
  

 

 

Tilburg University

Scale length does matter

D'Urso, E. Damiano; Roover, Kim De; Vermunt, Jeroen K.; Tijmstra, Jesper

Published in:
Behavior Research Methods

DOI:
10.3758/s13428-021-01690-7

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
D'Urso, E. D., Roover, K. D., Vermunt, J. K., & Tijmstra, J. (2022). Scale length does matter: Recommendations
for measurement invariance testing with categorical factor analysis and item response theory approaches.
Behavior Research Methods, 54(5), 2114-2145. https://doi.org/10.3758/s13428-021-01690-7

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 26. Sep. 2023

https://doi.org/10.3758/s13428-021-01690-7
https://research.tilburguniversity.edu/en/publications/f0667e9c-761f-4fe2-a68d-ec6acaf7ba56
https://doi.org/10.3758/s13428-021-01690-7


https://doi.org/10.3758/s13428-021-01690-7

Scale length does matter: Recommendations for measurement
invariance testing with categorical factor analysis and item
response theory approaches

E. Damiano D’Urso1 · Kim De Roover1 · Jeroen K. Vermunt1 · Jesper Tijmstra1

Accepted: 17 August 2021
© The Author(s) 2021

Abstract
In social sciences, the study of group differences concerning latent constructs is ubiquitous. These constructs are generally
measured by means of scales composed of ordinal items. In order to compare these constructs across groups, one crucial
requirement is that they are measured equivalently or, in technical jargon, that measurement invariance (MI) holds across
the groups. This study compared the performance of scale- and item-level approaches based on multiple group categorical
confirmatory factor analysis (MG-CCFA) and multiple group item response theory (MG-IRT) in testing MI with ordinal
data. In general, the results of the simulation studies showed that MG-CCFA-based approaches outperformedMG-IRT-based
approaches when testing MI at the scale level, whereas, at the item level, the best performing approach depends on the tested
parameter (i.e., loadings or thresholds). That is, when testing loadings equivalence, the likelihood ratio test provided the
best trade-off between true-positive rate and false-positive rate, whereas, when testing thresholds equivalence, the χ2 test
outperformed the other testing strategies. In addition, the performance of MG-CCFA’s fit measures, such as RMSEA and
CFI, seemed to depend largely on the length of the scale, especially when MI was tested at the item level. General caution
is recommended when using these measures, especially when MI is tested for each item individually.

Keywords Categorical data · Measurement invariance · DIF (differential item functioning) · CFA (confirmatory factor
analysis) · IRT (item response theory)

Introduction

One of the main missions of psychological and social sci-
ences is to study individuals as well as group differences
with regard to latent constructs (e.g., extraversion). Such
constructs are commonly measured by means of psycholog-
ical scales in which subjects rate their level of agreement on
various Likert-scale type of items by selecting one out of
the possible response options. Most items’ response options
range from 3 to 5 with a clear ordering (e.g., a score of 3
is higher than a score of 2 which is then higher than 1).
Such items with few naturally ordered categories are called
ordinal items.
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Equivalence in the measurement of a psychological con-
struct across groups is generally defined as measurement
invariance (MI), and it is a crucial requirement to validly
compare psychological constructs across groups (Bors-
boom, 2006; Meredith & Teresi, 2006). In fact, ignoring MI
when statistically investigating differences between groups
can lead to under/over estimation of group differences in
item means (Jones & Gallo, 2002), sum-score means (Jeong
& Lee, 2019), and regression parameters in structural equa-
tion models (Guenole & Brown, 2014).

In the context of psychological measurement, latent vari-
able modeling is one of the most popular frameworks, and,
within this framework, various approaches have been devel-
oped to model ordinal data as well as to test for MI. Among
them, two of the most used ones are multiple group categor-
ical confirmatory factor analysis (MG-CCFA) and multiple
group item response theory (MG-IRT) (Kim & Yoon, 2011;
Millsap, 2012). Interestingly, the difference between these
two approaches is rather artificial, and parameters in MG-
CCFA and MG-IRT models are known to be directly related
(Takane & De Leeuw, 1987). Moreover, Chang et al. (2017)
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proposed a set of minimal identification constraints to make
MG-CCFA and MG-IRT models fully equivalent.

The equivalence between these models, however, does
not necessarily match the way MI is conceptualized and
tested within each of the two approaches. For example, one
main difference between MG-CCFA and MG-IRT refers
to which hypotheses are tested. On the one hand, in MG-
CCFA, measurement equivalence is mainly investigated at
the scale level, or, in other words, the tested hypothesis is
that the complete set of items functions equivalently across
groups. On the other hand, in MG-IRT, more attention is
dedicated towards the study of each individual item, and, for
this reason, within this approach, MI is tested for each item
in the scale separately. Another crucial difference relates
to the way these hypotheses are tested. In fact, to test
whether MI holds, either for a scale or for a specific item,
different criteria and/or testing strategies are used within
each approach.

Research to date has not yet determined the impact of
these differences in terms of the performance to detect MI.
For instance, some studies compared the performance of
MG-CCFA and MG-IRT using solely an item-level testing
perspective (Kim & Yoon, 2011; Chang et al., 2017),
whereas Meade and Lautenschlager (2004) compared MG-
IRT with multiple group confirmatory factor analysis for
continuous data (i.e., MG-CFA). Providing clear guidelines
on which approach to choose and in which setting is
particularly helpful for applied researchers. In fact, having
such guidelines might facilitate decisions regarding the level
at which (non)invariance will be tested (e.g., scale or item
level) as well as what are the most powerful tools to test it.
However, in the current literature, clear guidelines have not
yet been provided. Therefore, by means of two simulation
studies, this paper makes three major contributions: (i)
assess to what extent performing a scale- or an item-level
test affects the power to detect MI, (ii) determine what
MG-CCFA- or MG-IRT-based testing strategies/measures
are more powerful to test MI, and (iii) based on the results of
the simulation studies, provide guidelines on what approach
to choose and in which conditions.

To this end, in “MG-CCFA, MG-IRT models and their
MI test” we discuss both MG-CCFA- and MG-IRT-based
models and illustrate how they are equivalent under a set
of minimal identification constraints. Additionally, in the
same section, for each of the two approaches, we discuss the
differences in the set of hypotheses and the testing strategies
in the context of MI. Afterwards, in “Simulation studies” we
assess the performance of MG-CCFA- and MG-IRT-based
testing strategies in testing MI by means of two simulation
studies. Finally, in “Discussion”, we conclude by giving
remarks and recommendations along with a summary of the
main results obtained in the simulation studies.

MG-CCFA, MG-IRTmodels and their MI test

Themodels

Imagine having data composed of J items for a group of
N subjects. Also, assume that a grouping variable exists
such that subjects can be divided into G groups. Let Xj

be the response on item j and further assume that Xj is
a polytomously scored response which might take on C
possible values, with c = {0,1,2,...,C-1}. Let us also assume
that a unidimensional construct η underlies the observed
responses (Chang et al., 2017).

Multiple group categorical confirmatory factor analysis

In MG-CCFA, it is assumed that C possible observed val-
ues are obtained from a discretization of a continuous
unobserved response variableX∗

j via some threshold param-

eters. The threshold τ
(g)
j,c indicates the dividing point for the

categories (e.g., division between a score of 3 and 4). Addi-
tionally, these thresholds are created such that the first and
the last one are defined as τ

(g)

j,0 = -∞ and τ
(g)
j,C = +∞, respec-

tively. Rewriting formally what we just described, we have:

Xj = c, if τ
(g)
j,c < X∗

j < τ
(g)

j,c+1 c = 0, 1, 2, ..., C − 1.

(1)

If it is also assumed that the construct under study is
unidimensional, according to a factor analytical model we
have:

X∗
j = λ

(g)
j η + εj , j = 1, 2, ..., J . (2)

Equation (2) shows that the unobserved continuous response
variable X∗

j is determined by a latent variable score η via

the factor loading λ
(g)
j and a residual component εj . The

latter represents an error term that is item-specific. It is
important to note that the thresholds τ

(g)
j,c and loadings λ

(g)
j

are group-specific. Additionally, both the latent variable η

and the item-specific residual component εj are mutually
independent and both normally distributed, with:

η(g) ∼ N(κ(g), ϕ(g)), and ε
(g)
j ∼ N(0, σ 2(g)

j ). (3)

where κ is the factor mean, ϕ the factor variance and σ 2
j is

the unique variance.

Multiple group normal ogive graded response model

MG-IRT models the probability of selecting a specific item
category, given a score on the latent construct and given a
specific group membership. These conditional probabilities,
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in the case of ordinal items, are modeled indirectly through
building blocks that are constructed by means of specific
functions. Different functions exist for ordinal items which,
in turn, are used by different MG-IRT models. Because
of its similarities with MG-CCFA (Chang et al., 2017), in
the following, we only consider the multiple group normal
ogive graded response model (MG-noGRM; Samejima,
1969). The MG-noGRM uses cumulative probabilities as
its building blocks, and the underlying idea is to treat the
multiple categories in a dichotomous fashion (Samejima,
1969). First, for each score, the probability of obtaining
that score or higher is calculated (e.g., selecting 2 or
above), given the latent construct η. Based on this set of
probabilities, the probability of selecting a specific category
(e.g., 2) is calculated, given a certain score on η. In the
MG-noGRM, like in MG-CCFA, it is assumed that the
observed values Xj arise from an underlying continuous
latent response variable X∗

j .
Rewriting formally what we just described, the probabil-

ity of scoring a certain category c is then:

P(X∗
j = c|η, g)

= 
(α
(g)
j (η − δ

(g)
j,c )) − 
(α

(g)
j (η − δ

(g)

j,c+1))

= 
(α
(g)
j η − α

(g)
j δ

(g)
j,c ) − 
(α

(g)
j η − α

(g)
j δ

(g)

j,c+1)

=
∫ α

(g)
j η−α

(g)
j δ

(g)
j,c

α
(g)
j η−α

(g)
j δ

(g)
j,c+1

φ(uj )duj

(4)

where, for group g α
(g)
j is the discrimination parameter

for item j, and δ
(g)
j,c is the threshold parameter. The latter

represents the point at which the probability of answering
at or above category c is .5 for group g. Since ordered
categories are modeled, the probability of getting at least the
lowest score is 1, and the first threshold δ

(g)

j,0 is not estimated
and set to -∞. That is, C-1 threshold parameters per group
need to be estimated. It is relevant to highlight that, like in
MG-CCFA, also in the case of the MG-noGRM the model
parameters α

(g)
j and δ

(g)
j,c are group-specific. Also, φ(.) is

the probability density function and 
(.) is the cumulative
distribution function of the standard normal distribution.

Similarities with MG-CCFA The similarities between MG-
CCFA and the MG-noGRM can be revealed by taking a
closer look at how the parameters in the two models are
related (Takane & De Leeuw, 1987; Kamata & Bauer, 2008;
Chang et al., 2017):

α
(g)
j = λ

(g)
j

σj

, uj = εj

σj

, δ
(g)
j,c = τ

(g)
j,c

λ
(g)
j

, (5)

and how it is possible to write the probability of X∗
j given η

in MG-CCFA terms:

P(X∗
j = c|η, g) =

∫ λ
(g)
j η−τ

(g)
j,c

λ
(g)
j η−τ

(g)
j,c+1

φ(εj )dεj

=
∫ λ

(g)
j η/σj −τ

(g)
j,c /σj

λ
(g)
j η/σj −τ

(g)
j,c+1/σj

φ(uj )duj .

(6)

The difference between (4) and (6) is that in MG-CCFA
the loadings λ

(g)
j and the thresholds τ

(g)
j,c can be inferred

only in a relative sense. In fact, they can only be calculated
through the ratio with the residual variance σj (Takane &De
Leeuw, 1987; Kamata & Bauer, 2008; Chang et al., 2017).
This is due to the absence of a scale for the latent response
variable X∗

j . For ease of reading, in the following, only the
term loading will be used to refer to both the discrimination
parameters and the loadings.

Identification constraints andmodels equivalence

Identification of measurement models such as the ones con-
sidered here can be achieved by means of identification
constraints, which are usually imposed either via specifica-
tion of an arbitrary value for some parameters or by setting
equalities across them. This way, the number of parameters
to be estimated is reduced, and it is possible to find a unique
solution in the estimation process (Millsap & Yun-Tein,
2004; San, 2013; Chang et al., 2017).

