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Stepwise Latent Class Analysis in the Presence of Missing Values on the
Class Indicators

€O. Emre C. Alag€oza and Jeroen K. Vermuntb

aUniversity of Mannheim; bTilburg University

ABSTRACT
While latent class (LC) modeling using bias-adjusted stepwise approaches has become widely popular,
little is known on how these methods are affected by missing values. Using synthetic data sets, we
illustrate under which conditions missing values introduce biases in the estimates of the relationship
between class membership and auxiliary variables. We apply three-step LC analysis with both modal
and proportional class assignments, as well as the recently proposed two-step LC analysis method.
Our results show that stepwise LC analysis yields unbiased parameter values as long as the MAR
assumption holds in the step-one model. When this assumption does not hold because covariates are
omitted from the step-one model, each of the stepwise approaches yields some bias, but bias is much
larger with modal class assignments. The amount of bias is affected by the amount of deviation from
MAR, the proportion of missing values, and the separation between the classes.

KEYWORDS
Missing data; mixture
modeling; three-step
modeling; auxiliary variables

1. Introduction

In social and behavioural sciences and related fields, latent
class (LC) analysis (Goodman, 1974; Lazarsfeld & Henry,
1968) has become a popular tool for classifying respondents
into a small number of subgroups based on their response
patterns on a set of observed indicators. More extended LC
models allow the inclusion of auxiliary variables (e.g., cova-
riates, distal outcomes) to examine the cause of the class
formation or the effect of these classes on other constructs.
While researchers are often confronted with missing values
on the class indicators, maximum likelihood estimation of
LC models with missing data is straightforward as long as
the missingness can be assumed to be missing at random
(MAR; Dong & Peng, 2013; Little & Schenker, 1995). This
approach is implemented in most of the current software
for LC analysis, such as Mplus (Muth�en & Muth�en, 2015),
Latent GOLD (Vermunt & Magidson, 2013, 2021a), poLCA
in R (Linzer & Lewis, 2011), and PROC LCA in SAS
(Lanza, Dziak, Huang, Wagner, & Collins, 2015). Note that
in an LC analysis, MAR implies the missingness is inde-
pendent of the actual value of the indicators with missing
values conditional on the auxiliary variables and the indica-
tors without missing values. If the assumption of MAR is
violated, the missing data mechanism is called not missing
at random (NMAR), in which case maximum likelihood
estimation under MAR yields biased estimates (Allison,
2001; Little & Rubin, 1989).

During the past years, the practice of stepwise latent class
(LC) modeling using bias-adjusted stepwise approaches has
become widely popular (Asparouhov & Muth�en, 2014; Bakk
& Kuha, 2018; Vermunt 2010). However, little is known on
how these new approaches are affected by missing values on
the class indicators. In the first step of the stepwise
approaches, an LC model is estimated without the inclusion
of the auxiliary variables. In the estimation of this step-one
model, missing values can be handled in the usual way as
long as the MAR assumption holds. The second step in a
three-step analysis involves obtaining classifications based on
the observed responses and the estimated parameters from
step one. In the third step of a three-step LC analysis, we esti-
mate the relationship between class membership and auxil-
iary variables using the predicted class memberships from
step two while correcting for classification errors (Bolck,
Croon, & Hagenaars, 2004; Vermunt, 2010). However, the
current three-step approaches ignore the fact that the classifi-
cation errors are larger for cases with missing values since
they apply a single classification error correction matrix to all
observations. The first question of interest is, therefore,
whether we can simply ignore the differences in classification
errors resulting from missing data, or whether we should
account in some way for the missing value problem also in
the third step of a three-step LC analysis.

The second potential problem arises when the missing-
ness depends on the covariates or distal outcomes of inter-
est. That is, when auxiliary variables affect the probability of
having missing values on the class indicators, this
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corresponds to a MAR mechanism in a one-step LC ana-
lysis, but yields a not MAR (NMAR) mechanism in the first
step of a stepwise LC analysis because the auxiliary variables
are excluded from this analysis. The second question of
interest, therefore, is how strongly parameter estimates of
the stepwise LC approaches are affected by this type of vio-
lation of the MAR assumption.

