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Abstract
A weighted minimum colouring (WMC) game is induced by an undirected graph and a
positive weight vector on its vertices. The value of a coalition in a WMC game is deter-
mined by the weighted chromatic number of its induced subgraph. A graph G is said to be
globally (respectively, locally) WMC totally balanced, submodular, or PMAS-admissible, if
for all positive integer weight vectors (respectively, for at least one positive integer weight
vector), the corresponding WMC game is totally balanced, submodular or admits a popu-
lation monotonic allocation scheme (PMAS). We show that a graph G is globally WMC
totally balanced if and only if it is perfect, whereas any graph G is locally WMC totally
balanced. Furthermore, G is globally (respectively, locally) WMC submodular if and only if
it is complete multipartite (respectively, (2K2, P4)-free). Finally, we show that G is globally
PMAS-admissible if and only if it is (2K2, P4)-free, and we provide a partial characterisation
of locally PMAS-admissible graphs.

Keywords Weighted minimum colouring game · Totally balancedness · Submodularity ·
Population monotonic allocation schemes · Complete multipartite graph · (2K2, P4)-free
graph
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1 Introduction

The weighted minimum colouring problem is a combinatorial optimisation problem defined
on a graph G where a positive integer weight associated with each vertex of the graph
represents the number of colours required to colour this vertex. The objective is to find the
minimum number of colours χ(G) such that adjacent vertices are coloured with disjoint
sets of colours, where χ(G) is referred to as the weighted chromatic number of the graph
G. An application of this problem is the channel assignment in cellular telephone networks
(McDiarmid and Reed 2000). This problem consists of assigning sets of frequency bands
to transmitters, each of which demands a different number of bands. In case unacceptable
interference might occur between two transmitters, they should be assigned disjoint sets
of bands. If a conflict graph is constructed by letting each transmitter be represented by a
vertex, letting the number of frequency bands required by a transmitter be represented by
the positive integer weight of the corresponding vertex, and letting the interference relation
between two transmitters be represented by an edge between the corresponding vertices, then
the minimum number of frequency bands needed is the weighted chromatic number of this
graph. Consider a scenario in which a number of mobile network operators are to provide
cell phone service to a geographical area. Assume that all frequency bands have the same
cost and that the transmitters are owned by different operators. In order to provide the cell
phone service with the minimum number of frequency bands, the operators should cooperate
with each other. The allocation of the total cost of the minimum number of frequency bands
among the operators involved can in this case be tackled using cooperative game theory.

In this paper, we define a new class of cooperative games modeling this type of cost
allocation problem, and we analyse the properties of these games. More specifically, we
introduce the class of weighted minimum colouring (WMC) games, where the cost of a
subset of players is equal to the weighted chromatic number of the conflict subgraph induced
by this subset.

A special case of the weighted colouring problem is when all the vertex weights are equal
to 1. This problem is called a minimum colouring problem. The objective is to find the
minimum number of colours k such that adjacent vertices are not assigned the same colour,
and k is referred to as the chromatic number of the graph. Therefore, the minimum colouring
games defined by Deng et al. (1999) can be considered an instance of the WMC games. The
cost of a subset of players in a minimum colouring game is equal to the chromatic number of
the conflict subgraph induced by this subset. The class of minimum colouring games as well
as the WMC games belong to the more general class of combinatorial optimisation games,
which are cooperative games where the cost of each subset of players is obtained by solving
a combinatorial optimisation problem (Curiel 1997).

There are numerous solution concepts in cooperative game theory defining different
approaches to the allocation of cost among the players. The most prominent one among
those is the core (Gillies 1959), which consists of all vectors (allocations) that distribute
exactly the total cost of all players such that no subset of players can be better off by breaking
away from the rest of the players. Core allocations create no disincentive for cooperation and
consequently are considered to be stable. If the core of a cooperative game is not empty, then
the game is said to be balanced, and if the core of any of the subgames of this game is not
empty, then it is said to be totally balanced. If it is furthermore possible to find allocations
in the core of every subgame, such that these allocations are monotonic in the sense that no
player already present in a subgame is worse off if new players are added, then this allocation
scheme is a population monotonic allocation scheme (PMAS), as introduced by Sprumont
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(1990). The existence of a PMAS therefore implies a certain dynamic stability. A cooperative
game is submodular if the incentive for other players to join a coalition increases as the coali-
tion has more players. Submodularity is a desirable property since submodular cooperative
games are totally balanced, the Shapley value is the centre ofmass of the core (Shapley 1971),
the bargaining set and the core coincide (Maschler et al. 1971), and submodular games have
a PMAS.

In general, the core of a minimum colouring game can be empty. Nonetheless, Deng et al.
(2000) show that a minimum colouring game is totally balanced if and only if the underlying
graph is perfect. A graph is perfect if for all its subgraphs, the chromatic number is equal to
the clique number (i.e., the number of vertices in a maximum clique). Furthermore, Okamoto
(2003) characterises the submodularity of the minimum colouring games by showing that
this property is satisfied if and only if the underlying graph is complete r -partite. A graph
is complete r -partite if its vertices can be partitioned into r nonempty partition classes, and
two vertices are adjacent if and only if they belong to different partition classes. Later on, we
will also refer to the class of complete multipartite graphs. A graph is said to be complete
multipartite, if it is complete r -partite for some r .

In this paper, we characterise totally balancedness and submodularity of the WMC games
using the properties of the underlying graph.We define a graphG to be globally (respectively,
locally)WMC totally balanced if for all positive integer weight vectorsw (respectively, for at
least one positive integer weight vectorw), the correspondingWMCgame is totally balanced.
Both properties are also relevant from a practical perspective. Consider again the assignment
of sets of frequency bands of different size to transmitters. The global setting investigates
whether the game theoretical properties hold for any vector of demanded frequency bands,
whereas the local setting investigates whether at least one vector of demanded frequency
bands exists such that the game theoretical properties hold. At first sight it seems to be more
interesting to investigate the global setting only. However, similar results in the local setting
can be obtained, establishing a remarkable connection between the local and global setting.

We show that a graph G is globally WMC totally balanced if and only if it is perfect, and
that any graph G is locally WMC totally balanced. Furthermore, we define a graph G to be
globally (respectively, locally) WMC submodular if for all positive integer weight vectors w

(respectively, for at least one positive integerweight vectorw), the correspondingWMCgame
is submodular, and we show that G is globally (respectively, locally) WMC submodular if
and only if it is complete multipartite (respectively, (2K2, P4)-free). A (2K2, P4)-free graph
is a graph that does not have a subgraph isomorphic to the disjoint union of two complete
graphs of size 2 (i.e., 2K2) or to a line graph of size 4 (i.e., P4).

Hamers et al. (2014) showed that a minimum colouring game has a population monotonic
allocation scheme (PMAS) if and only if the underlying graph is (2K2, P4)-free. We define
a graph to be globally (respectively, locally) WMC PMAS-admissible if for all positive
integer weight vectors w (respectively, for at least one positive integer weight vector w),
the corresponding WMC game admits a PMAS. We show that a graph G is globally WMC
PMAS-admissible if and only if it is (2K2, P4)-free. In particular, this implies that a graph G
is locally WMC submodular if and only if it is globally WMC PMAS-admissible: if there is
one weight vector such that the correspondingWMC game is submodular, then for all weight
vectors the WMC games at least admit a PMAS. Moreover, we show that if a graph admits a
specific linear ordering, then it is locally WMC PMAS-admissible, whereas a graph that has
an induced subgraph Cn with n ≥ 5 (i.e., a cycle on 5 or more vertices) will, for any weight
vector, induce games that do not have a PMAS.

