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Chapter 1

Introduction

1.1 Sequential allocation procedures

Many disciplines within science use experiments to test and validate theoret-

ical ideas and expectations (for an example, see Kaptein, De Ruyter, Markopoulos,

& Aarts, 2012). In most experiments done in the social and behavioral sciences,

each subject, participant or user is allocated to a single treatment condition chosen

from a set of possible treatments. An integral piece of the design of an experiment

concerns the decision on how to allocate subjects to the various treatments – in

other words, the decision on the treatment allocation procedure. In the classical

experiment, the allocation is random and, moreover, the whole treatment alloca-

tion is performed before the actual experiment starts (Fisher, 1990). The treat-

ment allocation procedure can thus be defined as follows: randomly assign each

of the study subjects to one of the treatment conditions. Once the outcome of the

experiment is recorded for all subjects, the resulting data set can be used to con-

duct the analysis specified beforehand (e.g. comparing means across treatment

conditions). Figure 1.1 visualizes the data collection in a classical experiment.

Treatment A

Treatment B

Results & Analysis

Figure 1.1: The traditional way of collecting data for an experiment. Subjects are al-
located to treatment conditions a priori and the collected data is analyzed only after all
treatment assignments have been carried out.

However, in most experiments, participants do not arrive all at the same time
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but instead one-by-one. In such a situation, the experiment concerned is, in fact,

conducted in a sequential manner, where subjects are allocated to a treatment

when, or just before, they arrive. This means that, alternatively to the classical

experiment discussed above, we can view the data generating process as a dy-

namic process; that is, we have constant interactions with subjects, where each

interaction concerns choosing a treatment and observing an outcome for a single

subject. As a consequence, at the start of an interaction with a new subject, we

often have the data available from all previous interactions (see Figure 1.2 for

a visual overview), implying these data can potentially be used to influence the

decision on the treatment allocation of the subject concerned. Thus, treatment

allocation can be carried out sequentially, potentially benefitting from the data

generated in previous interactions.

Treatment A

Intermediate result & Analysis

Treatment B

Intermediate result & Analysis

...

Figure 1.2: A sequential view on collecting data for an experiment. Subjects are allocated
to treatment conditions one-by-one and the data resulting from previous subjects could
potentially affect the treatment allocation of the current subject.

The sequential allocation of treatments is largely researched under the head-

ing of the multi-armed bandit problem (see e.g., Berry & Fristedt, 1985; Gittins,

1989; Scott, 2010; Whittle, 1980). The name and the original problem originate

from the following example: suppose we face a number of slot machines (some

of which are named one-armed bandits), each with a potentially different payoff.

It is our goal to make as much profit (or, in the case of gambling, as little loss)

as possible by sequentially choosing which machine to play, while learning from

the observations as we go along (Berry & Fristedt, 1985; Whittle, 1980). We face

a trade-off between exploration and exploitation (Macready & Wolpert, 1998):

on the one hand, we wish to play the machine that was successful in earlier at-

tempts as often as possible (exploitation), but on the other hand, we wish to find

the machine with the highest payoff through experimentation (exploration). The

MAB problem, and its generalization, the contextual MAB (or CMAB) problem –

in which before selecting a machine we observe the state of the world that could
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be related to the optimal choice of machine at that point in time – yields a flexible

formalization for studying sequential treatment allocation procedures in the social

sciences and beyond (Eckles & Kaptein, 2019), and many solutions are povided

that are researched both empirically as well as theoretically (see e.g., Agrawal &

Goyal, 2013b; Dudík, Hsu, et al., 2011; Lattimore & Szepesvári, 2020; Li, Chu,

Langford, & Wang, 2011). Interestingely, the traditional experiment – and the

subsequent treatment decision that we might make – can be regarded as one pos-

sible solution to the MAB problem: we a priori decide about a period of uniform

random exploration on the machines (i.e., the number of subjects we randomly as-

sign to the treatments), after which we play the machine with the highest average

reward (i.e., we assign all remaining subjects to the best treatment).

More formally, the CMAB problem can be defined as follows: at each time

t = 1, ..., T , we observe a context xt ∈ X . After we choose an action (or treatment)

at ∈ A, we observe reward rt from an unknown probability distribution P (r|a, x).

The aim is to find a policy Π – which is a mapping from all the historical data

D (containing all previous (x1, a1, r1), . . . , (xt−1, at−1, rt−1) triplets) and the current

context xt to the next action (at) – that selects actions such that the cumulative

reward Rc =
∑T

t=1 rt is as large as possible. The canonical MAB problem can be

considered as a CMAB problem but with empty context xt. Figure 1.3 shows how

the CMAB formalization relates to Figure 1.2.

x1

t = 1 Treatment A

a1

D1 = {(x2, a2, r2)}

Π(x1,D0)

Treatment B

a2
x2

t = 2

D2 = {D1, (x2, a2, r2)}

Π(x2,D1)

...t = 3, . . . , T

Figure 1.3: A sequential view on collecting data for an experiment using formal notation
that is used throughout the thesis.

The aim of this thesis is to introduce experimentation using sequential allo-

cation procedures to social scientists, and, moreover, to develop new methods for

dealing with specific problems associated with social science applications. Firstly,

we introduce a flexible framework and a software tool that allow for easy imple-

mentation and deployment of experiments, either using traditional or sequential

3
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allocation procedures, in (web-based) research: Chapter 2 provides details about

the general framework and the software tool and Chapter 5 illustrates how to

integrate the software in web-based research. Notably, in these chapters, we intro-

duce a novel approach for specifying MAB policies with getAction and setReward
operations (or decision and summary steps), a useful formalization that since has

been used by various authors (Agarwal et al., 2017; van Emden & Kaptein, 2018).

Secondly, new methods are developed for designing MAB policies that are explic-

itly valuable for social science applications: Chapter 3 introduces a method for

dealing with designs yielding data sets with dependent or nested observations and

Chapter 4 develops a method for performing offline evaluations with continuous

treatments (more details are provided below). In both cases, our new approaches

are inspired by empirical MAB policy applications in the social sciences, where

both nested observations and continuous treatments are common, while such is-

sues are not commonly addressed in the mostly theoretical MAB literature. We

thus also contribute to the MAB literature by introducing new problem formaliza-

tions and by empirically examining our proposed solutions.

In Section 1.3, more details are provided on the content of the separate chap-

ters using a motivating example, which will first be presented in Section 1.2. Note

that the four main chapters are submitted or published as separate journal articles,

which may lead to some overlap, repetition, and possibly also inconsistencies in

notation across the chapters. We, however, chose to keep the chapters as similar

as possible to their original sources.

1.2 A motivating example

Multiple studies have shown positive effects of so-called internet-based be-

havioral interventions, be it for improving mental health (Baumeister, Reichler,

Munzinger, & Lin, 2014), decreasing addictive behavior (Chebli, Blaszczynski,

& Gainsbury, 2016), or promoting physical health (van den Berg, Schoones, &

Vlieland, 2007). Kaptein et al. (2012) showed that by tailoring text messages to

the personal susceptibility to specific social influence strategies, a larger decrease

of snacking consumption was achieved. While their experiment tailored the text

messages based on information obtained with a questionnaire, such experiments

could also, as indicated by Kaptein, Markopoulos, De Ruyter, and Aarts (2015),

benefit from treatment personalization (in this case the context of the text mes-

sages) using background characteristics of the subject concerned, as well as results

obtained with earlier subjects, thus giving rise to a contextual bandit problem (see

also Tewari & Murphy, 2017).

As an example application, imagine a study aimed at stimulating the physical
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activity of subjects by influencing the amount of steps they walk during a day.

Subjects wear an activity monitor (e.g., a smartwatch) measuring the number of

steps and, at the beginning of each day, receive information on a goal regarding

the number of steps for the day concerned. This goal is the treatment at in terms of

the MAB formalization, which in this case is modeled as a continuous treatment,

while the amount of steps taken on a specific day is the reward rt. Note that in this

experiment the researchers interact with the same subjects over a longer period of

time, which results in a data set with a nested structure.

We assume that within our example experiment, the objective is to try to

maximize the realized daily number of steps by personalizing the goals. The op-

timal choice for the daily goal can potentially be influenced by the context xt,

which contains subject characteristics, such as age, gender, and weight. Note that

the interest is in improving the health of the subjects as much as possible rather

than making a deterministic choice on the amount of steps (i.e., which suggested

amount of steps is a better overall treatment). In other words, it is assumed that

obtaining an as high as possible cumulative reward Rc (i.e., in total as many steps

as possible) will result in overall maximum health. Thus, while sequentially in-

teracting with subjects over multiple days, the overall aim of the experiment is to

choose the amount of daily steps per subject maximizing the realized number of

steps taken by this subject during this day, and thereby maximizing the total num-

ber of steps across subjects and days. Finding a good policy that will maximize

the total number of staps taken might itself also be considered the target of the

experiment.

1.3 Outline

To address the problem of finding a good policy that ensures that people

walk more (as sketched in the example application described above), we can rely

on a large body of mainly theoretical literature on sequential allocation procedures

for conducting experiments with a continuous treatment range (for examples, see

Agrawal, 1995; Kaptein & Ianuzzi, 2016; Kleinberg, 2004). However, practical

implementation and evaluation of the proposed treatment allocation procedures

in (online) field experiments remains difficult. For instance, for our example ex-

periment, we need software that allows communicating with a smartwatch such

that each day a new goal can be set for the subject concerned. Moreover, we would

most probably wish to use a set of tools making it easy to modify the desired be-

havior of the treatment allocation procedure once the experiment has been set up.

Chapter 2 introduces StreamingBandit, a Python web application for developing

and testing allocation procedures in field studies, and moreover introduces a flex-
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ible framework identifying MAB policies to consist of two steps: a summary step

(where we update the parameters of the policy) and a decision step (where we use

the policy to choose a treatment). The software allows experimenters to sequen-

tially select treatments in real time, but also to quickly develop and re-use novel

allocation procedures. The framework constraints the implemented procedures to

be computationally efficient by restricting them to row-by-row updating (Micha-

lak, DuBois, DuBois, Wiel, & Hogden, 2012) – a feature that is desirable in many

practical applications (Agarwal et al., 2017; Ansari & Mela, 2003). Also, once

StreamingBandit is integrated in a particular experiment, it allows modifying the

treatment allocation procedure with just a few lines of code – thus allowing for

easy experimentation with multiple treatment allocation procedures within field

studies. The chapter details the complete implementation logic of StreamingBan-

dit, and gives numerous examples illustrating the usefulness and flexibility of the

software. In our example experiment, StreamingBandit will allow communicat-

ing with our subjects’ smartwatches, which can ask a server running Streaming-

Bandit the goal for the subject concerned. The treatment allocation procedure

implemented in StreamingBandit computes the personalized goal (the proposed

number of steps), and returns this information to the subject’s smartwatch.

In the example experiment, we wish to use a treatment allocation proce-

dure to personalize the daily goal for each subject. For this purpose, we certainly

want to use the historical data as efficiently as possible. Before giving any rec-

ommendation to a new subject, we can use the data from all previous subjects to

compute an average goal that is neither too high or too low. However, as more

observations (days) from of a subject comes in, we can start using the subject-

specific data to compute a completely personalized goal. In this case, we consider

the data to be (hierarchically) dependent: observations are nested within subjects

over time (Gelman & Hill, 2006; Ippel, Kaptein, & Vermunt, 2019; Ippel, Kaptein,

& Vermunt, 2016b). Chapter 3 raises the concern of the lack of research on MAB

policies for dependent observations. In fact, dependencies are typically ignored

and observations are treated as independent (also called complete pooling). The

literature researching the more general contextual multi-armed bandit contains

models for clustered observations from, for example, a single subject (also called

no pooling), but potential dependencies between subjects are often ignored (Li,

Chu, Langford, & Schapire, 2010). Chapter 3 tackles this issue by creating poli-

cies using a middle ground between no pooling and complete pooling approaches

(also called partial pooling) – a method that is well known in the statistical lit-

erature (Efron & Morris, 1975; Gelman & Hill, 2006; Ippel et al., 2019; James

& Stein, 1961). For this purpose, we develop streaming shrinkage factors (Ippel

et al., 2019) for two types of policies, and a hierarchical Bayesian model (Gelman

6



1
Introduction

et al., 2013) for another policy. We empirically validate these novel treatment

allocation procedures in a thorough simulation study and in an offline evaluation

study using existing empirical data. Both studies show that incorporating partial

pooling methods improves the performance of the multi-armed bandit policies.

Using partial pooling in our example experiment would give us a great benefit for

personalizing goals for (new) subjects; that is, start with a goal that turns out to

work well on average for all subjects, but as more data comes in for the subject

concerned, the partial pooling incorporates this information into (eventually) a

personalized goal.