To summarize, in this paper, we address the following
two questions:

1. Is it correct to ignore the fact that classification errors
are larger for observations with missing values, or
should we address this in some way in the third step of
a three-step LC analysis?

2. Are estimates of the relationship between class member-
ship and auxiliary variables obtained with stepwise LC
approaches strongly affected by possible violations of
the MAR assumption in the step-one model?

Note that the second question is relevant for both three-
step and two-step LC analysis, while the first question is
relevant only for three-step approaches.

The next section describes the design of our study, which
is based on the analysis of synthetic data sets corresponding
to LC models with covariates and with missing values on
the class indicators. These data sets vary in the missing data
mechanism, the proportion of missing values, and the separ-
ation between classes. Next, we present the results of the
analyses of these synthetic datasets, where we focus on the
amount of bias in the covariate effects when using stepwise
LCA methods. The paper ends with a conclusion and dis-
cussion section.

2. Method

Figure 1 depicts the four LC population models we are
going to focus on. These models consist of three covariates
(Z1–Z3) affecting class membership (X), and six dichotom-
ous indicators (Y1–Y6). The three covariates have five equi-
distant values ranging from �2 to 2. Indicators Y3 and Y6

may contain missing values for some persons, which is indi-
cated using the missing value indicators I3 and I6. Figure 1a
represents the missing completely at random (MCAR)
mechanism since I3 and I6 are independent of the other var-
iables in the model. Figure 1b corresponds with a MAR
mechanism in which I3 depends on Y1 and Y2 and I6 on Y4

and Y5. Figure 1c assumes that I3 depends on Z1 and I6 on
Z2, which is in agreement with a MAR mechanism when Z1
and Z2 are included in the model, but which becomes an
NMAR mechanism when estimating the model without the
covariates included. Figure 1d represents a specific type of
NMAR mechanism in which missingness on Y3 and Y6

(thus I3 and I6) depends on the latent variable X. We will
refer to these four missing data mechanisms as MCAR,
MAR-Y, MAR-Z, and NMAR-X.

For the LC model part of these population models, we
used the same specifications as in Vermunt (2010). The
model was a three-class model with equal class proportions,

where the class-specific response probabilities for the six
dichotomous indicators were chosen to create low, moderate,
and high class separation conditions (corresponding with
entropy R-squared values of .36, .65. and .90, respectively,
without missing data). For the moderate separation condi-
tion, in Class 1, the success probabilities were .80 for all indi-
cators, in Class 2, .80 for the first three and .20 for the last
three indicators, and in Class 3, .20 for all indicators. These
probabilities were replaced with .70 (.30) for the low and
with .90 (.10) for the high separation conditions. The Z1, Z2,
and Z3 slope parameters in the logistic model for covariate
effects of the classes are set to 2, 0, and 0 for Class 2 and to 2,
�1, and 0 for Class 3. By setting the Class 2 and 3 intercepts
to .867 and .709, we obtained equal class proportions.

Depending on the missing data mechanism, the likeli-
hood of having a missing value on Y3 and/or Y6 depended
on values chosen for PðI3Þ and PðI6Þ, PðI3jY1,Y2Þ and
PðI6jY4,Y5Þ, PðI3jZ1Þ and PðI6jZ2Þ, or PðI3jXÞ and PðI6jXÞ:
These probabilities were modelled using logistic equations
with main effects. With the value for the intercept, we var-
ied the overall proportion of missing values, yielding condi-
tions with a small, a medium, and a large proportion of
missing data on Y3 (16%, 26%, 36%, respectively) and Y6

(24%, 34%, 44%, respectively). In the MAR-Y condition, we
set the slope parameters for the effects of Y1 and Y2 on I3
and the effects of Y4 and Y5 on I6 to .5, 1, and 1.5, yielding
conditions with weak, medium, and strong effects of indica-
tors on missingness. Similarly, in the MAR-Z condition, we
set the slopes for the effect of Z1 effect on I3 and of Z2 on
I6 to .5, 1, and 1.5 to manipulate the effect of covariates on
missingness. In the NMAR-X condition, we manipulated the
contrast between Class 3 and the other two classes (Class 3
having higher missing value probabilities), with slope
parameters equal to .5, 1, and 1.5 for weak, medium, and
strong NMAR effects.