Our approach to the characterisation of totally balancedness, submodularity and PMAS-
admissibility of WMC games is in the same spirit as the characterisation of balancedness,
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totally balancedness and submodularity of Chinese postman (CP) and travelling salesman
(TS) games by Granot and Hamers (2004). In this paper, the authors define a graph to be CP
globally (respectively, locally) balanced (respectively, totally balanced and submodular) if
for all vertices (respectively, at least one vertex) and any non-negative weight vector defined
on the edges, the corresponding CP game is balanced (respectively, totally balanced and
submodular), and they study the equivalence between globally and locally CP balanced
(respectively, totally balanced and submodular) graphs. Similar results are obtained for the
TS case. Moreover, from the existing line of research on characterising game theoretical
properties by the properties of the underlying graph, we mention the characterisation of the
balancedness (respectively, totally balancedness and the submodularity) of CP games by
Granot et al. (1999), the characterisation of the submodularity of the Steiner TS games on
undirected graphs by Herer and Penn (1995) and on directed graphs by Granot et al. (2000)
and of highway games by Çiftçi et al. (2010).1

The rest of the paper is organised as follows. WMC games are formally defined in Sect. 2.
In Sects. 3, 4 and 5, we characterise totally balanced, submodular, and PMAS-admissible
graphs respectively. Section 6 concludes.

2 Weightedminimum colouring games

This section presents the class of weighted minimum colouring games. We start with some
game theoretical and graph theoretical definitions and notation.

A cooperative (cost) game is a pair (N , c) where N = {1, 2, . . . , n} is the finite set of
players, and c : 2N → R is the characteristic function such that c(∅) = 0. Here 2N is the
collection of all subsets of N (also referred to as coalitions). The cooperative game (N , c) is
submodular if for all i ∈ N and for all S ⊂ T ⊆ N\{i}, its characteristic function satisfies
c(S ∪ {i}) − c(S) ≥ c(T ∪ {i}) − c(T ).

Let (N , c) be a cooperative game. A subgame of (N , c) is a game (S, cS) where S ⊆ N ,
S 	= ∅ and cS(T ) = c(T ) for all T ⊆ S. An allocation is a vector x ∈ R

N . The core of
(N , c) is defined as

Core(c) =
{
x ∈ R

N |
∑
i∈N

xi = c(N ) and
∑
i∈S

xi ≤ c(S) for all S ⊂ N

}
. (1)

If the core of (N , c) is not empty, then (N , c) is called balanced. Moreover, if the core of
any of the subgames (S, cS) is not empty, then (N , c) is called totally balanced.

An allocation scheme x = (xS,i )S∈2N \{∅},i∈S that assigns an allocation vector to any
coalition S is a population monotonic allocation scheme (PMAS) as introduced by Sprumont
(1990), if x fulfills both an efficiency and a monotonicity requirement. That is, it must be
that a)

∑
i∈S xS,i = c(S) for all S ∈ 2N \ {∅} and b) xS,i ≥ xT ,i for all S, T ∈ 2N \ {∅} with

S ⊂ T and all i ∈ S.
Let G = (N , E) be an undirected graph with finite vertex set N = {1, 2, . . . , n} and

edge set E ⊆ {{i, j} : i, j ∈ N , i 	= j}, where each edge represents a connection between
an unordered pair of vertices ofG. The graphGS = (S, ES) is the subgraph ofG induced by
a subset S ⊆ N of its vertices, where ES = {{i, j} ∈ E : i, j ∈ S}. A graph G = (N , E) is
equivalent toG ′ = (N ′, E ′) if there exists a bijection v : N → N ′ such that {v(i), v( j)} ∈ E ′
if and only if {i, j} ∈ E . The complement of a graph G is the graph Ḡ = (N , Ē) where

1 Highway games are cooperative cost allocation games in which the cost to be allocated is associated with
the construction of a highway network.

123



Annals of Operations Research (2022) 318:963–983 967

Fig. 1 Graph G and weight vector w

Ē = {{i, j} : i, j ∈ N , i 	= j, {i, j} /∈ E}, that is, two vertices in Ḡ are adjacent if and only if
they are not adjacent inG. A graph in which there exists an edge between each pair of distinct
vertices is a complete graph. A complete graph with n vertices is denoted by Kn . A clique in
a graph G is a subset S ⊆ N of its vertices such that GS is complete. A clique is maximum if
there are no cliques containing more elements, and it is maximal if it is not contained within
a clique with more elements. Note that maximum cliques are always maximal. The clique
number of G, denoted by ω(G), is the number of vertices in a maximum clique in G. Let
w ∈ Z

N+ be a positive integer weight vector such that wi is the weight associated with vertex
i ∈ N . For a subset S ⊆ N of vertices, the weight of S is defined as the sum of the weights
of its elements, that is,

∑
i∈S wi . Therefore, we define a maximum weighted clique in G

with respect to w as a clique C ⊆ N with maximum weight. The corresponding weight is
called the weighted clique number of G with respect to w and denoted by ωw(G). Note that
maximum weighted cliques are always maximal. Furthermore, note that a maximum clique
inG is not necessarily a maximumweighted clique inG, as we illustrate in the next example.

Example 1 Consider the graphG and the weight vectorw displayed in Fig. 1. The maximum
clique in G is {1, 2, 3} and ω(G) = 3. The maximum weighted clique in G with respect to
w is {3, 4} and ωw(G) = 8. �

A proper k-colouring of G is a map g : N → {1, 2, . . . , k} such that g(i) 	= g( j) for all
{i, j} ∈ E , that is, adjacent vertices are not assigned the same colour. The chromatic number
ofG, denoted by χ(G), is the minimum value of k for which a proper k-colouring ofG exists.
A proper weighted k-colouring of G with respect to w is a function h that assigns a set of wi

different colours to each vertex i such that adjacent vertices i and j receive disjoint sets of
colours. Formally, a proper weighted k-colouring of G is a map h : N → 2{1,2,...,k} such that
|h(i)| = wi for all i ∈ N and h(i) ∩ h( j) = ∅ for all {i, j} ∈ E . Accordingly, the weighted
chromatic number of G with respect to w, denoted by χw(G), is the minimum number k
needed for a proper weighted k-colouring ofG. Note that the clique number and the weighted
clique number are lower bounds for the chromatic number and theweighted chromatic number
respectively. Therefore, χ(G) ≥ ω(G) and χw(G) ≥ ωw(G). Furthermore, if we let wi = 1
for all i ∈ N , the weighted clique problem and the proper weighted k-colouring problem are
equivalent to the clique problem and the proper k-colouring problem respectively.

Example 2 Consider the graph G and the weight vector w displayed in Fig. 1. We have
χ(G) = 3. A proper 3-colouring of G is given by g(1) = 1, g(2) = 2, g(3) = 3 and
g(4) = 1. Furthermore, χw(G) = 8, and a proper weighted 8-colouring of G is given by
h(1) = {1, 2, 3}, h(2) = {4, 5}, h(3) = {6} and h(4) = {1, 2, 3, 4, 5, 7, 8}. �

The class of weighted minimum colouring games is formally introduced as follows. LetG
be a graph and let w ∈ Z

N+ be a positive integer weight vector. Then the weighted minimum
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Fig. 2 A weighted graph G and a graph G′ obtained from G by replication

colouring (WMC) game (N , cG,w) is defined by

cG,w(S) = χw(GS) for all S ⊆ N , (2)

and cG,w(∅) = 0. Note that if wi = 1 for all i ∈ N , then the weighted minimum colouring
game corresponds to the minimum colouring game, and we denote it simply by cG .