Before deploying a newly developed sequential allocation procedure in a real

world experiment, its performance should be validated and evaluated according

to the intricacies of the environment in which the experiment takes place. These

intricacies could for example be the assumed distributions of the rewards or the

distributions of the context. One option is to run multiple field evaluations, which

is something that is technically easy to do with StreamingBandit, but in practice

is often too expensive. Another option is to resort to simulation based methods,

but these often lack external validity because of the (unrealistic) assumptions one

needs to make. A better alternative is to evaluate allocation procedures using data

collected in earlier experiments. One problem faced with using collected data is

the omission of counterfactuals of the observed treatments (Li et al., 2011); that

is, it is not known what would have happened if another treatment would have

been allocated, simply because we are not able to allocate multiple treatments at

once. As a consequence, if we would replay the whole data set row-by-row and

ask a procedure to pick a treatment at a certain timepoint, it may well be that the

current row does not contain any information regarding the selected treatment

(e.g. treatment A is in row t of the data set, but the procedure selected treatment

B). Over the last decade, various types of so-called offline evaluation methods

have been developed to combat this problem (see e.g., Dudík, Erhan, Langford,

Li, et al., 2014; Dudík, Langford, & Li, 2011; Li et al., 2011; Mary, Preux, & Nicol,

2014; Wang, Agarwal, & Dudík, 2017). One approach simply involves skipping an

observation if the treatment allocated by the to-be evaluated policy is not equal to

the treatment in the available data set (Li et al., 2011). For our example experi-

ment, this method is insufficient, because these can be used only with a discrete

set of treatments. Modeling the treatment “the number of steps” as a continuous

range seems appealing, but this is where traditional offline evaluation methods

fail. This is because the probability that the treatment suggested by a policy under

evaluation exactly matches the treatment in the existing data set tends to zero

for a continuous variable. As a result, no observations will be accepted for eval-

uation and the evaluation of the policy will fail. In Chapter 4, we extend the
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method by Li et al. (2011) to resolve this problem, and evaluate this new method.

Furthermore, we compare our method for evaluating so-called dynamic treatment

allocation procedures with a method developed by Kallus and Zhou (2018) for the

offline evaluation of so-called static treatment allocation procedures – in which

parameters are not updated during the experiment. The new method developed

and evaluated in Chapter 4 makes it possible to use existing field data to evaluate

and improve sequential allocation procedures for continuous treatments without

making extra costs.

Chapter 5 provides a step-by-step demonstration of the integration of Stream-

ingBandit into a front-end web application to implement a sequential allocation

procedure in an experiment. As we have seen before, the rise of the internet al-

lows researchers to conduct experiments (such as surveys) quicker, easier, and

cheaper than in the past (for some examples, see also Kaptein, Van Emden, & Ian-

nuzzi, 2017; Kaptein, van Emden, & Iannuzzi, 2016b). Online platforms such as

Qualtrics, SurveyMonkey, and Amazon’s Mechanical Turk (MTurk) offer services

to implement and conduct those experiments (Amazon, 2012; Qualtrics, 2005;

SurveyMonkey, 1999), while front-end web applications such as Qualtrics also

allow some form of integration of treatment allocation procedures in their plat-

form. However, the treatment allocation procedures are often very limited (i.e.,

only allowing for uniform random allocation). In this chapter, it is shown how

StreamingBandit can be used to deploy experiments with sequential allocation

procedures in a front-end web application – where Qualtrics is chosen as an ex-

ample platform. Once StreamingBandit is integrated into the desired platform,

it allows the researcher to easily adapt experiments to use different types of al-

location procedures. As an extra illustration, an implementation of a recently

completed experiment is discussed in detail. For our example experiment, and

given the tools developed in this thesis, it is easy to use Qualtrics to deploy an ex-

periment, where for the necessary communication needed to provide daily goals,

Qualtrics could be replaced by a platform that allows for direct communication

with a smartwatch (e.g., existing applications). Thus, Chapter 5 shows hands-on

how the methods developed in this thesis can be used to improve and extend social

science experiments by making use of sequential treatment allocation procedures.

In the epilogue in Chapter 6, we give a short overview of the work done in

this thesis and discuss some of the limitations and potential trajectories for future

research.
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StreamingBandit: Experimenting with Bandit Policies

Abstract

A large number of statistical decision problems in the social sciences and beyond can be framed
as a (contextual) multi-armed bandit problem. However, it is notoriously hard to develop and
evaluate policies that tackle these types of problems, and to use such policies in applied studies. To
address this issue, this paper introduces StreamingBandit, a Python web application for develop-
ing and testing bandit policies in field studies. StreamingBandit can sequentially select treatments
using (online) policies in real time. Once StreamingBandit is implemented in an applied context,
different policies can be tested, altered, nested, and compared. StreamingBandit makes it easy to
apply a multitude of bandit policies for sequential allocation in field experiments, and allows for
the quick development and re-use of novel policies. In this article, we detail the implementation
logic of StreamingBandit and provide several examples of its use.

Keywords: sequential decision-making, multi-armed bandit, data streams, sequential experi-
mentation, Python

Based on Kruijswijk, J.M.A., Van Emden, R., Parvinen, P., Kaptein, M.C. (2020). StreamingBandit:

Experimenting with Bandit Policies. Journal of Statistical Software.
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2.1 Introduction

In the canonical multi-armed bandit (MAB) problem a gambler faces a num-

ber of slot machines, each with a potentially different payoff. It is the gambler’s

goal to make as much profit (or, in the case of gambling, as little loss) as possible

by sequentially choosing which machine to play, learning from the observations

as she goes along (Berry & Fristedt, 1985; Whittle, 1980). The gambler faces

a trade-off between exploration and exploitation (Macready & Wolpert, 1998):

on the one hand she wishes to play the machine that was successful in earlier at-

tempts as often as possible (exploitation), but on the other hand she wishes to find

the machine with the highest payoff through experimentation (exploration). The

MAB problem, and its generalization, the contextual MAB (or CMAB) problem – in

which before selecting a machine the gambler observes the state of the world that

could be related to the optimal choice of machine at that point in time – provides

a flexible formalization for studying sequential treatment-allocation procedures in

the social sciences and beyond (Agrawal & Goyal, 2013b; Dudík, Hsu, et al., 2011;

Li et al., 2011).

A multitude of policies addressing (contextual) decision problems have been

conceived and evaluated (see, e.g., Berry & Fristedt, 1985; Chapelle & Li, 2011;

Dudík, Hsu, et al., 2011). Indeed, the randomized controlled trial (RCT, or ε-first

in the literature on sequential decision-making; Chapelle and Li 2011) is in itself

a specific policy devised to address the exploration-exploitation trade-off in which

an exploration phase, the trial itself, is followed by exploitation. Other policies

range from simple heuristics such as “play the winner” (Lachin, Matts, & Wei,

1988; Villar, Bowden, & Wason, 2015) to asymptotically optimal policies such as

upper confidence bound (UCB) methods (Audibert, Munos, & Szepesvári, 2009;

Auer & Ortner, 2010; Garivier & Cappé, 2011), and Bayesian methods such as

Thompson sampling (Agrawal & Goyal, 2012; Chapelle & Li, 2011; Thompson,

1933). It is difficult to assess which of these policies performs best in distinct ap-

plied problems, however, due to the omission of the counterfactuals in the (field)

evaluations of a policy (Li et al., 2011): one does not know what the outcome

would have been had another choice been made anywhere along the sequence

of decisions. Hence the data resulting from an evaluation can often not be used

to evaluate alternative policies. To evaluate a range of possible policies one has

to resort to either simulation methods – which often lack external validity due to

the large number of assumptions encoded in the simulation – or to recent offline

evaluation methods (Agarwal et al., 2017; Li et al., 2011). Offline methods pro-

vide the opportunity to obtain unbiased estimates of the performance of different

policies on historical data, but these approaches are only practically feasible when
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the number of choice alternatives is relatively low and/or the number of sequen-

tial choices is large. Furthermore, the assumptions that justify these methods –

such as stationarity and a non-zero probability for each possible treatment at each

interaction (Li et al., 2011) – are rarely fully justified in practice.

Despite these difficulties, effective (contextual) decision policies are poten-

tially of great use in many areas. To unleash this potential, researchers need to be

able quickly to implement and evaluate distinct bandit policies in the field. This

can be achieved by allowing substantive researchers to easily test different sequen-

tial allocation schemes. If easy-to-use software were available for evaluating and

disseminating novel policies, such policies – which are actively being developed

(e.g., Bastani & Bayati, 2020; Eckles & Kaptein, 2014; Osband & Roy, 2015) –

would be within reach of a broader research community. It is to this end that we

developed StreamingBandit: an open-source RESTful web application that allows

researchers to formalize their sequential-allocation procedure as a CMAB problem

and, by virtue of this formalization, easily to experiment with different policies.

In the remainder of this section we first engage in a high-level discussion of

the basic usage of StreamingBandit, discuss related approaches, and provide an

overview of the application and its installation. In Section 2.2, we describe the

application in more detail, and demonstrate the setup and evaluation of a single

policy. Here we also discuss the use of StreamingBandit for offline policy evalua-

tion and we offer a number of performance measures. In Section 2.3, we introduce

a number of currently implemented “default” policies and discuss methods of com-

bining multiple policies. We detail two practical applications of StreamingBandit

in Section 2.4, and finally in Section 2.5 we briefly discuss future work directions.

2.1.1 Basic usage

The basic setting we consider is the following. Consider an experimenter

who interacts with the environment. At each interaction t:

1. the experimenter observes a context xt,

2. subsequently, the experimenter chooses an action at,

3. and finally a reward rt is observed.

The main aim of the experimenter is to maximize the cumulative reward
∑N

t=1 rt

where N denotes the total number of interactions. To do so, the experimenter

applies a policy Π which is some function that takes the context xt and the histor-

ical interactions, and returns an action. For convenience we denote all historical

interactions using D(t−1) and thus we have Π(xt,Dt−1)→ at.

11
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This sequential decision-making scheme is encountered in many real-life sit-

uations:

• Personalized healthcare: A physician meets with patients sequentially. For

each patient, she observes a number of background characteristics (gender,

age, current condition) constituting the context. Subsequently, her action

is to choose a treatment such that the reward – measured in terms of the

general health of the patient – is maximized.

• Online advertising: In online advertising a firm selecting an ad observes the

context consisting of a description of the current user visiting a specific web-

page. The action is to choose an advertisement from of a set of possible

advertisements (possibly dependent on the context), and the rewards con-

stitute the clicks on the ad.

• Product-recommendation systems: The context denotes all that is known about

the user at a certain point in time. The action is choosing one of a set of prod-

ucts, and the reward consists of the revenue generated at each interaction.

• Social-science experiments: Many social-science experiments constitute a spe-

cial case of contextual decision-making: participants are recruited sequen-

tially during the experiment. The context consists of all that is known about

the participant, and sequentially the action is to assign a participant to a

specific experimental condition (possibly dependent on the context in cases

of stratified sampling, for example). Finally, the reward(s) consist of the

outcome measures of the experiments.

The above list illustrates the generality of our approach: StreamingBandit can be

used to allocate actions in all of the above applications.

To ensure the computational scalability of StreamingBandit we assume that,

at the latest interaction t = t′, all the information necessary to choose an action can

be summarized using a limited set of parameters denoted θt′, the dimensionality

of θt often being (much) smaller than that of Dt−1. Given this assumption, we

identify the following two steps of a policy:

1. The decision step: In the decision step, using xt′ and θt′, and often using some

(statistical) model relating the actions, the context, and the reward, which

is parametrized by θt′, the next action at′ is selected. Making a request to

StreamingBandit’s getaction REST endpoint returns a JSON object con-

taining the selected action. Optionally, the probability pt′ of selecting this

action (the propensity) and/or an identifier for this specific request (the

advice_id), both of which are explained in more detail below, are also re-

turned.
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2. The summary step: In each summary step θt′ is updated using the new infor-

mation {xt′ , at′ , rt′ , pt′}. Thus, θt′+1 = g(θt′ , xt′ , at′ , rt′ , pt′) where g() is some

update function. Effectively, all the prior data, Dt−1 are summarized in θt′.

This choice means that the computations are bounded by the dimension of

θ and the time required to update θ instead of growing as a function of t.

Note that this effectively forces users to implement an online policy (Micha-

lak et al., 2012) as the complete dataset Dt−1 is not revisited at subsequent

interactions. Making a request to StreamingBandit’s setreward endpoint

containing a JSON object including either the advice_id or a complete de-

scription of {xt′ , at′ , pt′}, and the reward rt′, allows one to update θt′+1 and

subsequently to influence the actions selected at t′ + 1.

For the basic usage of StreamingBandit the experimenter – or rather an ex-

ternal server or mobile application – sequentially executes requests to the getaction

and setreward endpoints, and allocates actions accordingly. Using this setup,

StreamingBandit can be used to sequentially select advertisements on webpages,

for example, allocate research subjects to different experimental conditions in an

online experiment, or sequentially optimize the feedback provided to users off a

mobile eHealth application. We provide a number of practical examples in Sec-

tion 2.4.

2.1.2 Related approaches

Theoretically, contextual decision-making relates to a broad literature rang-

ing from active learning (e.g., Beygelzimer, Hsu, Langford, & Zhang, 2010; Han-

neke, 2014) to the general setting of reinforcement learning (Sutton & Barto,

2011; Szepesvári, 2010). The contextual MAB problem (Agarwal et al., 2014;

Dudík, Hsu, et al., 2011; Li et al., 2010) we consider here is a specific instance of

reinforcement learning: it is a problem that is well-studied both without contex-

tual information (Berry & Fristedt, 1985) and in numerous generalizations, such

as the continuous bandit (Mandelbaum, 1987) and bandits with dependencies

(Pandey, Chakrabarti, & Agarwal, 2007). The current work also relates to re-

cent discussions on offline policy evaluation (Dudík, Erhan, Langford, & Li, 2012;

Dudík, Langford, & Li, 2011), although it is distinct from the multi-world test-

ing service presented by Agarwal et al. (2017) in its focus on running (adaptive)

policies online versus the online collection of data combined with the offline eval-

uation of policies. The field is too large to be properly reviewed in this paper, and

we refer the reader to Schwartz, Bradlow, and Fader (2017) and the references

therein for an accessible introduction and contemporary applications.
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Here we narrow our discussion of related approaches to related software

projects, which we split into the following four categories: i) software for A/B

testing, ii) software for general (supervised) learning, iii) software for offline pol-

icy evaluation, and iv) software for (sequential) optimization. The first category

relates to our current project in that A/B tests – or randomized experiments – are

used in many fields to address (C)MAB problems: one devotes a (pre-set) number

of interactions to random exploration, after which the best performing action is

selected and further exploited. This approach has become standard in many web

companies (Jiang, Shi, Shang, Geng, & Glass, 2016). A more advanced version,

often referred to as “multi-variate testing” runs many A/B tests in parallel, possibly

exploiting a factorial structure between the actions. Several commercial systems,

such as Google Analytics, provide A/B testing abilities (Google, 2018), see also

Optimizely (Optimizely, 2017), and Mixpanel (Mixpanel, 2017).

