

Tilburg University

RPA

de Vos, Wout; Balvert, Marleen

Publication date:
2023

Document Version
Early version, also known as pre-print

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
de Vos, W., & Balvert, M. (2023). RPA: Learning Interpretable Input-Output Relationships by Counting Samples.
(CentER Discussion Paper; Vol. 2023-015). CentER, Center for Economic Research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. Nov. 2023

https://research.tilburguniversity.edu/en/publications/70276b7f-9026-46ad-a8e8-1c50918a7a17

No. 2023-015

RPA: LEARNING INTERPRETABLE INPUT-OUTPUT
RELATIONSHIPS BY COUNTING SAMPLES

By

Wout de Vos, Marleen Balvert

6 July 2023

ISSN 0924-7815
ISSN 2213-9532

Journal of Machine Learning Research 1 (2000) 1-48 Submitted 4/00; Published 10/00

RPA: learning interpretable input-output relationships by
counting samples

Wout de Vos w.m.devos@tilburguniversity.edu

Tilburg University

Department of Econometrics and Operations Research

PO Box 90153, The Netherlands

Marleen Balvert m.balvert@tilburguniversity.edu

Tilburg University

Department of Econometrics and Operations Research

Zero Hunger Lab

PO Box 90153, The Netherlands

Editor:

Abstract

This work proposes a fast solution algorithm to a fundamental data science problem, namely
to identify Boolean rules in disjunctive normal form (DNF) that classify samples based on
binary features. The algorithm is an explainable machine learning method: it provides
an explicit input-output relationship. It is based on hypothesis tests through confidence
intervals, where the used test statistic requires nothing more than counting the number
of cases and the number of controls that possess a certain feature or a set of features,
reflecting the potential AND clauses of the Boolean phrase. Extensive experiments on
simulated data demonstrate the algorithm’s effectivity and efficiency. The efficiency of
the algorithm relies on the fact that the bottleneck operation is a matrix multiplication
of the input matrix with itself. More than only a solution algorithm, this paper offers a
flexible and transparent theoretical framework with a statistical analysis of the problem
and many entry points for future adjustments and improvements. Among other things, this
framework allows one to assess the feasibility of identifying the input-output relationships
given certain easily-obtained characteristics of the data.

Keywords: Interpretability – Binary classification – Boolean rules in DNF – Confidence
intervals – Feasibility analysis.

1. Introduction

Over the recent years the interest in and need for explainable machine learning methods has
increased. Interpretability can be considered at various levels: in some cases it is sufficient
to know which of the features influence a model’s prediction and are hence assumed to
be causative of the predicted variable. This information can be obtained from feature
importance scores or feature selection methods. In other cases users are not only interested
in which features explain the dependent variable, but also how they influence the prediction.
This means that the functional form of the relationship between the independent variables

©2000 Marina Meilă and Michael I. Jordan.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v1/meila00a.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v1/meila00a.html

De Vos and Balvert

and the prediction needs to be understandable, which requires the machine learning model
itself to be explainable.

When developing an explainable machine learning model, one needs to make assumptions
about the functional relationship between the input and the output data. For example in
a linear regression the functional form between input and output is assumed to be linear.
In this work we focus on Boolean rules in disjunctive normal form (DNF) that constitute a
binary classification from binary input data. Boolean rules in DNF classify samples based
on a logic rule that consists of an OR combination of AND clauses, for example “IF a
sample has characteristics X AND Y, OR if they have characteristics A AND B AND C,
OR if they have characteristic Z, then classify as case, else as control”.

Deriving Boolean rules in DNF, also termed the Logical Analysis of Data (LAD, Hammer
and Bonates (2006)), has been a research topic since Valiant’s seminal paper in 1986. Even
though Daniely (2016) showed that learning Boolean phrases in DNF is hard, several works
have developed efficient algorithms. Many of the earliest algorithms, such as AQ15 (Michal-
ski et al., 1986), FOIL (Quinlan, 1990), RIPPER (Cohen, 1995) and variations thereof, use
a sequential covering approach. Later algorithms were based on combinatorial approaches
(Hammer and Bonates, 2006) including mixed integer linear programming (MILP) (Dash
et al., 2018; Chang et al., 2012; Balvert, 2021). Wu et al. (2011) use an enumerative ap-
proach, which has the advantage that the obtained solution is globally optimal. This holds
for the use of mixed integer linear programs (MILPs) as well (Knijnenburg et al., 2016;
Chang et al., 2012; Malioutov and Varshney, 2013; Dash et al., 2018; Balvert, 2021). Nev-
ertheless, enumerative approaches and MILPs run into computational challenges when the
number of samples or features grows. This is why Malioutov and Varshney (2013), Dash
et al. (2018) and Balvert (2021) have developed MILP-based heuristic algorithms to speed
up the computational process. Their methods can handle datasets with up to thousands
(Dash et al., 2018) or even 10,000 (Balvert, 2021) samples and features. As these methods
are heuristics, there is a trade-off between computational complexity and classification ac-
curacy (Balvert, 2021). Also metaheuristics such as genetic algorithms have been used to
abstract Boolean phrases in DNF from data (McCallum and Spackman, 1990).

Some machine learning approaches make use of Boolean phrases in DNF without deriving
the explicit Boolean phrase as the sole means for classification. Decision trees can be
formulated such that they follow a DNF. Seyedhosseini and Tasdizen (2015) developed such
disjunctive normal decision trees and the corresponding disjunctive normal random forests.
While the DNF is used at this method’s core, as any random forest this method does
not output an interpretable description of the input-output relationship. Logic regression
(Ruczinski et al., 2003) constructs several Boolean expressions - not restricted to DNF -
and takes a linear combination of a set of Boolean expressions to reach a prediction. This
approach is suitable for regression tasks rather than classification tasks.

In this work we propose a fast algorithm to abstract Boolean rules in DNF from binary
data based on hypothesis tests through confidence domains. We call it the Remaining
Positives Algorithm (RPA), after the Remaining Positives statistics which are the core of the
algorithm. These test statistics require nothing more than counting the number of cases and
the number of controls that possess a certain feature or a set of features, reflecting potential
AND clauses of the Boolean phrase. In each iteration, one AND clause is identified and the
corresponding samples and features are removed from the dataset, allowing the algorithm

2

Finding Patterns in DNA

to find an AND clause that fits best for the remaining samples in the next iteration. Due to
its simplicity, - the bottleneck operation is matrix multiplication of the input matrix with
its own transpose - the algorithm can handle large amounts of data: we have achieved good
results in experiments with datasets containing up to 10,000 samples and 2,500 features, in
a fraction of the time required by existing methods (Balvert, 2021).

Most developed classifiers work very well for datasets of limited size, but cannot keep
up with the steady increase in the number of samples and features that datasets nowadays
contain. Earlier approaches suffer computationally from an increase in the number of sam-
ples, as this increases the model’s complexity - e.g. the number of binary variables in the
MILPs of Dash et al. (2018) and Balvert (2021). From a statistical point of view however
an increased number of samples leads to inceased statistical power and is hence desirable.
The computational complexity of the approach proposed in this work suffers only linearly
from an increased number of samples, enabling the method to make use of the increased
statistical power obtained with an increased sample size.

In addition to proposing a new algorithm, our second contribution constitutes a theo-
retical framework on how to assess the model’s ability to identify Boolean rules in DNF of
various sizes in datasets with various characteristics. We propose a metric that we refer
to as the “degree of overlap”, which is a measure for the distinguishability between AND
clauses contained in the Boolean rule and any other AND clauses that are not contained
in the Boolean rule. We use the degree of overlap to determine how likely it is that the
algorithm is able to retrieve the AND clauses of the Boolean rule for a given dataset. The
degree of overlap depends only on the number of samples, cases and features in a dataset as
well as the frequency of occurrence of the features, allowing for analyzing the effect of these
parameters on the performance of the algorithm. More generally, as the proposed algorithm
is based on fundamental statistics, the degree of overlap also provides an indication on how
many samples one would need in order to be able to find Boolean rules in DNF of a certain
complexity that explain the class label from the independent input data.

2. Methods

We explain the Remaining Positives Algorithm (RPA) using the following structure. Section
2.1 formulates the problem. Sections 2.2, 2.3 and 2.4 develop the techniques that are used
in the algorithm. Section 2.5 integrates the techniques into the solution algorithm.

2.1 Problem Formulation

We are given a dataset (X, y) with a binary N × P matrix X and a binary N × 1 vector y
that depends on the matrix X via an unknown boolean rule and error. The goal is to find
the boolean rule.

Each row i ∈ [N] ofX corresponds to a sample and each column j ∈ [P] ofX corresponds
to a feature. We assume that the matrix entries are independently Bernoulli distributed as

Xij
iid∼ Ber(p) with a common probability p ∈ [0, 1].

The vector y depends on the matrix X via a boolean rule in disjunctive normal form
(DNF), which is an OR-combination of AND-clauses. We represent such a rule as a set of
clauses, where each clause is a set of features. The size of a clause is the number of features

3

De Vos and Balvert

it contains. An example of a rule with three clauses of sizes 1, 2 and 4 is given by

rule =
{
{1}, {101, 102}, {201, 202, 203, 204}

}
. (1)

This translates to the decision rule “IF sample i has Xi,1 = 1, OR if they have Xi,101 = 1
AND Xi,102 = 1, OR if they have Xi,201 = 1 AND Xi,202 = 1 AND Xi,203 = 1 AND
Xi,204 = 1, then yi = 1, else yi = 0”. We say that a clause is active for a sample i if all
entries Xij corresponding to the features j of the clause are equal to 1. For instance, for
sample i, the clause c = {101, 102} is active if Xi,101 = 1 and Xi,102 = 1. The boolean rule
applied to sample i determines that yi = 1 if at least one of the clauses of the rule is active,
and if the sample is not perturbed by error.

The error is modelled as an independent Bernoulli random variable ϵi
iid∼ Ber(β) for

every sample i, with a common error probability β ∈ [0, 1]. If ϵi = 1, then the observed
yi is the reverse outcome of the boolean rule applied to sample i. Hence, if we denote the
XOR-operator by ⊕, the dependent variable yi for a dataset with boolean rule (1) is given
by

yi =
[
(Xi,1) ∨ (Xi,101 ∧Xi,102) ∨ (Xi,201 ∧Xi,202 ∧Xi,203 ∧Xi,204)

]
⊕ ϵi ,

or, more generally, yi is given by

yi =
(∨

c ∈ rule

∧
j ∈ c

Xij

)
⊕ ϵi .

To develop intuition for the problem and illustrate concepts, we consider the following
example dataset, which we will revisit throughout the paper. The dataset has N = 1, 500
samples and P = 1, 000 features, it contains the rule given in (1) and it is generated with
p = 0.5 and β = 0.05. Table 1 is a stylized representation of the example dataset. It
contains a subset of 25 samples and 17 features, where the displayed samples have been
selected uniformly. The columns have been reorganized such that the features contained in
the rule come first. Also, the rows have been reorganized such that rows where the clauses
are active come first. The 1s that make one of the clauses of the rule active are colored
blue if the corresponding sample is a case (yi = 1), or red if the corresponding sample is an
erroneous control (yi = 0).

An important phenomenon that can be observed in Table 1 is that the clause {1} of size
1 is active in approximately twice as many rows as the clause {101, 102} of size 2 and in
approximately eight times as many rows as the clause {201, 202, 203, 204} of size 4. It can
be verified that this is a straightforward consequence of the definition of the rule and the
fact that p = 0.5.