3 Globally and locally WMC totally balanced graphs

In this section, we establish the equivalence of perfect graphs and globally WMC totally
balanced graphs, and we show that any graph is locally WMC totally balanced. A graph G
is said to be globally (respectively, locally) WMC totally balanced if for all weight vectors
w ∈ Z

N+ (respectively, for at least one weight vector w ∈ Z
N+ ), the corresponding WMC

game (N , cG,w) is totally balanced.
Before moving on to the results, we present a class of graphs that will be important in what

follows. A graphG is perfect if χ(GS) = ω(GS) for all induced subgraphsGS ofG, S ⊆ N .
For a graphG = (N , E), replication of a vertex v ∈ N denotes the act of (repeatedly) adding
a new vertex v′ to G, such that v′ is adjacent to v and to all neighbors of v. Replication of v

by a factor k is then the act of duplicating v a total of k−1 times, which amounts to replacing
the vertex v ∈ G by a clique of size k. From the replication lemma proved by Lovász (1972),
perfectness is preserved by replication.

Lemma 1 (Replication lemma) Let G be a graph, and let G ′ be a graph obtained from G by
replication of vertices. If G is a perfect graph, then G ′ is a perfect graph.

Whereas the player sets of games induced by G and G ′ will obviously differ, a coalition
in G will have the same cost as the corresponding coalition in G ′. An example is illustrated
in Fig. 2, where we see that for example cG,w({1}) = cG

′
({1a, 1b}) and cG,w({1, 2}) =

cG
′
({1a, 1b, 2}).
Let w ∈ Z

N+ be a weight vector. We introduce a property, called w-perfectness, which
states that a graphG isw-perfect if χw(GS) = ωw(GS) for all S ⊆ N . A graphG isweighted
perfect if it is w-perfect for all weight vectors w ∈ Z

N+ . The concept of a weighted perfect
graph in graph theory literature can be traced back to the replication lemma, since repeated
application of this lemma implies that a perfect graph is weighted perfect (Schrijver 2003).

Corollary 1 If a graph G is perfect, then it is weighted perfect.

Note that a graph G that is not perfect can be w-perfect for some w ∈ Z
N+ as illustrated

in the following example.
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Fig. 3 G is w-perfect but not perfect

Example 3 Consider the graph G and the weight vector w displayed in Fig. 3. Note that G
is not perfect since χ(G) = 3 and ω(G) = 2. We have χw(G) = ωw(G) = 17. Moreover,
it is easy to verify that χw(GS) = ωw(GS) for all S ⊂ N . Hence, G is w-perfect. �

The following theorem characterises globally WMC totally balanced graphs.

Theorem 1 G is perfect if and only if G is globally WMC totally balanced.

Proof Consider first the ‘if’ part. From Deng et al. (2000), we know that when all weights
are equal to one, a graph G induces a totally balanced minimum colouring game if and
only if G is perfect. Therefore, if a graph G is not perfect, then G is not globally WMC
totally balanced. For the ‘only if’ part, let G = (N , E) be a perfect graph, and let w ∈ Z

N+
be a weight vector on G. Let G ′ be the graph obtained from G by replication of each
i ∈ N by a factor wi . Since G is perfect, it follows from Lemma 1 that G ′ is perfect. Let
(N , cG,w) and (N ′, cG ′

) be theWMCgames induced byG andG ′ respectively. For any vertex
i ∈ N , let C(i) denote the clique in G ′ that consists of i and the wi − 1 ‘replicants’ of i .
Furthermore, for all S ⊆ N let S′ = ∪i∈SC(i) and observe that we have cG,w(S) = cG

′
(S′).

Furthermore, since G ′ is perfect it follows from Deng et al. (2000) that the (unweighted)
minimum colouring game (N ′, cG ′

) is totally balanced. In order to show that (N , cG,w)

is totally balanced, let S ⊆ N and S′ = ∪i∈SC(i). There is a core vector x in the game
(S′, (cG ′

)S
′
). Define the vector y by yi = ∑

j∈C(i) x j for all i ∈ S. Then
∑

i∈S yi =∑
i∈S

∑
j∈C(i) x j = ∑

j∈S′ x j = (cG
′
)S

′
(S′) = cG

′
(S′) = cG,w(S). Now, for all T ⊆ S, we

have
∑

i∈T yi = ∑
i∈T

∑
j∈C(i) x j = ∑

j∈T ′ x j ≤ (cG
′
)S

′
(T ′) = cG

′
(T ′) = cG,w(T ). So y

is a core element of (S, (cG,w)S), and (N , cG,w) is totally balanced. Now, since the argument
holds for all weights, it follows that G is globally WMC totally balanced. ��

Before presenting the characterisation of locallyWMC totally balanced games,we observe
that a w-perfect graph G induces a totally balanced WMC game (N , cG,w).

Proposition 1 Let G be a graph, and let w ∈ Z
N+ . If G is w-perfect, then G is locally WMC

totally balanced.

Proof Let G be a graph, and let w ∈ Z
N+ . Let C ⊆ N be a maximum weighted clique in G

with respect to w. First, we show that if G is w-perfect, then the allocation xC ∈ R
N defined
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as:

xCi =
{

wi if i ∈ C

0 otherwise,

is in the core of (N , cG,w).
To do so, we need to show that xC is in the core of (N , cG,w). Since G is w-perfect, we

have cG,w(S) = χw(GS) = ωw(GS) for all S ⊆ N . For efficiency, we get∑
i∈N

xCi =
∑
i∈C

wi = ωw(G) = cG,w(N ).

Furthermore, for any subset S ⊂ N , letCS be amaximumweighted clique inGS with respect
to w. We have∑

i∈S
xCi =

∑
i∈(C∩S)

wi ≤
∑
i∈CS

wi = ωw(GS) = χw(GS) = cG,w(S),

where: the first equality follows from the definition of xC ; the inequality follows since C ∩ S
is a clique in GS , and CS is a maximum weighted clique in GS with respect to w; the second
equality follows from the definition of a maximum clique; and the third equality follows
since G is w-perfect. Hence, (N , cG,w) is balanced.

Since every induced subgraph of a w-perfect graph is also w-perfect, it can be shown in
a similar way that each subgame of (N , cG,w) has a non-empty core. ��

Recall that weighted perfect graphs are w-perfect for any weight vector w. Therefore, we
can also use the proof of Proposition 1 to generate core elements for WMC games induced
by weighted perfect graphs. In the next lemma, we show that for any graph, we can find a w

such that the graph is w-perfect.

Lemma 2 For any graph G, we can find a weight vector w such that G is w-perfect.

Proof LetG be a graph, and letwi = 2i−1 for all i ∈ N .To show thatG isw-perfect for these
weights, we must show that χw(GS) = ωw(GS) for all S ⊆ N . Let C = {i1, i2, . . . , ik} be
a maximum weighted clique in G with respect to w. We start by stating some observations.
Firstly, there is only one maximum weighted clique in G with respect to w. Two different
cliques in G cannot have the same weight with respect to w, since the binary representations
of their weights, which are in fact the characteristic vectors of these cliques, are always
different. Secondly, if we assume without loss of generality that i1 > i2 > . . . > ik , then i1
is the vertex with the maximum index in N , that is, i1 = n. Assume that n /∈ C . We have∑

j∈C w j ≤ 1 + 2 + · · · + 2n−2 < 2n−1 = wn , which contradicts C being the maximum
weighted clique. Therefore, n ∈ C and i1 = n.

Next, we construct a partition of N\C with k elements in the following way. Let A1 be
the set of vertices in N\C that are not adjacent to i1. For l ∈ {2, . . . , k}, let Al be the set of
vertices in N\C that are adjacent to vertices i1, i2, . . . , il−1 but not to il . Since the maximum
weighted clique C is also a maximal clique, there does not exist a vertex in N\C that is
adjacent to all the vertices in C . The Al ’s are pairwise disjoint, and therefore, they form a
partition of N \ C . It follows that in any partition element Al , the vertex with the maximum
index has at most an index of il−1. To see this, assume on the contrary that there exists a
vertex i ∈ Al such that i > il−1. Then, we must have i > il as well, since il ∈ C and
Al ⊆ N \ C , and from the definition of Al , C ′ = {i1, i2, . . . , il−1} ∪ {i} is a clique in G.
However, since wi >

∑k
m=l wim , this contradicts that C is a maximum weighted clique.