By varying the overall proportion of missing values and
the MAR and NMAR effect sizes, we created 3 MCAR, 9
MAR-Y, 9 MAR-Z, and 9 NMAR-X conditions (thus 30
missing data conditions). Each of the missing data condi-
tions was combined with the 3 different class separation
conditions, yielding a total of 90 conditions.

Since we are only interested in bias and not in sampling
variability, instead of randomly generating a large number
of replication data sets, for each condition in our study
design, we created a single synthetic data set that is exactly
in agreement with the population concerned. These are data
sets containing all possible response patterns (including
those with missing values) with frequency weights equal or
proportional to the population probability for the response
pattern concerned. We created these data sets using the
Latent GOLD “writeexemplarydata” output option and used
R to transform the Y3 value to missing when I3 equals 1
and the Y6 value to missing when I6 equals 1. These
“exemplary” data sets were analyzed with Latent GOLD
using three-step LC analysis with modal class assignments
and ML bias adjustment, three-step LC analysis with pro-
portional class assignments and ML bias adjustment, and
two-step LC analysis. Appendix A illustrates how the
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synthetic data sets were created and how the different steps
of the analyses were performed. For comparison with the
stepwise approaches, the data sets were also analyzed using
one-step LC models which include the covariates directly.

We expect that the stepwise approaches will yield biased
estimates of the covariate effects on the classes under the
MAR-Z condition. The NMAR-X condition was added for
comparison purposes only and can be expected to yield
biased estimates with both one-step and stepwise estimation.

For the three-step LC analysis, we hypothesized that even
MCAR or MAR-Y may be problematic because the amount
of classification errors depends on the missing data pattern.

To illustrate this point, in Table 1, we take the MCAR case
with moderate class separation and medium proportion of
missing values as an example, and present the overall proba-
bilities of modal class assignment W conditional of the true class
membership X, as well as the values for the four the patterns
with (I3 ¼ 0, I6 ¼ 0Þ, (I3 ¼ 1, I6 ¼ 0Þ, ðI3 ¼ 0, I6 ¼ 1Þ, and
ðI3 ¼ 1, I6 ¼ 1Þ: As can be seen, the classification probabilities
PðWjXÞ are affected by the presence of missing values. The
class 2 predictions are more uncertain when I3 ¼ 1, and the
class 3 predictions when I6 ¼ 1:

Note that besides the missing data mechanism, we
manipulated the class separation, the effects of the Ys, Zs,
and X on the missingness, and the proportion of missing
values in order to see whether these factors affect the
amount of bias of a three-step LC analysis. More specific-
ally, we expect to encounter larger biases with lower class
separation since classification errors are larger in those sit-
uations, with larger effects of the Zs and X on missingness
because of the resulting larger deviation from MAR in the
step-one model, and with larger proportions of missing val-
ues because of larger overall impact of missingness.

3. Results

This section presents the results obtained with the 90 inves-
tigated conditions. We summarize the overall bias as the
mean absolute bias (MAB) across the six covariate effects
on the classes. We also look at the bias in one selected par-
ameter b12, representing the effect of Z1 for X ¼ 2:

3.1. MCAR and MAR-Y Conditions

The average absolute bias was exactly 0 for all stepwise
approaches and the one-step approach under all MCAR and

Figure 1. LC model with covariates and MCAR (a), MAR depending on observed indicators (b; MAR-Y), MAR depending on covariates (c; MAR-Z), and NMAR
depending on latent classes (d, NMAR-X) missing data mechanisms.

