sample. The Any and Compensatory rules demonstrate the

relationship between the correlation structure and sample size more clearly. The distribution

of the treatment difference falls completely in the superiority region when outcomes are

negatively correlated (implying a posterior probability of one), while uncorrelated or positively

correlated data result in a part of the distribution outside the superiority region (i.e., a

posterior probability below one). The sample size will be smallest with negatively correlated

outcomes.

In summary, several sources of uncertainty complicate a priori sample size estimation in

trials with multiple outcomes: Treatment differences on individual outcomes, the correlation

between outcomes, and the decision rule influence the required number of observations. The

difficulty of accurately estimating the sample size interferes with the potential efficiency gain

of multiple outcomes, such that a priori sample size estimation may be inadequate with small

samples and multiple outcomes (Rauch & Kieser, 2015).

2.5.1 Adaptive trial design

To reduce the impact of unknown information on the efficiency of trials the sample size can

be estimated while running the trial, using a method called adaptive stopping (Berry et al.,

2010). Adaptive stopping performs one or multiple interim analyses and stops the trial as soon

as evidence is conclusive, such that efficiency is optimized. Compared to a priori sample size

estimation, adaptive stopping may result in early trial termination if the treatment difference

is larger than expected (i.e., underestimated). If the treatment difference appears smaller

than anticipated (i.e., overestimated) and evidence remains inconclusive, the trial may be

extended beyond the planned sample size. Adaptive stopping thus forms a flexible alternative

that embraces the uncertainties of the traditional a priori estimated sample size (Bauer et al.,
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Figure 2.9: The influence of the correlation on the evidence for various decision
rules. A larger proportion of overlap between the distribution of the treatment
difference and the superiority region (shaded area) indicate more evidence. CF
= cognitive functioning; QoL = Quality of Life.
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2016; Thorlund et al., 2018).

Although interim analyses form an attractive approach to improve efficiency, adaptive trials

must be designed carefully (Food and Drug Administration, 2010; Sanborn & Hills, 2014).

The final decision about superiority potentially requires several interim decisions to evaluate

whether evidence is strong enough to draw a conclusion. Without properly adjusting the design

to repeated decision-making, the risk of falsely concluding superiority (i.e., Type I error) over

all decisions is larger than anticipated, as shown in Figure 2.10 (Sanborn & Hills, 2014). To

keep the Type I error risk over all decisions acceptable, the Type I error rate for individual

decisions must be adjusted (Jennison & Turnbull, 1999). A 5% Type I error risk over multiple

decisions consequentially results in individual decisions that have a Type I error risk below

5%. The size of the adjustment depends on the number of interim decisions: More decisions

require a larger adjustment of the Type I error rate for individual decisions (see Figure 2.10).

A key element in Type I error control is the decision threshold: the lower limit for the

posterior probability to conclude superiority. The decision threshold equals 1− α, where α is

the maximum Type I error probability (Marsman & Wagenmakers, 2016). A 5% risk of an

incorrect superiority decision (α = .05) results in a minimal posterior probability of .95. A

very high threshold might be attractive to minimize Type I errors, but does not contribute to

efficient decision-making: A larger sample size is required to regulate the chance to detect

a true treatment difference (i.e., to protect power). The decision threshold thus relates the

Type I error and required sample size via the number of interim analyses (Shi & Yin, 2019).

Limiting the number of decisions is key to efficiently designing an adaptive trial (Jennison &

Turnbull, 1999). To this end, the Food and Drug Administration (2010) recommends balancing

the number of interim analyses with decision error rates, by carefully choosing three design

parameters:

1. The sample size to look at the data for the first time (nmin)

2. The number of added participants if the previous analysis did not provide sufficient

evidence (interim group size)

3. The sample size to stop the trial if evidence is not strong enough to conclude superiority

37



Chapter 2

(nmax).

The sample size at the first interim analysis (nmin) should not be too small for two

reasons. First, a small interim sample size could detect unrealistically large treatment effects

only and needlessly increases the number of interim analyses. Second, very small samples

increase the probability of falsely concluding superiority (Schönbrodt et al., 2017). As shown

in Figure 2.7, the posterior probability is unstable with few observations and becomes more

stable as the number of observations increases. Single observations can be influential in

small samples, and this influence diminishes as the sample size increases. A larger nmin

automatically reduces the number of interim analyses as well as the Type I errors and

requires a smaller correction of the decision threshold, as illustrated in Figure 2.10. However,
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Figure 2.10: The empirical Type I error probability as a function of the number
of interim analyses for different nmin when the decision threshold is not corrected
for the number of interim analyses. Dashed lines indicate the desired thresholds
of α = 0.05 (posterior probability = 0.95) and α = 0.01 (posterior probability
= 0.99).
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a too large nmin limits efficiency: Superiority may have been concluded with a smaller sample

and in potential participant recruitment is needlessly extended.

If the first interim analysis did not result in conclusive evidence, the sample size can be

increased in several steps. The interim group size of added participants should be chosen with

the inconclusive results of the previous analysis in mind, such that the new sample provides a

reasonable chance of detecting a treatment difference given the earlier lack of evidence. The

number of observations between interim analyses may be the same throughout the trial, or

can differ per interim analysis if that would benefit the trial’s efficiency. It should be chosen

carefully, however, since too small and too large group sizes both reduce efficiency (Jennison

& Turnbull, 1999). A too small group size needlessly increases the number of interim analyses,

while a too large group size reduces the flexibility to terminate the trial as soon as the decision

threshold has been met.

Ideally, the sample size to terminate the trial if the data do not provide sufficient evidence

for superiority (nmax) equals the sample size that is required to detect the smallest treatment

effect of clinical interest (Food and Drug Administration, 2010). In practice, nmax will often

be limited by the maximum number of available participants and may be smaller than optimal,

which has the same consequence as a too small (a priori estimated) sample size: A limited

nmax restricts the power to detect small treatment differences.

2.6 Concluding remarks

The current chapter presented a Bayesian framework for decision-making with multiple

outcomes and illustrated how decisions with two outcomes may help a small sample, when

(a) using a decision rule that combines information from two outcomes efficiently, and (b)

designing a trial adaptively. Without giving all the mathematical details, I have tried to

provide a clear intuition to the approach and software to carry out the analysis.

The proposed approach has several extensions that may accommodate more realistic

decisions. First, more than two outcomes can be included, such that researchers might weigh

treatment differences on three or more relevant aspects. Increasing the number of outcomes
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may further improve efficiency, but more outcomes also increase the complexity of the data

analysis.

Second, although equal importance of outcomes was assumed throughout the chapter,

unequal importance of outcomes could be incorporated. The Compensatory rule in particular

could be adapted easily to, for example, include survival into a decision; an outcome that

is in many cases more important than cognitive side effects. However, user-friendly software

packages for more outcomes remain to be developed.

Third, the applicability of adaptive designs can be strongly improved with clear guidelines

on the concrete choice of design parameters. Optimal design of interim analyses is necessary

to do justice to the potential flexibility of adaptive trials.
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Decision-making with multiple

correlated binary outcomes in clinical

trials

Based on Kavelaars, X., Mulder, J., & Kaptein, M. (2020). Decision-making with multiple

correlated binary outcomes in clinical trials. Statistical Methods in Medical Research, 29(11),

3265–3277. https://doi.org/10.1177/0962280220922256
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Abstract

Clinical trials often evaluate multiple outcome variables to form a comprehensive picture of

the effects of a new treatment. The resulting multidimensional insight contributes to

clinically relevant and efficient decision-making about treatment superiority. Common

statistical procedures to make these superiority decisions with multiple outcomes have two

important shortcomings however: 1) Outcome variables are often modeled individually, and

consequently fail to consider the relation between outcomes; and 2) superiority is often

defined as a relevant difference on a single, on any, or on all outcomes(s); and lacks a

compensatory mechanism that allows large positive effects on one or multiple outcome(s) to

outweigh small negative effects on other outcomes. To address these shortcomings, this

paper proposes 1) a Bayesian model for the analysis of correlated binary outcomes based on

the multivariate Bernoulli distribution; and 2) a flexible decision criterion with a

compensatory mechanism that captures the relative importance of the outcomes. A

simulation study demonstrates that efficient and unbiased decisions can be made while Type

I error rates are properly controlled. The performance of the framework is illustrated for 1)

fixed, group sequential, and adaptive designs; and 2) non-informative and informative prior

distributions.
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3.1 Introduction

Clinical trials often aim to compare the effects of two treatments. To ensure clinical

relevance of these comparisons, trials are typically designed to form a comprehensive picture

of the treatments by including multiple outcome variables. Collected data about efficacy

(e.g., reduction of disease symptoms), safety (e.g., side effects), and other relevant aspects

of new treatments are combined into a single, coherent decision regarding treatment

superiority. An example of a trial with multiple outcomes is CAR-Study B (Cognitive and

Radiation Study B), which investigated an experimental treatment for cancer patients with

multiple metastatic brain tumors (Schimmel et al., 2018). Historically, these patients have

been treated with radiation of the whole brain (Whole Brain Radiation Therapy; WBRT).

This treatment is known to damage healthy brain tissue and to increase the risk of

(cognitive) side effects. More recently, local radiation of the individual metastases

(stereotactic surgery; SRS) has been proposed as a promising alternative that saves healthy

brain tissue and could therefore reduce side effects. The CAR-Study B compared these two

treatments based on cognitive functioning, fatigue, and several other outcome variables

(Schimmel et al., 2018).

Statistical procedures to arrive at a superiority decision have two components: 1) A

statistical model for the collected data; and 2) A decision rule to evaluate the treatment in

terms of superiority based on the modeled data. Ideally, the combination of these

components forms a decision procedure that satisfies two criteria: Decisions should be

clinically relevant and efficient. Clinical relevance ensures that the statistical decision rule

corresponds to a meaningful superiority definition, given the clinical context of the

treatment. Commonly used decision rules define superiority as one or multiple treatment

difference(s) on the most important outcome, on any of the outcomes, or on all of the

outcomes (Food and Drug Administration, 2017; Murray et al., 2016; Sozu et al., 2012,

2016). Efficiency refers to achieving acceptable error rates while minimizing the number of

patients in the trial. The emphasis on efficiency is motivated by several considerations, such

as small patient populations, ethical concerns, limited access to participants, and other
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difficulties to enroll a sufficient number of participants (Van de Schoot & Miočević, 2020).

In the current paper, we address clinical relevance and efficiency in the context of multiple

binary outcomes and propose a framework for statistical decision-making.

In trials with multiple outcomes, it is common to use a univariate modeling procedure

for each individual outcome and combine these with one of the aforementioned decision rules

(Food and Drug Administration, 2017; Murray et al., 2016). Such decision procedures can be

inefficient since they ignore the relationships between outcomes. Incorporating these relations

in the modeling procedure is crucial as they directly influence the amount of evidence for a

treatment difference as well as the sample size required to achieve satisfactory error rates.

A multivariate modeling procedure takes relations between outcomes into account and can

therefore be a more efficient and accurate alternative when outcomes are correlated.

Another interesting feature of multivariate models is that they facilitate the use of

decision rules that combine multiple outcomes in a flexible way, for example via a

compensatory mechanism. Such a mechanism is characterized by the property that beneficial

effects are given the opportunity to compensate adverse effects. The flexibility of

compensatory decision-making is appealing, since a compensatory mechanism can be

naturally extended with impact weights that explicitly take the clinical importance of

individual outcome variables into account (Murray et al., 2016). With impact weights,

outcome variables of different importance can be combined into a single decision in a

straightforward way.

Compensatory rules do not only contribute to clinical relevance, but also have the

potential to increase trial efficiency. Effects on individual outcomes may be small (and

seemingly unimportant) while the combined treatment effect may be large (and important;

O’Brien, 1984; Pocock et al., 1987; Tang et al., 1989), as visualized in Figure 3.1 for fictive

data of CAR-Study B. The two displayed bivariate distributions reflect the effects and their

uncertainties on cognitive functioning and fatigue for SRS and WBRT. The univariate

distributions of both outcomes overlap too much to clearly distinguish the two treatments on

individual outcome variables or a combination of them. The bivariate distributions however
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clearly distinguish between the two treatments. Consequently, modeling a compensatory

treatment effect with equal weights (visualized as the diagonal dashed line) would provide

sufficient evidence to consider SRS superior in the presented situation.

F
at

ig
u
e

Cognition

SRS

WBRT

Figure 3.1: Separation of two bivariate distributions (diagonally) versus
separation of their univariate distributions (horizontally/vertically) for CAR-
Study B. The dashed diagonal line represents a Compensatory decision rule
with equal weights. Each distribution reflects the plausibility of the treatment
effects on cognitive functioning and fatigue after observing fictive data.

In the current paper, we propose a decision procedure for multivariate decision-making

with multiple (correlated) binary outcomes. The procedure consists of two components.

First, we model the data with a multivariate Bernoulli distribution, which is a multivariate

generalization of the univariate Bernoulli distribution. The model is exact and does not rely

on numerical approximations, making it appropriate for small samples. Second, we extend

multivariate analysis with a compensatory decision rule to include more comprehensive and

flexible definitions of superiority.

The decision procedure is based on a Bayesian multivariate Bernoulli model with a

conjugate prior distribution. The motivation for this model is twofold. First, the multivariate

Bernoulli model is a natural generalization of the univariate Bernoulli model, which intuitively

parametrizes success probabilities per outcome variable. Second, a conjugate prior

distribution can greatly facilitate computational procedures for inference. Conjugacy ensures

that the form of the posterior distribution is known, making sampling from the posterior

distribution straightforward.
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Although Bayesian analysis is well-known to allow for inclusion of information external

to the trial by means of prior information (Gelman et al., 2013), researchers who wish not

to include prior information can obtain results similar to frequentist analysis. The use of a

non-informative prior distribution essentially results in a decision based on the likelihood of

the data, such that 1) Bayesian and frequentist (point) estimates are equivalent; and 2) the

frequentist p-value equals the Bayesian posterior probability of the null hypothesis in one-sided

testing (Marsman & Wagenmakers, 2016). Since a (combined) p-value may be difficult to

compute for the multivariate Bernoulli model, Bayesian computational procedures can exploit

this equivalence and facilitate computations involved in Type I error control (Food and Drug

Administration, 2010; Wilson, 2019).

The remainder of the paper is structured as follows. In the next section, we present a

multivariate approach to the analysis of multiple binary outcomes. Subsequently, we discuss

various decision rules to evaluate treatment differences on multiple outcomes. The framework

is evaluated in the Numerical evaluation section, and we discuss limitations and extensions in

the Discussion.

3.2 A model for multivariate analysis of multiple

binary outcomes

3.2.1 Notation

We start the introduction of our framework with some notation. The joint response for

patient i in treatment j on K outcomes will be denoted by xj ,i = (xj ,i ,1, ... , xj ,i ,K ), where

i ∈ {1, ... , nj}, and j ∈ {E ,C} (i.e., Experimental and Control). The response on outcome

k xj ,i ,k ∈ {0, 1} (0 = failure, 1 = success), such that xj ,i can take on Q = 2K different

combinations {1 ... 11}, {1 ... 10}, ... , {0 ... 01}, {0 ... 00}. The observed frequencies of each

possible response combination for treatment j in a dataset of nj patients are denoted by vector

sj of length Q. The elements of sj add up to nj ,
∑Q

q=1 sj ,q = nj .

Vector θj = (θj ,1, ... , θj ,K ) reflects success probabilities of K outcomes for treatment j
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in the population. Vector δ = (δ1, ... , δK ) then denotes the treatment differences on K

outcomes, where δk = θE ,k − θC ,k . We use ϕj = ϕj ,1...11,ϕj ,1...10, ... ,ϕj ,0...01,ϕj ,0...00 to refer to

probabilities of joint responses in the population, where ϕj ,q denotes the probability of joint

response combination xj ,i with configuration q. Vector ϕj has Q elements, and sums to unity,∑Q
q=1ϕj ,q = 1. Information about the relation between outcomes k and l is reflected by ϕj ,kl ,

which is defined as the sum of those elements of ϕj that have the k th and l th elements of q

equal to 1, e.g., ϕj ,11 for K = 2. Similarly, marginal probability θj ,k follows from summing all

elements of ϕj with the k th element of q equal to 1. For example, with three outcomes, the

success probability of the first outcome is equal to θj ,1 = ϕj ,111 + ϕj ,110 + ϕj ,101 + ϕj ,100.

3.2.2 Likelihood

The likelihood of joint response xj ,i follows a K -variate Bernoulli distribution (Dai et al., 2013):

p(xj ,i |ϕj) = multivariate Bernoulli(xj ,i |ϕj) (3.1)

=ϕ
xj ,1×···×xj ,K
j ,1...11 ϕ

xj ,1×···×xj ,K−1(1−xj ,K )
j ,1...10 × · · ·×

ϕ
(1−xj ,1)×···×(1−xj ,K−1)xj ,K
j ,0...01 ϕ

(1−xj ,1×···×1−xj ,K )
j ,0...00 .

The multivariate Bernoulli distribution in Equation 3.1 is a specific parametrization of the

multinomial distribution. The likelihood of nj joint responses summarized by cell frequencies

in sj follows a Q-variate multinomial distribution with parameters ϕj :

p(sj |ϕj) = multinomial(sj |ϕj) (3.2)

∝ϕsj ,1...11
j ,1...11ϕ

sj ,1...10
j ,1...10 × · · · × ϕ

sj ,0...01
j ,0...01ϕ

sj ,0...00
j ,0...00.

Conveniently, the multivariate Bernoulli distribution is consistent under marginalization.

That is, marginalizing a K−variate Bernoulli distribution with respect to p variables results

in a (K − p)-variate Bernoulli distribution (Dai et al., 2013). Hence, the univariate Bernoulli

distribution is directly related and results from marginalizing (K − 1) variables.

The pairwise correlation between variables xj ,k and xj ,l is reflected by ρxj ,k ,xj ,l (Dai et al.,
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2013):

ρxj ,kxj ,l =
ϕj ,kl − θj ,kθj ,l√

θj ,k(1− θj ,k)θj ,l(1− θj ,l)
. (3.3)

This correlation is over the full range, i.e., −1 ≤ ρxj ,k ,xj ,l ≤ 1 (Olkin & Trikalinos, 2015).

3.2.3 Prior and posterior distribution

A natural choice to model prior information about response probabilities ϕj is the Dirichlet

distribution, since a Dirichlet prior and multinomial likelihood form a conjugate combination.

The Q-variate prior Dirichlet distribution has hyperparameters

α0
j = (α0

j ,11...11,α
0
j ,11...10, ... ,α

0
j ,00...01,α

0
j ,00...00):

p(ϕj) = Dirichlet(ϕj |α0
j ) (3.4)

∝ϕα
0
j ,1...11−1

j ,1...11 ϕ
α0
j ,1...10−1

j ,1...10 × · · · × ϕα
0
j ,0...01−1

j ,0...01 ϕ
α0
j ,0...00−1

j ,0...00 ,

where each of the prior hyperparameters α0
j should be larger than zero to ensure a proper

prior distribution.

The posterior distribution of ϕj results from multiplying the likelihood and the prior

distribution and follows a Dirichlet distribution with parameters αn
j = α

0
j + sj :

p(ϕj |sj) =Dirichlet(ϕj |α0
j + sj) (3.5)

∝ϕsj ,1...11
j ,1...11ϕ

sj ,1...10
j ,1...10 × · · · × ϕ

sj ,0...01
j ,0...01ϕ

sj ,0...00
j ,0...00×

ϕ
α0
j ,1...11−1

j ,1...11 ϕ
α0
j ,1...10−1

j ,1...10 × · · · × ϕα
0
j ,0...01−1

j ,0...01 ϕ
α0
j ,0...00−1

j ,0...00

∝ϕα
n
j ,1...11−1

j ,1...11 ϕ
αn
j ,1...10−1

j ,1...10 × · · · × ϕα
n
j ,0...01−1

j ,0...01 ϕ
αn
j ,0...00−1

j ,0...00 .

Since prior hyperparameters α0
j impact the posterior distribution of treatment difference

δ, specifying them carefully is important. Each of the hyperparameters contains information

about one of the observed frequencies sj and can be considered a prior frequency that reflects

the strength of prior beliefs. Equation 3.5 shows that the influence of prior information depends
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on prior frequencies α0
j relative to observed frequencies sj . When all elements of α0

j are

set to zero, αn
j = sj . This (improper) prior specification results in a posterior mean of

ϕj ,q|sj ,q =
αn
j ,q∑Q

p=1 α
n
j ,p

, which is equivalent to the frequentist maximum likelihood estimate of

ϕj ,q =
sj ,q∑Q
p=1 sj ,p

. To take advantage of this property with a proper non-informative prior, one

could specify hyperparameters slightly larger than zero such that the posterior distribution is

essentially completely based on the information in the data (i.e., αn
j ≈ sj).

To include prior information - when available - in the decision, α0
j can be set to specific prior

frequencies to increase the influence on the decision. These prior frequencies may for example

be based on results from related historical trials. We provide more technical details on prior

specification in Appendix A Specification of prior hyperparameters. There we also highlight

the relation between the Dirichlet distribution and the multivariate beta distribution, and

demonstrate that the prior and posterior distributions of θj are multivariate beta distributions.

The final superiority decision relies on the posterior distribution of treatment difference

δ. Although this distribution does not belong to a known family of distributions, we can

approach the distribution of δ via a two-step transformation of the posterior samples of ϕj .

First, a sample of ϕj is drawn from its known Dirichlet distribution. Next, these draws can be

transformed to a sample of θj using the property that joint response frequencies sum to the

marginal probabilities. Finally, these samples from the posterior distributions of θE and θC

can then be transformed to obtain the posterior distribution of joint treatment difference δ,

by subtracting draws of θC from draws of θE , i.e., δ = θE − θC . Algorithm 1 in Subsection

Implementation of the framework includes pseudocode with the steps required to obtain a

sample from the posterior distribution of δ.

3.3 Decision rules for multiple binary outcomes

The current section discusses how the model from the previous section can be used to make

treatment superiority decisions. Treatment superiority is defined by the posterior mass in

a specific subset of the multivariate parameter space of δ = (δ1, ... , δK ). The complete

parameter space will be denoted by S ⊂ (−1, 1)K , and the superiority space will be denoted
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by SSup ⊂ S . Superiority is concluded when a sufficiently large part of the posterior distribution

of δ falls in superiority region SSup:

P(δ ∈ Ssup|sE , sC ) > pcut (3.6)

where pcut reflects the decision threshold to conclude superiority. The value of this threshold

should be chosen to control the Type I error rate α.

3.3.1 Four different decision rules

Different partitions of the parameter space define different superiority criteria to distinguish

two treatments. The following decision rules conclude superiority when there is sufficient

evidence that:

1. Single rule: an a priori specified primary outcome k has a treatment difference larger

than zero. The superiority region is denoted by:

SSingle(k) = {δ|δk > 0}. (3.7)

Superiority is concluded when

P(δ ∈ SSingle(k)|sE , sC ) > pcut . (3.8)

2. Any rule: at least one of the outcomes has a treatment difference larger than zero. The

superiority region is a combination of K superiority regions of the Single rule:

SAny ={SSingle1 ∪ · · · ∪ SSingleK}.

Superiority is concluded when

max
k

P(δ ∈ SSingle(k)|sE , sC ) > pcut . (3.9)
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(c) All
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Figure 3.2: Superiority regions of various decision rules for two outcome
variables (K = 2). The Any rule is a combination of the two Single rules.
The Compensatory rule reflects w = (0.5, 0.5).

3. All rule: all outcomes have a treatment difference larger than zero. Similar to the Any

rule, the superiority region is a combination of K superiority regions of the Single rule:

The superiority region is denoted by:

SAll ={SSingle1 ∩ · · · ∩ SSingleK}.
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Superiority is concluded when

min
k

P(δ ∈ SSingle(k)|sE , sC ) > pcut . (3.10)

Next to facilitating these common decision rules, our framework allows for a Compensatory

decision rule:

4. Compensatory rule: the weighted sum of treatment differences is larger than zero. The

superiority region is denoted by:

SCompensatory (w) = {δ|
K∑

k=1

wkδk > 0} (3.11)

where w= (w1, ... ,wK ) reflect the weights for outcomes 1, ... ,K ,

0 ≤ wk ≤ 1 and
∑K

k=1 wk = 1.

Superiority is then concluded when:

P(δ ∈ SCompensatory (w)|sE , sC ) > pcut . (3.12)

Figure 3.2 visualizes these four decision rules.

From our discussion of the different decision rules, a number of relationships between them

can be identified. First, mathematically the Single rule can be considered a special case of

the Compensatory rule with weight wk = 1 for primary outcome k and wl = 0 for all other

outcomes. Second, the superiority region of the All rule is a subset of the superiority regions

of the other rules, i.e.,

SAll ⊂ SSingle ,SCompensatory ,SAny . (3.13)

The Single rule is in turn a subset of the superiority region of the Any rule, such that

SSingle ⊂ SAny . (3.14)
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These properties can be observed in Figure 3.2 and translate directly to the amount of evidence

provided by data sE and sC . The posterior probability of the All rule is always smallest, while

the posterior probability of the Any rule is at least as large as the posterior probability of the

Single rule:

P(SAny |sE , sC ) ≥ P(SSingle |sE , sC ) > P(SAll |sE , sC ) (3.15)

P(SCompensatory |sE , sC ) > P(SAll |sE , sC ).

The ordering of the posterior probabilities of different decision rules (Equation 3.15) implies

that superiority decisions are most conservative under the All rule and most liberal under the

Any rule. In practice, this difference has two consequences. First, to properly control Type I

error probabilities for these different decision rules, one needs to set a larger decision threshold

pcut for the Any rule than for the All rule. Second, the All rule typically requires the largest

sample size to obtain sufficient evidence for a superiority decision.

Additionally, the correlation between treatment differences, ρδk ,δl , influences the posterior

probability to conclude superiority. The correlation influences the overlap with the superiority

region, as visualized in Figure 3.3. Consequently, the Single rule is not sensitive to the

correlation. A negative correlation requires a smaller sample size than a positive correlation

under the Any and Compensatory rules, and vice versa for the All rule.

Negative correlation
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Zero correlation
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Positive correlation
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0.0
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Figure 3.3: Influence of the correlation between two treatment differences on the
proportion of overlap between the bivariate distribution of treatment differences
δ and the superiority regions.
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3.3.2 Specification of weights of the Compensatory decision rule

To utilize the flexibility of the Compensatory rule, researchers may wish to specify weights

w. The current subsection discusses two ways to choose these weights: Specification can be

based on the impact of outcome variables or on efficiency of the decision.

Specification of impact weights is guided by substantive considerations to reflect the relative

importance of outcomes. When w = ( 1
K
, ... , 1

K
), all outcomes are equally important and all

success probabilities in θj exert an identical influence on the weighted success probability. Any

other specification of w that satisfies
∑K

k=1 wk = 1 implies unequal importance of outcomes.

To make the implications of importance weight specification more concrete, let us reconsider

the two potential side effects of brain cancer treatment in CAR-Study B: cognitive functioning

and fatigue (Schimmel et al., 2018). When setting (wcognition,wfatigue) = (0.50, 0.50), both

outcomes would be considered equally important and a decrease of (say) 0.10 in fatigue could

be compensated by an increase on cognitive functioning of at least 0.10. When wcognition >

0.50, cognitive functioning is more influential than fatigue; and vice versa when wcognition <

0.50. If wcognition = 0.75 and wfatigue = 0.25 for example, the treatment difference of cognitive

functioning has three times as much impact on the decision as the treatment difference of

fatigue.

Efficiency weights are specified with the aim of optimizing the required sample size. As

the weights directly affect the amount of evidence for a treatment difference, the efficiency of

the Compensatory decision rule can be optimized with values of w that are a priori expected

to maximize the probability of falling in the superiority region. This strategy could be used

when efficiency is of major concern, while researchers do not have a strong preference for

the substantive priority of specific outcomes. The technical details required to find efficient

weights are presented in Appendix B Specification of efficiency weights.

3.3.3 Implementation of the framework

The procedure to arrive at a decision using the multivariate analysis procedure proposed in the

previous sections is presented in Algorithm 1 for a design with fixed sample size nj of treatment
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j . We present the algorithm for designs with interim analyses in Algorithm 2 in Appendix C

Implementation of the framework in group sequential and adaptive designs.