4

Finding Patterns in DNA

1 101 102 201 202 203 204 990 991 992 993 994 995 996 997 998 1000 y

1 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1
1 1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1
1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 0 1
1 1 1 0 1 0 1 1 0 1 0 0 1 0 0 1 1 1
1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 1 1
1 0 1 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1
1 0 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1
1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1
1 1 1 0 1 1 0 1 1 1 1 0 1 0 1 0 0 1
1 1 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 1
0 1 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 1
0 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1
0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 0 1
0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1
1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0 1 0
0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0
0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0
0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0
0 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 1 0
0 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0
0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 0 0
0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0

Table 1: A selection of rows and columns from the example dataset.

Finally, we introduce some notation that we use in later sections. We denote by Cs(X) the
set of all clauses of size s. For instance, in case of the example dataset with P = 1, 000
features, the sets of all clauses of sizes 1 and 2 are given by

C1(X) =
{
{1}, {2}, {3}, . . . , {1000}

}
,

C2(X) =
{
{1, 2}, {1, 3}, {1, 4}, . . . , {999, 1000}

}
.

Oserve that for a size s, the set of all clauses has cardinality |Cs(X)| =
(
P
s

)
.

We distinguish two types of clauses. Clauses that are contained in the rule are called
generating, because they play a role in the realization of the vector y. The set of generating
clauses of a dataset (X, y) is denoted by G(X). Sometimes we include a superscript, i.e.,
Gs(X), to specify the set of generating clauses of size s. Clauses that are not contained in
the rule are called dormant. Similarly, the set of all dormant clauses is denoted by D(X),
and Ds(X) denotes all dormant clauses of size s.

With this new vocabulary, we can formulate the problem as being given a dataset (X, y)
and having to find the set of generating clauses G(X).

2.2 Finding Generating Clauses of Size 1

First, we develop a classification procedure that labels a clause c ∈ C1(X) of size 1 as gen-
erating, dormant, or ambiguous. Then, we find generating clauses by classifying all clauses
of size 1. Since the set C1(X) is simply the set of individual features, it is computationally
feasible to classify all clauses of size 1. The classification procedure of a clause is based on
two statistics, RP1(c) and RP0(c), that will be introduced next.

5

De Vos and Balvert

2.2.1 RP-statistics for Clauses of Size 1

The Remaining Positives (RP) statistics count for a given clause c ∈ C1(X) of size 1 the
number of cases where c is active, referred to as RP1(c), and the number of controls where
c is active, referred to as RP0(c).

Definition 1 (RP -statistics for clauses of degree 1) For a clause c ∈ C1(X) of size
1, the Remaining Positives statistics are given by

RP1(c) =
∑
i∈[N]

1{Xic = 1 ∧ yi = 1} ,

RP0(c) =
∑
i∈[N]

1{Xic = 1 ∧ yi = 0} .

The key insight of this paper is that generating clauses often have significantly higher RP1

values and significantly lower RP0 values than dormant clauses. The RP -statistics count
samples. What distinguishes generating and dormant clauses are the probabilities that a
given sample i is counted by RP1(c) or RP0(c). We compute these probabilities and derive
the distributions of RP1(c) and RP0(c) for generating and dormant clauses separately.

For a generating clause c ∈ G1(X), we consider a sample i ∈ [N] and compute the
probability that Xic = 1 and yi = 1. Since c is generating and has size 1, the event
(Xic = 1) is sufficient to activate the boolean rule for this sample i. If the error term ϵi
is not active for this sample, then we indeed observe yi = 1. Hence, the probability that
sample i is counted by RP1(c) is

P[Xic = 1 ∧ yi = 1] = P[Xic = 1] · P[yi = 1|Xic = 1]

= P[Xic = 1] · P[ϵi = 0]

= p · (1− β) .

Similarly, for a generating clause c ∈ G1(X), the probability that a row i ∈ [N] is counted
by RP0(c) is

P[Xic = 1 ∧ yi = 0] = P[Xic = 1] · P[yi = 0|Xic = 1]

= P[Xic = 1] · P[ϵi = 1]

= p · β .

Since RP1(c) and RP0(c) sum over N iid Bernoulli random variables, they are binomially
distributed as follows.

Proposition 2 (RP -distributions of generating clauses of size 1) Consider a gener-
ating clause c ∈ G1(X) of size 1. The distributions of RP1(c) and RP0(c) are given by

RP1(c) ∼ Bin(N, p · (1− β)),

RP0(c) ∼ Bin(N, p · β),

with cumulative density functions G1 and G0, respectively.

6

Finding Patterns in DNA

Now we derive the RP -distributions for a dormant clause c ∈ D1(X). Since c is dormant,
whether a sample i is a case or a control is independent of the entry Xic. Hence, we interpret
RP1(c) as iterating over the cases and counting those samples i where Xic = 1. Similarly,
we interpret RP0(c) as counting the number of controls where Xic = 1. Since RP1(c) and
RP0(c) sum over iid Bernoulli random variables, they are binomially distributed as follows,
where N0 and N1 denote the number of controls and cases, respectively.

Proposition 3 (RP -distributions of dormant clauses of size 1) Consider a dormant
clause c ∈ D1(X) of size 1. The distributions of RP1(c) and RP0(c) are given by

RP1(c) ∼ Bin(N1, p),

RP0(c) ∼ Bin(N0, p),

with cumulative density functions D1 and D0, respectively.

Often, the RP -distributions for generating and dormant clauses are well-separated. Specif-
ically, the values of RP1 that generating clauses can attain with nonnegligible probability
are often significantly higher than those of dormant clauses. Vice versa, the values of RP0

of generating clauses tend to be considerably lower than those of dormant clauses. We
illustrate this with the example dataset.

Example 1 Consider the example dataset, which, we recall, has N = 1, 500 rows, P =
1, 000 columns and is generated with p = 0.5 and β = 0.05. The (hidden) boolean rule is
{{1}, {101, 102}, {201, 202, 203, 204}}. The RP -distributions for the generating clause {1}
of size 1 are given by

RP1({1}) ∼ Bin(1500, 0.475),

RP0({1}) ∼ Bin(1500, 0.025),

and the RP -distributions of dormant clauses c ∈ D1(X) of size 1 are given by

RP1(c) ∼ Bin(937, 0.5),

RP0(c) ∼ Bin(563, 0.5).

In Figure 1 the red and green curves represent the RP -distributions and the histograms
represent the observed RP -values of the example dataset, for the dormant (red) and gener-
ating (green) clauses. Note that there is only one generating clause of size 1, so that the
fat green lines represent the observed RP -values for the generating clause. Observe that the
RP -values of dormant and generating clauses are well-separated.

7

De Vos and Balvert

(a) RP1 (b) RP0

Figure 1: The RP -distributions and the observed RP -values for all clauses of size 1 of the
example dataset.

2.2.2 Classification

We classify a given clause of size 1 c ∈ C1(X) by computing RP1(c) and RP0(c) and
comparing their values with four carefully constructed intervals. We call the interval Γ1(X)
the generating domain of the statistic RP1(c). It will be constructed such that for any
generating clause c ∈ G1(X), the observed value RP1(c) lies almost certainly in the interval
Γ1(X). Here, the subscript “1” indicates that we refer to the statistic RP1(c). Similarly,
the generating domain Γ0(X) will be constructed such that it almost certainly includes
the observed value RP0(c) of any generating clause c ∈ G1(X). Likewise, the dormant
domains ∆1(X) and ∆0(X) will be constructed such that they almost certainly include the
observed RP1(c) and RP0(c), respectively, of any dormant clause c ∈ D1(X). Specifically,
the intervals will be constructed such that we have, almost certainly,

c ∈ G =⇒ RP1(c) ∈ Γ1(X) and RP0(c) ∈ Γ0(X) ,

c ∈ D =⇒ RP1(c) ∈ ∆1(X) and RP0(c) ∈ ∆0(X) .

We classify a clause c ∈ C1(X) as generating if the values RP1(c) and RP0(c) lie in the
generating domains, and if at least one of them lies outside its respective dormant domain.
The latter allows us to conclude that c is almost certainly not dormant. Specifically, c is
labelled as generating if the following two conditions hold.

1. RP1(c) ∈ Γ1(X) and RP0(c) ∈ Γ0(X);

2. RP1(c) /∈ ∆1(X) or RP0(c) /∈ ∆0(X).

We classify a clause c ∈ C1(X) as dormant if one of the values RP1(c) and RP0(c) lies outside
its respective generating domain, so that we conclude that c is not generating. Hence, c is
labelled as dormant if the following condition holds.

1. RP1(c) /∈ Γ1(X) or RP0(c) /∈ Γ0(X).

In the remaining cases, we classify a given clause c ∈ C1(X) as ambiguous. If RP1(c) and
RP0(c) lie in both their respective generating and dormant domains, we will store c as a

8

Finding Patterns in DNA

promising candidate for being a generating clause, but we do not exclude that it is dormant.
Specifically, c is labelled as ambiguous if the following condition holds.

1. RP1(c) ∈ Γ1(X) ∩∆1(X) and RP0(c) ∈ Γ0(X) ∩∆0(X).

We implement the classification procedure as follows.

Algorithm 1: Classification of a clause of size 1

Input: Dataset (X, y), clause c ∈ C1(X), probabilities p and β;
Output: Classification of c;
Compute RP1(c) and RP0(c);
Compute the intervals Γ1(X),Γ0(X),∆1(X),∆0(X);
if RP1(c) /∈ Γ1(X) or RP0(c) /∈ Γ0(X) then

Return Dormant;
else if RP1(c) /∈ ∆1(X) or RP0(c) /∈ ∆0(X) then

Return Generating;
else

Return Ambiguous.

Now we construct the generating and dormant domains. The generating domains Γ1(X)
and Γ0(X) are constructed using the cumulative distribution functions G1 and G0 for gen-
erating clauses. We recall that values of RP1(c) are generally higher for generating clauses
than for dormant clauses. Hence, we will reserve the lower end of the real numbers R+

for ∆1(X) and the upper end for Γ1(X). We define the generating domain Γ1(X) as the
range of values that include the value RP1(c) of a given generating clause c ∈ G1(X) with
probability 0.999, i.e.,

Γ1(X) =
[
(G1)

−1(0.001),∞
)
.

Similarly, we recall that values of RP0(c) are generally lower for generating clauses than for
dormant clauses. We define the generating domain Γ0(X) as the lower end of the real num-
bers R+ that contains RP0(c) for a given generating clause c ∈ G1(X) with overwhelming
probability, i.e.,

Γ0(X) =
[
0, (G0)

−1(0.999)
]
.

To construct the dormant domains ∆1(X) and ∆0(X) we also use the cumulative dis-
tribution functions D1 and D0, but we first observe an additional subtlety. To construct
the intervals such that they almost certainly include RP1(c) and RP0(c) for a given dor-
mant clause c ∈ D1(X), we need to observe that the set of dormant clauses is big, namely,
approximately of size

|D1(X)| ≈ |C1(X)| =
(
P

1

)
= P .

Suppose that we constructed the dormant domains ∆1(X) and ∆0(X) in a similar fashion
as the generating domains, so that they include RP1(c) and RP0(c) for a given c ∈ D1(X)
with probability 0.999. Then, for datasets with a large number of features P , we can
expect that for a fair number of dormant clauses the observed values RP1(c) or RP0(c) are

9

De Vos and Balvert

not included in the dormant domains ∆1(X) and ∆0(X). Therefore, we construct ∆1(X)
so that the expected number of dormant clauses in the dataset with a value RP1(c) that
exceeds the interval ∆1(X) is low. For this, we introduce the auxiliary function δ1, which
approximates for a given x ∈ R the expected number of dormant clauses c ∈ D1(X) that
satisfy RP1(c) ≥ x. It is given by

δ1(x) = E
[∣∣∣{c ∈ D1(X) : RP1(c) ≥ x}

∣∣∣]
= P

[
RP1(c) ≥ x | c ∈ D1(X)

]
·
∣∣∣D1(X)

∣∣∣
≈

(
1−D1(x)

)
· P .