Table 1. Probability of modal class assignment (W) given the true class mem-
bership (X), both overall and per missing data pattern, for the MCAR condition
with moderate class separation and medium proportion of missing values.

Assigned class W

True class X 1 2 3

1 0.90 0.08 0.02
2 0.18 0.74 0.08
3 0.06 0.14 0.80

Missing data Pattern Assigned class W

I3 I6 True class X 1 2 3

0 0 1 0.89 0.09 0.01
2 0.10 0.80 0.09
3 0.05 0.09 0.85

0 1 1 0.92 0.04 0.04
2 0.33 0.57 0.10
3 0.05 0.07 0.88

1 0 1 0.88 0.10 0.02
2 0.10 0.86 0.04
3 0.04 0.32 0.63

1 1 1 0.90 0.09 0.01
2 0.30 0.67 0.04
3 0.10 0.28 0.61

The probability of a correct assignment is printed in bold face.
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MAR-Y conditions, thus irrespective of the proportion of
missing values, the strength of the MAR-Y mechanism, and
the class separation.

3.2. MAR-Z Conditions

The results obtained with the stepwise LC approaches for
the MAR-Z mechanism are shown in Tables 2 and 3. As
can be seen, the three-step modal approach has the largest
absolute bias in all conditions, whereas the three-step pro-
portional and two-step methods show almost zero absolute
bias. The absolute bias in the covariate effect estimates
increases with a larger proportion of missing data, a stron-
ger MAR-Z effect, and a lower class separation.
Furthermore, results in Table 2 show that a high class separ-
ation reduces the negative effect of large missing data pro-
portions and strong covariate effects on missingness.

These results are confirmed if we look at the bias encoun-
tered for a selected parameter b12 (see Table 3). Again, the
three-step modal approach yields estimates with a problem-
atic amount of bias in almost all conditions. Especially in the
more difficult scenarios (i.e., low class separation, large miss-
ing data proportion, and strong covariate effects on missing-
ness), it performs much worse than the other two stepwise
LC methods. Again, we can see that the three-step propor-
tional and two-step methods yield estimates with either zero
or close to zero bias in the moderate and high separation

conditions. The two-step method performs slightly better
than the three-step proportional method, mainly in the scen-
arios with extremely low class separation.

We also estimated step-one LC models, which as
expected yielded no bias since the MAR assumption holds
when the covariates affecting missingness are included in
the model.

3.3. NMAR-X Conditions

Tables 4 and 5 present the mean absolute bias across the six
covariate effects and the bias in the selected parameter b12
for the NMAR-X mechanism. As expected, we see biases
with all LC methods. As with in the MAR-Z conditions, the
three-step modal approach yields the largest bias in all con-
ditions, whereas the three-step proportional and two-step
LC methods produced estimates with relatively small biases.
Among the latter two, the two-step LC approach has a
slightly smaller bias than the three-step proportional
approach. As the missing data proportions and the effects of
class membership on missingness increase, the bias increases
as well. Similar to what we saw for the MAR-Z mechanism,
a high class separation reduces the bias.

The one-step approach performed much better than the
stepwise approaches, especially in the less favorable condi-
tions with low class separation, large effects of X on miss-
ingness, and large proportion of missing values.

Table 2: Mean absolute bias (MAB) across the six covariate effects when missingness depends on covariates (MAR-Z condition).

Low separation Moderate separation High separation

Method
Missingness
proportion

Weak
effect

Medium
effect

Strong
effect

Weak
effect

Medium
effect

Strong
effect

Weak
effect

Medium
effect

Strong
effect

Three-step modal Small 0.04 0.07 0.09 0.03 0.06 0.08 0.02 0.04 0.05
Three-step modal Medium 0.11 0.19 0.24 0.03 0.05 0.06 0.03 0.05 0.07
Three-step modal Large 0.13 0.22 0.28 0.04 0.06 0.07 0.03 0.05 0.07
Three-step proportional Small 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Three-step proportional Medium 0.01 0.01 0.02 0.00 0.00 0.01 0.00 0.00 0.00
Three-step proportional Large 0.01 0.01 0.02 0.00 0.01 0.01 0.00 0.00 0.00
Two-step Small 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Two-step Medium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Two-step Large 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
One-step Small 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
One-step Medium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
One-step Large 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3. Bias in the b12 parameter with a true value 2.00 when missingness depends on covariates (MAR-Z condition).