An effective policy depends heavily on the ability to predict the next reward

given a context. Once available, a (large) dataset of contexts, actions, and re-

wards constitutes a supervised learning problem. Many general supervised learn-

ing solutions have been developed recently, such as CNTK (Seide & Agarwal,

2016), GraphLab (Collet, Sassolas, Lhuillier, Sirdey, & Carlier, 2016), GeePS

(Cui, Zhang, Ganger, Gibbons, & Xing, 2016), MLlib (Meng et al., 2016), Ten-

sorFlow (Abadi et al., 2016), and Minerva (Reagen et al., 2016). Some of these,

such as Vowpal Rabbit (Langford, Li, & Strehl, 2011) and Jubatus (Hido, Tokui,

& Oda, 2013), explicitly include libraries implementing specific bandit policies,

or evaluation methods for bandit policies on existing, offline, data sets. Specific

software projects for offline policy evaluation, and hence the ability to evaluate

policies on existing datasets, are also available (see, e.g., Komiyama, Honda, &

Nakagawa, 2015; Nugent, 2015; Striatum Contributors, 2016). Others have pro-

vided language-specific code libraries implementing different policies, although

most of these efforts seem to be a) geared towards computer scientists and expe-

rienced developers and b) not focused on field deployment (see Galbraith, 2016;

Kaufmann, Cappé, & Garivier, 2012; Sola, 2015, and the references therein).

There are a number of platforms that allow for sequential optimization:

Google Analytics (Google, 2018), for example, supports Thompson sampling (Ag-

rawal & Goyal, 2012; Kaptein, 2014; Thompson, 1933), which is a method for

sequentially allocating visitors to different actions dynamically based on the ob-

served outcomes. However, contextual knowledge is not included. Yelp MOE

(Yelp, 2014) is an open-source software package that implements optimization

over a large parameter space via sequential A/B tests in which Bayesian optimiza-

tion is used to compute parameters for the next best A/B test. Finally, the Deci-

sion Service (Agarwal et al., 2017) implements a number of functionalities im-
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Figure 2.1: High-level architecture of StreamingBandit.

plemented by StreamingBandit using a similar formalization (the summary and

decision steps). This software package focuses on continuously collecting data to

update and deploy policies that are evaluated offline, whereas StreamingBandit

focuses on evaluating (adaptive) policies online.

2.1.3 An overview of StreamingBandit API calls

StreamingBandit is a Python 3 application that runs a Tornado web server

(Tornado Authors, 2016) and discloses a REST API that facilitates the implemen-

tation of the summary and decision steps described above. A user of Streaming-

Bandit first creates an experiment and subsequently implements – or adopts based

on the library of available policies – a policy using Python 3. A policy specifica-

tion consists of a) some code implementing the decision step given θt′ and xt′,

and b) some code implementing the summary step given the observed outcomes

to update θt′. Figure 2.1 presents an overview of the architecture of Streaming-

Bandit. The application discloses a number of REST endpoints to facilitate the

creation and editing of experiments and the extraction of data from running ex-

periments. All endpoints apart from the getaction and setreward require the

user to authenticate using a secure cookie. Logging in can be done by passing

a JSON object to the login endpoint containing the parameters username and

password; if the username and password are valid, a secure cookie is returned.

New users can be created using the user call and posting the relevant informa-

tion. For convenience, we provide a separate UI (a separate software project that

can be found at https://github.com/Nth-iteration-labs/streamingbandit-ui) that

allows easy point-and-click administration and management of experiments. Here

we detail the primary endpoints and describe their functionality. We have already

introduced the getaction and setreward calls, of which the full specification is:
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GET getaction: the query-string parameters consist of the experiment identifica-

tion number, exp_id (string), a key (string), and the context (JSON). The

call executes the decision step of a policy associated with the exp_id and re-

turns an action (JSON), which optionally contains the elements advice_id

(string), and propensity (float). The key is used to authenticate the request.

GET setreward: the query-string parameters consist of the exp_id, the key, the

reward (JSON) and either the advice_id, in which case the context and

action are retrieved from the associated getaction call, or the context and

action themselves. Subsequently, the summary step of the policy associated

with the associated exp_id is executed and a JSON object containing the

status is returned.

The primary REST endpoints at which to manage the experiments are:

GET exp: Returns a JSON object listing the exp_id and name of each experiment.

POST exp: Posting a JSON object containing the parameters name, getcontext,

getaction, getreward and setreward creates a new experiment. The last

four fields should contain executable restricted Python 3 code. To ensure

some safety in the executed code we limit the functionality of these cus-

tomer scripts to a subset of Python 3 code, using self-defined built-ins. This

will disallow, for instance, the import of any other packages apart from the

one we already make available. It also means that the user does not need

to import any packages into the code because they are made available in

the built-ins before any code is executed. The code in the getaction and

setreward fields implements the decision and summary steps, respectively.

The exp endpoint accepts a number of optional parameters, which we detail

in Section 2.2.1. A valid POST request to the exp endpoint returns a JSON

object containing the exp_id and the key of the newly created experiment.

The code in the getcontext and getreward fields is not strictly necessary;

these two snippets of code provide for the opportunity to simulate sequen-

tial decisions. This is extremely useful for debugging and can be used in

simulation studies of a policy. Passing the query-string parameter n (int,

default=1) to rest endpoint eval/<exp-id>/simulate sequentially executes

the getcontext, getaction, getreward and setreward code of the associ-

ated experiment n times.

PUT exp/<exp_id>: If the exp_id string in the url is a valid experiment for the

current user, this call edits the existing experiment. The parameters are the

same as those used for creating experiments.
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GET exp/<exp_id>: Returns the name and getaction and setreward code for a

specific experiment.

DELETE exp/<exp_id>: Deletes an experiment. When an experiment is deleted

all the user-generated settings are removed, as well as the current θ. How-

ever, logged data associated with the experiment is maintained.

GET exp/<exp_id>/resetexperiment: Resets the experiment: the current state

of θ is deleted, but all the other information is retained and the policy can

still be executed.

Next to these administrative calls, the application provides a number of calls

to monitor running experiments and retrieve logged data.

GET stats/<exp_id>/currenttheta: Returns the current θ for the experiment as

a JSON object.

GET stats/<exp_id>/summary: Returns an overview of the number of requests

to the getaction and setreward endpoints.

GET stats/<exp_id>/rewardlog: Returns the logged setreward events (includ-

ing the context, action, and reward objects) for the current experiment. It

can be used for offline policy evaluation (see, e.g., Agarwal et al., 2017; Li

et al., 2011). The limit (int) query-string parameter limits the dump to the

last k events.

GET stats/<exp_id>/actionlog: Returns all the getaction events for the cur-

rent experiment. Again, the limit parameters limit the dump to the last k

events.

GET stats/<exp_id>/log: Returns a JSON file of all data that was explicitly

logged by the user using self.log() in the policy specification of an ex-

periment.

Requests made to non-existing REST endpoints result in a 404 status error,

whereas erroneous calls to existing end-points return a JSON object containing a

key error with an informative error message.

2.1.3.1 Implemented policies: “defaults”

StreamingBandit comes with a number of implemented policies to tackle

standard (contextual) decision problems. A JSON object containing a list of de-

faults can be retrieved using the endpoint default, and calling default/<defau c

lt_id> gives the code for a specific default. We have implemented the following

policies, amongst others:
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• ε-first: Implements the standard randomized clinical trial approach to the

(C)MAB problem: the first t < n interactions, where n is set by the user,

are allocated to actions randomly, after which the action with the highest

average reward is selected for the remaining interactions.

• ε-greedy: Implements a greedy policy in which a proportion p of interactions

is randomly allocated to the available actions, whereas a proportion of (1−p)
interactions is allocated to the action with the highest average reward at that

point in time.

• Thompson sampling for the k-armed Bernoulli bandit: Thompson sampling

provides a Bayesian solution to the MAB problem (Agrawal & Goyal, 2012;

Thompson, 1933). We implement Thompson sampling for the Bernoulli ban-

dit (e.g., r ∈ {0, 1}). Thompson sampling allocates actions proportional to

one’s current belief – as quantified using a posterior distribution – that an

arm is optimal (Kaptein, 2014).

• Lock-in Feedback: Lock-in Feedback (LiF) is an allocation scheme for dealing

with continuous actions (a ∈ R) in which small systematic oscillations in the

action choice over time are used to derive the gradient of the reward function

and take a step toward the (local) maximum of that function (see Kaptein,

van Emden, & Iannuzzi, 2016a; Kaptein, van Emden, & Iannuzzi, 2016b, for

details).

• Bootstrap Thompson sampling: Bootstrap Thompson sampling provides a

computationally appealing alternative to Thompson sampling in cases in

which it is hard to sample directly from the posterior distribution of a model

online (see Eckles & Kaptein, 2014). In essence, the posterior distribution is

approximated using an online bootstrap distribution (Owen & Eckles, 2012).

We provide examples of the use of these policies in Section 2.3. StreamingBandit

is easily extended and new defaults can be added by adding code to the /defaults

folder of the application in a folder with an informative name that contains the

following four files:

1. get_context.py: A Python script that generates a JSON object encoding a

context.

2. get_action.py: A script that takes a JSON object encoding the context, and

returns a JSON object containing the action.

3. get_reward.py: A script that generates a reward using a context and action

JSON.
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4. set_reward.py: A script that takes a context, action, and reward JSON and

handles the logic of updating θ.

Restarting the web application after adding these files will automatically include

the novel policy in the list of defaults. We welcome submissions of new default

policies and other implementations. See Section 2.1.5 for more details.

2.1.3.2 StreamingBandit libraries

StreamingBandit was created to quickly create and test alternative policies

in the field. This can be done by altering the getaction and setreward codes

associated with an experiment. However, given that a number of operations are

often encountered in the online processing of incoming data, StreamingBandit

also provides a number of Python modules:

• base: This module provides functionalities for online (row-by-row) updates

of, e.g., counts, means, variances, proportions, and covariances.

• lm: Implements an online version of a linear regression model.

• bts: Takes a model (e.g., lm) and a row of data and produces (or updates)

an online bootstrap distribution of the parameters.

• lif: Implements the Lock-in Feedback policy, as described in Kaptein and

Ianuzzi (2016).

• thompson: Implements Thompson sampling for the k-armed Bernoulli ban-

dit, amongst others.

• thompson_bayes_linear: Implements model-based Thompson sampling us-

ing a Bayesian linear regression model.

New modules can be added to the application by adding a script to /libs. For

detailed documentation of the individual modules we refer the reader to http:

//nth-iteration-labs.github.io/streamingbandit/libs.html.

2.1.4 Installation, deployment, and documentation

The StreamingBandit source code is available from https://github.com/

Nth-iteration-labs/streamingbandit/ and the documentation can be accessed on

http://nth-iteration-labs.github.io/streamingbandit/. There are several ways in

which StreamingBandit can be used:
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1. At http://sb.nth-iteration.com we provide a running instance of Streaming-

Bandit. You apply for a user account by sending an email to the correspond-

ing author of this paper, and use our hosted webserver for (small-to-medium-

sized) projects.

2. The easiest way to get going independently is probably to use our Docker

container (Merkel, 2014). The following commands assume that you have

docker and docker-compose installed, and that you are inside a folder in

which you wish to put the source code of StreamingBandit.1 If so, starting

StreamingBandit requires, first, pulling the repository to your local system

and going inside the folder:

$ git clone \

> http://github.com/Nth-iteration-labs/streamingbandit.git

$ cd streamingbandit

Next, once you are inside the folder with all the source code, we can launch

StreamingBandit by running:

$ docker-compose up -d

$ docker exec -t streamingbandit_web_1 python3 \

> ../insert_admin.py -p test

The first command makes sure that all necessary containers, including the

databases, are running. The second command creates a user account admin

with the password “test”. To gracefully stop and start the container after

running the first command, run the following command:

$ docker-compose stop

$ docker-compose start

Starting the service will make StreamingBandit available at http://localhost:

8080 or the Docker-set IP address.

Note that the above commands only start the back-end REST service. The

following commands are also needed to launch our front-end:

$ docker-compose -f docker-compose.yml \

> -f docker-compose.front-end.yml up -d

$ docker exec -t streamingbandit_web_1 python3 \

> ../insert_admin.py -p test

The start and stop commands now change slightly as well:
1For more information on how to get started with Docker, see https://docs.docker.com/

get-started/.
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$ docker-compose -f docker-compose.yml \

> -f docker-compose.front-end.yml stop

$ docker-compose -f docker-compose.yml \

> -f docker-compose.front-end.yml start

which starts and stops both the front-end and the back-end at the same time.

The front-end can be reached at http://localhost or the Docker-set IP ad-

dress.