In testing MI with multiple groups, both for MG-CCFA
and the MG-noGRM, it is necessary to ensure that a
scale is set for (i) the latent response variable X∗

j , (ii)
the latent construct η, and that (iii) the scale of the latent
construct is aligned across groups such that the parameters
can be directly compared (Kamata & Bauer, 2008; Chang
et al., 2017). Interestingly, these constraints are commonly
imposed in a different way in MG-CCFA and in the MG-
noGRM.

The observed response for each item is assumed to arise,
in both models, from an unobserved continuous response
variable X∗

j . These underlying continuous response vari-
ables do not have a scale. For this reason, a scale has to be
set by constraining their variances and means. In both mod-
els, the means of the latent response variables are indirectly
constrained to be 0 by setting the intercepts κ to be 0, since
E(X∗

j ) = λjκ .
In both models, the means of the latent response variables

are constrained to be 0. However, different ways to constrain
the variances are generally used. It is common to either
set their total variances V (X∗

j ) to 1 (also called Delta
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parameterization; Muthén, 1998) or its unique variances σ 2
j

to 1 (also called Theta parameterization; Muthén, 1998).
The former is much more common in MG-CCFA, while the
latter is closer to what is usually done with the MG-noGRM
(Kamata & Bauer, 2008).

The other unobserved element for which a scale has to
be set is the latent construct η. Again, this is commonly
addressed in a different way in the two approaches. On the
one hand, in MG-CCFA a fixed value is commonly chosen
for a threshold and a loading. On the other hand, in the MG-
noGRM the scale of the latent variable is commonly defined
by setting its mean and variance to 0 and 1, respectively. In
both cases, these constraints are applied only for one of the
two groups, which is usually called the reference group.

Finally, it is necessary to align the scale of both groups
to make them comparable. This is commonly achieved by
imposing equality constraints on some of the parameters
in the model, which is again addressed differently in MG-
CCFA and in the MG-noGRM. On the one hand, in MG-
CCFA for each latent construct, the factor loading and the
threshold of a single item are constrained to be equal across
groups. Generally, the loading and the threshold of the first
item of the scale are selected. On the other hand, in MG-
IRT, multiple items, assumed to function equivalently in
both groups, are set equal by constraining their parameters.
These items form what is then called the anchor. Note
that, in the MG-noGRM, and more generally in MG-IRT
models, greater attention is devoted to choosing the items
that are constrained to be equal across groups while in
MG-CCFA this is not necessarily the case. Nevertheless, in
MG-CCFA, French and Finch (2008) have noted that the
referent indicator matters, and various methods have been
developed to select one or more referent indicators (Lopez
Rivas et al., 2009; Woods, 2009; Meade & Wright, 2012;
Shi et al., 2017). For a recent overview and comparison
of these methods, we refer the reader to Thompson et al.
(2021).

A set of minimal constraints to make MG-CCFA and the
MG-noGRM fully comparable have been recently proposed
by Chang et al. (2017), which will also be presented here.
Without loss of generality, imagine that two groups, g = r,f
where r represents the reference group and f the focal group,
exist. Following Chang et al. (2017):

σ
2(r)
j = 1, for j= 1,..,J (7)

E(η(r)) = 0, λ
(r)
1 = 1, (8)

λ
(r)
1 = λ

(f )

1 , σ
2(r)
1 = σ

2(f )

1 , τ
(r)
1,c = τ

(f )

1,c ,

for some c ∈ (0,1,2,...,C-1) (9)

σ
2(r)
j = σ

2(f )
j for j = 2,..,J. (10)

These constraints serve the purpose to set a scale for the
latent response variable X∗

j , for the latent construct η and
to make the scale comparable across groups. That is, (7)
and (8) set the scales of the latent response variable X∗

j

and the latent construct η for the reference group, while (9)
makes the scale comparable across groups using the anchor.
Finally, (10) guarantees a common scale across all the
other items. Furthermore, the above-mentioned constraints
can be seen as MG-IRT-type constraints where the unique
variances σ 2

j are constrained to be 1 both for the focal and
the reference group, the mean of the latent construct η is set
to 0 and at least one item is picked as the anchor item, which
parameters are set to be equal across groups (Chang et al.,
2017).

By means of these constraints, the two models are exactly
the same. Thus, differences in testing MI between MG-
CCFA and the MG-noGRM depend only on the level at
which MI is tested (i.e., scale or item) as well as what
measures and testing strategies are used to test it.

MI hypotheses

Generally, a measure is said to be invariant if the score
that a person obtains on a scale does not depend on his/her
belonging to a specific group but only on the underlying
psychological construct. Formally, assume that a vector of
scores on some items X is observed, where X {= X1, X2,...,
Xj }, and that a vector of scores on some latent variables
η underlies these scores, where η {= η1, η2, ..., ηr}. Then,
measurement invariance holds if:

P(X|η, g) = P(X|η). (11)

Equation (11) shows that the probability of observing a
set of scores X given the underlying latent construct (η) is
the same across all groups. Moreover, the equation is quite
general in the sense that no particular model is yet specified
for P(X|η).

As discussed above, an equivalent model for P(X|η) can
be specified for MG-CCFA and the MG-noGRM. Then, one
of the main differences in the way these two approaches test
MI is whether a test is conducted for the whole vector of
scores at once or for each element of the vector separately.
Although, in principle, both types of test can be conducted
within each approach, the former is more common in MG-
CCFA, while the latter is generally used within MG-IRT.
However, in principle, both types of test can be conducted
within each framework.

Scale level

In MG-CCFA, MI is tested for all items at once. Different
model parameters can be responsible for measurement non-
invariance, and they are tested in a step-wise fashion.
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In each step, a new model is estimated, with additional
constraints imposed on certain parameters (e.g., loadings) to
test their invariance. Then, the fit of the model to the data
is evaluated to test whether these new constraints worsen
it significantly. The latter being true indicates that at least
some of the constrained parameters are non-invariant.

Configural The starting point in MG-CCFA is testing
configural invariance. In this first step, the aim is to test
whether, across groups, the same number of factors hold
and that each factor is measured by the same items. This
is generally done by first specifying and then estimating
the same model for all groups. Afterwards, fit measures are
examined to determine whether the hypothesis of the same
model underlying all groups is rejected or not.

Metric If the hypothesis of configural invariance is not
rejected, the next step is to test the equivalence of factor
loadings. This step is also called the weak or metric
invariance step. Commonly, the factor loadings of all items
are constrained to be equal across groups. The hypothesis
being tested here is that:

Hmetric : �(g) = �. (12)

If (12) is supported, the equivalence of factor loadings
indicates that each measured variable contributes to each
latent construct to a similar extent across groups (Putnick &
Bornstein, 2016).

Scalar If metric invariance holds, scalar invariance or
invariance of the intercepts can be tested. In MG-CCFA,
though, the observed data are assumed to come from an
underlying continuous response variable X∗

j . This variable
does not have a scale and, generally, its intercept is fixed
to 0. That is why instead of the intercepts the thresholds
are tested. To test the hypothesis of equal thresholds, these
parameters are constrained to be equal across groups, while
keeping the previous constraints in place. Formally, the
hypothesis being tested is:

Hscalar : T
(g)
j = Tj for j = 1, 2, .., J. (13)

If the hypothesis in (13) is not rejected, it can be concluded
that the thresholds parameters for all items are the same
across groups. Finally, it is worth noting that, to obtain full
factorial invariance, equivalence of the residual variances
should also be tested (Meredith & Teresi, 2006). However,
many researchers do not consider this step, since it is not
relevant when comparing the mean of the latent constructs
across groups (Vandenberg & Lance, 2000).

Item level

In MG-IRT, the functioning of each item is tested separately.
An item shows differential item functioning (DIF) if the
probability of selecting a certain category on that item
differs across two groups, given the same score on the
latent construct. It is important to highlight that, when
DIF is tested following a typical MG-IRT-based approach,
configural invariance is generally assumed. Also, compared
to MG-CCFA where item parameters are firstly allowed
to differ and then constrained to be equal across groups,
testing DIF follows a different rationale. That is, the starting
assumption is that all items function equivalently across
groups. Formally:

H0 : α
(g)
j =αj = λ

(g)
j

σj

= λj

σj

, δ
(g)
j,c =δj,c = τ

(g)
j,c

λ
(g)
j

= τj,c

λj

for j = 1,2,..,J, c = 0,1,2,...,C-1.

(14)

The constraints on one item are then freed up to test
whether its parameters are invariant, while keeping the other
items constrained to be equal across groups. Afterwards, the
procedure is iteratively repeated for all the other items in
the scale. DIF can take two different forms: uniform and
nonuniform.

Uniform DIF Given two groups, an ordinal item shows uni-
form DIF when, between groups, the thresholds parameters
differ. In formal terms:

Hno unif ormDIF : δ
(g)
J/k,c = δJ/k,c = τ

(g)
J/k,c

λ
(g)
J/k

= τJ/k,c

λJ/k

for j = 1,2,..,J, c = 0,1,2,...,C-1 and for some k,

where k = 1,2,...,J.

(15)

where the subscript J/k stands for all items except item
k. Equation (15) shows the hypothesis of no uniform DIF
indicating that the thresholds of all items except item k

(τJ/k,c) are the same across groups. Furthermore, it is
interesting to note the connection between uniform DIF and
scalar invariance, since both can be seen as tests for shifts in
the threshold parameters.

Nonuniform DIF An ordinal item shows nonuniform DIF
when the loading parameter differ across two groups. The
tested hypothesis can be formally written as:

Hno nonunif ormDIF : α
(g)
J/k = αJ/k = λ

(g)
J/k

σJ/k

= λJ/k

σJ/k

for j = 1,2,..,J, c = 0,1,2,...,C-1 and for some k,

where k = 1,2,...,J.

(16)
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Equation (16) shows the hypothesis of no nonuniform DIF
indicating that for all items except item k the loadings
are the same for all groups. Note that, without any
further specification on identification constraints used to
identify the baseline model, this test differs from testing
metric invariance in MG-CCFA not only because items are
evaluated individually but also due to the presence of both
loadings λ and unique variances σ 2. However, under the
minimal identifiability constraints proposed by Chang et al.
(2017), unique variances are constrained to be 1 and equal
across groups, making this test equivalent to testing metric
invariance in MG-CCFA but for each individual item.

MI testing strategies

MG-CCFA-based

Besides commonly testing different hypotheses, MG-
CCFA and MG-IRT differ in terms of what testing
strategies/measures are used to test these hypotheses.
Within MG-CCFA, the common strategy is to estimate
two nested models and then compare how well they fit
the data. A measure of how well a model fits the data is
commonly obtained by means of a goodness-of-fit index,
which measures the similarity between the model-implied
covariance structure and the covariance structure of the
data (Cheung & Rensvold, 2002). To date, many fit indices
exist, and they can be mainly divided into three categories:
measures of absolute fit, misfit, and comparative fit (for a
more detailed review on the available measures we refer the
reader to Schreiber et al., 2006).

Absolute fit indices Absolute fit indices focus on the exact
fit of the model to the data and one of the most commonly
used is the Chi-squared (χ2) test. Imagine a MG-CCFA
model A, with χ2

ModA and dfModA indicating the model χ2

and degrees of freedom, which fits the data sufficiently well.
To test one of the MI hypotheses (e.g., metric invariance),
a new model is specified by constraining the parameters
of interest (e.g., loadings) of all items to be equal across
groups. Let us call this model B, with χ2

ModB and dfModB .
A χ2 test is then conducted by looking at the difference in
these two models:

T ∼ χ2
D(dfD) = χ2

ModB−χ2
ModA(dfModB−dfModA). (17)

A significant T (e.g., using a significance level of .05)
indicates that model B fits significantly worse, and thus that
model A should be preferred. This implies that invariance
of the constrained parameters (e.g., loadings) does not hold.
Two considerable limitations of the χ2 test are that, on the
one hand, its performance is largely underpowered for small
samples because the test statistic is only χ2-distributed as N

goes to infinity (i.e., only with large samples). On the other
hand, it is highly strict with large samples, indicating, for
example, that two models are significantly different even
when the differences in the parameters are small.