To aim that ∆1(X) does not overlap with Γ1(X), we define the dormant domain ∆1(X) as
the lower end of R+ such that, expectedly, only one dormant clause c ∈ D1(X) has a value
RP1(c) that exceeds this domain:

∆1(X) =
[
0, (δ1)

−1(1)
]
.

Similarly, we define the dormant domain ∆0(X) such that, expectedly, only one dormant
clause has a value RP0(c) that is too low to be included in the domain. For this, we define
the auxiliary function δ0 as

δ0(x) = D0(x) · P .

Then, the dormant domain ∆0(X) is given by

∆0(X) =
[
(δ0)

−1(1),∞
)
.

Example 2 Reconsider the example dataset (as in Example 1). The domains are given by

Γ1(X) = [653,∞), Γ0(X) = [0, 57],

∆1(X) = [0, 516], ∆0(X) = [245,∞).

Figure 2, shows the distributions and domains of generating and dormant clauses of size 1.

(a) RP1 (b) RP0

Figure 2: The RP -distributions and domains for the dormant and generating clauses of size
1 of the example dataset.

10

Finding Patterns in DNA

To find generating clauses of size 1, we compute RP1(c) and RP0(c) for all clauses of
size 1 and apply the classification algorithm. We use the labels ‘G’ for generating, ‘D’ for
dormant, and ‘A’ for ambiguous, see Table 2.

c ∈ C1(X) {1} {2} {3} {4} {5} ... {998} {999} {1000}

RP1(c) 679 468 442 444 473 ... 456 443 484

RP0(c) 25 299 264 277 256 ... 268 288 297

Class(c) G D D D D ... D D D

Table 2: RP1, RP0 and classifications of a subset of size-1 clauses for the example dataset.

Observe that clause c = {1} is correctly classified as generating, due to RP1({1}) = 679 ∈
Γ1(X) and RP0({1}) = 25 ∈ Γ0(X) and RP1({1}) /∈ ∆1(X). All other clauses c ̸= {1} of
size 1 are correctly classified as dormant, since they satisfy at least one of the conditions
RP1(c) /∈ Γ1(X) or RP0(c) /∈ Γ0(X).

2.3 Finding Generating Clauses of Size s ≥ 2

We find generating clauses of size s ≥ 2 in a similar way as generating clauses of size 1: with
RP -statistics and a classification procedure. For clauses of size 2, we compute RP1(c) and
RP0(c) and apply the classification procedure to all clauses c ∈ C2(X). We will demonstrate
that this is computationally feasible. For clauses of size s ≥ 3 this is not computationally
feasible. Therefore, we introduce a search heuristic to find promising clauses of sizes s ≥ 3
and classify only these promising clauses.

In this section, when searching for a generating clause of s ≥ 3 we assume that we are
given a dataset (X, y) that has no generating clauses of size strictly smaller than s. If the
dataset contained a generating clause of size 1, ..., s − 1, we assume it has been found and
eliminated using the procedure that will be explained in Section 2.4. This is a necessary
assumption, as the presence of a clause of size 1 reduces the visibility of a clause of size 2.
This phenomenon will be further explained in Section 2.4.

2.3.1 RP -statistics & Classification for clauses of size s ≥ 2

For a clause c = {c1, ..., cs} ∈ Cs(X) of size s ≥ 2 with features c1, ..., cs ∈ [P], the statistic
RP1(c) counts the number of cases where c is active, and RP0(c) counts the number of
controls where c is active. The qualifier “remaining” in the name “remaining positives”
reflects that many of the rows that were counted by the size-1 statistics RP1(c1), ..., RP1(cs)
and RP0(c1), ..., RP0(cs) are not counted by the statistics and RP1(c) and RP0(c). We could
imagine that features c1, ..., cs are merged into a “feature of size s” where a 1 remains in
rows where all features c1, ..., cs have a 1.

Definition 4 (RP -statistics for clauses of size s) Consider a clause c = {c1, ..., cs} ∈
Cs of size s ∈ N, where c1, ..., cs ∈ [P] are features. The “Remaining Positives”-statistics of

11

De Vos and Balvert

c are given by

RP1(c) =
∑
i∈[N]

1{
∧
j∈c

Xij = 1 ∧ yi = 1} ,

RP0(c) =
∑
i∈[N]

1{
∧
j∈c

Xij = 1 ∧ yi = 0} .

Following a similar logic as for clauses of size 1, the distributions of the RP -statistics for
clauses of general size are as follows.

Proposition 5 (Distributions of the RP -statistics of clauses of size s) For a gen-
erating clause c ∈ Gs(X) of size s ∈ N, the distributions of statistics RP1(c) and RP0(c)
are given by

RP1(c) ∼ Bin(N, ps · (1− β)),

RP0(c) ∼ Bin(N, ps · β),

with cumulative density functions Gd
1 and Gd

0, respectively.

For a dormant clause c ∈ Ds(X) of size s ∈ N, the distributions of RP1(c) and RP0(c)
are given by

RP1(c) ∼ Bin(N1, p
s),

RP0(c) ∼ Bin(N0, p
s),

with cumulative density functions Ds
1 and Ds

0, respectively.

To classify a given clause c ∈ Cs of size s ∈ N, we compute the generating domains as

Γs
1(X) =

[
(Gs

1)
−1(0.001),∞

)
,

Γs
0(X) =

[
0, (Gs

0)
−1(0.999)

]
.

Additionally, we compute the dormant domains using the auxiliary functions

δs1(x) =
(
1−Ds

1(x)
)
·
(
P

s

)
,

δs0(x) = Ds
0(x) ·

(
P

s

)
.

The dormant domains are then given by

∆s
1(X) =

[
0, (δs1)

−1(1)
]
,

∆s
0(X) =

[
(δs0)

−1(1),∞
)
.

We implement the classification procedure for clauses of size s as follows.

12

Finding Patterns in DNA

Algorithm 2: Classification of clauses of size s

Input: Dataset (X, y), clause c ∈ Cs(X), probabilities p and β;
Output: Classification of c;
Compute RP1(c) and RP0(c);
Compute the intervals Γs

1(X),Γs
0(X),∆s

1(X),∆s
0(X);

if RP1(c) /∈ Γs
1(X) or RP0(c) /∈ Γs

0(X) then
Return Dormant

else if RP1(c) /∈ ∆s
1(X) or RP0(c) /∈ ∆s

0(X) then
Return Generating

else
Return Ambiguous

2.3.2 Computing the RP -statistics for all Clauses of Size 2

Applying the classification procedure to all clauses of size 2 requires computing RP1(c) and
RP0(c) for every clause c ∈ C2(X). We show that this can be done efficiently through
matrix multiplication.

We split the N ×P -matrix X of a dataset (X, y) into the N1 ×P -matrix submatrix X1

with all cases and the N0 × P -matrix submatrix X0 with all controls:

X1 = {Xi• : yi = 1}
X0 = {Xi• : yi = 0}.

Then, we obtain RP1(c) for all clauses c ∈ C2(X) by pre-multiplying X1 by its transpose:

M1 = X ′
1X1.

Observe that the ith diagonal entry of the matrix M1 counts the number of cases where
feature i contains a 1, so that (M1)ii = RP1(c) for the clause c = {i} of size 1. Similarly,
for i ̸= j, off-diagonal entry (M1)ij is the number of cases where both features i and j have
a 1, so that (M1)ij = RP1(c) for the clause c = {i, j} of size 2. Hence, the values RP1(c)
for all clauses c ∈ C2(X) can be found in the off-diagonal entries of M1.

Similarly, the off-diagonal entries of the matrix

M0 = X ′
0X0

contain the valuesRP0(c) for all clauses c ∈ C2(X). Therefore computingRP1(c) andRP0(c)
for all c ∈ C2(X) has the same complexity as matrix multiplication, namely O(P 2N).

Example 3 [Continuation of Example 2]. In Example 2, we found a generating clause of
size 1. We assume this clause has been eliminated, i.e., all samples satisfying the clause
{1} have been removed, so we have a remaining dataset of size N = 503, P = 999.

For the remaining dataset (X, y), we compute the domains

Γ2
1(X) = [153,∞), Γ2

0(X) = [0, 21],

∆2
1(X) = [0, 98], ∆2

0(X) = [90,∞).

13

De Vos and Balvert

Next, for all clauses c ∈ C2(X) of size 2, we compute RP1(c) and RP0(c) and apply the
classification procedure, see Table 3.

c ∈ C2(X) {2,3} {2,4} {2,5} ... {101,102} ... {998,1000} {999,1000}

RP1(c) 60 56 61 ... 192 ... 72 68

RP0(c) 142 142 135 ... 13 ... 132 147

Classify(c) D D D ... G ... D D

Table 3: RP1, RP0 and classifications of a subset of size-2 clauses for the example dataset.

Observe that we classify clause {101, 102} as generating, because RP1({101, 102}) = 192 ∈
Γ2
1(X), RP0({101, 102}) = 13 ∈ Γ2

0(X) and RP1({101, 102}) = 192 /∈ ∆2
1(X). All other

clauses c ∈ C2(X), c ̸= {101, 102} have been (correctly) classified as dormant, because
RP1(c) /∈ Γ2

1(X) or RP0(c) /∈ Γ2
0(X).

2.3.3 Pools of Promising Clauses

Since it is computationally infeasible to classify all clauses of sizes s ≥ 3, we develop a
procedure that iteratively constructs pools of promising clauses, of which each clause will
be classified, with the purpose of encountering generating clauses of size s ≥ 3. As a starting
pool, we consider the set C2(X) of all clauses of size 2. For every clause c ∈ C2(X), we
compute RP1(c) and RP0(c), and use them to compute a fitness value fit(c). For this, we
use the fitness function

fit(c) =
N0

N1
·RP1(c)−RP0(c) , (2)

where N1 and N0 denote the number of cases and controls in the dataset, respectively, and
the factor N0/N1 makes sure that RP1(c) and RP0(c) have equal importance.

The fitness function measures how “promising” a given clause c is by exploiting the
insight that for generating clauses, RP1(c) is higher and RP0(c) is lower than for dormant
clauses. It turns out that this separating effect is already noticeable for subclauses of size
2 of generating clauses of size s > 2. The following example illustrates this.

Example 4 Consider the example dataset in which the generating clauses {1} and {101, 102}
have been eliminated so that the current matrix X has N = 591 rows and P = 997 columns.
The only generating clause left in this dataset is c∗ = {201, 202, 203, 204} of size 4. First
we compute the values RP1(c), RP0(c) and fit(c) for subclauses of c∗ of size 2, see Table 4.
Next, we compute summary statistics for clauses of size 2 that are not a subclause of c∗,
i.e., for clauses c ∈ C2(X) : c ∩ cG = ∅, see Table 5.
Observe that the subclauses of size 2 of the generating clause c∗ can be clearly separated from
the other clauses of size 2 by higher fitness values: all subclauses of c∗ have fit(c) ≥ 213,
whereas all clauses that are not a subclause of c∗ have fit(c) ≤ 136.