Algorithm 1 Decision procedure for a fixed design

1 Initialize
a Choose decision rule

if Compensatory then specify weights w
if Single then specify k
end if

for each treatment j ∈ {E ,C} do
b Choose prior hyperparameters α0

j

end for
c Choose Type I error rate α and power 1− β
d Determine decision threshold pcut

if Any rule then 1− 1
2
α

else 1− α
end if

e Determine sample size nj based on anticipated treatment differences δn

2 Collect data and compute evidence
for each treatment j ∈ {E ,C}

a Collect nj joint responses xj ,i
b Compute joint response frequencies sj
c Compute posterior parameters αn

j = sj +α0
j

d Sample L posterior draws, ϕl
j , ϕj |αn

j ∼ Dirichlet(ϕj |αn
j )

e Sum draws ϕl
j to θlj

end for
f Transform draws θlj to δl via δlk = θlE ,k − θlC ,k

g Compute posterior probability of treatment superiority P(δ ∈ SSup|sE , sC ) as the
proportion of posterior draws in superiority region SSup

3 Make final decision
if P(δ ∈ SSup|sE , sC ) > Pcut then conclude superiority
else conclude non-superiority
end if

3.4 Numerical evaluation

The current section evaluates the performance of the presented multivariate decision framework

by means of simulation in the context of two outcomes (K = 2). We seek to demonstrate

1) how often the decision procedure results in an (in)correct superiority conclusion to learn
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about decision error rates; 2) how many observations are required to conclude superiority with

satisfactory error rates to investigate the efficiency of different decision rules, and 3) how well

the average estimated treatment difference corresponds to the true treatment difference to

examine bias. The current section is structured as follows. We first introduce the simulation

conditions, the procedure to compute sample sizes for each of these conditions, and the

procedure to generate and evaluate data. We then discuss the results of the simulation.

Table 3.1: Data generating mechanisms (DGM) used in numerical evaluation
of the framework.

DGM δT1 δT2 ρTθj ,1,θj ,2 θTE ,1 θTE ,2 ϕT
E ,11 θTC ,1 θTC ,2 ϕT

C ,11

1.1 -0.20 -0.20 -0.30 0.40 0.40 0.09 0.60 0.60 0.29
1.2 0.00 0.16 0.36
1.3 0.30 0.23 0.43

2.1 0.00 0.00 -0.30 0.50 0.50 0.17 0.50 0.50 0.17
2.2 0.00 0.25 0.25
2.3 0.30 0.32 0.32

3.1 0.10 0.10 -0.30 0.55 0.55 0.23 0.45 0.45 0.13
3.2 0.00 0.30 0.20
3.3 0.30 0.38 0.28

4.1 0.20 0.20 -0.30 0.60 0.60 0.29 0.40 0.40 0.09
4.2 0.00 0.36 0.16
4.3 0.30 0.43 0.23

5.1 0.40 0.40 -0.30 0.70 0.70 0.43 0.30 0.30 0.03
5.2 0.00 0.49 0.09
5.3 0.30 0.55 0.15

6.1 0.40 0.00 -0.30 0.70 0.50 0.28 0.30 0.50 0.08
6.2 0.00 0.35 0.15
6.3 0.30 0.42 0.22

7.1 0.20 -0.40 -0.30 0.60 0.30 0.11 0.40 0.70 0.21
7.2 0.00 0.18 0.28
7.3 0.30 0.25 0.35

8.1 0.24 0.08 -0.30 0.62 0.54 0.26 0.38 0.46 0.10
8.2 0.00 0.33 0.17
8.3 0.30 0.41 0.25
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Conditions The performance of the framework is examined as a function of the following

factors:

1. Data generating mechanisms: We generated data of eight treatment difference

combinations δT and three correlations between outcomes ρθj ,1,θj ,2 . An overview of

these 8 × 3 = 24 data generating mechanisms is given in Table 3.1. In the remainder

of this section, we refer to these data generating mechanisms with numbered

combinations (e.g., 1.2), where the first number reflects treatment difference δT and

the second number refers to correlation ρTθj ,1,θj ,2 .

2. Decision rules: The generated data were evaluated with six different decision rules. We

used the Single (for outcome k = 1), Any, and All rules, as well as three different

Compensatory rules: One with equal weights w = (0.50, 0.50) and two with unequal

weights w = (0.76, 0.24) and w = (0.64, 0.36). The weight combinations of the latter

two Compensatory rules optimize the efficiency of data generating mechanisms with

uncorrelated (i.e., 8.2) and correlated (i.e., 8.1) treatment differences respectively,

following the procedure in Appendix B Specification of efficiency weights. We refer to

these three Compensatory rules as Compensatory-Equal (C-E), Compensatory-Unequal

Uncorrelated (C-UU) and Compensatory-Unequal Correlated (C-UC) respectively.

Sample size computations To properly control Type I error and power, each of the 24×6

conditions requires a specific sample size. These sample sizes nj are based on anticipated

treatment differences δn, that corresponded to the true parameters of each data generating

mechanism in Table 3.1 (i.e., δn = δT and ρnθj ,1,θj ,2 = ρTθj ,1,θj ,2). Procedures to compute sample

sizes per treatment group for the different decision rules were the following:

1. For the Single rule, we used a two-proportion z−test, where we plugged in the anticipated

treatment difference on the first outcome variable (i.e δn1).

2. Following Sozu et al. (2010, 2016) we used multivariate normal approximations of

correlated binary outcomes for the All and Any rules.

3. For the Compensatory rule, we used a continuous normal approximation with mean
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∑K
k=1 wkθj ,k and variance

∑K
k=1 w

2
kσ

2
j ,k + 2

∑∑
k<l

wkwlσj ,kl . Here, σ2
j ,k = θj ,k(1 − θj ,k)

and σj ,kl = ϕj ,kl − θj ,kθj ,l .

The computed sample sizes are presented in Table 3.3. Conditions that should not result

in superiority were evaluated at sample size nj = 1, 000.

Data generation and evaluation Of each data generating mechanism presented in Table

3.1, we generated 5, 000 samples of size 2 × nj . These data were combined with a proper

uninformative prior distribution with hyperparameters α0
j = (0.01, ... , 0.01) to satisfy αn

j ≈ sj ,

as discussed in Section A model for multivariate analysis of multiple binary outcomes. We

aimed for Type I error rate α = .05 and power 1− β = .80, which corresponds to a decision

threshold pcut of 1 − α = 0.95 (Single, Compensatory, All rules) and 1 − 1
2
α = 0.975 (Any

rule; Marsman & Wagenmakers, 2016; Sozu et al., 2012, 2016). The generated datasets were

evaluated using the procedure in steps 2 and 3 of Algorithm 1.

The proportion of samples that concluded superiority reflects Type I error rates (when

false) and power (when correct). We assessed the Type I error rate under the data generating

mechanism with the least favorable population values of δT under the null hypothesis in

frequentist one-sided significance testing. These are values of δT outside SSup that are most

difficult to distinguish from values of δT inside SSup. Adequate Type I error rates for the least

favorable treatment differences imply that the Type I error rates of all values of δT outside

SSup are properly controlled. The least favorable values of δT were reflected by treatment

difference 2 for the Single, Any, and Compensatory rules, and treatment difference 6 for the

All rule. Bias was computed as the difference between the observed treatment difference at

sample size nj and the true treatment difference δT .

3.4.1 Results

The proportion of samples that concluded superiority and the required sample size are presented

in Tables 3.2 and 3.3 respectively. Type I error rates were properly controlled around α = .05

for each decision rule under its least favorable data generating mechanism. The power was
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around .80 in all scenarios with true superiority. Moreover, average treatment differences were

estimated without bias (smaller than 0.01 in all conditions).

Given these satisfactory error rates, a comparison of sample sizes provides insight in the

efficiency of the approach. We remark here that a comparison of sample sizes is only relevant

when the decision rules under consideration have a meaningful definition of superiority. Further,

in this discussion of results we primarily focus on the newly introduced Compensatory rule in

comparison to the other decision rules. The results demonstrate that the Compensatory

rule consistently requires fewer observations than the All rule, and often - in particular when

treatment differences are equal (i.e., treatment differences 3 − 5) - than the Any and the

Single rule. Similarly, the Any rule consistently requires fewer observations than the All rule

and could be considered an attractive option in terms of sample sizes. Note however that the

more lenient Any rule may not result in a meaningful decision for all trials, since the rule would

also conclude superiority when the treatment has a small positive treatment effect and large

negative treatment effect (i.e., treatment difference 7); A scenario that may not be clinically

relevant.

The influence of the relation between outcomes is also apparent: Negative correlations

require fewer observations than positive correlations. The variation due to the correlation

is considerable: The average sample size almost doubles in scenarios with equal treatment

differences (e.g., data generating mechanisms 3.1 vs. 3.3 and 4.1 vs. 4.3).

Comparison of the three different Compensatory rules further highlights the influence of

weights w and illustrates that a Compensatory rule is most efficient when weights have been

optimized with respect to the treatment differences and the correlation between them. The

Compensatory rule with equal weights (C-E) is most efficient when treatment differences on

both outcomes are equally large (treatment differences 3 − 5), while the Compensatory rule

with unequal weights for uncorrelated outcomes (C-UU) is most efficient under data

generating mechanism 8.2. The Compensatory rule with unequal weights, optimized for

negatively correlated outcomes (C-UC) is most efficient in data generating mechanism 8.1.

The Compensatory is less efficient than the Single rule in the scenario with an effect on one
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outcome only (treatment difference 6). Effectively, in this situation the Single rule is the

Compensatory rule with optimal weights for this specific scenario w = (1, 0). Utilizing the

flexibility of the Compensatory rule to tailor weights to anticipated treatment differences and

their correlations thus pays off in terms of efficiency.

Note that in practice it may be difficult to accurately estimate treatment differences and

correlations in advance. This uncertainty may result in inaccurate sample size estimates,

as demonstrated in Appendix D Numerical evaluation: Comparison of trial designs. The

simulations in this appendix also show that the approach can be implemented in designs

with interim analyses as well, which is particularly useful under uncertainty about anticipated

treatment differences. Specifically, we demonstrate that 1) both Type I and Type II error

rates increase, while efficiency decreases in a fixed design when the anticipated treatment

difference does not correspond to the true treatment difference; and 2) designs with interim

analyses could compensate for this uncertainty in terms of error rates and efficiency, albeit at

the expense of upward bias.

Further, Appendix E Numerical evaluation: Comparison of prior specifications shows how

prior information influences the properties of decision-making. Informative priors support

efficient decision-making when the prior treatment difference corresponds to the treatment

difference in the data. In contrast, evidence is influenced by dissimilarity between prior

hyperparameters and data, and may either increase or decrease 1) the required sample size;

and 2) the average posterior treatment effect, depending on the nature of the

non-correspondence.
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Table 3.2: P(Conclude superiority) for different data generating mechanisms
(DGM) and decision rules. Bold-faced values indicate the conditions with least
favorable values.

DGM Single Any All C-E C-UU C-UC

1.1 0.000 0.000 0.000 0.000 0.000 0.000
1.2 0.000 0.000 0.000 0.000 0.000 0.000
1.3 0.000 0.000 0.000 0.000 0.000 0.000

2.1 0.051 0.048 0.000 0.049 0.052 0.051
2.2 0.046 0.045 0.003 0.056 0.048 0.054
2.3 0.051 0.045 0.008 0.049 0.049 0.049

3.1 0.810 0.796 0.801 0.807 0.804 0.790
3.2 0.799 0.801 0.804 0.806 0.788 0.791
3.3 0.799 0.807 0.809 0.800 0.797 0.803

4.1 0.794 0.784 0.806 0.811 0.789 0.784
4.2 0.808 0.802 0.814 0.813 0.804 0.803
4.3 0.804 0.801 0.816 0.804 0.796 0.800

5.1 0.807 0.806 0.830 0.881 0.817 0.857
5.2 0.807 0.814 0.838 0.831 0.813 0.813
5.3 0.809 0.847 0.822 0.809 0.798 0.802

6.1 0.811 0.779 0.053 0.824 0.798 0.819
6.2 0.813 0.777 0.045 0.805 0.808 0.820
6.3 0.803 0.758 0.051 0.801 0.788 0.803

7.1 0.799 0.789 0.000 0.000 0.863 0.002
7.2 0.804 0.792 0.000 0.000 0.857 0.003
7.3 0.807 0.794 0.000 0.000 0.867 0.005

8.1 0.787 0.782 0.789 0.808 0.804 0.805
8.2 0.777 0.797 0.807 0.804 0.799 0.804
8.3 0.785 0.811 0.807 0.805 0.805 0.806
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Table 3.3: Average sample size to correctly conclude superiority for different
data generating mechanisms (DGM) and decision rules. Bold-faced values
indicate the lowest sample size per data generating mechanism. Conditions
with a hyphen should not result in treatment superiority.

DGM Single Any All C-E C-UU C-UC

1.1 - - - - - -
1.2 - - - - - -
1.3 - - - - - -

2.1 - - - - - -
2.2 - - - - - -
2.3 - - - - - -

3.1 307 191 424 108 157 119
3.2 307 217 418 154 192 162
3.3 307 247 406 199 226 206

4.1 75 47 105 26 39 29
4.2 75 53 103 38 47 40
4.3 75 60 101 49 55 50

5.1 17 11 25 6 9 7
5.2 17 12 25 9 11 9
5.3 17 14 24 11 12 11

6.1 17 21 - 25 15 17
6.2 17 21 - 36 19 24
6.3 17 21 - 47 22 30

7.1 75 95 - - 608 -
7.2 75 95 - - 733 -
7.3 75 95 - - 858 -

8.1 51 56 482 41 38 36
8.2 51 60 482 59 46 49
8.3 51 63 482 76 55 62
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3.5 Discussion

The current paper presented a Bayesian framework to efficiently combine multiple binary

outcomes into a clinically relevant superiority decision. We highlight two characteristics of the

approach.

First, the multivariate Bernoulli model has shown to capture relations properly and

support multivariate decision-making. The influence of the correlation between outcomes on

the amount of evidence in favor of a specific treatment highlights the urgency to carefully

consider these relations in trial design and analysis in practice.

Second, multivariate analysis facilitates comprehensive decision rules such as the

Compensatory rule. More specific criteria for superiority can be defined to ensure clinical

relevance, while relaxing conditions that are not strictly needed for clinical relevance lowers

the sample size required for error control; A fact that researchers may take advantage of in

practice where sample size limitations are common (Van de Schoot & Miočević, 2020).

Several other modeling procedures have been proposed for the multivariate analysis of

multiple binary outcomes. The majority of these alternatives assume a (latent) normally

distributed continuous variable. When these models rely on large sample approximations for

decision-making (such as methods presented by Whitehead et al. (2010), Sozu et al. (2010,

2016), and Su et al. (2012); see for an exception Murray et al. (2016)), their applicability is

limited, since the validity of z-tests for small samples may be inaccurate. A second class of

alternatives uses copula models, which is a flexible approach to model dependencies between

multiple univariate marginal distributions. The use of copula structures in discrete data can

be challenging however (Panagiotelis et al., 2012). Future research might provide insight in

the applicability of copula models for multivariate decision making in clinical trials.

Two additional remarks concerning the number of outcomes should be made. First, the

modeling procedure becomes more complex when the number of outcomes increases, since the

number of cells increases exponentially. Second, the proposed Compensatory rule has a linear

compensatory mechanism. With two outcomes, the outcomes compensate each other directly

and the size of a negative effect is maximized by the size of the positive effect. A decision
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based on more than two outcomes might have the - potentially undesirable - consequence

of compensating a single large negative effect by two or more positive effects. Researchers

are encouraged to carefully think about a suitable superiority definition and might consider

additional restrictions to the Compensatory rule, such as a maximum size of individual negative

effects.

Data and code availability

The R code used to generate results in Section Numerical evaluation, Appendix D Numerical

evaluation: Comparison of trial designs, and Appendix E Numerical evaluation: Comparison of

prior specifications can be found on https://github.com/XynthiaKavelaars/Decision-making-

with-multiple-correlated-binary-outcomes-in-clinical-trials.
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Bayesian multivariate logistic

regression for superiority and

inferiority decision-making under

observed treatment heterogeneity

Based on Kavelaars, X., Mulder, J., & Kaptein, M. (2022b). Bayesian multivariate logistic

regression for superiority and inferiority decision-making under observed treatment

heterogeneity. [Submitted for publication].
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Abstract

The effects of treatments may differ between persons with different characteristics.

Addressing such treatment heterogeneity is crucial to identify who benefits from a new

treatment, but can be complex in the context of multiple correlated outcomes. The current

paper presents a novel Bayesian method for superiority and inferiority decision-making in the

context of randomized controlled trials with multivariate binary responses and heterogeneous

treatment effects. The framework is based on three elements: a) Bayesian multivariate

logistic regression analysis with Pólya-Gamma expansion; b) a transformation procedure to

transfer obtained regression coefficients to the more intuitive multivariate probability scale

(i.e., success probabilities and differences between them); and c) a compatible decision

procedure for treatment comparison. Procedures for a priori sample size estimation under a

non-informative prior distribution are included. A numerical evaluation demonstrated that

decisions based on a priori sample size estimation resulted in anticipated error rates among

the trial population as well as subpopulations. Further, average and conditional treatment

effect parameters could be estimated unbiasedly when the sample was large enough.

Illustration with the International Stroke Trial dataset revealed a trend towards

heterogeneous effects among stroke patients: Something that would have remained

undetected when analyses were limited to average treatment effects.
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4.1 Introduction

The current paper focuses on estimating heterogeneous treatment effects based on covariates

in the context of two-arm randomized controlled trials (RCTs) with multiple (correlated) binary

outcome variables. Such RCTs are randomized experiments with subjects being assigned at

random to either an experimental or a control group, often having the objectives a) to evaluate

whether an experimental treatment is superior or inferior to a control condition; b) to inform

assignment to eligible subjects in practice (Food and Drug Administration, 2016). Although

RCTs are broadly applicable to experimental research in general, we focus on the health

domain and refer to psychological and medical interventions in the broad sense when using the

word treatment. These interventions include - but are not limited to - behavioral therapies,

pharmacological support, and other experimental types of care.

These trials often assess multiple types of (clinical) events (e.g., quitting substance

abuse, death), functional measures (e.g., memory decline, ability to walk), and disease

symptoms (e.g., fatigue, anxiety; Food and Drug Administration, 2017), which can provide

multidimensional insights into the effects of a treatment. Including such comprehensive

insights can improve correspondence between statistical and clinical decision-making, since

multiple effects of the intervention can be combined and weighed in various ways to provide

a single statistical decision regarding superiority or inferiority (e.g., Murray et al., 2016;

O’Brien, 1984; Pocock et al., 1987). Whereas performing multiple univariate analyses on

individual outcomes is a common strategy, a single multivariate analysis takes correlations

into account and can be statistically preferable (Food and Drug Administration, 2017;

Murray et al., 2016; Ristl et al., 2018; Senn & Bretz, 2007). Multivariate analysis has the

potential to reduce decision errors: Correlations influence the sample sizes required for

decision-making with prespecified error rates and provoke under- or overpowerment when

falsely omitted (Chow et al., 2017; Kavelaars et al., 2020; Sozu et al., 2010; Xiong et al.,

2005).

RCTs often focus on average treatment effects (ATEs) among the study population when

comparing interventions (Thall, 2020). Average treatment effects can be sufficiently
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insightful when the effects of a treatment are relatively homogeneous over the trial

population. However, average effects may give a limited, or even erroneous, impression when

the effects of a treatment are heterogeneous and thus interact with characteristics of

patients. In that case, treatment effects conditional on a subpopulation contribute to a

better understanding of the treatment’s potential and are more informative for clinicians

advising treatments to patients with specific characteristics. Despite efforts to provide

statistical methodology to identify heterogeneous treatment effects (e.g., Jones et al., 2011;

Wang et al., 2015; Yang et al., 2021), investigating these effects is not the standard yet:

Thall notes that "the great majority of clinical trial designs ignore the possibility of

treatment-covariate interactions, and often ignore patient heterogeneity entirely" (Thall,

2020, p.1). This is unfortunate as addressing potential treatment heterogeneity in the

evaluation of treatments is crucial to a) identify which patients are likely to benefit from a

treatment; and b) optimize treatment results of individual patients via personalized

treatment assignment (Goldberger & Buxton, 2013; Hamburg & Collins, 2010; Simon, 2010;

Wang et al., 2015). In sum, statistical analysis based on the combination of multiple

outcome variables and treatment heterogeneity has the potential to reveal different outcome

patterns for different patient profiles, thereby contributing to the personalization of

treatment assignment.

An example of a trial with multiple outcomes and potential treatment heterogeneity is

the International Stroke Trial (IST; International Stroke Trial Collaborative Group, 1997;

Sandercock et al., 2011). Strokes may have far-reaching implications for the quality of life,

as they may be recurring and/or lead to long-term impaired (daily) functioning. The IST

investigated whether the short-term and long-term perspective of stroke patients can be

improved with anti-thrombotic drug therapy. The average treatment differences in the IST

were small, so one might conclude that treatment with one of these drugs was marginally

effective. However, these overall findings did not show how specific characteristics of patients

(e.g., sex or age) and/or disease (e.g., type of stroke or functional status after stroke)

potentially interacted with the treatment to produce different perspectives for patients with
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different profiles. Average treatment effects do, for example, not reveal whether older

patients have better prospects in terms of short-term damage risk and/or long-term recovery

potential than younger patients. Clearly, potentially heterogeneous effects such as these

would have clinically and psychologically relevant implications and advocate the development

of more personalized treatment policies.

Although theoretically relevant in many contemporary RCTs, decision-making under

treatment heterogeneity in the multivariate context is considerably more complex compared

to the non-heterogeneous and/or univariate setting. Generalizations are subject to

assumptions that need to be carefully evaluated in light of the research problem at hand.

First, the multivariate setting demands an analysis method that incorporates the correlation

between outcome variables (i.e., a multivariate analysis method) to obtain accurate decision

error rates (e.g., Kavelaars et al., 2020). For accurate inference regarding conditional

treatment effects, the analysis should not only include the overall correlation among the trial

population, but should also be flexible enough to deal with correlations that differ over

subpopulations. The latter is not evident in existing multivariate analysis methods for binary

outcome variables: Some methods impose the marginal correlation structure of the trial

population on subpopulations (e.g., multivariate probit models by Chib (1995) or Rossi et al.

(2005) and multivariate logit models by Malik and Abraham (1973) and O’Brien and Dunson

(2004)). Second, the interpretation of treatment effects can be complex in multivariate

non-linear models. Creating insights into so-called marginal effects is strongly recommended

in treatment comparison, demanding any multivariate method to return interpretable

univariate effects (Food and Drug Administration, 2017; O’Brien & Dunson, 2004). Several

existing multivariate models lack insight into marginal distributions (e.g., Malik & Abraham,

1973). Third, multivariate methods may estimate a single regression parameter to capture

the relation between a covariate and all outcome variables (e.g., O’Brien & Dunson, 2004;

Rossi et al., 2005). The latter assumes that all outcome variables vary identically over the

full support of the covariate: An assumption that may be too strict to hold in practice.

As a more flexible alternative to capture the complexity of heterogeneous, multivariate
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treatment effects, we build upon an existing Bayesian multivariate Bernoulli framework for

superiority decision-making proposed by Kavelaars et al. (2020). The existing procedure

consists of three major components: a) a conjugate multivariate Bernoulli model to estimate

unknown (regression) parameters; b) a transformation procedure to interpret treatment

effects on the (more intuitive) probability scale; and c) a compatible decision procedure to

make inferences regarding treatment superiority. The multivariate Bernoulli as an underlying

model has advantages over several other approaches, as it relies on a multinomial distribution

and has the flexibility to allow univariate effects, correlations between outcomes and

multivariate effects to vary with covariates. Although joint response probabilities can provide

useful insights, the transformation procedure facilitates the interpretation of treatment

comparison: marginal (i.e., univariate) probabilities, multivariate probabilities, and differences

between (multivariate) probabilities can be used in inference as well.

The framework is suitable for estimation and inference among the trial population (i.e.,

ATEs), but does not incorporate patient characteristics to model heterogeneous treatment

effects directly. Therefore, we expand the framework with a Bayesian multivariate logistic

regression analysis to incorporate potential treatment heterogeneity via the inclusion of

covariates, aiming to facilitate treatment comparison among subpopulations and contribute

to personalized treatment assignment. The proposed modeling procedure relies on

multinomial logistic regression and can model treatment effects and correlations on a

subpopulation level and is suitable for estimation and inference among other populations

than the trial population. The transformation procedure is essential in this extension, as the

model produces multinomial regression coefficients, which have no straightforward

interpretation in the context of (multivariate) treatment comparison. Along with the

regression model, we include a procedure to compute sample sizes for decision-making with

prespecified frequentist error rates.

The paper is organized as follows. In the next section, we introduce the decision

framework, including the multivariate logistic regression model to obtain a sample from the

multivariate posterior distribution of regression coefficients, a transformation procedure to
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find posterior treatment differences, and a decision procedure to draw conclusions regarding

treatment superiority and inferiority. The section on capturing heterogeneity explains how

the framework can be applied to different patient populations. We evaluate frequentist

operating characteristics of the framework via simulation in the numerical evaluation section.

Next, we illustrate the methods with data from the International Stroke Trial and conclude

the paper with a discussion.

4.2 Decision-framework

4.2.1 Multivariate logistic regression

Response y k
i is the binary response for subject i on outcome variable k ∈ {1, ... ,K}, where

y k
i ∈ {0, 1}, 0 = failure and 1 = success. Vector yi = (y 1

i , ... , y
K
i ) is the multivariate (or

joint) binary response vector of subject i on K outcomes and has configuration Hq·, which is

one of the Q = 2K possible response combinations of length K given in the qth row of matrix

H:

H =

[
1 1 ... 1 1
1 1 ... 1 0

...
0 0 ... 0 1
0 0 ... 0 0

]
(4.1)

The probability of yi can be expressed in two meaningful and related ways. First,

θi = (θ1i , ... , θ
K
i ) denotes the vector of K -variate success probabilities on individual outcome

1, ... ,K , where θki = p(y k
i = 1). Second, ϕi = (ϕ1

i , ... ,ϕ
Q
i ) denotes the vector of Q-variate

joint response probabilities, where ϕq
i = p(yi = Hq·) and sums to unity. The joint response

of subject i can be conditioned on covariates in vector xi = (xi1, ... , xiP). In this case, the

probabilities of response vector yi |xi are expressed as functions of xi , namely ϕi(xi) and

θi(xi).

Joint response probability ϕq
i (xi) maps the dependency of joint response probabilities on
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covariates xi via a multinomial logistic function:

ϕq
i (xi) =

exp [ψq
i (xi)]

Q−1∑
r=1

exp [ψr
i (xi)] + 1

(4.2)

for response categories q = 1, ... ,Q − 1. In Equation 4.2, ψq
i (xi) reflects the linear predictor

of response category q and subject i :

ψq
i (xi) =β

q
0 + βq

1 xi1 + · · ·+ βq
PxiP . (4.3)

Here, xip can be a treatment indicator, a patient characteristic, or an interaction between these.

Vector βq = (βq
0 , β

q
1 , ... , β

q
P) is the vector of regression coefficients of response category q.

To ensure identifiability, all regression coefficients of response category Q are fixed at zero,

i.e., βQ = 0.

The likelihood of response data follows from taking the product over n individual joint

response probabilities from Equation 4.2 of Q response categories:

l(y|β, x) =
n∏

i=1

Q−1∏
q=1

 exp [ψq
i (xi)]

Q−1∑
r=1

exp [ψr
i (xi)] + 1


I (yi=Hq·) 1

Q−1∑
r=1

exp [ψr
i (xi)] + 1


I (yi=HQ·)

. (4.4)

Bayesian analysis is done via the posterior distribution which is given by

p(β|y, x) ∝p(y|β, x)p(β), (4.5)

where p(β) reflects the prior distribution of the unknown parameters before observing the data.

Posterior sampling can be done with a Gibbs sampling algorithm based on a Pólya-Gamma

expansion (Polson et al., 2013). Computational details of this procedure can be found in

Appendix F.
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4.2.2 Transformation to treatment differences

We aim to make the posterior sample of regression coefficients interpretable in terms of a

treatment difference, which is defined as the (multivariate) difference between success

probabilities of two treatments. To this end, we execute the following multistep procedure

with a fictive setup of the IST as running example.

Suppose we are interested in the effect of a combined drug therapy (Heparin plus Aspirin;

TH+A) vs. single drug therapy (Aspirin only; TA) on recurrent stroke on the short-term (y strk)

and dependency on the long-term (ydep). There is a total of Q = 4 response categories:

{y strk = 1, ydep = 1}, {y strk = 1, ydep = 0}, {y strk = 0, ydep = 1}, {y strk = 0, ydep = 0},

which we refer to as {11}, {10},{01}, and {00} respectively. The treatments are blood

thinning agents and may thus interact with the patient’s blood pressure. Therefore, we include

systolic blood pressure at the time of randomization, resulting in the following model:

ψq
i (xi) =β

q
0 + βq

1Ti + βq
2bpi + βq

2bpiTi , (4.6)

where xi = (Ti , bpi , bpiTi). The transformation procedure is then as follows:

1. Regression coefficients β to joint response probabilities ϕT (x):

In the first step, the posterior sample of regression coefficients β is transformed into

a treatment effect in terms of joint response probabilities ϕTi(xi) for each treatment

T ∈ {0, 1}. Linear predictor ψq
i (xi) is then transformed into

ϕq
i (xi) =

exp [ψq
i (xi)]

Q−1∑
r=1

exp [ψr
i (xi)] + 1

. (4.2 revisited)

For example, the probability that patient i in the IST does not experience a new stroke
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and is dependent after six months can be expressed as:

ϕ3
Ti
(xi) = p(yi(xi) = {01}) (4.7)

=
exp [ψ3

i (xi)]
Q−1∑
r=1

exp [ψr
i (xi)] + 1

.

