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Abstract

This paper studies a new type of interactive Operations Research problem, called a graph machine scheduling problem

(GMS-problem). A GMS-problem combines aspects from minimum cost spanning tree problems and sequencing prob-

lems. Given a graph, we aim to first establish a connection order on the players such that the total cost of connecting

them to a source is minimal and second to find a cost allocation of such an optimal order among the players involved.

We restrict attention to GMS-problems on trees and propose a recursive method to solve these tree GMS-problems inte-

grated with an allocation approach. This latter mechanism consistently and recursively uses myopic reference orders to

determine potential cost savings, which will then be appropriately allocated. Interestingly, the transition process from a

myopic reference order to an optimal one will be smooth using the switching of blocks of agents based on the basic notion

of merge segments.

Keywords: Scheduling; Connection problems; Sequencing problems; Graph machine scheduling problems; Cost allocation

1. Introduction

As argued in Bergantiños et al. (2014), there are many real-life problems that require the construction of

infrastructures to connect a set of agents to a source, either directly or indirectly. One of them is the urban

supply of water from a general reservoir to certain points of interest (agents), which involves building pipelines

throughout a city. Installing pipes between two points takes a certain amount of time. The first problem that

arises in this kind of situation is the question of where the pipelines should be. The objective will thus be to

connect all the agents to the network in such a way that the total time involved is minimized. The construction

time can be interpreted as a cost to be minimized. To address this problem, the standard minimum cost spanning

tree (MCST) setting has been widely applied (see, for example, Curiel, 1997 or Bergantiños and Lorenzo,

∗Corresponding author.
Email addresses: lauradavila.pena@usc.es (L. Davila-Pena), p.e.m.borm@tilburguniversity.edu (P. Borm), igna-
cio.garcia.jurado@udc.es (I. Garcı́a-Jurado), j.schouten@uva.nl (J. Schouten).
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2004). In this way, the focus is on determining so-called MCSTs. A tree is a set of edges such that there is

a single path from the source to each of the agents, and the cost of a tree is the sum of the costs of all the

edges belonging to it. Other real-world situations that can be modeled as an MCST problem can be found in

Claus and Kleitman (1973). MCSTs can be computed in a polynomial time and the most common methods

are Kruskal’s algorithm (Kruskal, 1956) and Prim’s algorithm (Prim, 1957). A further issue of relevance in

an interactive optimization setting is the allocation of costs among the different agents involved. An adequate

allocation will serve to establish and maintain cooperation between the agents. Out of the extensive literature

on MCST problems that approach the cost allocation issue, we mention Claus and Kleitman (1973), Bird

(1976), Granot and Huberman (1981, 1984), Feltkamp et al. (1994), Curiel (1997), Kar (2002), Dutta and Kar

(2004), Fernández et al. (2004), Norde et al. (2004), Moretti et al. (2004), Tijs et al. (2006), Estévez-Fernández

and Reijnierse (2014), and Gómez-Rúa and Vidal-Puga (2017). Bergantiños and Vidal-Puga (2021) is a recent

review.

Looking back at the urban supply of water, it is often essential for the agents to be provided with water at

all times (e.g., a hospital), so they have to contract an external service company for as long as the water supply

does not reach them. Thus, each agent has an associated coefficient that indicates the cost per unit of time in

the system, i.e., per unit of time for which the pipes that connect it to the source are not yet constructed. The

total construction time will depend on when this agent is connected to the source: for example, if agent 2 is

connected to the source via agent 1, then the pipeline connecting the source to agent 1 must be constructed first,

followed by the pipeline connecting agent 1 to agent 2. Hence, the total time required to connect agent 2 to the

source would be the sum of the construction times of the pipelines connecting the source to agent 1, and agent

1 to agent 2. Thus, the objective is to minimize the total aggregate costs instead of just the total construction

time for the project as a whole.

Situations such as those described above result in a new type of problem, which we have called the graph

machine scheduling problem (GMS-problem). One issue we would like to highlight is the proximity of our

problem to a sequencing problem, of which we will give a brief description below.

In deterministic one-machine sequencing problems, a set of jobs needs to be processed on a machine. Each

of these jobs is identified with one agent and has associated with it: a processing time, i.e., the time needed

by the machine to process that specific job, and a cost function, which indicates how costly it is for that

agent to spend a unit of time in the system. The main objective in sequencing problems consists in finding

an optimal order, i.e., an order on the jobs that minimizes the total aggregated cost of all agents. The cost of

an agent will naturally depend on its completion time, and this dependence is linear in the classical model

(Smith, 1956). There are, however, numerous variants of sequencing problems that allow for an adaptation to

real situations. One of them is the sequencing problem with precedence constraints, where some jobs need

to be processed before others, as analyzed in Baker (1971), Sidney (1975), and Hamers et al. (2005). Other

variants can be found in Baker and Su (1974), Cheng and Gupta (1989), Serafini (1996), and Schmidt (2000).

In most interactive sequencing problems, an initial order is assumed as a starting point and the focus is on

the allocation of cost savings with respect to this initial order. For the classical model, Curiel et al. (1989)
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introduces and axiomatically characterizes an allocation rule, the equal gain splitting rule (EGS-rule), based

on neighbor switches to derive an optimal order from the initial one, which was later generalized in Hamers

et al. (1996). Sequencing problems have been extensively dealt with from a game-theoretic perspective, see

Borm et al. (2002), Calleja et al. (2002, 2006), Slikker (2005), Estévez-Fernández et al. (2008), Çiftçi et al.

(2013), Curiel (2015), Musegaas et al. (2018), Saavedra-Nieves et al. (2020), and Schouten et al. (2021).

A GMS-problem is closely related to an MCST problem. However, in a GMS-problem the costs are com-

puted in a different way. In particular, the order in which the edges are activated has a substantial effect on

the cost in our setup, whereas this order is irrelevant in calculating the costs in an MCST problem. Besides,

the GMS-problem is deeply linked to sequencing problems with precedence constraints. Although interac-

tive sequencing problems with precedence constraints have been treated in the literature before (see Hamers

et al., 2005), the approach under which we will study them here has, to the best of our knowledge, never been

adopted. In our setting, we start from a graph (N ∪ {0}, E) where N is the set of nodes corresponding to the

agents, 0 is the source node that must serve all agents, and E is a set of edges connecting the nodes. Each

edge has a specific activation time, and each agent has a cost depending on the time it gets connected. We

will aim, on the one hand, to find an optimal connection order on the agents such that the corresponding total

aggregate connection costs over all players are minimized. Note that a connection order on the agents induces

an activation order on the edges. On the other hand, we aim to find a fair allocation of these costs.

In this paper, we start by motivating the GMS-problem through a particular example and by formally describ-

ing the general problem in detail. The difficulty in obtaining an optimal connection order for the GMS-problem

results in the restriction to GMS-problems on trees. We first focus and discuss a procedure to find an optimal or-

der for network structures consisting of 2 lines arising from the source, integrated with an allocation approach.

The proposed solution algorithm for these 2−lines GMS-problems is a reformulation of the work of Sidney

(1975), but including a more elaborate procedure and additional ingredients like merge segments that will be

essential for our cost allocation procedure. The 2−lines algorithm and allocation procedure serve as the basis

to recursively solve n−lines and general tree GMS-problems. For the allocation procedure, we use a myopic

reference order that will depend on the problem at hand and show that it is possible to go from the reference

order to an optimal order by non-negative savings by switching blocks of agents appropriately selected on the

basis of merge segments.

The remainder of this paper is organized as follows. Section 2 focuses on the general GMS-problem. Sec-

tion 3 provides a solution algorithm and an allocation rule for 2−lines GMS-problems. Sections 4 and 5 gener-

alize the previous procedures to n−lines and tree GMS-problems, respectively. Finally, Section 6 summarizes

the main conclusions of this work.

2. Problem description and motivation

The problem we address in this paper is the following. There is a node 0 that provides a certain service, a finite

set of nodes N that must be (directly or indirectly) connected to 0 in order to receive the service, and a set of

edges E ⊆ {{i, j} | i, j ∈ N ∪{0}, i ̸= j} such that (N ∪{0}, E) is a connected graph. The edges are initially
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“inactive” and each has an activation time. In addition, each node has an associated parameter indicating the

unit cost of not being connected to node 0. The objective pursued is twofold:

1. First, we aim to choose a connection order on the nodes of N so that the sum of the costs over all nodes, the

total connection cost, is as low as possible. This order will lead to a set of edges in E to be activated that

connects all nodes to 0. Once we have found an optimal solution, we know the costs required to connect

each node of N to 0 according to that solution: the minimal connection cost.

2. The second objective is to propose a fair allocation of the minimal connection cost among the nodes of N .

Let us now treat a simple example that motivates the need to address these two issues, and also to better

appreciate the complexity of the problem at hand.

Example 2.1. Consider a situation with three cities (1, 2, and 3) that need to be connected to a service node

0 as soon as possible. The graph in Figure 1 represents the possible connections between the nodes and the

times required to activate each of these connections. The unit cost parameters associated with each city is 1.

As mentioned above, the first objective is to connect the three cities to the service node (the 0 node) while

minimizing the total connection cost. Table 1 displays the possible connection orders on the nodes, along with

the corresponding edges to be sequentially activated, the individual cost vector (whose coordinates represent

the cost of cities 1, 2, and 3, respectively), and the total aggregated costs.

1

3

0

2

7

6.5

5.5

6
5

1

Fig. 1: Example of a GMS-problem.

Order Edges to be activated Individual cost vector Total cost

(1, 2, 3) {0, 1}, {1, 2}, {0, 3} (6.5, 7.5, 12.5) 26.5

(1, 3, 2) {0, 1}, {0, 3}, {1, 2} (6.5, 12.5, 11.5) 30.5

(2, 1, 3) {0, 2}, {2, 1}, {0, 3} (7, 6, 12) 25

(2, 3, 1) {0, 2}, {0, 3}, {2, 1} (12, 6, 11) 29

(3, 1, 2) {0, 3}, {0, 1}, {1, 2} (11.5, 12.5, 5) 29

(3, 2, 1) {0, 3}, {3, 2}, {2, 1} (11.5, 10.5, 5) 27

Table 1: Possible orders for the GMS-problem from Figure 1.