To obtain a pool of promising clauses of degrees 3 and 4, we select the 100 fittest clauses
from C2(X) and denote them by F100(C2(X)). In case of ties, we prioritize clauses with a

14

Finding Patterns in DNA

c ∈ C2(x) : c ⊆ c∗ {201,202} {201,203} {201,204} {202,203} {202,204} {203,204}

RP1(c) 43 44 42 41 41 43

RP0(c) 107 111 109 113 110 111

fit(c) 235.05 239.0 225.09 213.14 216.14 231.05

Table 4: RP1, RP0 and classifications of a subset of size-2 clauses for the example dataset.

mean minimum median maximum

RP1(c) 16.54 2 16 33

RP0(c) 131.19 85 131 175

fit(c) 0.35 -128.18 0.18 135.68

Table 5: Mean, minimum, median and maximum RP1, RP0 and fit(c) for dormant clauses
of size 2 that are not a subclause of a generating clause of example 4.

lower value RP0(c). Each pair of these 100 fittest clauses is merged into a new clause of
degree 3 or 4. To be precise, the new pool is given by

pool3,4 = F100(C2(X)) × F100(C2(X)) ,

where the operator × constructs for every pair of nonequal clauses u = {u1, u2} ∈
F100(C2(X)) and v = {v1, v2} ∈ F100(C2(X)) with u ̸= v the merged clause u ∪ v =
{u1, u2, v1, v2}. As a small example, suppose we consider only the fittest four clauses and
that they are given by

F4(C2(X)) =
{
{1, 2}, {1, 3}, {4, 5}, {5, 6}

}
.

Then, the new pool would be given by

F4(C2(X)) × F4(C2(X)) =
{
{1, 2, 3}, {1, 2, 4, 5}, {1, 2, 5, 6}, {1, 3, 4, 5}, {1, 3, 5, 6}, {4, 5, 6}

}
.

Observe that pool3,4 is of size at most
(
100
2

)
. In practice, however, the pool is often

considerably smaller, since merging elements typically results in a considerable number of
double occurences, such as in the following application of the operator × :{

{1, 2}, {1, 3}, {2, 3}
}

×
{
{1, 2}, {1, 3}, {2, 3}

}
=

{
{1, 2, 3}

}
.

We classify every clause c ∈ pool3,4 and if we encounter a generating clause, then this
completes our procedure for finding a generating clause of size s ≥ 3 for the current iteration.
Example 5 below illustrates how a generating clause of size 4 is found in a small dataset.
Alternatively, if we come accross an ambiguous clause, then we report it as a candidate for
being generating but for which we cannot exclude confidently that it is not dormant.

15

De Vos and Balvert

If all clauses in pool3,4 are classified as dormant, then we repeat the same steps to obtain
a pool of clauses of sizes 4 until 8. This new pool is given by

pool4−8 = F100(pool3,4) × F100(pool3,4) .

Again, if we classify a clause of pool4−8 as generating or ambiguous, then this completes
our procedure of finding a generating clause of size s ≥ 3 for the current iteration. If all
clauses in pool4−8 are classified as dormant, we repeat the same procedure for the pool

pool5−16 = F100(pool4−8) × F100(pool4−8) .

Since we assume that clauses are at most of size 10, we will not create another pool
after pool5−16. Instead, classifying all clauses in pool5−16 as dormant serves as one of the
stopping conditions for our algorithm.

Example 5 For illustration purposes, we consider a small dataset (X, y) with P = 8 fea-
tures and N = 1, 000 rows. Suppose that the dataset contains one generating clause, namely
c∗ = {1, 2, 3, 4} of size 4. We assume that the procedures of previous sections for finding
generating clauses of sizes 1 and 2 have been executed and that all clauses of sizes 1 and 2
were classified as dormant.

First, we will select the eight fittest clauses of C2(X). In the spirit of section 2.3.2,
we enumerate the clauses of size 2 as the off-diagonal entries of a matrix that has the set
C1(X) on its axes. In Table 6, only the off-diagonal entries are filled: for each combination
of two features, the corresponding clause c ∈ C2(X) is given, as well as its fitness value.
For instance, we find clause {1, 3} in row {1} and column {3}, and it has fit({1, 3}) = 388.
We highlight the eight fittest clauses in blue.

C1(X) {1} {2} {3} {4} {5} {6} {7} {8}

{1} {1,2} {1,3} {1,4} {1,5} {1,6} {1,7} {1,8}
411 388 371 153 150 182 169

{2} {2,3} {2,4} {2,5} {2,6} {2,7} {2,8}
399 364 175 165 172 125

{3} {3,4} {3,5} {3,6} {3,7} {3,8}
387 123 154 159 132

{4} {4,5} {4,6} {4,7} {4,8}
102 113 169 122

{5} {5,6} {5,7} {5,8}
56 -9 16

{6} {6,7} {6,8}
77 49

{7} {7,8}
41

{8}

Table 6: All clauses c ∈ C2(X), with their fitness value f(c).

In Table 6 we observe that the eight fittest clauses of size 2 are

F8(C2(X)) =
{
{1, 2}, {2, 3}, {1, 3}, {3, 4}, {1, 4}, {2, 4}, {1, 7}, {2, 5}

}
.

16

Finding Patterns in DNA

Next, we classify each clause in

pool3,4 = F8(C2(X)) × F8(C2(X)) .

For this we use the following generating and dormant domains for clauses of size 3 and 4.

s Γs
1(X) Γs

0(X) ∆s
1(X) ∆s

0(X)

3 [88,∞) [0, 15] [0, 21] [91,∞)
4 [38,∞) [0, 10] [0, 13] [40,∞)

Table 7: The domains for clauses of size 3 and 4.

We enumerate pool3,4 in the following matrix that has the set F8(C2(X)) as its axes. In the
following table, the clauses c ∈ pool3,4 can be found in the entries above the diagonal. For
each clause we report the triplet (RP1(c), RP0(c), classification(c)) where the classification
yields one of the labels ‘G’ (generating), ‘D’ (dormant), or ‘A’ (ambiguous). We highlight
the clauses labelled as generating in green. One can verify the classifications with the inter-
vals given above. We classify every clause, independent of whether it is of size 3 or 4. If
we find multiple generating clauses, we will select the fittest one.

F8(C2(X)) {1,2} {2,3} {1,3} {3,4} {1,4} {2,4} {1,7} {2,5}

{1,2} {1,2,3} {1,2,3} {1,2,3,4} {1,2,4} {1,2,4} {1,2,7} {1,2,5}
(63,64,D) (63,64,D) (57,1,G) (63,79,D) (63,79,D) (40,88,D) (41,92,D)

{2,3} {1,2,3} {2,3,4} {1,2,3,4} {2,3,4} {1,2,3,7} {2,3,5}
(63,64,D) (61,54,D) (57,1,G) (61,54,D) (36,31,D) (37,86,D)

{1,3} {1,3,4} {1,3,4} {1,2,3,4} {1,3,7} {1,2,3,5}
(62,63,D) (62,63,D) (57,1,G) (39,83,D) (34,34,D)

{3,4} {1,3,4} {2,3,4} {1,3,4,7} {2,3,4,5}
(62,63,D) (61,54,D) (36,29,D) (32,26,D)

{1,4} {1,2,4} {1,4,7} {1,2,4,5}
(63,79,D) (41,91,D) (36,40,D)

{2,4} {1,2,4,7} {2,4,5}
(37,35,D) (38,101,D)

{1,7} {1,2,5,7}
(21,45,D)

{2,5}

Table 8: All clauses c ∈ pool3,4, with the tuple (RP1(c), RP0(c), classify(c)).

From Table 8, we conclude that clause {1, 2, 3, 4} is generating and that all other clauses in
this pool are dormant.

2.4 Elimination

Previously, when searching for a generating clause of size s, we have consistently assumed
that the dataset (X, y) did not contain clauses of smaller sizes 1, ..., (s − 1). The presence
of a generating clause of smaller size 1, ..., (s − 1) may hamper the likelihood of finding a
generating clause of size s. Therefore, as soon as we classify a clause as generating, we
eliminate it from the dataset.

When we eliminate a clause c = {c1, ..., cs}, we remove the rows of matrix X and vector
y where clause c is active. Moreover, we remove the columns c1, ..., cs from the matrix X.

17

De Vos and Balvert

The obtained dataset (X ′, y′) is given by

X ′ =
{
Xij :

∧
j∈c

Xij ̸= 1 and j /∈ c
}

y′ =
{
yi :

∧
j∈c

Xij ̸= 1
}
.

The elimination procedure is illustrated with a small example.

Example 6 Consider the following small dataset (X, y) with N = 5 rows and P = 6
columns. Suppose that the clause c = {2, 5} is classified as generating and eliminated.
Observe that columns 2 and 5 as well as rows 1 and 4, where {2, 5} is active, are removed.

X =

1 2 3 4 5 6

1 0 1 1 0 1 0
2 1 1 0 0 0 1
3 0 1 1 1 0 1
4 1 1 1 0 1 1
5 0 0 1 0 0 1

, y =

1
0
0
1
1

Eliminate {2,5}−−−−−−−−−−→ X ′ =

1 3 4 6[]2 1 0 0 1
3 0 1 1 1
5 0 1 0 1

, y′ =

[]0
0
1

Eliminating a generating clause leads to generating clauses of bigger sizes being better
separated from dormant clauses. Some intuition for this can be obtained by reconsidering
Table 1 and to aim attention at the columns of the generating clause {201, 202, 203, 204} of
size 4. Most of the samples for which yi = 1 are cases because either clause {1} or clause
{101, 102} is active, while {201, 202, 203, 204} is not. As a result, the columns of features
201 up to 204 resemble columns belonging to dormant clauses. Hence, the presence of
uneliminated cases related to clauses of small size hampers the overall distinguishability of
generating and dormant clauses of greater size, and thus the functioning of our algorithm.

To measure how “well-separated” generating and dormant domains are, we introduce
the Degree of Overlap (DoO) statistics. For a dataset with N1 cases, we let DoOs

1(N,N1)
be the probability that, for a generating clause c ∈ Gs(X), the value RP1(c) lies in the
dormant domain, i.e.,

DoOs
1(N,N1) = P

[
RP1(c) ∈ ∆s

1(X)
∣∣ c ∈ Gs(X)

]
= Gs

1((δ
s
1)

−1(1)) .

Similarly, for a dataset with N0 controls, we let DoOs
0(N,N0) be the probability that RP0(c)

of a generating clause c ∈ Gs(X) lies in the dormant domain, i.e.,

DoOs
0(N,N0) = P

[
RP0(c) ∈ ∆s

0(X)
∣∣ c ∈ Gs(X)]

= 1−Gs
0((δ

s
0)

−1(1)) .

18

Finding Patterns in DNA

The lower the degrees of overlap are, the better the dormant and generating domains are
separeted. In fact, recalling the definitions of the generating domain Γs

1(X) and Γs
0(X), it

is easily verified that

Γs
1(X) ∩∆s

1(X) = ∅ ⇐⇒ DoOs
1(N,N1) < 0.001,

Γs
0(X) ∩∆s

0(X) = ∅ ⇐⇒ DoOs
0(N,N0) < 0.001.

The crucial insight for justifying elimination is that elimination of a generating clause
c ∈ Gs(X) of size s reduces the degrees of overlap for any generating clause c′ ∈ Gs′(X) of
bigger size s′ > s. To see how DoOs′

1 (N,N1) diminishes, recall that the distribution centers
of RP1 for clauses of size s′ are given by N ·ps′ · (1−β) for generating clauses and by N1 ·ps

′

for dormant clauses. The rows where clause c′ is active are predominantly cases. Hence,
eliminating c will reduce N1 by a considerably larger portion than N . Consequently, the
dormant domain ∆s′

1 (X) shifts further to the left than the generating domain Γs′
1 (X).

