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ON THE GENERALIZED \bfitvargamma -NUMBER AND RELATED PROBLEMS
FOR HIGHLY SYMMETRIC GRAPHS\ast 

LENNART SINJORGO\dagger AND RENATA SOTIROV\dagger 

Abstract. This paper is an in-depth analysis of the generalized \vargamma -number of a graph. The
generalized \vargamma -number, \vargamma k(G), serves as a bound for both the k-multichromatic number of a graph
and the maximum k-colorable subgraph problem. We present various properties of \vargamma k(G), such as
that the sequence (\vargamma k(G))k is increasing and bounded from above by the order of the graph G.
We study \vargamma k(G) when G is the strong, disjunction, or Cartesian product of two graphs. We provide
closed form expressions for the generalized \vargamma -number on several classes of graphs including the Kneser
graphs, cycle graphs, strongly regular graphs, and orthogonality graphs. Our paper provides bounds
on the product and sum of the k-multichromatic number of a graph and its complement graph, as well
as lower bounds for the k-multichromatic number on several graph classes including the Hamming
and Johnson graphs.

Key words. k-multicoloring, k-colorable subgraph problem, generalized \vargamma -number, Johnson
graphs, Hamming graphs, strongly regular graphs
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1. Introduction. A k-multicoloring of a graph is an assignment of k distinct
colors to each vertex in the graph such that two adjacent vertices are assigned disjoint
sets of colors. The k-multicoloring is also known as k-fold coloring, k-tuple coloring, or
simply multicoloring. We denote by \chi k(G) the minimum number of colors needed for
a valid k-multicoloring of a graph G and refer to it as the kth chromatic number of G
or the multichromatic number of G. Multicoloring seems to have been independently
introduced by Hilton, Rado, and Scott [45] and Stahl [80]. The k-multicoloring is a
generalization of the well-known standard graph coloring. Namely, \chi (G) := \chi 1(G) is
known as the chromatic number of a graph G. Not surprisingly, multicoloring finds
applications in comparable areas, such as job scheduling [32, 43], channel assignment
in cellular networks [68] and register allocation in computers [16]. There exist several
results on \chi k(G) for specific classes of graphs. In particular, Lin [55] and Lin, Liu,
and Zhu [56] consider multicoloring the Mycielskian of graphs, Ren and Bu [73] study
multicoloring of planar graphs, while Marx [63] proves that the multicoloring problem
is strongly NP-hard in binary trees. Cranston and Rabern [21] show that, for any
planar graph G, \chi 2(G) \leq 9. This result is implied by the famous four-color theorem
by Appel and Haken [5], but it has a much simpler proof.

The maximum k-colorable subgraph (MkCS) problem is to find the largest in-
duced subgraph in a given graph that can be colored with k colors so that no two
adjacent vertices have the same color. When k = 1, the MkCS problem reduces to
the well-known maximum stable set problem. The MkCS problem is one of the NP-
complete problems considered by Lewis and Yannakakis [54]. We denote by \alpha k(G) the
number of vertices in a maximum k-colorable subgraph of G and by \omega k(G) the size
of the largest induced subgraph that can be partitioned into k cliques. When k = 1,
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the graph parameter \omega (G) := \omega 1(G) is known as the clique number of a graph and
\alpha (G) := \alpha 1(G) as the independence number of a graph. We note that \alpha k(G) = \omega k(G),
where G denotes the complement of G. The MkCS problem has a number of applica-
tions such as channel assignment in spectrum sharing networks [52, 81], VLSI design
[62], and human genetic research [25, 57]. There exist several results on \alpha k(G) for
specific classes of graphs. The size of the maximum k-colorable subgraph for the
Kneser graph K(v, 2) is provided by F\"uredi and Frankl [29]. Yannakakis and Gavril
[84] consider the MkCS problem for chordal graphs, Addario-Berry et al. [2] study
the problem for an i-triangulated graph, and Narasimhan [66] computes \alpha k(G) for
circular-arc graphs and tolerance graphs.

Narasimhan and Manber [67] introduce a graph parameter \vargamma k(G) that serves as a
bound for both the minimum number of colors needed for a k-multicoloring of a graph
G and the number of vertices in a maximum k-colorable subgraph ofG. The parameter
\vargamma k(G) generalizes the concept of the famous \vargamma -number that was introduced by Lov\'asz
[59] for bounding the Shannon capacity of a graph [76]. The Lov\'asz theta number is
a widely studied graph parameter; see, e.g., [17, 38, 40, 51, 60, 64]. The Lov\'asz theta
number provides bounds for both the clique number and the chromatic number of a
graph, both of which are NP-hard to compute. The well-known result that establishes
the relation \alpha 1(G) \leq \vargamma 1(G) \leq \chi 1(G) or equivalently \omega 1(G) \leq \vargamma 1(G) \leq \chi 1(G) is
known as the sandwich theorem [60]. The Lov\'asz theta number can be computed
in polynomial time as a semidefinite programming (SDP) problem by using interior
point methods. Thus, when the clique number and chromatic number of a graph
coincide, i.e., when the graph is weakly perfect, the Lov\'asz theta number provides
those quantities in polynomial time.

Despite the popularity of the Lov\'asz theta number, the function \vargamma k(G) has re-
ceived little attention in the literature. Narasimhan and Manber [67] show that
\alpha k(G) \leq \vargamma k(G) \leq \chi k(G) or equivalently \omega k(G) \leq \vargamma k(G) \leq \chi k(G). These inequalities
can be seen as a generalization of the Lov\'asz sandwich theorem. Alizadeh [3] for-
mulates the generalized \vargamma -number using SDP. Kuryatnikova, Sotirov, and Vera [53]
introduce the generalized \vargamma \prime -number that is obtained by adding nonnegativity con-
straints to the SDP formulation of the \vargamma k-number. The generalized \vargamma -number and
\vargamma \prime -number are evaluated numerically as upper bounds for the MkCS problem in [53].
The authors of [53] characterize a family of graphs for which \vargamma k(G) and \vargamma \prime 

k(G) provide
tight bounds for \alpha k(G). Here, we study also a relation between \vargamma k(G) and \chi k(G),
and extend many known results for the Lov\'asz \vargamma -number to the generalized \vargamma -number.
This paper is based on the thesis of Sinjorgo [79].

Main results and outline. This paper provides various theoretical results for
\alpha k(G), \vargamma k(G), and \chi k(G). We show numerous properties of \vargamma k(G) including results on
different graph products of two graphs such as the Cartesian product, strong product,
and disjunction product. We show that the sequence (\vargamma k(G))k is increasing toward
the number of vertices in G and that the increments of the sequence can be arbitrarily
small. The latter result is proven by constructing a particular graph that satisfies the
desired property. We also provide a closed form expression on the generalized \vargamma -
number for several graph classes including complete graphs, cycle graphs, complete
multipartite graphs, strongly regular graphs, orthogonality graphs, the Kneser graphs,
and some Johnson graphs. We compute \vargamma k(G) for circulant graphs and the Johnson
graphs. Our results show that \vargamma k(G) = k\vargamma (G) for the Kneser graphs and more
general Johnson graphs, strongly regular graphs, cycle graphs, and circulant graphs.
Our paper presents lower bounds on the kth chromatic number for all regular graphs,
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1346 LENNART SINJORGO AND RENATA SOTIROV

but also specialized bounds for the Hamming, Johnson, and orthogonality graphs. We
also provide bounds on the product and sum of \chi k(G) and \chi k(G) and present graphs
for which those bounds are attained. Those results generalize well-known results of
Nordhaus and Gaddum [70] for \chi (G) and \chi (G).

This paper is organized as follows. Notation and definitions of several graphs
and graph products are given in subsection 1.1. In section 2 we formally introduce
\vargamma k(G) and \chi k(G) and show how those graph parameters relate. In section 3 we study
the sequence (\vargamma k(G))k. Section 4 provides bounds for \vargamma k(G) when G is the strong
graph product of two graphs and the disjunction product of two graphs. In section 5
one can find values of the generalized \vargamma -number for complete graphs, cycle graphs,
circulant graphs, and complete multipartite graphs. In subsection 5.1 we provide a
closed form expression for the generalized \vargamma -function on the Kneser graphs, as well
as for the Johnson graphs. Subsection 5.2 relates \vargamma (Kk\square G) and \vargamma k(G). We provide
a closed form expression for the generalized \vargamma -function for strongly regular graphs in
section 6. In the same section we also relate the Schrijver's number \vargamma \prime (Kk\square G) with
\vargamma k(G) when G is a strongly regular graph. In section 7 we study a relation between the
orthogonality graphs and the graph parameters considered here. Section 8 provides
new lower bounds on the kth chromatic number for regular graphs and triangular
graphs. We present several results for the multichromatic number of the Hamming
graphs in subsection 8.1.

1.1. Notation and definitions. Let \BbbS n be the space of symmetric n by n
matrices. For matrix X \in \BbbS n, we write X \succeq 0 when X is positive semidefinite.
Entries of matrix X are given by Xij . The trace inner product for symmetric matrices
is denoted \langle X,Y \rangle = Tr(XY ). The Kronecker product of matrices is denoted byX\otimes Y .
By abuse of notation, we use the same symbol for the tensor product of graphs. The
matrix of all ones is denoted by J , while the identity matrix is denoted by I. We
sometimes use subscripts to indicate the size of a matrix. Denote by 0 and 1 the
vector of all zeroes and ones, respectively.

For any graph G = (V (G), E(G)), we denote its adjacency matrix by AG, or
simply A when the context is clear. Similarly, we use V and E to denote the vertex
and edge set of G when it is clear from the context. We assume that | V | = n,
unless stated differently. The Laplacian matrix of a graph G is denoted by LG.
The complement graph of G, denoted by G, is defined as the graph such that AG+
AG = J  - I.

For the eigenvalues of X \in \BbbS n, we follow \lambda 1(X) \geq \lambda 2(X) \geq \cdot \cdot \cdot \geq \lambda n(X) and
denote by \sigma (A) the spectrum of matrix A. That is, \sigma (A) = \{ \lambda 1(A), . . . , \lambda n(A)\} . We
denote the set \{ 1, . . . , n\} by [n]. The ``diag"" operator maps an n \times n matrix to the
n-vector given by its diagonal. The adjoint operator of ``diag"" is denoted by ``Diag.""

In the rest of this section we provide several definitions. The first definition
introduces several graph products, while the remaining definitions introduce different
classes of graphs.

Definition 1.1 (graph products). An arbitrary graph product of graphs G1 =
(V1, E1) and G2 = (V2, E2) is denoted by G1 \ast G2, having as vertex set the Cartesian
product V1 \times V2. Table 1 shows when vertices (v1, v2) and (u1, u2) are adjacent in
G1 \ast G2 for the lexicographic, tensor, Cartesian, strong, and disjunction (Abdo and
Dimitrov [1]) graph products.

In order to define the Hamming graphs, we first state the definition of the Ham-
ming distance.

D
ow

nl
oa

de
d 

11
/2

9/
22

 to
 1

54
.5

9.
12

4.
14

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE GENERALIZED \vargamma -NUMBER 1347

Table 1
Graph products.

Graph product G1 \ast G2 Condition for ((v1, v2), (u1, u2)) \in E(G1 \ast G2)

Lexicographic G1 \circ G2 (v1, u1) \in E1 or [v1 = u1 and (v2, u2) \in E2]

Tensor G1\otimes G2 (v1, u1) \in E1 and (v2, u2) \in E2

Cartesian G1\square G2 [v1 = u1 and (v2, u2) \in E2]

or [v2 = u2 and (v1, u1) \in E1]

Strong G1\boxtimes G2 ((v1, v2), (u1, u2)) \in E(G1\square G2) \cup E(G1 \otimes G2)
Disjunction G1\vee G2 (v1, u1) \in E1 or (v2, u2) \in E2

Definition 1.2 (Hamming distance). For two integer valued vectors u and v,
the Hamming distance between them, denoted by d(u,v), is the number of positions
in which their entries differ.

Definition 1.3 (Hamming graph). The Hamming graph H(n, q, F ) for n, q \in \BbbN 
and F \subset \BbbN has as vertices all the unique elements in (\BbbZ /q\BbbZ )n. In the Hamming
graph, vertices u and v are adjacent if their Hamming distance d(u, v) \in F .

Many authors define the Hamming graphs only for F = \{ 1\} .

Definition 1.4 (Johnson graph). Let n,m \in \BbbN , 1 \leq m \leq n/2, f \in \{ 0, 1, . . . ,m\} ,
and N = [n]. The Johnson graph J(n,m, f) has as vertices all the possible m-sized
subsets of N . Denote the subset corresponding to a vertex u by s(u). Then | s(u)| = m
and vertices u and v are adjacent if and only if | s(u) \cap s(v)| = f .

Many authors define the Johnson graph only for f = m  - 1. When f = 0, the
Johnson graph is better known as the Kneser graph.

Definition 1.5 (Kneser graph). Let n,m \in \BbbN and 1 \leq m \leq n/2. Then the
Kneser graph K(n,m) is the Johnson graph J(n,m, 0).

Definition 1.6 (strongly regular graph). A d-regular graph G of order n is
called strongly regular with parameters (n, d, \lambda , \mu ) if any two adjacent vertices share \lambda 
common neighbors and any two nonadjacent vertices share \mu common neighbors.

2. \bfitvargamma \bfitk (\bfitG ) and \bfitchi \bfitk (\bfitG ) formulations and their relation. In this section, we
formally introduce the multichromatic number and the generalized \vargamma -number of a
graph. We also show a relationship between these two graph parameters.