Misfit indices On top of the well-known limitations of the
χ2 test, a general counterargument towards the use of abso-
lute fit indices is that we might not be necessarily interested
in the exact fit as much as the extent of misfit in the model
(Millsap, 2012). In this case, misfit indices, such as the root
mean square error approximation (RMSEA) can be used.
This index quantifies the misfit per degrees of freedom in
the model (Browne & Cudeck, 1993). Specifically, in the
case of multiple groups, it can be expressed as:

RMSEA = √
G

√√√√max

[
χ2

ModA

dfModA

− 1

N − 1
, 0

]
. (18)

Based on which MI hypothesis is tested, different criteria
and procedures are used to determine whether the RMSEA
is acceptable. In the configural step, the absolute value of
RMSEA is used. Specifically, values between 0 and .05
indicate a “good” fit, and values between .05 and .08 are
thought to be a “fair” fit (Browne & Cudeck, 1993; Brown,
2014). In the subsequent steps, the change in the RMSEA
(�RMSEA) between the constrained and the unconstrained
model is used instead of the absolute value of the measure.
Specifically, a�RMSEA of .01 has been suggested as a cut-
off value in the case of metric invariance and, similarly, a
value of .01 should be used for scalar invariance (Cheung
& Rensvold, 2002; Chen, 2007). When the change in the
�RMSEA is higher than the specific cut-off, invariance is
rejected.

Comparative fit indices The third category of fit indices is
the one of comparative fit, where the improvement of the
hypothesized model compared to the null model is used as
an index to test MI. Differently from exact fit indices, where
the hypothesized model is compared against a saturated
model (a model with df = 0), in comparative fit indices a
comparison is conducted between the hypothesized model
and the null model, with χ2

ModNull and dfModNull . The
latter is a model in which all the measured variables are
uncorrelated (i.e., a model where there is no common
factor). It is worth to note that numerous comparative fit
measures exist and, among them, a well-known one is
the comparative fit index (CFI) (Bentler, 1990). The CFI
measures the overall improvement in the χ2 in the tested
model compared to the null model, and can be formally
written as:

CFI = 1 − χ2
ModA − dfModA

χ2
ModNull − dfModNull

(19)
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where a value of .95 is used as a cut-off value in the
configural invariance step to indicate a “good” fit (Bentler,
1990). In the subsequent steps, the common guidelines
for cut-off values focus on the change in CFI (�CFI).
Specifically, a �CFI larger than -.01 is considered to be
problematic both in the case of testing for loadings and
thresholds invariance (Cheung & Rensvold, 2002; Chen,
2007). It is worth noting that the default baseline model used
in most CFA software (e.g., lavaan; Rosseel, 2012) may
not be appropriate for testing MI and different alternatives
exist (Widaman & Thompson, 2003; Lai & Yoon, 2015).
Moreover, it is not yet clear whether the commonly accepted
cut-off values for CFI, or alternative fit measures, can be
directly applied to models that are not estimated using
maximum likelihood, and caution is thus recommended in
empirical practice when making decisions based on various
goodness-of-fit indices (Xia & Yang, 2019).

MG-IRT-based

In MG-IRT-based approaches both parametric and nonpara-
metric methods exist to test for uniform and nonuniform
DIF. In this paper, the focus is on parametric methods, where
a statistical model is assumed. Specifically, methods that
compare the models’ likelihood functions will be discussed
(for a more detailed discussion on both parametric and non-
parametric methods for DIF detection, we refer the reader
to Millsap, 2012).

Likelihood-ratio test One well-known technique for the
study of DIF is the likelihood-ratio test (LRT) (Thissen
et al., 1986; Thissen, 1988; Thissen et al., 1993). In this
test, the log-likelihood of a model with the parameters
of all items constrained to be equal across groups is
compared against the log-likelihood of the same model
with freed parameters for one item only. The former
is sometimes called the compact model (LC), while the
latter is sometimes called the augmented model (LA, Kim
& Cohen, 1998; Finch, 2005). Once these two models
are estimated and the log-likelihood (lnLC and lnLA) is
obtained, the test statistic (G2) can be calculate using the
following formula:

G2 = −2lnLC − (−2lnLA) = −2lnLC + 2lnLA. (20)

Similarly to the Chi-squared test in MG-CCFA, the test
statistic G2 is χ2 distributed with df equal to the difference
in the number of parameters estimated in the two models
(Thissen, 1988). The same procedure is then iteratively
repeated for all items. It is important to highlight that the
above equation represents an an omnibus test of DIF, which
in case of a significant result could be further inspected
by constraining only specific parameters. For example, it

would be possible to test uniform DIF by allowing only the
thresholds to vary across groups.

Logistic regression Logistic regression (LoR; Swaminathan
and Rogers, 1990) is another parametric approach that
has recently gained interest among DIF experts (Yasemin
et al., 2015). The intuition behind the LoR approach is
similar to the one of step-wise regression in which one can
test whether the model improves by sequentially entering
new predictors. The common order in which the variables
are introduced, starting with a null model where only the
intercept is estimated, is by first adding the latent construct,
then the grouping variable, and finally an interaction
between the latent construct and the grouping variable.
Formally, this sequence of models is written as:

Model 0 : logitP (yj ≥ c) = νc; (21)

Model 1 : logitP (yj ≥ c) = νc + β1η; (22)

Model 2 : logitP (yj ≥ c) = νc + β1η + β2G; (23)

Model 3 : logitP (yj ≥ c) = νc+β1η+β2G+β3ηG. (24)

In the equations above, P(yj ≥ c) is the probability of
the score on item j falling in category c or higher, and
νc is a category-specific intercept. It is worth pointing
out that, compared to the LRT, the latent variable scores
are in this case only estimated once and then treated as
observed, which can be problematic. In fact, since the latent
variable scores are estimated and not observed, there might
be uncertainty in the estimates, which could, in turn, affect
the performance of this method. Moreover, some alternative
formulations make use of sum scores instead of estimates
of latent variable scores (Rogers & Swaminathan, 1993).
Once the logistic regression models are estimated and a G2

is obtained, an omnibus DIF test can be conducted by:

G2
omnibus = G2

Model3 − G2
Model1, (25)

which is asymptotically χ2 distributed with df =2 (Swami-
nathan & Rogers, 1990). Zumbo (1999) suggested to inves-
tigate the source of bias by separately testing for uniform
and nonuniform DIF, respectively:

G2
uniDIF = G2

Model2 − G2
Model1 (26)

and:

G2
nonuniDIF = G2

Model3 − G2
Model2 (27)

where both (26) and (27) are χ2 distributed with df =1.
The omnibus test procedure (25) turned out to have an

inflated number of incorrectly flagged DIF items (type I
error; Li and Stout, 1996). To solve this issue, a combination
of a significant 2-df LRT (25) and a measure of the
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magnitude of DIF using a pseudo-R2 statistic has been
suggested as an alternative criterion (Zumbo, 1999). The
underlying idea is to treat the β coefficients as weighted
least squares estimates and look at the differences in
pseudo-R2 (�R2) measures between the model with and
without the added predictor (e.g., Cox & Snell 1989).
Specifically, to flag an item as DIF, both a significant χ2

test (with df =2) and an effect size measure with an �R2 of
at least .13 is suggested to be used (Zumbo, 1999).

Simulation studies

To evaluate the impact of MG-CCFA- and MG-IRT-based
hypotheses and testing strategies on the power to detect
violations of MI, two simulation studies were performed. In
the first study, an invariance scenario was simulated where
parameters were invariant between groups. In the second
study, a non-invariance scenario was simulated where model
parameters varied between groups.

Simulation Study 1: invariance

In the first study, three main factors were manipulated:

1. The number of items at two levels: 5, 25, to simulate a
short and a long scale;

2. The number of categories for each item at two levels: 3,
5;

3. The number of subjects within each group at two levels:
250, 1000.

These factors were chosen to represent situations that
can be encountered in psychological measurement. For
example, the two levels at which the scale length varies are
representative of (i) short scales that are used as an initial
screening or to save assessment time in case of multiple
administrations (e.g., clinical setting), and (ii) long scales
typically used to obtain a more detailed and clear evaluation
of the measured psychological construct. For the number
of categories, the two levels mimic items constructed to
capture a less or more nuanced degree of an agreement.
Finally, the two simulated sample sizes resemble studies
with “relatively” small samples (e.g., clinical setting) and
with large samples (e.g., cross-cultural research).

A full-factorial design was used with 2 (number of
items) x 2 (number of categories) x 2 (number of subjects
within each group) = 8 conditions. For each condition, 500
replications were generated.

Method

Data generation Data were generated from a factor model
with one factor and two groups. The population values of

the model parameters were chosen prior to conducting the
simulation study and are reported in Table 1. Note that, for
both groups, the factor mean and variance was set to 0 and 1,
respectively. The choice of the values began with specifying
the standardized loadings. Specifically, they were selected
to resemble the ones commonly found in real applications
with items having medium to high correlation with the
common factor but differing among them (Stark et al., 2006;
Wirth & Edwards, 2007; Kim & Yoon, 2011).

The second step was to select the thresholds and, in order
to choose them, continuous data with 10,000 observations
were firstly generated under a factor model using the
loadings in Table 1. Afterwards, using the distribution of the
item scores for item 1, which was subsequently used as the
anchor item, the tertiles (for items with three categories) and
the quintiles (for items with five categories) were calculated.
Then, the generation of the remaining thresholds proceeded
by shifting the tertiles/quintiles of the first item by half
a standard deviation. In detail, for both the three- and
five-categories case, we shifted the thresholds value of the
second and fifth item by + .50 and of the third and fourth
item by - .50 (as can be seen from Table 1). In the conditions
with 25 items, the same parameters in Table 1 were repeated
five times. For all estimated models, we used the minimal
identification constraints described in Eqs. (7) through (10)
to identify the baseline model, and item 1 was used as the
anchor item.

Data analysis

Scale level The specification of the MG-CCFA models
to test MI followed the common steps of a general MI
testing procedure as described in Sect. 2.2.1. Specifically,
in the configural step, a unidimensional factor model was
fitted to both groups allowing loadings and thresholds
to differ between groups (configural invariant model). In
the metric step, factor loadings were constrained to be
equal across groups while allowing the thresholds to be
freely estimated (metric invariant model). In the scalar step,
both factor loadings and thresholds were constrained to be
equal across groups (scalar invariant model). Afterwards,
a χ2 test (α = .05) was conducted between: (i) the model
estimated in the configural and the metric step to test for
loadings invariance, and (ii) the model estimated in the
metric and scalar step to test for thresholds invariance.
Additionally, the change in RMSEA (�RMSEA) and in
CFI (�CFI) was calculated between the just mentioned
models. Loadings non-invariance was concluded if at least
one of the following criteria were met: a significant χ2

test, a �RMSEA > .01 or a �CFI < -.01. Additionally,
since the common guidelines reported in the literature
recommend to base decisions about (non)invariance of
parameters using various indices, a combined criterion was
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Table 1 Population values used in the simulation study

Item 3 categories 5 categories

λ σ 2 κ τ1 τ2 τ1 τ2 τ3 τ4

1 .5 0.75 0 -0.38 0.38 -0.84 -0.25 0.25 0.84

2 .7 0.51 0 0.12 0.88 -0.34 0.25 0.75 1.34

3 .6 0.64 0 -0.88 -0.12 -1.34 -0.75 -0.25 0.34

4 .4 0.84 0 -0.88 -0.12 -1.34 -0.75 -0.25 0.34

5 .3 0.91 0 0.12 0.88 -0.34 0.25 0.75 1.34

created. According to this combined criterion, loadings
non-invariance at the scale level was concluded if both a
significant χ2 test and at least one between a �RMSEA
> .01 or a �CFI < -.01 was found (Putnick & Bornstein,
2016). Thresholds non-invariance at the scale level was
concluded if at least one of the following criteria was met:
a significant χ2 test, a �RMSEA > .01 or a �CFI < -
.01. Also, in this case, a combined criterion was created.
Specifically, a scale was considered non-invariant with
respect to thresholds if both a significant χ2 and at least one
between a �RMSEA > .01 or a �CFI < -.01 was found.
All MG-CCFA models were estimated using diagonally
weighted least squares (DWLS), but the full weight matrix
was used to compute the mean-and-variance-adjusted test
statistics (default in lavaan; Rosseel, 2012). This is a two-
step procedure, where in the first step the thresholds and
polychoric correlation matrix are estimated, and then, in the
second step, the remaining parameters are estimated using
the polychoric correlation matrix from the previous step.