Note that we are interested in joint response probability ϕT (x), which reflects a

treatment effect among a population defined by x and is more general than the joint

response probability of an individual patient with covariates xi . This population can be

reflected by an individual patient in some situations, while other cases target the entire

study population or a subpopulation of interest. These variations have slightly different

computational procedures, which we discuss in more detail in Section 4.3.

2. Joint response probabilities ϕT (x) to multivariate success probabilities θT (x):

The next step in the transformation involves the conversion from joint response

probabilities ϕT (x) to multivariate success probabilities of individual outcome variables

θT (x). Especially when the number of outcome variables increases, success

probabilities are more straightforward in their interpretation than joint response

probabilities.

The relation between both quantities is additive: Success probability θkT on outcome k

and treatment T equals the sum of a selection of elements of ϕT , denoted by matrix

Uk :

θkT (x) =
Q∑

q=1

ϕq
T (x)I (Hq· ∈ Uk). (4.8)

Selection Uk consists of the 2K−1 rows of H that have their k th element equal to 1.

More concretely, the two outcome variables from the IST are the following combinations,

where we drop the dependency on x for notational simplicity.

H =

[
1 1
1 0
0 1
0 0

]
, Ustrk = [ 1 1

1 0 ], and Udep = [ 1 1
0 1 ].
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Hence, the multivariate success probabilities in θT = (θstrkT , θdepT ) consists of univariate

success probabilities:

θstrkT = p(yi(xi) = {11}) + p(yi(xi) = {10}) (4.9)

= ϕ1
T + ϕ2

T

θdepT = p(yi(xi) = {11}) + p(yi(xi) = {01})

= ϕ1
T + ϕ3

T .

The correlation between these outcome variables is captured in joint response

probabilities ϕT (x) and automatically taken into account in further transformations

(Dai et al., 2013; Olkin & Trikalinos, 2015).

3. Success probabilities θT (x) to treatment differences δ(x):

The treatment difference on outcome k , δk(x), is defined as the difference between the

success probabilities of two treatments on outcome k , such that:

δk(x) = θk1 (x)− θk0 (x). (4.10)

The K -variate treatment difference is then δ(x) = (δ1(x), ... , δK (x)).

Multivariate treatment difference δ = (δstrk , δdep) in the IST is a vector of the univariate

treatment differences:

δstrk = θstrkH+A − θstrkA (4.11)

δdep = θdepH+A − θ
dep
A .

Applying the three above-mentioned steps to each draw of the posterior sample of β, results in

a posterior sample of multivariate treatment difference δ(x). This sample provides estimates

that can be used for prediction, where various measures of central tendency (e.g., a mean or

high posterior density interval) can be used to summarize the sample into a point estimate.

Moreover, the sample can be used for statistical inference, as outlined in the next subsection.
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4.2.3 Posterior decision-making

Decisions rely on estimated treatment effects and their uncertainties. More formally,

multivariate treatment difference δ has complete parameter space S ⊂ [−1, 1]K , which is

divided into a rejection region SR and a non-rejection region SN . Rejection region SR reflects

the part of the parameter space that indicates the treatment difference of interest, while the

non-rejection region SN refers to the part of the parameter space that would not be

considered a (relevant) treatment difference. Rejection regions depend on the type of

decision and be composed of multiple subregions if desired (Van Ravenzwaaij et al., 2019).

We consider the following three (commonly used) decision types:

1. superiority with region SR ∈ SS , where the treatment is better;

2. inferiority with region SR ∈ SI , where the treatment is worse;

3. two-sided with rejection region SR ∈ {SS ,SI}, where the treatment can be either better

or worse.

We would conclude superiority and/or inferiority when the posterior probability that

treatment difference δ(x) lies in the rejection region exceeds a prespecified decision

threshold, pcut :

p(δ(x) ∈ SR |y) > pcut . (4.12)

When the functional form of the posterior distribution is unknown, the rejection probability

can be concluded from an MCMC sample of L draws from the posterior distribution of δ(x).

Equation 4.12 is then applied in practice as:

1

L

L∑
(l)=1

I (δ(l)(x) ∈ SR |y) > pcut . (4.13)

In a situation with multiple outcome variables, superiority and inferiority can be defined in

multiple ways, resulting in different rejection regions (e.g., O’Brien, 1984; Pocock, 1997;

Pocock et al., 1987; Prentice, 1997; Tang et al., 1993; Zhao et al., 2007). Although not
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Figure 4.1: Bivariate superiority and inferiority spaces for the All, Any, and
Compensatory (w = 0.50, 0.50) rules.

intended as an exhaustive overview, we list three possible rules and graphically present their

rejection regions in Figure 4.1. Two of these rules (which we refer to as the "Any" and

"All" rules) are presented as part of the regulatory guideline regarding multiple endpoints

(Food and Drug Administration, 2017) and have been extensively discussed in literature (e.g.,

Chuang-Stein et al., 2006; Sozu et al., 2010, 2016; Xiong et al., 2005). The third rule

("Compensatory") is a - relatively unknown - flexible alternative that weighs benefits and risks

of treatments by their (clinical) relevance (Kavelaars et al., 2020; Murray et al., 2016).

1. Any rule: The Any rule results in superiority or inferiority when the difference between

success probabilities is larger or smaller than zero respectively on at least one of the

outcome variables (Sozu et al., 2016). The superiority and inferiority spaces are defined
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as:

SAny
S = δ(x)| max

1<k<K
δk(x) > 0 (4.14)

SAny
I = δ(x)| min

1<k<K
δk(x) < 0.

2. All rule: The All rule results in superiority or inferiority when the difference between

success probabilities is larger or smaller than zero respectively on all the outcome variables

(Sozu et al., 2010). The superiority and inferiority spaces are defined as:

SAll
S = δ(x)| min

1<k<K
δk(x) > 0 (4.15)

SAll
I = δ(x)| max

1<k<K
δk(x) < 0.

3. Compensatory rule: The Compensatory rule results in superiority or inferiority when

the weighted difference between success probabilities is larger or smaller than zero

respectively. The superiority and inferiority spaces are defined as:

SComp
S (w) = δ(x)|δ(w, x) > 0 (4.16)

SComp
I (w) = δ(x)|δ(w, x) < 0

where w = (w 1, ... ,wK ) reflect weights of K treatment differences,

δ(w, x) =
K∑

k=1

w kδk(x), 0 ≤ w k ≤ 1 and
K∑

k=1

w k = 1 (Kavelaars et al., 2020).

4.2.4 Sample size computations

To control decision error rates, methods for a priori sample size estimation are available for

variables that follow a multivariate Bernoulli distribution and are eligible for large sample

approximation by a (multivariate) normally distributed latent variable (Chow et al., 2017;

Sozu et al., 2010, 2016). When combined with a non-informative prior distribution, these

procedures have shown to accurately control Type I rate α and Type II error rate β in a
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Bayesian multivariate Bernoulli - Dirichlet-model on multivariate response data (Kavelaars et

al., 2020). Each of the presented decision rules in Subsection 4.2.3 has an individual procedure

to compute sample sizes, as discussed below. These equations provide insight in the required

number of observations in absence of prior information and in the influence of the correlation on

the sample size. They also allow for verification that correlated outcome variables might result

in smaller sample sizes than uncorrelated outcome variables under some conditions detailed

in publications by Food and Drug Administration (2017) and Kavelaars et al. (2020). For

notational simplicity, we discard the dependence on x in the remainder of this subsection.

All and Any rules

Sample size computations for the All and Any rules were formulated in Sozu et al. (2010)

and Sozu et al. (2016) respectively and rely on the assumption of a multivariate normal latent

variable. The power, 1 − β, can be expressed in terms of a cumulative K -variate normal

distribution ΨK with mean 0 and correlation matrix Σ (Sozu et al., 2016):

1− β = ΨK (c
1, ... , cK ). (4.17)

In Equation 4.17, ck for outcome k is defined by the decision rule of interest. Further, the off-

diagonal elements of Σ denote (estimated) pairwise correlations between outcome variables.

For the Any rule,

ck =z(1−α
K
) −

(θk1 − θk0 )√
θk1 (1−θk1 )+θk0 (1−θk0 )

n

. (4.18)

For the All rule,

ck =− z(1−α) +
(θk1 − θk0 )√

θk1 (1−θk1 )+θk0 (1−θk0 )
n

. (4.19)

In Equations 4.18 and 4.19, n is the sample size per treatment and z(.) refers to the selected

(1− α
K
) or (1− α) quantile from the univariate normal distribution.
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Since the cumulative multivariate normal distribution does not have a closed-form, the

sample size that satisfies targeted decision error rates can be found via the following iterative

procedure proposed by Sozu et al. (2010):

1. Plug in estimates of θkT in Equation 4.18 or 4.19.

2. Plug in a starting value for n in Equation 4.18 or 4.19 and calculate the power via

Equation 4.17.

3. Repeat step 2 with gradually increasing n until the power exceeds the desired level

4. Select n as the sample size per treatment group

Compensatory rule

Sample sizes for the compensatory rule can be computed using standard methodology for

large sample tests with two binomial proportions (Chow et al., 2017, Chapter 4). Plugging in

estimates of weighted success probabilities per treatment T , θwT , results in:

n = [θw1 (1− θw1 ) + θw0 (1− θw0 )]
[
z1−α + z1−β
θw1 − θw0

]2
, (4.20)

where θwT =
K∑

k=1

w kθkT , and z1−β is the (1− β) quantile of the univariate normal distribution.

4.3 Capturing treatment heterogeneity

In the proposed framework, treatment heterogeneity can be captured by joint response

probabilities that reflect conditional treatment effects and thus depend on the characteristics

of a subpopulation of interest. We describe two ways to represent subpopulations: by fixed

covariate values or by a prespecified interval of the covariate distribution(s). Both

representations have their own applications. Specific values of covariates may be relevant

when we wish to investigate treatment effects based on individual patients or on patient

populations that can be accurately represented by a single number of the covariate (such as

a mean or a level of a discrete variable). Intervals of covariate distributions may be sensible
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in particular when multiple consecutive covariate values are sufficiently exchangeable to

estimate a marginal treatment effect among a population specified by this range. Although

such intervals can be specified for discrete covariates as well, their use is particularly

reasonable with continuous covariates, as intervals are inherently consistent with the idea of

continuity.

We will discuss procedures for fixed values as well as intervals in more detail in the remainder

of this subsection. In these discussions, we use a linear predictor ψq
i (x) (cf. Equation 4.3)

that distinguishes between treatments via a treatment indicator and allows for interaction

between the treatment and a covariate. For such a model that includes a single population

characteristic x , x = (z ,T , zT ) and ψq
T (x) is defined as:

ψq
T (x) =β

q
0 + βq

1T + βq
2 z + βq

3 zT . (4.21)

4.3.1 Fixed values of covariate

For a patient population with fixed values of patient covariates, a posterior sample of joint

response probabilities ϕT (x) can be found by plugging in a vector of fixed covariate values

x in linear predictor ψ(l)
T (x). Subsequently applying the multinomial logistic link function in

Equation 4.2 to each ψ(l)
T (x) results in joint response probability ϕ(l)

T (x) for treatment T .

Applying these steps each posterior draw (l) of regression coefficients β(l) results in a sample

of posterior joint response probabilities. The procedure is presented in Algorithm 3 in Appendix

H.

4.3.2 Marginalization over a distribution of covariates

When the population is characterized by a range of covariates, the treatment effect can be

marginalized over the interval under consideration, based on available information regarding

the distribution of the covariate. A sample of covariate data can be used as input for

marginalization. Empirical marginalization involves repeating the fixed values procedure for

each subject in the sample to obtain a sample of joint response probabilities for each
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posterior draw (l). Averaging the resulting sample of joint response probabilities per

treatment results in a marginal joint response probability ϕ(l)
T (x) for draw (l). The procedure

is presented in Algorithm 4 in the online supplemental materials. Empirical marginalization is

computationally efficient for patient populations defined by intervals of more than one

continuous covariate. Note however that the procedure is prone to sampling variability in x

and that estimation might depend on the availability of cases with the selected covariate

values. Increasing the specificity of subpopulations - often resulting from a higher number of

included covariates and/or a limited interval size - will reduce the number of available

observations eligible for inclusion1.

4.4 Numerical evaluation

The current section presents an evaluation of the performance of the proposed multivariate

logistic regression procedure. The goal of the evaluation was threefold, and we aimed to

demonstrate:

1. how well the obtained regression coefficients and treatment effects correspond to their

true values to examine bias;

2. how often the decision procedure results in an (in)correct superiority or inferiority

conclusion to learn about decision error rates;

3. how the model performs under a priori sample size estimation to explore the number of

required subjects.

4.4.1 Setup

Conditions

The performance of the framework was evaluated in a treatment comparison based on two

outcome variables and one covariate. We varied the procedure to compute conditional
1If this is the case, (numerical) integration can be an alternative to interpolate the conditional treatment

effect distribution of interest.
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treatment effects, the effect size, the (sub)population of interest, the procedure to compute

the posterior distribution, and the decision rule. Each of these factors will be discussed in the

following paragraphs.

Procedure to estimate joint response probabilities We used the two regression-based

procedures from Section 4.3 to find the posterior samples of joint response probabilities for

two populations of interest defined by:

1. Fixed covariate values

2. Empirical marginalization

And included a reference approach based on stratification to compare the performance of

stratified and regression-based analysis:

3. Unconditional multivariate Bernoulli - Dirichlet model

We used the unconditional multivariate Bernoulli model in (Kavelaars et al., 2020). This

model relies on response data and can be used via stratification in the estimation of

conditional treatment effects. Samples of treatment-specific joint response probabilities

ϕT could be drawn directly from a posterior Dirichlet distribution with parameters αn
T =

α0+ {
n∑

i=1

I (Ti = T )I (yi = Hq·)}Qq=1, where α0 is a vector of Q prior hyperparameters.

Effect size We included four treatment differences that varied the heterogeneity of

treatment differences:

1. Conditions 1.1 & 1.2: A homogeneous treatment effect, with average and conditional

treatment differences of zero. This scenario aims to demonstrate the Type I error rate

under a least favorable treatment difference for the Any and Compensatory rules in the

trial as well as the subpopulation.

2. Conditions 2.1 & 2.2: A heterogeneous treatment effect, with an average treatment

difference of zero and a conditional treatment effect larger than zero.

3. Conditions 3.1 & 3.2: A heterogeneous treatment effect, with average and conditional

treatment differences larger than zero. The conditional treatment difference is larger
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than the average treatment difference. The effect size is chosen to compare power of

different methods, when the sample size should not lead to underpowerment for any of

the approaches to the estimation of conditional treatment effects.

4. Conditions 4.1 & 4.2: A heterogeneous treatment effect on one of the outcomes with

both average and conditional treatment differences larger than zero. The conditional

treatment difference is smaller than the average treatment effect. The effect size is

chosen such that the expected sample size after stratification of the study sample is

smaller than the required sample for evaluation of the conditional treatment effect and

aims to investigate the statistical power of regression-based methods when stratification

leads to underpowered decisions. Further, this effect size reflects the least favorable

treatment difference for a right-sided test of the All rule and should result in a Type I

error rate equal to the chosen level of α.

For each of these four effect sizes, we varied the measurement level of the covariate and

created a model with a binary covariate and a model with a continuous covariate. This resulted

in the eight data generating mechanisms (DGMs) presented in Table 4.1.

Table 4.1: Parameters of average treatment effects (treatment differences and
correlations between univariate success probabilities) in the trial and conditional
treatment effects in a subpopulation, by data-generating mechanism (DGM).

Average treatment effect Conditional treatment effect

DGM Covariate (δ1, δ2) δ(w) ρθ1,θ2 (δ1, δ2) δ(w) ρθ1,θ2

1.1 Discrete (0.000, 0.000) 0.000 -0.160 (0.000, 0.000) 0.000 -0.200
1.2 Continuous (0.000, 0.000) 0.000 -0.163 (0.000, 0.000) 0.000 -0.207
2.1 Discrete (0.000, 0.000) 0.000 -0.154 (0.250, 0.150) 0.200 -0.200
2.2 Continuous (0.000, 0.000) 0.000 -0.157 (0.116, 0.069) 0.092 -0.206
3.1 Discrete (0.150, 0.050) 0.100 -0.124 (0.400, 0.300) 0.350 -0.200
3.2 Continuous (0.151, 0.050) 0.101 -0.131 (0.276, 0.169) 0.223 -0.210
4.1 Discrete (0.400, 0.000) 0.200 -0.194 (0.200, 0.000) 0.100 -0.200
4.2 Continuous (0.401, 0.000) 0.200 -0.194 (0.323, 0.000) 0.162 -0.205

Patient (sub)population We aimed to assess the treatment difference in two different

types of patient populations:

1. Trial population:
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We assessed the average treatment effect among the trial population. The binary

covariate was binomially distributed with a probability of 0.50, while the continuous

covariate in the trial population followed a standard normal distribution.

2. Subpopulation:

We assessed the conditional treatment effect (CTE) among patients scoring low on the

covariate. The low subpopulation of the binary covariate was described by a value of

zero. Note that this subpopulation could not be assigned a range, since subsetting a

binary variable inherently results in a single value. Consequently, marginalization reduces

to the procedure for fixed covariate values. For the continuous covariate, we specified two

different subpopulations. One subpopulation had a value of one standard deviation below

the mean, while the other subpopulation was used in the marginalization approaches and

defined by a range that entailed all values between the mean and one standard deviation

below the mean.

Decision rules and sample size We applied the three decision rules from Subsection 4.4.1:

1. Any rule

2. All rule

3. Compensatory rule with equal weights (w = (0.50, 0.50))

We computed sample sizes per treatment group via the procedures from Subsection 4.2.4

for conditions with non-zero true average treatment effects. If the true average treatment

difference was equal to zero, we used n = 1, 000 per treatment group. The sample size for

the average treatment effect was thus leading for the analysis of both average and conditional

treatments. As a result, the power of conditional treatment effects was not targeted at .80,

but should exceed this target when the required sample size for a CTE was larger than the

sample size for an ATE. Similarly, the power of CTEs with a sample size smaller than the ATE

sample size should be lower than .80. The required sample sizes are presented in Table 4.2,

where we also included a) the required sample size for the conditional treatment effect in the

subpopulation; and b) the sample size after stratification of the trial population. The sample
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size after stratification is the expected size in subpopulation analysis of a) response data in

the reference approach; and b) covariate data in empirical marginalization.

Table 4.2: Required sample sizes to evaluate the average treatment effect
(ATE) and conditional treatment effect (CTE) and expected sample sizes of
the subpopulation after stratification (Sub). Bold-faced subsamples are smaller
than required for estimation of the CTE.

Any All Compensatory
DGM ATE CTE Sub ATE CTE Sub ATE CTE Sub

1.1 - - 1000 - - 1000 - - 1000
1.2 - - 683 - - 683 - - 683
2.1 - 45 1000 - 136 1000 - 30 1000
2.2 - 215 683 - 658 683 - 143 683
3.1 154 14 77 1234 34 617 134 9 67
3.2 152 36 52 1219 107 417 131 24 45
4.1 21 93 11 - - 1000 29 122 15
4.2 21 33 8 - - 683 29 45 10

Procedure

Data generation For each data generating mechanism and each unique (decision-rule

specific) sample size, we sampled 1000 datasets. We generated one covariate z and included

an interaction between the treatment and the covariate as well, resulting in the following

linear predictor ψq
i :

ψq
i (xi) = βq

0 + βq
TTi + βq

1 zi + βq
2 ziTi . (4.22)

To generate response data, we first applied the multinomial logistic link function (Equation 4.2)

to each true linear predictor ψi(xi) to obtain joint response probabilities ϕi(xi) for each subject

i . Next, we sampled response vector yi |xi from a multinomial distribution with probabilities

ϕi(xi).

Prior distribution For the multivariate logistic regression analysis, we used multivariate

normally distributed prior with means bq = 0 and precision matrix B0q = diag (1e−2, ... , 1e−2)

for all regression coefficients. Prior covariances between regression coefficients were set at zero,
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implying that regression coefficients were independent a priori. For the reference approach,

we used an improper prior with hyperparameters α0 = 0.

Gibbs sampling The regression coefficients in response categories 1, ... , (Q − 1) were

estimated via the Gibbs sampler detailed in the online supplemental materials. We ran two

MCMC-chains with L = 10, 000 iterations plus 1, 000 burn-in iterations. Convergence

diagnostics implied that there were no signals of non-convergence when the sample size was

large enough. Multivariate Gelman-Rubin convergence diagnostics were below < 1.10 for

most of the conditions. We noticed signs of non-convergence (Gelman-Rubin statistic

1.10 to 1.32) in a few datasets generated under mechanisms 4.1 and 4.2 with small sample

sizes (i.e., belonging to the Any and Compensatory rules). We generated extra data to

replace the datasets with questionable convergence.

Transformation and decision-making We applied the procedures from Subsections 4.2.2

and 4.2.3 to arrive at a decision. In marginalization, we included the selection of subjects that

belonged to the subpopulation. We performed a right-sided (superiority) test aiming at a Type

I-error rate of α = .05. We used a decision threshold pcut = 1 − α = 0.95 (Compensatory

and All rules) and a for multiple tests corrected pcut = 1− α
K
= 0.975 (Any rule) (Kavelaars

et al., 2020; Marsman & Wagenmakers, 2016; Sozu et al., 2016).

4.4.2 Results

Bias

Mean estimates of regression coefficients were asymptotically unbiased, implying that bias

was negligible (< .01) in conditions with a sufficiently large sample. We observed some bias

in conditions with smaller samples (DGM 3.1, 3.2, 4.1, and 4.2 under the Any and

Compensatory decision rules). Although small-sample bias is a well-documented property of

logistic regression in general, we discussed these results in more detail in the online

supplemental materials. The bias in regression coefficients was not necessarily problematic
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for our actual parameters of interest (success probabilities and differences between them), as

transfer to these transformed quantities was not inherent. Even when regression coefficients

were slightly biased (DGMs 3.1 and 3.2 under sample sizes of the Any and Compensatory

rules), success probabilities and treatment differences could be estimated without bias

(absolute bias < |0.025|), similar to the conditions without biased regression coefficients.

More severe bias of regression coefficients in conditions with smaller sample sizes was not

fully corrected in the transformation steps. Treatment effect estimation based on fixed values

under DGMs 4.1 and 4.2 resulted in treatment differences with absolute biases up to 0.077

for the Any and Compensatory rules, as shown in Table 4.3. Bias appeared slightly more

severe when the covariate was discrete, compared to a continuous covariate. The reference

and marginalization approaches could estimate treatment effects without bias, regardless of

sample size.

Table 4.3: Comparison of bias in treatment differences by estimation method
and decision rule-specific sample size of data generating mechanisms 4.1 and
4.2.

Method nAny nAll nCompensatory
δ(x) δ(x) δ(w, x)

Dgm 4.1 Discrete covariate - Average treatment effect

Reference (90.004, 90.001) ( 0.000, 0.000) 0.000
Empirical (90.009, 90.004) ( 0.000, 0.000) 90.002
Value ( 0.077, 90.026) ( 0.001, 0.000) 0.027

Dgm 4.1 Discrete covariate - Conditional treatment effect

Reference (90.002, 90.008) (90.001, 0.000) -0.001
Value ( 0.011, 90.002) (90.001, 0.000) 0.007

Dgm 4.2 Continuous covariate - Average treatment effect

Reference (90.005, 90.004) ( 0.000, 0.000) -0.002
Empirical (90.014, 90.010) ( 0.000, 0.000) -0.007
Value ( 0.042, 90.026) ( 0.001, 0.000) 0.008

Dgm 4.2 Continuous covariate - Conditional treatment effect

Reference (90.003, 90.008) (90.001, 0.000) 90.005
Empirical ( 0.011, 90.013) ( 0.000, 0.000) 0.006
Value (90.059, 0.005) (90.001, 0.000) 90.010
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Decision error rates

Probabilities to conclude superiority of average treatment effects are presented in Table 4.4.

Decisions resulted in appropriate Type I error rates around .05 for each of the posterior

distribution types under a least favorable scenario of no effect (i.e., DGM 1.1, 1.2, 2.1, 2.2 of

Any and Compensatory rules, and 4.1 and 4.2 of the All rule) and the proportions of correct

superiority conclusions (i.e., power) were close to the targeted .80. In general,

regression-based methods performed comparable to the reference approach. Note that the

power of the Compensatory rule in scenario’s 4.1 and 4.2 was slightly above .80 in

regression-based methods, suggesting that the method was less robust to such small samples

compared to the reference approach.

The results of conditional treatment effects in the subpopulations are presented in Table

4.5. Similar to the trial population, Type I error rates were around the targeted .05 under

the least favorable scenarios of no effect (DGM 1.1, 1.2 for Any and Compensatory rules) for

all estimation methods. The proportion to conclude superiority correctly was above .80 in all

scenarios with a sample size exceeding the computed sample size for CTEs (i.e., all DGMs

except 4.1 and 4.2). Decisions made with the Any and Compensatory rules in scenarios 4.1

and 4.2 were underpowered due to the use of the ATE sample size, which was smaller than the

CTE sample size. A comparison of estimations methods for the continuous covariate revealed

that empirical marginalization was generally more powerful than the reference approach. The

fixed-values approach could only be compared to the other approaches when the covariate was

discrete: In the continuous case, the treatment effect reflected a different (sub)population

than empirical marginalization and the reference approach. Here, the reference approach and

the fixed value approaches performed similarly in terms of power.

89



Chapter 4

Table 4.4: Proportions of superiority decisions (p) and their standard errors
(SE) for ATEs by data-generating mechanism (DGM), estimation method, and
decision rule. Bold-faced proportions represent correct rejections (i.e., power).

Reference Empirical Value
DGM p SE p SE p SE

Rule = Any

1.1 0.050 (0.007) 0.058 (0.007) 0.054 (0.007)
1.2 0.044 (0.006) 0.053 (0.007) 0.043 (0.006)
2.1 0.053 (0.007) 0.055 (0.007) 0.052 (0.007)
2.2 0.044 (0.006) 0.049 (0.007) 0.045 (0.007)
3.1 0.797 (0.013) 0.817 (0.012) 0.808 (0.012)
3.2 0.786 (0.013) 0.816 (0.012) 0.805 (0.013)
4.1 0.770 (0.013) 0.815 (0.012) 0.842 (0.012)
4.2 0.787 (0.013) 0.836 (0.012) 0.813 (0.012)

Rule = All

1.1 0.001 (0.001) 0.002 (0.001) 0.000 (0.000)
1.2 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
2.1 0.002 (0.001) 0.002 (0.001) 0.003 (0.002)
2.2 0.003 (0.002) 0.004 (0.002) 0.002 (0.001)
3.1 0.823 (0.012) 0.835 (0.012) 0.822 (0.012)
3.2 0.788 (0.013) 0.799 (0.013) 0.813 (0.012)
4.1 0.048 (0.007) 0.046 (0.007) 0.049 (0.007)
4.2 0.039 (0.006) 0.040 (0.006) 0.041 (0.006)

Rule = Compensatory

1.1 0.052 (0.007) 0.056 (0.007) 0.058 (0.007)
1.2 0.045 (0.007) 0.052 (0.007) 0.045 (0.007)
2.1 0.063 (0.008) 0.071 (0.008) 0.055 (0.007)
2.2 0.053 (0.007) 0.065 (0.008) 0.052 (0.007)
3.1 0.814 (0.012) 0.852 (0.011) 0.818 (0.012)
3.2 0.790 (0.013) 0.831 (0.012) 0.835 (0.012)
4.1 0.819 (0.012) 0.842 (0.012) 0.865 (0.011)
4.2 0.816 (0.012) 0.837 (0.012) 0.824 (0.012)
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Table 4.5: Proportions of superiority decisions for CTEs (p) and their standard
errors (SE) by data-generating mechanism (DGM), estimation method, and
decision rule. Bold-faced proportions represent correct rejections (i.e., power).