Let G = (V,E) be a simple undirected graph with n vertices. A valid k-
multicoloring of G that uses R colors is a mapping f : V \rightarrow 2R such that | f(i)| = k
for all vertices i \in V and | f(i) \cap f(j)| = 0 for all edges (i, j) \in E. The multi-
chromatic number \chi k(G) is defined to be the size of a smallest R such that a valid
k-multicoloring of G exists. Here we consider only valid k-multicoloring and refer to
it as k-multicoloring.

Multicoloring can be reduced to standard graph coloring by use of the lexico-
graphic product of graphs; see Definition 1.1. Namely, Stahl [80] showed that for any
graph H such that \chi (H) = k, we have \chi k(G) = \chi (G \circ H). For clarity purposes, the
simplest choice for H is Kk, the complete graph of order k. This results in

(1) \chi k(G) = \chi (G \circ Kk).

For bounds on the chromatic number of (lexicographic) graph products, we refer
readers to Geller and Stahl [34] and Klav\v zar [49]. By the lexicographic product, any
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bound on \chi (G) can also be transformed to a bound on \chi k(G). In particular,

(2) \chi k(G) = \chi (G \circ Kk) \geq \omega (G \circ Kk) = \omega (G)\omega (Kk) = k\omega (G).

Here we use that \omega (G\circ H) = \omega (G)\omega (H) for general graphs G and H. We also mention
the following result:

(3) \alpha (G \circ H) = \alpha (G)\alpha (H).

Both results are proven by Geller and Stahl [34]. Let us also state the following known
result:

(4) \chi (G \circ H) \leq \chi (G)\chi (H).

This result can be explained as follows. Denote the vertex sets of G and H by V (G)
and V (H), respectively. For an optimal coloring of G and H, define c(u) as the color
of some vertex u. Graph G\circ H has vertices (gi, hi). Every vertex in G\circ H can then be
assigned a 2-color combination (c(gi), c(hi)). Note that, by interpreting these 2-color
combinations as simply colors, this constitutes a valid coloring of G \circ H by using
\chi (G)\chi (H) colors. Combining inequalities (2) and (4) results in

k\omega (G) \leq \chi k(G) = \chi (G \circ Kk) \leq k\chi (G).(5)

The above inequalities may be strict. An example is the cycle graph with five vertices
and k = 2, as \chi 2(C5) = 5 [80]. Note that, by (5), any upper bound on \chi (G) can be
transformed into an upper bound on \chi k(G). To compute (or approximate) \chi k(G) one
can consult the wide range of existing literature on standard graph coloring by using
\chi k(G) = \chi (G \circ Kk). Next to that, more specific literature on multicoloring can also
be examined. Camp\^elo, Mara, and Santos [15] present an integer linear programming
formulation for the k-multicoloring of a graph and study the facial structure of the
corresponding polytope. Malaguti and Toth [61] use a combination of tabu search and
population management procedures as a metaheuristic to solve (slightly generalized)
multicoloring problems. Mehrotra and Trick [65] apply branch and price to generate
independent sets for solving the multicoloring problem.

Narasimhan and Manber [67] generalize \vargamma (G) by introducing \vargamma k(G) as follows:

(6) \vargamma k(G) = Minimize
A\in \scrA (G)

k\sum 
i=1

\lambda i(A),

where

(7) \scrA (G) := \{ A \in \BbbS n | Aij = 1 \forall (i, j) /\in E(G)\} .

Narasimhan and Manber prove that \vargamma k(G) satisfies the inequality

(8) \alpha k(G) \leq \vargamma k(G) \leq \chi k(G)

and thus also \omega k(G) \leq \vargamma k(G) \leq \chi k(G). Recall that \alpha k(G) is the cardinality of the
largest subset C \subseteq V such that the subgraph induced in G by C, denoted G[C],
satisfies \chi (G[C]) \leq k. Inequality (8) generalizes the Lov\'asz's sandwich theorem [60].

Alizadeh [3] derived the following SDP formulation of \vargamma k(G) (see also [53]):

(\vargamma k-SDP)

\vargamma k(G) = Minimize
\mu \in \BbbR , X,Y \in \BbbS n

\langle I, Y \rangle + \mu k

subject to Xij = 0 \forall (i, j) /\in E(G),

\mu I +X  - J + Y \succeq 0, Y \succeq 0.
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The dual problem for \vargamma k-SDP is

(\vargamma k-SDP2)

\vargamma k(G) = Maximize
Y \in \BbbS n

\langle J, Y \rangle 

subject to Yij = 0 \forall (i, j) \in E(G),

\langle I, Y \rangle = k, 0 \preceq Y \preceq I.

Note that for k = 1 constraint Y \preceq I is redundant. We show below that \vargamma k(G) \leq 
\chi k(G). To prove the result we use different arguments from the arguments used in
[67]. In an optimal k-multicoloring of G, define for each of the \chi k(G) colors used a
vector yj \in \{ 0, 1, k\} n+1, 1 \leq j \leq \chi k(G). For the entries of yj , we have yj

0 = k and

yj
i = 1 if vertex i has color j, 0 otherwise. Then

1

k2

\chi k(G)\sum 
j=1

yj(yj)\top =

\biggl[ 
\chi k(G) 1\top 

1 1
k I +

1
\chi k(G)X

\biggr] 
for some X \in \BbbS n satisfying Xij = 0 for all (i, j) \in E(G). By the Schur complement

we find \chi k(G)
k I +X  - J \succeq 0. Simply set Y = 0 \in \BbbS n. Then the triple (\chi k(G)

k , X, Y ) is

feasible for \vargamma k-SDP (for G) with objective value \chi k(G).
To conclude this section we state the following result:

(9) \vargamma k(G) \leq k\vargamma (G) \leq \chi k(G).

Narasimhan and Manber [67] prove the first inequality in (9). To show this, let \widetilde A \in 
\scrA (G) such that \lambda 1( \widetilde A) = \vargamma (G). Then \vargamma k(G) \leq 

\sum k
i=1 \lambda i( \widetilde A) \leq k\lambda 1( \widetilde A) and the proof

follows. The second inequality follows from \vargamma (G \circ Kk) = k\vargamma (G) and \vargamma (G \circ Kk) \leq 
\chi (G \circ Kk) = \chi k(G). The second inequality in (9) also follows from the following
known results \vargamma (G) \leq \chi f (G) and k\chi f (G) \leq \chi k(G) where \chi f (G) is the fractional
chromatic number of a graph; see, e.g., [14]. In this paper we show that \vargamma k(G) =
k\vargamma (G) for many highly symmetric graphs.

3. The sequence (\bfitvargamma \bfitk (\bfitG ))\bfitk . In this section we consider the sequence \vargamma 1(G),
\vargamma 2(G), . . . , \vargamma n(G) where G is a graph of order n. We first prove that this sequence
is bounded from above (Proposition 3.1) and increasing (Proposition 3.2). Then, we
prove that the increments of the sequence, i.e., \vargamma k(G)  - \vargamma k - 1(G) are decreasing in
k; see Theorem 3.4. We also show that this increment can be arbitrarily small for a
particular graph; see Theorem 3.5.

Let us first establish a relation between \vargamma k(G) and \chi (G).

Proposition 3.1. For k \geq \chi (G), G = (V,E), we have \vargamma k(G) = | V | . Further-
more, \vargamma k(G) \leq min\{ k\vargamma (G), | V | \} for all k \leq n.

Proof. Let k \geq \chi (G). Then \alpha k(G) = | V | , where we take the k independent sets
to be the color classes in an optimal coloring of G. Thus, it follows from (8) that
| V | \leq \vargamma k(G).

Furthermore, note that for any graph G, matrix J \in \scrA (G) is feasible for (6).
Since matrix J has eigenvalue | V | with multiplicity one and the other eigenvalues
equal to 0, we have \vargamma k(G) \leq | V | for any graph G. Therefore, when k \geq \chi (G) we have
\vargamma k(G) = | V | . Besides, \vargamma k(G) \leq k\vargamma (G) by (9).

Part of Proposition 3.1 can be more succinctly stated as \vargamma \chi (G)(G) = | V | . The pa-
rameter \vargamma k(G) induces a sequence of parameters for a graph, given by \vargamma 1(G), \vargamma 2(G), . . . ,
\vargamma n(G) = | V | . Proposition 3.1 shows that this sequence is bounded from above by | V | .
The next proposition shows that this sequence is nondecreasing in k.
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1350 LENNART SINJORGO AND RENATA SOTIROV

Proposition 3.2. For any graph G, \vargamma k(G) \leq \vargamma k+1(G), with equality if and only
if \vargamma k(G) = | V | .

Proof. By Proposition 3.1, it is enough to consider k < n. Consider graph G of
order n and let Y be optimal for \vargamma k-SDP2. We have Tr(Y ) = k and 0 \preceq Y \preceq I.
Define matrix Z as follows: Z := (1  - 1

n - k )Y + 1
n - k I. It follows that matrix Z is

feasible for \vargamma k+1-SDP2 and thus

\vargamma k+1(G) \geq \langle J, Z\rangle = \vargamma k(G) +
n - \vargamma k(G)

n - k
\geq \vargamma k(G).

Proposition 3.2 allows us to further restrict \vargamma k-SDP .

Proposition 3.3. Let (X\ast , Y \ast , \mu \ast ) be an optimal solution to \vargamma k-SDP for an ar-
bitrary graph G. Then \mu \ast \geq 0.

Proof. We prove the statement by contradiction. Assume that the triple (X\ast , Y \ast ,
\mu \ast ) is optimal for \vargamma k-SDP and \mu \ast < 0. Note that the triple (X\ast , Y \ast , \mu \ast ) is then also
feasible for \vargamma k+1-SDP. Since \mu \ast < 0, this would imply that \vargamma k(G) > \vargamma k+1(G), which
contradicts Proposition 3.2. Thus \mu \ast \geq 0.

Next, we investigate the increments of the sequence (\vargamma k(G))k. For that purpose,
we define for any graph G and k \geq 2 the increment of (\vargamma k(G))k,

(10) \Delta k(G) := \vargamma k(G) - \vargamma k - 1(G),

and set \Delta 1(G) = \vargamma 1(G).

Theorem 3.4. For any graph G and k \geq 1, \Delta k(G) \geq \Delta k+1(G).

Proof. Let k \geq 1 and matrix Ak \in \scrA (G), where \scrA (G) is defined in (7), satisfy

(11)

k\sum 
i=1

\lambda i(Ak) = \vargamma k(G).

Stated differently, matrix Ak is an optimal solution to (6) for computing \vargamma k(G). Since
(6) is a minimization problem,

(12) \vargamma k(G) \leq 
k\sum 

i=1

\lambda i(Ak\prime ), k\prime \not = k.

By substituting (11) and (12) in the definition of \Delta k(G) for k \geq 2 (see (10)), we
obtain

(13) \Delta k(G) \leq 
k\sum 

i=1

\lambda i(Ak - 1) - 
k - 1\sum 
i=1

\lambda i(Ak - 1) = \lambda k(Ak - 1).

Similarly,

(14) \Delta k(G) \geq 
k\sum 

i=1

\lambda i(Ak) - 
k - 1\sum 
i=1

\lambda i(Ak) = \lambda k(Ak).

Combining (13) and (14) yields \Delta k(G) \geq \lambda k(Ak) \geq \lambda k+1(Ak) \geq \Delta k+1(G), k \geq 2.
The inequality \Delta 1(G) \geq \Delta 2(G) follows from (9).
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Let us summarize the implications of Proposition 3.2 and Theorem 3.4. Proposi-
tion 3.2 proves that

(15) \Delta k(G) = 0 \Leftarrow \Rightarrow \vargamma k - 1(G) = | V | .

For complete graphs we have \Delta k(Kn) = 1; see Theorem 5.1. There exist, however,
graphs for which \Delta k(G) < 1. We investigate the limiting behavior of \Delta k(G) in
subsection 3.1.

When we consider the sequence induced by \vargamma k(G) as a function of k, we know that
this sequence is increasing toward | V (G)| . Theorem 3.4 shows that the increments in
this sequence decrease in k. Loosely speaking, one might say the second derivative of
f(k) = \vargamma k(G) is negative.

3.1. Limiting behavior of \Delta \bfitk (\bfitG ). In this section we show that, for any real
number \varepsilon > 0, there exists a graph G and a number k \geq 1 such that 0 < \Delta k(G) < \varepsilon .
For this purpose, define graph \scrG n = (V (\scrG n), E(\scrG n)) as follows:

(16) V (\scrG n) := [n] and E(\scrG n) := \{ (i, j) | i < j \leq n - 1\} \cup \{ (n - 1, n)\} .

Graph \scrG n is thus a complete graph on n - 1 vertices plus one additional vertex. This
additional vertex is connected to the complete graph Kn - 1 by a single edge.

Theorem 3.5. For n \geq 5, we have \vargamma n - 2(\scrG n) = n - 2 + 2
n - 3

\sqrt{} 
(n - 2)(n - 4).

Proof. We prove the theorem by finding a lower and upper bound on \vargamma n - 2(\scrG n),

both of which equal the expression stated in Theorem 3.5. Let p =
\sqrt{} 

n - 4
(n - 2)(n - 3)2 .

Define matrix Y \in \BbbS n as follows:

Y =

\left[   
n - 4
n - 3In - 2 0n - 2 p1n - 2

0\top 
n - 2 1 0

p1\top 
n - 2 0 1

n - 3

\right]   .

Matrix Y is feasible for \vargamma n - 2-SDP2 if 0 \preceq Y \preceq I. Therefore we derive

I  - Y =

\left[   
1

n - 3In - 2 0n - 2  - p1n - 2

0\top 
n - 2 0 0

 - p1\top 
n - 2 0 n - 4

n - 3

\right]   ,

and take the Schur complement of the block 1
n - 3In - 2 of I  - Y :\Biggl[ 

0 0

0 n - 4
n - 3

\Biggr] 
 - 

\Biggl[ 
0\top 
n - 2

p1\top 
n - 2

\Biggr] 
(n - 3)In - 2

\bigl[ 
0n - 2 p1n - 2

\bigr] 
=

\biggl[ 
0 0
0 0

\biggr] 
\succeq 0.