In MG-IRT-based procedures, MI is tested for each item
individually. Therefore, to conduct a test at the scale level,
we decided to flag the scale as non-invariant if at least one
item was flagged as non-invariant, correcting for multiple
testing. Two different testing strategies were considered: the
logistic regression (LoR) procedure and the likelihood-ratio
test (LRT). Within LoR, two different criteria were used to
flag an item as non-invariant. The first criterion is based
on the likelihood-ratio test (LRT). Specifically, an item was
non-invariant, either with respect to loadings or thresholds,
in the case of a significant χ2 test (α = .05) between
a model where the latent construct score, the grouping
variable and an interaction between the two are included
(see formula 24) and a model with only the latent construct
score (see formula 22) (Swaminathan & Rogers, 1990). The
second criterion, which will from this point on be called R2,
combines the just mentioned χ2 test with a measure of the
magnitude of DIF. The latter is obtained by computing the
difference between a pseudo-R2 measure between the two
above-mentioned models (�R2). Using this approach, an
item was flagged as non-invariant when both a significant χ2

test and a �R2 > .02 were found (Choi, Gibbons, & Crane,
2011). Specifically, in this simulation study, the McFadden

pseudo-R2 measure was used (Menard, 2000). In the case
of the LRT, two different models per item were estimated.
In one model the constraints on the thresholds were released
for a specific item (uniform DIF model), while in the other
the constraint on the loading was released (nonuniform DIF
model). Additionally, a model with all items constrained
to be equal was estimated (fully constrained model). An
item was flagged as non-invariant with respect to thresholds
in case of a statistically significant 1-df LRT (α = .05)
between the fully constrained model and the uniform DIF
model. Similarly, an item was flagged as non-invariant with
respect to loadings in case of a statistically significant 1-
df LRT (α = .05) between the fully constrained model and
the nonuniform DIF model. This procedure was repeated
iteratively for all the other items. Since multiple tests are
conducted for the scale, a Bonferroni correction was used.

Item level In order to test MI at the item level using a
MG-CCFA-based testing strategy, a backward/step-down
procedure was used (Kim & Yoon, 2011; Brown, 2014).
The rationale is the same as the one just described in the
LRT for MG-IRT. Specifically, the constraints (either on
the thresholds or on the loading) were released for only
one item, while keeping all the other items constrained to
be equal. Hence, for each item, two different models were
estimated. Then, the χ2 test (α = .05) was conducted and the
�RMSEA and �CFI calculated. This procedure was then
repeated iteratively for all the other items. Note that, due
to the multiple tests conducted, Bonferroni correction was
used. For MG-IRT-based procedures, the same procedures
and criteria used at the scale level were used to test MI at the
item level (but without applying a Bonferroni correction).

Outcome measures The convergence rate (CR) and the
false-positive rate (FPR) were calculated both for MG-
CCFA- and MG-IRT-based procedures both at the scale
level and at the item level. The CR indicates the proportion
of models that converged while the FPR represents the
scales/items incorrectly flagged as non-invariant. If models
did not converge, new data were generated and models were
rerun in order to always calculate the FPR based on 500
repetitions.
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Data simulation, software, and packages The data were
simulated and analyzed using R (Core Team, 2013).
Specifically, for estimating MG-CCFA and obtaining fit
measures, the R package lavaan was used (Rosseel, 2012),
while for LoR and the LRT lordif (Choi et al., 2011) and
mirt (Chalmers, 2012) were used, respectively.

Results

Convergence rate The convergence rate was almost 100%
for all the considered approaches across all the conditions.
Models’ non-convergence was observed only for a few
conditions with small sample size as well as short scales and
never exceeded 1%. The tables showing the complete results
can be found in the Appendix (Tables 10 through 13)

Scale-level performance The scale-level results when load-
ings equivalence was tested are reported in Table 2. For
MG-CCFA-based approaches, �RMSEA showed a FPR
> .10 in the conditions with short scales, whereas, for
�CFI, this discrepancy was observed only in the condi-
tions with both small sample size and short scales. Within
MG-IRT-based approaches, the results were quite different,
depending on the testing strategy. For the LoR approach,
using the LRT criterion, the results obtained in this simula-
tion study align with the ones in the existing literature, with
an evident inflation of the FPR (overall, FPR > .40) (Rogers
& Swaminathan, 1993; Li & Stout, 1996). For the R2 cri-
terion, where a combination of the LRT and a pseudo-R2

measure was used, the FPR was at or below the chosen α

level using the R2 criterion, with an inflated FPR only in
the case with N = 250, C = 3 and J = 5 (FPR = 0.182).

One possible explanation is that, due to the small amount
of information available for each person in this condition,
there is more uncertainty in the estimated scores of the latent
construct. Since these estimates are then used as observed
variables in the LoR procedure, they are likely to produce a
larger number of items incorrectly flagged as non-invariant.
Finally, the LRT showed an acceptable FPR in all conditions
when testing for loadings equivalence at the scale level.

The results of the simulation study when equivalence
of thresholds was tested at the scale level are reported in
Table 3. For MG-CCFA-based methods, the FPR was above
.10 for �RMSEA in the conditions with short scales and for
�CFI in the conditions with short scales and small sample
size. The combined criterion and the χ2 test provided
acceptable FPR rates across conditions. For MG-IRT-based
testing strategies, the obtained results are similar to the
ones observed in the case of testing loadings equivalence.
Specifically, for the LoR approach, the R2 criterion
performed well in all conditions except when N = 1000,
C = 3 and J = 5 (FPR = .189). Moreover, the LRT criterion
for LoR showed an evident inflation across all conditions.
Finally, the LRT performed well in all conditions.

Item-level performance The results when loadings equiva-
lence was tested at the item level are reported in Table 4.
For MG-CCFA, all fit measures performed well as indicated
by the FPRs that were close to the nominal α level. For MG-
IRT using the LoR procedure, the LRT criterion produced
a high number of false positives with short scales. More-
over, the results for both the R2 criterion and the LRT were
within the chosen α level in almost all conditions, and never
exceeded 0.06.

Table 2 Loadings’ FPR scale level - invariance scenario

FPR scale level - loadings

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J Comb χ2 �RMSEA �CFI LRT R2 LRT

250 3 5 0.052 0.052 0.165 0.167 0.577 0.182 0.030

25 0.036 0.040 0.072 0.032 0.399 0.026 0.032

5 5 0.034 0.034 0.194 0.178 0.502 0.022 0.026

25 0.048 0.058 0.074 0.032 0.406 0 0.038

1000 3 5 0.046 0.048 0.100 0.024 0.628 0 0.032

25 0.008 0.052 0.008 0 0.438 0 0.048

5 5 0.042 0.046 0.102 0.020 0.546 0 0.038

25 0.008 0.064 0.008 0 0.366 0 0.032

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR = Logistic regression with MG-IRT; MG-IRT LRT =
Likelihood-ratio test with MG-IRT; N = Sample size within each group; C = Number of categories; J = Number of items; Comb = combination of
χ2, �RMSEA and �CFI
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Table 3 Thresholds’ FPR scale level - invariance scenario

FPR scale level - thresholds

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J Comb χ2 �RMSEA �CFI LRT R2 LRT

250 3 5 0.042 0.042 0.180 0.252 0.660 0.189 0.036

25 0.020 0.042 0.014 0.014 0.404 0.020 0.032

5 5 0.038 0.038 0.178 0.228 0.527 0.020 0.036

25 0.036 0.050 0.048 0.020 0.370 0 0.042

1000 3 5 0.044 0.044 0.118 0.066 0.626 0.002 0.042

25 0 0.046 0 0 0.442 0 0.030

5 5 0.054 0.054 0.124 0.080 0.528 0 0.034

25 0.002 0.040 0.002 0 0.384 0 0.036

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR = Logistic regression with MG-IRT; MG-IRT LRT =
Likelihood-ratio test with MG-IRT; N = Sample size within each group; C = Number of categories; J = Number of items; Comb = combination of
χ2, �RMSEA and �CFI

Finally, the results when testing thresholds equivalence
at the item level are reported in Table 5. For MG-CCFA,
all criteria performed reasonably well with some small
inflations for �CFI in the conditions with small sample
size and short scales. For MG-IRT-based testing strategies,
only the LRT criterion for the LoR approach showed a FPR
higher than the chosen α level with J = 5.

Simulation Study 2: Non-invariance

In the second simulation study, three more factors were
included to evaluate the performance of the studied

approaches, with their respective testing strategies, in
detecting violations of MI when parameters were non-
invariant across groups. On top of varying the scale length,
the number of categories and the sample size we now also
vary:

1. Percentage of items with non-invariant loadings at 3
levels: 20%, 40% aligned, and 40% misaligned;

2. Percentage of items with non-invariant thresholds at 3
levels: 20%, 40% aligned, and 40% misaligned;

3. The amount of bias imposed for each non-invariant
parameter at two levels: small and large.

Table 4 Loadings’ FPR item level - invariance scenario

FPR item level - loadings

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J Comb χ2 �RMSEA �CFI LRT R2 LRT

250 3 5 0.039 0.046 0.077 0.060 0.243 0.053 0.047

25 0.002 0.055 0.002 0 0.022 0.001 0.050

5 5 0.050 0.061 0.089 0.058 0.202 0.005 0.051

25 0.002 0.059 0.002 0 0.020 0 0.049

1000 3 5 0.025 0.047 0.031 0.006 0.239 0 0.045

25 0 0.052 0 0 0.021 0 0.057

5 5 0.028 0.058 0.038 0.002 0.200 0 0.059

25 0 0.052 0 0 0.021 0 0.047

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR = Logistic regression with MG-IRT; MG-IRT LRT =
Likelihood-ratio test with MG-IRT; N = Sample size within each group; C = Number of categories; J = Number of items; Comb = combination of
χ2, �RMSEA and �CFI
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Table 5 Thresholds’ FPR item level - invariance scenario

FPR item level - thresholds

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J Comb χ2 �RMSEA �CFI LRT R2 LRT

250 3 5 0.048 0.056 0.072 0.100 0.236 0.053 0.051

25 0 0.048 0 0 0.022 0.001 0.053

5
5 0.046 0.050 0.080 0.108 0.194 0.010 0.048

25 0 0.050 0 0 0.020 0 0.050

1000
3

5 0.028 0.052 0.032 0.015 0.256 0 0.048

25 0 0.051 0 0 0.021 0 0.049

5
5 0.034 0.052 0.032 0.017 0.179 0 0.040

25 0 0.049 0 0 0.020 0 0.048

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR = Logistic regression with MG-IRT; MG-IRT LRT =
Likelihood-ratio test with MG-IRT; N = Sample size within each group; C = Number of categories; J = Number of items; Comb = combination of
χ2, �RMSEA and �CFI

The first three factors (i.e., number of items, number of
categories for each item and number of subjects within each
group) were the ones used in the previous simulation study.
Additionally, to simulate differences in loadings/thresholds
across groups, the values of the parameters were changed
either for 20% or 40% of the items. Moreover, in the
condition with 40% of the items having non-invariant
loadings, the values were either increased for all items (e.g.,
all loadings on one group are higher), or increased for half
of the items and decreased for the other half (e.g., in the
condition with five items, where the values of two loadings
are changed, one was increased and the other decreased).
The former was labeled as an aligned change while the latter
as a misaligned change.

The same procedure was followed for the shifts in
thresholds both in terms of percentage of items with non-
invariant thresholds and for the aligned or misaligned shifts.
Note that, since each item has more than one threshold, all
the thresholds of that item were shifted.

The percentages of items showing non-invariant load-
ings/thresholds were chosen to represent situations that can
be observed in psychological measurement. For instance,
situations with a well-functioning scale where only one item
(in the case of short scales) or a few items (in the case of long
scales) seem to function differently across groups or, alter-
natively, situations with a bad functioning scale where
almost half of the items function differently across groups.
Aligned differences were simulated to represent scales where
items favor only one group, while misaligned differences
mimic a situation where different items favor different groups.

The manipulated violations of MI, both for loadings and
thresholds, were either small or large in order to represent

both semi-bad functioning items and bad functioning items.
On the one hand, a difference of .1 or .2 was used to simulate
small and large changes in the standardized factor loadings,
respectively. The chosen values substantially increase the
variance accounted by the factor for the item. For example,
in a standardized factor loading of .7 the explained variance
of the item by the factor is .72 = .49. If the loading is
increased by .1 the explained variance will then be .82

= .64. Also, in case of a big change (.2), the explained
variance will become .92 = .81. On the other hand, for
the shifts in thresholds, the parameters of one group were
shifted by either a quarter (.25) or half a standard deviation
(.50) to simulate small and large violations of thresholds
non-invariance.

In total, 2 (number of items) x 2 (number of categories)
x 2 (number of subjects within each group) x 3 (percentage
of non-invariant loadings) x 3 (percentage of non-invariant
thresholds) x 2 (amount of bias imposed) = 144 conditions
were simulated for the conditions with non-invariance in
the loadings and the thresholds. For each condition, 500
replications were generated.