By considering the 6 possible orders, one sees that the optimal connection order is (2, 1, 3). Correspondingly,

the edges are activated in the order {0, 2}, {2, 1}, and {0, 3}. The optimal connection cost is 25, which is

obtained by adding the costs of the nodes, 6 for player 2, 7 for player 1, and 12 for player 3. Note that the

greedy myopic order (i.e., the order in which at each step the edge incident on the component containing 0

with the lowest time is constructed) is not optimal. This myopic order is (3, 2, 1), which has an associated cost

of 27. Nevertheless, this myopic order could be used as a reference order for cost allocation by subtracting an

appropriate allocation of the savings of 2 from the myopic reference individual costs 11.5, 10.5, and 5. △

Below we will formally present the problem under consideration, as well as some essential definitions to

address it. From now on we will use the terms machine and players instead of source and nodes, respectively.

A graph machine scheduling problem, GMS-problem, can be summarized by a tuple G = (N, 0, E, γ, α),

where N is a finite set of jobs or players, 0 represents the machine, E is a set of available (precedence) edges

between players and machine, i.e., E ⊆ {{i, j} | i, j ∈ N ∪{0}, i ̸= j}, such that (N ∪{0}, E) is a connected

4



graph, γ : E → R+ with γij = γ({i, j}) representing the activation time of the edge {i, j} ∈ E, and, finally,

α : N → R+, with α(i) representing the linear cost coefficient to spend one time unit in the system for player

i ∈ N .

The main assumption is that a player i ∈ N can only be processed by the machine if all players on a

path in E from i to the machine have been processed before. A processing or connection order is described

by a bijection σ : N → {1, . . . , |N |}, and Π(N) denotes the set of all processing orders.1 A processing order

σ ∈ Π(N) is called feasible if the aforementioned condition is met for all players. Given σ ∈ Π(N) and i ∈ N ,

let Pσ(i) = {j ∈ N | σ(j) < σ(i)} denote the set of predecessors of i in σ. Also, let P 0
σ (i) = Pσ(i) ∪ {0}.

Formally, σ ∈ Π(N) is feasible if there exists j ∈ P 0
σ (i) such that {i, j} ∈ E for all i ∈ N . Let F(N) denote

the set of all feasible orders.

Definition 2.1. Let (N, 0, E, γ, α) be a GMS-problem, and let σ ∈ F(N). Given i ∈ N , we define the

completion time of player i with respect to σ, Ci(σ), as follows:

Ci(σ) =
∑

k∈Pσ(i)

Ck(σ) + min
{
γij | j ∈ P 0

σ (i) and {i, j} ∈ E
}
.

Given i ∈ N , we define the cost of player i with respect to σ, ci(σ), as follows:

ci(σ) = α(i) · Ci(σ).

Let c(σ) = (ci(σ))i∈N denote the individual cost vector with respect to σ. We define the total cost of σ, TC(σ),

as follows:

TC(σ) =
∑
i∈N

ci(σ). (1)

Among other things, this paper aims to determine an optimal order σ̂ ∈ F(N) that minimizes the total costs

among all feasible processing orders. It is important to note that the problem of finding an optimal connection

order for general graphs (N ∪ {0}, E) is hard. The optimal solution in Example 2.1 already shows some

unexpected peculiarities, highlighting the potential complexity of the GMS-problem. In this paper, we will

focus on GMS-problems such that (N ∪ {0}, E) is a tree.

It should be stressed that by restricting the problem to trees, there will be only one path between any two

nodes. With the purpose of simplifying the notation, the GMS-problems treated from now on will be denoted

by a tuple (N, 0, E, γ, α), where γ now is a function on N . In particular, for γ : N → R+ we have that

γ(i) = γip0
E(i), where p0E(i) is the first player on the unique path between the machine and i. In this way, it is

easily seen that equation (1) can be reformulated as

TC(σ) =

|N |∑
k=1

γ(σ−1(k)) ·

 ∑
{j∈N |σ(j)≥k}

α(j)

.

1We will use the terms processing order and connection order interchangeably.
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3. 2−lines GMS-problems

In this section we describe and analyze 2-lines GMS-problems. We will first tackle the question of how to

find an optimal connection order for these problems, and second how to allocate the cost of such a minimal

connection order among the players involved.

3.1. Optimal orders

A GMS-problem (N, 0, E, γ, α) is called a 2−lines GMS-problem if there exists a partition ⟨A,B⟩ of N with

A = {a1, . . . , as̃} and B = {b1, . . . , bt̃} with s̃+ t̃ = |N |, such that

E =
{
{0, a1}, {a1, a2}, . . . , {as̃−1, as̃}

}
∪
{
{0, b1}, {b1, b2}, . . . , {bt̃−1, bt̃}

}
.

The sets A and B are called branches. For this particular case, a feasible order is described by a bijection

σ : A ∪B → {1, 2, . . . , s̃+ t̃} such that

σ(ak) < σ(al) ⇒ k < l;

σ(bk) < σ(bl) ⇒ k < l.

Let F(A∪B) denote the set of all such feasible orders. A graphical representation of a 2−lines GMS-problem

can be seen in Figure 2.

a1 α(a1)

a2 α(a2)

0

b1α(b1)

b2α(b2)

a3 α(a3) b3α(b3)

as̃ α(as̃) bt̃α(bt̃)

γ(a2)

γ(a1) γ(b1)

γ(b2)

γ(a3) γ(b3)

... . . .

Fig. 2: Graphical representation of a 2−lines GMS-problem.

Definition 3.1. Let (N, 0, E, γ, α) be a 2−lines GMS-problem, and let σ ∈ F(A ∪ B). We define a segment

of A from h to l as the following subset of A:

Qhl = {ah, ah+1, . . . , al},

where 1 ≤ h ≤ l ≤ s̃. Analogously, we define a segment of B from h to l as the following subset of B:

Rhl = {bh, bh+1, . . . , bl},

where 1 ≤ h ≤ l ≤ t̃.
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When we do not specify which branch a certain segment belongs to, we will use the notation X or Y instead

of Q and R. A segment from the beginning of a branch is called a head.

Definition 3.2. Given a segment X , we define the cost weighted average time per edge of X , CAT (X), as

CAT (X) =

∑
i∈X γ(i)∑
i∈X α(i)

.

Moreover, given a segment X , we define its urgency, U(X), as

U(X) =
1

CAT (X)
.

Given a 2−lines GMS-problem, (N, 0, E, γ, α), our objective is to solve the following problem:

min TC(σ)

s.t. σ ∈ F(A ∪B).

In Algorithm 1 we formally present the algorithm to solve 2−lines GMS-problems. Steps 1–3 constitute an

iteration of the algorithm. The output of Algorithm 1 is a merge order:

σ̂ = (M1,M2, . . . ,Mm−1,Mm),

with m ≥ 2, where M1,M2, . . . ,Mm are called merge segments. It could be possible that both Mk and Mk+1

belong to the same branch (because they might be merged at different steps). Of course, a merge order σ̂

corresponds to one order on all players. If we do not want to highlight the merge segments, we will use the

notation τ̂ for this order.

Example 3.1 shows the main ideas of this algorithm.

Example 3.1. Consider the 2−lines GMS-problem presented in Figure 3a. Figure 3b shows the steps to be

followed by Algorithm 1 in the first iteration. First, CAT (Q11) and CAT (R11) are compared, and Q11 is

selected as the first pivot. Since CAT (Q11) > CAT (R12), the pivot is changed to R12 (red arrows represent

pivot transitions). After making the appropriate comparisons (see blue arrows), Q14 is chosen as the next pivot

and, since there are no other segment in branch B with lower CAT than Q14, it becomes the first merge

segment, that is, M1 = Q14. We merge Q14 to the machine and renumber the nodes. This leads to the second

iteration, presented in Figure 4. Since CAT (R11) < CAT (Q11), R11 is selected as the first pivot of this

iteration and becomes the second merge segment, as there is no other possible comparison. The same happens

in the third iteration, as can be seen in Figure 5. After adequately renumbering the nodes, Q11 and R11 are

compared in the fourth iteration, as a result of which Q11 is selected as the pivot. This still needs to be compared

with R12. Since CAT (Q11) ≤ CAT (R12), Q11 becomes a merge segment. Finally, we are left with one

branch, so each individual is considered a separate merge segment.
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Algorithm 1 Algorithm to solve a 2−lines GMS-problem
0. Initialize k = 1, i = 1.

1. Consider the 2−lines GMS-problem (N, 0, E, γ, α). Initialize l = 1, l′ = 1.

• If
γ(a1)

α(a1)
≤

γ(b1)

α(b1)
, select pivot Pi = {a1}.

• If
γ(a1)

α(a1)
>

γ(b1)

α(b1)
, select pivot Pi = {b1}.

2. (a) If Pi ⊆ A, take l = l + 1.
• If l ≤ t̃, compare CAT (Pi) to CAT (R1l).

— If CAT (Pi) ≤ CAT (R1l), go back to step 2.
— If CAT (Pi) > CAT (R1l), then i = i+ 1, Pi = R1l. Go back to step 2.

• If l > t̃, go to step 3.
(b) If Pi ⊆ B, take l′ = l′ + 1.

• If l′ ≤ s̃, compare CAT (Pi) to CAT (Q1l′ ).
— If CAT (Pi) ≤ CAT (Q1l′ ), go back to step 2.
— If CAT (Pi) > CAT (Q1l′ ), then i = i+ 1, Pi = Q1l′ . Go back to step 2.

• If l′ > s̃, go to step 3.