Thus Y \preceq I. Similarly, by taking the Schur complement of the upper left (n - 1)\times (n - 
1) block matrix of Y , we find that Y \succeq 0. We omit the details of this computation.
This implies that Y is feasible for \vargamma n - 2-SDP2 and

(17) \vargamma n - 2(\scrG n) \geq \langle J, Y \rangle = n - 2 +
2

n - 3

\sqrt{} 
(n - 2)(n - 4).

Finding the (equal) upper bound on \vargamma n - 2(\scrG n) is a bit more involved. Let \alpha =
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n - 5
n - 3

\sqrt{} 
n - 2
n - 4 and set

A =

\left[  \alpha Jn - 2 + (1 - \alpha )In - 2 0n - 2 1n - 2

0\top 
n - 2 1 0

1\top 
n - 2 0 1

\right]  .

Note that A \in \scrA (\scrG n); see (7). We show that for

\beta 1,2 =
 - \alpha (n - 3)\pm 

\sqrt{} 
\alpha 2(n - 3)2  - 4(2 - n)

2
,(18)

the vectors vi = [1\top 
n - 2, 0, \beta i]

\top , i \in \{ 1, 2\} , are two eigenvectors of matrix A. Consider

(19) Avi =

\left[   
\bigl( 
\alpha (n - 3) + 1 + \beta i

\bigr) 
1n - 2

0\bigl( 
n - 2
\beta i

+ 1
\bigr) 
\beta i

\right]   .

By (18) we have that \beta i, i \in \{ 1, 2\} , are the roots of the equation \beta 2+\alpha (n - 3)\beta +(2 - 
n) = 0, and so \beta i + \alpha (n  - 3) = (n  - 2)/\beta i. Then, the right-hand side of (19) equals
vi scaled by the corresponding eigenvalue, which is given by the following equation:

(20) \alpha (n - 3) + 1 + \beta i =
n - 2

\beta i
+ 1.

Also u = [0\top 
n - 2, 1, 0]

\top is an eigenvector of A with corresponding eigenvalue one (and
multiplicity one). Since A is a real symmetric matrix, its eigenvectors are orthogonal.
The remaining eigenvectors are thus wi = [c\top i , 0, 0]

\top where ci \in \BbbR n - 2 is a vector
whose entries sum to 0. The eigenvectors wi correspond to eigenvalues of 1 - \alpha . We
have described all eigenvectors of A. By substituting (18) in (20) one can verify that
the four unique eigenvalues of A are ordered as follows:

\sqrt{} 
(n - 2)(n - 4) + 1 > 1 > 1 - \alpha > 1 - 

\sqrt{} 
n - 2

n - 4
,

with corresponding multiplicities 1, 1, n  - 3, 1, respectively. The sum of the largest
n - 2 eigenvalues of A serves as upper bound on \vargamma n - 2(\scrG n); see (6). That is,

\vargamma n - 2(\scrG n) \leq 
n - 2\sum 
i=1

\lambda i(A) = n - 2 +
2

n - 3

\sqrt{} 
(n - 2)(n - 4).

This upper bound on \vargamma n - 2(\scrG n) coincides with the lower bound (17), which proves the
theorem.

Using Theorem 3.5 we can show that \Delta n - 1(\scrG n) (n \geq 5) converges to zero.
Namely,

\Delta n - 1(\scrG n) = \vargamma n - 1(\scrG n) - \vargamma n - 2(\scrG n) \leq 2

\Biggl( 
1 - 

\sqrt{} 
(n - 2)(n - 4)

(n - 3)2

\Biggr) 
,

from where it follows that \Delta n - 1(\scrG n) (n \geq 5) converges to zero. To conclude, strictly
positive values of \Delta k(G) can be arbitrarily small. It is unclear whether lower bounds
exist on \Delta k(G) for fixed k. One example of such a bound is simple for k = 1, i.e.,
\Delta 1(G) = \vargamma 1(G) \geq \alpha (G) \geq 1.
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4. Graph products and the generalized \bfitvargamma -number. In this section we pres-
ent bounds for \vargamma k(G) when G is the strong product of two graphs (Theorem 4.2) and
the disjunction product of two graphs (Theorem 4.3).

In [59], Lov\'asz proved the following result:

(21) \vargamma (G1 \boxtimes G2) = \vargamma (G1)\vargamma (G2),

where G1 \boxtimes G2 is the strong product of G1 and G2; see Definition 1.1. Since G1 \boxtimes Kk

is isomorphic to G1 \circ Kk and \vargamma (Kk) = 1 we have that

\vargamma (G \circ Kk) = \vargamma (G\boxtimes Kk) = \vargamma (G) \leq \vargamma k(G);

see also Proposition 3.2. Below, we generalize the result for \vargamma (G1\boxtimes G2) to \vargamma k(G1\boxtimes G2).
For that purpose we need the following well-known result.

Lemma 4.1. For square matrices A and B with eigenvalues \lambda i and \mu j, respec-
tively, the eigenvalues of A\otimes B equal \lambda i\mu j, and so Tr(A\otimes B) = Tr(A) Tr(B).

For a reference for Lemma 4.1 one can see Horn and Johnson [47], for example.

Theorem 4.2. For any graphs G1 and G2

1

k
\vargamma k(G1)\vargamma k(G2) \leq \vargamma k(G1 \boxtimes G2) \leq k\vargamma (G1)\vargamma (G2).

Proof. Let X\ast 
1 and X\ast 

2 be optimal to \vargamma k-SDP2 for G1, and G2, respectively. The
adjacency matrix of G1 \boxtimes G2 is given by

AG1\boxtimes G2
= (AG1

+ I)\otimes (AG2
+ I) - I;

see, e.g., [75]. Here \otimes denotes the Kronecker product. Consider Y = 1
kX

\ast 
1 \otimes X\ast 

2 .
From the adjacency matrix of G1 \boxtimes G2 it can be verified that Yij = 0 for all (i, j) \in 
E(G1 \boxtimes G2). By Lemma 4.1, the eigenvalues of Y lie between 0 and 1 and thus
0 \preceq Y \preceq I. More specifically, the eigenvalues of Y lie between 0 and 1

k , since the
sum of the (nonnegative) eigenvalues of X\ast 

i is Tr(X\ast 
i ) = k for i = 1, 2. Besides

Tr(Y ) = (1/k) Tr(X\ast 
1 ) Tr(X

\ast 
2 ) = k. It follows that matrix Y is feasible to \vargamma k-SDP2

for G1 \boxtimes G2 and attains the following objective value:

\langle J, Y \rangle = 1

k
\langle J,X\ast 

1 \otimes X\ast 
2 \rangle =

1

k
\vargamma k(G1)\vargamma k(G2).

This proves the lower bound. The upper bound follows from (9) and (21).

The bounds from Theorem 4.2 are attained, for example, when both G1 and G2

are complete graphs (see Theorem 5.1). In general, the bounds for \vargamma k(G1 \boxtimes G2) from
Theorem 4.2 are looser for larger values of k. We now focus on the disjunction graph
product (see Definition 1.1). For graphs G1 and G2 of order n1 and n2, respectively,
we have

AG1\vee G2
= Jn1

\otimes AG2
+AG1

\otimes (AG2
+ In2

).

Equivalently, by noting that AG2
+ In2

= Jn2
 - AG2

, we have AG1\vee G2
= min(Jn1

\otimes 
AG2

+ AG1
\otimes Jn2

, 1). Our next result provides an upper bound on the generalized
\vargamma -number for the disjunction product of two graphs.
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Theorem 4.3. For graphs G1 and G2 of orders n1 and n2, respectively, we have

\vargamma k(G1 \vee G2) \leq min
\bigl\{ 
n1\vargamma k(G2), n2\vargamma k(G1)

\bigr\} 
.

Proof. Consider the SDP problem \vargamma k-SDP2 for G1 \vee G2. This maximization
problem is least constrained when G1 = Kn1

. Thus

(22) \vargamma k(G1 \vee G2) \leq \vargamma k(Kn1
\vee G2).

We will show that \vargamma k(Kn1
\vee G2) = n1\vargamma k(G2). Let X\ast be an optimal solution to

\vargamma k-SDP2 for G2. Matrix Jn1
\otimes 1

n1
X\ast is a feasible solution to \vargamma k-SDP2 for Kn1

\vee G2.
The objective value of this solution equals

(23)

\biggl\langle 
J, Jn1

\otimes 1

n1
X\ast 
\biggr\rangle 

= n1\langle J,X\ast \rangle = n1\vargamma k(G2) =\Rightarrow \vargamma k(Kn1
\vee G2) \geq n1\vargamma k(G2).

Let (Y \ast , X\ast , \mu \ast ) be an optimal solution to \vargamma k-SDP for G2. Then Jn1
\otimes Y \ast , Jn1

\otimes X\ast ,
and n1\mu 

\ast form a feasible solution to \vargamma k-SDP for Kn1
\vee G2. Namely, by Lemma 4.1

we have that Jn1
\otimes Y \ast \succeq 0. Also

n1\mu 
\ast I + Jn1

\otimes X\ast  - J + Jn1
\otimes Y \ast 

= \mu \ast (n1In1
 - Jn1

)\otimes In2
+ Jn1

\otimes (\mu \ast In2
+X\ast  - Jn2

+ Y \ast ) \succeq 0,

where we use that \mu \ast \geq 0; see Proposition 3.3. Last, this feasible solution to the
minimization problem obtains an objective value of

\langle I, Jn1
\otimes Y \ast \rangle + n1\mu 

\ast k = n1

\Bigl( 
\langle I, Y \ast \rangle + \mu \ast k

\Bigr) 
= n1\vargamma k(G2)(24)

=\Rightarrow \vargamma k(Kn1 \vee G2) \leq n1\vargamma k(G2).

Now (23) and (24) imply that \vargamma k(Kn1
\vee G2) = n1\vargamma k(G2). This result combined with

(22) proves that

(25) \vargamma k(G1 \vee G2) \leq n1\vargamma k(G2).

From the definition of the disjunction graph product (see Definition 1.1), it follows
that the disjunction graph product is commutative and thus

(26) \vargamma k(G1 \vee G2) = \vargamma k(G2 \vee G1) \leq n2\vargamma k(G1).

Combining (25) and (26) proves the theorem.

The proof shows that when either G1 or G2 is the complement of a complete
graph, graph G1 \vee G2 attains the bound of Theorem 4.3.

5. Value of \bfitvargamma \bfitk for some graphs. In [59], Lov\'asz derived an explicit expression
for the \vargamma -number of cycle graphs and the Kneser graphs. In this section, we derive
the generalized \vargamma -number for those graphs, as well as for circulant, complete, and
complete multipartite graphs, and the Johnson graphs. In subsection 5.1 we present
bounds for \vargamma k(G) when G is a regular graph and show that the bound is tight for
edge-transitive graphs. Subsection 5.2 provides an analysis of \vargamma (Kk\square G), which is an
upper bound on the number of vertices in the maximum k-colorable subgraph of G.

We denote cycle graphs of order n by Cn, complete graphs of order n by Kn,
and complete multipartite graphs by Km1,...,mp

. Note that Km1,...,mp
is a graph on

n =
\sum p

i=1 mi vertices.
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Theorem 5.1. For k \leq n, \vargamma k(Kn) = k.

Proof. Consider the SDP problem \vargamma k-SDP2. For the complete graph, the only
matrices feasible for \vargamma k-SDP2 are diagonal matrices with trace equal to k. Set for
example Y = k

nI. Then Y is feasible for \vargamma k-SDP2 and has objective value k.

Stahl [80] determined \chi k(Cn). For odd cycles, he showed that \chi k(C2n+1) =
2k + 1 + \lfloor k - 1

n \rfloor , and for even cycles that \chi k(C2n) = 2k. The latter result follows
trivially from (66).

Since Cn is bipartite when n is even, it follows from Proposition 3.1 that \vargamma k(Cn) =
n for all k \geq 2. To compute \vargamma 2(Cn) for odd cycle graphs, we require the following
lemma.

Lemma 5.2. For n odd, n \geq 5, we have 0.447 \approx 
\surd 
5
5 \leq \vargamma (Cn)

n < \vargamma (Cn+2)
n+2 < 1

2 .

Proof. By Lov\'asz [59], we have

(27) \vargamma (Cn) =
n cos(\pi /n)

1 + cos(\pi /n)
, n odd.

Define f(n) := \vargamma (Cn)/n. Then f \prime (n) =
\pi sin(\pi n )

(1 + cos(\pi n ))
2n2

. For n \geq 5, f \prime (n) > 0.

Moreover, for n \geq 5, we have cos(\pi /n) < 1. This results in f(n) < 1/2 and since
f(5) =

\surd 
5/5, this proves the lemma.

Let us introduce a circulant matrix and an edge-transitive graph. We need both
terms in the proof of the following theorem. Each row of a circulant matrix equals the
preceding row in the matrix rotated one element to the right. Circulant matrices thus
have a constant row sum. This constant row sum is also one of the eigenvalues with
1 as its corresponding eigenvector. A graph is edge-transitive if its automorphism
group acts transitively on edges, i.e., if for every two edges there is an automorphism
that maps one to the other.

Theorem 5.3. Let n be odd and n > 1. Then \vargamma 2(Cn) = 2\vargamma (Cn) and \vargamma k(Cn) = n
for all k \geq 3.