Similarly, recall that the distribution centers of RP0 for clauses of size s
′ are N ·ps′ ·β for

generating clauses and N0 · ps
′
for dormant clauses. Since eliminating c will reduce N more

than N0, the degree of overlap DoOs′
0 (N,N0) will decrease, enabling better distinction be-

tween dormant and generating clauses. The following example displays the RP -distributions
and the corresponding degrees of overlap for clauses of size 4, before and after elimination
of generating clauses of sizes 1 and 2.

Example 7 Reconsider the example dataset. Before eliminating the generating clauses {1}
and {101, 102}, the degrees of overlap are high for the generating clause {201, 202, 203, 204}.
Hence, if {201, 202, 203, 204} would be classified based on the complete dataset, it is likely
the that it is labelled as ‘Ambiguous’. In Figure 3, we see that the generating and dormant
domains of clauses of size 4 are largely intertwined so that the degrees of overlap are high.

(a) RP1, with DoO4
1(X) = 0.995. (b) RP0, with DoO4

0(X) = 0.503.

Figure 3: Before elimination of clauses {1} and {101, 102}: the RP -distributions of clauses
of size 4.

Next, we eliminate the generating clauses {1} and {101, 102}. As a consequence, we see in
Figure 4 that the generating and dormant domains for clauses are now better separated and
the degrees of overlap have been significantly reduced.

19

De Vos and Balvert

(a) RP1, with DoO4
1(X) = 0.010. (b) RP0, with DoO4

0(X) = 0.116.

Figure 4: After elimination of clauses {1} and {101, 102}: the RP -distributions of clauses
of size 4.

2.5 The Remaining Positives Algorithm (RPA)

In this section we integrate the techniques of the previous sections into a solution algorithm,
which we call the Remaining Positives Algorithm (RPA). A reader familiar with the tech-
niques of previous subsections could choose to ignore the clarifying text and skip directly
to Algorithm 3.

RPA starts by declaring the sets G and A that will store the clauses that we classify
as generating and ambiguous. They will be the output of the algorithm. The clauses in
G are confidently considered to be generating. The clauses in A are cautiously considered
promising candidates for being generating, but for which further examination is necessary
to reach a solid conclusion.

First, clauses of size 1 are found exhaustively by running a subroutine with the set
C1(X) of all clauses of size 1 as input. The subroutine, on input of a certain pool of clauses,
classifies all clauses and elects the winner of the pool, or concludes that the current pool
has no winner. If any clauses are labelled as generating, the one with the highest fitness
value among them is chosen as the winner, where we recall that the fitness of a clause
is computed using equation (2). Otherwise, if any clauses are labelled as ambiguous, the
winner of the pool is the fittest among the ambiguous clauses. If a winner is found, it is
added to the corresponding set G or A and eliminated from the dataset. The subroutine is
applied repeatedly to C1(X), until no more clauses are classified as generating or ambiguous,
which we interpret as that the dataset contains no more generating clauses of size 1.

Observe that, throughout the paper, several concepts have been defined as dependent on
the matrix X, such as the sets Cs(X), Gs(X) and Ds(X), the intervals Γs

1(X),Γs
0(X),∆s

1(X)
and ∆s

0(X). In fact, this is a slight misrepresentation, because these objects also depend
on the vector y, but for conciseness of notation y is left out. Additionally, we now denote
the number of cases N1(X) as dependent on the matrix X. When X and y change due to
elimination, these objects change accordingly.

To find generating clauses of size 1, one could argue that it is more efficient to apply
the subroutine to C1(X) only once and immediately store all clauses that are classified as

20

Finding Patterns in DNA

generating or ambiguous in G or A, respectively. However, throughout the algorithm, we
decide to select the single fittest generating or ambiguous clause and eliminate it immedi-
ately, before looking for other candidate clauses. We argue that the elimination step ‘cleans
up’ the dataset, and therefore choose to perform elimination every time after the subroutine
has found a winner. Since our algorithm is efficient, we can afford to perform elimination
more often than, in some cases, may be strictly necessary.

Having completed the procedure for finding clauses of size 1, we repeat the same proce-
dure for clauses of size 2.

To find generating clauses of size greater than or equal to 3, we run the subroutine with
as input a carefully constructed succession of pools of clauses. As an initial pool, we take
the pool of promising clauses of size 3 and 4, which, we recall from Section 2.3.3, is given
by

pool3,4 = F100(C2(X)) × F100(C2(X)) .

If the outcome of running the subroutine with pool3,4 is that this pool has a winner clause,
then it is eliminated and we reinitialize the procedure of finding clauses of size at least 3.
If pool3,4 turns out not to have a winner, we run the subroutine with the next pool

pool4−8 = F100(pool3,4) × F100(pool3,4) .

If pool4−8 has a winner, it is eliminated and we restart the procedure of finding generating
clauses of size at least 3 with a new pool3,4. If pool4−8 does not have a winner, we run the
subroutine with the next pool

pool5−16 = F100(pool5−16) × F100(pool5−16) .

Similarly, if pool5−16 has a winner, it is processed and we restart the process with a new
pool3,4. Otherwise, if pool5−16 does not have a winner, then the algorithm terminates.

RPA boils down to applying the subroutine to a carefully constructed series of pools. We
impose three stopping conditions. The ‘cleanest’ way in which RPA can terminate is when
three consecutive subroutines have not elected a winner. In such cases, all clauses in the
series of pool3,4, pool4−8 and pool5−16 have been classified as dormant, so that we can quite
safely conclude that the dataset contains no more generating clauses. However, it can occur
that the algorithm keeps finding ambiguous clauses. Sometimes, RPA manages to explain
all cases (N1(X) = 0), which we impose as another stopping condition. Alternatively, if
unrestricted, it can occur that the algorithm keeps on finding ambiguous clauses, which tend
to be of larger sizes. We consider such ‘tails of ambiguous clauses’ degenerate behaviour
and impose that the algorithm stops if it has found 10 consecutive ambiguous clauses.

By these stopping conditions, and with the assumption that every dataset has a limited
number of generating clauses, RPA terminates after a finite number of subroutines. The
exact number of executed subroutines depends on the dataset. Assuming that any dataset
contains no more than 10 generating clauses, and with the stopping condition after 10
ambiguous clauses, the number of executed subroutines cannot exceed 60. For a given
subroutine, the classification of each clause c requires the computation ofRP1(c) andRP0(c),
which is done in time O(N). The largest pool that we can encounter is C2(X), which is of
size O(P 2). Therefore, RPA runs in time O(P 2N).

21

De Vos and Balvert

Algorithm 3: The Remaining Positives Algorithm (RPA)

Input: Dataset (X, y), probability estimate p̂, error estimate β̂;
Output: Set of found generating clauses G and ambiguous clauses A;
G := ∅, A := ∅;
// Find generating clauses of size 1 and 2 exhaustively

while Subroutine(C1(X)) finds a winner do
Subroutine(C1(X));

while Subroutine(C2(X)) finds a winner do
Subroutine(C2(X));

// Find generating clauses of size s ≥ 3 using the pooling procedure

pool := F100(C2(X)) × F100(C2(X));

winnerless counter := 0, ambiguous counter := 0;
while winnnerless counter ≤ 3 and ambiguous counter ≤ 10 and N1(y) > 0 do

Subroutine(pool);
if the subroutine did not find a winner then

pool := F100(pool) × F100(pool);

winnerless counter := winnerless counter + 1;

else
// Reinitialize the pooling procedure

pool := F100(C2(X)) × F100(C2(X));

winnerless counter := 0;

Return G and A.

Subroutine(pool):
Gtmp := ∅, Atmp := ∅;
forall Clauses c ∈ pool do

if Classify(c) = Generating then
Gtmp := G ∪ {c};

else if Classify(c) = Ambiguous then
Atmp := A ∪ {c};

if Gtmp ̸= ∅ then
Select winner c∗ = argmaxc∈Gtmp fit(c) from Gtmp;
G := G ∪ {c∗};
(X, y) := Eliminate(X, y, c∗);
ambiguous counter := 0;

else if Atmp ̸= ∅ then
Select the winner c∗ = argmaxc∈Atmp fit(c) from Atmp;
A := A ∪ {c∗};
(X, y) := Eliminate(X, y, c∗);
ambiguous counter := ambiguous counter + 1;

else
// This execution of the subroutine did not find a winner

22

Finding Patterns in DNA

3. Experiments

Before going into elaborate experiments, we first evaluate how the number of samples N , the
number of features P and the feature frequency p affect the performance of the Remaining
Positives Algorithm (RPA). For this we use the DoO as well as small experiments.

3.1 The effect of dataset characteristics on the performance of RPA

In Section 2.4, we defined the degree of overlap statistics to justify the elimination procedure.
More generally, we can use these statistics as predictors for the quality of the algorithm’s
output. In particular, for unseen datasets, DoOs

1 and DoOs
0 can help us evaluate the

likelihood that RPA will find the generating clauses. The advantage of the statistics DoOs
1

andDoOs
0 is that they are easily computed for clauses of any size s with only a few high-level

parameters of a dataset: the frequency p of occurences of a feature, the error probability β,
the dimensions N × P of matrix X, and the number of cases N1.

However, correctly evaluating DoOs
1 and DoOs

0 is delicate. The exact relationship be-
tween the degrees of overlap and the algorithm performance is not characterized in this
paper. Here we claim that generating clauses are to be found more likely if at least one of
the degrees of overlap is low. In this section, we use these statistics to point out several
determinants of RPA’s performance and support the claims with experiments.

3.1.1 A Crucial Assumption for Using Degrees of Overlap

Using DoOs
1 and DoOs

0 to evaluate the likelihood of finding a generating clause of size s
only makes sense under the assumption that the dataset contains no generating clauses of
smaller sizes 1, ..., (s − 1). By design, RPA finds generating clauses in order of increasing
size. If finding a generating clause c ∈ Gs(X) of size s is preceded by finding a generating
clause of a smaller size, then eliminating the smaller clause reduces the number of rows of
the dataset, which affects the likelihood of finding clause c.

To illustrate this, we consider two datasets with dimensions N = 5, 000 and P = 1, 000.
The first dataset (X1, y1) contains a rule with only one generating clause of size 7, i.e.,

rule1 =
{
{1, 2, 3, 4, 5, 6, 7}

}
. (3)

The other dataset (X2, y2) additionally contains a generating clause of size 1, i.e.,

rule2 =
{
{1, 2, 3, 4, 5, 6, 7}, {10}

}
.

To evaluate the likelihood of finding the clause of size 7 in dataset (X1, y1), we can
directly compute the degrees of overlap with the initial dimensions (N,P) = (5, 000; 1, 000),
because there are no generating clauses of smaller size. In Table 9, we see that at least one
of the degrees of overlap is low, i.e., DoO7

1(X1) = 0.01, so that we may expect the clause to
be found with high likelihood. On the other hand, for the dataset (X2, y2), RPA will search
for the clause of size 7 only after the clause of size 1 is eliminated. We denote the dataset
resulting from eliminating the clause {10} by (XE

2 , yE2). Since eliminating the clause of size
1 will expectedly halve the number of rows, we have to compute the degrees of overlap with
NE = 2, 500 to obtain a realistic prognosis of the likelihood of finding the clause of size 7.

23

De Vos and Balvert

In Table 9, we see that the degrees of overlap are high, so we can expect it to be less likely
that the clause of size 7 is found by RPA.

Indeed, in the following experiment, we find that the generating clause of size 7 is
found more often in datasets with rule1 than in datasets with rule rule2. For both rules,
we perform our algorithm on 100 generated datasets with dimensions N = 5, 000 and
P = 1, 000, and p = 0.5 and β = 0.05. In Table 9, we see that the generating clause of size
7 is found considerably more often in datasets with rule1.