3. Set Mk = Pi.
(a) If Mk ⊆ A.

• If A \Mk = ∅, then Mk+j = {bj} for all j ∈ {1, . . . , t̃}. The algorithm is finished.
• Otherwise, let A = r(A\Mk), where r : A\Mk → A is a renumbering function such that r(ah) = ah−l′ , for all h ∈ {l′+1, . . . , s̃}

. Let γ(ah) = γ(ah+l′ ) and α(ah) = α(ah+l′ ) for all h ∈ {1, . . . , s̃− l′}. Set N = A ∪ B, k = k + 1 and i = i+ 1. Go back
to step 1.

(b) If Mk ⊆ B.
• If B \Mk = ∅, then Mk+j = {aj} for all j ∈ {1, . . . , s̃}. The algorithm is finished.
• Otherwise, let B = r̃(B\Mk), where r̃ : B\Mk → B is a renumbering function such that r(bh) = bh−l, for all h ∈ {l+1, . . . , t̃}

. Let γ(bh) = γ(bh+l) and α(bh) = α(bh+l) for all h ∈ {1, . . . , t̃ − l}. Set N = A ∪ B, k = k + 1 and i = i + 1. Go back to
step 1.

a1 2.2

a2 3

0

b12

b22.8

a3 1 b32.5

a4 3.4 b42.4

a5 2.1

5

3.4 3.5

3.2

1.9

3

4.9

4

4.8

(a) Graphical representation.

Q11 Q12 Q13 Q14 Q15

CAT (·) 1.55 1.62 1.66 1.39 1.48

R11 R12 R13 R14

CAT (·) 1.75 1.40 1.59 1.69

(b) Steps of Algorithm 1.

Fig. 3: First iteration.

a1 2.1

0

b12

b22.8

b32.5

b42.4

4 3.5

3.2

4.9

4.8

(a) Graphical representation.

Q11

CAT (·) 1.90

R11 R12 R13 R14

CAT (·) 1.75 1.40 1.59 1.69

(b) Steps of Algorithm 1.

Fig. 4: Second iteration.
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a1 2.1

0

b12.8

b22.5

b32.4

4 3.2

4.9

4.8

(a) Graphical representation.

Q11

CAT (·) 1.90

R11 R12 R13

CAT (·) 1.14 1.53 1.68

(b) Steps of Algorithm 1.

Fig. 5: Third iteration.

a1 2.1

0

b12.5

b22.4

4 4.9

4.8

(a) Graphical representation.

Q11

CAT (·) 1.90

R11 R12

CAT (·) 1.96 1.98

(b) Steps of Algorithm 1.

Fig. 6: Fourth iteration.

The algorithm outputs the following merge order2:

σ̂ = (M1,M2,M3,M4,M5,M6),

where M1 = {a1a2a3a4}3, M2 = {b1}, M3 = {b2}, M4 = {a5}, M5 = {b3}, and M6 = {b4}, which has an

associated cost of TC(σ̂) = 381.33. △

Next, we will show a series of results to prove that Algorithm 1 leads to an optimal order.

Remark 3.1. Given a set Z ⊆ N , we will use the notation γ[Z] =
∑

i∈Z γ(i) and α[Z] =
∑

i∈Z α(i). Hence,

if X is a segment we can write CAT (X) = γ[X]
α[X] .

The following proposition shows that an optimal order cannot have two consecutive segments of the same

branch separated by nodes of the other branch when the CAT of the first segment is greater than the CAT of

the next segment.

Proposition 3.1. Let (N, 0, E, γ, α) be a 2−lines GMS-problem. Let X and Y be two segments that belong to

the same branch, and let Z be a segment from the other branch. If CAT (X) > CAT (Y ), then

τ = (∼, X, Z, Y,∼)

is not optimal.

Proof. Consider:

τ1 = (∼, X, Y, Z,∼);

τ2 = (∼, Z,X, Y,∼).

Note that

TC(τ)− TC(τ1) = α[Y ] · γ[Z]− α[Z] · γ[Y ] = α[Y ] · α[Z] · γ[Z]

α[Z]
− α[Z] · α[Y ] · γ[Y ]

α[Y ]

= α[Y ] · α[Z] · (CAT (Z)− CAT (Y )) ,

2Note that Sidney-components (see Hamers et al., 2005 for details) are not the same as merge segments. It can be checked that the
Sidney-components would be S1 = {a1a2a3a4}, S2 = {b1b2}, S3 = {a5}, and S4 = {b3b4}.
3We use this notation to emphasize the order of the players in the set M1.
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and

TC(τ)− TC(τ2) = α[Z] · γ[X]− α[X] · γ[Z] = α[Z] · α[X] · γ[X]

α[X]
− α[X] · α[Z] · γ[Z]

α[Z]

= α[Z] · α[X] · (CAT (X)− CAT (Z)) .

Suppose for the sake of contradiction that τ is optimal. Then,

TC(τ)− TC(τ1) ≤ 0 and TC(τ)− TC(τ2) ≤ 0,

and hence, using the equalities above,

CAT (X) ≤ CAT (Z) ≤ CAT (Y ),

which is a contradiction. Thus, τ cannot be optimal.

Definition 3.3. Let σ̂ = (M1,M2, . . . ,Mm) be the output of Algorithm 1 for a 2−lines GMS-problem

and let τ be a feasible order. Let k ∈ {1, 2, . . . ,m}. A component of Mk in τ is defined as a maximal

connected subset of Mk with respect to τ . Denote by Mk

/
τ the set of components of Mk in τ , and let

Mk

/
τ = {G1, G2, G3, . . . , Gmk

} be the different components in the order they appear in τ , that is:

τ = (∼, G1, . . . , G2, . . . , G3, . . . , Gmk
,∼).

Obviously, all merge segments and their components are segments. The following lemma presents different

properties of merge segments and their components. Specifically, we will see that the last component is decisive

for a certain segment to become a merge segment.

Lemma 3.1. Let σ̂ = (M1,M2, . . . ,Mm) be the output of Algorithm 1 for a 2−lines GMS-problem. Take

k ∈ {1, 2, . . . ,m} such that |Mk| > 1. Let τ be a feasible order such that
∣∣Mk

/
τ
∣∣ > 1. Then, the following

holds:

i) CAT (Gmk
) < CAT (G1 ∪G2 ∪ · · · ∪Gmk−1);

ii) CAT (Gmk
) < CAT (Mk);

iii) CAT (Gmk
) < CAT (G1).

Proof. Since |Mk| > 1, it holds that Mk is not the first pivot in Algorithm 1. In order for Mk to become the

new pivot and hence, the merge segment, it must have lower CAT than the previous pivot. Furthermore, the

CAT of the previous pivot is less than or equal to the CAT of the combination of the first mk − 1 components

of Mk. This might be a direct comparison, but it could also be an indirect comparison via several other pivots.

That is,

CAT (Mk) < CAT (G1 ∪G2 ∪ · · · ∪Gmk−1). (2)

10



Then,

γ[G1] + γ[G2] + · · ·+ γ[Gmk−1] + γ[Gmk
]

α[G1] + α[G2] + · · ·+ α[Gmk−1] + α[Gmk
]
<
(2)

γ[G1] + γ[G2] + · · ·+ γ[Gmk−1]

α[G1] + α[G2] + · · ·+ α[Gmk−1]
,

and, consequently,

γ[Gmk
] · (α[G1] + α[G2] + · · ·+ α[Gmk−1]) < (γ[G1] + γ[G2] + · · ·+ γ[Gmk−1]) · α[Gmk

]. (3)

Hence,

γ[Gmk
]

α[Gmk
]
<

γ[G1] + γ[G2] + · · ·+ γ[Gmk−1]

α[G1] + α[G2] + · · ·+ α[Gmk−1]
.

Thus, CAT (Gmk
) < CAT (G1 ∪G2 ∪ · · · ∪Gmk−1), proving i).

To prove ii), we add γ[Gmk
] · α[Gmk

] on both sides of equation (3):

γ[Gmk
] · (α[G1] + α[G2] + · · ·+ α[Gmk−1]) + γ[Gmk

] · α[Gmk
]

< (γ[G1] + γ[G2] + · · ·+ γ[Gmk−1]) · α[Gmk
] + γ[Gmk

] · α[Gmk
],

which results in

γ[Gmk
] · (α[G1] + α[G2] + · · ·+ α[Gmk−1] + α[Gmk

])

< (γ[G1] + γ[G2] + · · ·+ γ[Gmk−1] + γ[Gmk
]) · α[Gmk

].

Consequently,

γ[Gmk
]

α[Gmk
]
<

γ[G1] + γ[G2] + · · ·+ γ[Gmk−1] + γ[Gmk
]

α[G1] + α[G2] + · · ·+ α[Gmk−1] + α[Gmk
]
,

and thus CAT (Gmk
) < CAT (G1 ∪G2 ∪ · · · ∪Gmk

) = CAT (Mk), proving ii).

To prove iii), note that CAT (Gmk
) < CAT (Mk) < CAT (G1), where the first inequality follows from ii)

and the second inequality from Algorithm 1, see also equation (2).

Given a non-connected merge segment, the following lemma guarantees that there will be at least one pair

of consecutive components in a feasible order such that the CAT of the first component is strictly greater than

the CAT of the next component.

Lemma 3.2. Let σ̂ = (M1,M2, . . . ,Mm) be the output of Algorithm 1 for a 2−lines GMS-problem. Take

k ∈ {1, 2, . . . ,m} such that |Mk| > 1. And let τ be a feasible order such that
∣∣Mk

/
τ
∣∣ > 1. Then, there exists

k ∈ {2, 3, . . . ,mk} such that CAT (Gk−1) > CAT (Gk).

Proof. Suppose for the sake of contradiction that CAT (Gk−1) ≤ CAT (Gk) for all k ∈ {2, 3, . . . ,mk}. That
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is,

CAT (G1) ≤ CAT (G2) ≤ · · · ≤ CAT (Gmk−1) ≤ CAT (Gmk
).

This implies that CAT (G1) ≤ CAT (Gmk
), contradicting iii) of Lemma 3.1. Hence, there exists k ∈

{2, 3, . . . ,mk} such that CAT (Gk−1) > CAT (Gk).

The following lemma tells us that there can be no optimal order in which merge segments have more than

one component.