Method

Data analysis Like in the first simulation study, the data
were generated from a factor model with one factor and
two groups. The population parameters were the same as
used in the first simulation study and they were varied,
based on the condition, as just explained above. Moreover,
the procedures used to specify and estimate the models,
both at the scale and at the item level, were the same
ones used previously. Differently from before, only a subset
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of the criteria was used to flag a scale/item as non-
invariant. Specifically, only the criteria that showed an
acceptable FPR across all conditions in the first simulation
study are reported. This was done because procedures with
unacceptable FPRs should not be considered for testing MI,
and hence considering them here would not make sense.
Thus, for MG-CCFA, only the results of the combined
criterion and χ2 test are reported, while for MG-IRT-based
procedures the LRT approach and, for the LoR approach,
only the results of the R2 criterion.

Outcome measures The convergence rate (CR), true-
positive rate (TPR) and false-positive rate (FPR) were calcu-
lated both for the MG-CCFA- and MG-IRT-based proce-
dures both at the scale and at the item level. Here, the TPR
represents the proportion of non-invariant scales/items that
are correctly identified as such, while the FPR represents the
proportion of non-invariant scales/items that are incorrectly
identified as such. If models did not converge, new data
were generated and models were rerun in order to always
calculate the TPR and the FPR for 500 repetitions.

Results

Convergence rate

Scale level The results of the CR when testing loadings
equivalence at the scale level in the non-invariance scenario
are displayed in Table 14 in the Appendix. In the conditions
with large sample size, the CR when testing loadings
equivalence at the scale level was above 99% for all the
approaches. Compared to the conditions with a large sample
size, the CR dropped in the conditions with small sample
size and 40% of the items showing large misaligned changes
in loadings. Specifically, the CR for MG-CCFA was .978
when J = 5 and C = 3 while for MG-IRT using the LoR
approach the CR was around .9 with N = 250, J = 25 and
both for items that had 3 or 5 categories.

The results of the CR when testing thresholds equiva-
lence at the scale level in the non-invariance scenario are
displayed in Table 15 in the Appendix. For MG-CCFA, the
CR was generally lower in the conditions with large shifts
in the thresholds compared to the conditions with small
shifts. For example, with N = 250, C = 3, J = 5, and large
misaligned shifts in the thresholds parameters the CR was
.828. This lower CR could be due to a specific issue with
the estimation procedure. In fact, using DWLS, the estima-
tion heavily relies on the first step, where the thresholds
and the polychoric correlation matrix are estimated. Large
differences in thresholds between the two groups might
affect this first step and, in turn, the remaining part of the
procedure. On the contrary, for MG-IRT-based approaches,
the CR was always above 99%.

Item level The results of the CR when testing loadings
equivalence at the item level in the non-invariance scenario
are displayed in Table 16 in the Appendix. These
results closely resemble the ones observed when loading
equivalence was tested at the scale level. Specifically, the
CR was below .98 for MG-CCFA only in the condition with
N = 250, C = 3, J = 5, and large misaligned changes in
loadings in 40% of the items. Moreover, for MG-IRT using
the LoR approach the CR was around .89 when N = 250,
J = 25, and with large misaligned changes in the loadings,
regardless of the number of categories for each item.

The results of the CR when testing thresholds equiva-
lence at the item level in the non-invariance scenario are
displayed in Table 17 in the Appendix. For MG-CCFA, sim-
ilar to what was observed at the scale level, the CR dropped
in the conditions with small sample size, big shifts in thresh-
olds and short scales compared to the other conditions. For
example, the lowest CR was observed in the condition with
N = 250, C = 3, J = 5 and large misaligned shifts in thresh-
olds (CR = 0.798). However, for MG-IRT-based approaches
the CR was always above 99%.

Scale-level performance The results of the TPR when
testing loadings equivalence at the scale level in the non-
invariance scenario are displayed in Table 6. Although
none of the approaches was particularly sensitive to small
changes in loadings, the χ2 test often outperformed the
other testing strategies in all conditions. For MG-CCFA, in
addition to the χ2 test, a combined criterion was used to
flag scales or items as non-invariant, and Table 20 in the
Appendix displays the TPRs for each of the measures that
form this combined criterion. For �CFI, the results seemed
to highly depend on the length of a scale. In fact, for long
scales, when small loading differences were simulated and
the sample size was large, the TPRs drastically dropped
reaching values generally close to 0. Also, since in the first
simulation study the LoR approach with N = 250, J = 5
and C = 3 had an unacceptable FPR, the results in this
simulation study are reported in red indicating that they
should not be considered.

The results of the TPR when testing thresholds equiva-
lence at the scale level in the non-invariance scenario are
displayed in Table 7, and the results for each of the fit
measures forming the combined criterion are displayed in
the Appendix in Table 21. The χ2 test for MG-CCFA
was remarkably sensitive to differences in thresholds and
outperformed all the other approaches, regardless of other
simulated conditions. In addition, LoR’s TPR was lower
than the one of MG-CCFA and the LRT, in almost all con-
ditions, and especially when the sample size was large.
However, in the case of large misaligned shifts, the TPR was
almost always the same as it was for MG-CCFA and the
LRT.
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Table 6 Loadings’ TPR scale level - non-invariance scenario

TPR scale level - loadings

MG-CCFA MG-IRT

Comb χ2 LoR LRT

N C J % small large small large small large small large

250 3 5 20% 0.052 0.044 0.052 0.044 0.048 0.043

40% 0.078 0.124 0.078 0.124 0.054 0.079

40% ± 0.082 0.218 0.082 0.218 0.048 0.088

25 20% 0.124 0.284 0.140 0.332 0.030 0.092 0.076 0.094

40% 0.118 0.474 0.144 0.532 0.044 0.176 0.064 0.166

40% ± 0.272 0.916 0.306 0.922 0.075 0.365 0.109 0.300

5 5 20% 0.054 0.048 0.054 0.048 0.018 0.018 0.048 0.030

40% 0.076 0.122 0.076 0.122 0.032 0.052 0.054 0.086

40% ± 0.124 0.268 0.124 0.268 0.052 0.103 0.080 0.154

25 20% 0.126 0.410 0.164 0.474 0 0.008 0.062 0.164

40% 0.182 0.692 0.218 0.764 0.002 0.020 0.080 0.256

40% ± 0.274 0.972 0.358 0.986 0.002 0.118 0.114 0.376

1000 3 5 20% 0.060 0.084 0.062 0.094 0 0 0.044 0.098

40% 0.130 0.366 0.140 0.384 0 0.032 0.084 0.322

40% ± 0.204 0.714 0.206 0.714 0.004 0.064 0.092 0.506

25 20% 0.136 0.712 0.390 0.974 0 0 0.138 0.584

40% 0.256 0.940 0.622 1 0 0 0.216 0.718

40% ± 0.500 1 0.892 1 0 0.008 0.298 0.980

5 5 20% 0.054 0.106 0.060 0.110 0 0 0.052 0.128

40% 0.164 0.500 0.182 0.542 0 0 0.108 0.440

40% ± 0.238 0.852 0.262 0.860 0 0.006 0.144 0.692

25 20% 0.174 0.872 0.478 0.998 0 0 0.186 0.720

40% 0.342 0.990 0.732 1 0 0 0.260 0.858

40% ± 0.758 1 0.976 1 0 0 0.398 1

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR = Logistic regression with MG-IRT; MG-IRT LRT =
Likelihood-ratio test with MG-IRT; N = Sample size within each group; C = Number of categories; J = Number of items; % = percentage of items
affected by DIF (± misaligned); small = small bias; large = large bias; values in red = FPR ≥ .10 in the invariance scenario

Item-level performance The results of the TPR when testing
loadings equivalence at the item level in the non-invariance
scenario are displayed in Table 8. The results of the FPR
were also calculated and are displayed in Table 18 in the
Appendix. The χ2 test often resulted in a TPR higher than
the other approaches in all conditions. However, for this test,
the FPR was generally > .1, especially in conditions with
large sample size; we marked these TPRs with *, to indicate
that these results should be interpreted with caution. Similar
to the scale-level results, all testing strategies hardly detect
non-invariance when small changes in the loadings were
simulated for short scales, reaching a maximum TPR of .267
in the condition with misaligned changes affecting 40% of
the items, N = 1000 and C = 5. Difficulties in flagging

non-invariant items were even more pronounced in the con-
ditions with long scales for the combined criterion, showing
that loadings nonequivalence was not detected in most
cases. The performance of each of the fit measures forming
this criterion, for MG-CCFA, was further investigated.
These results are displayed in the appendix in Table 22.
For both �RMSEA and �CFI, when small loading changes
were simulated, the results seemed to highly depend on the
length of a scale. In fact, for long scales, both measures
rarely detected changes in loadings. For MG-IRT-based
approaches, differences in loadings were rarely detected by
the LoR approach regardless of the condition, and with even
lower frequencies when the sample size increases. The LRT
outperformed LoR in all conditions in terms of the TPR.
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Table 7 Thresholds’ TPR scale level - non-invariance scenario

TPR scale level - thresholds

MG-CCFA MG-IRT

Comb χ2 LoR LRT

N C J % small large small large small large small large

250 3 5 20% 0.358 0.908 0.358 0.908 0.131 0.448

40% 0.720 1 0.720 1 0.285 0.759

40% ± 0.652 0.996 0.654 0.996 0.246 0.864

25 20% 0.414 1 0.742 1 0.144 0.932 0.264 0.884

40% 0.392 1 0.716 1 0.168 0.948 0.268 0.902

40% ± 0.906 1 0.996 1 0.832 1 0.468 0.996

5 5 20% 0.396 0.974 0.396 0.974 0.076 0.449 0.104 0.512

40% 0.766 1 0.766 1 0.118 0.475 0.230 0.800

40% ± 0.806 1 0.806 1 0.319 0.989 0.271 0.911

25 20% 0.560 1 0.738 1 0.022 0.602 0.254 0.922

40% 0.630 1 0.742 1 0.032 0.592 0.244 0.876

40% ± 0.996 1 1 1 0.612 1 0.400 0.996

1000 3 5 20% 0.956 1 0.956 1 0.026 0.474 0.550 1

40% 1 1 1 1 0.022 0.571 0.888 1

40% ± 1 1 1 1 0.202 1 0.978 1

25 20% 0.828 1 1 1 0 0.556 0.954 1

40% 0.802 1 1 1 0 0.556 0.944 1

40% ± 1 1 1 1 0.626 1 1 1

5 5 20% 0.984 1 0.984 1 0 0.226 0.598 1

40% 1 1 1 1 0 0.220 0.910 1

40% ± 1 1 1 1 0.018 1 0.986 1

25 20% 0.980 1 1 1 0 0.024 0.958 1

40% 0.972 1 1 1 0 0.030 0.964 1

40% ± 1 1 1 1 0.430 1 1 1

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR = Logistic regression with MG-IRT; MG-IRT LRT =
Likelihood-ratio test with MG-IRT; N = Sample size within each group; C = Number of categories; J = Number of items; % = percentage of items
affected by DIF (± misaligned); small = small bias; large = large bias; values in red = FPR ≥ .10 in the invariance scenario

The results of the TPR when testing thresholds equiv-
alence at the item level in the non-invariance scenario are
displayed in Table 9. The results of the FPR were also calcu-
lated and are displayed in Table 19 in the Appendix. The χ2

test for MG-CCFA generally outperformed all the remain-
ing approaches, regardless of the other factors. In addition,
small differences in thresholds in the conditions with N =
1000 were rarely (or never) detected by the MG-CCFA-based
combined criterion. Again, we inspected the TPR for each
of the MG-CCFA-based fit measures that formed this cri-
terion, and the results are displayed in Table 23 in the
Appendix. The �RMSEA and �CFI TPRs were heavily
affected by the length of the scale, and both criteria rarely
flagged non-invariant items, especially in the conditions
where small threshold differences were simulated.