123



Annals of Operations Research (2022) 318:963–983 971

Since C is the maximum weighted clique, ωw(G) = 2i1−1 + 2i2−1 + · · · + 2ik−1. We
present a colouring of the vertices of G using ωw(G) = ∑k

l=1 wil colours. We start by
colouring each vertex il of C with wil = 2il−1 different colours, therefore using ωw(G)

different colours in total. Next, we colour the vertices in N\C .
Since the vertex with the maximum index in Al has at most an index of il−1, we have

for all l ∈ {1, 2, . . . , k} that Al ⊆ {1, 2, . . . , il−1}, which in turn implies
∑

j∈Al w j ≤
1+ 2+ · · · + 2il−2 < 2il−1 = wil . Therefore, the wil distinct colours that are used to colour
vertex il ∈ C are sufficient to colour all the vertices in Al . Since

⋃k
l=1 Al = N\C , all the

vertices in N\C are coloured. By construction, this is a proper weighted colouring ofG using
ωw(G) = ∑k

l=1 wil colours. Thus,χw(G) ≤ ωw(G). Recall that theweighted clique number
is a lower bound on the weighted chromatic number, that is, χw(G) ≥ ωw(G). Therefore,
χw(G) = ωw(G).

A similar argument holds for all the weighted subgraphs of G, and thus G is w-perfect
for wi = 2i−1 for all i ∈ N . ��

Theorem 2 Any graph G is locally WMC totally balanced.

Proof Consider a graph G. From Lemma 2, there exists at least one positive integer weight
vectorw ∈ Z

N+ such thatG isw-perfect. It follows from Proposition 1 thatG is locallyWMC
totally balanced. ��

In Theorem 1, we analysed the totally balancedness ofWMCgames by considering graphs
that were obtained from weighted graphs by replication. Let G ′ be the unweighted graph
obtained from a weighted graph G by replication of all i ∈ N by a factor wi . Let (N ′, cG ′

)

and (N , cG,w) be the WMC games induced by the two graphs. We observed already that for
all S ⊆ N , we have cG,w(S) = cG

′
(S′), where S′ = ∪i∈SC(i), and C(i) is the clique in G ′

consisting of i and the ‘replicants’ of i . It is straightforward to check that we have:

(i) If (N ′, cG ′
) is totally balanced, then (N , cG,w) is totally balanced;

(ii) If (N ′, cG ′
) has a PMAS, then (N , cG,w) has a PMAS;

(iii) If (N ′, cG ′
) is submodular, then (N , cG,w) is submodular.

In fact, statement (i) was shown in the proof of Theorem 1, but since the replicated coalitions
S′ only account for a (small) subset of the coalitions in N ′, the reverse statements of (i), (ii),
and (iii) need not be true. Statement (i) together with (Replication) Lemma 1 were essential
in showing Theorem 1 (the collection of perfect graphs coincides with the collection of
globally WMC totally balanced graphs). However, we cannot follow the same strategy when
characterising globally WMC submodular or PMAS-admissible graphs, because the class
of complete multipartite graphs and the class of (2K2, P4)-free graphs are not closed under
replication. As an example, consider the complete multipartite graphG in Fig. 2. Duplicating
players 1 and 3 results in the graphG ′ that is not completemultipartite. FromOkamoto (2003),
it follows that (N ′, cG ′

) is not submodular. However, it is easy to check that (N , cG,w) is
submodular for all weights. We will see in Sect. 4 that the class of complete multipartite
graphs coincides with the class of globally WMC submodular graphs. Similarly, duplicating
two players who are not adjacent in a (2K2, P4)-free graph results in a graph G ′ that is not
(2K2, P4)-free (as it contains a subgraph isomorphic to 2K2). From Hamers et al. (2014),
it follows that (N ′, cG ′

) does not have a PMAS. In Sect. 5, we will show that in this case,
(N , cG,w) nevertheless does admit a PMAS for all weight vectors w.
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4 Globally and locally WMC submodular graphs

In this section, we establish the equivalence of complete multipartite and globallyWMC sub-
modular graphs and the equivalence of (2K2, P4)-free graphs and locally WMC submodular
graphs. We start by formally defining the graph classes discussed in this section.

A graph G is said to be globally (respectively, locally)WMC submodular if for all weight
vectors w ∈ Z

N+ (respectively, for at least one weight vector w ∈ Z
N+ ), the corresponding

WMC game (N , cG,w) is submodular.
A line graph with 4 vertices is denoted by P4. A complete r -partite graph G = (N , E) is a

graph whose vertex set can be partitioned into r nonempty partition classes N1, N2, . . . , Nr

such that for k, l ∈ {1, 2, . . . , r} and any two vertices i ∈ Nk and j ∈ Nl , {i, j} ∈ E if and
only if k 	= l. A graph is called complete multipartite, if it is complete r -partite for some r .

The following theorem establishes the equivalence of complete multipartite and globally
WMC submodular graphs.

Theorem 3 G is a complete multipartite graph if and only if G is globally WMC submodular.

Proof We start with the ‘if’-part. Let G be a globally WMC submodular graph. Then
(N , cG,w) is submodular for all weight vectors w ∈ Z

N+ . Since Okamoto (2003) showed
that in the special case where all weigths are equal to 1, (N , cG,w) is submodular if and only
if G is a complete multipartite graph, G is complete multipartite.

Next, we prove the ‘only-if’-part. Let G be a complete multipartite graph, and let
N1, N2, . . . , Nr be the partition classes of the vertex set N .Amaximum clique in G consists
of exactly one vertex from each of the r partition classes and hence has exactly r elements.
Let w ∈ Z

N+ . A maximum weighted clique in G with respect to w is a maximum clique in G.
Moreover, each vertex in a maximumweighted clique in G is a maximumweighted vertex in
the partition class where it belongs. Let C be a maximum weighted clique in G with respect
to w. Then we have

∑
i∈C wi = ∑r

k=1 maxi∈Nk wi .
Let S ⊆ N . We define N S = {k ∈ {1, 2, . . . , r} : S ∩ Nk 	= ∅} to be the set of

indices of the partition classes that have at least one common vertex with S. Now, consider
the subgraph GS and note that GS is a complete multipartite graph with |NS | partition
classes, that is, a complete |NS |-partite graph. Let CS be a maximum weighted clique in
GS with respect to w. Let k ∈ NS . Since GS is a complete multipartite graph, we know
that CS contains exactly one maximum weighted vertex from S ∩ Nk . Thus, ωw(GS) =∑

j∈CS w j = ∑
k∈NS

max j∈S∩Nk w j . Moreover, note that a complete multipartite graph is

perfect, and hence, according toCorollary 1,weighted perfect. Therefore, we have cG,w(S) =
χw(GS) = ωw(GS) = ∑

k∈NS
max j∈S∩Nk w j .

Now, let i ∈ N and let S ⊆ N\{i}. Furthermore, let p(i) ∈ {1, 2, . . . , r} such that
i ∈ Np(i). We have two cases to consider, namely p(i) /∈ NS and p(i) ∈ NS .
Firstly, if p(i) /∈ NS , then ωw(GS∪{i}) = ωw(GS) + wi , and therefore,

cG,w(S ∪ {i}) − cG,w(S) = wi . (3)

Secondly, if p(i) ∈ NS , choose j∗S,i ∈ S ∩ Np(i) such that w j∗S,i
= max j∈S∩Np(i) w j . Then

either wi ≤ w j∗S,i
, in which case

cG,w(S ∪ {i}) = ωw(GS∪{i}) = ωw(GS) = cG,w(S),

or wi > w j∗S,i
, implying that

ωw(GS∪{i}) = ωw(GS) + wi − w j∗S,i
,
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and hence,

cG,w(S ∪ {i}) = cG,w(S) + wi − w j∗S,i
.