Lemma 3.3. Let σ̂ = (M1,M2, . . . ,Mm) be the output of Algorithm 1 for a 2−lines GMS-problem. It holds

that the elements of Mk, k ∈ {1, . . . ,m}, are consecutive in any optimal order.

Proof. Let τ be an optimal order. Suppose that there exists k ∈ {1, . . . ,m} such that players from Mk are sepa-

rated by other players in τ . Also consider the set of components of Mk in τ , i.e., Mk

/
τ = {G1, G2, . . . , Gmk

},

so we would have:

τ = (∼, G1, . . . , G2, . . . , Gmk
,∼).

From Lemma 3.2, we know that there exists k̃ ∈ {2, . . . ,mk} such that CAT (Gk̃−1) > CAT (Gk̃). Rewrite τ

as follows:

τ = (∼, Gk̃−1, Z,Gk̃,∼),

where Z is a segment from the other branch. From Proposition 3.1, τ is not optimal, which is a contradiction.

Hence,
∣∣Mk

/
τ
∣∣ = 1 for all k ∈ {1, . . . ,m}.

The proposition below states that at least one optimal order has to start with the first merge segment obtained

by applying Algorithm 1.

Proposition 3.2. Let (N, 0, E, γ, α) be a 2−lines GMS-problem. Let σ̂ = (M1,M2, . . . ,Mm) be the output

of Algorithm 1 for such problem. There always exists an optimal order that starts with M1.

Proof. Consider τ ∈ F(A∪B) such that τ does not start with M1. We will first prove that there always exists

τ∗ starting with M1 such that TC(τ∗) ≤ TC(τ).

Assume w.l.o.g. that M1 ⊆ A. During Algorithm 1, we compared the CAT of M1 with the CATs of all

possible segments R1l, l ∈ {1, . . . , t̃}. It holds that:

CAT (M1) ≤ CAT (R11);

CAT (M1) ≤ CAT (R12);

...

CAT (M1) ≤ CAT (R1t̃).

(4)
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In case |M1/τ | = 1, M1 is a connected component in τ . If τ does not start with M1, then it must start with

some players from branch B, followed by M1:

τ = (R1ℓ,M1,∼),

where 1 ≤ ℓ ≤ t̃. Now, consider the following order:

τ1 = (M1, R1ℓ,∼),

in which we have swapped the positions of M1 and R1ℓ. Then,

TC(τ)− TC(τ1) = α[M1] · α[R1ℓ] · CAT (R1ℓ)− α[R1ℓ] · α[M1] · CAT (M1)

= α[M1] · α[R1ℓ] · (CAT (R1ℓ)− CAT (M1)) ≥
(4)

0,
(5)

and hence, τ is not better than τ1.

In case |M1/τ | > 1, then we can write τ as

τ = (∼, G1, . . . , G2, . . . , G3, . . . , Gm1
,∼),

with m1 > 1, where M1

/
τ = {G1, G2, G3, . . . , Gm1

} denotes the set of components of M1 in τ .

From Lemma 3.3, τ cannot be optimal since the elements of M1 are not consecutive. In particular, we know

there exists a bijection

ρ : {1, 2, . . . ,m} → {1, 2, . . . ,m}

such that τ ′ = (Mρ(1), . . . ,Mρ(m)) is an optimal order. Take î ∈ {1, . . . ,m} such that ρ(̂i) = 1. Next consider

τ∗ = (Mρ(̂i),Mρ(1),Mρ(2), . . . ,Mρ(̂i−1),Mρ(̂i+1), . . . ,Mρ(m)).

Then,

TC(τ∗) ≤ TC(τ ′) < TC(τ),

where the first inequality follows from a similar reasoning that leads to (5) and the second inequality from

Lemma 3.3.

The following proposition shows that the specific structure of an optimal order leads to an optimal order of

a subproblem.

Proposition 3.3. Let (N, 0, E, γ, α) be a 2−lines GMS-problem, and let σ̃N = (M1, . . . ,Mm) be the output

of Algorithm 1. Let τN be an optimal order. If τN starts with M1, it holds that τN |N\M1
is an optimal order
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for the subproblem on N \M1.

Proof. W.l.o.g., we assume that M1 ⊆ A. If M1 = A, then it is clear that τN = (M1, b1, b2, . . . , bt̃), where

τN |N\M1
= (b1, b2, . . . , bt̃) is the optimal order of the 1−line GMS-problem with set of players N \ M1 =

{b1, b2, . . . , bt̃}. Let us suppose now that M1 ⊊ A. For the sake of contradiction, assume that τN |N\M1
is not

an optimal order for the aforementioned subproblem. Then, there would exist τ̂N\M1 such that

TC(τ̂N\M1)− TC(τN |N\M1
) < 0. (6)

Consider the order τ̂N = (M1, τ̂
N\M1). Note that

TC(τ̂N )− TC(τN ) = TC(τ̂N\M1)− TC(τN |N\M1
) <

(6)
0,

which is a contradiction because τN is optimal. Thus, τN |N\M1
is an optimal order for the problem with set of

players N \M1.

The next result describes a reverse version of Proposition 3.3: if we have a specific optimal order for a

subproblem, we can derive an optimal order for the general problem.

Lemma 3.4. Let (N, 0, E, γ, α) be a 2−lines GMS-problem, and let σ̃N = (M1, . . . ,Mm) be the output of

Algorithm 1. Let τN\M1 be an optimal order for the problem on N \M1. It holds that τN = (M1, τ
N\M1) is

an optimal order for (N, 0, E, γ, α).

Proof. From Proposition 3.2, we know there exists an optimal order τ̂N for (N, 0, E, γ, α) that starts with M1,

so τ̂N = (M1, τ̂
N |N\M1

). From Proposition 3.3, τ̂N |N\M1
is an optimal order for the subproblem with set of

players N \M1. For the sake of contradiction, suppose that τN is not optimal. Then,

TC(τ̂N )− TC(τN ) = TC(τ̂N |N\M1
)− TC(τN\M1) < 0,

which contradicts τN\M1 being optimal for the problem with set of players N \M1.

We present below the main result of this subsection, which indicates that Algorithm 1 always leads to an

optimal order.

Theorem 3.1. Let (N, 0, E, γ, α) be a 2−lines GMS-problem, and let τ̂ be the order provided by Algorithm 1.

Then, TC(τ̂) ≤ TC(τ) for all τ ∈ F(A ∪B).

Proof. The proof uses induction to the number of players, |N |.

Consider |N | = 2. We present this situation in Figure 7. In such a case, there are two possible orders,

τ1 = (a1, b1) and τ2 = (b1, a1). Note that:

TC(τ1) = (α(a1) + α(b1)) · γ(a1) + α(b1) · γ(b1);

TC(τ2) = (α(b1) + α(a1)) · γ(b1) + α(a1) · γ(a1),
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a1α(a1)

0

b1 α(b1)

γ(a1) γ(b1)

Fig. 7: A 2−lines GMS-problem with 2 players.

and thus

TC(τ1)− TC(τ2) = α(b1) · γ(a1)− α(a1) · γ(b1) = α(b1) · α(a1) ·
(
γ(a1)

α(a1)
− γ(b1)

α(b1)

)
. (7)

Algorithm 1 compares γ(a1)
α(a1)

to γ(b1)
α(b1)

in order to choose the first merge segment, which in this case will consist

of a single node. From (7), we can see that the optimal order will be determined by the exact same comparison,

thus Algorithm 1 leads to an optimal order.

Now assume that Algorithm 1 leads to an optimal order if the number of players is k < |N |.

Now, take k = |N |. Let σ̂ = (M1,M2, . . . ,Mm) be the output of Algorithm 1 corresponding to τ̂ . Naturally,

σ̂|N\M1
= (M2, . . . ,Mm) will be an output of our procedure for the problem with set of players N \M1. Using

our induction hypothesis, σ̂|N\M1
is optimal for such subproblem. From Lemma 3.4, the order (M1, σ̂|N\M1

)

is optimal. Clearly, σ̂ = (M1, σ̂|N\M1
), finishing the proof.

3.2. Allocating the minimal cost

This subsection introduces the κ rule as a cost allocation rule for 2−lines GMS-problems. The κ rule takes

as a reference point a myopic connection order and its corresponding cost vector and will subtract a specific

allocation vector of the cost savings as given by the block splitting rule (BSR), which will be described later.

The underlying allocation procedure is closely tied to the theoretical results presented in Subsection 3.1. In

particular, the merge segments will be the foundation of the allocation procedure that we will discuss. Below,

we explain the ideas behind the κ rule in more detail.

Let G = (N, 0, E, γ, α) be a 2−lines GMS-problem. The order that we will use as a reference point is an

endogenous and myopic order τ0. It will depend on the particular problem we are considering, in the following

way: at each step, the machine selects the player that has a higher urgency, always taking into account the

existing precedence relations. For expositional simplicity, we will assume that α(i)
γ(i) ̸= α(j)

γ(j) for all i, j ∈ N, i ̸=

j, i.e., all players’ urgencies are different. Thus, τ0 is unique4. Moreover, given an optimal order τ̂ , the total

amount that will be saved is gN = TC(τ0)− TC(τ̂). The allocation approach starts from the reference order,

τ0, and “repairs” it until the optimal order found by Algorithm 1, τ̂ , is reached. In order to guarantee that these

repairs lead to non-negative cost savings and there is a local incentive to perform each step, we exchange blocks

of players related to the merge segments.5

Below we provide a 2−lines GMS-problem that illustrates the ideas behind our allocation procedure.