Conclusions

Based on the results observed in the invariance scenario,
we can conclude that, for only some of the MG-CCFA-
and MG-IRT-based testing strategies a FPR below or at the
chosen α level was found. In fact, among the considered
testing strategies used to flag a scale/item as non-invariant,
quite many methods had an inflated type I error. For MG-
CCFA-based criteria, the FPR was often below or at the
chosen α level for the χ2 test or when a combination of
a χ2 test and an alternative fit measure (e.g., RMSEA or
CFI) was used. For MG-IRT-based approaches, the LRT
provided a well-controlled FPR in all conditions regardless
of whether the test was conducted at scale or at the item
level. The LoR approach for MG-IRT showed an inflated
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Table 8 Loadings’ TPR item level - non-invariance scenario

TPR item level - loadings

MG-CCFA MG-IRT

Comb χ2 LoR LRT

N C J % small large small large small large small large

250 3 5 20% 0.038 0.060 0.052 0.076 0.004 0.004 0.061 0.064

40% 0.052 0.088 0.061 0.103 0.055 0.088 0.067 0.116

40% ± 0.077 0.192 0.091 0.205 0.063 0.119 0.068 0.142

25 20% 0.007 0.015 0.107 0.259 0.004 0.019 0.087 0.224

40% 0.003 0.007 0.078 0.162* 0.003 0.015 0.084 0.200

40% ± 0.006 0.037 0.147 0.426 0.006 0.041 0.096 0.252

5 5 20% 0.066 0.084 0.080 0.106 0 0 0.074 0.114

40% 0.054 0.130 0.060 0.135 0.005 0.028 0.071 0.173

40% ± 0.095 0.277 0.111 0.291 0.016 0.056 0.085 0.205

25 20% 0.005 0.016 0.129 0.317 0 0.002 0.110 0.251

40% 0.005 0.003 0.094 0.194* 0 0.002 0.111 0.230

40% ± 0.008 0.032 0.172 0.533 0.001 0.012 0.111 0.303

1000 3 5 20% 0.042 0.074 0.096 0.182 0 0 0.098 0.178

40% 0.071 0.213 0.114 0.318* 0.001 0.013 0.109 0.338

40% ± 0.155 0.486 0.224 0.645* 0.001 0.045 0.136 0.421

25 20% 0 0.001 0.274 0.705* 0 0 0.250 0.618

40% 0 0 0.160* 0.465* 0 0 0.217 0.621

40% ± 0 0.003 0.422 0.932 0 0.001 0.261 0.707

5 5 20% 0.042 0.134 0.114 0.238 0 0 0.112 0.206

40% 0.092 0.256 0.146 0.382* 0 0 0.156 0.454

40% ± 0.174 0.526 0.267 0.754* 0 0.002 0.159 0.507

25 20% 0.001 0 0.323 0.818* 0 0 0.283 0.725

40% 0 0 0.207* 0.559* 0 0 0.288 0.732

40% ± 0 0.003 0.491 0.978 0 0 0.298 0.812

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR = Logistic regression with MG-IRT; MG-IRT LRT =
Likelihood-ratio test with MG-IRT; N = Sample size within each group; C = Number of categories; J = Number of items; % = percentage of items
affected by DIF (± misaligned); small = small bias; large = large bias;
* = FPR ≥ .10

FPR when the LRT criterion was used, while adopting a
combination of both the LRT criterion and a pseudo-R2

measure resulted in a low FPR in (almost) all conditions.
Based on the results observed in the non-invariance scena-

rio, we can conclude that, when testing loadings equivalence,
small changes in loadings are hard to detect regardless of
whether a test is performed at the scale level or at the item
level. Furthermore, the χ2 test generally outperformed MG-
IRT-based testing strategies when loadings non-invariance
was tested at the scale level, whereas the LRT outperformed
MG-CCFA-based testing strategies and LoR when loadings
non-invariance was tested at the item level. In fact, while
the item-level χ2 test was more sensitive than the item-level

LRT to changes in loadings, the FPR for the χ2 test was gene-
rally above the nominal α level, and especially high in condi-
tions with large sample size. The latter result is in line with
previous literature, which suggested that the item-level LRT
outperforms MG-CCFA-based approaches when considering
both TPR and FPR (Kim&Yoon, 2011). Therefore, in empi-
rical practice, the item-level LRT might be preferred if one
aims at testing loading equivalence for each item separately.
In addition, when testing threshold equivalence, the χ2 test
outperformed all the other testing strategies both when MI
was tested at the scale and item level. Furthermore, in
the non-invariance scenario, for MG-CCFA, a combined
criterion was used to flag scales/items as non-invariant, and
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Table 9 Thresholds’ TPR item level - non-invariance scenario

TPR item level - thresholds

MG-CCFA MG-IRT

Comb χ2 LoR LRT

N C J % small large small large small large small large

250 3 5 20% 0.536 0.976 0.586 0.988 0.014 0.112 0.214 0.660

40% 0.643 0.986 0.647 0.986 0.059 0.289 0.312 0.763

40% ± 0.555 0.984 0.566 0.984 0.239 0.543 0.293 0.784

25 20% 0.003 0.143 0.648 0.997 0.010 0.372 0.349 0.886

40% 0.002 0.127 0.646 0.997 0.019 0.342 0.336 0.886

40% ± 0 0.130 0.657 0.998 0.153 0.655 0.360 0.885

5 5 20% 0.626 0.994 0.674 0.996 0.002 0.011 0.198 0.738

40% 0.689 0.999 0.696 0.999 0.018 0.084 0.305 0.810

40% ± 0.675 0.999 0.678 0.999 0.131 0.503 0.309 0.813

25 20% 0.006 0.368 0.724 0.999 0.002 0.098 0.362 0.880

40% 0.008 0.360 0.724 0.999 0.001 0.098 0.353 0.879

40% ± 0.004 0.357 0.726 0.998 0.100 0.526 0.339 0.875

1000 3 5 20% 0.978 1 0.988 1 0 0 0.758 1

40% 0.993 1 0.999 1 0 0.055 0.869 1

40% ± 0.976 1 0.994 1 0.116 0.500 0.857 0.998

25 20% 0 0.117 1 1 0 0.157 0.918 1

40% 0 0.146 0.997 1 0 0.182 0.908 1

40% ± 0 0.124 0.998 1 0.072 0.579 0.920 1

5 5 20% 0.998 1 0.998 1 0 0 0.808 1

40% 0.998 1 1 1 0 0 0.894 1

40% ± 0.990 1 0.998 1* 0.009 0.500 0.889 1

25 20% 0 0.648 0.999 1 0 0.004 0.904 1

40% 0 0.664 1 1 0 0.007 0.903 1

40% ± 0 0.620 1 1 0.046 0.497 0.907 1

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR = Logistic regression with MG-IRT; MG-IRT LRT =
Likelihood-ratio test with MG-IRT; N = Sample size within each group; C = Number of categories; J = Number of items; % = percentage of items
affected by DIF (± misaligned); small = small bias; large = large bias;
* = FPR ≥ .10

we further inspected the TPRs for each of the measures
that form this combined criterion. These results, for the
scale- and item-level tests, are displayed in the Appendix in
Tables 20 through 23, respectively. In particular, the TPRs
for�RMSEA and�CFI were heavily affected by both scale
length and the level at which MI was tested (scale or item).
Specifically, for long scales, these two measures hardly
detected changes in loadings and thresholds, especially
when the test was conducted at the item level.1 This result is

1Note that in our simulation studies, the length of the scale was varied
only at two levels (5,25). For this reason, we advise the reader to be
cautious in generalizing these results to scales of different lengths.

especially relevant in empirical practice, where researchers
commonly base MI decisions on multiple criteria (Putnick
& Bornstein, 2016). Based on our results, we would
discourage researchers to use any of these fit measures, in
particular when testing MI for each item individually.

Discussion

When comparing psychological constructs across groups,
testing for measurement invariance (MI) plays a crucial role.
With ordinal data, multiple group categorical confirmatory
factor analysis (MG-CCFA) and multiple group item
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response theory (MG-IRT) models can be made equivalent
using a set of minimal identification constraints (Chang
et al., 2017). Still, differences between these two approaches
exist in the context of MI testing. These differences are
reflected in: (i) the hypotheses being tested, and (ii) the
testing strategies/measures used to test these hypotheses.
In this paper, two simulation studies were conducted to
evaluate the performance of the different testing strategies
and measures in testing MI when: (i) the test is conducted
at the scale or at the item level and, (ii) MG-CCFA- or MG-
IRT-based testing strategies are used. In the first simulation
study, an invariance scenario was simulated where no
differences existed in the parameters across groups. In
addition, a second simulation study was conducted to assess
the performance of these approaches when non-invariance
was simulated between groups.

A key result of these simulation studies is that MG-
CCFA-based testing strategies are generally better than
MG-IRT-based ones when testing for MI at the scale level.
Therefore, in empirical practice, we recommend using
either the χ2 test or a combination of a χ2 test with an
alternative fit measure (i.e., RMSEA or CFI) when testing
MI at the scale level. In addition, when testing MI at the
item level, the χ2 test performed better than MG-IRT-
based approaches when threshold equivalence was tested,
whereas, when loading equivalence was tested, the item-
level LRT provided the best trade-off between correctly and
incorrectly identified non-invariant items.

In addition, another key result pertains to how the length
of a scale and the level at which MI is tested affects the
performance of MG-CCFA’s fit measures. In fact, both
RMSEA and CFI hardly detected non-invariant parameters
when MI was tested for each item individually, especially
with long scales. That is, the more items on a scale, the
harder it is for these measures to detect whether a specific
item is non-invariant. These results identify a fundamental
issue when using these fit measures to test MI at the
item level. In fact, the cut-off values that are commonly
used seem to be inadequate for item-level testing, since
their performance heavily depends on the scale’s length.
Commonly, MG-CCFA is used to test for MI at the scale
level, which might explain why most papers focused on
defining optimal cut-off values for these measures when MI
is tested at this level (Cheung & Rensvold, 2002; Chen,
2007; Rutkowski & Svetina, 2014; 2017). If non-invariance
is detected, researchers might decide to inspect its source by
conducting a test for each item individually (Kim & Yoon,
2011; Putnick & Bornstein, 2016). Based on our results,
we would discourage researchers from using such measures
to this aim since the cut-off values need to be re-evaluated
for item-level testing in future research. In this sense,
dynamic procedures for determining fit-indices cut-off
values, where appropriate cut-off value are derived based on

a specific model (McNeish & Wolf, 2020), are a promising
solution, and it is especially important to extend and evaluate
these procedures to MI testing with ordered-categorical
data. Finally, to obtain indications on whether and where
DIF exist, modification indices might help; however, the
performance of such tools in determining non-invariant
items remains unclear and requires further research.

The simulation studies conducted provide a useful indi-
cation in terms of the performance of testing strategies and
measures in testing MI for models applied to ordinal data.
Still, they are not free of limitations, and it is relevant to
highlight some of those. An important limitation of our work
has to do with the assumptions that are made by the different
measurement models. While the imposed constraints and
testing steps we followed can be considered standard, using
these constraints may prevent a more fine-grained analy-
sis of MI. Specifically, to validly compare MG-CCFA- and
MG-IRT-based approaches, it was crucial that MI was tested
using an equivalent measurement model, which was specified
using the set of constraints proposed by Chang et al. (2017).
These constraints can be seen as MG-GRM-type con-
straints, where both the unique variances and the inter-
cepts are constrained to be equal across groups. Imposing
such equalities, which is commonly done in MG-IRT-based
approaches, could be limiting if the goal is to have a more
fine-grained analysis of MI. Furthermore, MG-CCFA-based
constraints may be better suited to distinctly unravel differ-
ences in unique variances and intercepts across groups, and
Wu and Estabrook (2016) have recently shown that, within
the MG-CCFA framework, it may be preferable to select
identification constraints based on which parameters are
tested for non-invariance in order to avoid model misspeci-
fication. In detail, the authors showed that, for MG-CCFA,
constraints that are commonly imposed on a baseline model
(i.e., the configural model, where equal number of fac-
tors and loadings structure are imposed across groups) can
become restrictions when new invariance constraints (e.g.,
constraining all loadings to be equal) are added. As a con-
sequence, it may be preferable to define a baseline model
on a case-by-case basis depending on the type of invariance
tested (e.g., thresholds invariance). Therefore, we strongly
recommend researchers to carefully evaluate the suitability
of the restrictions underlying classical MG-CCFA- andMG-
IRT-based procedures such as the ones presented here before
testing for MI.

Another important set of limitations pertains to the
dimensionality of the simulated scales as well as the lack of
unique covariances. In particular, we focused on unidimen-
sional scales, while researchers are frequently confronted
with scales that capture multiple dimensions. Generally,
MG-CCFA is used for multidimensional constructs, while
MG-IRT-based models are preferred with unidimensional
constructs. It might therefore be interesting to inspect if
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similar results as the ones observed here would be obtained
when model complexity is increased by having multiple
dimensions. In addition, the data-generating models did not
include any residual covariances among items, which are
not uncommon in empirical practice (MacCallum & Tucker,
1991). Ignoring such residual covariances by assuming
uncorrelated errors can affect MI testing for continuous data
(Joo & Kim, 2019) but further research should focus on
assessing how residual covariances affect MI testing for
ordered-categorical data.