Fraction of generating clauses
(N,P) DoO7

1 DoO7
0 of size 7 retrieved

rule1 (5,000;1,000) 0.01 1.00 0.44

rule2 (2,500;999) 0.60 1.00 0.05

Table 9: For two settings, we compute the degrees of overlap for clauses of size 7 with the
dimensions (N,P) at the appropriate stage of RPA: i.e., after eliminating generating clauses
of smaller size. For 100 datasets generated for both settings with p = 0.5, we apply the
algorithm and report the fraction of found generating clauses of size 7.

Henceforth, in order to be able to interpret the degrees of overlap correctly, we assume that
every dataset contains only one generating clause.

3.1.2 Effect of dimensions N and P

Generating clauses are found significantly more easily if the number of rows N is high, but
the effect of the number of columns P is negligible. Recall that N , N1 and N0 play an
important role in the location of the RP -distributions. It can be verified that larger N lead
to a better separation between generating and dormant clauses.

The number of columns P affects the number of dormant clauses. At most a few
clauses are generating, so that the number of dormant clauses of size s is approximately
|Cs(X)| =

(
P
s

)
. By construction, the dormant domains are wider for larger P , so that RP1(c)

and RP0(c) of any dormant clause c ∈ Ds(X) materialize within the dormant domains with
probability almost 1. This could cause the degree of overlap to increase for higher P .
However, if N is large enough, the generating and dormant domains are sufficienlty far
apart that a large P hardly affects the degrees of overlap.

We reconsider rule1 given in equation (3). In Table 10 we report the degrees of overlap
for clauses of size 7, for different dataset sizes. The degrees of overlap suggest that the
generating clauses of size 7 are unlikely to be found for smaller datasets with N = 1, 000
rows, but are easily found for large datasets with N = 10, 000 rows. The number of columns
P makes an insignificant difference.

The following experiment confirms our prediction of the likelihood of finding the gen-
erating clause of size 7. For different dimensions N and P of the matrix X, we generated
100 datasets with p = 0.5 and β = 0.05. In Table 10 we report the fraction of generating
clauses of size 7 retrieved by RPA.

24

Finding Patterns in DNA

Fraction of generating clauses
(N,P) DoO7

1 DoO7
0 of size 7 retrieved

(1,000;1,000) 0.99 1.00 0.00
(1,000; 2,500) 0.99 1.00 0.00
(10,000;1,000) 0.00 0.00 0.97
(10,000;2,500) 0.00 0.01 0.87

Table 10: For four settings with rpf = [7], with p = 0.5 and different dimensions (N,P),
we compute the degrees of overlap for clauses of size 7. For each setting, we generate 100
datasets and apply RPA. We report the fraction of found generating clauses.

3.1.3 Effect of Clause Size and Probability p

The larger a generating clause is, the harder it is to find. Also, the smaller the probability
p is, the harder it is to find generating clauses of any size. To explain both effects, we recall
that the probability ps that a clause of size s is active plays a major role in the derivation
of the RP -distributions. If ps is low, there will be few rows where generating clauses of size
s are active, and the problem of discerning them with any method becomes harder. The
smaller ps is, the higher are the degrees of overlap.

Table 11 reports the degrees of overlap for various p and clause sizes, for datasets with
dimensions N = 5, 000 and P = 1, 000 and with β = 0.05. We observe that for p = 0.5 and
for all reported clause sizes, at least one of the degrees of overlap is low, so that generating
clauses will be likely found by RPA. For lower values of p, the degrees of overlap increase.
For p = 0.125, generating clauses of sizes 1 and 3 are likely to be found, but generating
clauses of sizes 5 and 7 seem to be indistinguishable from dormant clauses.

Our expectations regarding the likelihood of finding generating clauses are confirmed
in the following experiment. For every reported combination of probability p and clause
size s, we generate 100 datasets with β = 0.05 that contain one generating clause of size
s. Table 11 reports for each parameter setting the fraction of generating clauses that
was retrieved by RPA. Now, we distinguish generating clauses that the algorithm found
by labelling them as generating (‘G’) or ambiguous (‘A’). In Table 11, we see that for
p = 0.125, generating clauses of size 3 are only moderately distinguishable from dormant
clauses. Table 11 confirms this, since a considerable fraction of the generating clauses in
this context were not classified as generating but as ambiguous.

3.2 Setup of further experiments

We test the performance of RPA in various settings. For each setting, we generated 100
datasets and ran the algorithm on each of them. Section 3.1 demonstrated that the perfor-
mance depends on the boolean rule, the dimensions (N,P) of the dataset, and the frequency
p of occurences of a feature. We construct 16 settings that vary in these aspects. Through-
out, we use the constant error probability β = 0.05.

We run experiments for 8 settings with probability p = 0.5, which are reported in Section
3.3, and 8 settings with probability p = 0.25, which are reported in Section 3.4. For each
p, we test for two boolean rules. Henceforth, we will represent boolean rules by their rule
profiles (rpf), which is an enumeration of the sizes of the clauses that the rule contains. We

25

De Vos and Balvert

Fraction of generating
clauses retrieved

p s DoOs
1 DoOs

0 Labelled ‘G’ Labelled ‘A’

0.5 1 0.00 0.00 1.00 0.00
3 0.00 0.00 1.00 0.00
5 0.00 0.00 1.00 0.00
7 0.01 1.00 0.55 0.00

0.25 1 0.00 0.00 0.99 0.00
3 0.00 0.00 0.99 0.00
5 0.98 1.00 0.00 0.00
7 1.00 1.00 0.00 0.00

0.125 1 0.00 0.00 1.00 0.00
3 0.42 1.00 0.54 0.08
5 1.00 1.00 0.00 0.00
7 1.00 1.00 0.00 0.00

Table 11: For twelve settings with different p ∈ {0.5, 0.25, 0.125}, with (N,P) =
(5, 000; 1, 000) and with rule profile rpf = [s] with one generating clause of size s for
s ∈ {1, 3, 5, 7}, we compute the degrees of overlap for clauses of size s. For each setting, we
generated 100 datasets, applied RPA. This table reports the fraction of generating clauses
retrieved, where we seperate clauses that the algorithm labelled as ‘G’ (generating) and ‘A’
(ambiguous).

test boolean rules with the profiles

rpf1 = [1, 2, 3, 5],

rpf2 = [6, 7, 8].

Here, rpf1 describes a boolean rule with one generating clause of size 1, one of size 2, one
of size 3, and one of size 5. The first rule profile tests RPA’s success on small clauses, which
can be found relatively easily. The second rule tests for larger clauses, which are found
less easily. For each rule profile, we generate datasets of four different sizes, namely for
N = 1, 000 and N = 10, 000 rows, and for P = 1, 000 and P = 2, 500 columns. To sum up,
we test for the dataset sizes

(N,P) ∈
{
(1, 000; 1, 000), (1, 000; 2, 500), (10, 000; 1, 000), (10, 000; 2, 500)

}
.

Recall that RPA has the objective of uncovering the generating clauses that produced
the data and that it gives as output a collection of clauses where each is labelled either as
‘G’, if we concluded that it is almost certainly generating, or ‘A’, if it is a promising but
ambiguous candidate. To evaluate the performance of the algorithm, we will not only report
standard performance measures such as accuracy and runtime, because they may paint a
deceiving picture. For instance, on input of a dataset with a small fraction of cases, the
algorithm could achieve a high accuracy by simply returning an empty rule, which would
clearly be undesirable. Instead, our focus will be on the extent to which RPA succeeds in
finding the generating clauses.

26

Finding Patterns in DNA

3.3 Results for p = 0.5

We test RPA for 8 settings where datasets are generated with probability p = 0.5. First,
we observe how often the generating clauses of the rule are found, where we separate the
results by clause size: see Table 12.

The fourth and fifth column show the fraction of the generating clauses that were found,
where we distinguish clauses that our algorithm labelled as generating (‘G’) or ambiguous
(‘A’). Consistently, we see that smaller clauses are found more easily. Moreover, a larger
number of rows (N) increases the likelihood of finding generating clauses, but the number
of columns (P) makes little difference. There seems to be a natural barrier, depending on
the precise setting, that determines with what likelihood generating clauses are found. This
is most apparent in the results for the rule profile [6, 7, 8]. In settings with N = 1, 000
rows, the generating clauses of sizes 6, 7 and 8 are hardly found. With N = 10, 000 rows,
however, the generating clauses of sizes 6 and 7 are found with high likelihood, but those
of size 8 are still practically unfindable. Such barriers depend on several characteristics of
the dataset and can be explained by the degrees of overlap (cf. Section 3.1).

The last two columns of Table 12 reveal the nature of the clauses that were labelled as
‘G’ or ‘A’. In almost all settings and for almost all sizes, the event that a clause receives the
lable ‘G’ is an almost certain guarantee for it to be generating. Exceptions are those cases
where generating clauses are found with low but nonnegligible probability: such as in rpf =
[1, 2, 3, 5], (N,P) = (1, 000; 1, 000), size = 5 and rpf = [6, 7, 8], (N,P) = (1, 000; 1, 000),
size = 6. Such borderline cases can be recognized by computing the degrees of overlap
for the respective circumstances. In such cases, we know that we should be more cautious
about concluding that clauses labelled as ‘G’ are generating. As for the clauses labelled ‘A’,
we see that they are sometimes generating, but mostly they are not.

In Table 13, we further explore the clauses labelled as ‘A’. In almost all observed exe-
cutions of RPA, the clauses labelled ‘G’ are found before the clauses labelled ‘A’, as can be
seen in the third column of Table 13. After a number of clauses have been labelled as ‘G’
and the corresponding samples have been eliminated, a number of unexplained cases could
remain for two possible reasons. Possibly, there is another generating clause that has not
been found yet. Alternatively, recall that a number of cases are due to error instead of a
generating clause. Attempting to explain these remaining cases, the algorithm may produce
a ‘tail’ of clauses labelled ‘A’.

Most clauses labelled ‘A’ are not generating, but some contain features that are part
of a generating clause. The last four columns of Table 13 show the fraction of features
that belong to a generating clause. For some clauses labelled ‘A’, all features belong to a
generating clause. This could occur when a subclause of size 4 of a generating clause of size
5 is prematurely labelled ‘A’ in the pool with promising clauses of sizes 3 and 4 (pool3,4).
Consequently, this generating clause of size 5 never reaches the pool with clauses of sizes
between 4 and 8 (pool4−8), where it could have correctly been labelled as ‘G’. Some clauses
labelled ‘A’ contain a number of features belonging to a generating clause, but most contain
no features of interest.