4In case of ties, any possible reference order is considered with a certain probability. We will elaborate on this issue in Section 6.
5This was one of our primary motivations to modify the algorithm of Sidney (1975).
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Example 3.2. Consider the 2−lines GMS-problem from Example 3.1. In order to compute the reference

order, we start by comparing γ(a1)
α(a1)

= 3.4
2.2 = 1.55 to γ(b1)

α(b1)
= 3.5

2 = 1.75. Since the urgency of player

a1 is higher, we select a1 as the first player of τ0. The second step consists in comparing γ(a2)
α(a2)

= 1.67

to γ(b1)
α(b1)

= 1.75, leading to a2 being the second player in τ0. We repeat these comparisons until all play-

ers have been included in τ0. The reference order is τ0 = (a1, a2, b1, b2, a3, a4, a5, b3, b4), with c(τ0) =

(7.48, 25.2, 17, 68, 50.4, 23.8, 42.28, 72.25, 80.88) and TC(τ0) = 387.29. We have seen in Example 3.1 that

τ̂ = (a1, a2, a3, a4, b1, b2, a5, b3, b4) is an optimal order, with TC(τ̂) = 381.33. Thus, τ0 is not optimal, and

there is a saving of gN = 387.29− 381.33 = 5.96 from τ0 to τ̂ .

How to allocate the savings of going from τ0 to τ̂? Which players should be compensated for such sav-

ings? We know that we cannot switch b2 with a3 (the first point at which we have two consecutive players

from different branches that are misplaced with respect to the optimal order) since this leads to a negative

switch: in the reference order b2 goes before a3, this means that b2 has a higher urgency than a3. But we

can switch specific consecutive blocks of players simultaneously. In this particular case, we could switch

X = {b1b2} with Y = {a3a4}, thus obtaining the optimal order. The gain resulted from switching them

is denoted by gXY and equals 5.96. Regarding a savings allocation rule, we propose to allocate 1
2gXY to

all players in X equally and 1
2gXY to all players in Y equally. Here, our proposal would be to allocate a

saving of 1
2 ·

(
5.96
2

)
= 1.49 to each of the players a3, a4, b1, and b2. Subsequently, these savings should

be subtracted from c(τ0), i.e., the κ cost allocation rule would lead to the following cost allocation vector:

(7.48, 25.2, 15.51, 66.51, 50.4, 22.31, 40.79, 72.25, 80.88). △

The above example raises the following question: how do we choose these blocks in general in a unique way

such that non-negative switching gains are guaranteed in each step? The determination of these blocks cannot

be carried out simply by observing the orders τ0 and τ̂ , but will be done iteratively. To do that, we will present

in detail the block splitting rule (BSR). The key point of this approach is to determine, at each step, which

blocks are to be swapped. Note that given two consecutive blocks, X and Y with X before Y , the gain resulted

from switching them is:

gXY = α[Y ] · γ[X]− α[X] · γ[Y ] = α[Y ] · α[X] · γ[X]

α[X]
− α[X] · α[Y ] · γ[Y ]

α[Y ]

= α[Y ] · α[X] · (CAT (X)− CAT (Y )) .

The merge segments play a fundamental role in defining the BSR, since by conveniently using their properties

along with Algorithm 1 we will be able to guarantee non-negative savings at each iteration. Thus, this procedure

consists of two main stages: firstly, we will repair those merge segments whose players are not consecutive,

and secondly reorder them as in τ̂ . To this end, we will need to consider σ̂, the corresponding merge order to

τ̂ . Algorithm 2 shows the scheme of this procedure.

Let X it and Y it be the misplaced blocks switched at iteration “it” of Algorithm 2. Then, we define:

BSRit(τ0, σ̂) =
1

2
gX itY it

(
1

|X it|
eX

it
+

1

|Y it|
eY

it
)
,
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Algorithm 2 Algorithm to allocate the gains of a 2−lines GMS-problem

0. Obtain τ0 and apply Algorithm 1 to get σ̂ = (M1,M2, . . . ,Mm). Initialize k = 1, r = 1, it = 1, and τ ′ = τ0.

1. (a) If |Mk/τ
′| = 1, take k = k + 1.

• If k ≤ m− 1, go back to step 1.
• If k = m, go to step 2.

(b) If |Mk/τ
′| > 1, take k̃ ∈ {2, . . . ,mk} such that CAT (Gk̃−1) > CAT (Gk̃) (we know there exists such a pair of compo-

nents from Lemma 3.2). It is clear that between Gk̃−1 and Gk̃ there are only players from the other branch, i.e.,

τ ′ = (∼, Gk̃−1, Z,Gk̃,∼),

where Z is a segment from the opposite branch of Mk. From Proposition 3.1, we know that either the order τ1 = (∼
, Gk̃−1, Gk̃, Z,∼) or the order τ2 = (∼, Z,Gk̃−1, Gk̃,∼) has a lower total cost than τ ′. Take τ ′′ = argminτ{TC(τ) : τ ∈
{τ1, τ2}}.

• If τ ′′ = τ1, then the blocks that have been switched are Z and Gk̃. Players from Z should receive 1
2|Z|gZG

k̃
, while

players from Gk̃ should receive 1
2|G

k̃
|gZG

k̃
.

• If τ ′′ = τ2, then the blocks that have been switched are Gk̃−1 and Z. Players from Gk̃−1 should receive
1

2|G
k̃−1

|gGk̃−1
Z , while players from Z should receive 1

2|Z|gGk̃−1
Z .

Set τ ′ = τ ′′, and take it = it + 1. Go back to step 1.

2. (a) If r ≤ m, consider the bijection

ρ : {1, 2, . . . ,m} → {1, 2, . . . ,m}
i 7→ ρ(i) = j,

such that τ ′ = (Mρ(1), . . . ,Mρ(m)). We need to go from τ ′ to τ̂ .
i. If ρ(r) = r, take r = r + 1. Go back to step 2.

ii. If ρ(r) ̸= r, take r̃ ∈ {r + 1, . . . ,m} such that ρ(r̃) = r (this means that Mr is on position r̃, i.e., Mr = Mρ(r̃)). By
Algorithm 1, it holds that

CAT (Mr) ≤ CAT
(
M∪

r

)
,

where M∪
r =

⋃r̃−1
l=r Mρ(l). Hence, the order

τ ′′ = (∼,Mρ(r̃),Mρ(r), . . . ,Mρ(r̃−1),Mρ(r̃+1),∼)

that consists in moving Mρ(r̃) to the front of Mρ(r) (so that Mρ(r̃) ≡ Mr is now on position r) has lower total cost than
τ ′. The blocks that have been switched are M∪

r and Mr . Allocate 1
2|M∪

r |gM∪
r Mr to the players in M∪

r and 1
2|Mr|gM∪

r Mr

to the players in Mr . Set τ ′ = τ ′′, and take r = r + 1 and it = it + 1. Go back to step 2.
(b) If r > m, then τ ′ = τ̂ and I = it − 1. The algorithm is finished. The outputs of the algorithm are the allocation and the

misplaced blocks at each iteration it ∈ {1, . . . , I}.

where, for S ⊆ N , eS is the vector in RN satisfying eSi = 1 if i ∈ S and eSi = 0 otherwise. BSRit(τ0, σ̂)

represents the allocation obtained at iteration it, hence BSR(τ0, σ̂) =
∑I

it=1 BSRit(τ0, σ̂), where I represents

the total number of iterations needed. Subsequently, we define the cost allocation rule, κ, by setting

κ(G) = c(τ0)− BSR(τ0, σ̂),

for a 2−lines GMS-problem G.

The following example shows how to obtain the κ rule for a 2−lines GMS-problem by applying the above

procedure.

Example 3.3. Consider the 2−lines GMS-problem G from Figure 8. Assuming that α(i) = 1 for

all i ∈ A ∪ B, these numbers are not incorporated in the figure for clarity. The reference order

would be τ0 = (b1, b2, b3, b4, a1, a2, b5, a3, a4, a5), with an associated individual cost vector of c(τ0) =

(89.5, 108, 151.5, 161.5, 180.5, 15, 34.5, 52.5, 69.5, 129.5) and total cost of TC(τ0) = 992. The optimal so-

lution provided by Algorithm 1 would be τ̂ = (b1, a1, a2, a3, a4, b2, b3, b4, a5, b5), with an associated cost
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Fig. 8: Example of a 2−lines GMS-problem.

of TC(τ̂) = 972. The corresponding merge order is σ̂ = (M1,M2,M3,M4,M5,M6), where M1 = {b1},

M2 = {a1a2a3a4}, M3 = {b2b3}, M4 = {b4}, M5 = {a5}, and M6 = {b5}.

Table 2 summarizes the steps followed by Algorithm 2 to go from τ0 to σ̂. Note that, in the first iteration, M2

is non-connected in τ0. In fact, M2/τ0 = {G1, G2}, where G1 = {a1a2} and G2 = {a3a4}. These components

have Z = {b5} in between. By Lemma 3.1, we know that CAT (G1) > CAT (G2). By Proposition 3.1, we

know that either moving G2 to the front of Z or moving G1 to the back of Z would lead to positive savings.

Thus, we need to compare the following two orders:

τ1 = (b1, b2, b3, b4, a1, a2, a3, a4
G2

,

Z

b5 a5) and τ2 = (b1, b2, b3, b4,

Z

b5, a1, a2
G1

, a3, a4, a5).

Since TC(τ1) = 981 and TC(τ2) = 996.5, we choose τ ′ = τ1. Hence, blocks Z and G2 have been switched,

as shown in Table 2. The resulting saving of 11 needs to be split equally between the two blocks that have been

exchanged, and subsequently equally to the number of players in each block. Thus, players a1, a2, and b5 have

savings of 2.75, 2.75 and 5.5, respectively. After this iteration, all the merge segments are connected and all

that remains is to reorder them sequentially, as is done in iterations 2 and 3. The savings allocation process is

the same: first between the blocks that need to be switched and then between players of each block.

it Case Switched
blocks

Resulting order Gain BSRit(τ0, σ̂)

1
Non-connected
merge segment
M2/τ0 = {{a1a2}, {a3a4}}

{a1a2}
{b5}

(M1,M3,M4,M2,M6,M5) 11 (0, 0, 2.75, 2.75, 0, 0, 0, 0, 0, 5.5)

2
Non-ordered
merge segments

M2

M3 ∪M4
(M1,M2,M3,M4,M6,M5) 6.5

(0.813, 0.813, 0.813, 0.813, 0,

0, 1.083, 1.083, 1.083, 0)

3
Non-ordered
merge segments

M5

M6
σ̂ 2.5 (0, 0, 0, 0, 1.25, 0, 0, 0, 1.25)

Table 2: Steps of Algorithm 2 to go from τ0 to σ̂.
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Therefore, the final savings allocation rule provided by Algorithm 2 is the following:

BSR(τ0, σ̂) =
∑3

it=1 BSRit(τ0, σ̂) = (0.813, 0.813, 3.563, 3.563, 1.25, 0, 1.083, 1.083, 1.083, 6.75).