Another set of limitations pertains to the grouping.
Firstly, in the current simulation studies, we inspected
the performance of MG-CCFA- and MG-IRT-based testing
strategies with only two groups. However, cross-cultural
and cross-national data, where many groups are compared
simultaneously, are rapidly increasing in psychological
sciences. For this reason, it might be useful to investigate
differences in the performance of the studied approaches
when many groups are compared. Secondly, in these
simulation studies, we knew which subject belonged to
which group, and differences were created between the
groups’ measurement models. However, the grouping of
subjects is not always known and/or researchers might
not have access to those variables that are thought to
cause heterogeneity (e.g., nationality, gender). In this case,
a different approach might be preferred to disentangle
the heterogeneity across participants (e.g., factor mixture
models; Lubke, 2005).

One last important set of limitations concerns the
anchoring of the scale. That is, which items’ parameters
are set equal across groups in order to identify the model
and to make the scale comparable across groups. First,
the item that was used as the anchor in the simulation
studies was known to be invariant across groups. In real
applications, this information is never known beforehand,
and estimating a model relying on an inadequate anchor
item could impact model’s convergence as well as the ability
to detect non-invariance of parameters. This issue has been
partly discussed in previous studies comparing different
type of identification constraints (Chang et al., 2017). It
could be interesting to inspect how the choice of a “good”
or “bad” anchor item influences the detection of MI in
a more comprehensive study. Second, in these simulation
studies, a set of minimal constraints was used to make the
measurement models equivalent, and only one item was
constrained to be equal across groups. Minimal constraints
allow most parameters to be freely estimated. However,
when specific items are known to function similarly across
groups (e.g., knowledge based on prior studies or strong
motivations to consider them invariant across groups) it
might be beneficial, both in terms of the estimation and the
power to detect non-invariance of the model’s parameters,
to constrain them to be equal across groups. Such choices

are particularly relevant and various approaches exist to
determine what item(s) should be used as anchor(s), both
in MG-CCFA (French & Finch, 2008) and in MG-IRT
(Candell & Drasgow, 1988; Wainer & Braun, 1988; Clauser
et al., 1993; Khalid & Glas, 2014).

Open practices: The data and the analysis scripts are freely
available and have been posted at https://osf.io/u9y8m/.

Appendix

Table 10 Loadings’ convergence rate scale level - invariance scenario

Convergence rate scale level - loadings

N C J MG-CCFA MG-IRT LoR MG-IRT LRT

250
3

5 0.996 0.992 1

25 1 0.998 1

5 5 1 1 1

25 1 1 1

1000 3 5 1 1 1

25 1 1 1

5 5 1 1 1

25 1 1 1

The bold entries were used to distinguish between design factors and
do not refer to results

Note. MG-CCFA = Multiple-group categorical confirmatory factor
analysis; MG-IRT LoR = Logistic regression with MG-IRT; MG-IRT
LRT = Likelihood-ratio test with MG-IRT; N = Sample size within
each group; C = Number of categories; J = Number of items

Table 11 Thresholds’ convergence rate scale level - invariance
scenario

Convergence rate scale level - thresholds

N C J MG-CCFA MG-IRT LoR MG-IRT LRT

250 3 5 0.996 0.998 1

25 1 1 1

5 5 0.998 1 1

25 1 1 1

1000 3 5 1 1 1

25 1 1 1

5 5 1 1 1

25 1 1 1

The bold entries were used to distinguish between design factors and
do not refer to results

Note. MG-CCFA = Multiple-group categorical confirmatory factor
analysis; MG-IRT LoR = Logistic regression with MG-IRT; MG-IRT
LRT = Likelihood-ratio test with MG-IRT; N = Sample size within
each group; C = Number of categories; J = Number of items
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Table 12 Loadings’ convergence rate item level - invariance scenario

Convergence rate item level - loadings

N C J MG-CCFA MG-IRT LoR MG-IRT LRT

250 3 5 0.998 0.996 1

25 1 0.996 1

5 5 1 1 1

25 1 1 1

1000 3 5 1 1 1

25 1 1 1

5 5 1 1 1

25 1 1 1

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR = Logistic regression with MG-IRT; MG-IRT LRT =
Likelihood-ratio test with MG-IRT; N = Sample size within each group; C = Number of categories; J = Number of items

Table 13 Thresholds’ convergence rate item level - invariance scenario

Convergence rate item level - thresholds

N C J MG-CCFA MG-IRT LoR MG-IRT LRT

250 3 5 0.996 0.998 1

25 1 0.996 1

5 5 1 1 1

25 1 1 1

1000 3 5 1 1 1

25 1 1 1

5 5 1 1 1

25 1 1 1

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR = Logistic regression with MG-IRT; MG-IRT LRT =
Likelihood-ratio test with MG-IRT; N = Sample size within each group; C = Number of categories; J = Number of items

2133Behav Res  (2022) 54:2114–2145



Table 14 Loadings’ convergence rate scale level - non-invariance scenario

Convergence rate scale level - loadings

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J % small large small large small large

250 3 5 20% 0.994 0.990 0.998 0.996 1 1

40% 0.992 0.996 1 0.998 1 1

40% ± 0.996 0.988 1 0.982 1 1

25 20% 1 1 1 1 1 1

40% 1 1 1 1 1 1

40% ± 1 1 0.988 0.892 1 1

5 5 20% 0.996 0.998 1 0.996 1 1

40% 1 1 0.998 1 1 ‘1

40% ± 1 0.998 0.996 0.992 1 1

25 20% 1 1 1 1 1 1

40% 1 1 1 1 1 1

40% ± 1 1 0.998 0.900 1 1

1000 3 5 20% 1 1 1 1 1 1

40% 1 1 1 1 1 1

40% ± 1 1 1 1 1 1

25 20% 1 1 1 1 1 1

40% 1 1 1 1 1 1

40% ± 1 1 1 0.998 1 1

5 5 20% 1 1 1 1 1 1

40% 1 1 1 1 1 1

40% ± 1 1 1 1 1 1

25 20% 1 1 1 1 1 1

40% 1 1 1 1 1 1

40% ± 1 1 1 1 1 1

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR = Logistic regression with MG-IRT; MG-IRT LRT =
Likelihood-ratio test with MG-IRT; N = Sample size within each group; C = Number of categories; J = Number of items; % = percentage of items
affected by DIF (± misaligned); small = small bias; large = large bias
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Table 15 Thresholds’ convergence rate scale level - non-invariance scenario

Convergence rate scale level - thresholds

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J % small large small large small large

250 3 5 20% 0.996 0.842 0.998 0.998 1 1

40% 1 0.824 0.990 0.998 1 1

40% ± 0.998 0.828 0.994 1 1 1

25 20% 1 1 1 0.998 1 1

40% 1 1 1 1 1 1

40% ± 1 1 1 0.998 1 1

5 5 20% 0.998 0.908 0.998 0.994 1 1

40% 0.998 0.896 1 0.998 1 1

40% ± 1 0.924 1 1 1 1

25 20% 1 1 1 1 1 1

40% 1 1 1 1 1 1

40% ± 1 1 1 0.998 1 1

1000 3 5 20% 1 0.948 1 1 1 1

40% 1 0.942 1 1 1 1

40% ± 1 0.930 1 1 1 1

25 20% 1 1 1 1 1 1

40% 1 1 1 1 1 1

40% ± 1 1 1 1 1 1

5 5 20% 1 0.984 1 1 1 1

40% 1 0.984 1 1 1 1

40% ± 1 0.986 1 1 1 1

25 20% 1 1 1 1 1 1

40% 1 1 1 1 1 1

40% ± 1 1 1 1 1 1

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR = Logistic regression with MG-IRT; MG-IRT LRT =
Likelihood-ratio test with MG-IRT; N = Sample size within each group; C = Number of categories; J = Number of items; % = percentage of items
affected by DIF (± misaligned); small = small bias; large = large bias
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Table 16 Loadings’ convergence rate item level - non-invariance scenario

Convergence rate item level - loadings

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J % small large small large small large

250 3 5 20% 0.992 0.976 0.996 1 1 1

40% 0.994 0.992 1 0.996 1 1

40% ± 0.986 0.966 0.994 0.980 1 1

25 20% 1 1 0.998 1 1 1

40% 1 1 1 1 1 1

40% ± 1 1 0.994 0.886 1 1

5 5 20% 1 0.998 1 1 1 1

40% 1 0.998 1 1 1 1

40% ± 1 0.994 1 0.994 1 1

25 20% 1 1 1 1 1 1

40% 1 1 1 1 1 1

40% ± 1 1 0.998 0.898 1 1

1000 3 5 20% 1 1 1 1 1 1

40% 1 1 1 1 1 1

40% ± 1 1 1 1 1 1

25 20% 1 1 1 1 1 1

40% 1 1 1 1 1 1

40% ± 1 1 1 1 1 1

5 5 20% 1 1 1 1 1 1

40% 1 1 1 1 1 1

40% ± 1 1 1 1 1 1

25 20% 1 1 1 1 1 1

40% 1 1 1 1 1 1

40% ± 1 1 1 0.998 1 1

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR = Logistic regression with MG-IRT; MG-IRT LRT =
Likelihood-ratio test with MG-IRT; N = Sample size within each group; C = Number of categories; J = Number of items; % = percentage of items
affected by DIF (± misaligned); small = small bias; large = large bias
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Table 17 Thresholds’ convergence rate item level - non-invariance scenario

Convergence rate item level - thresholds

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J % small large small large small large

250 3 5 20% 0.996 0.848 0.998 0.998 1 1

40% 0.998 0.816 0.998 1 1 1

40% ± 0.986 0.798 0.994 0.990 1 1

25 20% 1 1 1 1 1 1

40% 1 1 0.994 1 1 1

40% ± 1 1 1 1 1 1

5 5 20% 1 0.900 1 0.994 1 1

40% 0.998 0.906 1 0.998 1 1

40% ± 0.998 0.878 1 0.996 1 1

25 20% 1 1 1 1 1 1

40% 1 1 1 1 1 1

40% ± 1 1 1 1 1 1

1000 3 5 20% 1 0.936 1 1 1 1

40% 1 0.946 1 1 1 1

40% ± 1 0.900 1 1 1 1

25 20% 1 1 1 1 1 1

40% 1 1 1 1 1 1

40% ± 1 1 1 1 1 1

5 5 20% 1 0.980 1 1 1 1

40% 1 0.978 1 1 1 1

40% ± 1 0.976 1 1 1 1

25 20% 1 1 1 1 1 1

40% 1 1 1 1 1 1

40% ± 1 1 1 1 1 1

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR = Logistic regression with MG-IRT; MG-IRT LRT =
Likelihood-ratio test with MG-IRT; N = Sample size within each group; C = Number of categories; J = Number of items; % = percentage of items
affected by DIF (± misaligned); small = small bias; large = large bias

2137Behav Res  (2022) 54:2114–2145



Table 18 Loadings’ FPR item level - non-invariance scenario

FPR item level - loadings

MG-CCFA MG-IRT

Comb χ2 LoR LRT

N C J % small large small large small large small large

250 3 5 20% 0.042 0.044 0.049 0.052 0.059 0.048 0.045 0.051

40% 0.053 0.050 0.058 0.058 0.053 0.049 0.049 0.037

40% ± 0.046 0.066 0.051 0.067 0.060 0.077 0.056 0.051

25 20% 0.002 0.001 0.063 0.070 0.002 0.002 0.051 0.050

40% 0.003 0.001 0.071 0.111 0.001 0.002 0.047 0.056

40% ± 0.001 0 0.054 0.055 0.001 0.001 0.045 0.047

5 5 20% 0.051 0.044 0.060 0.049 0.005 0.008 0.045 0.056

40% 0.062 0.069 0.067 0.074 0.005 0.005 0.065 0.059

40% ± 0.047 0.072 0.051 0.072 0.010 0.007 0.046 0.044

25 20% 0.002 0.001 0.064 0.074 0 0 0.050 0.047

40% 0.004 0.001 0.080 0.127 0 0 0.048 0.046

40% ± 0.001 0 0.056 0.059 0 0 0.050 0.048

1000 3 5 20% 0.039 0.038 0.062 0.063 0 0 0.047 0.053

40% 0.038 0.064 0.072 0.129 0.001 0 0.058 0.064

40% ± 0.030 0.033 0.063 0.104 0 0.003 0.058 0.043

25 20% 0 0 0.063 0.105 0 0 0.055 0.051

40% 0 0 0.108 0.262 0 0 0.045 0.043

40% ± 0 0 0.052 0.053 0 0 0.057 0.044

5 5 20% 0.027 0.029 0.051 0.045 0 0 0.064 0.046

40% 0.043 0.059 0.079 0.137 0 0 0.049 0.062

40% ± 0.045 0.029 0.075 0.133 0 0 0.048 0.056

25 20% 0 0 0.067 0.121 0 0 0.044 0.053

40% 0 0 0.125 0.328 0 0 0.046 0.051

40% ± 0 0 0.049 0.055 0 0 0.049 0.053

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR = Logistic regression with MG-IRT; MG-IRT LRT =
Likelihood-ratio test with MG-IRT; N = Sample size within each group; C = Number of categories; J = Number of items; % = percentage of items
affected by DIF (± misaligned); small = small bias; large = large bias
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Table 19 Thresholds’ FPR item level - non-invariance scenario