Reference Empirical Value
DGM p SE p SE p SE

Rule = Any

1.1 0.059 (0.007) 0.064 (0.008)
1.2 0.048 (0.007) 0.060 (0.008) 0.055 (0.007)
2.1 1.000 (0.000) 1.000 (0.000)
2.2 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
3.1 1.000 (0.000) 1.000 (0.000)
3.2 0.919 (0.009) 0.998 (0.001) 1.000 (0.000)
4.1 0.233 (0.013) 0.234 (0.013)
4.2 0.355 (0.015) 0.542 (0.016) 0.175 (0.012)

Rule = All

1.1 0.000 (0.000) 0.000 (0.000)
1.2 0.000 (0.000) 0.001 (0.001) 0.001 (0.001)
2.1 1.000 (0.000) 1.000 (0.000)
2.2 0.827 (0.012) 0.991 (0.003) 1.000 (0.000)
3.1 1.000 (0.000) 1.000 (0.000)
3.2 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
4.1 0.053 (0.007) 0.049 (0.007)
4.2 0.052 (0.007) 0.047 (0.007) 0.049 (0.007)

Rule = Compensatory

1.1 0.060 (0.008) 0.057 (0.007)
1.2 0.058 (0.007) 0.053 (0.007) 0.063 (0.008)
2.1 1.000 (0.000) 1.000 (0.000)
2.2 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
3.1 1.000 (0.000) 1.000 (0.000)
3.2 0.967 (0.006) 1.000 (0.000) 1.000 (0.000)
4.1 0.253 (0.014) 0.273 (0.014)
4.2 0.380 (0.015) 0.589 (0.016) 0.231 (0.013)
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4.5 Illustration

We applied the proposed method to a subset of data from the n = 19, 435 subjects from

the International Stroke Trial (International Stroke Trial Collaborative Group, 1997). We

selected participants who were alive after six months and were treated with either a combined

treatment (Aspirin + medium / high-dose Heparin) or one of the single treatments (Aspirin

only), resulting in a sample of n = 5, 657 participants, of which nH+A = 1, 859 were in the

Heparin + Aspirin group (treatment = 1) and nA = 3, 798 subjects were in the Aspirin group

(treatment = 0). We fitted the model in Equation 4.6 to compare the effects of the two

treatments on a) recurrent stroke within 14 days (0 = no; 1 = yes) and b) dependency after

six months (0 = no, 1 = yes) while taking systolic blood pressure of the subjects (Bp) into

account.

4.5.1 Method

We applied the two procedures from Subsection 4.3 (fixed values of covariates and empirical

marginalization) to assess the multivariate and weighted treatment differences in three different

types of patient populations:

1. Average treatment effects in the trial population;

2. Conditional treatment effects in populations defined by a fixed value. Patient populations

were defined by six different values of blood pressure, specifically 1, 2, and 3 standard

deviations below and above the mean.

3. Conditional treatment effects in populations defined by an interval. Patient populations

were defined by two different regions of blood pressure: Bp < −1 SD (Low), and

Bp > 1 SD (High).

We specified a diffuse multivariate normally distributed prior with means bq = 0 and

precision matrix B0 = diag(1e−2, ... , 1e−2) for all regression coefficients, except the reference

category (strk = 0, dep = 0). Prior covariances between regression coefficients were set at

zero, implying that regression coefficients were independent a priori. We ran three MCMC-
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chains via our proposed Gibbs sampler with 20, 000 iterations plus 10, 000 burn-in iterations.

Traceplots showed that chains mixed properly, and the multivariate Gelman-Rubin convergence

statistic had a value of 1.000, implying that there were no signals of non-convergence.

We performed two-sided tests for the All, Any, and Compensatory rules. For the

Compensatory rule, we assumed that long-term impaired functioning is more important than

short-term complications and specified weights w = (0.25, 0.75) for recurring stroke in 14

days and dependency at 6 months respectively. These weights implied that the long-term

outcome was three times more relevant for the decision than the short-term outcome. Since

θT reflects failure probabilities rather than success probabilities, the treatment is considered

superior when there is sufficient evidence that the treatment difference of interest is smaller

than zero, while inferiority was concluded when the treatment difference of interest is larger

than zero. The two-sided test with a targeted Type I-error rate of α = .05 was performed

with a decision threshold pcut = 1 − α
2
= 0.975 (Compensatory and All rules) and a for

multiple tests corrected pcut = 1− α
2K

= 0.9875 (Any rule).

4.5.2 Results

Results are presented in Table 4.6 for different intervals and in Table 4.7 for fixed values of blood

pressure. Among the trial population, the regression-based and reference approaches resulted

in similar treatment difference estimates and posterior probabilities. Treatment differences

were close to zero and each of the decision rules resulted in the conclusion that it does not

matter whether Aspirin was administered alone or in combination with Heparin.

These average treatment effects gave a limited impression of the efficacy of Aspirin and

Heparin, since a picture of heterogeneous treatment effects emerged when conditional

treatment effects among subpopulations were considered separately. As opposed to Aspirin

only, the combination of Aspirin and Heparin showed a trend towards higher failure

probabilities on both outcome variables for patients with a lower blood pressure, while failure

probabilities were generally lower among patients with a higher blood pressure.

A visual comparison of empirical marginalization and stratification of response data (i.e.,
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Table 4.6: Average and conditional treatment differences (ATE and CTE
respectively) and their posterior probabilities (pp) in the IST data, by range
of blood pressure (Bp). Superiority or inferiority was concluded when > or <
respectively.

Method δ(Bp) pp Any All δ(w,Bp) pp Comp

ATE (−∞ < Bp <∞) nH+A = 1859, nA = 3798

Reference ( 0.005, 90.015) (0.859, 0.151) - - 90.010 0.182 -
Empirical ( 0.004, 90.014) (0.825, 0.152) - - 90.010 0.178 -

CTE (−∞ < Bp < −1 SD ) nH+A = 316, nA = 620

Reference (90.001, 0.066) (0.459, 0.972) - - 0.049 0.970 -
Empirical ( 0.012, 0.043) (0.932, 0.963) - - 0.035 0.972 -

CTE (+1 SD < Bp <∞) nH+A = 290, nA = 646

Reference (90.009, 90.052) (0.214, 0.070) - - 90.041 0.063 -
Empirical (90.003, 90.081) (0.330, 0.001) > - 90.062 0.001 >

the reference approach) resulted in relatively similar estimates and posterior probabilities in the

center of the distribution of blood pressure (e.g., between −1 SD and +1 SD), but deviated

from the regression-based approach in the tails. Point estimates of treatment differences

demonstrated a less stable relation between blood pressure and treatment differences after

stratification, as shown in Figure 4.2. If the regression approach is flexible enough to properly

model the effects over the full support of blood pressure, the different behavior in the tails of

the covariate distribution might be explained by the smaller sample size after stratification, as

implied by the larger error bars.

Table 4.7: Conditional treatment differences and their posterior probabilities
(pp) in the IST data, by range of blood pressure (Bp). Superiority or inferiority
was concluded when > or < respectively.

Value δ(Bp) pp Any All δ(w,Bp) pp Comp

−3 SD ( 0.029, 0.110) (0.922, 0.994) < - 0.090 0.996 <
−2 SD ( 0.017, 0.068) (0.930, 0.985) - - 0.055 0.989 <
−1 SD ( 0.009, 0.026) (0.927, 0.908) - - 0.022 0.929 -
+1 SD (90.001, 90.056) (0.421, 0.002) > - 90.042 0.002 >
+2 SD (90.004, 90.097) (0.294, 0.001) > - 90.074 0.001 >
+3 SD (90.007, 90.137) (0.263, 0.001) > - 90.104 0.001 >
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Figure 4.2: Comparison of CTEs and their standard deviations per interval of
blood pressure after stratification and empirical marginalization. Each interval
reflects one standard deviation.
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4.6 Discussion

The current paper proposed a novel multivariate logistic regression framework to identify

heterogenous treatment effects on multiple correlated outcome variables. When the sample

size was large enough, the proposed regression models were able to reproduce average and

conditional treatment differences accurately, and with more robustness against bias than

posterior regression coefficients. The model could also make accurate superiority and

inferiority decisions among subpopulations, and these decisions were more powerful than

those obtained by a stratification approach. Under a priori sample size estimation,

anticipated decision error rates were found, when the sample size was not too small. The

illustration with the International Stroke Dataset demonstrated how modeling treatment

heterogeneity could provide a more in-depth understanding of results beyond average

treatment effects.

The model was proposed as an alternative that is flexible enough to model multivariate

treatment effects with correlation structures that are free to vary over covariates, supporting

accurate decision error rates and a priori sample size computations. This flexibility comes with

additional parameters, compared to other multivariate logistic models for correlated binary

outcome variables (e.g., Malik & Abraham, 1973; O’Brien & Dunson, 2004) and may result in

computational issues when the number of parameters becomes too high. The Gibbs sampling

procedure may become unstable when the sample size is too small compared to the number

of parameters, although weakly informative priors may be helpful in stabilizing computations

(Gelman et al., 2008). Therefore, the model is most suitable for a limited number of outcome

variables and covariates.

In practice, researchers are encouraged to consider model assumptions in real data, as

highlighted by the illustration with IST data. Additional efforts may be undertaken to verify

that the chosen generalized linear model fits the data well enough. If the assumption of linearity

on the log-odds scale does not hold, the modeling procedure may benefit from generalization

to methods that are more flexible with respect to this assumption, such as (penalized) splines.

Again, increased flexibility increases the number of parameters and should be balanced with a)
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the general risk of overfitting; and b) computational challenges as outlined above. In a more

general sense, the researcher should determine which type of flexibility is most appropriate for

the research question and data at hand.

Several directions for future research naturally follow from the current results. First, the

procedure theoretically lends itself to out-of-sample prediction to populations within or

beyond the covariate range of the trial population. The robustness of the framework in these

applications remains to be investigated and may include evaluations of model fit.

Second, research might shed light on further sample size considerations. The presented

sample size formulas rely on the size of an estimated treatment effect. Under treatment

heterogeneity, average and (multiple) conditional treatment effects have different effect sizes

by definition, resulting in different sample sizes and raising the question of which

considerations meaningfully guide this choice. Further, in line with our observations,

small-sample bias in regression coefficients is a well-documented property of nonlinear

regression methods in general (Firth, 1993; Nemes et al., 2009). Although some bias in

regression coefficients disappeared during transformation to joint response probabilities,

success probabilities, and treatment differences, the mechanism is not yet fully understood.

Hence, more light may be shed on circumstances for inheritance of distributional properties

in the (non-linear) multinomial logistic transformation to obtain more elaborate insights into

the minimum number of observations required for satisfactory model performance. Larger

effect sizes (i.e., smaller sample sizes), complexity of the model (i.e., number of parameters),

and events per variable are candidate factors to interact in their effects on model

performance in small samples (De Jong et al., 2019). There is no short answer to that

question, but in practice power among different subpopulations might be balanced with the

number of subjects a researcher is willing or able to include in the trial. Therefore, optimum

sample sizes in these regression-based decision approaches remain to be investigated more

elaborately.

Lastly, causal inference is less straightforward in (stratified) subgroup analysis as

conditioning upon covariates might interfere with randomization (European Medicine
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Agency, 2019; Food and Drug Administration, 2019). Causal relationships might require

additional checking of assumptions and tutorials by Hoogland et al. (2021) and Lipkovich

et al. (2016) may be of help.
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Abstract

In social, medical, and behavioral research we often encounter datasets with a multilevel

structure and multiple correlated dependent variables. These data are frequently collected

from a study population that distinguishes several subpopulations with different (i.e.,

heterogeneous) effects of an intervention. Despite the frequent occurrence of such data,

methods to analyze them are less common and researchers often resort to either ignoring the

multilevel and/or heterogeneous structure, analyzing only a single dependent variable, or a

combination of these. These analysis strategies are suboptimal: Ignoring multilevel structures

inflates Type I error rates, while neglecting the multivariate or heterogeneous structure masks

detailed insights. To analyze such data comprehensively, the current paper presents a novel

Bayesian multilevel multivariate logistic regression model. The clustered structure of

multilevel data is taken into account, such that posterior inferences can be made with

accurate error rates. Further, the model shares information between different subpopulations

in the estimation of average and conditional average multivariate treatment effects. To

facilitate interpretation, multivariate logistic regression parameters are transformed into

posterior success probabilities and differences between them. A numerical evaluation

compared our framework to less comprehensive alternatives and highlighted the need to

model the multilevel structure: Treatment comparisons based on the multilevel model had

targeted Type I error rates, while single-level alternatives resulted in inflated Type I errors. A

re-analysis of the Third International Stroke Trial data illustrated how incorporating a

multilevel structure, assessing treatment heterogeneity, and combining dependent variables

contributed to an in-depth understanding of treatment effects.
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5.1 Introduction

In social, medical, and behavioral research we often encounter datasets with a multilevel

structure and multiple correlated dependent variables. An example of such a study is the

Cognition and Radiation Study B (Schimmel et al., 2022; Schimmel et al., 2018) that

investigated whether local brain radiation (stereotactic radiosurgery) preserves cognitive

functioning and quality of life better than whole brain radiation in cancer patients with

multiple brain metastases. Patients were recruited from multiple hospitals and the treatment

was executed in two treatment centers, giving the data a multilevel structure. The authors

noted that a) almost half of the reviewed studies were multicenter trials; and b) many

studies were designed to assess effectiveness and side effects simultaneously, thus including

at least two dependent variables.

Often, these multilevel, multivariate data are collected from a study population that

consists of several subpopulations with potentially distinctive (i.e., heterogeneous) effects of

an intervention. Examples of such studies are the two International Stroke Trials (IST and

IST-3; International Stroke Trial Collaborative Group, 1997; Sandercock et al., 2016;

Sandercock et al., 2011; The International Stroke Trial-3 Collaborative Group, 2012), which

investigated the effects of antiplatelet and antithrombotic treatments on various

(neuro)psychological, functional and psychosocial dependent variables respectively. We

discuss the Third International Stroke Trial (IST-3) in more depth as it serves as a running

example throughout the paper. The IST-3 investigated the effects of an intravenous

thrombolytic treatment on short-term (e.g., recurrent stroke, functional deficits) and

long-term (e.g., dependency, depression, pain) indicators of health status among patients

who suffered from an acute ischaemic stroke. This trial covered patients from multiple

treatment centers in multiple countries and thus clearly has a multilevel structure. Further,

the IST-3 data revealed considerable variation in characteristics of patients and disease -

such as subtype or severity of stroke, blood pressure, and age - that can be predictive of

treatment effects and call for exploration of treatment heterogeneity to gain insight into

subpopulation-specific effects (Lindley et al., 2015).
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All the trials mentioned so far made treatment comparisons in the context of randomized

controlled trials (RCTs): Randomized experiments in which an experimental or a control

treatment is randomly assigned and administered to a random sample of patients. RCTs

often aim to evaluate whether the experimental treatment is superior or (non-)inferior to the

control condition and ultimately guide clinicians in evidence-based assignment of treatments

and interventions (Food and Drug Administration, 2016).

Whereas RCTs are considered a golden standard for treatment comparison, their

implementation is challenged by a growing demand for personalized treatment (Evans, 2003;

Grol & Grimshaw, 2003; Ng et al., 2009; Simon, 2010). That is, clinical practice relies more

and more on the idea that different patients react differently to treatments. Treatment

prescription is increasingly guided by a trade-off between patient-specific risks and benefits,

making the research context for these decisions multivariate and heterogeneous (Murray

et al., 2016). While demanding more complex methodology, personalization of treatments

can impede the collection of sufficient data for rigorous treatment evaluation. Development

of more targeted treatments limits eligibility for participation in trials, thereby making the

recruitment of subjects more difficult. As a solution, trials more often span multiple

treatment centers or countries. This adds another layer of complexity to the research

context: clustered data that often require multilevel analysis.

To meet the methodological demands of these increasingly complex research problems,

RCTs ideally provide a) a broad understanding of the treatment’s effects on multiple

dependent variables; and b) insights into potential dependencies of treatment effects on

characteristics of patients; and c) an accurate handling of clustered data structures. In

practice, such comprehensive methods are less common, and often researchers resort to

either ignoring the multilevel and/or heterogeneous structure, analyzing only a single

dependent variable, or a combination of these. Below, we discuss how these three aspects

can be implemented in RCT methodology to support research in personalized treatment.

First, many RCTs evaluate more than one dependent variable, often performing

univariate analyses (Food and Drug Administration, 2017). As an example, the investigators

102



Chapter 5

of the IST-3 were primarily interested in living independently six months after stroke and

secondarily in several other dependent variables, such as recurrent events, adverse reactions

to the treatment, and mental health indicators. Analyzing dependent variables independently

provides useful insights into treatment effects on each of these dependent variables

individually, but discards available information about the relation between them. When the

effects on individual dependent variables are complemented with information about their

co-occurrences via multivariate analysis, a more detailed picture of treatment effects

emerges. Multivariate analysis models relationships between dependent variables and can a)

be helpful to detect outcome patterns that would be ignored when dependent variables are

considered in isolation; and b) improve the accuracy of sample size computations and error

rates in statistical decision-making (Food and Drug Administration, 2017; Kavelaars et al.,

2020; Sozu et al., 2016; Su et al., 2012).

Second, incorporating patient and/or disease characteristics in treatment comparison can

result in a considerable improvement of the practical value of RCTs. The IST-3 used a sample

of diverse patients with different personal and disease characteristics. This variation contains

valuable information regarding differences in treatment effects. For example, knowing whether

patients with different weights or blood pressures have different chances of a recurrent stroke or

independent living has the potential to inform treatment recommendations. When treatments

have distinct effects on patients with different characteristics, treatment effects are considered

heterogeneous among (sub)populations of patients. In this case, average treatment effects

(ATEs) give a global idea of treatment results among the trial population, but have limited

value in targeting treatments to specific patients with their individual (disease) characteristics

(Hamburg & Collins, 2010; Mirnezami et al., 2012; Schork, 2015). Conditional average

treatment effects (CATEs) among specific patient groups provide insight into the variation

of treatment effects among the population and help to distinguish patients who ultimately

benefit from the treatment from those who do not or may even experience adverse treatment

effects. Unfortunately, subgroup-specific treatment comparisons are insufficiently implemented

as part of standard trial methodology yet (Thall, 2020). If subgroups are targeted at all, their
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effects are often analyzed independently via stratified (or subgroup) analysis. Such a subgroup

analysis disregards information from related subgroups and suffers from suboptimal power due

to subsetting. Modeling heterogeneity is a more powerful alternative that directly uses the

relation between subgroups and allows subgroups to borrow strength from each other (Kaptein,

2014; Kaptein et al., 2015; Kavelaars et al., 2022b).

Third, multilevel data are characterized by observational units that are grouped in

clusters. For example, the IST-3 spans multiple treatment centers and multiple countries.

Reasons to use multilevel analysis can be both substantive and statistical. From a

substantive perspective, multilevel analysis can be useful to explain differences between

clusters, while using the information from the entire sample (Gelman & Hill, 2007; Viele

et al., 2014). Different trials may - for example - have overlapping but non-identical target

populations that can be distinguished by covariate information and may contribute to the

understanding of treatment effects. Statistically, differences between clusters should be taken

into account for the sake of validity, even if these differences are not of direct interest (Hox

et al., 2017; McGlothlin & Viele, 2018; Raudenbush & Bryk, 2001). Clustered data require

specific analysis methods that are flexible enough to treat observations from different clusters

as more similar to each other than to observations from other clusters. If observations within

clusters are indeed more similar, the clustered structure is reflected in variance partitioning:

variance between observations within clusters is smaller than variance between observations

from different clusters. When clustered observations are treated as independent observations,

variance originating from differences between clusters is then erroneously attributed to

differences between a manifold of observational units and the unique amount of information

is overestimated. As a result, standard errors are overestimated, Type I error rates are

inflated, and validity of statistical inference is compromised. The larger the variance between

clusters relative to the variance between observational units within clusters, the larger the

effect on standard errors. Properly modeling the multilevel structure of clustered data and

allowing the parameters to vary over clusters is therefore crucial for accurate statistical

decision-making (Hox et al., 2017; Raudenbush & Bryk, 2001).

104



Chapter 5

The current paper presents a Bayesian multilevel multivariate logistic regression (BMMLR)

framework to capture the three abovementioned methodological aspects in a comprehensive

analysis and decision procedure for treatment comparison. We build upon an existing Bayesian

multivariate logistic regression (BMLR) framework for single-level data to analyze multivariate

binary data in the presence of treatment heterogeneity and present a multilevel extension to

deal with multilevel data. The multilevel aspect adds another layer of complexity, making the

analysis a non-trivial endeavor. We discuss the existing BMLR framework first. This framework

consists of three coherent elements (Kavelaars et al., 2022b):

1. a multivariate modeling procedure to find unknown regression parameters;

2. a transformation procedure to convert regression parameters to the probability scale to

make analysis results more interpretable;

3. a compatible decision procedure to draw conclusions regarding treatment superiority or

inferiority with targeted Type I error rates.

The first element, the modeling procedure, assumes multivariate Bernoulli distributed

dependent variables and assigns them a multinomial parametrization. A multinomial

parametrization is helpful for two reasons, since this a) allows statisticians to draw and build

upon existing, established multinomial techniques with tractable (conditional) posterior

distributions; and b) has the flexibility to model correlations between dependent variables on

the subpopulation level, which contributes to the accuracy of inference under treatment

heterogeneity (Dai et al., 2013; Kavelaars et al., 2020, 2022b). Several other multivariate

modeling procedures, such as the multivariate probit model by Chib (1995) or multivariate

logistic regression models by Malik and Abraham (1973) and O’Brien and Dunson (2004),

have a more restrictive correlation structure and are therefore theoretically less suitable to

detect treatment heterogeneity with adequate error control. Moreover, the multivariate

logistic regression model by Malik and Abraham (1973) does not provide insight into the

treatment effects on individual dependent variables. Copula structures have been proposed as

promising multivariate alternatives as well, but these models can be difficult to apply to

binary dependent variables (Braeken et al., 2007; Nikoloulopoulos & Karlis, 2008;
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Panagiotelis et al., 2012). The second element, the transformation procedure, builds upon

the close relation between the multinomial and multivariate parametrizations to express

results on the scale of (multivariate) success probabilities and differences between them, as a

more intuitive alternative to multinomial (log-)odds. The transformed parameters provide

understandable insights into the treatment’s performance on the trial population (i.e., ATEs)

as well as subpopulations of interest (i.e., CATEs). The third element, the decision

procedure, conveniently uses the Bayesian nature of the modeling procedure, allowing for

inference on the posterior samples of transformed parameters. Decisions can be made in

several ways to flexibly combine and weigh multiple dependent variables into a single decision

for a population of interest, while taking correlations between dependent variables into

account.

The main contribution of the current paper is the extension of the single-level BMLR

framework to the multilevel context. The novel Bayesian multilevel multivariate logistic

regression (BMMLR) framework provides a multilevel model component and adjusts the

transformation and decision procedure accordingly, to make the framework suitable for the

multilevel context. The remainder of the paper is structured as follows. Section 5.2

introduces the multilevel multivariate logistic regression model to obtain a sample from the

posterior distribution of regression coefficients. Section 5.3 outlines how to transform the

obtained regression coefficients to more interpretable treatment effect parameters. Section

5.4 discusses the decision procedure to use the treatment effect parameters for treatment

comparison. Section 5.5 demonstrates the performance of the model numerically via

simulation and in Section 5.6 the methodology is illustrated with data from the IST-3. The

paper concludes with a discussion in Section 5.7.
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5.2 BMMLR: Bayesian multilevel multivariate logistic

regression

Consider the general case with K ∈ {1, ... ,K} binary dependent variables y k
ji for subject

i ∈ {1, ... , nj} in cluster j ∈ {1, ... , J}. Outcome y k
ji is Bernoulli distributed with success

probability θkji and multivariate vector of K dependent variables, yji = (y 1
ji , ... , y

K
ji ) is

multivariate Bernoulli distributed (Dai et al., 2013). The multivariate Bernoulli distribution

relies on a hybrid parameterization where a K -variate success probability in θji = (θ1ji , ... , θ
K
ji )

is expressed in terms of Q = 2K multinomial joint response probabilities in ϕji = (ϕ1
ji , ... ,ϕ

Q
ji )

(Dai et al., 2013). The qth joint response probability in ϕji corresponds to multinomial

response combination hq, which has length K and is given in the qth row of the matrix of

joint response combinations denoted by H:

H =

[
1 1 ... 1 1
1 1 ... 1 0

...
0 0 ... 0 1
0 0 ... 0 0

]
(5.1)

Hence, joint response probability ϕq
ji = p(yji = hq). Note that joint response probability ϕj

and success probability θj are identical in the univariate situation (i.e., K = 1).

5.2.1 Likelihood of the data

The multinomial parametrization of multivariate Bernoulli distributed data allows to model the

relation between dependent variables yji and one or multiple predictor variables via multinomial

logistic regression. Joint response probability ϕq
ji is then regressed on a vector of P covariates,

xji = (xji0, ... , xji(P−1)). Covariate xji0 = 1 is a constant to estimate the intercept and covariate

xjip for p ∈ {1, ... ,P − 1} can, for example, be a treatment indicator, a patient characteristic,

or an interaction between these.

The relation between outcome vector yji and covariate vector xji is mapped with a

multinomial logistic function that expresses the probability of yji being in response category
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q, conditional on xji :

ϕq
ji = p((yji = hq)|xji) (5.2)

=
exp(ψq

ji)
Q−1∑
r=1

exp(ψr
ji) + 1

,

Here, ψq
ji is a linear predictor:

ψq
ji =x

′

jiγ
q
j (5.3)

In Equation 5.3, regression coefficients for response category q, γq
j = (γqj0, ... , γ

q
j(P−1)) are

unknown parameters of interest. Regression coefficients of response categories 1, ... ,Q−1 are

estimated, while regression coefficients of response category Q are fixed at zero (i.e., γQ
j = 0)

to ensure identifiability of the model. The entire set of regression coefficients is denoted with

γj .

Key aspect of multilevel analysis is that regression coefficients γq
j vary over clusters.

Regression effects in a multilevel model are a linear function in itself:

γqjp = γqp0 + uq
pj (5.4)

uq
j = (uq

0j , ... , u
q
(P−1)j) ∼ N(0,Σq)

Equation 5.4 consists of two elements:

1. Constant γqp0 is the common effect in the population and does not vary over clusters.

2. Error term uq
pj covers unexplained variance in γqjp.

Equation 5.4 can be adjusted to model cluster-specific predictors or cross-level interactions

between cluster-level predictors and individual level-predictors. Further, Equation 5.4 can be

extended to model mixed effects, which combine regression coefficients that vary over clusters

(so-called random effects) and regression coefficients that are identical for all clusters (so-

called fixed effects). More information on the specification of more complex linear predictors
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can be found in general resources on multilevel models, such as Hox et al. (2017) or Gelman

and Hill (2007). In general, it should be noted that each additional random effect increases

the number of parameters, affecting computational burden and estimation precision.

5.2.2 Posterior distribution of regression coefficients

Primary goal of BMMLR is estimating the joint posterior distribution of unknown regression

coefficients γj , their means γ, and their covariance matrices Σ. The joint posterior probability

of these parameters is given by:

p(γj ,γ,Σ|y) ∝p(y|γj)p(γj |γ,Σ)p(γ)p(Σ). (5.5)

The posterior probability in Equation 5.5 is proportional to the product of three types of

probabilities:

1. The likelihood of the data conditional on cluster-specific regression coefficients, p(y|γj),

which is the multinomial logistic function given by Equation 5.2;

2. The probability of the cluster-specific regression coefficients γq
j conditional on their

means γ and covariance matrices Σ, p(γj |γ,Σ);

3. The prior probabilities of regression coefficient’s means γ, p(γ), and covariance matrix

Σ, p(Σ), before observing the data.

As the multinomial logistic likelihood (Equation 5.2) does not have a (conditionally)

conjugate prior distribution, the functional form of the posterior distribution is unknown and

the regression coefficients cannot be sampled directly from the posterior distribution. In

Appendix J, we present a Gibbs sampling algorithm based on a Pólya-Gamma auxiliary

variable expansion of the likelihood proposed by Polson et al. (2013). The expanded

likelihood has a Gaussian form and can be combined with normal prior distributions for

regression coefficients γ and an inverse-Wishart distribution on covariance matrix Σ. The

parameters are known to have conditionally conjugate posterior distributions and allow for

direct sampling from their multivariate normal and inverse-Wishart distributions respectively,

109



Chapter 5

resulting in MCMC chains of the joint posterior distribution in Equation 5.5. We also provide

a few comments on prior specification for the proposed Gibbs sampling procedure in

Appendix J. As an alternative to the proposed Gibbs sampling procedure, sampling from the

posterior distribution can be done with standard MCMC methods for non-conjugate

prior-likelihood combinations, such as Metropolis-Hastings or Hamiltonian sampling.

5.3 Transformation of posterior regression coefficients

to the probability scale

The output of the BMMLR model from Section 5.2 is an MCMC sample of posterior

multinomial regression coefficients. These regression coefficients reflect the importance of a

predictor on a specific joint response combination and represent - in exponentiated form -

the odds compared to reference category Q. While these regression coefficients can be

insightful in a truly multinomial research problem, they have no straightforward

interpretation in multivariate treatment comparison where marginal effects on individual

dependent variables play a central role (Food and Drug Administration, 2017).

Transformation of regression coefficients to the multivariate probability scale provides a

convenient solution to gain more intuitive insights into both joint and marginal treatment

effects. These transformations rely on the close relationship between multinomial and

multivariate parametrizations and can be flexibly obtained for the trial population (i.e.,

average treatment effects) or for subpopulations (i.e., conditional average treatment effects).