Hence,

κ(G) = (88.687, 107.187, 147.937, 157.937, 179.25, 15, 33.417, 51.417, 68.417, 122.75).

The vector above is a proposal for allocating the total cost of an optimal order. One could also view the

outcome of κ(G) in the following way. Consider the individual cost vector corresponding to the optimal order,

c(τ̂) = (35, 53.5, 75.5, 85.5, 159, 15, 105, 123, 140, 180.5). To reach κ(G), we can take a vector of compensa-

tions, (53.687, 53.687, 72.437, 72.437, 20.25, 0,−71.583,−71.583,−71.583,−57.75). Players a1, a2, a3, a4,

and a5 have positive numbers, which indicate that they have to pay compensations for being handled earlier

than other players in the optimal order, with respect to what was supposed to happen according to the reference

order. On the contrary, players b2, b3, b4, and b5 get compensated for delaying their processing in τ̂ compared

to τ0. △

4. n−lines GMS-problems

This section generalizes the optimization and allocation results for the 2−lines GMS-problems to n−lines

GMS-problems.

4.1. Optimal orders

A GMS-problem (N, 0, E, γ, α) is called an n−lines GMS-problem if there exists a partition ⟨A1, . . . , An⟩ of

N with Ak = {ak1, . . . , aks̃k} for all k ∈ {1, . . . , n} with
∑n

k=1 s̃k = |N |, such that

E =

n⋃
k=1

{
{0, ak1}, {ak1, ak2}, . . . , {aks̃k−1, a

k
s̃k}

}
.

As for the 2−lines GMS-problems, the sets Ak, k ∈ {1, . . . , n}, are called branches. A feasible order is

described by a bijection σ : N → {1, 2, . . . , |N |} such that σ(akh) < σ(akl ) ⇒ h < l, for all k ∈ {1, . . . , n}.

Let F(N) denote the set of all such feasible orders. The definitions regarding the segments and CATs can be

directly extended to this generalization. A graphical representation of an n−lines GMS-problem is provided in

Figure 9.

To solve an n−lines GMS-problem, we propose an algorithm that combines the concept of recursion with

Algorithm 1. This procedure is based on the following idea: given an n−lines GMS-problem (N, 0, E, γ, α),

we consider a 2−lines GMS-problem, (Ah∪Al, 0, E|Ah∪Al , γ, α), where h, l ∈ {1, . . . , n}. Note that E|Ah∪Al
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Fig. 9: Graphical representation of an n−lines GMS-problem.

is the restriction of E to the players of Ah∪Al. σ̂hl will denote the output of Algorithm 1 for such a subproblem

in which the merge segments are specified. τ̂hl will refer to the corresponding order on all players involved.

Furthermore, Ahl
τ̂ will denote the branch formed by the nodes from Ah and Al following the order specified by

τ̂hl. We informally present the algorithm below.

Algorithm 3 Algorithm to solve an n−lines GMS-problem

1. Consider an n−lines GMS-problem (N, 0, E, γ, α). Select branches A1 and A2.
2. Apply Algorithm 1 to solve the corresponding 2−lines GMS-problem,

(A1 ∪ A2, 0, E|A1∪A2 , γ, α). This leads to an optimal order, τ̂12. Replace A1 and A2 with the branch A12
τ̂ .

We get a new problem with one branch less. Renumber the branches adequately.
3. (a) If there are still more than two branches left, go back to step 1.

(b) If there are two branches left, apply Algorithm 1. The order obtained is the solution.

The following example illustrates how to apply Algorithm 3 to solve an n−lines GMS-problem.

Example 4.1. Consider the 3−lines GMS-problem presented in Figure 10. We will avoid renumbering the

nodes for a better understanding of the algorithmic process. Also, we will denote the branches by A, B, and C

for clarity, instead of A1, A2, and A3, respectively.
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Fig. 10: Example of a 3−lines GMS-problem.
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Fig. 11: Resulting 2−lines GMS-problem after solving
(A ∪B, 0, E|A∪B, γ, α).

As indicated in Algorithm 3, we first select branches A and B. The 2−lines GMS-problem
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(A ∪ B, 0, E|A∪B, γ, α) has been solved in Example 3.1, leading to the optimal order τ̂12 =

(a1, a2, a3, a4, b1, b2, a5, b3, b4). We replace branches A and B with one branch respecting the order of τ̂12,

as illustrated in Figure 11. Next we solve this 2−lines GMS-problem by applying Algorithm 1. The output

would be:

τ̂ = (c1, a1, a2, a3, a4, c2, c3, b1, b2, c4, a5, b3, b4, c5),

finishing Algorithm 3. △

Along similar lines as in Lemma 3.3 one can show the following result.

Lemma 4.1. Let (N, 0, E, γ, α) be an n−lines GMS-problem, and σ̂12 = (M1,M2, . . . ,Mm) be the output of

Algorithm 1 for the 2−lines GMS-problem (A1 ∪ A2, 0, E|A1∪A2 , γ, α). It holds that the elements of Mk, k ∈

{1, . . . ,m}, are consecutive in any optimal order for (N, 0, E, γ, α).

Moreover, the result below guarantees that obtaining an optimal order for an n−lines GMS-problem, the

first two branches can be replaced by one branch that reflects the optimal order found by Algorithm 1 for the

corresponding 2−lines subproblem.

Proposition 4.1. Let (N, 0, E, γ, α) be an n−lines GMS-problem, and let τ∗12 be the output of Algorithm 1

for the 2−lines GMS-problem (A1 ∪A2, 0, E|A1∪A2 , γ, α). There exists an optimal order τ̂ for (N, 0, E, γ, α)

such that τ̂(i) < τ̂(j) for all i, j ∈ A1 ∪A2 for which τ∗12(i) < τ∗12(j).

Proof. See Appendix A.

The following result states that Algorithm 3 leads to an optimal order.

Theorem 4.1. Let (N, 0, E, γ, α) be an n−lines GMS-problem, and let τ̂ be an order provided by Algorithm 3.

Then, TC(τ̂) ≤ TC(τ) for all τ ∈ F(N).

Proof. We will use induction in the number of branches, n.

If n = 2, Algorithm 3 coincides with Algorithm 1.

Suppose that Algorithm 3 leads to an optimal solution for all k < n.

Now, take k = n. We can select branches A1 and A2 and apply Algorithm 1 to obtain a relative order, τ12.

Using Proposition 4.1, there exists an optimal order τ̂ for (N, 0, E, γ, α) that maintains the order induced from

branches A1 and A2. We can convert these two branches into one, A12
τ , reducing the dimension of our problem

by 1. Now we have an (n− 1)−lines GMS-problem, for which is clear that τ̂ is also an optimal order. By the

induction hypothesis, Algorithm 3 leads to an optimal solution, τ∗, for the (n− 1)−lines GMS-problem. It is

straightforward to prove that τ∗ is also an optimal solution for the n−lines GMS-problem. For, if not, there

would exist an optimal order τ̃ such that TC(τ̃) < TC(τ∗). Thus, TC(τ̂) = TC(τ̃) < TC(τ∗), contradicting

the induction hypothesis.
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4.2. Allocating the minimal cost

We will illustrate how to extend the ideas of the allocation procedure as described by κ for 2−lines GMS-

problems into a rule on n−lines GMS-problems. Consider an n−lines GMS-problem G = (N, 0, E, γ, α).

Again, take as starting point of the allocation mechanism a reference order on all players, τN0 , in the same way

as before. Let τ̂N be the optimal order provided by Algorithm 3. The total savings of gN = TC(τN0 )−TC(τ̂N )

need to be adequately subtracted from c(τN0 ) to obtain the final cost allocation. To determine the proportion

of gN for which each player is responsible, we apply a procedure similar to that in Algorithm 3: we will

recursively allocate the local savings obtained at the 2−lines GMS-problems that comprise our n−lines. The

sum of these local savings however is not necessarily equal to gN . Instead, we use these numbers to determine

the relative importance of the different subproblems (and, mainly, of the players involved in these problems)

in the final savings obtained.

Let τk0 , k ∈ {2, . . . , n} be the reference order for the 2−lines GMS-problem induced by branches A1...k−1

and Ak, and let τ̂k and σ̂k be the optimal order and its corresponding merge order provided by Algorithm 1

for such 2−lines GMS-problem. The local cost savings are defined by gk = TC(τk0 )− TC(τ̂k) and they will

be allocated in the same way as before for each subproblem. That is, given k ∈ {2, . . . , n}, going from τk0

to σ̂k leads to a saving of gk that is allocated among the players involved using Algorithm 2, thus obtaining

BSR(τk0 , σ̂
k). Each of these vectors are now complemented with 0’s on those coordinates that refer to non-

involved players. Figure 12 summarizes this procedure.
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τ̂N

gN

τ2
0 , σ̂

2 τ3
0 , σ̂

3 τn
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Fig. 12: Steps of the allocation procedure in an n−lines GMS-problem.

We define the cost allocation rule, κ, by setting:

κ(G) = c(τN0 )− gN∑n
k=2 g

k
·

n∑
k=2

BSR(τk0 , σ̂
k),

for an n−lines GMS-problem G.

The following example illustrates how to obtain the cost allocation rule for a 3−lines GMS-problem.

Example 4.2. Consider the 3−lines GMS-problem presented in Figure 13. The general reference order would

be τN0 = (b1, c1, b2, b3, b4, a1, a2, c2, c3, c4, b5, a3, a4, a5), with an associated individual cost vector of c(τN0 ) =

(107, 125.5, 226, 236, 255, 15, 52, 70, 87, 204, 32.5, 146, 161.5, 182.5) and total cost of TC(τN0 ) = 1900.