For the case of p(i) ∈ NS , we therefore have

cG,w(S ∪ {i}) − cG,w(S) = max{wi − w j∗S,i
, 0}. (4)

In order to prove submodularity, let i ∈ N and S ⊂ T ⊆ N\{i} and consider the following
cases.
Case 1. p(i) /∈ NS . It follows from (3) and (4) that

cG,w(T ∪ {i}) − cG,w(T ) ≤ wi ,

and therefore,

cG,w(S ∪ {i}) − cG,w(S) = wi ≥ cG,w(T ∪ {i}) − cG,w(T ).

Case 2. p(i) ∈ NS . This implies p(i) ∈ NT , and from (4) we get

cG,w(S ∪ {i}) − cG,w(S) = max(wi − w j∗S,i
, 0)

≥ max(wi − w j∗T ,i
, 0)

= cG,w(T ∪ {i}) − cG,w(T ),

where the inequality holds since w j∗T ,i
≥ w j∗S,i

for S ⊂ T .

Therefore, cG,w(S ∪ {i}) − c(S) ≥ cG,w(T ∪ {i}) − cG,w(T ) for all i ∈ N , and S ⊂ T ⊆
N\{i}. Since this result holds for every positive integer weight vectorw, G is globally WMC
submodular. ��

Next, we show the equivalence of (2K2, P4)-free and locally WMC submodular graphs.
Note that a (2K2, P4)-free graph is a graph that does not have an induced subgraph isomorphic
to 2K2 or P4.

Before we are ready to establish the equivalence, we first mention the relationship between
a (2K2, P4)-free graph and a rooted forest.

Let (N , A) be a directed graph where N = {1, 2, . . . , n} is the finite vertex set and
A ⊆ {(i, j) : i, j ∈ N , i 	= j} is the set of directed arcs. A rooted tree is a directed graph
with a special vertex r ∈ N , called the root, such that for each vertex i ∈ N there exists
a unique directed path from r to i . The disjoint union of rooted trees is called a rooted
forest. If F = (N , A) is a rooted forest, then for every i ∈ N there is a unique directed
path from some root to i . Let P(i) denote the collection of vertices on this path. The set
of descendants of a vertex i ∈ N is the set D(i) = { j ∈ N : i ∈ P( j) and i 	= j}. Let
N 0 = { j ∈ N : (i, j) /∈ A for all i ∈ N }. Then the elements of N 0 are the roots of the
rooted trees that constitute F . A root r ∈ N 0 is the root of a vertex i if i ∈ D(r).

Every rooted forest induces a quasi-threshold graph (or equivalently, a (C4, P4)-free graph
where Cn is a cycle with n vertices), in the following manner.2 Let F = (N , A) be a rooted
forest. Let G = (N , E) be the graph such that {i, j} ∈ E if and only if i ∈ D( j) or j ∈ D(i)
in F . From Wölk (1965) and Yan et al. (1996) it follows that a graph G is quasi-threshold if
and only if G is induced by a rooted forest F as just described. Then, since a (2K2, P4)-free
graph is the complement of a quasi-threshold graph, it follows that a graph G = (N , E)

being (2K2, P4)-free is equivalent to G being induced by a rooted forest F = (N , A) by

2 Quasi threshold graphs are also called comparability graphs Wölk (1965) or trivially perfect graphs.
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Fig. 4 A rooted forest F and the (2K2, P4)-free graph G induced by F

letting {i, j} ∈ E if and only if i /∈ D( j) and j /∈ D(i) in F . We refer to F as a forest
representation of G.

Example 4 Consider the rooted forest F and graphG in Fig. 4. The rooted forest F is a forest
representation of the (2K2, P4)-free graph G. �

Next, we introduce a special weighing of the vertices of a rooted forest. We start by
considering a partition of the vertices of a rooted forest F . First, let us refer to the distance
d(i, j) between i ∈ N and j ∈ D(i) ∪ {i} as the number of edges on the path from i to j .
Next, recall that N 0 = { j ∈ N : (i, j) /∈ A for all i ∈ N } is the set of roots of the rooted trees
in F , and let M denote the maximum distance from any of the vertices in N to its root. Let
Nk = {i ∈ N : there exists a root r ∈ N 0 such that d(r , i) = k}. Then N = ⋃M

k=0 N
k is a

partition of N . Now, consider a permutation of the vertices in N such that all the vertices in
N 0 precede all the vertices in N 1, all the vertices in N 1 precede all the vertices in N 2 and so
on up to all the vertices in NM−1 precede all the vertices in NM . Formally, such a permutation
is a bijection σ : N → {1, . . . , n} such that for all k1, k2 ∈ {0, . . . , M} with k1 < k2, all
i ∈ Nk1 and all j ∈ Nk2 we have σ(i) < σ( j). We refer to σ as a root-first permutation of
the vertices in N . A root-first 2-weighing of the vertices of a rooted forest F = (N , A) is the
corresponding bijection f : N → {1, 2, . . . , 2n−1} such that f (i) = 2n−σ(i). We illustrate
the concept of a root-first 2-weighing with an example.

Example 5 Consider the rooted forest F in Fig. 4. We have M = 2, and N 0 = {1, 3},
N 1 = {2, 4, 5} and N 2 = {6}. Furthermore, letσ be the root-first permutation of N defined by
σ(1) = 1, σ (3) = 2, σ (2) = 3, σ (5) = 4, σ (4) = 5, and σ(6) = 6. Then the corresponding
root-first 2-weighing of N is f (1) = 25, f (2) = 23, f (3) = 24, f (4) = 2, f (5) = 22,
f (6) = 1. �
Observe that a root r ∈ N 0 is not adjacent to any of its descendants D(r) on the corre-

sponding (2K2, P4)-free graph G. Let wi = f (i) for all i ∈ N . In order to colour a root
r ∈ N 0, wr colours are needed. For the root-first 2-weighing, we have wr >

∑
i∈D(r) wi for
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Table 1 Coalitional costs of the WMC game (N , cG,w)

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
cG,w(S) w1 w2 w3 w1 + w2 max{w1, w3} max{w2, w3} max{w1 + w2, w3}

all r ∈ N 0, ensuring that the wr colours are adequate to colour all the vertices in D(r) on G.
Therefore, the weighted chromatic number of G with respect to w is χw(G) = ∑

r∈N0 wr .
In fact, a similar result can be derived for the weighted chromatic number of the subgraphGS

with respect tow in the following manner. Let S ⊂ N . A vertex in S is called an S-root if it is
not the descendant of any other vertex in S. Let S0 = { j ∈ S : j /∈ D(i) for all i ∈ S} denote
the set of S-roots. For a root-first 2-weighing, we have wr >

∑
i∈D(r) wi for all r ∈ S0.

Therefore, χw(GS) = ∑
r∈S0 wr .

Before establishing the equivalence of (2K2, P4)-free graphs and locally WMC submod-
ular graphs, we have the following lemma stating that a graph that is isomorphic to K1 ∪ K2

induces a submodular WMC game if and only if the weight of the vertex to which no edge is
incident is greater than or equal to the sum of the weights of the vertices that are connected
by an edge.

Lemma 3 Let G = (N , E) be isomorphic to K1 ∪ K2 with N = {1, 2, 3} and E = {{1, 2}}.
Let w = (w1, w2, w3) be a positive weight vector. Then the corresponding WMC game
(N , cG,w) is submodular if and only if

w3 ≥ w1 + w2. (5)

Proof The costs of the coalitions of the WMC game (N , cG,w) are displayed in Table 1.
For the ‘only-if’-part, let (N , cG,w) be submodular and assume, on the contrary, that

w3 < w1 + w2. Then we have

cG,w({1, 2, 3}) − cG,w({2, 3}) = w1 + w2 − max{w2, w3}
= min{w1, w1 + w2 − w3}
> max{w1 − w3, 0}
= max{w1, w3} − w3

= cG,w({1, 3}) − cG,w({3}),
and (N , cG,w) is not submodular.