They are directly suitable for statistical decision-making regarding treatment comparison.

We use the framework for transformation to the probability scale and decision-making

with a posterior sample of multivariate treatment differences introduced in Kavelaars et al.

(2020) and Kavelaars et al. (2022b). Technical details of these procedures are presented in

Algorithm 5 in Appendix K. We use the remainder of this section to summarize and illustrate

the procedure with a toy example from the IST-3-data, where we assume interest in the effect

of Alteplase in the experimental condition (TA) compared to no treatment in the control group
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(TC ).

Assume that we re-analyze a part of the IST-3 data using the BMMLR framework and

take one of originally presented analyses as a starting point (The International Stroke Trial-3

Collaborative Group, 2012). In the selected analysis, the researchers compared the effects of

Alteplase vs. control on their primary outcome, long-term independent living after six months

(Indep6), among subgroups of patients based on the severity of their initial stroke. In our

example, we perform a multivariate analysis of the treatment effects on the primary outcome

(Indep6) and one of the secondary (short-term) dependent variables: being stroke-free in the

first seven days after the initial stroke (Strk7). We incorporate severity of the initial stroke as

a predictor variable to study heterogeneity, using the grouping criteria from the original trial

for the estimation of conditional average treatment effects. We aim to investigate the average

treatment effect among the trial population as specified by the original eligibility criteria for

inclusion. We are also interested in a potential interaction between the treatment and stroke

severity, and investigate the conditional average treatment effects among patients with various

severity of stroke. To take the clustered structure of the data into account, we specified a

BMMLR mixed-effects model with random slopes for the intercept and the main treatment

effect, resulting in the following linear predictor:

ψq
ji = γqj0 + γqj1Tji + βq

2NIHSSji + βq
3NIHSSjiTji (5.6)

γqj0 = γq00 + u0j

γqj1 = γq10 + u1j .

In Equation 5.6, xji = (1,Tji ,NIHSSji ,NIHSSjiTji) with treatment indicator Tji and NIHSSji

being the stroke severity score of subject i in hospital j . The Q = 4 resulting joint response

categories are ({Strk7 = 1, Indep6 = 1}, {Strk7 = 1, Indep6 = 0}, {Strk7 = 0, Indep6 =

1}, {Strk7 = 0, Indep6 = 0}), which we refer to as ({11}, {10}, {01}, {00}).
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5.3.1 Transformation to cluster-specific (differences between)

probabilities

The main quantity of interest, the multivariate treatment difference, is defined as the difference

between multivariate success probabilities of the two treatments:

δStrk7j = θStrk7Aj − θStrk7Cj (5.7)

δIndep6j = θIndep6Aj − θIndep6Cj

The elements on the right-hand sides of Equation 5.7, marginal success probabilities θkTj , are

sums of the multinomial joint response probabilities of all response categories with a success

on outcome k :

θStrk7Tj = I (Tj = T )
[
p((yj |Tj) = {11}) + p((yj |Tj) = {10})

]
= ϕ1

Tj + ϕ2
Tj (5.8)

θIndep6Tj = I (Tj = T )
[
p((yj |Tj) = {11}) + p((yj |Tj) = {01})

]
= ϕ1

Tj + ϕ3
Tj

The multinomial joint response probabilities ϕTj that form the elements of success

probabilities θTj follow from plugging in posterior regression coefficients γj in the linear

predictor (Equation 5.6) and the multinomial logistic link function (Equation 5.2) for

prespecified covariates xji :

ϕq
Tji

= =
exp (ψq

Tji)
Q−1∑
r=1

exp (ψr
Tji) + 1

. (5.2 revisited)

The information in covariate vector xji determines the treatment as well as the subpopulation

of interest. Subpopulations can be defined as a value, such as a stroke severity score of one

standard deviation below or above the mean, that can be plugged in directly into Equations

5.6 and 5.2. When interested in a subpopulation that is defined by an interval, such as the

groups of stroke severity in the IST-3, the joint response probability is marginalized over the
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specified interval.

Since the model in Section 5.2 resulted in a sample of L posterior draws of each regression

coefficient, multivariate treatment differences are computed for each draw (l) separately. The

resulting posterior samples can be summarized with standard descriptive methods.

5.3.2 Pooling treatment effects over clusters

As a last step, cluster-specific estimates are pooled into estimates of average or conditional

treatment effects among (sub)populations of interest via the following procedure:

δ =

J∑
j=1

njδj

J∑
j=1

nj

(5.9)

This pooling strategy weighs cluster-specific estimates by cluster size, thereby balancing data

with unequal cluster sizes.

5.4 Decision-making based on multivariate treatment

effects

The obtained sample of posterior treatment differences can be used for statistical decision-

making regarding treatment superiority and inferiority. The multivariate context has multiple

options to define superiority and inferiority, leaving much flexibility to combine and prioritize

dependent variables in a suitable way. We shortly discuss four different decision rules to give

some idea of possibilities, without intending to be exhaustive or complete. The presented rules

have different theoretical underpinnings and distinct statistical properties, such as acceptance

regions, a priori estimated sample sizes, cutoff values, and error rates. The acceptance regions

for superiority decisions of the four presented rules have been graphically presented in Figure

5.1. More details to guide an informed choice for one of these decision rules in practice can
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be found in Kavelaars et al. (2020).

Three of these rules originate from guidelines of the Food and Drug Administration (2017).

The Food and Drug Administration (FDA) defines superiority as a treatment difference larger

than zero on the primary outcome (which we refer to as “Single rule”), on all dependent

variables (“All rule”) or on any of the dependent variables (“Any rule”). The Single rule

reduces the statistical analysis to a univariate problem, using only the treatment difference of

independent living after 6 months as a primary outcome (Single rule). The All and Any rules

make no distinction in the importance of dependent variables and assume that the short-term

and long-term outcomes are either both required for superiority or inferiority (All rule) or are

interchangeable (Any rule).

In practice, these rules can oversimplify decision-making. Secondary outcome variables

often contribute to treatment evaluation as well, but are given a co-primary status in the All

and Any rules or are not formally included in the statistical decision procedure when the Single

rule is used (Sozu et al., 2010, 2016). To handle outcomes that differ in relative importance,

linear combinations of dependent variables with pre-assigned (importance) weights have been

proposed as a flexible alternative (Kavelaars et al., 2020; Murray et al., 2016; O’Brien, 1984;

Su et al., 2012; Whitehead et al., 2010). We refer to a linear combination as a Compensatory

rule, referring to its inherent mechanism that allows (weighted) positive and negative effects to

compensate each other. The Compensatory rule allows the IST-3 data to consider the effects

on the long-term much more important than the short-term effect without completely excluding

the risk of a recurrent stroke from the final decision. In such a situation, we can assign the

primary outcome (Indep6) - for example - four times more weight than the secondary outcome

(Strk7) and consider Alteplase superior to no treatment if a lower chance of dependency is

outweighed by a small increase in the risk of a recurrent stroke.

Evidence in favor of the decision rule can be quantified by the proportion of posterior

draws of the pooled treatment difference δ that lie in the decision-rule specific acceptance

region, denoted by SR . A conclusion is reached via comparison to pcut , which is a cutoff value

to balance the required amount of evidence with anticipated Type I error rates (Marsman &
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Wagenmakers, 2016):

p(δ ∈ SR) > pcut . (5.10)

In the multivariate logistic regression model, the probability in Equation 5.10 has no analytical

solution. Therefore, decisions are made via the posterior MCMC-sample of L draws. Superiority

is concluded when:

1

L

L∑
(l)=1

I (δ(l) ∈ SR) > pcut . (5.11)

Similarly, inferiority is concluded when:

1

L

L∑
(l)=1

I (δ(l) ∈ SR) < 1− pcut . (5.12)

In Section 5.6, we demonstrate these decision rules with the data from the IST-3 as part of

an illustration of the BMMLR framework.
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Figure 5.1: Superiority regions of four decision rules applied to the IST-3. The
Compensatory rule has weights (wStrk7,w Indep6) = (0.20, 0.80).

5.5 Numerical evaluation

The current section presents an evaluation of the performance of the proposed BMMLR

framework. The goal of the evaluation was twofold, and we aimed to demonstrate:
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1. how well the obtained regression coefficients and treatment effects correspond to their

true values to examine bias;

2. how often the BMMLR framework results in an (in)correct superiority or inferiority

conclusion to learn about decision error rates;

5.5.1 Setup

Model The performance of the multilevel model was evaluated in a treatment comparison

based on a two-level model with two dependent variables and one covariate at the subject

level. We compared the method to two different (single-level) reference approaches, resulting

in the following three modeling procedures:

1. The BMMLR model presented in Section 5.2. We generated response data from a

mixed effects model to include random effects while keeping the number of estimated

parameters limited. We included an interaction between the treatment and the covariate

as well, resulting in the following linear predictor:

ψq
ji = γqj0 + γqj1Tji + βq

2wji + βq
3wjiTji (5.13)

γqj0 = γq00 + u0j

γqj1 = γq10 + u1j .

In line with previous notation, xji = (1,Tji ,wji ,wjiTji) in Equation 5.13. Further,

γq
j = (γqj0, γ

q
j1) reflects random effects with multivariate normally distributed errors

(i.e., (uq
0j , u

q
1j) ∼ N(0,Σq)) for the intercept and main effect of the treatment.

Regression coefficients βq = (βq
2 , β

q
3 ) reflects fixed effects for the covariate and

covariate-by-treatment interaction.

2. The single-level Bayesian multivariate logistic regression model (BMLR; Kavelaars et

al., 2022b), as a first reference approach. For this model, we use a restricted version of
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Equation 5.13 with fixed regression coefficients only:

ψq
ji = βq

0 + βq
1Tji + βq

2wji + βq
3wjiTji , (5.14)

MCMC chains were sampled with a simplified version of the Gibbs sampling procedure in

Appendix J, that iterates over β and Ω. The model shares information in the estimation

of conditional treatment effects with sufficient power, but does not take the multilevel

structure of the data into account.

3. The single-level unconditional Bayesian multivariate Bernoulli analysis (BMB;

Kavelaars et al., 2020), as a second reference approach. Bayesian multivariate

Bernoulli analysis relies on a conjugate multinomial likelihood and Dirichlet prior.

MCMC draws are sampled directly from the posterior Dirichlet distribution with

parameters
∑J

j=1

∑nj
i=1 I (yji = hq) + α0q, where we assigned prior hyperparameters

α0 = (0.01, 0.01, 0.01, 0.01). The approach can estimate homogeneous treatment

effects accurately and fast, but cannot deal with multilevel data. Moreover, conditional

treatment effects originate from subsampling, which is less powerful than regression

due to the isolation from other information.

Effect size We specified a heterogeneous treatment effect, with pooled average treatment

differences of zero (δ = (0, 0), δ(w) = 0) and pooled conditional treatment differences larger

than zero (δ = (0.25, 0.15), δ(w) = 0.20). This scenario aimed to demonstrate the Type I

error rate among the trial population. It reflects a least favorable treatment difference for the

Any and Compensatory rules and should therefore result in the targeted Type I error rate for

these rules to be considered accurate. The conditional treatment effect provided insight into

the power to conclude superiority among the subpopulation under consideration. Outcome

variables were negatively correlated (ρATE = −.157; ρCATE = −.20). For the BMMLR model,

the matrix of random variances, Σq was specified as:

[ 0.1 0
0 0.1 ] (5.15)
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for all q ∈ 1, ... ,Q − 1.

Sample size We varied the sample sizes at the cluster and subject level. Since there

are no clear guidelines regarding sample size computations in multilevel multivariate logistic

regression, we explored performance of the model for different numbers of clusters and different

sample sizes within clusters. Specifically, we used number of clusters J ∈ {10, 100} and

observations per cluster nj ∈ {10, 100} for each treatment, resulting in four different sample

size combinations.

Procedure

Data generation For each sample size, we sampled 1000 datasets. We assigned nj

participants to each treatment T and generated covariate x from a standard normal

distribution. We sampled response vector yji from a multinomial distribution with

probabilities ϕji .

Gibbs sampling Regression coefficients for the BMMLR and BMLR models were

estimated via the Gibbs sampling procedure in Appendix J. We ran two MCMC-chains via

the Gibbs sampler introduced in Section 5.2 with L = 50, 000 iterations plus 10, 000 burn-in

iterations. This large number of iterations aims to minimize the influence of the potentially

high autocorrelations between parameters in multilevel models on the stationary distribution

of the parameters. Autocorrelations were highest among random effect parameters γj and

ranged between 0.107 and 0.781 at lag 1 and reduced to a range of 90.012 − 0.276 at lag

10. Further, following the guidelines in Gelman et al. (2013), we ensured that the

multivariate potential scale reduction factor was below 1.10.

For the multilevel model (BMMLR), we specified diffuse priors, which were multivariate

normally distributed for regression coefficients and inverse-Wishart distributed for the
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covariance matrix:

(βq
2 , β

q
3 ) ∼ N([ 00 ], [

0.1 0
0 0.1 ]) (5.16)

(γq00, γ
q
10) ∼ N([ 00 ], [

0.1 0
0 0.1 ])

Σq ∼ W−1(2, [ 0.1 0
0 0.1 ]).

Regression parameters βq = βq
0 , ... , β

q
3 in the single-level regression model (BMLR) were

- similar to (βq
2 , β

q
3 ) in the multilevel model - assigned a multivariate normal prior distribution

with mean 0 and covariance matrix Σ with diagonal entries 0.1 and off-diagonal entries of 0.

Transformation and decision-making We applied the procedures in Algorithm 5 to use

the obtained MCMC-chains of posterior regression coefficients for superiority

decision-making. We thinned the chains in the transformation procedure with a factor 10 to

reduce the computational burden.

We considered two different effects:

1. an average treatment effect for the trial population;

2. a conditional treatment effect for a subpopulation scoring one standard deviation below

the mean or lower;

The treatment effects required marginalization over the interval that defined the

(sub)population, which we accomplished by averaging over joint response probabilities

computed for the empirical sample of data. Cluster-specific treatment effects were weighed

by their sample sizes to produce a pooled estimate of the treatment difference.

Decisions were made with a right-sided test for the All, Any, and Compensatory (equal

weights, w = (0.50, 0.50)) rules with formal superiority regions:

1. Any rule: SR = {δ|max1<k<K δ
k > 0}|y, x and cut-off value pcut = 1− α

K

2. All Rule: SR = {δ|min1<k<K δ
k > 0}|y, x and cut-off value pcut = 1− α

3. Compensatory rule: SR = {δ|δ(w) > 0}|y, x and cut-off value pcut = 1− α
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We computed the probability to conclude superiority (pSup) as the proportion of posterior

treatment differences in the superiority region via Equation 5.10. The targeted Type I-error

rate of α = .05 corresponded to decision threshold pcut = 1−α = 0.95 (Compensatory and All

rules) and a for multiple tests corrected threshold pcut = 1− α
K
= 0.975 (Any rule) (Kavelaars

et al., 2020; Marsman & Wagenmakers, 2016; Sozu et al., 2016).

Software

We conducted our analyses in R and made use of several existing packages (R Core Team,

2020). Pólya-Gamma variables were drawn with the pgdraw package (Makalic & Schmidt,

2016). Further, we drew variables from the multivariate normal, truncated normal, and

Dirichlet distributions with the MASS, msm, and MCMCpack packages respectively (Jackson,

2011; Martin et al., 2011; Venables & Ripley, 2002). MCMC chains were diagnosed with the

coda and mcmcse packages (Flegal et al., 2021; Plummer et al., 2006). We parallelized the

simulation procedure with the foreach and doParallel packages (Microsoft & Weston,

2020a, 2020b) and created LATEX tables with the xtable package (Dahl et al., 2019).

5.5.2 Results

The current subsection presents the results of the simulation study. Presented decision error

rates are in Table 5.1.

Bias

Regression coefficients, variance matrices and treatment effects (success probabilities,

treatment differences) could be estimated without bias in all sample sizes and data

generating mechanisms. The absolute average deviation of mean point estimates from true

values was smaller than .01.
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Table 5.1: Proportions of superiority decisions (P) and standard errors (SE) by
data-generating mechanism, estimation method, and decision rule.

Average treatment effect: δ = (0.000, 0.000), δ(w) = 0.000

Any All Compensatory
J = 10, nj = 10 p SE p SE p SE

BMMLR 0.032 (0.006) 0.000 (0.000) 0.042 (0.006)
BMLR 0.055 (0.007) 0.001 (0.001) 0.059 (0.007)
BMB 0.050 (0.007) 0.001 (0.001) 0.046 (0.007)

J = 100, nj = 10

BMMLR 0.053 (0.007) 0.002 (0.001) 0.048 (0.007)
BMLR 0.077 (0.008) 0.003 (0.002) 0.066 (0.008)
BMB 0.069 (0.008) 0.002 (0.001) 0.056 (0.007)

J = 10, nj = 100

BMMLR 0.044 (0.006) 0.000 (0.000) 0.060 (0.008)
BMLR 0.200 (0.013) 0.004 (0.002) 0.125 (0.010)
BMB 0.188 (0.012) 0.003 (0.002) 0.113 (0.010)

J = 100, nj = 100

BMMLR 0.057 (0.007) 0.000 (0.000) 0.054 (0.007)
BMLR 0.252 (0.014) 0.005 (0.002) 0.169 (0.012)
BMB 0.245 (0.014) 0.005 (0.002) 0.159 (0.012)

Conditional treatment effect: δ = (0.116, 0.069), δ(w) = 0.092

Any All Compensatory
J = 10, nj = 10 p SE p SE p SE

BMMLR 0.731 (0.014) 0.245 (0.014) 0.920 (0.009)
BMLR 0.397 (0.015) 0.065 (0.008) 0.587 (0.016)
BMB 0.183 (0.012) 0.025 (0.005) 0.294 (0.014)

J = 100, nj = 10

BMMLR 1.000 (0.000) 0.995 (0.002) 1.000 (0.000)
BMLR 1.000 (0.000) 0.868 (0.011) 1.000 (0.000)
BMB 0.933 (0.008) 0.520 (0.016) 0.980 (0.004)

J = 10, nj = 100

BMMLR 1.000 (0.000) 0.949 (0.007) 1.000 (0.000)
BMLR 0.997 (0.002) 0.771 (0.013) 1.000 (0.000)
BMB 0.917 (0.009) 0.445 (0.016) 0.969 (0.005)

J = 100, nj = 100

BMMLR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
BMLR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
BMB 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
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Decision error rates

Type I error rates The average treatment effect demonstrated that the probability to

incorrectly conclude superiority in multilevel regression (BMMLR) was close to the targeted

.05 under a least favorable scenario (i.e., Any and Compensatory decision rules). In general,

both reference approaches (BMLR and BMB) suffered from inflated Type I error to a similar

extent.

The amount of inflation in the (single-level) reference approaches was affected by sample

size: A large number of clusters (J = 100) and/or a large number of subjects per cluster

(nj = 100) had the largest Type I error rates, with the combination J = 100, nj = 100

resulting in the most severe inflation. On the other hand, a small number of clusters and a

small number of subjects per cluster (J = 10, nj = 10) resulted in an acceptable Type I error

rate for the single-level BMLR model as well, suggesting some robustness against the violation

of the assumption of independent observations in the current setup. In general, the number

of subjects per cluster appeared more influential on the Type I error rate inflation than the

number of clusters, as demonstrated by the two scenarios with an identical total sample size

(J = 10, nj = 100 and J = 100, nj = 10): A small number of clusters and a large sample

size per cluster resulted in larger Type I error rates than a large number of clusters with a

small sample size per cluster. Keeping everything else constant, a larger number of clusters

meant more independent units, implying that the assumption of independent observations was

violated less severely. In other words, the need for a multilevel model was more prominent

when the number of clusters was small. A similar pattern was seen under the All rule, although

Type I errors were small in general. This was expected, since a) the All rule is known to be the

most conservative of the three introduced rules; and b) the treatment difference was smaller

than the least favorable scenario of this decision rule.

Power The conditional treatment effect demonstrated the power to correctly conclude

superiority for all three rules. Three results were highlighted. First, the multilevel model

(BMMLR) appeared more powerful when the number of clusters was higher as opposed to a
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smaller number of clusters. The two conditions with an equal total sample size (e.g.,

J = 10, nj = 100 and J = 100, nj = 10) showed a .046 difference in power under the All rule

in favor of the model with J = 100 clusters. The other rules showed the same patterns, but

had too high proportions of superiority conclusions to clearly distinguish the sample size

conditions: The power in the other conditions equaled or was close to the maximum of

1.000.

Second, the multilevel model (BMMLR) was generally more powerful than the single-level

regression model (BMLR) and resulted in more superiority conclusions. Again, differences

were best illustrated by the All rule and the condition with small sample sizes for the Any

and Compensatory decision rules, as these proportions were well below the maximum. Similar

to the Type I error rates, the differences between the proportions of superiority conclusions

appeared to be subject to the number of clusters, as demonstrated by a comparison of the

two conditions with an identical total sample size under the All rule.

Third, the multivariate Bernoulli model (BMB) has low power overall, despite the

underestimation of variance due to falsely assuming independent observations. As a

subsampling approach, conditional treatments were fitted on the part of the data that makes

up the subpopulation of interest. Especially the J = 10, nj = 10 condition suffered from a

small remaining sample size.

5.6 Illustration with IST-3 data

To illustrate the proposed framework with real data, we re-analyzed a subset of data from

the Third International Stroke Trial using the BMMLR framework (Sandercock et al., 2016;

The International Stroke Trial-3 Collaborative Group, 2012). The included 3, 035 subjects

in the IST-3 were recruited from 156 different hospitals in 12 different countries, resulting in

multilevel data from patients clustered within hospitals and hospitals clustered within countries.

We selected a two-level subset of 1, 447 subjects from 75 hospitals in the United Kingdom

with a known health and survival status at six months after the initial stroke and a known

or predicted severity score of the initial stroke (NIH Stroke Score; NIHSS) at randomization.

123



Chapter 5

The cluster sizes were skewed and ranged from 1 to 117, with a median cluster size of 7

(SD: 26.66). Of the selected subset of data, nA = 716 subjects were in the Alteplase group

(treatment = 1) and nC = 731 subjects were in the control group (treatment = 0). We

compared the effects of the two treatments on a) being stroke-free for seven days (0 = no; 1

= yes) and b) long-term independent living at six months (0 = no, 1 = yes), while taking the

severity of the initial stroke into account. The NIHSS can range from 0 to 42 with a higher

score indicating a more severe stroke. The average stroke severity score in the IST-3 was 13.12

(SD: 6.91) and comparable in both treatment groups.

5.6.1 Method

We fitted our model with random slopes for the intercept and the treatment effect. We sought

to compare our multilevel model (BMMLR) to the two single-level models (BMLR and BMB)

from the Numerical evaluation Section in treatment comparison of Alteplase and control on

dependency after six months (δIndep6) and recurrent stroke within seven days (δStrk7). The

multilevel model (BMMLR) was fitted with the linear predictor in Equation 5.6 and the linear

predictor of the single-level regression model (BMLR) was:

ψq
ji = βq

0 + βq
1Tji + βq

2NIHSSji + βq
3NIHSSjiTji (5.17)

We ran two MCMC-chains via the Gibbs samplers and prior distributions specified in the

Numerical evaluation. Since the chains of regression coefficients were highly autocorrelated in

the multilevel model (lag 10: β : 0.47−0.59; γ : 0.62−0.80, Σ : −0.01−0.38), we sampled a

large number of iterations (500, 000) plus 10, 000 burn-in iterations. The multivariate potential

scale reduction factor was below 1.01 for all parameters, implying that there were no signals

of non-convergence. We thinned MCMC-chains in follow-up posterior transformations with

a factor 10 to reduce computational demands, resulting in inference based on L = 50, 000

draws.

We applied the procedures in Algorithm 5 to the thinned MCMC-chains of posterior

regression coefficients to make superiority decisions. We considered (conditional) average
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treatment effects among seven different (sub)populations:

1. ATE: average treatment effects for all patients in the trial population;

2. CATE - Low range: conditional average treatment effects for patients with a stroke

severity score between 0 and 5;

3. CATE - Mid-Low range: conditional average treatment effects for patients with a stroke

severity score between 6 and 14;

4. CATE - Mid-High range: conditional average treatment effects for patients with a stroke

severity score between 15 and 24;

5. CATE - High range: conditional average treatment effects for patients with a stroke

severity score above 25;

6. CATE - Low value: conditional treatment effects for patients with a stroke severity score

of 5.18, corresponding to 1 standard deviation below the mean;

7. CATE - High value: conditional treatment effects for patients with a stroke severity

score of 19.03, corresponding to 1 standard deviation above the mean.

The grouping criteria for CATEs of ranges were taken from the original IST-3 paper (The

International Stroke Trial-3 Collaborative Group, 2012).

We performed two-sided tests for the All, Any, and Compensatory rules. Similar to the

IST-3, we used independent living as the most important outcome in the Compensatory rule

and specified weights w = (0.20, 0.80) for remaining free of strokes and independent living

respectively. This specification implied that the long-term outcome had four times more

impact on the decision than the short-term outcome. The targeted two-sided Type I-error rate

of α = .05 corresponded to decision threshold pcut = 1 − α
2
= 0.975 (Compensatory and All

rules) and a for multiple tests corrected threshold pcut = 1− α
2K

= 0.9875 (Any rule).

Software In addition to the software packages used in Section 5.5, we used R package haven

to import the dataset (Wickham & Miller, 2021).
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Table 5.2: Average (ATE) and conditional average (CATE) treatment effects of
the 7 specified (sub)populations of the IST-3, including posterior probabilities
(Pop) and superiority (>) and inferiority (<) conclusions for each decision rule.

δ Pop (δ) Any All δ(w) Pop δ(w) Comp

ATE nA = 716, nC = 731

BMMLR (90.114, 0.029) (0.000, 0.886) < - 0.000 0.504 -
BMLR (90.116, 0.033) (0.000, 0.941) < - 0.003 0.572 -
BMB (90.117, 0.032) (0.000, 0.911) < - 0.003 0.549 -

CATE - Low range nA = 99, nC = 105

BMMLR (90.078, 90.023) (0.003, 0.317) < - 90.034 0.200 -
BMLR (90.081, 90.016) (0.004, 0.365) < - 90.029 0.225 -
BMB (90.110, 90.036) (0.019, 0.318) - - 90.051 0.207 -

CATE - Mid-Low range nA = 327, nC = 334

BMMLR (90.090, 0.038) (0.000, 0.884) < - 0.013 0.679 -
BMLR (90.092, 0.044) (0.000, 0.937) < - 0.017 0.752 -
BMB (90.114, 0.045) (0.001, 0.853) < - 0.013 0.642 -

CATE - Mid-High range nA = 237, nC = 252

BMMLR (90.139, 0.051) (0.000, 0.992) < & > - 0.013 0.753 -
BMLR (90.141, 0.054) (0.000, 0.995) < & > - 0.015 0.783 -
BMB (90.118, 0.047) (0.006, 0.938) < - 0.014 0.694 -

CATE - High range nA = 53, nC = 40

BMMLR (90.183, 0.020) (0.002, 0.980) < - 90.021 0.100 -
BMLR (90.188, 0.021) (0.001, 0.982) < - 90.021 0.100 -
BMB (90.173, 0.019) (0.069, 0.687) - - 90.019 0.327 -

CATE - Low value

BMMLR (90.078, 90.007) (0.002, 0.440) < - 90.021 0.291 -
BMLR (90.080, 0.000) (0.002, 0.503) < - 90.016 0.328 -

CATE - High value

BMMLR (90.140, 0.052) (0.000, 0.991) < & > - 0.014 0.751 -
BMLR (90.142, 0.055) (0.000, 0.994) < & > - 0.015 0.777 -

Note. δ = (δStrk7, δIndep6), Pop (δ) = (Pop δStrk7, Pop δIndep6)
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5.6.2 Results

Results of different (sub)populations

Table 5.2 shows how different analysis models and different decision rules provide elaborate

insights into the effects of Alteplase vs. control on a combination of dependent variables

among different (sub)populations. Analysis of the selected data with the BMMLR, BMLR,

and BMB models gave the following results.

Average treatment effects The average treatment effect (ATE) among the UK-based part

of the trial population showed that the Alteplase group had a lower estimated probability of

remaining free of strokes, a higher estimated probability of living independently, and a weighted

probability difference close to zero. The three modeling procedures produced similar estimates

and unanimously resulted in the conclusions that Alteplase was inferior according to the Any

rule due to the effect on being stroke-free, while neither superiority nor inferiority could be

concluded from the All or Compensatory rules.

Conditional average treatment effects The four conditional average treatment effects

(CATEs) that reflected subpopulations as ranges sketched a more heterogeneous picture than

the average treatment effects. Whereas all ranges showed a lower probability of being stroke-

free after treatment with Alteplase, these effects varied over subpopulations. Differences

between success probabilities of the two treatments appeared to increase with severity of the

stroke, such that Alteplase appeared to have the largest negative effect on being stroke-free

when the severity of the initial stroke was highest. A more diffuse relation between stroke

severity and treatment difference emerged on long-term independent living.