Proof. For n = 3, C3 = K3 and the result follows from Theorem 5.1. Thus let
n \geq 5. Let \Gamma \subset \BbbS n be the set of optimal feasible solutions to \vargamma 1-SDP2 for Cn and let
Y \in \Gamma . Note \Gamma is convex. Let p(Y ) denote an optimal solution to \vargamma 1-SDP2 obtained
by permuting the vertices of Cn by automorphism p. Note that matrix p(Y ) is an
element of \Gamma . Denote the average over all automorphisms p by \=Y . Then \=Y \in \Gamma 
by convexity of \Gamma and since Cn is edge-transitive, \=Y is a circulant matrix, like the
adjacency matrix of Cn.

As \=Y \in \Gamma , we find

(28) \langle J, \=Y \rangle = Tr(11\top \=Y ) = Tr(1\top \=Y 1) = 1\top \=Y 1 = \vargamma 1(Cn).

As \=Y is also circulant, it has eigenvector 1. By (28), its corresponding eigenvalue
equals \=\lambda = \vargamma (Cn)/n.

We will prove that the largest eigenvalue of \=Y equals \=\lambda . Assume that the largest
eigenvalue of \=Y does not equal \=\lambda . Then \=Y has eigenvalue \Lambda for some \Lambda > \=\lambda . Since \=Y
is a symmetric circulant matrix of odd dimension, \=Y has only one eigenvalue with odd
multiplicity (Tee [82]). Thus \Lambda or \=\lambda has multiplicity greater than one. Note that since
\=Y is feasible for \vargamma 1-SDP2, it has nonnegative eigenvalues that sum to one. However,
both terms \Lambda +2\=\lambda and 2\Lambda + \=\lambda are strictly greater than one by Lemma 5.2, and hence,
the assumption that \=\lambda is not the largest eigenvalue of \=Y leads to a contradiction.
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The largest eigenvalue of \=Y is thus smaller than 1/2. Then 2\=Y \preceq I. Clearly, 2 \=Y
satisfies the other feasibility conditions of \vargamma 2-SDP2. Thus 2 \=Y is feasible for \vargamma 2-SDP2
and \vargamma 2(Cn) \geq 2\vargamma (Cn). Combined with (9), the theorem follows.

Since \chi (Cn) = 3 for odd cycles, \vargamma 3(Cn) = n follows trivially from Proposition 3.1.

Graphs for which the adjacency matrix is a circulant matrix are called circulant
graphs, like the cycle graphs and some Paley graphs. There has been research done on
computing \vargamma (G) for circulant graphs [6, 10, 11, 22]. In particular, Crespi [22] computes
the Lov\'asz theta function for the circulant graphs of degree four having even displace-
ment, while Brimkov et al. [11] consider \vargamma (Cn,j), where V (Cn,j) = \{ 0, 1, . . . , n  - 1\} 
and E(Cn,j) = E(Cn) \cup \{ (i, i\prime ) | i - i\prime = j mod n\} .

Let Hn be a connected circulant graph on n vertices. Then Hn contains a Hamil-
tonian cycle (Boesch and Tindell [8]). Equivalently, the cycle graph Cn is a minor of
Hn. Maximization problem \vargamma k-SDP2 is then more restricted for Hn than it is for Cn.
Thus

\vargamma 1(Hn) \leq \vargamma 1(Cn) \leq 
n

2
.

Consider \vargamma 1-SDP2 for Hn. Graph Hn has a circulant adjacency matrix, meaning we
can restrict optimization of \vargamma 1-SDP2 over the Lee scheme, the association scheme
of symmetric circulant matrices, without loss of generality [33]. As (28) shows, \vargamma 1-
SDP2 is now equivalent to maximizing the largest (scaled) eigenvalue over feasible
matrices. Let M be a matrix optimal for \vargamma 1-SDP2 for graph Hn. Then \lambda 1(M) =
\vargamma (Hn)/n \leq 1/2. Then 2M is also optimal for \vargamma 2-SDP2 for graph Hn. More generally,
if k \leq n/\vargamma (Hn), then \lambda 1(kM) \leq 1 and kM is then feasible for \vargamma k-SDP2, attaining the
objective value min\{ k\vargamma (Hn), n\} . In case k > n/\vargamma (Hn), we have \vargamma k(Hn) = n. Thus,
in general

(29) \vargamma k(Hn) = min\{ k\vargamma (Hn), n\} .

For any k, there exists a circulant graph P on n vertices such that \vargamma k(P ) < n.
Specifically, if P is the Paley graph of order n, then \vargamma (P ) =

\surd 
n (cf. [39]). For fixed

k and n large enough, k
\surd 
n < n.

Theorem 5.4. For m1 \geq m2 \geq \cdot \cdot \cdot \geq mp and k \leq p, \vargamma k(Km1,...,mp
) =

\sum k
i=1 mi.

Proof. Let n =
\sum p

i=1 mi. For notational convenience, we write K = Km1,...,mp ,
with corresponding adjacency matrix AK . Since K is a graph on n vertices, AK can
be written as AK = Jn  - Diag(Jm1

, . . . , Jmp
). Note that X := Diag(Jm1

, . . . , Jmp
) \in 

\scrA (K); see (7). ThereforeX is feasible for (6). The eigenvalues ofX are the eigenvalues
of the block matrices J . Then, \lambda i(X) = mi for i \in [p]. Thus, we have \vargamma k(K) \leq \sum k

i=1 \lambda i(X) =
\sum k

i=1 mi. Note that \alpha k(K) =
\sum k

i=1 mi, and the proof follows from (8)
and the above inequality.

Recall again the definition of \Delta k(G), given in (10). In subsection 3.1, we show
that strictly positive values \Delta k(G) can be arbitrarily small. We show now, by use of
Theorem 5.4, that the ratio between strictly positive successive values of \Delta k(G) can
be arbitrarily small. More formally, for any \varepsilon > 0 and any k \geq 1, there exists a graph
G such that

(30) 0 <
\Delta k+1(G)

\Delta k(G)
< \varepsilon .
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We again ignore the case \Delta k(G) = 0; see (15). In view of Theorem 5.4, we have

\Delta 2(Kn,1)

\Delta 1(Kn,1)
=

1

n
< \varepsilon 

for some integer n sufficiently large. Thus for sufficiently large n, graph Kn,1 satisfies
(30) for k = 1. Graph Kn,n,1 satisfies (30) for k = 2. Graph Kn,n,n,1 satisfies (30) for
k = 3, and so on.

5.1. Regular graphs. In this section we present an upper bound on the \vargamma k-
function for regular graphs; see Theorem 5.6. This result can be seen as a generaliza-
tion of the Lov\'asz upper bound on the \vargamma -function for regular graphs. We exploit the
result of Theorem 5.6 to derive an explicit expression for the generalized theta func-
tion for the Kneser graph; see Theorem 5.7. Moreover, we prove that \vargamma k(G) = k\vargamma (G)
when G is the Johnson graph; see Theorem 5.8.

Let us first state the following well-known result.

Theorem 5.5 (Lov\'asz [59]). For a regular graph G of order n, having adjacency
matrix AG and \lambda 1(AG) \geq \lambda 2(AG) \geq \cdot \cdot \cdot \geq \lambda n(AG), we have

\vargamma (G) \leq n\lambda n(AG)

\lambda n(AG) - \lambda 1(AG)
.

If G is an edge-transitive graph, this inequality holds with equality.

For a finite set of real numbers P , we denote by Sk(P ) the sum of the largest k
elements in P . Now, we state our result.

Theorem 5.6. For any regular graph G of order n, we have
(31)

\vargamma k(G) \leq min
x

Sk(\sigma (J + xAG)) \leq n+
n

\lambda n(AG) - \lambda 1(AG)

\bigl( 
\lambda 1(AG) +

k - 2\sum 
i=0

\lambda n - i(AG)
\bigr) 
,

where we set the summation equal to 0 when k = 1 and \sigma (\cdot ) denotes the spectrum of
a matrix. The first inequality holds with equality if G is also edge-transitive.

Proof. The proof is an extension of Lov\'asz's [59] proof of Theorem 5.5. Let G
be a regular graph of order n. For notational convenience, we write AG = A and
\lambda i(AG) = \lambda i. Since G is a regular graph, vector 1 is an eigenvector of A. Let v \not = 1
be an eigenvector of A. As A is symmetric, its eigenvectors are orthogonal. Thus
1\top v = 0, which implies that Jv = 0. Thus the eigenvectors of A are also eigenvectors
of J + xA. In particular, we have

\sigma (J + xA) = \{ n+ x\lambda 1, x\lambda 2, . . . , x\lambda n\} (32)

for any x \in \BbbR . Note that J + xA \in \scrA (G); see (7). Therefore, it follows from (6) that

\vargamma k(G) \leq min
x

Sk(\sigma (J + xA)).

Minimizing Sk(\sigma (J + xA)) can be done analytically when k = 1. Lov\'asz [59] showed
that setting x = n

\lambda n - \lambda 1
minimizes Sk(\cdot ) when k = 1. Setting x to this negative value

provides the second upper bound in the theorem. Note that x = n
\lambda n - \lambda 1

implies that
n+ x\lambda 1 = x\lambda n.
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We now prove that \vargamma k(G) = minx Sk(\sigma (J + xA)) when G is edge-transitive.
Assume that G is edge-transitive. It is known that the sum of the k largest eigenvalues
of a matrix is a convex function (Overton and Womersley [72]). Thus the average over
all optimal solutions to (6) of all automorphisms of G is also optimal. Since G is edge-
transitive, this average is of the form J + xA, which proves the equality claim.

We remark that Theorem 5.3 can also be proven by applying Theorem 5.6.
To obtain sharper bounds for \vargamma k(G), one can minimize Sk(\sigma (J+xA)), or compute

\vargamma k(G) directly. Note that computing \vargamma k(G) by interior point methods is computation-
ally demanding for some graphs with 200 vertices; see [53]. In general, Sk(\sigma (J +xA))
is the sum of the k largest linear functions given by \sigma (J + xA). Ogryczak and Tamir
[71] consider this problem, which they show is solvable in linear time, but unfortu-
nately, obtaining a general solution is not possible. When we consider specific graphs,
and \sigma (J +xA) is thus explicit, minimizing Sk(\cdot ) can be done analytically, as we show
for the Kneser graph.

Lov\'asz [59] proved that \vargamma (K(n,m)) =
\bigl( 
n - 1
m - 1

\bigr) 
, where K(n,m) is the Kneser graph;

see Definition 1.5. The Kneser graph K(n,m) is regular of valency
\bigl( 
n - m
m

\bigr) 
. We provide

an explicit expression for \vargamma k(K(n,m)).

Theorem 5.7. For k \leq \lfloor n
m\rfloor and 1 \leq k \leq n - 2m+ 1, we have

\vargamma k(K(n,m)) = k\vargamma (K(n,m)) = k

\biggl( 
n - 1

m - 1

\biggr) 
.

When k > n
m or k > n - 2m+ 1

\vargamma k(K(n,m)) =

\biggl( 
n

m

\biggr) 
.

Proof. Note that n does not refer to the number of vertices but to a parameter
of the Kneser graph K(n,m). We will use v to denote the number of vertices of
K(n,m), i.e., v =

\bigl( 
n
m

\bigr) 
. Let A be the adjacency matrix of K(n,m), having eigenvalues

\lambda 1 \geq \cdot \cdot \cdot \geq \lambda v. We compute the minimum of Sk(\sigma (J + xA)); see Theorem 5.6.
Recall that \sigma (\cdot ) denotes the spectrum of a matrix, and Sk(\sigma (\cdot )) the sum of k largest
eigenvalues in a matrix. Define fk(x) := Sk(\sigma (J + xA)). For x\ast = v

\lambda v - \lambda 1
< 0 and

k \leq v, we have

(33) fk(x
\ast ) = v + x\ast 

\Biggl( 
\lambda 1 +

k - 2\sum 
i=0

\lambda v - i

\Biggr) 
.

The greatest and smallest eigenvalues of A equal \lambda 1 =
\bigl( 
n - m
m

\bigr) 
and \lambda v =  - 

\bigl( 
n - m - 1
m - 1

\bigr) 
,

with corresponding multiplicities 1 and n  - 1; see [59]. Thus, in the case that k \leq 
\lfloor n/m\rfloor \leq n, function fk is determined only by \lambda 1 and \lambda v. More precisely,

(34) fk(x
\ast ) = v + x\ast 

\Biggl[ \biggl( 
n - m

m

\biggr) 
 - (k  - 1)

\biggl( 
n - m - 1

m - 1

\biggr) \Biggr] 
= v + x\ast (\lambda 1 + (k  - 1)\lambda v).

Since \vargamma (K(n,m)) = S1(\sigma (J + x\ast A)) = x\ast \lambda v = v + x\ast \lambda 1 (see [59]), we can rewrite
(34) as

fk(x
\ast ) = kx\ast \lambda v = k\vargamma (K(n,m)).(35)
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We show now that x\ast minimizes fk when k < n
m , 1 \leq k \leq n - 2m+ 1. For any \varepsilon > 0

we have

fk(x
\ast + \varepsilon ) = fk(x

\ast ) + \varepsilon 

\Biggl[ \biggl( 
n - m

m

\biggr) 
 - (k  - 1)

\biggl( 
n - m - 1

m - 1

\biggr) \Biggr] 
,

and thus k < n
m =\Rightarrow 

\bigl( 
n - m
m

\bigr) 
 - (k - 1)

\bigl( 
n - m - 1
m - 1

\bigr) 
> 0 =\Rightarrow fk(x

\ast +\varepsilon ) > fk(x
\ast ). Similarly,

for any sufficiently small \varepsilon > 0, we have

(36) fk(x
\ast  - \varepsilon ) = k(x\ast  - \varepsilon )\lambda v = kx\ast \lambda v  - k\varepsilon \lambda v > x\ast \lambda v + (k  - 1)x\ast \lambda v = fk(x

\ast ).