First, select branches A and B. From Example 3.3, we know that g2 = 20 and BSR(τ20 , σ̂
2) =

(0.813, 0.813, 3.563, 3.563, 1.25, 0, 1.083, 1.083, 1.083, 6.75, 0, 0, 0, 0).
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Fig. 13: Example of a 3−lines GMS-problem.
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Fig. 14: Resulting 2−lines GMS-problem.

Now, select branches A ∪ B and C. The local reference order for the resulting 2−lines GMS-problem

of Figure 14 is given by τ30 = (b1, c1, a1, a2, c2, c3, c4, a3, a4, b2, b3, b4, a5, c5), with TC(τ30 ) = 1887.5, and

τ̂3 = (b1, c1, a1, a2, a3, a4, c2, c3, b2, b3, b4, a5, c4, b5), with TC(τ̂3) = 1859. Thus, g3 = 28.5. Also, τ̂N = τ̂3,

so there is a total saving of gN = TC(τN0 ) − TC(τ̂N ) = 1900 − 1859 = 41 that needs to be adequately

allocated among the players. Note that gN ̸= g2 + g3. The corresponding merge order to τ̂3 is given by σ̂3 =

(M1,M2,M3,M4,M5,M6,M7,M8,M9,M10), with M1 = {b1},M2 = {c1},M3 = {a1a2a3a4},M4 =

{c2c3},M5 = {b2},M6 = {b3},M7 = {b4},M8 = {a5},M9 = {c4}, and M10 = {b5}. Table 3 summarizes

the steps of Algorithm 2 to go from τ30 to σ̂3.

it Case Switched
blocks

Resulting order Gain BSRit(τ30 , σ̂
3)

1
Non-connected
merge segment
M3/τ30 = {{a1a2}, {a3a4}}

{c2c3c4}
{a3a4}

(M1,M2,M3,M4,M9,
M5,M6,M7,M8,M10)

18
(0, 0, 4.5, 4.5, 0, 0, 0, 0, 0, 0,
0, 3, 3, 3)

2
Non-ordered
merge segments

M9

M5

(M1,M2,M3,M4,M5,

M9,M6,M7,M8,M10)
1.5

(0, 0, 0, 0, 0, 0, 0.75, 0, 0, 0,

0, 0, 0, 0.75)

3
Non-ordered
merge segments

M9

M6

(M1,M2,M3,M4,M5,

M6,M9,M7,M8,M10)
3

(0, 0, 0, 0, 0, 0, 0, 1.5, 0, 0,

0, 0, 0, 1.5)

4
Non-ordered
merge segments

M9

M7

(M1,M2,M3,M4,M5,

M6,M7,M9,M8,M10)
4

(0, 0, 0, 0, 0, 0, 0, 0, 2, 0,

0, 0, 0, 2)

5
Non-ordered
merge segments

M9

M8
σ̂3 2

(0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 1)

Table 3: Steps of Algorithm 2 to go from τ30 to σ̂3.

Therefore,

BSR(τ30 , σ̂
3) = (0, 0, 4.5, 4.5, 1, 0, 0.75, 1.5, 2, 0, 0, 3, 3, 8.25).
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Hence,

κ(G) = (107, 125.5, 226, 236, 255, 15, 52, 70, 87, 204, 32.5, 146, 161.5, 182.5)

− 41

20 + 28.5
·
[
(0.813, 0.813, 3.563, 3.563, 1.25, 0, 1.083, 1.083, 1.083, 6.75, 0, 0, 0, 0)

+ (0, 0, 4.5, 4.5, 1, 0, 0.75, 1.5, 2, 0, 0, 3, 3, 8.25)
]

= (106.313, 124.813, 219.184, 229.184, 253.098, 15, 50.45, 67.816, 84.394, 198.294,

32.5, 143.464, 158.964, 175.526). △

5. Tree GMS-problems

We will now extend the results we have seen for n-lines GMS-problems to the case of tree GMS-problems,

both for optimization and cost allocation.

5.1. Optimal orders

A GMS-problem (N, 0, E, γ, α) is called a tree GMS-problem if (N ∪ {0}, E) is a tree.

Definition 5.1. Let (N, 0, E, γ, α) be a tree GMS-problem. We define the degree of a node a ∈ N , deg(a), as

the number of edges incident on that node.

Definition 5.2. Let (N, 0, E, γ, α) be a tree GMS-problem. A sub-source will be either the machine, 0, or a

node with degree at least 3. Let S be the set of sub-sources.

Given the sub-sources of a tree, we are interested in knowing their level.

Definition 5.3. Let (N, 0, E, γ, α) be a tree GMS-problem. The level ℓ(s) of a sub-source s ∈ S is the number

of sub-sources in the path between 0 and s, including 0. Thus, the machine 0 is the only sub-source with level 1.

We assume an ordering on the sub-sources, from level 1 to the highest level, v. Given a level l ∈ {2, . . . , v},

there are ml sub-sources. Thus, we can write

S = {0, s21, . . . , s2m2
, s31, . . . , s

3
m3

, . . . , sv1, . . . , s
v
mv

},

where slk denotes the k−th sub-source from level l. Figure 15 provides an illustration of the sub-sources of a

tree and their levels.

The theoretical results for n−lines GMS-problems can be extended to the general case of trees. In par-

ticular, given a tree GMS-problem, the elements of the merge segments obtained when solving a 2−lines

GMS-problem of the highest level remain consecutive in any optimal order. Furthermore, there always exists

an optimal order that maintains the order induced by the aforementioned subproblem. With all these ingredi-

ents, it is immediate to prove that Algorithm 4 below leads to an optimal order. Here, a recursive methodology

is adopted, starting with the n−lines GMS-problems at the highest level. For each of them, the 2−lines GMS-
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Fig. 15: Sketch of the sub-sources of a tree and their levels.

problems that comprise it are solved recursively until these n−lines are converted into a single line, thus

reducing the dimension.

Algorithm 4 Algorithm to solve a tree GMS-problem

1. Consider the tree GMS-problem (N, 0, E, γ, α).
2. Let k ∈ {1, . . . ,mv}. Consider the nv

k−lines GMS-problem arising from svk. Apply Algorithm 3 to obtain
τsvk . Replace the nv

k branches arising from svk with one branch using the order of τsvk . We have a new tree
GMS-problem with one level less since all the subproblems of the highest level have been converted into
lines. Renumber the nodes adequately. The highest level has now been reduced by 1.

3. (a) If S ≠ {0}, go back to step 1.
(b) If S = {0}, solve the resulting n−lines GMS-problem with Algorithm 3. The order obtained is the

solution.

Without proof we state the following result.

Theorem 5.1. Let (N, 0, E, γ, α) be a tree GMS-problem, and let τ̂ be an order provided by Algorithm 4.

Thus, TC(τ̂) ≤ TC(τ) for all feasible order τ .

5.2. Allocating the minimal cost

To appropiately extend the κ rule to the context of tree GMS-problems, we need to contemplate the local

savings generated in each sub-source, in a similar way to how we made the transition from 2−lines to n−lines

GMS-problems.

Let G = (N, 0, E, γ, α) be a tree GMS-problem. For s ∈ S , we define Ns = F (s) ∪ {s}, where F (s)

is the set of followers of s with respect to 0 in the graph (N ∪ {0}, E). For every sub-source s ∈ S, we

consider an induced n−lines GMS-problem on Ns, (Ns, 0, E|Ns
, γ, α), where all initial branches with respect

to s in E have been recursively replaced by a line that corresponds to an optimal order with respect to this

branch. Naturally, if ℓ(s) = v, then (Ns, 0, E|Ns
, γ, α) is already an n−lines GMS-problem and we call it

a subproblem at the highest level. Also, given s ∈ S, let τNs

0 and τ̂Ns denote the corresponding reference

order and the optimal order provided by Algorithm 3 for (Ns, 0, E|Ns
, γ, α), respectively. Subsequently, the

stand-alone cost savings w(s) with respect to s are defined by:

w(s) = TC(τNs

0 )− TC(τ̂Ns).
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Thus, w(s) can be interpreted as local savings made at sub-sources. It should be noted that the sum
∑

s∈S w(s)

is not necessarily equal to the total savings gN = TC(τN0 ) − TC(τ̂N ). As done for n−lines GMS-problems,

these stand-alone savings help in determining the relative importance of each sub-source to realize gN .

We will follow a recursive procedure, by first solving the subproblems of the highest level. Once these

problems have been solved, the highest level of the tree GMS-problem has been reduced by 1, and we repeat

the process. Hence, we will always start from an n−lines GMS-problem, which will depend on the specific

sub-source we are considering. This is reflected in the notation by writing n(s), gk(s), τk0 (s), and σ̂k(s). We

define the cost allocation rule, κ, by setting:

κ(G) = c(τN0 )− gN ·
∑
s∈S

w(s)∑
t∈S w(t)

· 1∑n(s)
k=2 g

k(s)
·
n(s)∑
k=2

BSR(τk0 (s), σ̂
k(s)), (8)

for a tree GMS-problem G.

Figure 16 displays a flowchart of the allocation procedure for tree GMS-problems.

Consider a tree GMS-problem G = (N, 0, E, γ, α)

Calculate τN0 and c(τN0 )

Take s ∈ S
s.t. ℓ(s) = v

Calculate τNs
0

k = 2

Select branches A1...k−1(s) and Ak(s). Consider
the corresponding 2−lines GMS-problem.

• Obtain τk0 (s)

• Apply Algorithm 1 to obtain τ̂k(s) and σ̂k(s)

• gk = TC(τk0 (s))− TC(τ̂k(s))

• Apply Algorithm 2 to obtain BSR(τk0 (s), σ̂
k(s))

Convert branches A1...k−1(s) and Ak(s) into one
branch A1...k(s) using τ̂k(s).

k = k + 1

τ̂Ns = τ̂k(s)

w(s) = TC(τNs
0 )− TC(τ̂Ns )

Remove s ∈ S

Update v if
necessary

τ̂N = τ̂Ns

gN = TC(τN0 )− TC(τ̂N )

Compute the κ rule
for G according to (8)

k < n(s) k = n(s)

S ̸= {0} S = {0}

Fig. 16: Flowchart of the allocation procedure for tree GMS-problems. The dashed red box contains the steps
of Algorithm 3.