The front-end source-code can be found in a separate repository at https:

//github.com/Nth-iteration-labs/streamingbandit-ui, but for this use-case it

is not necessary to download the repository to your local system because we

have uploaded a Docker image to the internet and Docker will download

that image automatically via the docker-compose command.

3. For larger-scale projects we recommend installing from source and perhaps

using a load-balancer. For details, please consult the documentation at http:

//nth-iteration-labs.github.io/streamingbandit/.

2.1.5 Further development

The above sections give the essential details of StreamingBandit. We gladly

accept any contributions towards making StreamingBandit better and more use-

ful. The guidelines for contributing to the development of StreamingBandit can

be found in the documentation.

2.2 Getting started

In the remainder of this article we assume that the reader is running the

default Docker container installation of StreamingBandit, and is using the man-

agement front-end for the administration of experiments. In introducing the de-

tails of setting up a policy we describe the setup and usage of a simple – but very

frequently used – policy: ε-first. When this policy is executed a sample of size n

interactions is uniformly randomly allocated to a control (a = control) or treat-

ment (a = treatment) action (or condition), after which the treatment is adopted

if it is more effective than the control condition. With slight abuse of the notation

this can be denoted:

Πε-first(D, n) =

at ∼ random(control, treatment) if t ≤, n

at = max(r̄control, r̄treatment) otherwise,

(2.1)
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Figure 2.2: Screenshot of the default front-end for StreamingBandit.

where r̄control denotes the sample average of outcomes observed in the control

condition when t ≤ n, and the last line denotes selection of the action with the

highest empirical average reward when t > n. The management front-end – of

which Figure 2.2 shows a screenshot – makes it easy to create a new experiment

or to use one of the defaults as a starting point for creating one’s own policies.

We present the front-end in more detail in Appendix 2.A. Once the experiment has

been created it receives an exp_id and a key key. This enables the REST endpoints

http://HOST/getaction/<exp_id>?key=<key>&context={}

and

http://HOST/setreward/<exp_id>?key=<key>&context={}&reward={}&actio c

n={}.↪→

The actual functionality is provided by the getaction and setreward code spec-

ified when the experiment is created, whereas the getcontext and getreward

codes are useful for simulations and testing. Below we detail each of these in

turn for the version of ε-first implemented in the defaults. Before that we should

note that we will denote a few variables and functions using self inside the code.

These variables and functions are denoted with self because they are part of the

experiment class in which the custom code runs. For the most part, we will only

use a reference to self with the following variables and functions:

• self.context

• self.action

• self.reward

• self.get_theta()

• self.set_theta()

The code for a simple ε-first implementation is as follows:
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• getcontext: The canonical ε-first strategy does not consider a context. Hence,

we leave this blank.

• getaction: The implementation of the decision step of ε-first is:

n = 100

mean_list = base.List(self.get_theta(key = "treatment"),

base.Mean, ["control", "treatment"])

if mean_list.count() >= n:

self.action["treatment"] = mean_list.max()

self.action["propensity"] = 1

else:

self.action["treatment"] = mean_list.random()

self.action["propensity"] = 0.5

This code uses a number of libraries implemented in StreamingBandit: be-

low we detail each line in turn. First, the sample size of the experiment, n

in Equation 2.1, is set. The next line of code generates a list of base.Mean

objects. This object provides the functionality to compute streaming updates

of sample averages, and the list contains one such average for each of the

possible treatments specified by name, using ["control", "treatment"].

The self.get_theta() call is used to retrieve θt′, which in this case thus

contains two base.Mean objects named “control” and “treatment”. A count,

n, and mean reward, r̄, are contained within each base.Mean object.

The resulting mean_list object thus, in this case, contains two base.Mean

objects, each of which contains a mean value and a count that can be up-

dated and manipulated. In the next lines the total count of the number of

observations over all mean elements in the list is retrieved. If this is larger

than n, the treatment with the highest average value is returned, otherwise

a random element of the list is returned. The returned JSON object when

making a call to http://HOST/<exp_id>/getaction?key=<key> and filling

in the correct exp_id and key appears as follows:

{"action":

{"treatment": "control",

"propensity": 0.5},

"context": {}}

where the value of treatment changes randomly as long as n ≤ t.

• getreward: Rewards can be simulated by using a few lines of Python 3 code
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if self.action["treatment"] == "control":

self.reward["value"] = np.random.normal(4, 1)

else:

self.reward["value"] = np.random.normal(6, 2)

in which the rewards for the selected action in the decision step are drawn

from a normal distribution (rcontrol ∼ N (4, 1), rtreatment ∼ N (6, 2)).

• setreward: When a reward has been generated, the summary step for the

ε-first policy is implemented as:

n = 100

mean_list = base.List(self.get_theta(key = "treatment"),

base.Mean, ["control", "treatment"])

if mean_list.count() < n:

mean = base.Mean(self.get_theta(key = "treatment",

value = self.action["treatment"]))

mean.update(self.reward["value"])

self.set_theta(mean, key = "treatment",

value = self.action["treatment"])

which again uses the libs.base library. After this the action is retrieved and

the associated mean object is updated using mean.update as long as the

exploration phase is ongoing. The last line stores θt′+1 such that it can be

retrieved again for future decision-making. In this implementation, after

the experiment when n > t, θ is no longer updated. Note that a slightly

more elaborate version of this example that facilitates propensity scores (see

Section 2.2.1) can be found in the defaults (see Section 2.1.3).

As stated above, the getcontext and getreward codes are not strictly nec-

essary to use the implemented policy in field studies; these two snippets of code

merely provide the opportunity to simulate an experiment, a feature that is ex-

tremely useful for debugging. In actual evaluations of a policy the data result-

ing from these calls would be sent by the outside world (e.g., via a website or

mobile application). However, to demonstrate the utility of the getcontext and

getreward codes, note that a request to the endpoint /eval/<exp_id>/simulate

with parameters N=150, seed=1271246, and verbose=False yields the following

JSON response:
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{

"theta": {

"treatment:control": {

"n": "52",

"m": "4.0259030511640885"

},

"treatment:treatment": {

"n": "48",

"m": "5.829777419810004"

}

},

"simulate": "success",

"experiment": "121e3e0aeb"

}

which shows the number of times the treatment and control conditions were

selected (n) and their respective mean reward (m). Although we simulated 150

interactions, the total number of interactions stored in θ is 48 + 52 = 100 because

in the implementation above we stop updating θ when t > n.

2.2.1 Additional features

We described the setup and simulation of a simple bandit experiment in the

previous section. The description skipped over a number of useful features of

StreamingBandit, which we address below.

2.2.1.1 Offline analysis of bandit policies

When we first introduced the getaction endpoint we mentioned the op-

tional return field propensity. In a number of default policies, the return object

contains this propensity pt, which is the probability of selecting the action at inter-

action t. By way of an illustration, for ε-first, as detailed above, the computation

of pt is as follows:

pt =

0.5 if t ≤ n

1 otherwise

Whenever it is possible to compute these propensities – which is sometimes dif-

ficult, such as when a ∈ R – the default policies include pt. This serves two

purposes:
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1. When addressing contextual sequential decision problems, and when the

probability of selecting an action depends on the context, the propensity pt
can be used for inverse propensity matching or weighting (Austin, 2011) to

improve the estimate of the causal effect of the action by accounting for the

contextual covariates (see, e.g., Imbens & Rubin, 2015; Pearl, 2009).

2. When pt is included, the logged data of an experiment can be used for the

offline evaluation of alternative decision policies. This can be attained by

using inverse propensity scoring (ips). Suppose we are evaluating a policy

Π using a logged dataset containing N events. The ips estimate of average

reward of the policy can be obtained by computing

ips(Π) =
1

N

N∑
t=1

1{Π(xt) = at}rt/pt

where the indicator 1 is 1 when the action of Π matches the action in the logs.

Agarwal et al. (2017) provide a more extensive discussion of the benefits of

using offline methods to evaluate alternative policies.

2.2.1.2 Advice ID, delayed rewards, and logging

When we described the [POST] exp endpoint we omitted a number of op-

tional parameters that can be supplied in the JSON object. First of all, we skipped

discussion of the advice_id parameter. This Boolean indicates whether or not the

getaction call should return an advice_id. When set to True the advice_id pa-

rameter enforces a direct link between the getaction and setreward endpoints.

In the example discussed above we were implicitly assuming that the application

consuming the REST API would handle the logic that ensures that by the time the

setreward endpoint is called, the context, action (including the propensity),

and reward are properly supplied. However, this could be challenging for some

consuming applications. In such cases, setting advice_id = True would require

the consuming application to merely specify the advice_id when making a re-

quest to the setreward endpoint; StreamingBandit will merge the actions and

context that were provided earlier in the associated getaction call with the re-

wards supplied in the setreward call.

When setting advice_id = True, one can also specify a) how long the adv c

ice_id will be retained (in hours). This is useful in some specific applications. In

an online advertising experiment, for example, when a click on an advertisement

is not registered within 12 hours it is extremely unlikely that this will happen in the

future; it is more likely that the appropriate call to the setreward with rt = 0 failed

to register. Setting delta_hours=12 and default_reward = {"reward":"0"} en-
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sures that after twelve hours the setreward call associated with the advice_id

is automatically executed with a reward of zero. It should also be noted that al-

though all the examples provided in this paper sequentially execute the getaction

and setreward calls, this is not at all a necessity. However, any bias in a (learning)

model that might originate from, e.g., a delay in the arriving data in the setreward

calls should be explicitly handled by the user.

Finally, we have not yet discussed the hourly_theta Boolean: if this is set

to True when creating the experiment, the state of θ will be logged every hour.

Calling stats/<exp_id>/hourly_theta with parameter limit returns the last k

of these snapshots of θ, which could be useful for monitoring the progress of an

experiment over time.

2.2.1.3 The nesting of policies

In addition to the libraries described earlier, and the self.get_theta() and

self.set_theta() methods for storing and retrieving data, there are a number

of methods available to the user from the code supplied in the getaction and

setreward fields. The most interesting of these is the ability to instantiate other

experiments within a running experiment. By way of illustration, the code

experiment = Experiment(exp_id = <exp_id>)

self.action = experiment.run_action_code(context = self.context)

can be used to run the getaction code of the experiment with exp_id=<exp_id>

from another experiment. Similarly, experiment.run_reward_code() would ex-

ecute the setreward code for another experiment. This allows the user to nest

different experiments, and hence to essentially use a sequential decision policy

Π∗ to decide from among a range of policies that are being executed Π1,...,k. We

provide a working example of this policy nesting in the Section 2.3.6.

2.2.2 Performance

To examine the performance of our RESTful API we set up an Ubuntu 16.04

x64 quad-core virtual server with 16GB of RAM running the StreamingBandit

server, and additionally installed the wrk2 load generator on a smaller (single

core, 1GB RAM) Ubuntu 16.04 x64 machine connected to the same subnet within

the same datacenter. We chose wrk2 (Tene, 2015) as our load generator, as it

is a HTTP benchmarking tool that is capable of generating significant load when

run on a single CPU, and can easily be extended to test different RESTful HTTP

methods through the use of Lua (Ierusalimschy, 2016) scripts.
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To ensure that our load tests would not be hampered by OS related lim-

itations we optimized sysctl.conf on both machines, turning off disk swapping,

upping the number of connections per port, and optimizing port reuse. We also

tested our client-server throughput with iPerf3 (iPerf Authors, 2016). These tests

indicated a throughput of 736 Mbits/s – more than enough bandwidth to safe-

guard against system-level I/O bottlenecks interfering with our API-level tests.

On completion of our test-bed we proceeded to run several wrk2 load tests,

focusing on industry-standard API performance measures (De, 2017). The results

for a single wrk2 thread running 100 concurrent AB test getaction calls at a time

with a throughput limit of 1000 requests per second were the following:

• Average, max and standard deviation of latency: 21.09ms, 90.56ms, 13.22ms

• Throughput, in requests per second: 100 (equal to max set wrk2 through-

put)

• Top total CPU utilization: 69% (Of which: Python 3 65% of one of four

available CPU’s)

• Top Heap memory utilization: 3%

When we compared these numbers against some representative Python web

framework benchmarks (Klenov, 2015) we found that StreamingBandit could

hold its own. Still, to obtain a more objective measure of how “empty” versus

“AB test” StreamingBandit getaction calls measure up to basic, vanilla Tornado

requests, we compared these as well. The results, as illustrated in Figure 2.3,

demonstrate that StreamingBandit adds little overhead to basic Tornado pro-

cessing, and scales well up to 250 to 300 requests per second when running on a

single virtual CPU core. The relatively minor increment in throughput and latency

between the “empty” and the “AB test” experiments further indicates that Stream-

ingBandit offers sufficient capacity to implement more complex experiments.
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Latency by Percentile Distribution
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Figure 2.3: Latencies of basic Tornado calls when taxed by wrk2 at a maximum through-
put of 100 (Tornado_R100) versus 500 (Tornado_R500) calls per second (cps), as com-
pared to StreamingBandit “AB test” (AB_GetSet_R100, throughput limited at 100 cps)
and empty getaction/setreward calls (with Empty_GetSet_100, Empty_GetSet_200,
Empty_GetSet_300 at respectively 100, 200 and 300 cps).

2.3 Examples of the implemented policies

In the following we work out a number of different (C)MAB policies. First,

we present a simple implementation of ε-greedy (Sutton & Barto, 2011), then we

introduce Thompson sampling for the canonical k armed Bernoulli bandit (Thomp-

son, 1933), and for optimal design in between-subject experiments (Kaptein, 2014).