Here we used the fact that x\ast \lambda v = v + x\ast \lambda 1. From the previous discussion it follows
that for any sufficiently small positive \varepsilon we have

fk(x
\ast ) < fk(x

\ast \pm \varepsilon ).

By convexity of fk, x
\ast is the global minimizer of fk. From (35), the theorem follows

for the case k < n
m .

Now we consider the case k = n
m , 1 \leq k \leq n - 2m+ 1. From (34) it follows that

fk(x
\ast ) = v. In fact, for any \beta satisfying x\ast \leq \beta \leq 0, fk(\beta ) = v. For any \varepsilon > 0,

(37) fk(\varepsilon ) = v + \varepsilon 
\Bigl( k\sum 

i=1

\lambda i

\Bigr) 
.

As the \lambda i sum to zero, the sum of the k largest \lambda i must be strictly positive. Thus
fk(\varepsilon ) > v. The derivation from (36) is also valid for the case k = n

m . Invoking again
the convexity of fk proves that v is the minimum value of fk. Thus

\vargamma n/m(K(n,m)) =
n

m

\biggl( 
n - 1

m - 1

\biggr) 
=

\biggl( 
n

m

\biggr) 
= v.

It follows from Proposition 3.2 that \vargamma k(K(n,m)) = v for k > n/m. Last, Kneser's
conjecture (Kneser [50]), which was proved by Lov\'asz [58], states that \chi (K(n,m)) =
n  - 2m + 2. The inequality k > n  - 2m + 1 is thus equivalent to k \geq \chi (K(n,m)).
Therefore, we can apply Proposition 3.1 to prove the last claim.

Since the Johnson graphs (Definition 1.4) are edge-transitive (see, e.g., Chen
and Lih [19]), we can apply Theorem 5.6 to compute the corresponding generalized
\vargamma -number. The next theorem generalizes Theorem 5.7.

Theorem 5.8. For 0 \leq f < m, k \leq n, and the Johnson graph J(n,m, f), it
follows that

\vargamma k(J(n,m, f)) = min

\Biggl\{ 
k\vargamma (J(n,m, f)),

\biggl( 
n

m

\biggr) \Biggr\} 
.

Proof. Let v denote the order of J(n,m, f), i.e., v =
\bigl( 
n
m

\bigr) 
. The multiplicities \mu i

of the (not necessarily distinct) m + 1 eigenvalues \lambda i of the adjacency matrix A of
J(n,m, f) are

\mu i =

\biggl( 
n

i

\biggr) 
 - 
\biggl( 

n

i - 1

\biggr) 
, 0 \leq i \leq m;
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see, e.g., Brouwer, Cohen, and Neumaier [12]. We set \mu 0 = 1, corresponding to the
multiplicity of \lambda 1. The multiplicities are unordered, that is, the multiplicity of \lambda i does
not necessarily equal \mu i. When n \leq 4, the theorem can be verified numerically. We
will now assume that n > 4. Then \mu i \geq n  - 1, and in particular, the multiplicity of
\lambda v is at least n - 1. From Theorem 5.6 it follows that

\vargamma k(J(n,m, f)) = minSk(\sigma (J + xA)).

Define f(x) := Sk(\sigma (J+xA)). Because the multiplicity of \lambda v is at least n - 1, for k \leq n,
we have that x\ast = n/(\lambda v  - \lambda 1) minimizes f(x), and f(x\ast ) = v + x\ast (\lambda 1 + (k  - 1)\lambda v).
If f(x\ast ) > n, the minimum will occur at f(0) = n.

We can explicitly compute \vargamma k(J(n,m,m  - 1)). Taking the eigenvalues of this
graph from [12, Chapter 9], we find

\vargamma k(J(n,m,m - 1)) =
k

n+ 1

\biggl( 
n+ 1

m

\biggr) 
, k \leq n - m+ 1.

For k\ast = n - m+1, we see that \vargamma k\ast (J(n,m,m - 1)) equals the number of vertices in
J(n,m,m - 1).

5.2. Relation between \bfitvargamma (\bfitK \bfitk \square \bfitG ) and \bfitvargamma \bfitk (\bfitG ). Gvozdenovi\'c and Laurent [40]
show how to exploit an upper bound on the independence number of a graph to
obtain a lower bound for the chromatic number of its complement graph. They do
not consider the generalized \vargamma -number in the bounding procedure. Kuryatnikova,
Sotirov, and Vera [53] exploit the generalized \vargamma -number to compute bounds on the
chromatic number of a graph. For some graphs, the lower bounds on \chi (G) from [53]
coincide with the bounds obtained by using the theta function as suggested by [40].
Here we explain that finding by analyzing \vargamma (Kk\square G) for symmetric graphs. We also
show that the gap between \vargamma k(G) and \vargamma (Kk\square G) can be arbitrarily large.

Chv\'atal [20] noted that

\alpha k(G) = | V (G)| \Leftarrow \Rightarrow \chi (G) \leq k.

Stated differently, \chi (G) = min\{ k | k \in \BbbN , \alpha k(G) = | V (G)| \} , or in plain words, the
k independent sets giving \alpha k(G) correspond to the color classes of G in an optimal
coloring. Analogous to \chi k(G) = \chi (G \circ Kk), it is known (cf. [53]) that

(38) \alpha k(G) = \alpha (Kk\square G),

where Kk\square G is the graph Cartesian product; see Definition 1.1. For a graph param-
eter \beta (G) that satisfies

\alpha (G) \leq \beta (G) \leq \chi (G),

Gvozdenovi\'c and Laurent [40] define \Psi \beta (G) as follows:

\Psi \beta (G) := min\{ k | k \in \BbbN , \beta (Kk\square G) = | V (G)| \} .

Then \Psi \alpha (G) = \chi (G). The operator \Psi \beta (\cdot ) can be applied to a variety of graph pa-
rameters \beta (G) and enables obtaining a hierarchy of bounds for \chi (G) from a hierarchy
of bounds for \alpha (G). For example, when \beta (G) = \vargamma (G), Gvozdenovi\'c and Laurent [40]
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show that \Psi \vargamma (G) = \lceil \vargamma (G)\rceil . It follows from (38) that parameters \vargamma k(G) and \vargamma (Kk\square G)
both provide upper bounds on \alpha k(G). Therefore, it is natural to compare \Psi \vargamma (G) with

(39) \Psi \vargamma k
(G) = min\{ k | k \in \BbbN , \vargamma k(G) = | V (G)| \} .

This comparison boils down to the comparison of \vargamma (Kk\square G) and \vargamma k(G). Numerical
results in [53] suggest the following conjecture.

Conjecture 1. For any graph G and any natural number k, \vargamma (Kk\square G) \leq \vargamma k(G).
Equality holds when \vargamma k(G) = k\vargamma (G).

We show below that the gap between \vargamma k(G) and \vargamma (Kk\square G) can be made arbitrarily
large. We first state the following lemma that is needed in the rest of this section.

Lemma 5.9 (Gvozdenovi\'c and Laurent [40]). Given A,B \in \BbbS n and Y = Ik \otimes 
A + (Jk  - Ik) \otimes B, then Y \succeq 0 if and only if A  - B \succeq 0 and A + (k  - 1)B \succeq 0.
Furthermore, \sigma (Y ) = \sigma (A+ (k  - 1)B) \cup \sigma (A - B)\{ k - 1\} .

Now, we are ready to present our result.

Proposition 5.10. For any number M \geq 0, there exists a graph G and integer
k such that

\vargamma k(G) - \vargamma (Kk\square G) \geq M.

Proof. Consider again graph \scrG n, as defined in (16) for even n and set k = n/2.
We will show that \vargamma n/2(\scrG n)  - \vargamma (Kn/2\square \scrG n) is increasing in n. Let p = 1/(2

\surd 
n - 2)

and consider first

X =

\left[   
1
2In - 2 0n - 2 p1n - 2

0\top 
n - 2

1
2 0

p1\top 
n - 2 0 1

2

\right]   .

Taking the Schur complement of the bottom right 2 \times 2 block of X shows that 0 \preceq 
X \preceq I (see the proof of Theorem 3.5 for more details). Combined with the fact that
\langle I,X\rangle = k, it follows that X is feasible for \vargamma k-SDP2. Hence,

(40) \vargamma n/2(\scrG n) \geq \langle J,X\rangle = n/2 +
\surd 
n - 2.

As for \vargamma (Kn/2\square G), let

A =

\Biggl[ 
 - kJn - 1 + (k + 1)In - 1 1n - 1

1\top 
n - 1 1

\Biggr] 
, B =

\Biggl[ 
Jn - 1 1n - 1

1\top 
n - 1  - k

\Biggr] 
,

and set Y := I\otimes A+(J - I)\otimes B. Then matrix Y \in \scrA (Kn/2\square G); see (7). Furthermore,
matrix Y is of the form described in Lemma 5.9. Then the largest eigenvalue of Y
satisfies \lambda 1(Y ) = max\{ \lambda 1(A - B), \lambda 1(A+(k - 1)B)\} . Similar to the methods used in
the proof of Theorem 3.5, it can be shown that \lambda 1(Y ) = k + 1. Thus,

(41) \vargamma (Kn/2\square \scrG n) \leq \lambda 1(Y ) = n/2 + 1.

Combining (40) and (41) for fixed M and large enough (even) n, gives \vargamma n/2(\scrG n)  - 
\vargamma (Kn/2\square \scrG n) \geq 

\surd 
n - 2 - 1 \geq M.

We prove Conjecture 1 only for a particular class of graphs. Let us first show the
following result.
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1362 LENNART SINJORGO AND RENATA SOTIROV

Theorem 5.11. Let G be graph of order n that is both edge-transitive and vertex-
transitive. Then

\vargamma (Kk\square G) = min\{ k\vargamma (G), n\} = \vargamma k(G).

Proof. For notational convenience we denote A = AG. Because G is regular,
edge-transitive, and vertex-transitive, we may assume without loss of generality that
\scrA (Kk\square G) (see (7)) contains only matrices of the form X = Ik \otimes (Jn + xA) + (Jk  - 
Ik)\otimes (Jn+yIn). In order to minimize the largest eigenvalue of X we apply Lemma 5.9
and find

\lambda 1(X) = f(x, y) = max
\Bigl\{ 
\lambda 1(xA - yIn), \lambda 1(kJn + xA+ (k  - 1)yIn)

\Bigr\} 

= max

\left\{         
f1 = x\lambda 1  - y,

f2 = x\lambda n  - y,

f3 = kn+ x\lambda 1 + (k  - 1)y,

f4 = x\lambda n + (k  - 1)y,

where \lambda 1 and \lambda n are the greatest and smallest eigenvalues of A, respectively. We
have used that \sigma (kJn + xA + (k  - 1)yIn) can be expressed similarly to (32). We
minimize \lambda 1(X) by considering different intervals of x. In case x \geq 0, we have
f(x, y) = max\{ f1, f3\} , which is minimized when x = 0 and f1 = f3. Solving f1 = f3
for y, when x = 0, yields y =  - n. Thus, when x \geq 0, we find that f(0, - n) = n is
the minimum. Furthermore,

kn

\lambda n  - \lambda 1
\leq x \leq 0 =\Rightarrow f(x, y) = max\{ f2, f3\} .

The minimum here is attained when

f2 = f3 =\Rightarrow y = x

\Biggl( 
\lambda n  - \lambda 1

k

\Biggr) 
 - n =\Rightarrow f2 = n+

1

k
((k  - 1)\lambda n + \lambda 1)x.

Depending on the sign of (k - 1)\lambda n+\lambda 1 we find either f(0, - n) = n or f( kn
\lambda n - \lambda 1

, 0) =

k n\lambda n

\lambda n - \lambda 1
= k\vargamma (G) by Theorem 5.5. For the case x \leq kn

\lambda n - \lambda 1
, note that

x \leq kn

\lambda n  - \lambda 1
=\Rightarrow f(x, y) = max\{ f2, f4\} ,

which is minimized when x = kn/(\lambda n  - \lambda 1) and f2 = f4. Solving f2 = f4 for y, when
x = kn/(\lambda n  - \lambda 1), yields y = 0 and thus f( kn

\lambda n - \lambda 1
, 0) = k\vargamma (G). The minimum value

of \lambda 1(X), equivalently, the value \vargamma (Kk\square G), thus equals min\{ k\vargamma (G), n\} .
Last, by edge-transitivity and vertex-transitivity of G, matrices optimal to \vargamma k-

SDP2 forG have a constant row sum. Thus, as (28) shows, \vargamma k-SDP2 is then equivalent
to maximizing the largest (scaled) eigenvalue over feasible matrices. Hence, \vargamma k(G) =
min\{ k\vargamma (G), n\} , as can be shown by derivations similar to those used for (29).

A graph that is both edge-transitive and vertex-transitive is also known as a
symmetric graph. Many Johnson graphs (Definition 1.4) satisfy these properties.

Kuryatnikova, Sotirov, and Vera [53] compute \vargamma k(G) for several highly symmetric
graphs (Table 13 in the online supplement to [53]). They remark that for those graphs,
\Psi \vargamma k

(G) = \lceil \vargamma (G)\rceil . We explain this result for all the graphs present in Table 13 except
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for the graph H(12, 2, \{ i | 1 \leq i \leq 7\} ) (see subsection 8.1 for the notation). All the
other graphs evaluated by Kuryatnikova, Sotirov, and Vera in Table 13 satisfy the
assumptions of Theorem 5.11, hence, \vargamma k(G) = \vargamma (Kk\square G) for those graphs. Therefore,

(42) \Psi \vargamma k
(G) = \Psi \vargamma (G) = \lceil \vargamma (G)\rceil .