Alteplase resulted in a slightly lower point estimate of the probability of independent living

among patients with a Low stroke severity, but resulted in a higher estimated probability

of independent living in all categories of more severe strokes. Patients in the Mid-Low and

Mid-High ranges of stroke severity had the largest positive effect of Alteplase on independent

living. The Low and High stroke severity patients had slightly higher weighted probabilities
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after Alteplase compared to the control condition, while patients with a Mid-Low and Mid-High

stroke severity had weighted probabilities close to zero.

These non-zero point estimates were not unanimously supported by sufficient evidence

to conclude superiority or inferiority. The All and Compensatory rules remained inconclusive

for all models among all subpopulations. The BMMLR and BMLR were unanimous in their

conclusions for the Any rule: Inferiority was concluded for patients with a Low, Mid-Low and

High stroke severity, while both superiority and inferiority were concluded for patients with a

Mid-High range stroke severity. The BMB model remained inconclusive in the Low and High

ranges and concluded inferiority among patients with a Mid-Low or Mid-High stroke severity,

according to the Any rule.

The two conditional average treatment effects (CATEs) that specified subpopulations by

values illustrated treatment differences for two hypothetical individual patients. After receiving

Alteplase, both types of patients would have a lower probability of remaining free of strokes.

Only the patient with a High stroke severity value had a higher probability of long-term

independent living. The weighted failure probability difference was slightly below zero for

the patient with a Low stroke severity and around zero for the patient with a High stroke

severity. Again, the All and Compensatory rules remained inconclusive, whereas the Any rule

would result in an inferiority conclusion for the patient with a Low stroke severity and in both

inferiority and superiority for the patient with a High stroke severity.

Conclusions and discussion

Several conclusions regarding the BMMLR framework could be drawn from the presented

results. First, multilevel analysis did not affect point estimates in the used subset of IST-3

data: BMMLR and BMLR models resulted in similar point estimates of δ and δ(w), as expected

from the negligible bias in the results of the simulation study. The posterior probabilities of the

BMMLR and the BMLR model did not lead to different superiority or inferiority conclusions.

These results suggest that the (substantively) clustered nature of this specific subset of data did

not correspond to a relevant statistical dependence between observations within clusters. This
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might raise the question whether a more restrictive single-level model could be chosen over a

more complex multilevel model in absence of substantive reasons to use the latter. In hindsight,

we conclude that the restrictions of a single-level model did not notably influence analysis

results. Although estimates of random variances could be extracted from the analysis results

to provide information about clustering, these estimates are not straightforward to interpret

on the parameter scale of interest, namely success probabilities of individual treatments and

differences between them. As these parameters are returned on the scale of the linear predictor,

their meanings for clustering after (non-)linear transformation to the probability scale were not

clear. It would be helpful to have information about clustering beforehand and we concluded

that these results call for a proper method to quantify the degree of dependence among

observations within clusters prior to the analysis. Such insights could help in clarifying the

statistical urgency of a multilevel model and the appropriateness of a single-level model prior

to the analysis.

Second, average treatment effects indicated an increased probability of recurrent events

and a slightly decreased probability of long-term independent living after receiving the

experimental treatment. However, different decision rules led to different conclusions. When

the individual treatment effects had to be better on both dependent variables (All rule) or

were weighted (Compensatory rule), no superiority or inferiority could be concluded. When

any of the dependent variables had to demonstrate a relevant treatment difference (Any

rule), both inferiority on recurrent events and superiority on long-term independent living

could be concluded. This demonstrated a general potential problem with the Any rule:

Contrasting decisions can result from the same analysis. Recall that the Any rule treats all

outcome variables as equally important, raising the question of which conclusion to favor for

patients in the Mid-High range or with a High value of severity. This problem does not occur

with the other rules: The All and Compensatory rules are unambiguous in their conclusions.

Third, conditional (average) treatment effects suggested a trend in heterogeneity on the

individual dependent variables that was not reflected by the average treatment effect. These

trends were partially supported by superiority and/or inferiority decisions, depending on the
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specified decision rule. Even without clear conclusions, conditional treatment effect sizes

provided detailed insights: Considering average treatment effects only would have overlooked

these trends. Further, the BMB model in the High range demonstrated that subgroup analysis

can be a suboptimal approach to estimate conditional average treatment effects, as it can

suffer from power loss. The High range subgroup is a relatively small fraction of the total

sample size and performing an independent analysis on this group reduces the amount of

evidence. This is reflected in the comparison to the BMMLR and BMLR methods: BMB has

less extreme posterior probabilities, while treatment effect estimates are similar.

5.7 Discussion

The current paper presented the BMMLR framework as a multilevel extension to the Bayesian

multivariate logistic regression (BMLR) analysis framework. The BMMLR framework consisted

of three elements:

1. a Bayesian multilevel multivariate logistic regression model;

2. a transformation procedure to interpret results on the (multivariate) probability scale;

3. a statistical decision procedure to draw superiority and inferiority conclusions with

targeted frequentist Type I errors

The presented framework accurately handled the multilevel structure of the data in the presence

of heterogeneous treatment effects on multiple (correlated) binary dependent variables. A

simulation study demonstrated that the proposed model indeed a) estimated average and

conditional treatment effects in multilevel data without bias; and b) resulted in statistical

decisions with targeted Type I error rates. A multilevel model was clearly superior for clustered

data: Naive models that did not take the multilevel structure into account resulted in inflated

Type I-error rates. Further, the logistic model promoted information-sharing between clusters

and subpopulations, being a more powerful alternative than subgroup analysis to identify

heterogeneous treatment effects.

A re-analysis of the IST-3 provided another perspective on the data than the original paper
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by The International Stroke Trial-3 Collaborative Group (2012). Detailed insights as well as

the varying treatment effects among subpopulations demonstrated the importance of a) a

well-considered and specific decision rule; and b) the assessment of treatment heterogeneity.

The statistical need for a multilevel model has not clearly become evident for this specific

analysis. These results demonstrated that a substantive cluster structure in the data does not

necessarily imply a relevant statistical dependence between observations. Gaining insight into

the degree of dependence in the dataset is crucial for the choice between alternative models,

since that would provide information about the statistical gains of a multilevel model before

the data analysis.

Application of the BMMLR framework is not limited to the presented analyses.

Theoretically, the model can be adapted to the longitudinal setting, may be used to borrow

strength from different trials, or may be extended to data with multiple levels of clustering

for example. In practice, such extensions require additional exploration of the

(computational) properties of the model, since MCMC sampling procedures appeared

sensitive to the amount of autocorrelation and the number of parameters. In a related

fashion, carefully choosing which random effects to include is helpful for smooth execution of

multilevel analysis. The model has a large number of options regarding specification of the

model, giving a lot of flexibility to model cluster effects precisely. Naively including many

random effects may not be a good idea: The increasing number of parameters intensifies

computations notably and can complicate the translation to a substantially sensible and

statistically rigorous model. Similarly, the multinomial setup is most suitable for a limited

number of dependent variables. Increasing the number of dependent variables results in a

large number of response categories, which may lead to sparsity issues.

Future research might advance the design of the BMMLR framework in multiple ways.

First, a priori sample size computation and power analysis have priority in medical research.

In line with our findings, larger numbers of clusters are known to be more powerful than

larger numbers of subjects within clusters (Snijders, 2005). Expanding and refining knowledge

regarding sample sizes in multilevel models aids in strategic experimental design (Moerbeek
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et al., 2000, 2001; Raudenbush & Liu, 2000). Additionally, ethical aspects, such as risks and

burden of (potentially inferior) treatment, and practical considerations, such as limited access

to (large numbers of) subjects, require more in-depth understanding of power and sample

sizes. Especially in precision medicine – where treatments are targeted at specific patient

populations - numbers of eligible subjects are limited and a priori power analysis helps to

manage expectations in terms of duration.

Second, the specification of prior distributions requires consideration. Specification of

non-informative priors may not be trivial. The general tendency to choose relatively large

variance parameters for normally distributed prior distributions (Gelman et al., 2008), does not

necessarily work well with the proposed model. Covering a range far beyond realistic parameter

values, can (negatively) affect the efficiency of the sampling procedure and even the resulting

posterior distribution. Thus, concrete guidelines for the specification of non-informative priors

would be helpful.

Third, pooling of treatment estimates can be done in several other ways than presented.

In general, the pooled treatment effect over clusters is a weighted combination of cluster-

specific estimates, where the weights aim to balance aspects that influence estimation and

are imbalanced over clusters (e.g., cluster size or variance). Whereas we applied a cluster

size-based approach, several advanced weighing procedures balance unequal variances within

clusters via regularization methods (for overviews, see Gallo, 2000; Jones et al., 1998; Lin,

1999). These weighing methods generally produce shrinkage to the mean a) when group level

variance is smaller; and/or b) when sample sizes are smaller (Gelman & Hill, 2007, p. 269).

Such weighing procedures have interesting balancing properties but are probably less suitable

for trials with clusters of single subjects, such as IST-3. These clusters have no variance, should

not be discarded or merged inconsiderately, and call for the exploration of suitable weighing

procedures for such data.

Finally, the BMMLR framework and multilevel models for discrete data in general lack a

standard way to quantify the degree of clustering and the corresponding statistical need for a

multilevel model. Often, the degree of clustering is quantified as the variance between clusters
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relative to the variance within clusters, expressed via an intraclass correlation coefficient (ICC).

The computation of ICCs in binary data is not straightforward: The variance within clusters

- and therefore the ICC - is a function of the predictors in the model and the ICC depends

on the prevalence, requiring an alternative approximation to obtain an appropriate estimate of

the ICC (Goldstein et al., 2002; Gulliford et al., 2005; Paul et al., 2003; Ridout et al., 1999).

We leave the extension of our framework in this direction for future research.
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Discussion
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The current dissertation is built upon the idea that the increasing personalization of

medicine requires novel research methodology for Randomized Controlled Trials (RCTs) to

deal with more comprehensive research questions and complexities in trial data. Statistical

methodology can be used to analyze multivariate datasets while, if present, taking a

clustered structure into account and/or identifying potential heterogeneous treatment

effects. Further, more refined decision strategies would improve alignment of trial conduct

and treatment prescription in clinical practice. In this dissertation, we addressed the lack of

such methodology and presented a unified multivariate Bayesian methodological framework

that captures different combinations of these elements in a flexible manner. This framework

focused on efficiently combining information from multiple binary outcome variables and

predictor variables in RCTs and consisted of three components:

1. a multivariate modeling procedure that takes the correlation between outcome variables

into account;

2. a transformation procedure to interpret model parameters more intuitively on the

univariate and multivariate probability scale;

3. a decision procedure to flexibly define decision rules and draw superiority and inferiority

conclusions in multivariate treatment comparisons.

Throughout the different chapters, three different multivariate modeling procedures were

introduced that allow for the data to be analyzed with various properties, while appropriately

controlling Type I error rates. First, the (conjugate) multivariate Bernoulli - Dirichlet model

from Chapters 2 and 3 is a powerful and fast multivariate procedure to estimate average

treatment effects and is most suitable for application among homogeneous study populations.

Compared to more common alternatives, the model used the correlation between outcomes to

improve Type II error rates and/or to reduce the sample size.

Second, when (multivariate) treatment effects differ over subpopulations, conditional

treatment effects are relevant as well. In this case, the multivariate Bernoulli - Dirichlet

model can be used for a multivariate variant of the common (univariate) subgroup analysis.

This model performed suboptimally in terms of power as it evaluated treatment effects
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among different subpopulations in isolation without using the relation between treatment

effects and predictor variables. We presented a more powerful multivariate logistic regression

model in Chapter 4 to combine the information from both multiple outcome variables and

multiple subpopulations by modeling heterogeneity among multiple outcome variables

directly.

Third, to accommodate data with a clustered structure, we developed a multilevel,

multivariate logistic regression model in Chapter 5. This multilevel model allows combining

the information from multiple outcome variables, multiple subpopulations, and multiple

clusters of data in a single model with appropriate Type I error rates. The model provides

extensive insights in multivariate treatment effects, is able to detect heterogeneous treatment

effects, and takes non-independences of clustered observations into account in the estimation

of uncertainty. Throughout the dissertation, we consistently observed how the multivariate

nature of the presented models supported the flexible formulation of more refined decision

rules, which allowed researchers to reflect upon and choose from a variety of superiority and

inferiority definitions and to tailor them to the research question of interest. Chapters 2 and

3 explored statistical characteristics and substantive implications of three commonly used

rules and elaborated on an alternative, compensatory decision rule that weighs and balances

outcome variables according to their importance - and can be more efficient as a by-effect as

well. Application to the (multilevel) multivariate logistic regression models in Chapters 4 and

5 consistently confirmed these findings. A safe conclusion is that choosing one of the default

decision rules (Single, All, or Any) is not the best option per se in terms of both their

substantive meanings and their statistical properties. The introduced Compensatory rule

adds a substantial amount of flexibility compared to these defaults. Nonetheless, the choice

of an appropriate decision rule is subject to trial-specific considerations that might demand a

different rule compared to the presented ones.

Further, we explored sample size estimation in the multivariate context. The amount

of required data is of major importance in medical research and sample size estimation is

a delicate problem. Samples need to be large enough for treatments to demonstrate their
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effects with sufficient power without being larger than needed. The latter extends the trial

and unnecessarily exposes participants to unfavorable treatment conditions. We presented

decision rule-specific sample size computations for the different multivariate Bernoulli-Dirichlet

model in Chapter 3 and for the multivariate logistic regression model in Chapter 4. These

formulas allow for power analysis prior to data collection and help to control Type II error

rates. However, a major drawback of a priori sample size computations is their reliance on

reasonably precise estimates of treatment effects and correlation coefficients, as demonstrated

in Chapters 2 and 3. Any deviation from correct effect size estimates caused inaccuracies in

a priori computed sample sizes and affected Type II error rates. In practice, it is difficult to

estimate sample sizes accurately since power analysis is subject to multiple uncertain treatment

effects together with estimates of the correlation between outcome variables (Rauch & Kieser,

2015). Especially the latter are difficult to estimate, even for experts in the field (O’Hagan et

al., 2006; Zondervan-Zwijnenburg et al., 2017). Adaptive designs tolerate these (accumulated)

uncertainties much better and are, thus, an attractive alternative to improve statistical power

in multivariate analysis, as shown in Chapters 2 and 3. In adaptive designs, interim analyses

are performed on incoming data to a) explore whether the trial can be stopped early or should

be extended beyond the planned sample size and b) improve decision error rates and efficiency.

The improved performance of adaptive designs does not make a priori sample size computations

useless: They can serve as input for adaptive trial design and give a rough indication of the

required number of subjects.

6.1 Limitations and suggestions for future research

Several aspects of the framework have yet to be critically evaluated. First, the simulation

studies have consistently been performed with two outcome variables and—for the

multivariate logistic regression models—a limited number of covariates. Larger numbers of

variables are common in research practice. For example, the Cognition and Radiation Study

B introduced in Chapter 1 reported eight different outcome measures in their protocol, some

of which were measured repeatedly over time (Schimmel et al., 2018). Similarly, the Third
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International Stroke Trial from Chapter 5 reported 20 clinically relevant characteristics to

identify patients with high risks and low benefits from treatment (Lindley et al., 2015; The

International Stroke Trial-3 Collaborative Group, 2012). Including several of such variables in

analysis can be sensible. The performance with a larger number of variables remains to be

investigated as this could lead to sparsity issues and can be expected to challenge the

methodology computationally.

Second, efforts can be made to optimize computational aspects of the (multilevel)

multivariate logistic regression models. For example, a comparison to other numerical

procedures than the Gibbs sampling approach would be insightful. Despite being less

tractable than Gibbs sampling algorithms, Metropolis-Hastings and Hamiltonian sampling

algorithms can be viable alternatives that deserve exploration.

Third, the specification of prior information in the context of our multivariate framework

deserves more attention, especially in the multivariate logistic regression models presented in

Chapters 4 and 5. If desired and available, prior information can be included for substantive

reasons in all presented models. We provided a few suggestions throughout the chapters but

are aware that many applied research problems demand more advanced specifications and

more extensive guidance. Research contexts that do not (primarily) intend to inform the

analysis via the prior distribution also demand well-considered prior specification, even when

default prior specifications are available (Berger, 2006; Depaoli & Van de Schoot, 2017).

Particularly in small sample problems, the weight of the prior distribution can be more

influential than anticipated on the posterior distribution (Gelman, 2006; Kass & Wasserman,

1996; McNeish, 2016; Smid & Winter, 2020). Chapter 3 showed an example of this effect,

where Jeffreys non-informative prior specification differed from another non-informative prior

in terms of point estimates and decision error rates in small samples. Computational stability

is another relevant factor in prior specification, since prior variance parameters have the

potential to (de)stabilize computation (Gelman et al., 2008; Schuurman et al., 2016). In

Chapters 4 and 5, we deliberately specified prior covariance matrices with sufficient

information to stabilize computations without affecting Type I error rates. A last point worth
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elaborating on and investigating is the role of transformation. Seaman et al. (2012) noted

that (logit) transformations can change the informativity of the prior unintendedly. In

conclusion, naively choosing default (non-informative) prior parameters is not recommended

and a better understanding of prior specification in the context of our presented framework

would be a valuable addition.

Fourth, robustness checks and model validation approaches should be provided to assess

whether the individual components of the framework are the right choices for the research

problem at hand. Alternative modeling, transformation, or decision procedures may be more

appropriate, as is outlined below. First, the underlying multinomial parametrization of the

presented models is flexible in modeling heterogeneous correlations and estimating subgroup

correlation coefficients. Several alternative approaches, such as, multivariate logistic and

multivariate probit models (Chib, 1995; Malik & Abraham, 1973; O’Brien & Dunson, 2004),

impose the marginal correlation structure on heterogeneous treatment effects. Although

decision errors are theoretically affected by this restriction, the practical implications for

statistical validity are currently not fully clear. If such alternatives appear sufficiently robust

regarding heterogeneity in correlations, one of their advantages is that they generally have

fewer parameters. Another class of multivariate modeling procedures is formed by copula

structures, which can be complex in case of discrete data (Braeken et al., 2007; Chiu &

Crump, 2012; Nikoloulopoulos & Karlis, 2008; Panagiotelis et al., 2012). A thorough

comparison of modeling procedures can help to better assess their expected fit to a specific

dataset and to choose the best option. Second, the choice between the (single-level)

multivariate logistic model and the multilevel version of the model partly depends on the

presence of clustering of observations (Hox et al., 2017). The degree of clustering is often

expressed as an intraclass correlation coefficient, which quantifies the relative variance within

and between groups. The computation of an intraclass correlation is not straightforward for

binary outcome data, which has led to the construction of several estimators in the past.

Differences between their performances can be substantial, especially since the intraclass

correlation and the prevalence are related in binary outcome data (Gulliford et al., 2005; Paul
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et al., 2003; Ridout et al., 1999). An intraclass correlation coefficient that is suitable for

multivariate Bernoulli data would provide insight into the statistical need for a multilevel

model.

Finally, adaptive designs have been developed to deal with uncertain estimates of treatment

effects and have the potential to become a new standard in the future. They are not without

caveats however (Bauer et al., 2016). As debated in three papers by Sanborn and Hills (2014),

Rouder (2014), and Sanborn et al. (2014), and as shown in Chapter 3 it is possible to implement

adaptive sample size determination in a suboptimal way. Monitoring each incoming observation

can be attractive, for example, but naively performing unlimited numbers of interim analyses

can lead to serious inflation of Type I error rates (Shi & Yin, 2019). Thus, adaptive designs

need further investigation, optimization, and guidance before they are ready for large-scale

implementation.

6.2 Concluding remarks

Despite several unanswered questions, the presented framework contributed to RCT

methodology for personalized medicine. Taking the multivariate nature of treatment

comparison as a starting point, we focused on the analysis of typical data structures and

sought to align decision-making in RCTs with the highly personalized setting of clinical

practice. Throughout the work, sharing information between outcome variables and

subpopulations consistently demonstrated an increase in the value of RCTs in the

personalization of medicine by a) borrowing strength from other variables, b) enabling more

refined decisions that align research with clinical practice and c) creating more

comprehensive insights into heterogeneous treatment effects.

Our work touched upon certain general aspects of decision-making in the clinical context

that are open to debate. First, the current dissertation addressed two applications of RCT

results: drug admission and treatment prescription in practice. This twofold goal raises

practical questions and causes potential friction in the design of the decision procedure.

Different stakeholders within and beyond the research process can have different decision
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criteria that should be dealt with. Whereas treatment developers and regulatory bodies are

primarily concerned with the general safety and efficacy, end-users (e.g., clinicians and

patients) can prefer to weigh beneficial effects and side effects differently, in line with

professional and personal visions. Especially for treatment prescription, it is worth looking

into developing and advancing user-friendly ways to integrate clinical expertise in

decision-making. The value of clinical intuition in treatment prescription should not be

overlooked or overwhelmed by formal procedures, but can be challenging to incorporate into

such a procedure (Lek & Van de Schoot, 2018; O’Hagan et al., 2006; Rietbergen et al.,

2014; Zondervan-Zwijnenburg et al., 2017). Involving end users in decision-making raises the

questions a) whether they should apply different decision procedures compared to drug

developers in the test phase and b) which information should be available to whom and in

which form to make the decision procedure suitable for both drug admission and treatment

prescription while being sufficiently user-friendly and robust to misinterpretation.

Second, the multivariate logistic regression models in Chapters 4 and 5 allow for

interpolation and extrapolation to unobserved values and ranges of covariates. Whether such

prediction models provide sufficiently strong evidence to have a place in drug admission is

debatable. At the very least, model validation approaches should verify that the linear

predictor holds beyond the observed covariate range. This is not only relevant for

interpolation and extrapolation: The entire model relies on the assumption of linearity on the

log odds. This assumption can be difficult to verify, especially in (un)observed tails of the

covariate distribution where data to validate the model are sparse or even absent. It is

plausible that predictions—at least—have an intuitive place in treatment prescription even if

they do not meet the high standards of drug admission procedures. In absence of observed

data and other forms of strong evidence for a specific patient under consideration, prediction

models provide an educated guess of the treatment effects for this patient and can serve as

guidance to formalize a clinician’s decision process. Such a procedure might open doors to a

more formal form of shared decision-making for which the clinician and patient jointly

prioritize outcomes and apply this jointly weighted decision rule to choose a particular
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treatment.

Finally, while the current dissertation focused on more efficient handling of information

within the trial, some of the abovementioned discussion points move in the direction of a more

integrative approach for which information external to the trial informs design and/or analysis.

Although there are sensible reasons to base decisions about drug admission on individual trials,

a more integrative approach incorporating external sources of information offers high potential

to further support personalized treatments with high-quality evidence. Currently, there are

several ways to statistically combine information from multiple trials and borrow strength

from external data, such as meta-analytic approaches to combine aggregated trial results,

incorporation of prior information from historical trials or experts, or hierarchical modeling

approaches to combine raw data (Viele et al., 2014). Proper handling of exchangeability of

trials is a prerequisite for information sharing across trials and has recently received attention

in the context of master protocols, but it has not been developed into a settled approach yet

(see e.g., Hobbs & Landin, 2018; Michael et al., 2020; Neuenschwander et al., 2015). The

roles, the potentials, and the limits of current and future methods need to be considered in

the light of the demanded statistical rigor to prepare the medical field for principled methods

for integration of external information.
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We might facilitate specification of hyperparameters when we consider the prior distribution

of joint success probabilities θj rather than the prior distribution of joint response probabilities

ϕj . Here we can utilize the facts that 1) the multivariate beta distribution is a transformation

of the Dirichlet distribution; and 2) the parameters of the two distributions are identical (Olkin

& Trikalinos, 2015).

We present the transformation for K = 2, such that Q = 2K = 4. The Dirichlet

distribution with hyperparameters αj
0 = (α0

j ,11...11,α
0
j ,11...10, ... ,α

0
j ,00...01,α

0
j ,00...00) has the

following form:

p(ϕj |α0
j ) =Dirichlet(ϕj |α0

j ) (A.1)

∝ϕα
0
j ,1...11−1

j ,1...11 ϕ
α0
j ,1...10−1

j ,1...10 × · · · × ϕα
0
j ,0...01−1

j ,0...01 ϕ
α0
j ,0...00−1

j ,0...00 .

Reparametrizing ϕj in terms of θj and integrating ϕj ,11 out transforms the Dirichlet distribution

of posterior ϕj to a multivariate beta posterior distribution of success probabilities θj (Olkin

& Trikalinos, 2015):

p(θj |αn
j ) =

1

B(αn
j )

∫
Ω

ϕ
αn
j ,11−1

j ,11 × (θj ,1 − ϕj ,11)
αn
j ,10−1× (A.2)

(θj ,2 − ϕj ,11)
αn
j ,01−1 × (1− θj ,1 − θj ,2 + ϕj ,11)

αn
j ,00−1∂ϕj ,11,

where Ω =ϕj ,11 : max(0, θj ,1 + θj ,2 − 1) < ϕj ,11 < min(θj ,1, θj ,2).

Note that prior θj also follows a multivariate beta distribution. However, the multivariate beta

distribution cannot be formally used as a prior distribution in posterior computation, since the

distribution is marginalized with respect to the information about the relation between success

probabilities in ϕj ,kl .

Let us further redefine α0
j as n0j ϕ

0
j to provide an intuitive specification of prior information.

Here n0j reflect the amount of prior information and ϕ0
j reflects the prior means of joint response

probabilities ϕj . Prior means ϕ0
j relate directly to the prior means of joint success probabilities

θ0j and the prior mean treatment difference δ0, since θ0j ,k equals the sum of all elements of ϕ0
j

146



Appendix A

0

0.5

1

0

0.5

1

q j,1
q j,2

 

-1

-0.5

0
0.5

1

-1

-0.5

0

0.5

1

d 1
d 2

 

(a) α0
j = (0.01, 0.01, 0.01, 0.01); n0j = 0.04
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(b) α0
j = (0.5, 0.5, 0.5, 0.5); n0j = 2
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(c) α0
j = (1, 1, 1, 1); n0j = 4

0

0.5

1

0

0.5

1

q j,1
q j,2

 

-1

-0.5

0
0.5

1

-1

-0.5

0

0.5

1

d 1
d 2

 

(d) α0
j = (5, 5, 5, 5); n0j = 20

Figure A.1: Bivariate prior distributions of θj (left) and δ = θE − θC (right)
for various specifications of hyperparameters α0

j and n0j when K = 2. Prior
response probability ϕ0

j =
1
4
.
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with the k th element of response combination q equal to 1 and δ0k = θ0E ,k−θ0C ,k . The following

paragraph lists the influence of hyperparameters n0j ϕ
0
j on the shape of the prior distributions

of success probabilities θ0j and treatment differences δ.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

q j,1

q
j,
2

f j,11 ­  

f j,10 ­  

f j,01 ­  

f j,00 ­  

Figure A.2: The influence of ϕj on the bivariate beta distribution of θj for two
outcomes (K = 2).

1. The amount of prior information in n0j determines the spread of the prior distribution of

treatment j , as visualized in Figure A.1. Large n0j results in a peaked distribution that

reflects more prior information, whereas small n0j results in a distribution with heavy tails

that conveys little prior information. Parameter n0j can be considered a prior sample size,

where each observation has the same influence on the decision as one joint response xj ,i .

2. Mean prior success probabilities θ0j ,k define the center of the prior distribution of success

probabilities θj , as visualized in Figure A.2. Similarly, mean prior treatment differences

δ0k reflect the center of the prior distribution of δ. When n0E = n0C and ϕ0
E = ϕ0

C ,

the prior distribution of the treatment difference δ is centered around the origin (i.e.,

δ0 = 0).

3. The size of ϕ0
j ,kl relative to θ0j ,kθ

0
j ,l determines the prior correlation between θj ,k and θj ,l
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(Olkin & Trikalinos, 2015):

ρθj ,kθj ,l =
ϕ0
j ,kl − θ0j ,kθ0j ,l√

θ0j ,k(1− θ0j ,k)θ0j ,l(1− θ0j ,l)
. (A.3)

As follows from Equation A.3, θj ,k and θj ,l are independent a priori if ϕ0
j ,kl = θ0j ,kθ

0
j ,l .

When ϕ0
j ,kl > θ0j ,kθ

0
j ,l , parameters are positively correlated, while parameters are

negatively correlated when ϕ0
j ,kl < θ0j ,kθ

0
j ,l .