We proceed by demonstrating two possible policies to deal with the continuum-

bandit problem (problems in which a ∈ R): Bootstrap Thompson sampling for a

CMAB problem using a simple linear model (Eckles & Kaptein, 2014) and Lock-in

Feedback (LiF) (Kaptein & Ianuzzi, 2016). We further demonstrate how Stream-

ingBandit can be used to nest multiple policies, and show how StreamingBandit

can be used to evaluate multiple policies in parallel using the offline evaluation

method proposed by Li et al. (2011). This latter approach is, to the best of our

knowledge, novel. All of the implementations discussed in this section can be

found in the defaults (see Section 2.1.3).

2.3.1 ε-greedy

One frequently used policy is called ε-greedy (Sutton & Barto, 2011). It is

implemented in a simple problem consisting of a control and a treatment arm,

as we considered when we introduced ε-first, by playing the arms uniformly ran-

domly with some probability ε, and selecting the hitherto best-performing arm

with probability 1− ε. The same getcontext and setreward codes as in our ε-first

example above are used to implement ε-greedy, as follows:

• getaction:

29



2

Chapter 2

e = .1

mean_list = base.List(self.get_theta(key = "treatment"),

base.Mean, ["control", "treatment"])

if np.random.binomial(1,e) == 1:

self.action["treatment"] = mean_list.random()

self.action["propensity"] = 0.1*0.5

else:

self.action["treatment"] = mean_list.max()

self.action["propensity"] = (1-e)

Where, contrary to our ε-first example, we explicitly include the computation

of the propensity pt.

• setreward: The summary step for the ε-first can be implemented as:

mean = base.Mean(self.get_theta(key = "treatment",

value = self.action["treatment"]))

mean.update(self.reward["value"])

self.set_theta(mean, key = "treatment",

value = self.action["treatment"])

which is the same as for ε-greedy except for the fact that the respective means

are updated at each interaction t instead of n < t.

Running a simulation with n = 1000 and seed = 1271246 gives:

{

"theta": {

"treatment:control": {

"n": "70",

"m": "4.011771491758239"

},

"treatment:treatment": {

"n": "930",

"m": "5.9609857188253015"

}

},

"simulate": "success",

"experiment": "3ea45886b5"

}
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in which it is clear that the treatment arm is preferred.

2.3.2 Thompson sampling for the K-armed Bernoulli bandit

As our second example we provide the code to implement Thompson sam-

pling for the classical Bernoulli bandit problem where the rewards are either 0

or 1, and for each arm k = 1, . . . , K the probability of success (reward = 1) is

µk (Kaufmann, Korda, & Munos, 2012). Thompson sampling is a Bayesian pol-

icy in which one selects an action with a probability that is proportional to one’s

posterior belief that the action is optimal (see Kaufmann, Korda, & Munos, 2012,

for details). In the Bernoulli reward case the Beta(α, β) distribution provides a

convenient a priori choice in that after observing a Bernoulli trial the posterior

distribution is simply Beta(α+1, β) in the case of success, and Beta(α, β+1) in the

case of failure. Using Sk and Fk to denote the number of failures and successes for

arm k, both of which are 0 at the start, Thompson sampling proceeds as follows;

at each interaction t,

1. for each arm k = 1, . . . , K, sample dk(t) from Beta(Sk + 1, Fk + 1),

2. select arm k(t) = arg maxk dk(t),

3. and if rt = 1 then Sk = Sk + 1 or when rt = 0 then Fk = Fk + 1.

Thompson sampling for the 4-arm Bernoulli bandit problem can be imple-

mented as follows:

• getcontext: The Bernoulli bandit does not consider a context; we leave this

field blank.

• getaction: The decision step, using the libs.thompson library, can be im-

plemented using:

propl = thmp.BBThompsonList(self.get_theta(key = "treatment"),

["1","2","3","4"])

self.action["treatment"] = propl.thompson()

self.action["propensity"] =

propl.propensity(self.action["treatment"])↪→

where the four arms are indexed using the numbers 1− 4.

• getreward: Bernoulli rewards can be simulated using:

self.reward["value"] = np.random.binomial(1,

(0.2*int(self.action["treatment"])))
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which produces Bernoulli rewards with a probability of 0.2, 0.4, 0.6, 0.8 for

the four arms respectively.

• setreward: Finally, the updates of the posterior distributions are imple-

mented using

prop = base.Proportion(self.get_theta(key = "treatment",

value = self.action["treatment"]))

prop.update(self.reward["value"])

self.set_theta(prop, key = "treatment",

value = self.action["treatment"])

Running a simulation with n = 1000 and seed = 1271246 gives:

{

"theta": {

"treatment:1": {

"p": "0.14285714285714288",

"n": "7"

},

"treatment:4": {

"p": "0.8025404157043878",

"n": "866"

},

"treatment:2": {

"p": "0.20000000000000004",

"n": "10"

},

"treatment:3": {

"p": "0.5982905982905986",

"n": "117"

}

},

"experiment": "1de9753f51",

"simulate": "success"

}

Which demonstrates that arm 4 is clearly, and correctly, preferred.
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2.3.3 Thompson sampling for optimal design

Another example that could have practical relevance in social-science exper-

iments is presented in Kaptein (2014): When running an experiment comparing

two groups that receive different treatments, assuming unequal variances in the

observed continuous outcomes, it is beneficial to allocate a larger number of sub-

jects to the treatment with the highest variance to increase the precision in the

obtained effect-size estimate. The Thompson sampling policy to implement this

sequential allocation is to compute – using a normal-inverse χ2 model – the pos-

terior variances σ2
1 and σ2

2 of the two treatments in the summary step. Next, in the

decision step, a draw d from each of the two posterior distributions σ2
1 and σ2

2 is

obtained and the treatment is selected for which d
n
, where n denotes the number of

subjects allocated to the respective treatment, is highest. This choice leads to the

largest reduction in the estimated standard error of the mean difference between

the two groups. We refer the interested reader to Kaptein (2014) for details. This

sequential allocation scheme can be implemented In StreamingBandit using:

• getcontext: Left blank as no context is considered

• getaction: In the summary step, we retrieve a list of two variance objects,

one for each treatment. Variance objects, and the ability to update these on-

line, are included in base library. Next, we implement Thompson sampling

on the level of the posterior variances of the outcomes; this is included in

the libs.thompson library:

varList = thmp.ThompsonVarList(self.get_theta(key =

"treatment"),↪→

["control","treatment"])

self.action["treatment"] = varList.experimentThompson()

• getreward: To simulate outcomes with unequal variances we can use:

if self.action["treatment"] == "control":

self.reward["value"] = np.random.normal(0, 1)

else:

self.reward["value"] = np.random.normal(1, 5)

• setreward: And finally, we update the respective posterior variance when

new observations arrive:
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var = base.Variance(self.get_theta(key =

self.action["treatment"]))↪→

var.update(self.reward["value"])

self.set_theta(var, key = "treatment", value =

self.action["treatment"])↪→

Running a simulation with n = 100 and seed = 43123 gives:

{

"theta": {

"treatment:treatment": {

"s": "1453.3754330265062",

"n": "77",

"x_bar": "0.777831868342291",

"v": "19.123360960875083"

},

"treatment:control": {

"s": "32.31094303640007",

"n": "23",

"x_bar": "0.032257238191552844",

"v": "1.4686792289272759"

}

},

"experiment": "84b4d7eda",

"simulate": "success"

}

This result highlights two things: First, it is clear that the treatment condition

with the highest variance is indeed selected more often. This is the expected be-

havior to ensure that the precision of the estimate is increased. Second, the result

demonstrates the internals of the base.Variance object: to compute a variance in

a data stream we maintain a count (n), a mean (m), and the numbers s and v; of

these v is the current sample variance, whereas s is an auxiliary variable used to

implement Welford’s method for computing a variance online (Welford, 1962).

2.3.4 Bootstrap Thompson sampling

Bootstrap Thompson sampling (BTS) is a recent approach devised to address

CMAB problems (see, e.g., Eckles & Kaptein, 2014; Osband & Roy, 2015). The
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basic idea behind BTS is that instead of using a draw from the posterior distribu-

tion of the parameters of interest to decide on the next allocation, as is the case

in previous Thompson sampling examples, one can maintain, online, a number of

bootstrapped estimates of the parameters. These bootstrapped estimates can then

be used to balance exploration and exploitation by randomly selecting one of the

bootstrap replicates (see Eckles & Kaptein, 2014, for details).

StreamingBandit implements this sequential allocation scheme quite gener-

ally using the double-or-nothing bootstrap (Owen & Eckles, 2012). The appeal of

BTS compared to traditional Thompson sampling is that a) it can be fully carried

out online as long as the point estimates of interest can be obtained online, and b)

it can be used in many situations in which obtaining draws from the true posterior

density of interest is computationally difficult. Here we provide a simple exam-

ple of the implementation of BTS using a linear model to relate the actions, the

contexts, and the rewards.

For ease of exposition, let us consider a practical example. Suppose we are

concerned with choosing a price (the action) of a product sold online such that

the revenue is maximized (the reward). Let us further assume that we believe the

relation between these two quantities is quadratic, and that we think the optimal

sales price differs between new customers and returning customers. The following

code implements this scenario such that it can be simulated:

• getcontext: The get context code simulates the visit of either a new or a

returning visitor.

self.context["customer"] = random.choice(["new", "returning"])

• getaction: Next, the get action code, which is slightly more involved, uses

the lm library to instantiate m = 100 linear models of the form

revenue ∼ β0 + β1price + β2price2 + β3new+ (2.2)

β4price× new + β5price2 × new.

Here, the starting values of the model β’s are initially set to zero. The BTS

object maintains m = 100 of these models, whereas the remaining code sam-

ples one of these m = 100 models and computes the price that maximizes

the expected revenue given the current customer and the current state of the

parameters. We add comments to the code to improve readability:
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# Instantiate BTS with m=100 samples:

BTS = bts.BTS(self.get_theta(), lm.LM, m = 100, default_params

= {'b': np.zeros(6).tolist(), 'A' :

np.identity(6).tolist(), 'n' : 0})

↪→

↪→

# Return one of the m samples:

model = lm.LM(default = BTS.sample())

# Retrieve its coefficients:

betas = model.get_coefs()

# Create dummy for customer

if(self.context["customer"] == "returning"):

customer = 1

else:

customer = 0

# Maximize the function

if betas[2] != 0 or betas[5] != 0:

x = ( (-(betas[1] + betas[4] * customer)) /

(2*(betas[2] + betas[5] * customer)) )

x = np.asscalar(x)

if x < 5 or x > 20:

x = np.random.uniform(5,20)

else:

x = np.random.uniform(5,20)

# Return the price

self.action["price"] = x

Note that we restrict the prices to be between 5 and 20, such that if BTS

needs some more exploration, it will not go towards extreme values, which

may happen if a linear model is selected that has no parabola – in a field

experiment you might want to have your prices restricted to certain ranges

as well.

• getreward: In the get reward code we use a logistic function to simulate

the probabilities of accepting or rejecting the product at the offered price for

different customer types.
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# Get parameters

# Create dummy for customer

if(self.context["customer"] == "returning"):

customer = 1

else:

customer = 0

price = self.action["price"]

# Create logistic function

logistic = lambda x: 1 / (1 + numpy.exp(-x))

# Compute purchase yes / no

buy = numpy.random.binomial(1,

logistic(-0.1 * (price - (10+4*customer))**2))

# Compute the reward

self.reward["revenue"] = buy * price

Here it is clear that new customers are more inclined than returning cus-

tomers to buy for higher prices, the revenue-maximizing price being ≈ 10.9

for new customers, and ≈ 14.7 for returning customers.

• setreward: Finally, after generating the reward, the summary step for this

policy can be implemented as follows:

# Extract values:

# Create dummy for customer

if(self.context["customer"] == "returning"):

customer = 1

else:

customer = 0

price = self.action["price"]

# Create feature vector and response:

X = [1, price, price**2, customer, customer*price,

customer*price**2]↪→

y = self.reward["revenue"]

# Instantiate the m = 100 lm models
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BTS = bts.BTS(self.get_theta(), lm.LM, m = 100, \

default_params = {'b': np.zeros(6).tolist(), 'A' :

np.identity(6).tolist(), 'n' : 0})↪→

# Update the model parameters using the new observation

BTS.update(y, X)

# Store the updated values

self.set_theta(BTS)

To illustrate the outcomes of this sequential allocation scheme we run a simulation

with N = 1000 and seed = 43123 setting the “log results” to True. Next, using the

logged data, we plot the selected prices for each of the customer types separately.

Figure 2.4 shows the progression of the recommended prices for each customer

type; it is clear that these display a lot of exploration behavior early in the data

stream, but after about 100 observations the BTS policy seems to exploit more

and settles on a price that is close to the maximum in a large number of the

interactions.

2.3.5 Lock-in Feedback

Picking a price was considered the intended action in the previous example.

Hence, in this case at ∈ R. This so-called continuum bandit problem (Bubeck,

Munos, & Stoltz, 2011) has many practical applications. Here we provide an
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Figure 2.4: Overview of the selected prices of BTS with m = 10 and N = 1000 for both
returning and new customers (separate lines).
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example of an alternative strategy for selecting the actions in such a setting. The

term “lock-in feedback” has been coined for this policy, which is described in detail

in Kaptein and Ianuzzi (2016). The basic idea of the policy is to oscillate the

values of the actions at a known frequency and to amplify this frequency in the

observed rewards. Next, the noise can be integrated out, which produces a result

that – given mild assumptions regarding the function relating the reward and the

action, which we denote r = f(a) – is directly proportional to the first derivative of

f(). Subsequently, this first derivative can be applied, using a gradient-ascent-type

algorithm, to move a step towards the maximum of f().2

Lock-in Feedback is appealing because the experimenter does not need to

specify f() explicitly – as we did in the previous example – and the allocation

policy has proved to be robust in cases of concept drift (e.g., a situation in which

f() changes over time). Lock-in Feedback can be implemented as follows:

• getcontext: For the sake of simplicity we consider a case without contextual

information.