Table 14 reports the average accuracy, sensitivity and specificity on the training data
resulting from the clauses obtained for the 100 datasets that were tested. For each dataset,
we predicted the dependent vector y with two sets of clauses: first only with the clauses

27

De Vos and Balvert

Of all generating clauses Of all clauses Of all clauses
Clause labelled ‘G’ labelled ‘A’

rpf (N,P) size % Label ‘G’ % Label ‘A’ % Generating % Generating

[1,2,3,5] (1,000; 1,000) 1 1.00 0.00 1.00 N/A
2 1.00 0.00 1.00 N/A
3 0.99 0.00 1.00 N/A
5 0.02 0.02 0.50 0.14

(1,000; 2,500) 1 1.00 0.00 1.00 N/A
2 0.99 0.00 1.00 N/A
3 1.00 0.00 1.00 N/A
5 0.00 0.00 0.00 0.00

(10,000; 1,000) 1 1.00 0.00 1.00 N/A
2 1.00 0.00 1.00 N/A
3 1.00 0.00 1.00 N/A
5 1.00 0.00 1.00 N/A

(10,000; 2,500) 1 0.99 0.00 1.00 N/A
2 1.00 0.00 1.00 N/A
3 1.00 0.00 1.00 N/A
5 1.00 0.00 1.00 N/A

[6,7,8] (1,000; 1,000) 6 0.15 0.03 0.84 0.02
7 0.00 0.00 0.00 0.00
8 0.00 0.00 N/A 0.00

(1,000; 2,500) 6 0.03 0.01 0.83 0.03
7 0.01 0.00 1.00 0.00
8 0.00 0.00 0.00 0.00

(10,000; 1,000) 6 1.00 0.00 1.00 N/A
7 0.94 0.00 1.00 N/A
8 0.07 0.00 1.00 N/A

(10,000; 2,500) 6 1.00 0.00 1.00 N/A
7 0.89 0.00 1.00 N/A
8 0.02 0.00 1.00 N/A

Table 12: For eight settings with p = 0.5, rule profile [1, 2, 3, 5] or [6, 7, 8] and with differ-
ent dimensions (N,P), RPA has been applied to 100 generated datasets. The fraction of
retrieved generating clauses is reported here.

labelled as ‘G’ (the middle three columns of Table 14), and then with all clauses found by
our algorithm (the last three columns of Table 14). Generally, the accuracy is appropriately
around (1 − β) = 0.95. The sensitivity and specificity metrics give us more insight into
the behaviour of RPA. When we include the clauses labelled ‘A’ in the prediction, we see
the sensitivity increase to inappropriate heights, given the error rate β = 0.05. Hence,
the clauses labelled ‘A’ cause an overfitting to the cases. Predictions are best made with
only the clauses labelled ‘G’, and the clauses labelled ‘A’ should be considered as a set of
promising features that could guide further research.

For a proper interpretation of the values in Table 14, one should know the composition
of the cases in the datasets. Of the observed cases, we call those caused by the boolean
rule true cases and those caused by error error cases. One should only aim to predict the
true cases, so knowing the relative proportions guides us to a correct interpretation of the
sensitivity values. In the table, we include columns for the expected fraction of true cases
and error cases for the two rule profiles. To obtain the fraction of true cases, we note that

28

Finding Patterns in DNA

Clauses labelled ‘A’ that are not generating
Fraction of runs Number % Features contained
with labels ‘G’ per dataset Size in a generating clause

rpf (N,P) before labels ‘A’ mean mean mean min med max

[1,2,3,5] (1,000; 1,000) 0.97 3.4 5.4 0.08 0.00 0.00 1.00
(1,000; 2,500) 1.00 3.3 5.1 0.05 0.00 0.00 1.00
(10,000; 1,000) 1.00 3.9 8.0 0.00 0.00 0.00 0.00
(10,000; 2,500) 1.00 5.8 8.0 0.00 0.00 0.00 0.00

[6,7,8] (1,000; 1,000) 0.99 7.6 7.0 0.07 0.00 0.00 1.00
(1,000; 2,500) 0.99 6.8 6.9 0.04 0.00 0.00 0.83
(10,000; 1,000) 1.00 0.0 9.6 0.63 0.56 0.60 0.78
(10,000; 2,500) 1.00 0.0 9.6 0.46 0.00 0.56 0.88

Table 13: For eight settings with p = 0.5, rule profile [1, 2, 3, 5] or [6, 7, 8] and with different
dimensions (N,P), RPA has been applied to 100 generated datasets. This table provides
insight in the quality of the clauses labelled ‘A’.

a row i ∈ [N] is a true case if at least one generating clause is active and the error is not,
which occurs with probability

P[yi = 1 ∧ ϵi = 0] =
(
1−

∏
s∈rpf

(1− ps)
)
· (1− β) . (4)

To obtain the fraction of error cases, we note that a row i ∈ [N] is an error case if all
generating clauses are inactive and the error is active, which occurs with probability

P[yi = 0 ∧ ϵi = 1] =
∏

s∈rpf
(1− ps) · β . (5)

The third and fourth column of Table 14 provide the expected fraction of samples that
are true cases and error cases, respectively, where these values have been computed using
equations (4) and (5). Observe that for the rule profile rpf1 = [1, 2, 3, 5], the vast majority
of cases are true cases: specifically, 0.64/(0.64 + 0.02) = 0.97. Hence, it is reasonable that
high sensitivities are achieved. However, for the rule profile rpf2 = [6, 7, 8], only a fraction
0.03 of samples are true cases and 0.05 are error cases. Therefore, any sensitivity greater
than 0.03/(0.03 + 0.05) = 0.38 should cause one to suspect overfitting and, similarly, the
observed sensitivity values 0.30 and 0.29 for the datasets in this setting with N = 10, 000
rows are appropriate. Note that here we report accuracy, sensitivity and specificity of the
training dataset, as the aim is to show the effect of certain data assumptions on the number
of true versus error cases. The assessment of the generalizability lies in evaluating whether
RPA retrieves the true underlying AND clauses, rather than in accuracy, sensitivity and
specificity of a test dataset.

Finally, Table 16 displays the runtimes for each of the settings. We report the total
runtime, but also decompose it into the time needed to find the clauses labelled ‘G’ and ‘A’.
Observe that the smaller instances are solved within fifteen minutes, and that all instances
except a few with dimensions (N,P) = (10, 000; 2, 500) are solved within an hour. The time
needed to find the clauses labelled ‘G’ is rather stable for each setting. However, in some
settings, the runtime needed to find the clauses labelled ‘A’ shows much more variation.

29

De Vos and Balvert

% Samples % Samples Using only Using all
that are that are clauses labelled ‘G’ found clauses

rpf (N,P) true cases error cases Acc. Sens. Spec. Acc. Sens. Spec.

[1,2,3,5] (1,000;1,000) 0.64 0.02 0.94 0.96 0.90 0.96 1.00 0.88
(1,000;2,500) 0.94 0.96 0.90 0.96 1.00 0.87
(10,000;1,000) 0.95 0.97 0.90 0.95 0.98 0.89
(10,000;2.500) 0.95 0.97 0.90 0.95 0.98 0.89

[6,7,8] (1,000;1,000) 0.03 0.05 0.93 0.05 1.00 0.98 0.99 0.98
(1,000;2,500) 0.93 0.01 1.00 0.98 0.99 0.98
(10,000;1,000) 0.95 0.30 1.00 0.95 0.30 1.00
(10,000;2.500) 0.95 0.29 1.00 0.95 0.29 1.00

Table 14: For eight settings with p = 0.5, rule profile [1, 2, 3, 5] or [6, 7, 8] and with different
dimensions (N,P), RPA has been applied to 100 generated datasets. This table provides
the corresponding accuracy, sensitivity and specificity.

Runtime (minutes)
Finding clauses Finding clauses

Total labelled ‘G’ labelled ‘A’
rpf (N,P) mean min max mean min max mean min max

[1,2,3,5] (1,000;1,000) 0.7 0.5 0.9 0.3 0.3 0.4 0.4 0.2 0.6
(1,000;2,500) 3.9 3.0 5.2 1.6 1.5 2.3 2.4 1.4 3.6
(10,000;1,000) 5.2 2.5 14.9 2.6 2.4 5.7 2.6 0.0 9.2
(10,000;2,500) 50.4 17.8 122.4 19.8 17.8 48.0 30.6 0.0 74.4

[6,7,8] (1,000;1,000) 1.5 0.9 1.8 0.0 0.0 0.2 1.4 0.8 1.8
(1,000;2,500) 11.2 7.8 14.5 0.1 0.0 1.7 11.1 6.2 14.5
(10,000;1,000) 4.7 2.3 7.3 4.7 2.3 7.3 0.1 0.0 2.4
(10,000;2,500) 34.1 17.6 52.3 33.1 17.6 52.0 1.0 0.0 17.3

Table 15: For eight settings with p = 0.5, rule profile [1, 2, 3, 5] or [6, 7, 8] and with different
dimensions (N,P), RPA has been applied to 100 generated datasets. This table provides the
corresponding accuracy, sensitivity and specificity. This table provides the corresponding
runtimes.

3.4 Results for p = 0.25

Now we perform an identical set of experiments as in the previous Section 3.3, but with
probability p = 0.25. Throughout all settings, generating clauses are found with the same
or lower probability than for p = 0.5. Moreover, runtimes are considerably higher. The
increased hardship that RPA endures can be explained with the degrees of overlap (cf.
Section 3.1), which increase as p decreases. Apart from observing the general increased
difficulty of finding generating clauses, one can derive similar insights as in the previous
section. Hence, the following results are presented with no further elaboration.

30

Finding Patterns in DNA

Total runtime (minutes)
RPA IRELAND

rpf (N,P) mean min max mean min max

[1,2,3,5] (1,000;1,000) 0.8 0.7 1.1 140 102 261
(1,000;2,500) 3.9 3.6 4.5 113 83 146
(10,000;1,000) 2.8 1.4 4.8 129 111 154
(10,000;2,500) 26.7 13.2 43.3 117 88 156

[6,7,8] (1,000;1,000) 1.1 0.9 1.4 94 72 118
(1,000;2,500) 5.8 5.2 6.9 94 81 116
(10,000;1,000) 3.0 2.1 4.0 100 85 131
(10,000;2,500) 21.6 14.9 29.5 119 77 170

Table 16: To compare the runtimes of the algorithms RPA and IRELAND, we generated 10
datasets for eight settings with rule profile [1, 2, 3, 5] or [6, 7, 8], p = 0.5 and with different
dimensions (N,P) and solved each dataset with both algorithms. This table reports the
total runtimes.

Of all generating clauses Of all clauses Of all clauses
Clause labelled ‘G’ labelled ‘A’

rpf (N,P) size % Label ‘G’ % Label ‘A’ % Generating % Generating

[1,2,3,5] (1,000; 1,000) 1 1.00 0.00 1.00 N/A
2 1.00 0.00 1.00 N/A
3 0.65 0.12 0.97 0.08
5 0.00 0.00 0.00 0.00

(1,000; 2,500) 1 0.99 0.00 1.00 N/A
2 1.00 0.00 1.00 N/A
3 0.42 0.23 1.00 0.14
5 0.00 0.00 0.00 N/A

(10,000; 1,000) 1 1.00 0.00 1.00 N/A
2 1.00 0.00 1.00 N/A
3 0.99 0.00 1.00 N/A
5 0.00 0.00 0.00 0.00

(10,000; 2,500) 1 1.00 0.00 1.00 N/A
2 1.00 0.00 1.00 N/A
3 1.00 0.00 1.00 N/A
5 0.00 0.00 N/A 0.00

[6,7,8] (1,000; 1,000) 6 0.00 0.00 N/A N/A
7 0.00 0.00 N/A N/A
8 0.00 0.00 N/A N/A

(1,000; 2,500) 6 0.00 0.00 N/A N/A
7 0.00 0.00 N/A N/A
8 0.00 0.00 N/A N/A

(10,000; 1,000) 6 0.00 0.00 N/A 0.00
7 0.00 0.00 N/A 0.00
8 0.00 0.00 N/A N/A

(10,000; 2,500) 6 0.00 0.00 N/A 0.00
7 0.00 0.00 N/A 0.00
8 0.00 0.00 N/A N/A

Table 17: For eight settings with p = 0.25, rule profile [1, 2, 3, 5] or [6, 7, 8] and with differ-
ent dimensions (N,P), RPA has been applied to 100 generated datasets. The fraction of
retrieved generating clauses is reported here.