Low separation Moderate separation High separation

Method
Missingness
proportion

Weak
effect

Medium
effect

Strong
effect

Weak
effect

Medium
effect

Strong
effect

Weak
effect

Medium
effect

Strong
effect

Three-step modal Small 0.09 0.19 0.27 �0.03 �0.05 �0.07 �0.02 �0.05 �0.06
Three-step modal Medium 0.15 0.30 0.42 0.02 0.05 0.07 �0.03 �0.07 �0.09
Three-step modal Large 0.20 0.37 0.51 0.06 0.12 0.09 �0.04 �0.07 �0.10
Three-step proportional Small 0.01 0.02 0.03 0.01 0.01 0.01 0.00 0.00 0.00
Three-step proportional Medium 0.02 0.04 0.05 0.01 0.02 0.02 0.00 0.00 0.00
Three-step proportional Large 0.03 0.06 0.07 0.01 0.02 0.03 0.00 0.00 0.00
Two-step Small 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Two-step Medium 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Two-step Large 0.01 0.01 0.02 0.00 0.01 0.01 0.00 0.00 0.00
One-step Small 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
One-step Medium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
One-step Large 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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4. Conclusions and Discussion

In this study, we examined the performance of stepwise LC
methods with regard to the recovery of covariate effects in
the presence of missing data on the class indicators. We
examined four mechanisms for the missing data, namely
MCAR, MAR-Y, MAR-Z, and NMAR-X, and manipulated
three factors within each mechanism, namely the proportion
of missing data, the effect of indicators/covariates/latent
classes on missingness, and the class separation.

Contrary to what we expected, estimates obtained using
stepwise LC methods are not biased with missing values on
the class indicators when the MAR assumption holds in the
step-one model estimation stage. This assumption holds
when the missingness is MCAR or when it depends only on
the indicators that are observed (our MAR-Y condition).
This result answers the first research question we formu-
lated in the introduction; that is, no modifications are
needed when applying three-step LC analysis with missing
values as long as the MAR assumption holds.

As expected, when missingness depends on covariates
(our MAR-Z condition), the stepwise approaches may yield
biased parameter estimates, where bias increases with a
larger proportion of missing values, a stronger effect of
covariates on missingness, and a lower separation between
classes. Our most important and rather unexpected finding
is that amount of bias varies strongly across the various
stepwise approaches. More specifically, three-step LC ana-
lysis with modal class assignments is much more strongly

affected by the resulting NMAR missing data than the other
two stepwise LC approaches.

An explanation for the rather small biases encountered with
the two-step approach is that the step-one measurement model
parameters were not strongly affected by violating MAR
assumption, even in the least favorable conditions. For instance,
in the most difficult condition (low class separation, large effects
of covariates on missingness, and high proportion of missing-
ness), the largest bias in the class-specific response probabilities
was �.02 (.28 instead of .30). These almost correct step-one
response probabilities are treated as fixed measurement model
parameters in the two-step approach, which explains the low
bias. Proportional class assignment performs slightly worse than
the two-step approach because it also uses the estimated class
proportions from the step-one model to obtain the posteriors
that serve as weights in the step-three analysis. The largest bias
in the class proportions was �0.017 (0.316 instead of 0.333) in
the least favorable condition, which is again rather small and
therefore explains why step-three with proportional assignment
perform well. However, these seemingly small biases in the step-
one parameters may have a much larger impact when using
modal class assignments in which one transforms the highest
posterior into a weight of 1 and the other ones to 0. An assign-
ment to class 2 may suddenly change in an assignment to class
3. Most probably, this increases the number of classification
errors quite a bit in the less favorable conditions, which cannot
be compensated by the applied correction for classification
errors which itself is based on the biased step-one parameters.