Note that the Johnson graph J(n,m,m  - 1) is regular, vertex-transitive, and
edge-transitive. Therefore, (42) holds and \lceil \vargamma (J(n,m,m - 1))\rceil = n - m+ 1.

6. Strongly regular graphs. In the previous section we showed that certain
classes of graphs allow an analytical computation of \vargamma k(G). This section expands on
the considered classes with strongly regular graphs; see Definition 1.6. We also derive
analogous of Theorem 5.11 for strongly regular graphs and the generalized \vargamma \prime -number;
see Theorem 6.4.

Let G be a strongly regular graph with parameters (n, d, \lambda , \mu ) and AG its adja-
cency matrix. Since G is regular with valency d, we have that d is an eigenvalue of AG

with eigenvector 1. The matrix AG has exactly two distinct eigenvalues associated
with eigenvectors orthogonal to 1. These two eigenvalues are known as restricted ei-
genvalues and are usually denoted by r and s, where r \geq 0 and s \leq  - 1. We consider
here connected, noncomplete, strongly regular graphs. For those graphs we have that
s <  - 1. Thus, we exclude trivial cases.

Strongly regular graphs attain Lov\'asz bound of Theorem 5.5, see e.g., Haemers
[42]. In particular, for a strongly regular graph G we have

\vargamma (G) =
n\lambda n(AG)

\lambda n(AG) - \lambda 1(AG)
.

In the following theorem we derive an explicit expression for \vargamma k(G) for strongly regular
graphs.

Theorem 6.1. For any strongly regular graph G with parameters (n, d, \lambda , \mu ) and
restricted eigenvalues r \geq 0 and s <  - 1, we have

\vargamma k(G) = min\{ k\vargamma (G), n\} = min

\Biggl\{ 
k

n\lambda n(AG)

\lambda n(AG) - \lambda 1(AG)
, n

\Biggr\} 
.

Proof. We prove the result by showing that the lower and upper bounds on \vargamma k(G)
coincide. Consider \vargamma k-SDP2, and set Y = k

nI + xAG. When 0 \preceq Y \preceq I, Y is feasible
for \vargamma k-SDP2. These SDP constraints on Y can be rewritten in terms of x. As \vargamma k-
SDP2 is a maximization problem we may assume without loss of generality x \geq 0.
Thus, for all i \leq n,

(43) \lambda i(Y ) = k/n+ x\lambda i(AG).

Since three eigenvalues of AG satisfy d \geq r > s, we have

(44) \sigma (AG) = (n - d - 1, - 1 - s, - 1 - r).

Substituting (44) in (43) and exploiting the fact that n - d - 1 >  - (s+1) >  - (1+ r)
we have

0 \preceq Y \preceq I \leftrightarrow 0 \leq \lambda i(Y ) \leq 1 \leftrightarrow 

\Biggl\{ 
k/n+ x( - 1 - r) \geq 0,

k/n+ x(n - d - 1) \leq 1.
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1364 LENNART SINJORGO AND RENATA SOTIROV

The last two inequalities provide upper bounds on x, i.e.,

(45) x \leq min

\Biggl\{ 
k

n(1 + r)
,

n - k

n(n - d - 1)

\Biggr\} 
.

When x satisfies (45), Y is thus feasible for \vargamma k-SDP2 and \langle J, Y \rangle will provide a lower
bound for \vargamma k(G). In particular, with (45) at equality,

(46) \langle J, Y \rangle = k + n(n - d - 1)x = min

\Biggl\{ 
k

\Biggl( 
r + n - d

1 + r

\Biggr) 
, n

\Biggr\} 
.

Equation (46) implies

(47) \vargamma k(G) \geq min

\Biggl\{ 
k

\Biggl( 
r + n - d

1 + r

\Biggr) 
, n

\Biggr\} 
.

By (9) and Proposition 3.1, we have \vargamma k(G) \leq min\{ k\vargamma (G), n\} . It remains only to show
that

(48) k

\Biggl( 
r + n - d

1 + r

\Biggr) 
= k\vargamma (G).

The eigenvalues of AG can be written in terms of the parameters of G, i.e.,

(49) rs = \mu  - d, r + s = \lambda  - \mu .

Furthermore, the parameters of any strongly regular graph satisfy

(50) (n - d - 1)\mu = d(d - \lambda  - 1);

see, e.g., Theorem 9.1.3 in [13]. Let us now rewrite the term

r + n - d

1 + r
=

ns

s - d

(r + n - d)(s - d)

ns(1 + r)
(51)

=
ns

s - d

ns+ nrs+ [d2  - nd - (n - 1)sr  - d(r + s)]

ns+ nrs

and evaluate the expression between the square brackets by using (49) and (50), i.e.,

d2  - nd - (n - 1)rs - d(r + s)

= d\lambda + d+ (n - d - 1)\mu  - nd - (n - 1)(\mu  - d) - d(\lambda  - \mu ) = 0.

Thus (51) equals ns/(s - d) and ns/(s - d) = \vargamma (G), which proves the theorem.

Recall that in subsection 5.2 we consider symmetric graphs (graphs that are
both edge-transitive and vertex-transitive). Although many graphs belong to both
symmetric and strongly regular classes, note that neither one is a subset of the other.
The graph C6 is an example of a graph that is symmetric, but not strongly regular.
The strongly regular Chang graphs (Chang [18]) provide an example of a strongly
regular graph which is not symmetric.

In subsection 5.2 we have proved that \vargamma (Kk\square G) = min\{ k\vargamma (G), n\} = \vargamma k(G) holds
for symmetric graphs; see Theorem 5.11. We show below that a similar relation
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holds also for strongly regular graphs. In fact we prove a result for the generalized
\vargamma \prime -number, denoted by \vargamma \prime 

k(G), that is the optimal value of the SDP relaxation \vargamma k-
SDP2 strengthened by adding nonnegativity constraints on the matrix variable. The
generalized \vargamma \prime -number for k = 1 is also known as the Schrijver's number.

To prove our result, we first present an SDP relaxation that relates \vargamma \prime (Kk\square G)
and \vargamma k(G). Kuryatnikova, Sotirov, and Vera [53] introduce the SDP relaxation

\theta 3k(G) = Maximize
Z\in \BbbS n

\langle I, Y \rangle 

subject to Yij = 0 \forall (i, j) \in E(G),

Yii \leq 1 \forall i \in [n],\biggl[ 
k diag(Y )\top 

diag(Y ) Y

\biggr] 
\succeq 0, Y \geq 0,

which provides an upper bound for \alpha k(G), the optimal value for the MkCS problem.
The above relaxation can be simplified when G is a highly symmetric graph. In
particular, if G is a strongly regular graph one can restrict optimization of the above
SDP relaxation to feasible points in the coherent algebra spanned by \{ I, A, J - I - A\} .
By applying symmetry reduction, the above SDP relaxation reduces to the following
convex optimization problem:

\theta 3k(G) := Maximize ny1,(52a)

subject to y1 + (n - d - 1)y2  - 
n

k
y21 \geq 0,(52b)

y1  - (r + 1)y2 \geq 0,(52c)

y1  - (s+ 1)y2 \geq 0,(52d)

y1 \leq 1,(52e)

y1, y2 \geq 0.(52f)

For details on symmetry reduction see, e.g., [33, 53] and references therein.
In [53] the authors conjecture that \theta 3k(G) \leq \vargamma \prime 

k(G) for any graph G. Here we
show that \theta 3k(G) = \vargamma \prime 

k(G) for any (nontrivial) strongly regular graph G.

Lemma 6.2. Let G be a strongly regular graph with parameters (n, d, \lambda , \mu ) and
restricted eigenvalues r \geq 0 and s <  - 1. Then

\theta 3k(G) = min

\biggl\{ 
k

\biggl( 
r + n - d

r + 1

\biggr) 
, n

\biggr\} 
= \vargamma k(G) = \vargamma \prime 

k(G).

Proof. Note that for s <  - 1 constraint (52d) is trivially satisfied. Points in

which constraints (52b) and (52c) intersect are (0, 0) and (k(r+n - d)
n(r+1) , k(n+r - d)

n(r+1)2 ). The

first equality follows by combining the latter point and constraint (52e). The second
equality follows from \vargamma (G) = (r + n  - d)/(1 + r) (see (48)) and Theorem 6.1. The
third equality follows from (45) and the fact that k

n(1+r) \geq 0 and n - k
n(n - d - 1) \geq 0.

It is known that \vargamma \prime (Kk\square G) \leq \theta 3k(G); see section 5.1 in [53]. We show below that
equality holds when k < n(r+ 1)/(r+ n - d) and G is a (nontrivial) strongly regular
graph by proving an equivalence between the SDP relaxations that give \vargamma \prime (Kk\square G)
and \theta 3k(G). The SDP relaxation for \vargamma \prime (Kk\square G) (see also \vargamma k-SDP2) is invariant under
permutations of k colors when the graph under the consideration is Kk\square G. This was
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exploited in [53] to derive the following symmetry reduced relaxation:

\vargamma \prime (Kk\square G) = Maximize
X,Z\in \BbbS n

\langle I,X\rangle 

subject to Xij = 0 \forall (i, j) \in E(G),

Zii = 0 \forall i \in [n],

X \geq 0, Z \geq 0, X  - Z \succeq 0,\Biggl[ 
1 diag(X)\top 

diag(X) X + (k  - 1)Z

\Biggr] 
\succeq 0.

The above relaxation can be further simplified when G is a strongly regular graph.
One can restrict optimization to the corresponding coherent algebra. By applying
symmetry reduction, the above SDP relaxation reduces to the following optimization
problem:

\vargamma \prime (Kk\square G) := Maximize nx1(53a)

subject to x1 + (n - d - 1)x2  - (dz1 + (n - d - 1)z2) \geq 0,(53b)

x1  - (r + 1)x2  - (rz1  - (r + 1)z2) \geq 0,(53c)

x1  - (s+ 1)x2  - (sz1  - (s+ 1)z2) \geq 0,(53d)

x1 + (n - d - 1)x2(53e)

+ (k  - 1)(dz1 + (n - d - 1)z2) - nx2
1 \geq 0,(53f)

x1  - (r + 1)x2 + (k  - 1)(rz1  - (r + 1)z2) \geq 0,(53g)

x1  - (s+ 1)x2 + (k  - 1)(sz1  - (s+ 1)z2) \geq 0,(53h)

x1 \leq 1,(53i)

x1, x2, z1, z2 \geq 0.(53j)

Our next result relates optimization problems (52) and (53).

Proposition 6.3. Let G be a strongly regular graph with parameters (n, d, \lambda , \mu )

and restricted eigenvalues r \geq 0 and s <  - 1, and k < n(r+1)
r+n - d . Then the optimization

problems (52) and (53) are equivalent.

Proof. Let (x1, x2, z1, z2) be feasible for (53). We show that (y1, y2) where y1 :=
x1 and y2 := x2 is feasible for (52).

From (53b) and (53f) we have\Biggl\{ 
x1 + (n - d - 1)x2 \geq (dz1 + (n - d - 1)z2),

x1 + (n - d - 1)x2 \geq nx2
1  - (k  - 1)(dz1 + (n - d - 1)z2),

from where it follows that

x1 + (n - d - 1)x2  - 
n

k
x2
1

\geq max
\Bigl\{ 
(dz1 + (n - d - 1)z2) - 

n

k
x2
1, (k  - 1)

\Bigl( n
k
x2
1  - (dz1 + (n - d - 1)z2)

\Bigr) \Bigr\} 
.

To verify that the right-hand side above is nonnegative, note that either dz1 + (n  - 
d - 1)z2 \geq n

kx
2
1 or dz1 + (n - d - 1)z2 < n

kx
2
1. Therefore x1 + (n - d - 1)x2  - n

kx
2
1 \geq 0

and constraint (52b) is satisfied.
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Similarly, from (53c) and (53g) it follows that constraint (52c) is satisfied. Con-
straint (52d) is trivially satisfied by (53d) and (53h).

Conversely, let (y1, y2) be feasible for (52). Define x1 := y1 and x2 := y2. Let z1
and z2 be the solutions of the following system of equations:

rz1 = (r + 1)z2, dz1 + (n - d - 1)z2 =
n

k
x2
1.

Thus, z1 = n(r+1)
k(d+r(n - 1))x

2
1, z2 = z1

r
r+1 . Therefore, constraint (53b) follows from (52b)

and the construction of z1 and z2. Similar arguments applied to (52c) can be used to
verify that (53c) and (53g) are satisfied. To verify (53f) we rewrite the constraint as
follows:

x1 + (n - d - 1)x2 + (k  - 1)(dz1 + (n - d - 1)z2) - nx2
1

= x1 + (n - d - 1)x2  - 
n

k
x2
1 + (k  - 1)

\Bigl( 
dz1 + (n - d - 1)z2  - 

n

k
x2
1

\Bigr) 
\geq 0.

To verify constraint (53d) we exploit the construction of z1 and z2 as well as r \geq 0 and
s <  - 1 to obtain  - (sz1  - (s+ 1)z2) =

r - s
r+1z1 \geq 0. It remains to show that constraint

(53h) is redundant for k < n(r+1)
r+n - d . Let us rewrite the constraint as follows:

x1  - (s+ 1)x2 + (k  - 1)(sz1  - (s+ 1)z2) = x1  - (s+ 1)x2  - 
n(k  - 1)(r  - s)

k(d+ r(n - 1))
x2
1 \geq 0.