FPR item level - thresholds

MG-CCFA MG-IRT

Comb χ2 LoR LRT

N C J % small large small large small large small large

250 3 5 20% 0.044 0.058 0.049 0.058 0.131 0.269 0.056 0.054

40% 0.063 0.045 0.063 0.046 0.149 0.310 0.040 0.036

40% ± 0.056 0.068 0.058 0.068 0.136 0.312 0.053 0.048

25 20% 0 0 0.046 0.051 0.005 0.028 0.044 0.048

40% 0 0 0.050 0.048 0.006 0.031 0.051 0.046

40% ± 0 0 0.047 0.045 0.006 0.031 0.046 0.049

5 5 20% 0.041 0.063 0.041 0.063 0.029 0.160 0.043 0.057

40% 0.055 0.045 0.055 0.052 0.045 0.209 0.048 0.064

40% ± 0.045 0.047 0.045 0.050 0.039 0.191 0.046 0.046

25 20% 0 0 0.047 0.053 0 0.017 0.052 0.044

40% 0 0 0.051 0.050 0.001 0.019 0.051 0.047

40% ± 0 0 0.046 0.053 0 0.018 0.047 0.051

1000 3 5 20% 0.023 0.027 0.053 0.069 0.007 0.163 0.040 0.058

40% 0.018 0.010 0.058 0.056 0.012 0.257 0.045 0.060

40% ± 0.022 0.024 0.061 0.096 0.008 0.248 0.047 0.057

25 20% 0 0 0.051 0.052 0 0.001 0.048 0.053

40% 0 0 0.046 0.054 0 0 0.047 0.051

40% ± 0 0 0.053 0.051 0 0.001 0.050 0.048

5 5 20% 0.022 0.012 0.059 0.072 0 0.087 0.052 0.048

40% 0.012 0.004 0.048 0.062 0 0.117 0.053 0.045

40% ± 0.015 0.006 0.060 0.114 0 0.128 0.041 0.050

25 20% 0 0 0.051 0.047 0 0 0.047 0.041

40% 0 0 0.054 0.053 0 0 0.050 0.051

40% ± 0 0 0.048 0.047 0 0 0.048 0.046

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR = Logistic regression with MG-IRT; MG-IRT LRT =
Likelihood-ratio test with MG-IRT; N = Sample size within each group; C = Number of categories; J = Number of items; % = percentage of items
affected by DIF (± misaligned); small = small bias; large = large bias
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Table 20 Loadings’ TPR scale level - non-invariance scenario

TPR scale level - loadings

MG-CCFA

Comb χ2 �RMSEA �CFI

N C J % small large small large small large small large

250 3 5 20% 0.052 0.044 0.052 0.044 0.196 0.166 0.180 0.168

40% 0.078 0.124 0.078 0.124 0.230 0.326 0.218 0.292

40% ± 0.082 0.218 0.082 0.218 0.226 0.406 0.218 0.442

25 20% 0.124 0.284 0.140 0.332 0.166 0.324 0.106 0.246

40% 0.118 0.474 0.144 0.532 0.156 0.512 0.098 0.412

40% ± 0.272 0.916 0.306 0.922 0.266 0.858 0.260 0.906

5 5 20% 0.054 0.048 0.054 0.048 0.188 0.204 0.142 0.150

40% 0.076 0.122 0.076 0.122 0.224 0.324 0.182 0.254

40% ± 0.124 0.268 0.124 0.268 0.302 0.500 0.260 0.470

25 20% 0.126 0.410 0.164 0.474 0.190 0.502 0.090 0.326

40% 0.182 0.692 0.218 0.764 0.264 0.734 0.118 0.556

40% ± 0.274 0.972 0.358 0.986 0.348 0.956 0.242 0.952

1000 3 5 20% 0.060 0.084 0.062 0.094 0.140 0.168 0.040 0.046

40% 0.130 0.366 0.140 0.384 0.224 0.488 0.086 0.266

40% ± 0.204 0.714 0.206 0.714 0.314 0.776 0.150 0.642

25 20% 0.136 0.712 0.390 0.974 0.136 0.710 0 0.194

40% 0.256 0.940 0.622 1 0.256 0.940 0.006 0.606

40% ± 0.500 1 0.892 1 0.496 1 0.112 1

5 5 20% 0.054 0.106 0.060 0.110 0.118 0.214 0.016 0.044

40% 0.164 0.500 0.182 0.542 0.298 0.626 0.072 0.306

40% ± 0.238 0.852 0.262 0.860 0.358 0.896 0.150 0.758

25 20% 0.174 0.872 0.478 0.998 0.174 0.872 0.002 0.270

40% 0.342 0.990 0.732 1 0.342 0.990 0.010 0.792

40% ± 0.758 1 0.976 1 0.758 1 0.140 1

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-groups categorical confirmatory factor analysis; N = Number of Subjects within each group; C = Number of
categories; J = Number of items; % = percentage of items affected by DIF (± misaligned); small = small bias; big = big bias
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Table 21 Thresholds’ TPR scale level - non-invariance scenario

TPR scale level - thresholds

MG-CCFA

Comb χ2 �RMSEA �CFI

N C J % small large small large small large small large

250 3 5 20% 0.358 0.908 0.358 0.908 0.590 0.954 0.654 0.966

40% 0.720 1 0.720 1 0.854 1 0.888 1

40% ± 0.652 0.996 0.654 0.996 0.788 1 0.860 1

25 20% 0.414 1 0.742 1 0.306 0.972 0.262 0.996

40% 0.392 1 0.716 1 0.272 0.982 0.262 0.998

40% ± 0.906 1 0.996 1 0.690 1 0.804 1

5 5 20% 0.396 0.974 0.396 0.974 0.592 0.966 0.704 0.994

40% 0.766 1 0.766 1 0.866 1 0.926 1

40% ± 0.806 1 0.806 1 0.886 1 0.950 1

25 20% 0.560 1 0.738 1 0.446 1 0.470 1

40% 0.630 1 0.742 1 0.510 1 0.520 1

40% ± 0.996 1 1 1 0.916 1 0.974 1

1000 3 5 20% 0.956 1 0.956 1 0.942 1 0.972 1

40% 1 1 1 1 1 1 1 1

40% ± 1 1 1 1 1 1 1 1

25 20% 0.828 1 1 1 0.786 1 0.410 1

40% 0.802 1 1 1 0.752 1 0.390 1

40% ± 1 1 1 1 1 1 1 1

5 5 20% 0.984 1 0.984 1 0.980 1 0.992 1

40% 1 1 1 1 1 1 1 1

40% ± 1 1 1 1 1 1 1 1

25 20% 0.980 1 1 1 0.966 1 0.856 1

40% 0.972 1 1 1 0.960 1 0.862 1

40% ± 1 1 1 1 1 1 1 1

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-groups categorical confirmatory factor analysis; N = Number of Subjects within each group; C = Number of
categories; J = Number of items; % = percentage of items affected by DIF (± misaligned); small = small bias; big = big bias
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Table 22 Loadings’ TPR item level - non-invariance scenario

TPR item level - loadings

MG-CCFA

Comb χ2 �RMSEA �CFI

N C J % small large small large small large small large

250 3 5 20% 0.038 0.060 0.052 0.076 0.060 0.080 0.056 0.070

40% 0.052 0.088 0.061 0.103 0.091 0.127 0.080 0.118

40% ± 0.077 0.192 0.091 0.205 0.122 0.231 0.108 0.248

25 20% 0.007 0.015 0.107 0.259 0.006 0.010 0.002 0.007

40% 0.003 0.007 0.078 0.162 0.002 0.006 0 0.002

40% ± 0.006 0.037 0.147 0.426 0.005 0.004 0.003 0.035

5 5 20% 0.066 0.084 0.080 0.106 0.092 0.094 0.058 0.066

40% 0.054 0.130 0.060 0.135 0.097 0.180 0.059 0.131

40% ± 0.095 0.277 0.111 0.291 0.129 0.328 0.100 0.310

25 20% 0.005 0.016 0.129 0.317 0.005 0.012 0.002 0.006

40% 0.005 0.003 0.094 0.194 0.004 0.002 0.001 0.001

40% ± 0.008 0.032 0.172 0.533 0.006 0.003 0.003 0.031

1000 3 5 20% 0.042 0.074 0.096 0.182 0.050 0.078 0.002 0.012

40% 0.071 0.213 0.114 0.318 0.081 0.225 0.032 0.082

40% ± 0.155 0.486 0.224 0.645 0.172 0.448 0.068 0.404

25 20% 0 0.001 0.274 0.705 0 0.001 0 0

40% 0 0 0.160 0.465 0 0 0 0

40% ± 0 0.003 0.422 0.932 0 0 0 0.003

5 5 20% 0.042 0.134 0.114 0.238 0.046 0.142 0.002 0.016

40% 0.092 0.256 0.146 0.382 0.104 0.275 0.021 0.102

40% ± 0.174 0.526 0.267 0.754 0.188 0.506 0.057 0.422

25 20% 0.001 0 0.323 0.818 0.001 0 0 0

40% 0 0 0.207 0.559 0 0 0 0

40% ± 0 0.003 0.491 0.978 0 0 0 0.003

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-groups categorical confirmatory factor analysis; N = Number of Subjects within each group; C = Number of
categories; J = Number of items; % = percentage of items affected by DIF (± misaligned); small = small bias; big = big bias
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Table 23 Thresholds’ TPR item level - non-invariance scenario

TPR item level - thresholds

MG-CCFA

Comb χ2 �RMSEA �CFI

N C J % small large small large small large small large

250 3 5 20% 0.536 0.976 0.586 0.988 0.580 0.970 0.618 0.982

40% 0.643 0.986 0.647 0.986 0.595 0.896 0.783 0.993

40% ± 0.555 0.984 0.566 0.984 0.502 0.877 0.708 0.993

25 20% 0.003 0.143 0.648 0.997 0.002 0.002 0 0.142

40% 0.002 0.127 0.646 0.997 0.001 0 0.001 0.127

40% ± 0 0.130 0.657 0.998 0 0 0 0.130

5 5 20% 0.626 0.994 0.674 0.996 0.672 0.988 0.682 0.996

40% 0.689 0.999 0.696 0.999 0.581 0.919 0.819 1

40% ± 0.675 0.999 0.678 0.999 0.569 0.893 0.804 1

25 20% 0.006 0.368 0.724 0.999 0.002 0 0.004 0.368

40% 0.008 0.360 0.724 0.999 0.005 0 0.003 0.360

40% ± 0.004 0.357 0.726 0.998 0 0 0.004 0.357

1000 3 5 20% 0.978 1 0.988 1 0.962 1 0.948 1

40% 0.993 1 0.999 1 0.766 0.995 0.993 1

40% ± 0.976 1 0.994 1 0.671 0.990 0.974 1

25 20% 0 0.117 1 1 0 0 0 0.117

40% 0 0.146 0.997 1 0 0 0 0.146

40% ± 0 0.124 0.998 1 0 0 0 0.124

5 5 20% 0.998 1 0.998 1 0.984 1 0.990 1

40% 0.998 1 1 1 0.780 0.999 0.998 1

40% ± 0.990 1 0.998 1 0.709 0.993 0.990 1

25 20% 0 0.648 0.999 1 0 0 0 0.648

40% 0 0.664 1 1 0 0 0 0.664

40% ± 0 0.620 1 1 0 0 0 0.620

The bold entries were used to distinguish between design factors and do not refer to results

Note. MG-CCFA = Multiple-groups categorical confirmatory factor analysis; N = Number of Subjects within each group; C = Number of
categories; J = Number of items; % = percentage of items affected by DIF (± misaligned); small = small bias; big = big bias
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