6. Discussion and final remarks

The procedure presented for calculating the κ rule for 2−lines, n−lines, and tree GMS-problems was limited

to the case where all players have different urgencies and, consequently, there is a single reference order (also
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for all local problems). In the following, we will give some general indications on how to proceed when there

are ties. First, we consider all possible reference orders. We assume that, at each step, the machine chooses with

equal probability between all jobs with highest urgency. Thus, given the set of all possible reference orders,

we will also have a probability distribution on this set. Now, given a fixed reference order, we proceed in the

same way as explained in Subsections 3.2, 4.2 and 5.2 obtaining a specific allocation proposal (which will

now depend on that reference order). The only difference is that, when solving the n−lines GMS-problems

associated with each sub-source, the (local) reference order in these subproblems will not be recalculated

according to possible ties that may exist. Instead, we will take the restriction of the (general) reference order

that we are considering to the players involved in that subproblem. Naturally, the final cost allocation vector

is defined as the weighted average of all the reference specific allocation proposals, where the weights are the

probabilities of each possible reference order.

As future work, it would be of special interest to find characterizing properties that the proposed allocation

rule satisfies. Another open direction of research is to study the allocation aspect of a GMS-problem more

directly on the basis of an adequately defined cooperative GMS-game.
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Appendix 1

Proof of Proposition 4.1. Let σ∗
12 = (M1, . . . ,Mm) be the output of Algorithm 1 for (A1 ∪

A2, 0, E|A1∪A2 , γ, α) that has τ∗12 as its associated order.

Let τ ′ be an optimal order for (N, 0, E, γ, α). From Lemma 4.1, we know that the elements of Mk, k ∈

{1, . . . ,m}, are consecutive in τ ′. Assume that τ ′ does not respect the relative order induced by τ∗12, and let

Mk,Ml, k, l ∈ {1, . . . ,m} be the first merge segments such that τ∗12(Mk) > τ∗12(Ml) but τ ′(Mk) < τ ′(Ml).

Note that Mk and Ml necessarily belong to different branches. We also have that

CAT (Ml) ≤ CAT (Mk). (A1)

Thus, between Mk and Ml in τ ′, players from all branches except that of Ml can be present. Let

M1
k ,M

2
k , . . . ,M

q
k be the maximal connected segments from the branch of Mk that are between Mk and Ml in

τ ′, and let Z1, Z2, . . . , Zq, Zq+1 be the (potential) maximal connected sets of nodes from A \ {A1 ∪ A2} in

τ ′. There are four possible cases:
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i) τ ′ = (∼,Mk, Z
1,M1

k , Z
2,M2

k , . . . , Z
q,M q

k , Z
q+1,Ml,∼),

ii) τ ′ = (∼,Mk, Z
1,M1

k , Z
2,M2

k , . . . , Z
q,M q

k ,Ml,∼),

iii) τ ′ = (∼,Mk,M
1
k , Z

1,M2
k , . . . , Z

q−1,M q
k , Z

q,Ml,∼),

iv) τ ′ = (∼,Mk,M
1
k , Z

1,M2
k , . . . , Z

q−1,M q
k ,Ml,∼).

We will only consider i), since the other cases can be treated in an analogous way. We will first show that:

γ[Z q̃]

α[Z q̃]
≤ CAT (M q̃

k ) ≤
γ[Z q̃+1]

α[Z q̃+1]
, (A2)

for all q̃ ∈ {1, . . . , q + 1}. Suppose that (A2) does not hold. Then, there exists a q̃ ∈ {1, . . . , q + 1} such that

γ[Z q̃]

α[Z q̃]
> AC(M q̃

k ), (A3)

or

AC(M q̃
k ) >

γ[Z q̃+1]

α[Z q̃+1]
. (A4)

Consider the order τ1 as a modification of τ ′ in which the position of Z q̃ and M q̃
k is swapped. Then,

TC(τ ′)− TC(τ1) = α[M q̃
k ] · α[Z

q̃] ·
(
γ[Z q̃]

α[Z q̃]
− CAT (M q̃

k )

)
>

(A3)
0,

which contradicts τ ′ from being optimal. Thus, (A3) cannot hold. Analogously, consider the order τ2 as a

modification of τ ′ in which the position of M q̃
k and Z q̃+1 is swapped. Then,

TC(τ ′)− TC(τ2) = α[Z q̃+1] · α[M q̃
k ] ·

(
CAT (M q̃

k )−
γ[Z q̃+1]

α[Z q̃+1]

)
>

(A4)
0,

which contradicts τ ′ from being optimal. Thus, (A4) cannot hold. This proves (A2). Using similar arguments,

it can be shown that

CAT (Mk) ≤
γ[Z1]

α[Z1]
and

γ[Zq+1]

α[Zq+1]
≤ CAT (Ml). (A5)

From (A2) and (A5), it follows that

CAT (Mk) ≤
γ[Z1]

α[Z1]
≤ CAT (M1

k ) ≤ · · · ≤ γ[Zq]

α[Zq]
≤ CAT (M q

k ) ≤
γ[Zq+1]

α[Zq+1]
≤ CAT (Ml). (A6)

By combining (A1) and (A6), we obtain that CAT (Mk) = CAT (Ml), which in consequence leads to

CAT (Mk) =
γ[Z1]

α[Z1]
= CAT (M1

k ) = · · · = γ[Zq]

α[Zq]
= CAT (M q

k ) =
γ[Zq+1]

α[Zq+1]
= CAT (Ml). (A7)
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Next consider

τ̂ = (∼,Ml,Mk, Z
1,M1

k , Z
2,M2

k , . . . , Z
q,M q

k , Z
q+1,∼),

which results from moving Ml to the front of Mk in τ ′. Note that

TC(τ ′)− TC(τ̂) = α[Ml] ·

α[Mk] · CAT (Mk) +

q∑
q̃=1

α[M q̃
k ] · CAT (M q̃

k ) +

q+1∑
q̃=1

α[Z q̃ ] ·
γ[Z q̃ ]

α[Z q̃ ]


− α[Ml] ·

α[Mk] +

q∑
q̃=1

α[M q̃
k ] +

q+1∑
q̃=1

α[Z q̃ ]

 · CAT (Ml)

= α[Ml] · α[Mk] · (CAT (Mk)− CAT (Ml))

+ α[Ml] ·
q∑

q̃=1

α[M q̃
k ] · (CAT (M q̃

k )− CAT (Ml))

+ α[Ml] ·
q+1∑
q̃=1

α[Z q̃ ] ·
(
γ[Z q̃ ]

α[Z q̃ ]
− CAT (Ml)

)

=
(A7)

0.

This implies that τ̂ is an optimal order.
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Gómez-Rúa, M., Vidal-Puga, J., 2017. A monotonic and merge-proof rule in minimum cost spanning tree situations. Economic Theory

63, 3, 813–826.

Granot, D., Huberman, G., 1981. Minimum cost spanning tree games. Mathematical Programming 21, 1, 1–18.

Granot, D., Huberman, G., 1984. On the core and nucleolus of the minimum cost spanning tree games. Mathematical Programming

29, 3, 323–347.

Hamers, H., Klijn, F., van Velzen, B., 2005. On the convexity of precedence sequencing games. Annals of Operations Research 137, 1,

161–175.

Hamers, H., Suijs, J., Tijs, S., Borm, P., 1996. The split core for sequencing games. Games and Economic Behavior 15, 2, 165–176.

Kar, A., 2002. Axiomatization of the Shapley value on minimum cost spanning tree games. Games and Economic Behavior 38, 2,

265–277.

Kruskal, J.B., 1956. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American

Mathematical Society 7, 1, 48–50.

Moretti, S., Branzei, R., Norde, H., Tijs, S., 2004. The P-value for cost sharing in minimum cost spanning tree situations. Theory and

Decision 56, 1, 47–61.

Musegaas, M., Borm, P., Quant, M., 2018. On the convexity of step out–step in sequencing games. Top 26, 1, 68–109.

Norde, H., Moretti, S., Tijs, S., 2004. Minimum cost spanning tree games and population monotonic allocation schemes. European

Journal of Operational Research 154, 1, 84–97.

Prim, R.C., 1957. Shortest connection networks and some generalizations. The Bell System Technical Journal 36, 6, 1389–1401.

Saavedra-Nieves, A., Schouten, J., Borm, P., 2020. On interactive sequencing situations with exponential cost functions. European

Journal of Operational Research 280, 1, 78–89.

Schmidt, G., 2000. Scheduling with limited machine availability. European Journal of Operational Research 121, 1, 1–15.

Schouten, J., Saavedra-Nieves, A., Fiestras-Janeiro, M.G., 2021. Sequencing situations and games with non-linear cost functions under

optimal order consistency. European Journal of Operational Research 294, 2, 734–745.

Serafini, P., 1996. Scheduling jobs on several machines with the job splitting property. Operations Research 44, 4, 617–628.

Sidney, J.B., 1975. Decomposition algorithms for single-machine sequencing with precedence relations and deferral costs. Operations

Research 23, 2, 283–298.

Slikker, M., 2005. Balancedness of sequencing games with multiple parallel machines. Annals of Operations Research 137, 1, 177–189.

Smith, W.E., 1956. Various optimizers for single-stage production. Naval Research Logistics Quarterly 3, 1-2, 59–66.

Tijs, S., Moretti, S., Branzei, R., Norde, H., 2006. The Bird core for minimum cost spanning tree problems revisited: monotonicity and

additivity aspects. In Seeger, A. (ed.), Recent Advances in Optimization. Springer, Berlin, Heidelberg, pp. 305–322.

30


	voorkant 009.pdf
	No. 2023-009

	2023USR GMS.pdf