(54)

A point of intersection of x1  - (s + 1)x2  - n(k - 1)(r - s)
k(d+r(n - 1))x

2
1 = 0 and x1 = (r + 1)x2 is

(k(d+r(n - 1))
n(k - 1)(r+1) ,

k(d+r(n - 1))
n(k - 1)(r+1)2 ), and a point of intersection of x1+(n - d - 1)x2 - n

kx
2
1 = 0

and x1 = (r + 1)x2 is (k(r+n - d)
n(r+1) , k(r+n - d)

n(r+1)2 ). Furthermore, an intersection point of

x1 + (n - d - 1)x2  - n
kx

2
1 = 0 and the x1-axis is (

k
n , 0), and a point of intersection of

x1  - (s+ 1)x2  - n(k - 1)(r - s)
k(d+r(n - 1))x

2
1 = 0 and the x1-axis is (

k(d+r(n - 1))
n(k - 1)(r - s) , 0). Note that the

common intersection point of both parabolas, x1 = (r + 1)x2, and the x1-axis equals
(0, 0). Let us find k for which

k(r + n - d)

n(r + 1)
<

k(d+ r(n - 1))

n(k  - 1)(r + 1)
\leftrightarrow k <

n(r + 1)

r + n - d

and
k

n
<

k(d+ r(n - 1))

n(k  - 1)(r  - s)
\leftrightarrow k <

d+ rn - s

r  - s
.

By using (51), one can verify that n(r+1)
r+n - d < d+rn - s

r - s , from where it follows that the

constraint (54) is redundant when k(r+n - d)
n(r+1) < 1.

It follows trivially that the objective values coincide for feasible solutions of two
models that are related as described.

Now, from the previous discussion the next result follows.

Theorem 6.4. Let G be a strongly regular graph with parameters (n, d, \lambda , \mu ) and

restricted eigenvalues r \geq 0 and s <  - 1, and k < n(r+1)
r+n - d . Then \vargamma \prime (Kk\square G) = \vargamma \prime 

k(G).

Proof. The proof follows from Lemma 6.2 and Proposition 6.3.
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7. Orthogonality graphs. In this section we compute the generalized \vargamma -number
for the orthogonality graphs.

We motivate the study of orthogonality graphs by a scenario, taken from Galliard,
Tapp, and Wolf [31]. Let n = 2r for some r \geq 1. Consider a game where two players,
Alice and Bob, each receive an n-dimensional binary vector as input. Either these
vectors are equal or their Hamming distance (see Definition 1.2) equals n/2, that is,
they differ in exactly 2r - 1 positions. Given these inputs, Alice and Bob must each
return an r-dimensional binary vector as output. To win the game, Alice and Bob
must return equal outputs if and only if their inputs were equal. Alice and Bob
are not permitted to communicate once they receive their inputs. The players are,
however, allowed to coordinate a strategy beforehand. One such strategy results in
the definition of an orthogonality graph.

Vertices of the orthogonality graph \Omega n are represented by all the unique n-
dimensional binary vectors. Vertices (equivalently vectors) are adjacent if their Ham-
ming distance equals n/2 and thus, \Omega n = H(n, 2, \{ n/2\} ). Here H(n, 2, \{ n/2\} ) denotes
the Hamming graph; see Definition 1.3.

The strategy of Alice and Bob then comprises graph coloring for \Omega n before the
game starts. After being given their input vector, Alice and Bob should return as
output the, earlier agreed upon, color of their vector, encoded as an r-dimensional
binary vector. With this r-dimensional vector, Alice and Bob can indicate 2r = n
distinct colors. Disregarding any luck in guessing, the game can always be won if and
only if \chi (\Omega n) \leq n.

The orthogonality graph gets its name from another description of the graph, that
is, when the vectors have \{ \pm 1\} entries. The Hamming distance between two binary
vectors of n/2 then corresponds to those \{ \pm 1\} vectors being orthogonal to each other.

Godsil and Newman [35] prove that \chi (\Omega 2r ) = 2r for r \in \{ 1, 2, 3\} and \chi (\Omega 2r ) > 2r

otherwise. This means that the game can only be won for r \leq 3.
Clearly, for odd n, \Omega n is edgeless. We therefore restrict the analysis of \Omega n to the

case when n is a multiple of 4. When that is the case, \Omega n consists of two isomorphic
components, for vectors of even and odd Hamming weights, respectively.

Next to \chi (\Omega n), the independence number \alpha (\Omega n) has been studied in multiple
papers. The two graph parameters are related by | V | \leq \chi (G)\alpha (G) for any graph
G = (V,E); see (62). Frankl [26] and Galliard [30] constructed a stable set of \Omega n of
size \alpha (n) for n \equiv 0 mod 4. In particular,

(55) \alpha (\Omega n) \geq \alpha (n) = 4

n/4 - 1\sum 
i=0

\biggl( 
n - 1

i

\biggr) 
.

On the other hand, de Klerk and Pasechnik [23] used an SDP relaxation to find
\alpha (\Omega 16) = \alpha (16) = 2306. It is also known that \alpha (\Omega 24) = \alpha (24) = 178208; see [48].
More recently, Ihringer and Tanaka [48] have proven \alpha (\Omega 2r ) = \alpha (2r) for r \geq 2. The
conjecture by Godsil and Newman [35] (see also Frankl and R\"odl [27]) whether

\alpha (\Omega 4m) = \alpha (4m) for m \geq 1(56)

remains an open problem.
We proceed by computing \vargamma k(\Omega n) when n is a multiple of four. From Newman [69],

the (unordered) eigenvalues of \Omega n are then given by

\lambda r =
2n/2

(n/2)!

n/2\prod 
i=1

(2i - 1 - r), 1 \leq r \leq n,
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and \lambda 0 =
\bigl( 

n
n/2

\bigr) 
(since \Omega n is regular with degree \lambda 0). The smallest eigenvalue is

obtained for r = 2 and thus

\lambda 2 =
1

1 - n

\biggl( 
n

n/2

\biggr) 
.

Since \Omega n is isomorphic to a binary Hamming graph, \Omega n is a symmetric graph. The
bound of Theorem 5.6 thus holds with equality. Newman [69] also shows that the
multiplicity of \lambda 2 equals n2  - n. This multiplicity exceeds n since n is a multiple of
4. Then it is not hard to show (by a method comparable to the one used in the proof
of Theorem 5.7) that

\vargamma k(\Omega n) = k
2n

n
, k \leq n.

When k = 1, \vargamma k(\Omega n) coincides here with the so-called ratio bound. This bound refers
to (65) for regular graphs and was also computed for \Omega n in [69].

Let S be a stable set of size \alpha (n) that contains no vectors that have their Hamming
weight contained in W = \{ n/4+1, n/4+3, . . ., 3n/4 - 1\} . Furthermore, note that the
Johnson graphs (see Definition 1.4) appear as induced subgraphs of \Omega n. Let w \in W
and consider the subgraph of \Omega n induced by J(n,w,w - n/4). This subgraph contains
no vertices in S and thus

(57) \alpha 2(\Omega n) \geq \alpha (n) + 4max
w\in W

\{ \alpha (J(n,w,w  - n/4))\} .

We may multiply the independence number of J(n,w,w  - n/4) by 4 since we can
take bitwise complements and find an isomorphic stable set in the isomorphic second
component of \Omega n.

In subsection 8.1 we prove that \chi k(\Omega 4n+2) = 2k.

8. New bounds on \bfitchi \bfitk (\bfitG ). In this section we first derive bounds on the product
and sum of \chi k(G) and \chi k(G). Then, we provide graphs for which the bounds are
sharp. Last, we derive spectral lower bounds on the multichromatic number of a
graph.

A famous result by Nordhaus and Gaddum [70] states that

n \leq \chi (G)\chi (G) \leq 
\Bigl( n+ 1

2

\Bigr) 2
,(58)

2
\surd 
n \leq \chi (G) + \chi (G) \leq n+ 1.(59)

Various papers have been published on determining Nordhaus-Gaddum inequalities
for other graph parameters, such as the independence and edge-independence number
(see [4] for a survey). We provide Nordhaus-Gaddum inequalities for k-multicoloring.

Theorem 8.1. For any graph G = (V,E), | V | = n, we have

k2n \leq \chi k(G)\chi k(G) \leq k2
\Bigl( n+ 1

2

\Bigr) 2
,

2k
\surd 
n \leq \chi k(G) + \chi k(G) \leq k(n+ 1).

Proof. We follow the original proof as given by Nordhaus and Gaddum [70], ex-
tended to the k-multicoloring case. Consider an optimal k-multicoloring of G, using
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\chi k(G) colors. Then for i = 1, 2, . . . , \chi k(G), define ni as the set of vertices that are

colored with color i. We have
\sum \chi k(G)

i=1 | ni| = nk. Furthermore,

(60) max | ni| \geq 
nk

\chi k(G)
.

Consider the largest set ni. Since the vertices in this set share a color, they form a
stable set in G. Thus they form a clique in G. Accordingly,

(61) \chi k(G) \geq k\omega (G) \geq kmax | ni| .

Combining (60) and (61) proves the lower bound on the product of \chi k(G) and \chi k(G).
The lower bound on the sum of \chi k(G) and \chi k(G) can be proven by algebraic

manipulation:

(\chi k(G) - \chi k(G))2 \geq 0 =\Rightarrow \chi k(G)2 + \chi k(G)2 + 2\chi k(G)\chi k(G) \geq 4\chi k(G)\chi k(G)

=\Rightarrow \chi k(G) + \chi k(G) \geq 2

\sqrt{} 
\chi k(G)\chi k(G) \geq 2k

\surd 
n.

The two upper bounds can be proven by combining (5), (58), and (59) as follows:

\chi k(G)\chi k(G) \leq k2\chi (G)\chi (G) \leq k2
\Bigl( n+ 1

2

\Bigr) 2
,

\chi k(G) + \chi k(G) \leq k(\chi (G) + \chi (G)) \leq k(n+ 1).

The second upper bound in Theorem 8.1 can also be found in [9] (in a slightly
generalized form). We present below graphs for which the bounds in Theorem 8.1 are
attained. For that purpose we define the graph sum of two graphs. The graph sum
of graphs G1 and G2 is the graph, denoted by G1 +G2, whose vertices and edges are
defined as follows:

V (G1 +G2) := V (G1) \cup V (G2), E(G1 +G2) := E(G1) \cup E(G2).

Nordhaus and Gaddum [70] show that the upper bounds in their theorem are attained
by graph G = Kp + Kp - 1. Graph G has n = 2p  - 1 vertices. It is clear that
\chi (G) = \chi (G) = p = n+1

2 . Thus G attains both upper bounds simultaneously. As

both G and G are weakly perfect graphs, we can apply (66) to find \chi k(G) = \chi k(G) =
kp = k n+1

2 . This implies that graph G also attains the upper bounds in Theorem 8.1.
Nordhaus and Gaddum [70] also provide an example of a graph which attains the
lower bounds in their theorem. This example extends to the multichromatic variant
as well. Let m1 = m2 = \cdot \cdot \cdot = mp = p and consider the complete multipartite graph
G = Km1,...,mp

. Then \chi k(G) = \chi k(G) = kp = k
\surd 
n. Thus, this graph G attains the

lower bounds in Theorem 8.1. In fact, for any graph G such that \chi (G)\chi (G) = | V (G)| ,
we have k2| V (G)| \leq \chi k(G)\chi k(G) by Theorem 8.1, and \chi k(G)\chi k(G) \leq k2\chi (G)\chi (G) =
k2| V (G)| by (5). Since the upper and lower bounds coincide, we have \chi k(G)\chi k(G) =
k2| V (G)| . The set of vertex-transitive graphs provides a number of examples for which
this bound is attained, such as the Johnson graph J(n, 2, 1) when n is even.

The chromatic number of a graph is bounded by the spectrum of matrices related
to its adjacency matrix. This well-known result is given below.

Theorem 8.2 (Hoffman [46]). If G has at least one edge, then \chi (G) \geq 1  - 
\lambda 1(AG)
\lambda n(AG) .
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Since each color class has size at most \alpha (G), we have that

(62) \chi (G) \geq n

\alpha (G)
,

where n is the number of vertices in G. Therefore one can use upper bounds for \alpha (G)
to derive lower bounds for \chi (G). From (3) it follows that \alpha (G \circ Kk) = \alpha (G). Thus
we can establish the multicoloring variant of (62):

(63) \chi k(G) = \chi (G \circ Kk) \geq 
| V (G \circ Kk)| 
\alpha (G \circ Kk)

= k
n

\alpha (G)
.

Note that the above result also follows from (60). The bound (63) is also given in
[14], where the authors show that the lower bound is tight for webs and antiwebs.
Note that for a graph G such that \alpha k(G) = k\vargamma (G) we have that \alpha k(G) = k\alpha (G)

(see Lemma 5 in [53]), and thus \chi k(G) \geq k2n
\alpha k(G) . The above inequality is satisfied, for

example, for the Johnson graph J(n, 2, 1) when n is even, and for J(n, 3, 2) when v \equiv 
1 or 3 mod 6.

Let us now present known upper bounds for the independence number of a graph.

Theorem 8.3 (Hoffman [46]). For any d-regular graph G of order n, we have

\alpha (G) \leq n \lambda n(AG)
\lambda n(AG) - d .

The result of Theorem 8.3 applies only to regular graphs with no loops. Haemers
[41] generalizes the Hoffman bound as follows.

Theorem 8.4 (Haemers [41]). Let G have minimum vertex degree \delta . Then

(64) \alpha (G) \leq n
\lambda 1(AG)\lambda n(AG)

\lambda 1(AG)\lambda n(AG) - \delta 2
.

If G is regular, then the result of Theorem 8.4 reduces to Hoffman's bound.
Another extension of the bound of Hoffman is given by Godsil and Newman [36].

Theorem 8.5 (Godsil and Newman [36]). Let G be a loopless graph and LG its
Laplacian matrix. Then

(65) \alpha (G) \leq n
\lambda 1(LG) - dG

\lambda 1(LG)
,

where dG denotes the average degree of the vertices of G.

Now we are ready to present our results.