When prior information is known, the introduced properties can be used to make informative

choices regarding these parameters. In absence of prior information however, a reasonable prior

distribution of success probabilities θj has 1) a small n0j , such that the impact on the decision

is limited; and 2) θj ,k = 1
2
, such that successes and failures are equally likely a priori for all

treatments j and all outcomes k . Although mathematically straightforward, we remark that

estimating prior hyperparameters in practice can be challenging when K is large.
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Finding weights that maximize efficiency requires maximizing the following function with

respect to w:

∑
s∗E ,s

∗
C

P(δ ∈ SCompensatory (w)|s∗E , s∗C )× P(s∗E , s
∗
C |θTE ,θTC ,ρT

δk ,δl
) (B.1)

=P(δ ∈ SCompensatory (w)|θTE ,θTC ,ρT
δk ,δl

)

where s∗E and s∗C are the anticipated response frequencies before data collection

θTE and θTC are the treatment effects in the population

ρT
δk ,δl

is the correlation between δk and δl in the population.

No analytical solution for Equation B.1 exists. We can however obtain a solution for w using

large sample theory, which dictates that the posterior distribution of δ can be approximated

with a multivariate normal distribution in case of a sufficiently large sample:

δ ∼ MVN(µ,Σ) (B.2)

where µ =(µ1, ... ,µK ) and

Σ has diagonal elements σ2 = (σ2
1, ... ,σ

2
K ) and off-diagonal elements σkl .

Consequently, the linear combination
∑K

k=1 wkδk has an approximate normal posterior

distribution with mean
∑K

k=1 wkµk and variance
∑K

k=1 w
2
kσ

2
k + 2

∑∑
k<l

wkwlσkl . The

probability that
∑K

k=1 wkδk > 0 then follows from the cumulative normal distribution:

P(
K∑

k=1

wkδk > 0) = 1− Φ

 0−
∑K

k=1 wkµk√∑K
k=1 w

2
kσ

2
k + 2

∑∑
k<l

wkwlσkl

 . (B.3)

Weights w that maximize the probability in Equation B.3 result in maximal efficiency. In

practice, computing efficient weights is less straightforward since µ and Σ are unknown. To

facilitate the choice of these parameters for the construction of a normal posterior distribution

of δ, we may consider hypothetical datasets of expected joint response frequencies s∗j for both

treatments j . These frequencies can be used to obtain a sample of δ, that is assumed to follow
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a normal distribution when the sample size nj and the number of draws are sufficiently large.

Such a sample provides estimates of µ, σ2 and σkl , that can be plugged in in Equation B.3.

We provide an example data configuration for K = 2 in Table B.1. This hypothetical dataset

would result in µ = (0.24, 0.08), σ2 = (0.005, 0.005) and σ12 = −0.001, such that optimal

weights equal w = (0.64, 0.36).

Table B.1: Example configuration of anticipated joint response frequencies s∗E
and s∗C for approximation of µ,σ2, and σ12 for two outcomes.

s∗E ,1 = 1 s∗E ,1 = 0 s∗C ,1 = 1 s∗C ,1 = 0

s∗E ,2 = 1 262 278 s∗C ,2 = 1 102 358
s∗E ,2 = 0 358 102 s∗C ,2 = 0 278 262

The procedure to find efficient weights simplifies when treatment differences are

uncorrelated, i.e., when σkl = 0. Maximum evidence is then obtained when weights w are

proportional to treatment difference δ and σ2
k = σ2

l . For example, when δ = (0.30, 0.10),

weights w = (0.75, 0.25) are optimal.
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The current appendix presents an algorithm with the procedure to arrive at a decision using

the multivariate analysis procedure for a group sequential or adaptive design.

Algorithm 2 Decision procedure for a group sequential or adaptive design

1 Initialize
a Choose decision rule

if Compensatory then specify weights w
if Single then specify k
end if

for each treatment j ∈ {E ,C} do
b Choose prior hyperparameters α0

j

end for
c Choose Type I error rate α and power 1− β
d Choose number of interim analyses M
e Determine decision threshold pcut
f Determine vector of sample sizes n(.)

j of length M

if group sequential design then nSD
j = nFDj ×nratio , where nFDj reflects the required

sample size for a fixed design and nratio reflects M proportions of the final sample
size at which to perform interim analyses
else if adaptive design then define nAD

j according to desired monitoring scheme
end if

2 Perform interim analyses
m← 0
repeat

a m← m + 1
b nj ← mth element of n(.)

j

c Collect data and evaluate evidence via Step 2 of Algorithm 1
until m = M or P(δ ∈ SSup|sE , sC ) > pcut

3 Make final decision
if P(δ ∈ SSup|sE , sC ) > pcut then conclude superiority
else conclude non-superiority
end if
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The Section Numerical evaluation (3.4) showed how accurate decision error rates could be

obtained with the proposed framework under a fixed design. However, the realization of

adequate error rates and efficient decisions depends on the accuracy of sample sizes, and

hence on adequate estimates of anticipated treatment differences and correlations. A design

based on interim analyses might improve statistical inference under parameter uncertainty,

which is especially relevant for the estimation of multiple parameters in multivariate analysis

(Berry et al., 2010; Jennison & Turnbull, 1999). Such trials monitor incoming data and

terminate data collection as soon as evidence exceeds a prespecified decision threshold. In the

current paper, we make a sharp distinction between two of these design types: adaptive and

group sequential designs. Here, adaptive designs evaluate the data according to an interim

monitoring scheme that does not rely on parameter estimates. Such a monitoring scheme and

a decision threshold suffice to start data collection. These designs allow for both early and

late termination if the treatment effect appears larger or smaller than anticipated respectively.

On the downside, efficiency may be compromised if the number of interim analyses high: A

(very) strict decision threshold is then needed to the control Type I error rate under repeated

decision-making (Rouder, 2014; Sanborn & Hills, 2014; Shi & Yin, 2019).

In contrast to adaptive designs, group sequential designs rely on anticipated parameters to

estimate a maximum sample size in advance, which is often similar to the sample size of a fixed

design. Interim analyses are performed at (a limited number of) prespecified proportions of this

sample size to allow for early termination. The potential for late termination is limited with

such a setup (Jennison & Turnbull, 1999). To control Type I error rates adequately, decision

threshold pcut should be adjusted to the number of interim analyses, and may differ per interim

analysis (Jennison & Turnbull, 1999; Shi & Yin, 2019). In practice the distinction between

group sequential and adaptive designs is less sharp than presented here: Expectations about

parameters often (roughly) inform the monitoring scheme in adaptive stopping to limit the

number of interim analyses, while conservative parameter estimates allow for late termination

of group sequential trials.

In the current appendix, we demonstrate how 1) error rates are influenced by uncertainty
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about parameters in a priori sample size estimation; and 2) designs with and without interim

analyses perform under this uncertainty. We considered seven different designs:

1. A fixed design with sample size nFDj computed with three different anticipated treatment

differences δn:

(a) True treatment differences (δn = δT )

(b) Overestimated treatment differences (δn = δT + (0.10, 0.10))

(c) Underestimated treatment differences (δn = δT − (0.10, 0.10))

2. A group sequential design with a maximum of M = 3 analyses, evaluated at sample

sizes nSD
j or until superiority is concluded. These sample sizes are computed with three

different anticipated treatment differences δn:

(a) True treatment differences (δn = δT )

(b) Overestimated treatment differences (δn = δT + (0.10, 0.10))

(c) Underestimated treatment differences (δn = δT − (0.10, 0.10))

3. An adaptive design with a maximum of M = 136 analyses, evaluated at sample sizes

nADj = nj ,1, ... , nj ,M , or until superiority is concluded. The first interim analysis is

performed at nADj ,1 = 5 and monitors every observation until 50 observations have been

made. Then the interim group size increases to 5 until nADj ,M = 500, such that

nAD
j = (5, 6, ... , 49, 50, 55, ... , 500).

Group sequential design We set up a group sequential design with equally spaced interim

analyses using the gsDesign package (Anderson, 2016). We based computations of interim

sample sizes nSD
j and interim decision threshold pSDcut on the sample size of a fixed design, nFDj ,

using the default settings of the gsDesign() function for a one-sided test with α = .05 and

β = .20.

Adaptive design Decision threshold pADcut was calibrated to reflect the desired Type I error

rate α. The procedure involves repeatedly evaluating a large number of simulated samples

from the distributions of least favorable values at sample sizes nAD
j at different values of pcut ,
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and selecting the decision threshold for which the empirical Type I error rate corresponds to

α.

Data generation and evaluation We generated 5, 000 samples to compare the seven trial

designs for the Compensatory decision rule with equal weights (Comp-E; w = (0.50, 0.50)) and

an uninformative prior distribution (α0
j = (0.01, 0.01, 0.01, 0.01)). We used decision thresholds

pFDcut = 0.95, pSDcut = 0.98, and pADcut = 0.9968, The generated datasets were evaluated using

the procedure in Algorithm 2.

D.1 Results

Tables D.1, D.2, and D.3 present the results of the comparison of designs. The performance

of fixed and group sequential designs depends on the correspondence between parameter

estimates for sample size estimation and the true parameters. When parameters were specified

correctly (i.e., δn = δT ), both designs resulted in a satisfactory Type I error rate and power

(Table D.1). The group sequential design was generally more efficient than the fixed design

(Table D.2). In this situation, the adaptive design was less efficient than the other designs,

since 1) trials are free to continue until superiority has been concluded, resulting in a high (but

uncontrolled) power at the expense of a larger sample size; and 2) the increased number of

interim analyses in an adaptive design requires a higher decision threshold, which accompanies

- on average - a larger average sample size to conclude superiority.

The benefits of interim analyses in terms of decision error rates and efficiency were

particularly apparent when anticipated treatment differences did not correspond to the true

treatment difference. A group sequential design is mainly advantageous over a fixed design

when sample sizes were based on underestimated treatment differences (i.e., δn < δT ):

Probabilities to conclude superiority correctly were well above the planned .80 in both

designs, but the group sequential design is more efficient. The adaptive design was especially

powerful when anticipated treatment differences were overestimated (i.e., δn > δT ): Both

the fixed and group sequential design had a limited power to conclude superiority.
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While the adaptive and group sequential designs outperformed the fixed design in terms of

power and efficiency under parameter uncertainty, they do result in upward bias (Table D.3).

This effect can be attributed to two different aspects of these designs. First, the effect is most

apparent when the sample size is underestimated (δn > δT ) . Here, the studies that conclude

superiority are those with early stops, because their effect size at the termination point is larger

than the true effect size (Emerson et al., 2007). The effect size is then averaged over a selection

of the (upper part of the) sampling distribution of treatment differences. When sample sizes

are sufficiently large to allow for timely (δn = δT ) or late (δn < δT ) terminations, these high

effect sizes are partially compensated by the samples with smaller effect sizes (Schönbrodt

et al., 2017).

Second, when naively pooled, average effect sizes from trials that stopped early for efficacy

are affected by instability of treatment effects early in data collection (Goodman, 2007; Schou

& Marschner, 2013; Senn, 2014; Zhang et al., 2012). With few data points, new observations

are quite influential resulting in large variation around the treatment effect in the sample. In

contrast, the treatment effect estimate stabilizes as data accumulate (Zhang et al., 2012).

Trials that allow for early efficacy stopping exploit the variation of small samples to stop trials

at extreme values, but only from the upper tail of the distribution. Extreme treatment effects

in the other direction - indicating treatment futility - are given the opportunity to regress to

the mean by adding new observations. Pooling these extreme values from early stops with

the stabilized values from later stops then results in an overestimated treatment effect. Since

our adaptive design has more interim analysis in the beginning of data collection, the adaptive

design has more opportunities to include extreme values, resulting in a larger bias compared

to the group sequential design.
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Table D.1: P(Conclude superiority) for different trial designs (AD = adaptive
design, FD = fixed design, SD = group sequential design) and anticipated
treatment differences (δn) after applying the Compensatory decision rule with
equal weights.

DGM AD FD SD
δn = δT δn < δT δn > δT δn = δT δn < δT δn > δT

1.1 0.001 0.000 0.000 0.000 0.000 0.000 0.000
1.2 0.004 0.000 0.000 0.000 0.000 0.000 0.000
1.3 0.002 0.000 0.000 0.000 0.000 0.000 0.000

2.1 0.047 0.049 0.047 0.052 0.053 0.045 0.051
2.2 0.034 0.056 0.050 0.046 0.046 0.047 0.046
2.3 0.031 0.049 0.046 0.056 0.051 0.054 0.050

3.1 0.990 0.807 1.000 0.366 0.796 1.000 0.389
3.2 0.934 0.806 1.000 0.357 0.795 1.000 0.367
3.3 0.825 0.800 1.000 0.345 0.804 1.000 0.343

4.1 1.000 0.811 1.000 0.545 0.832 1.000 0.615
4.2 1.000 0.813 0.999 0.520 0.810 1.000 0.569
4.3 1.000 0.804 1.000 0.514 0.806 0.999 0.534

5.1 1.000 0.881 0.975 0.837 0.925 0.982 0.899
5.2 1.000 0.831 0.967 0.693 0.871 0.967 0.790
5.3 1.000 0.809 0.958 0.696 0.842 0.969 0.753

6.1 1.000 0.824 1.000 0.552 0.835 1.000 0.633
6.2 1.000 0.805 1.000 0.512 0.819 0.999 0.564
6.3 1.000 0.801 0.999 0.514 0.799 1.000 0.541

7.1 0.007 0.000 0.000 0.000 0.000 0.000 0.000
7.2 0.010 0.000 0.000 0.000 0.000 0.000 0.000
7.3 0.007 0.000 0.000 0.000 0.000 0.000 0.000

8.1 1.000 0.808 1.000 0.494 0.811 1.000 0.538
8.2 1.000 0.804 1.000 0.464 0.808 1.000 0.497
8.3 1.000 0.805 1.000 0.461 0.802 1.000 0.471
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Table D.2: Average sample size to correctly conclude superiority for different
trial designs (AD = adaptive design, FD = fixed design, SD = group
sequential design) and anticipated treatment differences (δn) after applying the
Compensatory decision rule with equal weights. Data generating mechanisms
with a hyphen should not result in treatment superiority.

DGM AD FD SD
δn = δT δn < δT δn > δT δn = δT δn < δT δn > δT

1.1 - - - - - - -
1.2 - - - - - - -
1.3 - - - - - - -

2.1 - - - - - - -
2.2 - - - - - - -
2.3 - - - - - - -

3.1 159 108 1000 26 91 354 25
3.2 211 154 1000 38 130 403 37
3.3 243 199 1000 49 169 452 48

4.1 39 26 108 11 20 53 9
4.2 60 38 154 16 31 77 15
4.3 80 49 199 21 41 101 20

5.1 9 6 11 4 4 6 3
5.2 14 9 16 5 7 10 4
5.3 18 11 21 7 8 14 6

6.1 37 25 103 11 19 50 9
6.2 57 36 147 15 30 74 14
6.3 76 47 191 20 39 96 19

7.1 - - - - - - -
7.2 - - - - - - -
7.3 - - - - - - -

8.1 62 41 298 15 34 114 13
8.2 94 59 426 22 49 166 21
8.3 123 76 553 28 65 214 27
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Table D.3: Average bias for different trial designs (AD = adaptive design,
FD = fixed design, SD = group sequential design) and anticipated treatment
differences (δn) after applying the Compensatory decision rule with equal
weights.

DGM AD FD SD
δn = δT δn < δT δn > δT δn = δT δn < δT δn > δT

1.1 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) (90.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
1.2 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) (90.00, 90.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
1.3 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 90.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)

2.1 ( 0.01, 0.01) (90.00, 90.00) ( 0.00, 0.00) (90.00, 0.00) ( 0.00, 90.00) ( 0.00, 90.00) (90.00, 0.00)
2.2 ( 0.01, 0.01) ( 0.00, 0.00) ( 0.00, 90.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) (90.00, 0.00)
2.3 ( 0.01, 0.01) (90.00, 90.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 90.00) ( 0.00, 0.00)

3.1 ( 0.05, 0.05) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.01, 0.01) ( 0.00, 0.00) ( 0.02, 0.01)
3.2 ( 0.05, 0.05) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 90.00) ( 0.01, 0.01) ( 0.00, 0.00) ( 0.01, 0.01)
3.3 ( 0.05, 0.05) ( 0.00, 0.00) ( 0.00, 0.00) (90.00, 90.00) ( 0.01, 0.01) ( 0.01, 0.01) ( 0.01, 0.01)

4.1 ( 0.07, 0.07) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 90.00) ( 0.03, 0.03) ( 0.01, 0.01) ( 0.04, 0.05)
4.2 ( 0.07, 0.08) ( 0.00, 0.00) ( 0.00, 0.00) (90.00, 90.00) ( 0.03, 0.03) ( 0.01, 0.01) ( 0.04, 0.04)
4.3 ( 0.08, 0.08) ( 0.00, 0.00) ( 0.00, 0.00) (90.00, 0.00) ( 0.02, 0.02) ( 0.01, 0.01) ( 0.02, 0.03)

5.1 ( 0.04, 0.04) ( 0.00, 90.01) ( 0.00, 0.00) (90.01, 0.00) ( 0.03, 0.04) ( 0.04, 0.04) ( 0.06, 0.06)
5.2 ( 0.07, 0.07) (90.01, 90.01) ( 0.00, 0.01) (90.00, 0.00) ( 0.05, 0.04) ( 0.04, 0.04) ( 0.08, 0.08)
5.3 ( 0.09, 0.09) ( 0.00, 90.01) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.06, 0.06) ( 0.04, 0.04) ( 0.07, 0.07)

6.1 ( 0.06, 0.07) ( 0.00, 0.00) ( 0.00, 90.00) (90.01, 0.01) ( 0.03, 0.03) ( 0.01, 0.02) ( 0.04, 0.06)
6.2 ( 0.07, 0.07) ( 0.00, 90.00) ( 0.00, 90.00) (90.00, 90.00) ( 0.02, 0.03) ( 0.02, 0.02) ( 0.04, 0.03)
6.3 ( 0.08, 0.08) ( 0.00, 90.00) ( 0.00, 90.00) ( 0.00, 90.00) ( 0.02, 0.02) ( 0.01, 0.01) ( 0.02, 0.03)

7.1 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
7.2 ( 0.01, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) (90.00, 90.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
7.3 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) (90.00, 90.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)

8.1 ( 0.07, 0.06) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.02, 0.02) ( 0.00, 0.00) ( 0.02, 0.03)
8.2 ( 0.07, 0.07) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 90.00) ( 0.02, 0.02) ( 0.01, 0.00) ( 0.02, 0.02)
8.3 ( 0.07, 0.07) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.02, 0.02) ( 0.00, 0.00) ( 0.02, 0.02)

D.2 Discussion

Each of the designs is compatible with the proposed multivariate decision-making framework

and has specific advantages. Although fixed designs perform well under accurate sample size

estimation, a priori sample size estimation is difficult when multiple parameters are unknown.

Sequential or adaptive designs may be beneficial to deal with this parameter uncertainty, albeit

at the expense of bias. Whereas adaptive designs deal most flexibly with parameter uncertainty,

group sequential designs limit bias more than adaptive designs.

We remark that adaptive designs in particular have their practical challenges. First,

updating adaptive designs might require a large logistic effort, which increases with the size
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of the study. These designs are therefore easier to implement in small phase I or II studies

compared to confirmatory phase II or III studies. Second, we find that the current literature

does not offer clear guidance on the specification of adaptive design parameters. Further

elaboration on the choice of these parameters would undoubtedly serve trials that stop data

collection adaptively.
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Numerical evaluation: Comparison

of prior specifications
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To demonstrate the influence of prior information on the performance of the Compensatory

decision rule, we specified six different sets of prior hyperparameters, that are presented in

Table E.1. Two of these prior specifications are assumed to be uninformative (1− 2). Prior 1

is the non-informative prior that we used in the Numerical evaluation Section (3.4) and serves

as a reference prior in this comparison. Prior 2 is Jeffreys’s prior, which is well-known for

its property to remain invariant under transformation of parameters (Yang & Berger, 1996).

This is useful since our main interest is typically in the transformed parameters δ rather

than the marginal probabilities θj or the cell probabilities ϕj , on which the treatment-specific

prior distributions are specified. Four informative prior specifications (priors 3 − 6) include

20 additional observations (i.e., n0j = 20). These 20 additional observations show the effects

on decisions when the number of prior observations is either higher or lower than sample size

nj . The former occurs in data generating mechanisms with large treatment differences that

require sample sizes smaller than 20 (e.g., treatment difference 5), while the latter occurs

when treatment differences are small and sample sizes are larger (e.g., treatment difference 3).

Prior specifications 3− 6 differ on the correspondence between the prior treatment difference

δ0 and the true treatment difference δT used for data generation. Specifically, we included

prior differences that are identical (prior 3), smaller (prior 4), larger (prior 5) or opposite (prior

6) to the true treatment difference. The bivariate beta distributions of prior specifications 1,

2, and 3 for data generating mechanism 2.2 are visually presented in Figure A.1. We ran the

introduced procedure for a fixed design (Steps 2 and 3 of Algorithm 1), using sample size nj

for a fixed design estimated based on true treatment differences. These sample sizes were also

used in Section Numerical evaluation (3.4) and presented in Table 3.3.
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Table E.1: Prior specifications used for numerical evaluation. Prior
hyperparameters α0

j = n0j ϕ
0
j . True parameters ϕT

E , ϕT
C and δT can be obtained

via the simulation conditions presented in Table 3.1.

Prior n0j ϕ0
E ϕ0

C δ0

1 1
25

1
4

1
4 0

2 2 1
4

1
4 0

3 20 ϕT
E ϕT

C δT

4 20 ϕT
E − 0.05 ϕT

C + 0.05 δT − 0.10

5 20 ϕT
E + 0.05 ϕT

C − 0.05 δT + 0.10

6 20 ϕT
C ϕT

E −δT

E.1 Results

The two uninformative priors do not noticeably influence the probability to conclude superiority

(Table E.2) or the average treatment effect (Table E.3) in the majority of data generating

mechanisms. An exception is a large treatment difference (5.1 − 5.3) where Jeffreys’s prior

(i.e., prior 2) lowered power and biased the treatment effect downwards. Here, sj is too small

to satisfy αn
j ≈ sj . A smaller prior sample size n0j (prior 1) resulted in an unbiased estimate

of the average treatment difference.

An informative prior distribution influences the probability to conclude superiority as well

as the average treatment effect, depending on prior treatment difference δ0. Prior information

improves decision-making when the prior treatment effect equals the true treatment effect

(i.e., δ0 = δT ; prior 3). This situation increases power, without influencing Type I error or

the average posterior treatment effect

In contrast, prior information affects the decision when prior and true treatment effects do

not correspond. When the prior treatment effect is less strong than the true treatment effect

(i.e., δ0 < δT , prior 4), the Type I error as well as the probability to conclude superiority

correctly are lowered, although the effect is masked in treatment differences 4 − 6 by the

(relatively large) number of prior observations n0j . Moreover, the average posterior treatment

effect is lower than the treatment effect of the data δT especially when the treatment difference

is large and the required sample size is low (5.1− 5.3).
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When the prior treatment effect is stronger than the true treatment effect (i.e., δ0 > δT ,

prior 5), the Type I error and the probability to conclude superiority are above the planned

.05 and .80. Moreover, the average posterior treatment effect exceeds the treatment effect of

the data δT , in particular when the treatment effect is large (5.1 − 5.3). An opposite prior

treatment effect (i.e., δ0 = −δT , prior 6) results in a lower probability to conclude superiority

as well as an average posterior treatment effect that differs from true treatment difference δT .

In general, the effect of prior information is strongest in 5.1−5.3 and 8.1−8.3, where prior

sample size n0j is relatively large compared to sample size nj , resulting in a larger influence of α0
j

on αn
j . Note that in practice, a difference between results with and without prior information

signals a conflict between the informative prior and the data, and does not necessarily reflect

an invalid decision.
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Table E.2: P(Conclude superiority) for six different prior specifications (see
Table E.1) after applying the Compensatory decision rule with equal weights.

DGM 1 2 3 4 5 6

1.1 0.000 0.000 0.000 0.000 0.000 0.000
1.2 0.000 0.000 0.000 0.000 0.000 0.000
1.3 0.000 0.000 0.000 0.000 0.000 0.000

2.1 0.049 0.055 0.049 0.037 0.067 0.049
2.2 0.056 0.050 0.049 0.038 0.054 0.055
2.3 0.049 0.048 0.045 0.035 0.064 0.053

3.1 0.807 0.798 0.872 0.753 0.951 0.606
3.2 0.806 0.803 0.855 0.775 0.911 0.674
3.3 0.800 0.793 0.841 0.782 0.895 0.688

4.1 0.811 0.791 0.987 0.905 0.999 0.043
4.2 0.813 0.794 0.967 0.867 0.990 0.178
4.3 0.804 0.802 0.939 0.854 0.979 0.313

5.1 0.881 0.704 1.000 1.000 1.000 0.000
5.2 0.831 0.787 1.000 1.000 1.000 0.000
5.3 0.809 0.761 1.000 0.998 1.000 0.000

6.1 0.824 0.789 0.990 0.900 0.999 0.030
6.2 0.805 0.797 0.965 0.874 0.991 0.145
6.3 0.801 0.792 0.946 0.856 0.984 0.282

7.1 0.000 0.000 0.000 0.000 0.000 0.000
7.2 0.000 0.000 0.000 0.000 0.000 0.000
7.3 0.000 0.000 0.000 0.000 0.000 0.000

8.1 0.808 0.792 0.957 0.837 0.992 0.224
8.2 0.804 0.799 0.925 0.823 0.975 0.387
8.3 0.805 0.793 0.896 0.811 0.955 0.480
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Table E.3: Average bias for six different prior specifications (see Table E.1)
after applying the Compensatory decision rule with equal weights.

DGM 1 2 3 4 5 6

1.1 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.01, 0.01)
1.2 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.01, 0.01)
1.3 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.01, 0.01)

2.1 (90.00, 90.00) ( 0.00, 0.00) (90.00, 0.00) (90.00, 90.00) ( 0.00, 0.00) ( 0.00, 90.00)
2.2 ( 0.00, 0.00) (90.00, 90.00) (90.00, 90.00) (90.00, 90.00) ( 0.00, 0.00) ( 0.00, 90.00)
2.3 (90.00, 90.00) ( 0.00, 90.00) (90.00, 90.00) (90.00, 90.00) ( 0.00, 0.00) (90.00, 90.00)

3.1 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) (90.02, 90.02) ( 0.01, 0.02) (90.03, 90.03)
3.2 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) (90.01, 90.01) ( 0.01, 0.01) (90.02, 90.02)
3.3 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) (90.01, 90.01) ( 0.01, 0.01) (90.02, 90.02)

4.1 ( 0.00, 0.00) (90.01, 90.02) ( 0.00, 0.00) (90.04, 90.04) ( 0.04, 0.04) (90.17, 90.17)
4.2 ( 0.00, 0.00) (90.01, 90.01) ( 0.00, 0.00) (90.03, 90.04) ( 0.04, 0.03) (90.14, 90.14)
4.3 ( 0.00, 0.00) (90.01, 90.01) ( 0.00, 0.00) (90.03, 90.03) ( 0.03, 0.03) (90.11, 90.12)

5.1 ( 0.00, 90.01) (90.10, 90.10) ( 0.00, 0.00) (90.08, 90.08) ( 0.08, 0.08) (90.62, 90.62)
5.2 (90.01, 90.01) (90.07, 90.07) ( 0.00, 0.00) (90.07, 90.07) ( 0.07, 0.07) (90.55, 90.55)
5.3 ( 0.00, 90.01) (90.06, 90.06) ( 0.00, 0.00) (90.06, 90.06) ( 0.06, 0.07) (90.52, 90.52)

6.1 ( 0.00, 0.00) (90.03, 0.00) ( 0.00, 90.00) (90.05, 90.05) ( 0.04, 0.04) (90.36, 0.00)
6.2 ( 0.00, 90.00) (90.02, 0.00) ( 0.00, 90.00) (90.04, 90.03) ( 0.03, 0.04) (90.29, 90.00)
6.3 ( 0.00, 90.00) (90.02, 90.00) ( 0.00, 0.00) (90.03, 90.03) ( 0.03, 0.03) (90.24, 90.00)

7.1 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) (90.01, 0.02)
7.2 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) (90.01, 0.02)
7.3 ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) (90.01, 0.02)

8.1 ( 0.00, 0.00) (90.01, 0.00) ( 0.00, 0.00) (90.03, 90.03) ( 0.03, 0.03) (90.16, 90.05)
8.2 ( 0.00, 0.00) (90.01, 0.00) ( 0.00, 0.00) (90.03, 90.02) ( 0.03, 0.03) (90.12, 90.04)
8.3 ( 0.00, 0.00) (90.01, 0.00) ( 0.00, 0.00) (90.02, 90.02) ( 0.02, 0.02) (90.10, 90.03)
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Details of posterior computation
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The current section describes the Gibbs sampling procedure used to obtain parameters. To

simplify notations, we omit the dependence on x in denoting functions that rely on covariates

(ϕ, θ).