The ‘if’-part follows readily by checking that all submodularity conditions are satisfied if
w3 ≥ w1 + w2. ��

Note that the condition on the weights in Lemma 3 must hold for any induced subgraph
isomorphic to K1 ∪ K2, implying that if a graph induces a submodular WMC game, then
for any subset of three players with only two players connected, the weight of the singleton
player must be larger than or equal to the sum of the weights of the other two players.

The following theorem shows that (2K2, P4)-freeness and local WMC submodularity of
a graph G are equivalent.

Theorem 4 A graph G is (2K2, P4)-free if and only if G is locally WMC submodular.
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Proof We start with the ‘if’-part. Assume that G is locally WMC submodular but assume,
on the contrary, that G has a subgraph isomorphic to 2K2 or P4. Without loss of generality,
let G be a graph such that {1, 2, 3, 4} ⊆ N , {1, 2}, {3, 4} ∈ E and {1, 3}, {2, 3}, {2, 4} /∈ E .
Let S = {1, 2, 3}, and let T = {2, 3, 4}. Let w ∈ Z

N+ . From (5) of Lemma 3, (S, cG
S ,wS

) is

submodular if and only ifw3 ≥ w1 +w2, and (T , cG
T ,wT

) is submodular if and only ifw2 ≥
w3 + w4. This, however, leads to a contradiction, since w1, w4 > 0. Therefore, the WMC
game (N , cG,w) is not submodular for any w ∈ Z

N+ . This contradicts our initial assumption
that G is locally WMC submodular. Hence, G does not have a subgraph isomorphic to 2K2

or P4, and G is (2K2, P4)-free.
Next, we prove the ‘only-if’-part. Observe that the characteristic function of aWMCgame

cG,w satisfies cG,w(T ) = χw(GT ) ≥ χw(GS) = cG,w(S) for all S ⊆ T ⊆ N and for all
w ∈ Z

N+ and thus is monotone.
Let G = (N , E) be a (2K2, P4)-free graph, and let F = (N , A) be a rooted forest

representation of G. Let f be a root-first 2-weighing, and let wi = f (i) for all i ∈ N . Let
i ∈ N and S ⊂ T ⊆ N\{i}. We have to show that

cG,w(S ∪ {i}) − cG,w(S) ≥ cG,w(T ∪ {i}) − cG,w(T ). (6)

We distinguish between two cases. Case 1. Assume that i is not a root in T ∪ {i}, that is,
i /∈ (T ∪{i})0. Then sincewr >

∑
j∈D(r) w j for all r ∈ (T ∪{i})0, we have cG,w(T ∪{i})−

cG,w(T ) = 0. Furthermore, we have cG,w(S ∪ {i}) − cG,w(S) ≥ 0 from the monotonicity
of cG,w, and hence (6) holds.
Case 2.Assume that i is a root in T ∪{i}, that is, i ∈ (T ∪{i})0. Let S0i = {s ∈ S0 : s ∈ D(i)}
and T 0

i = {t ∈ T 0 : t ∈ D(i)} be the set consisting of roots in S and T , respectively, that are
descendants of i . Then

cG,w(S ∪ {i}) − cG,w(S) = wi +
∑

j∈S0\S0i
w j −

∑
j∈S0

w j

= wi −
∑
j∈S0i

w j (7)

and similarly
cG,w(T ∪ {i}) − cG,w(T ) = wi −

∑
j∈T 0

i

w j . (8)

Hence, in order to prove (6), it follows from (7) and (8) that it is sufficient to show

∑
j∈T 0

i

w j ≥
∑
j∈S0i

w j . (9)

First, if S0i = ∅, then (9) holds trivially. Therefore, assume that S0i 	= ∅. Next, let R1 =
T 0
i ∩ S0i , R2 = T 0

i \S0i and R3 = S0i \T 0
i . Obviously, R1 and R2 form a partition of T 0

i , and
R1 and R3 form a partition of S0i . Moreover, consider s ∈ S0i and note that since S ⊂ T ,
either s ∈ T 0

i , which implies s ∈ R1, or s ∈ D(t) for some t ∈ R2. This in turn implies that
R3 ⊆ D(R2) where D(R2) = { j ∈ N : j ∈ D(t) for some t ∈ R2}. Now, we prove (9). We
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have ∑
j∈T 0

i

w j =
∑
j∈R1

w j +
∑
j∈R2

w j

≥
∑
j∈R1

w j +
∑

j∈D(R2)

w j

≥
∑
j∈R1

w j +
∑
j∈R3

w j

=
∑
j∈S0i

w j

where the first inequality follows from the root-first 2-weighing since wt >
∑

j∈D(t) w j for
all t ∈ R2.

Therefore, (N , cG,w) is submodular, and hence G is locally WMC submodular. ��

5 Globally and locally WMC PMAS-admissible graphs

We now turn to discuss the existence of a population monotonic allocation scheme (PMAS)
for the class of WMC games. Recall that a graph G is said to be globally (respectively,
locally) WMC PMAS-admissible if for all weight vectors w ∈ Z

N+ (respectively, for at least
one weight vector w ∈ Z

N+ ), the corresponding WMC game (N , cG,w) admits a PMAS.
In the first part of this section, we establish the equivalence between (2K2, P4)-free graphs

and globally WMC PMAS-admissible graphs, and for that purpose, we again use the rela-
tionship between a (2K2, P4)-free graph and a rooted forest and introduce a special weighing
of the vertices of a rooted forest. We start by providing a few definitions and related insights
that will be useful in characterising globally PMAS-admissible graphs.

Definition 1 Let F = (N , A) be a rooted forest representation of a (2K2, P4)-free graph G.
Let S ⊆ N . For any j ∈ S, define the branch BS

j = D( j) ∪ { j}.

Observe that BS
j is the maximal subtree in F that starts at vertex j ∈ S, and that j is the

root of BS
j . A branch BS

j is maximal, if there does not exist a vertex i ∈ S such that BS
j is

contained in BS
i , or equivalently, if there does not exist a vertex i ∈ S such that j ∈ D(i). Let

BS = {BS
1 , . . . , BS

p} denote the collection of maximal branches in relation to S and note that

{(S∩BS
1 ), (S∩BS

2 ), . . . , (S∩BS
p)} forms a partition of S.We state the following proposition:

Proposition 2 Let F = (N , A) be a rooted forest representation of a (2K2, P4)-free graph
G, let S ⊆ N, and let BS = {BS

1 , . . . , BS
p} denote the collection of maximal branches in

relation to S. Then cG,w(S) = ∑p
j=1 c

G,w(S ∩ BS
j ) for all w ∈ Z

N+ .

Proof First, note that for any i ∈ S, there is a unique j ∈ {1, . . . , p} such that i ∈ BS
j .

Second, let i, i ′ ∈ S such that i ∈ BS
j , i

′ ∈ BS
k , and j 	= k. We then know that i /∈ D(i ′)

and i ′ /∈ D(i), and therefore, the two vertices i, i ′ are adjacent in G and must be assigned
disjoint sets of colours. Since this holds for all vertex pairs i, i ′ ∈ S with i ∈ BS

j , i
′ ∈ BS

k
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and for all j, k ∈ {1, ..., p} with j 	= k, it follows that

cG,w(S) = χw(GS) = χw

(
G

{
p⋃

j=1
S∩BS

j }) =
p∑

j=1

χw(GS∩BS
j ) =

p∑
j=1

cG,w(S ∩ BS
j ).

��

Next, we define a particular number WS(i) that can be calculated for all players in a
coalition S by adjusting their weights in a specific way.