Lemma 8.6. Let G have minimum vertex degree \delta . Then

\chi k(G) \geq k
\lambda 1(AG)\lambda n(AG) - \delta 2

\lambda 1(AG)\lambda n(AG)
.

Proof. The result follows by combining (63) and (64).

Lemma 8.7. For any loopless graph G, we have

\chi k(G) \geq k
\lambda 1(LG)

\lambda 1(LG) - dG
,

where dG denotes the average degree of its vertices, and LG the Laplacian matrix of
G.
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Proof. The result follows by combining (63) and (65).

When G is a regular graph, (65) is equivalent to the result of Theorem 8.3, and
therefore the result of Lemma 8.7 is equivalent to

\chi k(G) \geq k

\Biggl( 
1 - \lambda 1(AG)

\lambda n(AG)

\Biggr) 
.

It is not difficult to verify that complete graphs attain the bounds of Lemmas 8.6
and 8.7.

We end this section by presenting bounds on the multichromatic number of John-
son graphs; see Definition 1.4. We study the simple case J(n, 2, 1), n \geq 4. Graph
J(n, 2, 1) is sometimes referred to as the triangular graph. The graph J(n, 2, 1) is the
complement graph of the Kneser graph K(n, 2), and both are known to be strongly
regular. Every vertex of J(n, 2, 1) corresponds to a set of two elements. These two
elements can be thought of as two vertices of the complete graph Kn, with the vertex
in J(n, 2, 1) representing the edge between these two vertices of Kn. Graph J(n, 2, 1)
is thus the line graph of the complete graph Kn. For any graph G, its line graph is
denoted L(G).

Proposition 8.8. For the triangular graph J(n, 2, 1) and n \geq 4, we have

k(n - 1) \leq \chi k (J(n, 2, 1)) \leq k

\biggl( 
2

\biggl\lfloor 
n - 1

2

\biggr\rfloor 
+ 1

\biggr) 
.

Proof. As J(n, 2, 1) is isomorphic to L(Kn), a coloring of J(n, 2, 1) is equivalent
to an edge coloring of Kn. It is not hard to see that \omega (L(G)) equals the maximum
degree of a vertex of G. Thus \omega (L(Kn)) = n - 1. For even n, \chi (L(Kn)) = n - 1; see
Baranyai [7]. Therefore, for even n we have

\chi (L(Kn)) = \omega (L(Kn)) =\Rightarrow \chi k(L(Kn)) = k\chi (L(Kn)) = k(n - 1),

where the implication follows from (5). For odd n, \chi (L(Kn)) = n, see Vizing [83]. By
(5), the proposition follows.

Note that in the proof of the previous proposition we could also exploit the fol-
lowing well-known result: \alpha (K(n, 2)) = n - 1.

8.1. Hamming graphs. In this section we present results for the (multi)chro-
matic number of Hamming graphs (Definition 1.3). We also provide sufficient and
necessary conditions for the Hamming graph to be perfect.

In the Hamming graph H(n, q, F ), the vertex set is the set of n-tuples of letters
from an alphabet of size q, and vertices u and v are adjacent if their Hamming distance
satisfies d(u, v) \in F . Note that | V (H(n, q, F ))| = qn. By slight abuse of notation,
we will use the terms vectors and vertices interchangeably, as they permit a one-to-
one correspondence in Hamming graphs. Many authors refer to H(n, q, \{ 1\} ) as the
Hamming graph. The graph Qn := H(n, 2, \{ 1\} ) is also known as the binary Hamming
graph or hypercube graph.

We first list several known results for H(n, q, \{ 1\} ). Graph H(n, q, \{ 1\} ) equals the
Cartesian product of n copies of Kq. Thus H(n, q, \{ 1\} ) = \square nKq; see Definition 1.1.
Furthermore, it holds \chi (G1\square G2) = max\{ \chi (G1), \chi (G2)\} ; see Sabidussi [74]. Therefore,
\chi (H(n, q, \{ 1\} )) = q. To derive the independence number of H(n, q, \{ 1\} ), we proceed
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as follows. Let S \subset V be a stable set of H(n, q, \{ 1\} ). Then Minu,v\in S, u \not =vd(u, v) \geq 2.
From coding theory, the Singleton bound (Singleton [78]) is an upper bound on the
maximum number of codes of length n, using an alphabet of size q, such that a
Hamming distance between any two codes is at least two. In particular, from the
Singleton bound we have \alpha (H(n, q, \{ 1\} )) \leq qn - 1.

To show that \alpha (H(n, q, \{ 1\} )) \geq qn - 1, we construct an independent set in the
Hamming graph of size qn - 1, by a construction employed in [78]. Consider all the
vectors in (\BbbZ /q\BbbZ )n for which the coordinates sum to some x \in \BbbZ /q\BbbZ . By symmetry,
there exist qn - 1 vectors satisfying this condition. Note that any two different vectors
satisfying this condition must differ in at least two positions, which implies they are
not adjacent. Thus, \alpha (H(n, q, \{ 1\} )) \geq qn - 1 and combined with the Singleton bound,
this gives \alpha (H(n, q, \{ 1\} )) = qn - 1.

To the best of our knowledge, the following results are not known in the literature.

Lemma 8.9. For k \leq qn, \chi k(H(n, q, \{ 1\} )) = kq.

Proof. Let us denote H = H(n, q, \{ 1\} ). Consider the vectors in H for which the
first entry ranges from 0 up to and including q  - 1, while the other entries equal 0.
This gives a clique of size q and since \omega (H) \leq \chi (H) = q, we have \omega (H) = q. From
(5), it follows the result.

The proof of Lemma 8.9 relies on the fact that \omega (H) = \chi (H), or equivalently,
that H(n, q, \{ 1\} ) is a weakly perfect graph. In general, for any weakly perfect graph
G

(66) \omega (G) = \chi (G) =\Rightarrow \chi k(G) = k\chi (G).

This gives rise to the question for which values of q and n the graph H(n, q, \{ 1\} )
is perfect. The strong perfect graph theorem states that a graph is perfect if and only
if it does not contain C2n+1 or C2n+1 as induced subgraphs, for all n > 1.

Proposition 8.10. The Hamming graph H(n, q, \{ 1\} ) is a perfect graph if and
only if n \leq 2 or q \leq 2.

Proof. Denote H(n, q) = H(n, q, \{ 1\} ). Graph H(1, q) is Kq, which is clearly a
perfect graph. Graph H(2, q) is a lattice graph, or Rook's graph, which is also a
perfect graph. Graph H(n, 1) is a single vertex and thus also perfect. Last, graph
H(n, 2) is bipartite and thus perfect. For q \geq 3, the following vectors from H(3, q)
form C7: \left[  00

0

\right]  ,

\left[  10
0

\right]  ,

\left[  11
0

\right]  ,

\left[  11
1

\right]  ,

\left[  21
1

\right]  ,

\left[  20
1

\right]  ,

\left[  00
1

\right]  .

Then by the strong perfect graph theorem, H(3, q) is not perfect. An odd cycle in
H(n, q) for general n, q \geq 3, is obtained by simply adjoining zeros to the above vectors
such that they become n-dimensional.

As H(n, q, \{ f\} ) is edgeless for f > n, we consider the extremal case H(n, q, \{ n\} )
for n > 1. Note that H(1, q, \{ 1\} ) = Kq. Graph H(n, q, \{ n\} ) can be described by
use of the tensor product of graphs (see Definition 1.1). In particular, we have that
H(n, q, \{ n\} ) = \otimes nKq.

Since all the edges of G1\otimes G2 also appear in G1 \circ G2, it follows that \chi (G1\otimes G2) \leq 
\chi (G1 \circ G2). Moreover, by Hedetniemi [44], we have

(67) \chi (G1 \otimes G2) \leq min\{ \chi (G1), \chi (G2)\} .
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Hedetniemi's conjecture states that (67) holds with equality. The conjecture was
recently disproved by Shitov [77]. Inequality (67) implies that \chi (\otimes nKq) \leq q.

The vectors i \cdot 1 for 0 \leq i \leq q  - 1 form a clique of size q in graph H(n, q, \{ n\} ).
Thus q \leq \omega (H(n, q, \{ n\} )). Now, from this inequality and \chi (\otimes nKq) \leq q it follows that
\chi (H(n, q, \{ n\} )) = q. Using (5) or (66), we find \chi k(H(n, q, \{ n\} )) = kq. The coloring
of these tensor products of graphs has been previously considered by Greenwell and
Lov\'asz [37], where they also proved this result.

Let us now define f+ := \{ i \in \BbbN | f \leq i \} . The Hamming graph H(n, q, f+) has
been studied by El Rouayheb et al. [24] among others. They show that, under some
condition on the parameters n, q, and f , \chi (H(n, q, f+)) = qn - f+1. We extend this
result to multicoloring in the following proposition.

Proposition 8.11. For q \geq n - f +2 and 1 \leq f \leq n, we have \chi k(H(n, q, f+)) =
kqn - f+1.

Proof. For parameters n, q, and f satisfying the conditions of the proposition,
it is known (cf. [28]) that \alpha (H(n, q, f+)) = qf - 1. By (5) and (63), the proposition
follows.

Binary Hamming graphs H(n, 2, \{ f\} ), f \leq n, form another interesting case. Re-
call that the Hamming weight of a vector is its Hamming distance to the zero vector,
and that the Hamming graphs are vertex-transitive.

Theorem 8.12. For all n \in \BbbN , f odd, and f \leq n, \chi k(H(n, 2, \{ f\} )) = 2k.

Proof. Let n, f \in \BbbN , f odd, and f \leq n. Consider the zero vector in H(n, 2, \{ f\} ).
Note that every vector adjacent (orthogonal) to the zero vector has an odd Hamming
weight. By vertex transitivity, all vectors of even Hamming weight only have vectors
of odd Hamming weight as neighbors. Similarly, vectors of odd Hamming weight
only have vectors of even Hamming weight as neighbors. Graph H(n, 2, \{ f\} ) is thus
bipartite, which, combined with (5), proves the theorem.

It readily follows the following results for orthogonality graphs.

Corollary 8.13. Let \Omega 4n+2 (n \in \BbbN ) be the orthogonality graph. Then,

\chi k(\Omega 4n+2) = 2k.

Proof. Graph \Omega 4n+2 is isomorphic to H(4n + 2, 2, \{ 2n + 1\} ). This corollary is
thus a special case of Theorem 8.12.

9. Conclusion. In this paper, we study the generalized \vargamma -number for highly
symmetric graphs and beyond. The parameter \vargamma k(G) generalizes the concept of the
famous \vargamma -number that was introduced by Lov\'asz [59]. Since \vargamma k(G) is sandwiched
between the \alpha k(G) and \chi k(G) it serves as a bound for both graph parameters.

Several results in this paper are not restricted to highly symmetric graphs, in
particular, the results in sections 2, 3, and 4. In section 2 we present in an ele-
gant way a known result that \vargamma k(G) is a lower bound for \chi k(G). Another lower
bound for \chi k(G) is k\vargamma (G); see (9). The inequality (9) is rather counterintuitive
since it is more difficult to compute \vargamma k(G) than \vargamma (G), while k\vargamma (G) provides a better
bound for the kth chromatic number. However, the generalized \vargamma -number can also
be used to compute lower bounds for the (classical) chromatic number of a graph;
see subsection 5.2.

In section 3 we show that the sequence (\vargamma k(G))k is increasing and bounded above
by the order of G (Proposition 3.2 and Theorem 3.4) and that the increments of the
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sequence can be arbitrarily small (Theorem 3.5). Section 4 provides bounds for \vargamma k(G)
where G is the strong graph product of two graphs (Theorem 4.2) and the disjunction
product of two graphs (Theorem 4.3).

Sections 5, 6, and 7 consider highly symmetric graphs. We derive closed form ex-
pressions for the generalized \vargamma -number on cycles (Theorem 5.3), Kneser graphs (The-
orem 5.7), Johnson graphs (Theorem 5.8), and strongly regular graphs (Theorem 6.1),
among other results. It is known that \vargamma (Kk\square G) and \vargamma k(G) provide upper bounds on
\alpha k(G). However, it is more computationally demanding to compute \vargamma (Kk\square G) than
\vargamma k(G). We show that for graphs that are both edge-transitive and vertex-transitive
it suffices to solve \vargamma k(G), see Theorem 5.11. However, the gap between \vargamma k(G) and
\vargamma (Kk\square G) can be arbitrarily large (Proposition 5.10). We also prove that \vargamma \prime (Kk\square G)
equals \vargamma \prime 

k(G) for any (nontrivial) strongly regular graph G and k < n(r+1)/(r+n - d);
see Theorem 6.4. Section 7 presents results for \vargamma k(G) and \chi k(G) on orthogonality
graphs.

Bounds on the kth chromatic number of various graphs are given in section 8.
In particular, bounds on the product and sum of \chi k(G) and \chi k(G) are presented in
Theorem 8.1. Lemma 8.9, Proposition 8.11, and Theorem 8.12 provide the multichro-
matic number for several Hamming graphs, while Proposition 8.8 provides bounds for
the multichromatic number on triangular graphs.

Let us list several open problems. Prove Conjecture 1 for any graph. Recall
that we prove Conjecture 1 only for symmetric graphs; see Theorem 5.11. It would
be interesting to prove the conjecture by Godsil, Newman, and Frankl (56) for the
first open case \Omega 40. Another open problem is to generalize the well-known inequality
\vargamma (G)\vargamma (G) \geq | V | (see [59]) for \vargamma k(G), k \geq 2.

Acknowledgments. We would like to thank two anonymous reviewers for their
insightful comments and suggestions to improve an earlier version of this work. We
would also like to thank Ferdinand Ihringer for pointing us to reference [26] and the
result \alpha (\Omega 24) = 178208, where \Omega 24 is the orthogonality graph.
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