31

De Vos and Balvert

Clauses labelled ‘A’ that are not generating
Fraction of runs Number % Features contained
with labels ‘G’ per dataset Size in a generating clause

rpf (N,P) before labels ‘A’ mean mean mean min med max

[1,2,3,5] (1,000; 1,000) 0.91 7.0 3.8 0.01 0.00 0.00 0.67
(1,000; 2,500) 0.92 6.2 3.7 0.01 0.00 0.00 0.67
(10,000; 1,000) 1.00 10.0 5.2 0.01 0.00 0.00 0.80
(10,000; 2,500) 1.00 10.0 5.2 0.01 0.00 0.00 0.40

[6,7,8] (1,000; 1,000) 0.93 9.4 3.9 0.02 0.00 0.00 0.50
(1,000; 2,500) 0.91 8.1 3.9 0.01 0.00 0.00 0.33
(10,000; 1,000) 1.00 10.0 5.4 0.03 0.00 0.00 0.40
(10,000; 2,500) 1.00 10.0 5.3 0.01 0.00 0.00 0.40

Table 18: For eight settings with p = 0.25, rule profile [1, 2, 3, 5] or [6, 7, 8] and with different
dimensions (N,P), RPA has been applied to 100 generated datasets. This table provides
insight in the quality of the clauses labelled ‘A’.

% Samples % Samples Using only Using all
that are that are clauses labelled ‘G’ found clauses

rpf (N,P) true cases error cases Acc. Sens. Spec. Acc. Sens. Spec.

[1,2,3,5] (1,000; 1,000) 0.30 0.03 0.95 0.89 0.98 0.98 1.00 0.97
(1,000; 2,500) 0.95 0.88 0.98 0.98 1.00 0.97
(10,000; 1,000) 0.95 0.89 0.98 0.95 0.91 0.97
(10,000; 2.500) 0.95 0.89 0.98 0.95 0.91 0.97

[6,7,8] (1,000; 1,000) 0.0003 0.0499 0.95 0.02 1.00 0.99 0.99 0.99
(1,000; 2,500) 0.95 0.03 1.00 0.99 1.00 0.99
(10,000; 1,000) 0.95 0.00 1.00 0.95 0.12 1.00
(10,000; 2.500) 0.95 0.00 1.00 0.95 0.13 1.00

Table 19: For eight settings with p = 0.5, rule profile [1, 2, 3, 5] or [6, 7, 8] and with different
dimensions (N,P), RPA has been applied to 100 generated datasets. This table provides
the corresponding accuracy, sensitivity and specificity.

Runtime (minutes)
Finding clauses Finding clauses

Total labelled ‘G’ labelled ‘A’
rpf (N,P) mean min max mean min max mean min max

[1,2,3,5] (1,000; 1,000) 1.2 0.9 1.4 0.3 0.2 0.4 0.9 0.5 1.2
(1,000; 2,500) 7.2 5.0 11.0 1.6 0.9 3.8 5.6 3.3 9.0
(10,000; 1,000) 17.1 15.7 17.8 3.0 2.8 3.2 14.0 12.9 14.7
(10,000; 2,500) 135.5 122.9 148.6 23.6 21.5 30.0 111.9 101.2 123.3

[6,7,8] (1,000; 1,000) 1.8 1.3 2.2 0.0 0.0 0.4 1.7 1.1 2.0
(1,000; 2,500) 13.9 9.9 17.0 0.3 0.0 3.3 13.6 9.7 17.0
(10,000; 1,000) 23.9 21.1 26.5 0.0 0.0 0.0 23.9 21.1 26.5
(10,000; 2,500) 175.8 159.8 198.6 0.0 0.0 0.0 175.8 159.8 198.6

Table 20: For eight settings with p = 0.5, rule profile [1, 2, 3, 5] or [6, 7, 8] and with different
dimensions (N,P), RPA has been applied to 100 generated datasets. This table provides the
corresponding accuracy, sensitivity and specificity. This table provides the corresponding
runtimes.

32

Finding Patterns in DNA

4. Discussion

This work proposes the Remaining Positives Algorithm (RPA) as a solution algorithm to
a fundamental data science problem, namely to identify Boolean logic rules in DNF that
classify samples based on binary or binarized features. RPA outputs a set of clauses, so that
we can predict a dependent variable as well as provide the explicit input-output relationship.
This paper introduces two easily computable Remaining Positives statistics to obtain axes
on which features of interest separate themselves. This is used to navigate through the
space of all clauses: the algorithm visits promising candidates and applies a classification
procedure to decide whether we accept a given clause as generating. In many settings, RPA
succeeds in finding the underlying generating clauses efficiently. Moreover, we introduce the
Degree of Overlap concept that allows the user to anticipate the likelhood that RPA will
detect the generating clauses contained in the underlying boolean rule, given a few simple
characteristics of the dataset.

RPA is in many cases able to retrieve the true underlying Boolean rules in DNF from the
data. It does so in a fraction of the time required by IRELAND, which is, to our knowledge,
currently the fastest approach. The complexity of RPA increases only linearly in the number
of samples N , a major advantage as a large number of samples is a requirement for retrieving
complex relationships from data.

In some settings, RPA struggles to detect the underlying generating clauses, such as in
the setting with rule profile [6, 7, 8], with p = 0.25 and with error probability β = 0.05 (see
Table 17). Here, not a single generating clause was retrieved, even with the number of rows
as high as N = 10, 000. This can be explained by the fact that in this setting, error cases
vastly outnumber the true cases. The error probability β = 0.05 far exceeds the probabilities
of the generating clauses of sizes 6, 7 and 8 being active, which are (0.25)6 = 0.0002,
(0.25)7 = 0.00006 and (0.25)8 = 0.00002, respectively. Consequently, the expected fraction
of error cases is 0.0499 of all samples and the expected fraction of true cases is 0.0003 of
all samples (see Table 19). Hence, one may anticipate that a dataset with N = 10, 000
rows contains 499 cases that were caused by error and only 3 cases that were caused by
the underlying boolean rule. Being unable to know which cases are the true cases, it is
unreasonable to expect any algorithm to retrieve the boolean rule. Appropriate expectations
are necessary.

To clarify the boundaries of what is possible, we recommend that future research de-
velops formal notions for the feasibility of identifying the input-output relationships given
certain characteristics of the data. The Degree of Overlap concept proposed in this paper
is an initial approach, but it has not been thoroughly specified. Also, it is tailored to our
framework of boolean rules in DNF, since it is defined in terms of the Remaining Positives
statistics. One may wish to develop a more generic retrievability measure.

One may question the usefulness of the part of our algorithm that labels clauses as am-
biguous. As observed in Section 3, finding clauses that are labelled ‘A’ can increase runtimes
substantially and often leads to overfitting. However, this section has also shown that there
are rare cases in which such clauses contain features of generating clauses. Investigating
this further could lead to insightful future research.

Throughout this paper, we have assumed that the frequency p of occurences of a feature
among samples is equal for all features. Also, we have assumed that there is independence

33

De Vos and Balvert

among features. However, in many applications such as in bioinformatics, these assumptions
are not realistic. Before using RPA in such contexts, one should investigate to what extent
this influences the algorithm’s effectivity.

More than only a solution algorithm, this paper offers a flexible and transparent frame-
work with many entry points for future adjustments and improvements. For example, for
the version of RPA proposed in this paper, the generating domains are chosen such that
both Remaining Positives statistics of a generating clause are in the generating domain
with 0.999 probability. One could make the algorithm stricter or looser by changing this
probability, hence by increasing or decreasing the size of the generating domain. This pa-
rameter thus allows the user to control the level of statistical support that is desired before
accepting an AND clause as generating.

Our main motivation stems from genomics. Many diseases that we cannot cure today,
such as Alzheimer’s, cancer and ALS, have a - largely unknown - underlying genetic cause.
Over the past decade major efforts have resulted in collecting genome data from patients
with the studied disease as well as healthy controls. Analyzing these datasets holds the
promise of identifying the genetic characteristics underlying the disease, which can lead to
a better understanding of disease mechanisms and improved drug development. Boolean
phrases in DNF are highly suitable for this purpose: both the dependent and independent
data are binary or can be readily binarized, and the DNF form fits well with our un-
derstanding of how the underlying biological mechanisms could work (Knijnenburg et al.,
2016).

Acknowledgments

This work was supported by the Netherlands Organization for Scientific Research (NWO)
Veni grant VI.Veni.192.043.

References

Marleen Balvert. Iterative rule extension for logic analysis of data: an milp-based heuris-
tic to derive interpretable binary classification from large datasets. arXiv preprint
arXiv:2110.13664, 2021.

Allison Chang, Dimitris Bertsimas, and Cynthia Rudin. An integer optimization approach
to associative classification. In Advances in neural information processing systems, pages
269–277, 2012.

William W Cohen. Fast effective rule induction. In Machine learning proceedings 1995,
pages 115–123. Elsevier, 1995.

Sanjeeb Dash, Oktay Gunluk, and Dennis Wei. Boolean decision rules via column genera-
tion. Advances in neural information processing systems, 31, 2018.

Peter L Hammer and Tibérius O Bonates. Logical analysis of data—an overview: From
combinatorial optimization to medical applications. Annals of Operations Research, 148
(1):203–225, 2006.

34

Finding Patterns in DNA

Theo A Knijnenburg, Gunnar W Klau, Francesco Iorio, Mathew J Garnett, Ultan McDer-
mott, Ilya Shmulevich, and Lodewyk FA Wessels. Logic models to predict continuous out-
puts based on binary inputs with an application to personalized cancer therapy. Scientific
reports, 6(1):1–14, 2016.

Dmitry Malioutov and Kush Varshney. Exact rule learning via boolean compressed sensing.
In International conference on machine learning, pages 765–773. PMLR, 2013.

R Andrew McCallum and Kent A Spackman. Using genetic algorithms to learn disjunctive
rules from examples. In Machine Learning Proceedings 1990, pages 149–152. Elsevier,
1990.

Ryszard S Michalski, Igor Mozetic, Jiarong Hong, and Nada Lavrac. The multi-purpose
incremental learning system aq15 and its testing application to three medical domains.
In Proc. AAAI, volume 1986, pages 1–041, 1986.

J. Ross Quinlan. Learning logical definitions from relations. Machine learning, 5(3):239–266,
1990.

Ingo Ruczinski, Charles Kooperberg, and Michael LeBlanc. Logic regression. Journal of
Computational and graphical Statistics, 12(3):475–511, 2003.

Mojtaba Seyedhosseini and Tolga Tasdizen. Disjunctive normal random forests. Pattern
Recognition, 48(3):976–983, 2015.

Chuang Wu, Andrew S Walsh, and Roni Rosenfeld. Genotype phenotype mapping in rna
viruses-disjunctive normal form learning. In Biocomputing 2011, pages 62–73. World
Scientific, 2011.

35

	voorkant 015.pdf
	No. 2023-015

	Manuscript - De Vos, Balvert.pdf
	Introduction
	Methods
	Problem Formulation
	Finding Generating Clauses of Size 1
	RP-statistics for Clauses of Size 1
	Classification

	Finding Generating Clauses of Size s 2
	RP-statistics & Classification for clauses of size s2
	Computing the RP-statistics for all Clauses of Size 2
	Pools of Promising Clauses

	Elimination
	The Remaining Positives Algorithm (RPA)

	Experiments
	The effect of dataset characteristics on the performance of RPA
	A Crucial Assumption for Using Degrees of Overlap
	Effect of dimensions N and P
	Effect of Clause Size and Probability p

	Setup of further experiments
	Results for p=0.5
	Results for p=0.25

	Discussion