Definition 2 Let F = (N , A) be a forest representation of a (2K2, P4)-free graph G. Let
w ∈ Z

N+ , and let i ∈ S ⊆ N . Define

WS(i) = [wi − cG,w(S ∩ D(i))]+. (10)

Note that for any player i ∈ S such that S ∩ D(i) = ∅, we simply have WS(i) = wi .
Since cG,w(S ∩ D(i)) is the number of colours needed to colour the vertices of S ∩ D(i),
and since in G, i is not connected to any of its descendants D(i), we may interpret WS(i)
as the additional number of colours needed, when vertex i is added to an existing coalition
consisting of players S ∩ D(i). Note also that since WS(i) depends only on the intersection
between S and the set of descendants of i , it follows that WS(i) = WT (i) for any S, T such
that S ∩ D(i) = T ∩ D(i). So in particular, we have WS(i) = WS∩BS

j
(i) for i ∈ S and

j ∈ {1, . . . , p} with i ∈ BS
j .

Theorem 5 Let G be a (2K2, P4)-free graph and let (N , cG,w) be the weighted minimum
colouring game defined on G. Then cG,w(S) = ∑

i∈S WS(i) for all S ⊆ N.

Proof We prove this by induction. First, if |S| = 1 and S = {i}, then cG,w({i}) = wi =
W{i}(i). Next, let m ∈ N,m ≥ 2 and assume for all S with |S| < m that cG,w(S) =∑

k∈S WS(k) holds. Let S ⊆ N be such that |S| = m. We consider two cases separately
depending on the value of p, the number of maximal branches:
Case 1. p = 1. The vertices of all players of S belong to the same maximal branch. Let j
denote the root of the single maximal branch BS

1 . We then have WS( j) = [w j − cG,w(S ∩
D( j))]+ = [w j − cG,w(S \ { j})]+. Observe also that WS\{ j}(i) = WS(i) for all i ∈ S \ { j}.
This holds since D(i) ⊆ S \ { j} which implies that S ∩ D(i) = (S \ { j}) ∩ D(i). We
distinguish between two subcases.
Case 1a. If WS( j) = 0, then w j ≤ cG,w(S \ { j}). However, since players belonging to the
same branch are not adjacent in G, this implies that the vertex j can be coloured using the
cG,w(S \ { j}) colours needed to colour the vertices of S \ { j}. Thus, WS( j) = 0 implies
cG,w(S) = χw(GS) = χw(GS\{ j}) = cG,w(S \ { j}), and it therefore holds that

cG,w(S) = cG,w(S \ { j}) =
∑

i∈S\{ j}
WS\{ j}(i) =

∑
i∈S\{ j}

WS(i) =
∑
i∈S

WS(i), (11)

where the second equality follows from the induction hypothesis.
Case 1b. IfWS( j) > 0, thenw j = WS( j)+cG,w(S\{ j}), and the number of colours needed
to colour the descendants of j is less than the w j colours needed to colour j . Therefore,
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cG,w(S) = w j . This in turn implies that

cG,w(S) = w j = WS( j) + cG,w(S \ { j})
= WS( j) +

∑
i∈S\{ j}

WS\{ j}(i)

= WS( j) +
∑

i∈S\{ j}
WS(i)

=
∑
i∈S

WS(i).

Case 2. p > 1. We then have that

cG,w(S) =
p∑

j=1

cG,w(S ∩ BS
j ) =

p∑
j=1

∑
k∈S∩BS

j

WS∩BS
j
(k) =

p∑
j=1

∑
k∈S∩BS

j

WS(k) =
∑
k∈S

WS(k),

where the first equality follows from Proposition 2, the second equality follows from the
induction hypothesis, and the third equality follows since WS(k) = WS∩BS

j
(k) for all k ∈ S

and j ∈ {1, . . . , p} with k ∈ BS
j . ��

Theorem 6 G is (2K2, P4)-free if and only if G is globally WMC PMAS-admissible.

Proof The ‘if’ part follows from Hamers et al. (2014). In fact, by choosing weights equal to
one for all players, it is straightforward to show that neither graphs isomorphic to 2K2 nor
graphs isomorphic to P4 admit a PMAS. To prove the ‘only if’ part, let G be a (2K2, P4)-
free graph, and let (N , cG,w) be the weighted colouring game defined on G for some weight
vector w ∈ Z

N+ . Let F(N , A) be a rooted forest representation of G and define the ‘adjusted’
weightsWS(i) accordingly.Now, consider the allocation scheme x that for any S ⊆ N assigns
xS,i = WS(i) = [wi − c(S ∩ D(i))]+ to all i ∈ S. We will prove that this allocation scheme
is a PMAS for the game (N , cG,w). First, it follows directly from Theorem 5 that the scheme
x is efficient, since

∑
i∈S xS,i = ∑

i∈S WS(i) = cG,w(S). Next, to prove monotonicity of
the allocation scheme, we need to show thatWS(i) ≥ WS∪{ j}(i) for all S ⊂ N , and all i ∈ S,
j ∈ N \ S. To see this, let i ∈ S ⊆ N \ { j}. If WS∪{ j}(i) = 0, then the inequality is fulfilled,
since WS(i) ≥ 0 for all i and all S ⊆ N \ { j}. Therefore, assume that WS∪{ j}(i) > 0. We
then have that

WS∪ j (i) = wi − cG,w(S ∪ { j} ∩ D(i))

≤ wi − cG,w(S ∩ D(i))

= WS(i),

where the inequality follows from monotonicity of cG,w . ��
We now relax the restriction that for a given graph G a PMAS must exist for any weight

vector and consider instead the local requirement that at least one w ∈ Z
N+ must exist such

that the induced WMC game (N , cG,w) admits a PMAS. We first note that the class of
globally WMC PMAS-admissible graphs is a proper subset of the class of locally WMC
PMAS-admissible graphs. By definition, a globally WMC PMAS-admissible graph is also
locally WMC PMAS-admissible. Therefore, we only need to show that there exists graphs
outside the class of (2K2, P4)-free graphs for which we can choose a w ∈ Z

N+ such that the
induced WMC game admits a PMAS. We provide an example:

123



980 Annals of Operations Research (2022) 318:963–983

Example 6 Let G = (N , E) be the graph isomorphic to P4 with N = {1, 2, 3, 4} and E =
{{12}, {23}, {34}}. Let wi = 2i−1. For any S ⊆ N , let CS denote the unique maximum
weighted clique in GS . Then the allocation scheme x that for any S ⊆ N assigns xS,i = wi

to all i ∈ CS and xS,i = 0 to all i ∈ S \ CS is a PMAS. First, note that G is a perfect graph
and hence, weighted perfect. Thus, x is efficient, since cG,w(S) = χw(GS) = ωw(GS) =∑

i∈CS wi = ∑
i∈S xi . Furthermore, by inspecting the cost of coalitions and the associated

xS , it is straightforward to verify that x is monotonic. Therefore, x is a PMAS, and G is
locally PMAS-admissible. �

In fact, any graph that admits a specific type of linear order (to be defined below) is locally
WMC PMAS-admissible and, furthermore, admits a PMAS of the same simple type as in
Example 6, where the members of the unique maximum weighted clique pay the whole cost
in any coalition.

Definition 3 A graph G = (N , E) has a linear ordering, if there exists a bijection π : N →
{1, . . . , n}, such that for every i, j, k ∈ N with π(i) < π(k) < π( j), we have that if i j ∈ E
then either ik ∈ E or k j ∈ E .

Some examples of graphs that have such a linear ordering are cycles with three or four
vertices (C3, C4), line graphs, and ‘caterpillar tree’ graphs that are graphs for which every
vertex is on a central path or at most one graph edge away from the central path. However,
graphs isomorphic to Cn with n ≥ 5 do not have a linear ordering.

Proposition 3 Let G = (N , E) be a graph with a linear ordering. Then G is locally WMC
PMAS-admissible. In particular, we can choose a weight vector w ∈ Z

N+ such that for every
S ⊆ N, the graph GS has a unique maximum weighted clique CS, and for this weight vector,
a PMAS x of (N , cG,w) can be described as follows: xS,i = wi if i ∈ CS, xS,i = 0 if i /∈ CS.