Table 4. Mean absolute bias (MAB) across the six covariate effects when missingness depends on the latent classes (NMAR-X condition).

Low separation Moderate separation High separation

Method
Missingness
proportion

Weak
effect

Medium
effect

Strong
effect

Weak
effect

Medium
effect

Strong
effect

Weak
effect

Medium
effect

Strong
effect

Three-step modal Small 0.02 0.03 0.04 0.02 0.03 0.03 0.01 0.02 0.02
Three-step modal Medium 0.04 0.07 0.10 0.03 0.05 0.07 0.02 0.03 0.04
Three-step modal Large 0.06 0.12 0.20 0.04 0.08 0.11 0.02 0.05 0.06
Three-step proportional Small 0.02 0.03 0.04 0.01 0.01 0.02 0.00 0.01 0.01
Three-step proportional Medium 0.02 0.04 0.05 0.01 0.02 0.03 0.01 0.01 0.01
Three-step proportional Large 0.03 0.05 0.06 0.02 0.03 0.04 0.01 0.02 0.02
Two-step Small 0.01 0.01 0.02 0.01 0.01 0.01 0.00 0.01 0.01
Two-step Medium 0.01 0.03 0.04 0.01 0.02 0.03 0.00 0.01 0.01
Two-step Large 0.02 0.04 0.06 0.01 0.03 0.04 0.01 0.01 0.02
One-step Small 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
One-step Medium 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.01
One-step Large 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01

Table 5. Bias in the b12 parameter with a true value 2.00 when missingness depends on the latent classes (NMAR-X condition).

Low separation Moderate separation High separation

Method
Missingness
proportion

Weak
effect

Medium
effect

Strong
effect

Weak
effect

Medium
effect

Strong
effect

Weak
effect

Medium
effect

Strong
effect

Three-step modal Small �0.04 �0.07 �0.09 �0.04 �0.06 �0.07 �0.03 �0.05 �0.06
Three-step modal Medium �0.08 �0.17 �0.23 �0.06 �0.12 �0.15 �0.04 �0.08 �0.10
Three-step modal Large �0.13 �0.28 �0.49 �0.09 �0.18 �0.26 �0.06 �0.11 �0.15
Three-step proportional Small 0.04 0.06 0.07 0.01 0.02 0.02 0.00 0.00 0.00
Three-step proportional Medium 0.05 0.07 0.07 0.02 0.02 0.02 0.00 0.00 0.00
Three-step proportional Large 0.06 0.07 0.04 0.02 0.02 0.01 0.00 �0.01 �0.02
Two-step Small 0.00 0.00 0.00 0.00 0.00 �0.01 0.00 0.00 0.00
Two-step Medium 0.00 �0.01 �0.02 0.00 �0.01 �0.01 0.00 �0.01 �0.01
Two-step Large 0.00 �0.03 �0.06 �0.01 �0.02 �0.03 0.00 �0.01 �0.01
One-step Small 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
One-step Medium 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00
One-step Large 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00 �0.01
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As expected, in the NMAR-X conditions, we always find a
certain amount of bias, where again the three-step propor-
tional and two-step approaches are less affected than the
three-step modal approach. The step-one parameters showed
a larger bias than in the MAR-Z condition, which explains
why the two-step and three-step proportional approaches per-
form slightly worse in the NMAR-X condition. The one-step
LC analysis approach performed very well in the NMAR-X
condition, which can be explained by the fact that inclusion
of covariates in the model improves the class separation sub-
stantially (in the least favorable condition, entropy R-squared
increased from .30 to .57) and, moreover, causes one gets
closer to MAR when the covariates are strongly related to the
classes (they serve as a kind of proxy for the latent classes).