• getaction: The implementation of the decision step Lock-in Feedback is

relatively simple using the lif library:

theta = self.get_theta(all_float = False)

Lif = lif.LiF(theta, x0 = 3.0, a = 0.5, t = 20, gamma = 0.02,

omega = 1.0, lifversion = 1)

suggestion = Lif.suggest()

self.action["x"] = suggestion["x"]

self.action["t"] = suggestion["t"]

self.action["x0"] = suggestion["x0"]

where we refer to the lif documentation at http://nth-iteration-labs.github.

io/streamingbandit/ for details regarding the parameters of the lif method.

• getreward: Rewards can be simulated as follows:

x = self.action["a"]

self.reward["r"] = -1 * pow((x - 5), 2)

where clearly the highest reward is obtained when a = 5.

• setreward: Finally, the summary step can be implemented using:
2Note, however, that Lock-in Feedback does not attain asymptotically optimal performance due

to its constant exploration.
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theta = self.get_theta(all_float = False)

Lif = lif.LiF(theta, x0 = 3.0, a = 0.5, t = 20, gamma = 0.02,

omega = 1.0, lifversion = 1)

Lif.update(self.action["t"], self.action["x"],

self.reward["r"],↪→

self.action["x0"])

self.set_theta(Lif)

Running a simulation with n = 1000 and seed = 43123 gives:

{

"experiment": "2c070b0c17",

"simulate": "success",

"theta": {

"x0": "4.9885573624026183",

"t": "1000",

"Yw":

"[[981.0, 5.32735516395185, -0.0364325832561265],

[982.0, 4.8625703653723935, 0.0023573471591685955],

[983.0, 4.512596828979011, 0.11280696009422152],

[984.0, 4.599313553861246, 0.06234374986452693],

[985.0, 5.0430128577187805, -0.00010219719086955388],

[986.0, 5.435840666435192, -0.0851018295535888],

[987.0, 5.416689112014516, -0.07446606113542824],

[988.0, 5.00321866842203, -1.599797646219837e-07],

[989.0, 4.575643921281427, 0.07422661156312545],

[990.0, 4.527110675559689, 0.10305907582127445],

[991.0, 4.902338977243727, 0.0008184672724298606],

[992.0, 5.356344978818639, -0.046745403226967665],

[993.0, 5.471845324305438, -0.10767081744630806],

[994.0, 5.142633922830094, -0.00314257165629084],

[995.0, 4.671518435948291, 0.034171390252964014],

[996.0, 4.491614635071014, 0.128372350733584],

[997.0, 4.7684753555595965, 0.011794462261213126],

[998.0, 5.247511963923335, -0.01586222111864476],

[999.0, 5.488454341053454, -0.11925205127092639],

[1000.0, 5.26974690054797, -0.020460304127878852]]"

}

}
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Where Yw and t are internals used to execute the policy, and x0 represents the

current location of the search algorithm; initialized at 3.0 it is, with a value of

4.988 after t = 1000 observations, indeed close to the actual maximum of 5.

The libs.lif library has already been applied successfully in various settings,

as described, for example, in a recent paper investigating the use of the LiF al-

gorithm to optimize scenarios in behavioral economics (Kaptein, van Emden, &

Iannuzzi, 2016b), and in another paper in which LiF is applied to the optimization

of the physical features of an avatar in multiple dimensions in response to a con-

tinuous stream of ratings, provided by the participants of the experiment (Kaptein,

van Emden, & Iannuzzi, 2016a). In both settings, LiF proved admirably capable of

finding, and locking into, optima – despite the considerable noise often inherent in

such human-choice-related studies. Hence, StreamingBandit was used success-

fully in these settings to allocate, in real-time, experimental treatments to subjects

in a social-science study.

2.3.6 Nesting of policies

A further interesting use of StreamingBandit relates to the ability to nest

multiple policies; this allows the user to, e.g., use an ε-greedy strategy to decide

between the use of LiF and BTS, as presented above. Here we provide an example

of this nesting of policies in which we assume that the user has instantiated two

experiments, one implementing ε-first as described in Section 2.2, and one imple-

menting ε-first as described in Section 2.3.1. We can now set up a third experiment

that allocates interactions to either of these two experiments by referring to their

exp_id’s3. This can be achieved as follows:

• getcontext: We do not consider a context in this example

• getaction: Let us assume that we wish to uniformly randomly allocate half

of our interactions to the ε-first experiment, and half of our interactions to

the ε-greedy experiment. This can be done using:

id1 = "275fc0a66" # The exp_id of E-First

id2 = "18aec502c2" # The exp_id of E-Greedy

choice = np.random.binomial(1, 0.5)

# Run the e-first experiment
3Note that including a non-existent exp_id leads to errors in running the code. StreamingBan-

dit does not explicitly check for such errors inside the code of the user. We have implemented an
implicit call that can be used to check if the experiment is valid by using exp_nested.is_valid().
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if choice == 0:

exp_nested = Experiment(exp_id = id1)

self.action = exp_nested.run_action_code(context = {})

# We return the experiment number for later use

self.action["experiment"] = id1

# We re-compute the propensity based on the probability of

picking the nested experiment↪→

self.action["propensity"] = self.action["propensity"] * 0.5

# or, run the e-greedy experiment

else:

exp_nested = Experiment(exp_id = id2)

self.action = exp_nested.run_action_code(context = {})

self.action["experiment"] = id2

self.action["propensity"] = self.action["propensity"] * 0.5

• getreward: Rewards can be simulated using the code we also introduced in

Section 2.3.1.

• setreward: The summary step for these nested experiments can be imple-

mented using:

# Based on the exp_id we know which experiment to update

exp_id = self.action["experiment"]

exp_nested = Experiment(exp_id = exp_id)

exp_nested.run_reward_code(context = self.context,

action = self.action, reward = self.reward)

Which simply, based on the supplied exp_id, updates the correct experiment.

Running a simulation with n = 2 and seed = 13214, and the output set to

verbose, gives:

{

"data": {

"0": {

"theta": {},

"context": {},

"reward": {

"value": 4.439687566610595

},
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"action": {

"propensity": 0.45,

"experiment": "18aec502c2",

"treatment": "treatment"

}

},

"1": {

"theta": {},

"context": {},

"reward": {

"value": 7.559583564021055

},

"action": {

"propensity": 0.25,

"experiment": "275fc0a66",

"treatment": "treatment"

}

}

},

"experiment": "1c57b6d641",

"simulate": "success"

}

Which shows that in the first interaction ε-greedy was selected, which subse-

quently selected the treatment arm, and in the second interaction ε-first was se-

lected. Obviously, this functionality can be greatly extended to use any sequential

decision policy to decide between any other policy. This nesting makes Stream-

ingBandit a versatile tool; we illustrate a practical application of the nesting in

Section 2.3.7.

2.3.7 Parallel evaluation of multiple policies

Whereas the nesting discussed in the previous section allows one to allocate

different interactions to different policies, the example we provide here allows

one to evaluate, using a measure of average reward for example, multiple bandit

policies in parallel. The idea behind the parallel evaluation derives from recent

work on the offline evaluation of bandit policies. Li et al. (2011) show that one

can evaluate multiple bandit policies offline by simply running through an existing

data set of actions and rewards obtained using uniform random selections of the

actions. For each interaction t in the offline data set one uses a bandit policy to
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generate a proposal action a′t, and if the randomly selected action at that point in

time matches the proposal (thus a′t = at), then the reward is used to update the

estimated performance of the policy. If not, then the time point is discarded. This

leads to an evaluation of the policy with an expected number of observations of
1
k
T , where k is the number of possible actions and T the total number of observa-

tions in the offline data set. Multiple offline evaluation runs can subsequently be

used to estimate and compare the expected performance of different policies.

Here we extend this idea to the parallel evaluation of multiple bandit poli-

cies. The implementation in StreamingBandit to compare, in parallel, the perfor-

mance of the ε-first and ε-greedy experiments as introduced above is surprisingly

straightforward:

• getcontext: For simplicity we again consider an empty context.

• getaction: In the decision step an action is chosen at random:

self.action["treatment"] =

random.choice(["control","treatment"])↪→

• getreward: Rewards can again be simulated using the code we also intro-

duced in Section 2.3.1.

• setreward: Finally, after generating a reward, the summary step for the

parallel evaluation of the policies is given below, where we again insert com-

ments in the code to improve readability:

# Create a list of experiments / policies to evaluate

policies = ["18aec502c2", # E-Greedy

"275fc0a66"] # E-First

# For each experiment

for exp_id in policies:

# Initialize the experiment:

exp_nested = Experiment(exp_id)

# Compute the suggested action:

suggestion = exp_nested.run_action_code(context = {})

# See if the suggested action matches the actual action:

if suggestion["treatment"] == self.action["treatment"]:
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# And if so store the performance of the policy:

mean = base.Mean(self.get_theta(key = "policy_means",

value = exp_id))

mean.update(self.reward["value"])

self.set_theta(mean, key = "policy_means", value =

exp_id)↪→

# And finally update the policy:

exp_nested.run_reward_code(context = {},

action = self.action, reward = self.reward)

This code implements Algorithm 2 of Li et al., 2011.

Running a simulation with n = 250 and seed = 43123 using the above speci-

fication gives:

{

"theta": {

"policy_means:275fc0a66": {

"m": "5.243151928222057",

"n": "114"

},

"policy_means:18aec502c2": {

"m": "6.050783848360902",

"n": "114"

}

},

"experiment": "270ed59474",

"simulate": "success"

}

This output shows that, in this test run, the average reward of the ε-greedy policy

is slightly higher than that of the ε-first policy. This is due to the fact that ε-first

has a random exploration phase of n = 100. Since both policies now only have

had 114 accepted actions, ε-first will have explored much more than ε-greedy and

will choose the suboptimal action more, resulting in a lower average reward.

2.4 Applied usage

In this section, we describe some of the practical applications of Streaming-

Bandit. First, we explore its use in assessing the effects of discounts in online
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selling; this small, initial trial highlights the simple use of StreamingBandit to

collect data in-the-field. Second, we introduce its use in a social-science experi-

ment.

2.4.1 Online marketing

StreamingBandit was used by an online cash-refund company to examine

the effects of their pricing scheme. The company offers customers the opportunity

to sign up for a refund program. After signing up they are provided with dis-

counts, in the form of a cash refund, as long as their online purchases are carried

out through the online platform. The refund company has negotiated different

agreements with a large number of different e-commerce stores, and the discount

percentages they have obtained vary from store to store. By default, the refund

company offers half of its negotiated discount to the customer, and takes the other

half as a fee for its services. However, it has no clear idea as to whether this 50/50

(or 1
2
) split is optimal in the sense that it maximizes its profit, which is influenced

by the total number of purchases, the size of the purchases, and the way in which

the negotiated discount is split between the company and the customer.

The company set up StreamingBandit to explore the effects of the different

splits – in their definition running from 0 to 1 where 1 means that the total ne-

gotiated discount is fully passed on to the customer and 0 means that all of it is

retained by the company – on their resulting profits. Here we present a simple

implementation of the random exploration of different splits that the company

carried out for a very small number of n = 103 unique customers in one specific

store. The implementation was as follows:

• getcontext: Because this is a field exploration, the context was provided

by the participating company. It consisted of a JSON object containing the

maxpercentage, which contained the negotiated discount for the specific

store that was viewed by a customer. It looked like this:

{"context" : {"maxpercentage" : 8.5}}

where the maxpercentage for the specific store from which our presented

data originated was always 8.5%. However, our implementation described

below is able to address changing maximum percentage(s) between differ-

ent stores. Note that this can be simulated in StreamingBandit using the

following getcontext code:

self.context["maxpercentage"] = numpy.random.uniform(1,10)
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• getaction: The implementation of the decision step was straightforward

since the company initially set out merely to examine the effects of random

fluctuations of the discounts offered. The implementation was as follows:

maxpercentage = self.context['maxpercentage']

split = np.random.uniform()

discount = split * maxpercentage

self.action['split'] = split

self.action['discount'] = discount

Here, first the maxpercentage is retrieved. Next, a split is computed with

split ∼ unif(0, 1), after which the percentage discount to be offered to the

customer is computed and then both the split and the actual discount are

returned in the action object.

• getreward: The online platform would display the computed discount to

the visiting customer, and subsequently a reward would be generated by

virtue of the customer’s purchasing one or multiple products resulting in a

revenue. The online platform returns both the revenue as well as the split

and discount. This can be simulated using:

self.action['split'] = self.action['split']

self.action['discount'] = self.action['discount']

self.reward['revenue'] = numpy.random.uniform(0,100)

• setreward: Finally, given that the aim of the company was merely to collect

data on the effect of the changing splits, it did not need any setreward code

because StreamingBandit automatically logs all the data that is received

with a setreward call.

This simple implementation allowed the refund company to vary the split

randomly (instead of using the current de-facto 1
2

split) and to log the resulting

revenue.

Figure 2.5 provides an overview of the relation between the suggested split

and the resulting profit in euros of the refund company. The profit for the rebate

company is defined as the maximum discount percentage (8.5%) times one minus

the split (between 0 and 1), times the revenue. Each dot represents one com-

pleted purchase by one customer (possibly containing multiple products). Note

that while we limit the presented results here to a single e-commerce store, the

store sells multiple products and hence the revenue per customer can vary greatly.