Starting from the likelihood of individual K -variate response yi (Equation 4.2), the

likelihood of n K -variate responses follows from taking the product over n individual joint

response probabilities in Q response categories:

l(y|β, x) =
n∏

i=1

Q−1∏
q=1

 exp [ψq
i ]

Q−1∑
r=1

exp [ψr
i ] + 1


I (yi=q) 1

Q−1∑
r=1

exp [ψr
i ] + 1


I (yi=Q)

. (F.1)

Following Polson et al. (2013), we introduce the Pólya-gamma variable by rewriting the

multivariate likelihood in Equation F.1 as a series of binomial likelihoods. The likelihood of y

conditional on the parameters of the qth response category, βq, then equals:

l(y|βq,β−q) =
n∏

i=1

(
exp [ηqi ])

exp [ηqi ] + 1

)I (yi=q)(
1

exp [ηqi ] + 1

)1−I (yi=q)

(F.2)

where −q refers to all rows in H not having index q and ηqi = ψq
i − ln

 ∑
m ̸=Hq·

exp [ψm
i ]

 .

The Pólya-Gamma transformation to a Gaussian distribution relies on the following equality

(Polson et al., 2013):

exp [ηqi ]

exp [ηqi ] + 1
= 2exp

[
(yi −

1

2
)ηqi

] ∫ ∞

0

exp

[
−ωiη

q
i
2

2

]
p(ωq

i )dω
q
i (F.3)

where ωq
i has a Pólya-Gamma distribution, i.e., p(ωq

i ) ∼ PG (1,ψq
i ).

If we use the equality in Equation F.3, the binomial likelihood in Equation F.2 can be

transformed to a multivariate Gaussian likelihood by including an auxiliary Pólya-Gamma
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variable ωq
i (Polson et al., 2013):

l(y|βq,β−q) =
n∏

i=1

exp [ηqi ]

exp [ηqi ] + 1
(F.4)

=
n∏

i=1

2exp
[
(yi −

1

2
)ηqi

] ∫ ∞

0

exp

[
−ωq

i η
q
i
2

2

]
p(ωq

i )dω
q
i

=
n∏

i=1

exp
[
κqi ω

q
i η

q
i −

1

2
(ηqi )

2ωq
i

]
PG (ωq

i |1, 0)

∝ exp
[
1

2
(2κqωqηq − ωq(ηq)2

]
∝ exp

[
−1

2
(κq − ηq)TΩq(κq − ηq)

]
= exp

[
−1

2
(κq − Xβq + ln[

∑
m ̸=q

exp(Xβm)])TΩq

(κq − Xβq + ln[
∑
m ̸=q

exp [Xβm]]

]
,

where κqi =
I (yi=Hq···)− 1

2

ωq
i

, κq = (κq1, ... ,κ
q
n), ω

q = (ωq
1 , ... ,ω

q
n), and Ωq = diag(ωq).

F.1 Prior distribution

The Gaussian likelihood in Equation F.4 is conditionally conjugate with a normal prior

distribution on regression coefficients βq:

βq ∼ N(bq,B0q) (F.5)

where bq is the vector of prior means of regression coefficient vector βq and B0q is a P ×

P symmetric square matrix reflecting the prior precision of regression coefficients βq. A

researcher who is willing to include prior information regarding treatment effects into the

analysis, has several options to specify prior hyperparameters for a normally distributed prior

that is compatible with the Gibbs sampling procedure (e.g., Ibrahim & Chen, 2000; Sullivan

& Greenland, 2012). We discuss the specification of informative prior means bq in terms of

joint response probabilities ϕ in the next Appendix.
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F.2 Posterior distribution

Bayesian statistical inference is done via the posterior distribution which is given by:

p(β|y) ∝p(y|β, x)p(β), (F.6)

The combination of a Pólya-Gamma transformed Gaussian likelihood (Equation F.4) and a

normal prior distribution (Equation F.5) respectively is proportional to a normally distributed

posterior distribution, conditionally on Pólya-Gamma variables in ωq (Polson et al., 2013):

p(βq|Y,Ωq) ∝p(y|βq,ωq)p(βq) (F.7)

∝ exp

[
−1

2
(κq − Xβq + ln[

∑
m ̸=q

exp [Xβm]])TΩq

(κq − Xβq + ln[
∑
m ̸=q

exp [Xβm]])

]
×

exp
[
−1

2
(βq − bq)T (Bq)−1(βq − bq)

]
∝N

(
Vq(XTΩq(κq + ln[

∑
m ̸=q

exp [Xβm]]) + (Bq)−1bq),Vq

)

where Vq = (XTΩqX + (Bq)−1)−1. Similarly, subject-specific variable ωq
i follows a Pólya-

Gamma distribution that depends on regression coefficients βq via linear predictor ψq
i .

Updating these two conditional distributions via a Gibbs sampling procedure results in a

sample from the posterior distribution of β. Specifically, the sampling procedure involves

iterating L times over the following two steps for q = 1, ... ,Q − 1, while keeping βQ fixed at

zero:

1. Draw a vector of P + 1 regression coefficients βq|ωq from a multivariate normal

distribution with mean vector mq and precision matrix Vq.

βq|ωq ∼ N(mq,Vq) (F.8)
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where [Vq]−1 = XΩqX+ [V0q]−1

mq = Vq(X(κq +Ωqc) + [V0q]−1m0q)

c =

ln

(∑
m ̸=q

exp [ψm
i ]

)n

i=1

 .

2. Sample ωq|βq as a vector of n draws ωq
i |βq from a Pólya-Gamma distribution:

ωq
i |β

q ∼ PG (1,ψq
i − ln

∑
m ̸=q

exp [ψm
i ]). (F.9)

The Gibbs sampling procedure results in a sample of L sets of regression coefficients from the

posterior distribution of β.
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Specification of prior means of
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In the current Section, we introduce a procedure to determine prior means, based on beliefs

regarding success probabilities and correlations between them. We outline the procedure for

two outcome variables and a linear predictor ψ with one covariate and an interaction between

the treatment and the covariate:

ψq
T = βq

0 + βq
1T + βq

2 x + βq
3 x × T (G.1)

First, choose xL and xH as low and high values of covariate x respectively. Next, specify

success probabilities and correlations θT (x
L), ρT (x

L), θT (xH), and ρT (x
H) for each

treatment T that accompany the low and high values of covariates respectively. These

success probabilities θT (x .) and correlations ρT (x .) can be transformed to joint response

probabilities ϕT (x
.) via the following set of equations:

ϕ11
T (x .) = ρT (x

.)
√
θ1T (x

.) [1− θ1T (x .)] θ2T (x .) [1− θ2T (x .)] + θ1T (x
.)θ2T (x

.) (G.2)

ϕ10
T (x .) = θ1T (x

.)− ϕ11
T (x .)

ϕ01
T (x .) = θ2T (x

.)− ϕ11
T (x .)

ϕ00
T (x .) = 1− θ1T (x .)− θ2T (x .) + ϕ11

T (x .)

For each response category q, joint responses ϕq.
T can be transformed to linear predictor

ψq.
T using the multinomial logistic link function in Equation 4.2.

Solving these linear predictors for βq results in the following definitions of the elements in

βq:

βq
0 =

xHψq
0 (x

L)− xLψq
0 (x

H)

xH − xL (G.3)

βq
1 =

xH
[
ψq
1 (x

L)− ψq
0 (x

L)
]
+ xL

[
ψq
0 (x

H)− ψq
1 (x

H)
]

xH − xL

βq
2 =

ψq
0 (x

H)− ψq
0 (x

L)

xH − xL

βq
3 =

ψq
1 (x

H)− ψq
0 (x

H)− ψq
1 (x

L) + ψq
0 (x

L)

xH − xL
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For example, if we would believe that treatment have the following parameters:

θL1 = (0.60, 0.70), ρL1 = −0.30

θH1 = (0.40, 0.30), ρH1 = −0.30

θL0 = (0.40, 0.30), ρL0 = −0.30

θH0 = (0.60, 0.70), ρH0 = −0.30,

then the regression coefficients would be as presented in Table G.1.

Table G.1: Example of means of the prior distribution of regression coefficients

q = 1 q = 2 q = 3 q = 4

βq
0 -0.000 0.766 0.766 0.000

βq
1 0.000 0.000 0.000 0.000

βq
2 1.902 0.781 1.121 0.000

βq
3 -3.804 -1.562 -2.241 0.000
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Algorithm 3 Transformation of posterior regression coefficients to posterior joint response
probabilities based on fixed covariate values.

Define x = x2, ... , xP as a vector of covariate values of interest
Let βQ = (0, ... , 0)

1: for draw (l)← 1 : L do
2: for treatment T ← 0 : 1 do
3: for joint response q ← 1 : Q do
4: Compute ψq(l)

T = β
q(l)
0 + β

q(l)
1 T + β

q(l)
2 x + β

q(l)
3 x × T

5: Compute ϕq(l)
T =

exp
[
ψ
q(l)
T

]
Q−1∑
r=1

exp
[
ψ

r(l)
T

]
+ 1

6: end for
7: end for
8: end for

Algorithm 4 Transformation of posterior regression coefficients to posterior joint response
probabilities based on empirical marginalization.

Let βQ = (0, ... , 0)
1: for draw (l)← 1 : L do
2: for subject i ← 1 : n do
3: for joint response q ← 1 : Q do
4: Compute ψq(l)

i = β
q(l)
1 Ti + β

q(l)
2 xi + β

q(l)
3 xi × Ti

5: Compute ϕq(l)
i =

exp
[
ψ
q(l)
i

]
Q−1∑
r=1

exp
[
ψ

r(l)
i

]
+ 1

6: for T ← 0 : 1 do
7: Compute ϕq(l)

T (x) = 1
n∑

i=1

I (Ti = T )

ϕ
q(l)
i I (Ti = T )

8: end for
9: end for

10: end for
11: end for
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The simulation study in Section 4.4 showed that mean estimates of regression coefficients

were asymptotically unbiased. Bias was negligible (< .01) in conditions with a sufficiently

large sample, while we observed some bias in conditions with smaller samples (DGM 3.1, 3.2,

4.1, and 4.2 under the Any and Compensatory decision rules). Of these conditions, bias was

most prominent in data generating mechanisms 4.1 and 4.2 under the sample sizes used for

the Any (n = 21) and Compensatory (n = 29) rules. The histograms of median regression

coefficient for one of these conditions (DGM 4.2, Compensatory rule) are shown in Figure I.1,

revealing that some regression coefficients were skewed in the extreme direction.

The bias in regression coefficients is a well-documented property of the (non-linear) logistic

transformation (e.g., Firth, 1993). When bias was mild, the multinomial logistic transformation

needed to obtain joint responses (Equation 4.2) appeared to normalize the skewed posterior

samples of regression coefficients. More severe bias in conditions with smaller sample sizes was

not fully corrected in the transformation steps. Treatment effect estimation based on fixed

values under DGMs 4.1 and 4.2 resulted in treatment differences with absolute biases up to

0.077 for the Any and Compensatory rules, as shown in Table 4.3. Bias appeared slightly more

severe when the covariate was discrete, compared to a continuous covariate. The reference

and marginalization approaches could estimate treatment effects without bias, regardless of

sample size.
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q = 1 q = 2 q = 3

b1

0

2

-11 0 17 -9 0 14 -11 0 11

b2

0

2

b3

0

2

b4

0

2

-11 0 17 -9 0 14 -11 0 11

True value

Figure I.1: Histograms of median regression coefficients fitted for application
of the Compensatory rule under DGM 4.2.
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J.1 Random effects model

Bayesian analysis relies on the posterior distribution of regression coefficients, which is

proportional to the likelihood of the data and the prior distribution:

p(γj ,γ,Σ|y) ∝p(y|γj)p(γj |γ,Σ)p(γ)p(Σ). (J.1)

The multinomial logistic likelihood (Equation 5.2) can be expanded with a Pólya-Gamma

auxiliary variable to suit a Gibbs sampling procedure. This expansion relies on the following

equality (Polson et al., 2013):

p((yj = hq)|γq
j ,γ

−q
j ,ωq

j ) =
exp (xjiγ

q
j )

Q−1∑
r=1

exp (xjiγ
r
j ) + 1

, (J.2)

∝ exp
[
−1

2
(κq

j − η
q
j )

TΩq
j (κ

q
j − η

q
j )

]
,

where Xj is a matrix filled with nj rows of covariate vectors xji and

ηq
j = Xjγ

q
j − ln[

∑
m ̸=q

exp(Xjγ
m
j )], κ

q
j =

I (yj=hq)− 1
2

ωq
j

.

Equation J.2 can be recognized as the kernel of a multivariate Gaussian likelihood of

working variable κq
j (Polson et al., 2013):

κq
j ∼ N

(
ηq
j , {Ω

q
j }

−1
)

(J.3)

Here, Ωq
j reflects the diagonal matrix of Pólya-Gamma distributed variables

ωq
j = (ωq

j1, ... ,ω
q
jnj
). A Gibbs sampler can be constructed when the likelihood in Equation J.3

is combined with multivariate normal prior distributions on random regression coefficients

γq
j |γq,Σq and mean random regression coefficients γq, and an inverse-Wishart prior
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distribution on covariance matrix Σq:

γq
j ∼ N(γq,Σq) (J.4)

γq ∼ N(gq,Gq)

Σq ∼ W−1(j0,Sq)

The resulting Gibbs sampler consists of the following steps:

1. Sample mean regression coefficients:

γq(l) ∼ N

(
Vq

γ({Σq(l−1)}−1
J∑

j=1

γ
q(l−1)
j + Gqgq),Vq

γ

)

with prior mean vector gq, prior precision matrix Gq and posterior variance matrix Vγ =

(J{Σq(l−1)}−1 + Gq)−1.

2. Sample covariance matrices of regression coefficients:

Σq(l) ∼ W−1

(
j0 + J ,Sq +

J∑
j=1

(
γ
q(l−1)
j − γq(l)

)(
γ
q(l−1)
j − γq(l)

)T)

with prior hyperparameters j0 ≥ P and Sq.

3. For each j , sample random regression coefficients:

γ
q(l)
j ∼ N

(
Vq

γq
j
(XjΩ

q(l−1)
j (κ

q(l−1)
j + ln[

∑
m ̸=q

exp(Xjγ
m(l)
j )]) + {Σq(l)}−1γq(l)),Vq

γj

)

with prior mean vector γq(l), prior precision matrix Σq(l), posterior variance matrix

Vq
γj

= (Xj
TΩq(l−1)

j Xj + {Σq(l)}−1)−1, and diagonal matrix of Pólya-Gamma variables

Ωq(l−1)
j = diag(ωq(l−1)

j1 , ... ,ω
q(l−1)
jnj

).

4. For each j and i , sample Pólya-Gamma variables:

ω
q(l)
ji ∼ PG (1, η

q(l)
ji )
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The remainder of this section shows the derivations of the full conditional distributions.

J.1.1 Deriving the likelihood function

The following equality forms the basis to rewrite the multinomial likelihood in Equation 5.2 as

a Gaussian likelihood (Polson et al., 2013):

p((yj = hq)|γj ,ωq
j , xj) =

exp (xjiγ
q
j )

Q−1∑
r=1

exp (xjiγ
r
j ) + 1

, (J.5)

=

nj∏
i=1

2 exp

[
κqjiω

q
jiη

q
ji

]∫ ∞

0

exp

[
−ωq

ji(η
q
ji)

2

2

]
p(ωq

ji)dω
q
ji

where ωq
ji ∼ PG (1, ηqji) is a Pólya-Gamma distributed variable,

where ηqji = xjiγ
q
j − ln

[∑
m ̸=q

exp(xjiγm
j )

]
,

and where working variable κq
j =

I (yj=hq)− 1
2

ωq
j

.

Further algebraic transformation results in the kernel of a Gaussian likelihood:

p((yj = hq)|.) =
nj∏
i=1

2 exp

[
κqjiω

q
jiη

q
ji

]∫ ∞

0

exp

[
−ωq

ji(η
q
ji)

2

2

]
p(ωq

ji)dω
q
ji (J.6)

∝ exp

[
1

2
(κq

j ω
q
j η

q
j − ω

q
j (η

q
j )

2

]

∝ exp

[
−1

2

(
κq

j − η
q
j

)T
Ωq

j

(
κq

j − η
q
j

)]
,

Hence, working variable κq
j is multivariate normally distributed:

κq
j ∼ N

(
ηq
j , {Ω

q
j }

−1
)
. (J.7)
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J.1.2 Deriving conditional posterior distributions

Random regression coefficients γq
j

Using the likelihood in Equation J.7 and prior distribution γq
j ∼ N(γq, {Σq}), the

conditional posterior distribution of random regression coefficients γq
j is also a multivariate

normal distribution:

p(γq
j |.) ∝p(yj |γ

q
j ,γ

−q
j ,ωq

j , x)p(γ
q
j ) (J.8)

∝ exp

[
−1

2

(
κq

j − η
q
j

)T
Ωq

j

(
κq

j − η
q
j

)]
×

exp

[
−1

2

(
γq
j − γ

q
)T {Σq}−1

(
γq
j − γ

q
)]

∝ exp

[
−1

2

(
{γq

j }
T ({Xj}TΩq

j Xj + {Σq}−1)γq
j − 2{γq

j }
T

({Xj}TΩq
j (κ

q
j + ln[

∑
m ̸=q

exp(Xjγ
m
j )]) + {Σq}−1γq)

)]

∝ exp

[
−1

2

(
γq
j − Vq

γj
({Xj}TΩq

j (κ
q
j + ln[

∑
m ̸=q

exp(Xjγ
m
j )]) + {Σq}−1γq)

)T

{Vq
γj
}−1

(
γq
j − Vq

γj
({Xj}TΩq

j (κ
q
j + ln[

∑
m ̸=q

exp(Xjγ
m
j )]) + {Σq}−1γq)

)]

∼N

(
Vq

γj
(XjΩ

q
j (κ

q
j + ln[

∑
m ̸=q

exp(Xjγ
m
j )]) + {Σq}−1γq),Vq

γj

)

with prior mean vector γq, prior variance matrix Σq and posterior variance matrix Vq
γj

=

(Xj
TΩq

j Xj + {Σq}−1)−1.

Random mean γq

When the posterior distribution of γq
j (Equation J.8) is included as a likelihood and combined

with a N(gq, {Gq}−1) prior distribution, the conditional posterior distribution of random mean
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γq is another multivariate normal distribution:

p(γq|.) ∝
J∏

j=1

p(γq
j |γ

q,Σq)p(γq) (J.9)

∝
J∏

j=1

exp

[
−1

2
(γq

j − γ
q)T{Σq}−1(γq

j − γ
q)

]
× exp

[
−1

2
(γq − gq)TGq(γq − gq)

]

∝ exp

[
−1

2
({γq}T

(
J{Σq}−1

)
γq)− 2{γq}T

(
{Σq}−1

J∑
j=1

γq
j

)]
×

exp

[
−1

2
{γq}TGqγq − 2{γq}TGqgq

]

∝ exp

[
−1

2
{γq}T

(
J{Σq}−1 + Gq

)
γq − 2{γq}T

(
{Σq}−1

J∑
j=1

γq
j + Gqgq

)]

∝ exp

[
−1

2

(
γq − Vq

γ

(
{Σq}−1

J∑
j=1

γq
j + Gqgq

))T

{Vq
γ}−1

(
γq − Vq

γ

(
{Σq}−1

J∑
j=1

γq
j + Gqgq

))]

∼N

(
Vq

γ

(
{Σq}−1

J∑
j=1

γq
j + Gqgq

)
,Vq

γ

)
,

with prior mean vector gq, prior precision matrix Gq, and posterior variance matrix Vγ =

(J{Σq}−1 + Gq)−1.

Random variance Σq

When the posterior distribution of γq
j (Equation J.8) is included as a likelihood and combined

with an inverse Wishart W−1(j0,Sq) prior, the conditional posterior distribution of random
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variance Σq is proportional to an inverse Wishart distribution:

p(Σq|.) ∝ p(γq
j |γ

q,Σq)p{Σq} (J.10)

∝
J∏

j=1

|Σq|
1
2 exp

[
−1

2
(γq

j − γ
q)T{Σq}−1(γq

j − γ
q)

]
×

|Σq|
1
2
(j0+p+1) exp

[
−1

2
tr(Sq{Σq}−1)

]

∝ |Σq|−
1
2
(j0+J+P+1) exp

[
−1

2
tr

((
Sq +

J∑
j=1

(γq
j − γ

q)(γq
j − γ

q)T
)
{Σq}−1

)]

∼ W−1

(
j0 + J ,Sq +

J∑
j=1

(γq
j − γ

q)(γq
j − γ

q)T

)
.

J.2 Mixed effects model

A mixed effect model is defined as follows:

ϕq
ji = f (xFjiβ

q + xRji γ
q
j ) (J.11)

where xFji and xRji are vectors of fixed and random covariates respectively. Vectors βq and γq
j

reflect the accompanying fixed and random regression coefficients. Function f refers to the

multinomial logistic likelihood function.

The multivariate normal distribution of working variable κq
j then has the following form:

κq
j ∼ N

(
ηq
j , {Ω

q
j }

−1
)
. (J.12)

Here, ηq
j = XF

j β
q+XR

j γ
q
j − ln[

∑
m ̸=q

exp(XF
j β

m+XR
j γ

m
j )]. The likelihood in Equation J.12 can

be combined with the prior distributions in Equation J.4, complemented with a multivariate

normally distributed prior on βq:

βq ∼ N(bq,Bq) (J.13)
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The Gibbs sampling algorithm in list J.1 is extended with a distinct step for the fixed

regression coefficients:

1. Sample fixed regression coefficients:

βq(l) ∼N

(
Vq

β(
J∑

j=1

XF
j

T
Ωq(l−1)

j (κ
q(l−1)
j − XR

j γ
q(l−1)
j +

ln[
∑
m ̸=q

exp(XF
j β

m(l) + XR
j γ

m(l−1)
j )]) + Bqbq),Vq

β

)

with prior mean vector bq, prior precision matrix Bq and posterior variance matrix Vq
β =

(
J∑

j=1

XF
j

T
Ωq(l−1)

j XF
j + Bq)−1.

2. Sample mean random regression coefficients:

γq(l) ∼ N

(
Vq

γ({Σq(l−1)}−1
J∑

j=1

γ
q(l−1)
j + Gqgq),Vq

γ

)

with prior mean vector gq, prior precision matrix Gq and posterior variance matrix Vγ =

(J{Σq(l−1)}−1 + Gq)−1.

3. Sample covariance matrices of random regression coefficients:

Σq(l) ∼ W−1

(
j0 + J ,Σ0 +

J∑
j=1

(
γ
q(l−1)
j − γq(l)

)(
γ
q(l−1)
j − γq(l)

)T)

with prior hyperparameters j0 ≥ PR and Σ0.

4. For each j , sample random regression coefficients:

γ
q(l)
j ∼N

(
Vq

γq
j
(XR

j Ω
q(l−1)
j (κ

q(l−1)
j − XF

j β
q(l)+

ln[
∑
m ̸=q

exp(XF
j β

m(l) + XR
j γ

m(l)
j )]) + {Σq}−1γq),Vq

γj

)

with prior mean vector γq(l), prior precision matrix Σq(l) and posterior variance matrix

Vq
γj
= (XR

j
T
Ωq(l−1)

j XR
j + {Σq(l)}−1)−1.
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5. For each j and i , sample Pólya-Gamma variables:

ω
q(l)
ji ∼ PG (1, η

q(l)
ji )

J.3 A note on prior specification

J.3.1 Regression parameters

In the Gibbs sampling framework, regression coefficients are normally distributed with a mean

and covariance matrix. We shortly discuss the role of these parameters below. The covariance

matrix defines the spread of the distribution and therefore has a substantial influence on

informativity: Small variance parameters increase prior information. When non-informativity

is preferable, large variance parameters are not the simple answer, as they may destabilize

computations in Bayesian logistic regression analysis (Gelman et al., 2008). Jeffreys prior

could be an option, but sufficiently stable computation is not guaranteed (Gelman et al.,

2008; Poirier, 1994). The challenge is therefore to specify prior variance parameters that are

both sufficiently small to support stable analysis and to give a realistic support of the parameter

and at the same time sufficiently large to be considered vague.

The mean hyperparameters define the center of the distribution and become increasingly

influential on the posterior distribution when the variance of the distribution is small. The

relevance of adequate mean hyperparameters therefore increases with the informativity of the

analysis. It should be noted that prior information of mean regression coefficients is not

always available in the required parametrization. Researchers may be more likely to have

information available in terms of (success) probabilities rather than logistic regression

parameters. Kavelaars et al. (2022b) propose an approach to compute mean

hyperparameters for the context of treatment comparison in the presence of a single patient

characteristics, based on expected joint response probabilities.
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J.3.2 Covariance matrices

The covariance matrix follows an inverse-Wishart distribution with parameters. Specifying a

non-informative prior on covariance matrices and variance parameters in general is not

straightforward (Gelman, 2006; Schuurman et al., 2016). The informativity of the

inverse-Wishart distribution is sensitive to the size of variance parameters: small variances

make inverse-Wishart distributions more informative. Naively specifying standard prior

hyperparameters without consideration of prior information or data at hand may result in an

undesirably large prior influence. Weakly informative (data-based) prior specification may be

superior, if not essential for computational stability (Gelman, 2006).
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Procedure for transformation to the

probability scale and decision-making
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Algorithm 5 Procedure for statistical decision-making with posterior regression coefficients
1: Step 1. Transform regression coefficients to treatment differences
2: Let γQ

j = (0, ... , 0) and x = (1,Tj ,wj , ... )
3: for draw (l)← 1 : L do
4: for cluster j ← 1 : J do
5: Compute joint response probabilities
6: for treatment T ← 0 : 1 do
7: for joint response category q ← 1 : Q do
8: if Population of interest defined by a range of values of w then
9:

10: Compute ϕq(l)
Tj =

∫
w

exp
[
x
′
jγ

q(l)
j

]
Q−1∑
r=1

exp
[
x
′

jγ
r(l)
j

]
+ 1

dw

11: end if
12: if Population of interest defined by a fixed value of w then
13:

14: Compute ϕq(l)
Tj =

exp
[
x
′
jγ

q(l)
j

]
Q−1∑
r=1

exp
[
x
′

jγ
r(l)
j

]
+ 1

15: end if
16: end for
17: Compute multivariate success probabilities
18: for outcome k ← 1 : K do

19: Compute θq(l)Tj =
Q∑

q=1

ϕ
q(l)
Tj I (hq ∈ Uk)

20: Compute multivariate treatment difference
21: Compute δk(l)j = θ

k(l)
1j − θ

k(l)
0j

22: end for
23: end for
24: end for
25: for outcome k ← 1 : K do

26: Pool δk(l) =
J∑

j=1

nj
J∑

j=1

nj

δ
k(l)
j

27: end for
28: end for
29: Step 2. Make superiority decision
30: Define superiority region SR
31: Draw conclusion

32: if 1
L

L∑
(l)=1

I (δ(l) ∈ SR) > pcut then Conclude superiority

33: else Conclude non-superiority
34: end if
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Summary

In medical research, Randomized Controlled Trials (RCTs) are considered the gold standard

by which we evaluate the effects of new treatments, therapies, and interventions. While

being a robust standard with favorable properties, one of the challenges to RCT

methodology is the personalization of medicine: The ideas that patients with different

characteristics respond differently to treatments and that we can prescribe better treatments

to patients if we take these characteristics into account. Personalization demands RCTs to

answer new, more complex research questions and to provide additional information that

clinicians need to support treatment prescriptions to individual patients with adequate

evidence. At the same time, personalization potentially affects characteristics of datasets

that are relevant for the choice of analysis techniques.

These two developments require novel methods a) to create more extensive overviews

of treatment effects among a range of diverse patient populations; and/or b) to reduce the

required number of participants without compromising decision error rates. Thus, sharing

information between outcome variables and subpopulations can greatly improve the value of

RCTs in personalized medicine, since it a) borrows strength from other variables to improve the

efficiency of clinical trial methodology; b) enables more refined decisions thereby facilitating

alignment of trial conduct and clinical decision-making; and c) creates more comprehensive

insights into the way treatment effects vary over related, but different subpopulations.

In the current dissertation, we implemented the idea of information-sharing in a Bayesian

multivariate framework for RCT data with multiple correlated binary outcome variables.

Central to the framework are three components: a multivariate analysis model for multiple

binary outcome variables to benefit from the correlation between outcome variables; a

transformation procedure to make the resulting model parameters interpretable in terms of

(multivariate) success probabilities and differences between them; and a decision procedure

to make treatment comparisons and draw conclusions regarding superiority and inferiority

with prespecified frequentist error rates. Together, these three components form a

comprehensive framework for statistical analysis and decision-making with multiple

(correlated) binary outcome variables.
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Summary

Throughout the dissertation we presented and evaluated three increasingly complex

variations of the modeling element of the framework. First, we presented a conjugate

Bayesian analysis technique based on a multivariate Bernoulli model to analyze multiple

binary outcome variables and the relation between them simultaneously. Second, we

presented a multivariate logistic regression model to also include the relation with observed

covariates in the analysis, to enable decision-making for (groups of) patients with specific

characteristics. Finally, we extended the presented multivariate logistic regression model to

the multilevel context to accommodate clustered data as well.
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