Based on our results, the practical recommendation for
researchers who wish to use a stepwise LC analysis is to be
cautious when there is missing data on the class indicators. If
there is some evidence that missingness is related to auxiliary
variables of interest (e.g., if males and females have clearly
different missingness probabilities and one is interested in
gender differences in class membership), it can be recom-
mended to use either a three-step approach with proportional
assignment, which is the default option in the Latent GOLD
software, or a two-step approach, which is also available in
Latent GOLD (Vermunt & Magidson, 2021a).

An alternative way to deal with the MAR-Z situation
could be to make use of multiple imputation; that is, to
impute the missing values on the indicators using a good
imputation model (containing the auxiliary variables) prior to
performing the stepwise LC analysis (Allison, 2000; Schafer,
1997; Vermunt, Van Ginkel, Van der Ark, & Sijtsma, 2008).
Another option could be to include the auxiliary variables
that are related to the missingness in the step-one model,
which yields a procedure similar to the one proposed by
Vermunt and Magidson (2021b) for dealing with stepwise LC
analysis in the presence of measurement non-invariance.

As any study based on constructed data sets, also our
study has certain limitations. First of all, because we analyzed
data sets that are exactly in agreement with the assumed pop-
ulations, we did not study the effect of sampling fluctuation
on estimates of parameters and their standard errors.
Another limitation is that we postulated rather simplified
missing data mechanisms, whereas in practice, the actual
missing data mechanism may be much more complex, such
as missingness being affected simultaneously by auxiliary var-
iables, observed indicators, missing indicators, and latent
classes. Moreover, we created missing values only on two of
the six indicators, but in empirical applications, a larger por-
tion of the indicators may contain missing values.

For practical reasons, we restricted ourselves to studying
the bias in the covariate effects in LC models for dichotomous
responses. However, we expect that our results also apply to
the estimation of the association between class membership
and distal outcomes, in which case one may prefer using the
BCH instead of the ML estimation approach (Asparouhov &
Muth�en, 2021; Bakk & Vermunt, 2016, Nylund-Gibson,
Grimm, & Masyn, 2019). Moreover, it can be expected that
our results generalize to LC models with continuous

indicators, also referred to as latent profile models (Lazarsfeld
& Henry, 1968; Oberski, 2016), which may also contain miss-
ing values. Finally, our results are also relevant for mixture
growth or latent trajectory models (Muth�en, 2004, Van de
Schoot, Sijbrandij, Winter, Depaoli, & Vermunt, 2017), in
which it is very common to have different numbers of meas-
urements per individual, something that can also be seen as a
missing data problem. In all these situations, it can be
expected that missing data is not an issue when the MAR
assumption holds in the step-one model. But when missing-
ness depends on auxiliary variables, also in these situations it
can be recommended not to use a three-step LC analysis with
modal class assignments, but instead, a three-step LC analysis
with proportional class assignments or a two-step LC analysis.
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Appendix A. Latent GOLD 6.0 Syntax

Latent GOLD 6.0 (Vermunt & Magidson, 2021a) was used to create
synthetic data sets which are exactly in agreement with the assumed
populations. This is example syntax for the MAR-Z model with
medium effects of z1 and z2 on i3 and i6, medium proportion of miss-
ing values, and moderate class separation:

options
algorithm emiterations ¼ 0, nriterations ¼ 0;

output parameters¼first writeexemplarydata¼
’data.txt’;

variables
caseweight freq1000;
dependent y1 2, y2 2, y3 2, y4 2, y5 2, y6 2, i3
2, i6 2;
independent z1, z2, z3;
latent Class nominal 3;

equations
Class <- 1 þ z1 þ z2 þ z3;
y1 – y6 <- 1 j Class;
i3 <- 1 þ z1;
i6 <- 1 þ z2;
{0.867 0.709 2 2 0 -1 0 0
1.386294361 1.386294361 -1.386294361
1.386294361 1.386294361 -1.386294361
1.386294361 1.386294361 -1.386294361
1.386294361 -1.386294361 -1.386294361
1.386294361 -1.386294361 -1.386294361
1.386294361 -1.386294361 -1.386294361
-1.49 1
-.95 1}