It seems from the limited data of these n = 103 unique customers for a single store
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Figure 2.5: Overview of the effect of the offered split of the discount on the profit of the
refund company in euros. Data collected using random selection of the refund percentage
using StreamingBandit. The figure presents data on n = 103 unique customers. The
dashed red line represents the company’s current 1

2 split.

that a high customer-refund offer – but as a result a low margin for the company –

leads to low profits, whereas an offer that is significantly below the current 1
2

split

increases the company’s profits.

The company intends to use StreamingBandit, now that the software is in-

tegrated into its current online service, to experiment with different sequential al-

location schemes that offer different splits between competing stores or between

different customers. Using the random data and an adaption of the offline eval-

uation method developed by Li et al., 2011 (also described in Section 2.3.7), the

company hopes to find the policy that has the best model fit on their data. Note

that here every step towards solving this statistical decision problem involves us-

ing StreamingBandit – from gathering data, to policy evaluation, to the final, live

setting. This provides a simple example of the utility of StreamingBandit for field

trials of bandit policies.

2.4.2 Social science experiment

The second applied use of StreamingBandit we present concerns a social-

science experiment examining the decoy effect (see Kaptein, van Emden, & Ian-

nuzzi, 2016b, for a full description of the experiment). In short, the decoy effect
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states that people may be persuaded to switch from one offer to another by the

presence of a third option (the decoy) that, rationally, should have no influence on

the decision-making process. For example, when asked to choose between a lap-

top with a good battery but a poor memory and a laptop with a poor battery but a

good memory, people seem to shift their preference between the two if the offer is

accompanied by a third laptop, the decoy, that has a battery as good as the latter

but an even worse memory, and hence should in any case be an irrelevant option.

The placement of the decoy in the product-attribute space is heavily studied in the

literature: researchers manipulate the exact battery life in hours and the RAM in

GB of the decoy laptop, and study the resulting choices that people make.

Kaptein, van Emden, and Iannuzzi (2016b) used StreamingBandit to study

whether Lock-in Feedback, the sequential optimization scheme introduced in Sec-

tion 2.3.5, can be used to find the optimal placement of the decoy – only con-

sidering changes on one dimension. The authors considered not only the laptop

scenario but also eight different decoy scenarios. The study was carried out on-

line using a drupal-based survey, which communicated with StreamingBandit to

implement the allocation of the exact positioning of the decoy. The researchers

allocated participants to one of 3 between-subject conditions using Streaming-

Bandit:

1. Baseline: participants in this condition were presented with a binary choice

between two products, and no decoy was present. This was implemented by

sending an action with {"decoy":"none"} response to the survey front-end.

2. Random: participants in this condition were presented with a random posi-

tioning of the decoy. The range of possible values of the random positioning

depended on the specific scenario, and were hard-coded and retrieved using

the scenario supplied in the context.

3. Lock-in Feedback: participants in this condition were presented with a value

of the decoy that depended on the previous interactions of other participants.

The Lock-in Feedback algorithm was used to suggest a new placement each

time a participant viewed a product. Subsequently, the (binary) choice made

by the participant was used to update the algorithm in the setreward stage.

We refer the reader to (Kaptein, van Emden, & Iannuzzi, 2016b) for details

and for the exact settings of the tuning parameters.

Figure 2.6 presents an overview of the setup of this study. A number of the

details of the implementation are covered in earlier sections of this paper: the im-

plementation of both the baseline and the random condition are straightforward,

with self.action["decoy"] = "none" and self.action["decoy"] = np.rand c

om.uniform(low,high), respectively, as the core getaction implementations. In
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Drupal based Survey

Experiment 1:
Allocate participants 

to conditions
(dependent on user_id)

Experiment 2:
Baseline

(return “none”)

Experiment 3:
Random

(dependent on scenario)

Experiment 4:
Lock in Feedback

(dependent on scenario)

{ 
  “context” : 
    { 
     “user_id” : 3142
     “scenario” : 3
    }
}

StreamingBandit

Figure 2.6: Schematic setup of the 4 StreamingBandit experiments used to realize the
data-collection in (Kaptein, van Emden, & Iannuzzi, 2016b).

the latter implementation the low and high bounds were implemented as a sim-

ple list indexed by the scenario number. Finally, the Lock-in Feedback condition

was implemented as presented in Section 2.3.5, the only exception being that the

theta was stored independently for each scenario. Hence, the novel part of the

implementation of this study is the persistent allocation of participants to one of

the three conditions; this was achieved in experiment 1 in Figure 2.6 by using the

following getaction code:

if not("condition" in self.get_theta("user_id",

self.context["user_id"])):↪→

self.action["note"] = "First allocation"

draw = random.choice(["baseline", "random", "lockin"])

self.set_theta({"condition":draw}, "userid",

self.context["userid"])↪→

self.action["condition"] =

self.get_theta("userid", self.context["userid"])["condition"]

which assigns participants randomly to one of the three conditions persis-

tently based on the user_id supplied in the context to the getaction call.4 The

data resulting from this experiment are available at http://dx.doi.org/10.7910/

DVN/FCHU0J. This field implementation provides a prime example of the use of
4Note that the actual implementation in the study differed slightly to allow for unequal sample

sizes in each of the conditions. In addition, the baseline and random conditions where manually
removed after sufficient data had been collected.

50

http://dx.doi.org/10.7910/DVN/FCHU0J
http://dx.doi.org/10.7910/DVN/FCHU0J


2

StreamingBandit: Experimenting with Bandit Policies

StreamingBandit, both for the allocation of participants to conditions in (web-

based) experiments, as well as for the use of sequential decision policies such as

Lock-in Feedback in such experiments.

2.5 Conclusion and future work

This paper presented StreamingBandit, a RESTful web application that en-

ables researchers to develop, evaluate, and deploy CMAB policies in online exper-

iments and field studies. By making StreamingBandit publicly available we hope

to contribute to the more extensive use of such policies to solve statistical deci-

sion problems. The software could help in extending the currently prevailing use

of basic random assignment to the use of more refined strategies throughout the

social and medical sciences. To that effect, we started out with a clarification of

the design rationale behind StreamingBandit. We explained our decision to split

up the summary and the decision step of a policy – a split meant to encourage

the implementation of computationally efficient online policies. We subsequently

illustrated StreamingBandit’s versatility and flexibility in a number of examples,

and we concluded with two case studies in which we used StreamingBandit to

run field experiments.

We are currently aware of a number of limitations of StreamingBandit. First,

as of now, StreamingBandit still runs single-threaded. Although parallelization

for larger-scale applications ought to be relatively easy to implement on the level

of policies, it may prove substantially harder within policies. Nevertheless, by

forcing policies online by design, and using state-of-the-art web technology for its

back-end, StreamingBandit is already more than capable of being deployed in a

multitude of small-to-medium-sized field trials. We are of the opinion that paral-

lelization is an obvious next step in StreamingBandit’s development, ensuring its

future scalability.

Second, in some applications we find that certain types of rewards manifest

themselves faster than others. In one instance of the use of StreamingBandit, for

example, the decision to reject a loan to a customer after an application had been

submitted to the firm was much faster than the decision (and subsequent confir-

mation) to accept the customer. Such an asymmetric delay might bias learning and

thus needs to be addressed. Currently, we do not provide an off-the-shelf solution

to this problem – admittedly because it is thus far unclear to us how to address the

problem in general – hence users will need to resort to custom implementations

of the getaction and setreward codes to deal with this issue.

Finally, our current CMAB libraries and toolkit still offer ample room for im-

provement and extension. Outside of the currently implemented methods, there
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are many more policies that address the exploration-exploitation trade-off in var-

ious settings. In that respect, we hope and expect the open-source nature of

StreamingBandit to be conducive to the continued growth of the platform, en-

couraging researchers to implement, test, and disseminate new and existing ban-

dit policies and algorithms.
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2.A Setting up an experiment

This appendix introduces the front-end of StreamingBandit.5 We will how

show to get from the login screen to setting up your first simulation using one of

the default experiments.

First, when you have set up the front-end (using, e.g., the available Docker

container), go to the login screen in your browser (for the Docker container this

would be http://localhost or the Docker-set IP address) as shown in Figure 2.7.

After logging in, you will find the dashboard as in Figure 2.8. To show all the

active experiments, click on Experiments. This will bring you to an environment

as shown in Figure 2.10. Continue clicking on the Create button, which will give

you an empty Create Experiment field, as in Figure 2.10.

On the creation page you can fill in a name, for example E-First, and select

a default experiment from the Use experiment template list. Selecting the de-

fault ε-first experiment, will end up with a filled-in form, as in Figure 2.11. Next,

clicking on the Save button will save the experiment in the database.

When the experiment has been created, the dashboard (Figure 2.12) shows

that the experiment is active and has an ID and key assigned. Clicking on the Edit

button will take you back to the settings of the experiment. Now you can choose

to go to the Simulate tab as displayed in Figure 2.13. After filling in 1000 for

the number of iterations and 43123 as the seed you can click Run a simulation

of the experiment, which will give a result as in Figure 2.14. Finally, you can

click on the Theta tab and inspect the parameters that are stored in the database

(Figure 2.15). Here you can also download the data that has been logged for the

current experiment.

Figure 2.7: The login screen. Here you can set the URL for the back-end and login.

5Which can be found at https://github.com/Nth-iteration-labs/streamingbandit-ui.
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Figure 2.8: The dashboard of StreamingBandit, here you can navigate to the list of
experiments and find some extra information.

Figure 2.9: This screenshot shows an empty list of experiments. You can start creating an
experiment by clicking on the Create button.
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Figure 2.10: This is an empty form for an experiment, which is normally shown inside
the dashboard. Here you can type a name, choose a default and edit the code for the
experiment.
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Figure 2.11: We have selected the E-First template, which is automatically filled in the
correct fields. Pressing the Save button will create the experiment.

Figure 2.12: If you return to the dashboard you can view and edit your newly created
experiment (and the associated ID and key).

56



2

StreamingBandit: Experimenting with Bandit Policies

Figure 2.13: Here you can see the simulation panel, which you can use to easily run a
simulation of the experiment. You can set the seed and the the number of iterations, log
the results to the database and even show verbose results. Click Run a simulation of
the experiment to run a simulation and get an output of the results.

Figure 2.14: Run a simulation and look at the output of the results.
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Figure 2.15: The theta panel shows the current state of θ and other information.
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Exploiting Nested Data Structures in Multi-Armed

Bandits

Abstract

The multi-armed bandit (MAB) problem provides a formalization for sequential decision-making.
This theoretical problem formalization has many real-world applications: e.g., choosing between
different medical treatments or choosing between different online advertisements. However, in
these real-world applications we often find that there is some form of nested (or hierarchical)
structure, e.g., we observe multiple observations from the same patient or from the same user.
This hierarchical structure is all too often ignored in the current MAB literature. In this paper we
introduce means of exploiting hierarchical structures via so-called partial pooling (or shrinkage)
methods, and we adapt a number of popular MAB policies to incorporate this idea. We focus specif-
ically on the Bernoulli MAB problem. Through extensive simulations and an empirical evaluation
we show that our proposal improves the performance of a number of popular policies.

Keywords: multi-armed bandit, dependent observations, shrinkage factors, hierarchical Bayesian
modeling

Submitted as Kruijswijk, J.M.A., Böing-Messing, F., Van Emden, R., Kaptein, M.C. Exploiting Nested

Data Structures in Multi-Armed Bandits.
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3.1 Introduction

In recent years researchers in various scientific disciplines are increasingly

investigating the use of sequential treatment allocation methods when designing

experiments (see e.g., Bouneffouf & Rish, 2019; Eckles & Kaptein, 2019; Kaptein,

2014; Press, 2009)). For example, Kaptein et al. (2017), applied sequential allo-

cation methods to study social phenomena (in this case, the perception of beauty)

that are hard to study due to natural occuring effects such as treatment hetero-

geneity and measurement error. Furthermore, in Clement, Roy, Oudeyer, and

Lopes (2015), the authors used sequential experimentation to adaptively person-

alize learning activities in a tutoring system to maximize skill acquisition for stu-

dents and Kaptein, van Emden, and Iannuzzi (2016b) implemented a sequential

treatment allocation scheme to investigate the limits of the decoy effect – a well

known human bias.

The design of sequential experiments can often be formalized as a multi-

armed bandit (MAB) problem, in which (in its canonical form) a gambler stands

in front of a row of slot machines, each with a (potentially) different payoff (Berry

& Fristedt, 1985; Whittle, 1980). The gambler has to sequentially decide which

slot machine to play, such that he makes as much profit as possible in the long run

(expressed in terms of cumulative reward). In the beginning of the process the

gambler has no knowledge of the different payoffs of the machines. At each time

point, he can choose to gain more knowledge regarding a machine he is uncertain

about (exploration), or gear his choice towards exploiting his current knowledge

and play the machine with the highest expected payoff (exploitation) (Berry &

Fristedt, 1985). A good decision strategy – or policy – balances this so called

exploration-exploitation trade-off and does not waste too many plays on gaining

new knowledge, nor does it become too greedy and get stuck exploiting a subop-

timal machine (Kaelbling, Littman, & Moore, 1996).