Proof Let π be the corresponding bijection and define wi = 2n−π(i) for every i ∈ N . Let
S ⊆ N . Similarly to the proof of Lemma 2, we can show that G is w-perfect, implying that
cG,w(S) = χw(GS) = ωw(GS) for all S ⊆ N , which ensures efficiency of x . Moreover,
due to the choice of weights, it is again obvious that for every S ⊆ N , the graph GS has
a unique maximum weighted clique CS . For monotonicity of x , it is sufficient to show that
for all S, T ∈ 2N \ ∅ with S ⊂ T and all i ∈ S, we have: if i ∈ CT , then i ∈ CS .
Therefore, let S, T ∈ 2N \ ∅ be such that S ⊂ T , and let i ∈ S. Assume that i ∈ CT . Write
CT = {i1, . . . , ik} with π(i1) < π(i2), . . . , π(ik), so wi1 > wi2 , . . . , wik . Note that i1 is the
player in T with the smallest label (highest weight). If i = i1, then clearly, i ∈ CS , so from
now on assume that i = i j with j ∈ {2, . . . , k}. Note that i1i = i1i j ∈ E , since i1 ∈ CT and
i ∈ CT . We are going to show that i is connected to every player in T with a smaller label.
As a consequence, i is then connected to every player in S with a smaller label, and hence,
i ∈ CS . Suppose to the contrary that there is a player l ∈ T with π(l) < π(i) and il /∈ E . Let
l∗ be such a player with minimum label, i.e., π(l∗) = min{π(l)|l ∈ T , π(l) < π(i), il /∈ E}.
For every m ∈ T with π(m) < π(l∗), we have π(m) < π(l∗) < π(i) and im ∈ E . Now,
from the definition of the linear ordering and since il∗ /∈ E , we have ml∗ ∈ E . So l∗ is
connected to all players in T with a smaller label, and l∗ is therefore also connected to the
player in T with the highest weight, implying l∗ ∈ CT , and because i ∈ CT as well, il∗ ∈ E ,
a contradiction. ��

Next, we provide an example of a graph that does not have a linear ordering, but still is
locally WMC PMAS admissible.
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Fig. 5 A graph G that does not have a linear ordering

Example 7 Consider the graph G depicted in Fig. 5, which does not have a linear ordering.
G is, nevertheless, locally PMAS-admissible. To see this, let w j = 2 j−1 for all j . Then

a PMAS x can be constructed as follows: for all S ⊆ N \ {6, 7} such that {3, 5} ⊂ S, let
xS,3 = w3, xS,5 = w5−w3, xS, j = w j for j ∈ CS \{3, 5}, and let xS, j = 0 for the remaining
players. For all other S ⊆ N , let xS, j = w j for all j ∈ CS , and let xS, j = 0 otherwise. It is
straightforward to check that

∑
i∈S xS,i = ∑

i∈CS wi , so x is efficient. Furthermore, to see
that x satisfies the monotonicity requirement, note the following: xS,1 = w1 for S = {1} and
S = {1, 2}, and xS,1 = 0 otherwise. xS,2 = w2 for S ⊆ {1, 2, 3} containing 2, and xS,2 = 0
otherwise. xS,3 = w3 for all S ⊆ N \ {7} with 3 ∈ S, and xS,3 = 0 otherwise. xS,4 = w4 for
all S ⊆ {1, 2, 3, 4, 5} that contains 4, and xS,4 = 0 otherwise. xS,5 = w5 for S ⊆ {1, 2, 4, 5}
that contains 5, xS,5 = w5 − w3 for S ⊆ {1, 2, 3, 4, 5} that contains {3, 5}, and xS,5 = 0
otherwise. xS,6 = w6 for all S ⊆ N containing 6, and xS,7 = w7 for all S ⊆ N containing 7.
Therefore, a player is never worse off when the coalition increases, and the allocation scheme
is a PMAS. �

Not all graphs are, however, locally PMAS-admissible. In particular, graphs that contain
as an induced subgraph a cycle with 5 vertices or more will for no choice of weight vector
induce a game that has a PMAS.

Proposition 4 Let G = (N , E) be a connected graph. If G has an induced subgraph Cn with
n ≥ 5, then G is not locally WMC PMAS-admissible.

Proof Let S ⊆ N be such that subgraph GS is a cycle with at least 5 vertices. Suppose
w ∈ Z

N+ is a weight vector such that CG,w has a PMAS x . Let i ∈ S be such that
wi = max j∈S w j .Without loss of generality assume i = 1. Also without loss of gen-
erality assume that the other n − 1 players in S are labeled 2, . . . , n in such a way that
ES = {{1, 2}, {2, 3}, {3, 4}, . . . , {n − 1, n}, {n, 1}}. We then have:

w1 + max{w3, wn} + max{w2, wn}
= cG,w({1, 3}) + cG,w({3, n}) + cG,w({2, n})
= x{1,3},1 + x{1,3},3 + x{3,n},3 + x{3,n},n + x{2,n},2 + x{2,n},n
≥ x{1,3,n},1 + x{1,3,n},3 + x{1,3,n},n + x{2,3,n},2 + x{2,3,n},3 + x{2,3,n},n
= cG,w({1, 3, n}) + cG,w({2, 3, n})
= w1 + wn + max{w2 + w3, wn}.

This inequality can be rewritten as

max{w1 + w3 + w2, w1 + w3 + wn, w1 + wn + w2, w1 + 2wn}
≥ max{w1 + wn + w2 + w3, w1 + 2wn},
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Table 2 Overview of characterisations

MC (unweighted) Globally WMC Locally WMC

Totally balanced graphs Perfect Perfect Any

PMAS - admissible graphs (2K2, P4)-free (2K2, P4)-free Linear ordera

Submodular graphs Complete multipartite Complete multipartite (2K2, P4)-free

a In contrast to the other cells, this cell does not show a complete characterisation. The set of graphs with
linear orders is a proper subset of the set of locally WMC PMAS-admissible graphs. They induce games with
a certain simple type of PMAS

fromwhichwe derivew1+2wn ≥ w1+wn+w2+w3, sown ≥ w2+w3. A similar argument
with player 2 replaced by player n, player 3 replaced by player n − 1 and player n by player
2, leads to the inequality w2 ≥ wn−1 + wn . Now w2 ≥ wn−1 + wn > wn ≥ w2 + w3 > w2,
a contradiction. ��

6 Concluding remarks

We have analysed the properties of weighted minimum colouring games and characterised
classes of graphs that induce WMC games that are totally balanced, submodular or admit a
PMAS. In Table 2 below, we sum up the results on both MC and WMC games.

Since the properties of the weighted minimum colouring games are characterised in terms
of specific graph classes, the complexity of recognising each of the particular graph classes
may be of interest, especially in applications. The three classes of graphs that characterize
global and local game theoretical properties can all be recognized in polynomial time. Perfect
graphs can be recognized in polynomial time of order O(V 9), Chudnovsky et al. (2005).
Both quasi-threshold and complete multipartite graphs can be recognized in linear time, Chu
(2008), Corneil et al. (1985). Chu (2008) provides a linear time algorithm for recognizing
quasi-threshold graphs and shows that this algorithm can be adapted to also recognise the
complements of trivially perfect graphs. Therefore, (2K2, P4)-free graphs can be recognised
in linear time.

The full characterisation of locally WMC PMAS admissible graphs is an area for further
research. In the current paper, we have assumed that costs are proportional to the number of
colours, so another area for further research is to allow for more general cost functions in
the underlying optimisation problem. This would, for example, be relevant for applications
where costs are likely to increase more than proportional to the number of colours demanded.
Also other types of cost functions could be considered. Another generalisation relevant for
applications would be to allow more than one node to be associated with the same player.
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