The input data file contains one record for each of the 125 covariate
patterns, with the eight dependent variables (six items and two missing
data indicators) set to 0 and a frequency weight yielding an arbitrary
total sample size (here it equals to 8 for each pattern, yielding a total
of sample size of 1000). Specific in this syntax is that we set the num-
ber of EM and Newton-Raphson iterations to 0 (to fix the parameter
values to their starting values), that we use the output option
“writeexemplarydata” (to obtain the data file that we need), and that
we specify “starting values” for all model parameters at the end of the
equations section (to define the population values). As can be seen, the
variables section specifies the caseweight and the variables which are
part of the model. For the dependent variables, we have to specify their
number of categories, and for the latent variable we have to provide a
name, define its scale types, and specify its number of categories. The
population parameters are specified between “{},” where the first row
defines the logit parameters of the model for the classes (the intercepts,
and the effects of the three covariates), the next six rows define the

class-specific response logits for the six items, and the last two rows
contain the logit parameters of the models for the two missing value
indicators. Note that the output option “parameters¼ first” indicates
that dummy coding is used for the logit parameters with the first cat-
egory as the reference category. The output data file “data.txt” will
contain all possible response patterns (thus 125�62�22 rows) a with fre-
quency weight equal to the population proportion derived for the
specified parameter values times the total sample size (here 1,000).

Subsequently, in data file “data.txt,” the value of y3 (y6) should be
replaced by a missing value if i3 (i6) equals 1, which can, for example,
be done using R. Then, using the resulting data set, a step-one analysis
can be performed, while writing the classification information to an
output data file. For the two-step approach, the log of the class-specific
response densities should be saved in the output data file. That is,

options
missing includeall;
output parameters¼first standarderrors
profile;
outfile ’classification.txt’ classification
logdensity

keep z1 z2 z3;
variables

caseweight frequency;
dependent y1, y2, y3, y4, y5, y6;
latent Class nominal 3;

equations
Class <- 1;
y1 – y6 <- 1 j Class;

Important is the missing values option “includeall,” which is used to
indicate that records with missing values should be kept in the analysis.
The “outfile” option is used to write the posterior class memberships and
the log of class-specific response densities to an output data file, which
in addition should contain the three covariates (indicated with the “keep”
option). The “variables” and “equations” sections are similar to those
showed above, though quite a bit simpler since the covariates and the
missing value indicators are not part of the step-one model. Moreover,
there is no need to specify number of categories of the items since these
can be derived from the input data file. Note that the “caseweight” con-
tains the frequency counts which are in agreement with the specified
population model. Though not really needed, starting values may be pro-
vided to make sure the classes come out in the “right” order.

The step-three model can be estimated using the data file
“classification.txt.” With modal class assignments, the model syntax the
looks as follows:

options
step3 modal ml;
output parameters¼first standarderrors ¼ robust
estimatedvalues;

variables
caseweight frequency;
independent z1, z2, z3;
latent Class nominal posterior¼(Class#1
Class#2 Class#3);

equations
Class <- 1 þ z1 þ z2 þ z3;

The option “step3” indicates the type of step-three analysis one wishes
to perform. Note that Class#1, Class#2, and Class#3 are names of the
variables in the data file “classification.txt,” which contain the posterior
class membership probabilities. The “caseweight” is the same frequency
count as was used in the step-one model. The equations section con-
tains the logistic regression equations for the latent classes.

With proportional class assignments, we use “step3 proportional ml”
instead of “step3 modal ml.” For a the step-2 analysis, the line “step3
modal ml;” can be removed, and posterior ¼ (Class#1 Class#2 Class#3)”
is replaced by “logdensity ¼ (logdensity1 logdensity2 logdensity3).” The
variables logdensity1, logdensity2, and logdensity3 contain the log of the
classification response densities from the step-one model.
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