The canonical MAB problem has been heavily researched (Berry & Fristedt,

1985; Hardwick, Oehmke, & Stout, 1999; Robbins, 1952; Scott, 2010), and a

large number of policies have been proposed and evaluated. These include the

popular and asymptotically optimal Thompson sampling (Agrawal & Goyal, 2012,

2013a, 2013b; Chapelle & Li, 2011; Scott, 2010; Thompson, 1933), Upper Confi-

dence Bound (UCB) methods (Auer, Cesa-Bianchi, & Fischer, 2002; Lai & Robbins,

1985), and more heuristically motivated policies such as ε-greedy, ε-first and Soft-

max (Sutton & Barto, 2011). More recently, a number of generalizations of the

MAB problem have been proposed, such as the popular bandit problems with side

observations (also called the contextual MAB problem) (Beygelzimer, Langford,

Li, Reyzin, & Schapire, 2011; Bubeck & Cesa-Bianchi, 2012; Langford & Zhang,
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2008; Wang, Kulkarni, & Poor, 2005). In the contextual MAB (CMAB) problem,

the gambler first observes the current state of the world (context), which he can

use to aid his decision for the next action. The (C)MAB problem has been used

in many different situations, such as the personalization of online news (Li et al.,

2010), online selling (Kaptein, McFarland, & Parvinen, 2018), website morph-

ing (Hauser, Urban, Liberali, & Braun, 2009), and adaptive clinical trials (Press,

2009; Williamson, Jacko, Villar, & Jaki, 2017).

The CMAB problem tackles situations where it is expected that certain fea-

tures of the context potentially influence the distribution of the rewards. For exam-

ple, when personalizing online news items, we might observe users with the same

interests or traits multiple times. In such cases it is likely that within a specific clus-

ter of observations – those observations that share feature values – the outcomes

are correlated. Examples include, but are not limited to, the repeated observa-

tions of individual click-through behavior on website advertisements (Cheng &

Cantú-Paz, 2010), and the smoking behavior of students that are grouped within

different schools (Murnaghan, Sihvonen, Leatherdale, & Kekki, 2007). In each

of these situations we expect the observations within a cluster to be more similar

than between clusters. However, contrary to many current CMAB approaches it is

also reasonable to expect that even between clusters we can effectively “borrow

strength” (Gelman & Hill, 2006): results obtained in one cluster might be helpful

in understanding those in another cluster.

The potential intricate dependency of observations both within and between

clusters is, in the social sciences, often addressed using hierarchical (or mixed)

models. Prior work studying dependencies in (C)MAB problems has focussed on

clustering of dependent arms (Pandey, Chakrabarti, & Agarwal, 2007) and taxon-

omy induced dependencies (Pandey, Agarwal, Chakrabarti, & Josifovski, 2007).

However, surprisingly, none of these works explicitly focussed on modeling hierar-

chical dependencies in ways common to the social sciences. A seemingly appealing

alternative close to our current work was provided in the case of personalization

of online news (Li et al., 2010): the authors use a hybrid linear model that is based

on a linear combination of an estimator common for all actions and an estimator

that is action-specific (the policy is called LinUCB). In the case of LinUCB, however,

a feature vector must be explicitly constructed a priori and the model is only de-

fined after observing the reward of each action for each unique value of the feature

vector (i.e. for each cluster) – or alternatively, by using strong prior information.

As a consequence if, for example, you are modeling individual users, the default

LinUCB approach will be effectively undefined when a new, unique user comes in.

Furthermore, the LinUCB approach will result in a very large model (i.e., one with

a large number of parameters) if there are many, potentially unique, users. Finally,
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there is no information sharing amongst the users. In such scenarios LinUCB thus

does not allow us to adequately model the hierarchical structure present in the

data.

3.1.1 Within and between cluster dependencies

Effectively, in the (non-contextual) MAB literature, any potential dependency

within a cluster is fully ignored and observations are deemed independent (an

approach referred to as complete pooling). In the CMAB literature it is common to

model the outcomes within a cluster, but ignore dependencies between clusters.

Thus, in the latter case, conditional on the cluster membership, the observations

are independent (called no pooling). In this paper, we consider hybrid policies that

model dependencies within and between clusters; this approach is called partial
pooling (Gelman & Hill, 2006).

As an example, suppose we have two types of advertisements which we can

serve to users that return to a webpage, possibly multiple times. On the one hand,

we can choose to model the effect of the ad, ignoring the dependencies within

returning customers. Conversely, we can choose to model the ad-person combina-

tions; in such cases each ad-person combination is treated as distinct. Assuming

customer heterogeneity, the no pooling analysis – treating each ad-person combi-

nation independently – seems the most obvious option. The problem that arises

here is, however, that the number of observations within a user is often low, which

leads to a poor estimate of the expected reward for an ad. Thus, while the no

pooling approach takes into account the information of a hierarchical structure

(observations within persons), this approach suffers from limited data at the low-

est level of observations. On the other hand, one can choose to pick the complete

pooling approach to solve the problem of low number of observations, but this

approach completely ignores possible meaningful heterogeneity between persons;

effectively, the complete pooling approach treats all users as equal (e.g., having

the same success probabilities). Both approaches are in this case suboptimal.

The idea behind partial pooling is to introduce a compromise between the

two extremes of complete pooling and no pooling (Efron & Morris, 1975; Gelman

& Hill, 2006). This is done using some form of weighted average that reflects

the amount of information that is present amongst all users and the observations

within a user. If there are little to no observations available from a user, the

weighting pulls the estimate of that user closer to the overall estimate; effectively

this yields the complete pooling estimate. If there is a larger amount of observa-

tions available from a single user, the weighting will, in the limit, ensure that the

estimate will be the user average; effectively this yields the no pooling estimate.

When observations arrive sequentially, the estimates obtained for a single user will
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gradually shift between those two extremes. To illustrate why this partial pooling

is useful, we can look at the difference between no and complete pooling. The

no pooling variant has high variance as there are limited number of observations.

The complete pooling variant is biased as it does not make a distinction between

users. Partial pooling proves to be a better balance between the bias and variance

in the estimator (James & Stein, 1961; Stein, 1956).

3.1.2 Overview

In the current article, we focus on extending existing MAB policies for the

Bernoulli MAB problem to include a partial pooling approach to exploit the occur-

rence of hierarchical structures in sequential experiments. We do this by modeling

the hierarchical structure using random effects as opposed to fixed effects (the

common approach in the CMAB literature and effectively the approach taken in

the LinUCB case). The objective of our study is to provide a contribution to the

MAB literature by demonstrating the importance of hierarchical structures and

providing an effective method for dealing with such structures.

The remainder of this paper is organized as follows. In the next section, we

will give a formal introduction of the CMAB problem and a formal definition of

the hierarchy structures that we are studying. Then, we will introduce and extend

a number of existing MAB policies such that they include a hybrid approach. After

that we conduct a simulation study to compare traditional MAB policies with their

extended, partial pooling, versions – we also study a fully Bayesian hierarchical

modeling approach. Furthermore, we conduct an empirical study using offline

policy evaluation to further test the policies. Finally, we will discuss the results

and discuss avenues for further research.

3.2 The contextual multi-armed bandit problem

and nested data structures

The CMAB problem can formally be defined as follows: at each time t =

1, ..., T , we observe a context xt ∈ X . After we choose action at ∈ A, we sub-

sequently observe reward rt from an unknown probability distribution P (r|a, x).

The aim is to find a policy Π – which is a mapping from all the historical data D
(which contains all previous (x, a, r) triplets) and the current context xt to the next

action (at) – that selects actions such that the cumulative reward Rc =
∑T

t=1 rt is

as large as possible.

To assess how a policy performs we often look at the expected cumulative
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regret of the policy instead of the cumulative reward, which is defined by:

E[RT ] = E

[
T∑
t=1

r∗t − rt
]

(3.1)

where r∗t is the reward of the action with the highest expected reward (or equiva-

lently, the reward of an oracle) and the expectation is taken over the randomness

of the environment (i.e. the distribution of the reward) and the policy.

In the next subsections we introduce the data structure as it occurs with the

canonical MAB problem schematically and subsequently introduce the nested data

structure that we focus on in this paper.

3.2.1 Data structure for the canonical MAB problem

Figure 3.1 graphically depicts a traditional MAB setting for a K-armed ban-

dit (A = {1, . . . , K}). The arms k = 1, . . . , K give rise to i.i.d. observations

rk1 , . . . , r
k
nk
∼ P(θk) with nk the number of observations for arm k. Note that in this

paper we consider the rewards to be i.i.d. Bernoulli, and thus the parameter θ for

each distribution is equal to its expected value. Hence, to minimize the expected

regret, a policy needs to balance the exploration and exploitation of all arms based

on the estimates of each θk and play the arm with the highest expected value as

much as possible.

θ1

r11 r12

...

· · · r1n1

θK

rK1 rK2 · · · rKnK

Figure 3.1: Graphical representation of the simple K-armed Bernoulli bandit prob-
lem. θ1 through θK are the parameters for the reward distribution of each arm, which
give rise to each reward rK1 through rK

nK
(for arm K).

3.2.2 Data structure for the CMAB problem: potential nesting

Figure 3.2 schematically depicts the CMAB setting for a K-armed bandit in

which a nested data structure is introduced which we study in this paper. In this

case, we assume a context feature with options (e.g., users) j = 1, . . . , J (with
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the interactions per user running from i = 1, . . . , nkj for arm k) for which the

distributions P(θkj ) might be user and arm specific. However, we do not assume

that the parameters of these different distributions are independent: rather, the

θj ’s themselves originate from some distribution with mean θ (i.e., θkj ∼ P(θk)).

Hence, we are effectively dealing with a contextual bandit problem – where j

identifies the user and functions as a context – in which there is a correlation

within the clusters as well as between clusters. This situation is of particular

interest when, say, θ1 is higher than θ2, but due to high variance in the distribution

of the θj ’s this is the other way around for some users (i.e., ∃j, j′ : θ1
j < θ2

j ∧ θ1
j′ >

θ2
j′).

θ1

θ11

r111 r121 · · · r1n11

θ12

r112 r122 · · ·

...

r1n22

· · ·

· · ·

θ1J

r11J r12J · · · r1nJJ

θK

θK1

rK11 rK21 · · · rKn11

θK2

rK12 rK22 · · · rKn22

· · ·

· · ·

θKJ

rK1J rK2J · · · rKnJJ

Figure 3.2: Graphical representation of the contextual K-armed bandit problem. θ1

through θK are the parameters for the reward distribution of each arm, which give rise to
an individual parameter per user θK1 through θKJ . These in turn lead to each reward rK1J
through rKnJJ (for user 1 and arm K with nJ the number of observations n for user J).

3.2.3 Dealing with nested data structures

Various options exist that would allow a MAB policy to deal with nested

data. The easiest options to deal with the nested data generating scheme de-

scribed in Figure 3.2 are to either ignore the nested structure (taking a complete

pooling approach), or to treat each context j separately (effectively taking a no

pooling approach). Choosing a hybrid approach is not trivial, as many different

approaches to dealing with nested data structures have been suggested in the liter-

ature (Efron & Morris, 1975; Gelman & Hill, 2006). To demonstrate the benefits of
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adopting a hybrid approach, we focus on a simple implementation using shrinkage

factors (Ippel et al., 2019; James & Stein, 1961) (i.e., a parameter that explicitly

combines data at various levels in the hierarchy). Next, we will introduce a fully

Bayesian way to deal with hierarchical dependencies. Thus, to clarify the sug-

gested approach conceptually, we first provide a simple example of complete, no,

and partial pooling:

1. In the complete pooling situation, one assumes that all observations are in-

dependent and the estimation of the parameter of each arm’s probability

distribution is based on all observations in that arm:

rk1 , . . . , r
k
nk ∼ P(θk),

where θk is the parameter for arm k.

2. In the no pooling situation, one assumes that all observations within users

are dependent:

rk1j, . . . , r
k
njj
∼ P(θkj ).

3. In the partial pooling situation, we try to find a middle ground, and we here

use a weighted combination of the above such that:

θ̃kj = (1− βj)θkj + βjθ
k

rk1j, . . . , r
k
njj
∼ P(θ̃kj ),

where βj is the aforementioned shrinkage factor.

One particularly simple choice for the shrinkage factor is βj = 2
2+nj

, where

nj is the number of observations for the user (Ippel et al., 2019). This approach

is however informative to understand the desired behavior of a shrinkage factor:

when the number of observations for a user nj is zero, the shrinkage factor βj is

one, which then results in θ̃kj = θk. However, as nj grows, θ̃kj approaches θkj . Using

this shrinkage factor is a simple and heuristic way of partial pooling.

There are, however, other shrinkage factors that are derived from and based

on the assumptions of the data-generating model and its distributions. One ex-

ample is the beta-binomial estimator. Using a method-of-moments estimation to

estimate the shrinkage factor, we end up with the following shrinkage factor:

βBBj =
M̂

M̂ + nj
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where M̂ is an estimator for M = α + β – see Ippel et al. (2019) for more details

and full derivations. We will use both of these shrinkage factors in our simulation

study.

3.3 Policies for the CMAB problem with dependent

observations

Below we introduce three popular bandit policies, each with three different

versions (complete pooling, no pooling and partial pooling), which we will use for

the remainder of the study. We have chosen to use policies that are often used

in the literature, which are ε-greedy (Sutton & Barto, 2011), Upper Confidence

Bound (Auer et al., 2002; Li et al., 2011) and Thompson sampling (Agrawal &

Goyal, 2012; Chapelle & Li, 2011), to make sure that we compare different policies

of which we know what their expected behavior is. The partial pooling for ε-greedy

and UCB will have two different versions, using either the heuristic shrinkage

factor or the beta-binomial estimator.

3.3.1 ε-greedy

We first consider the ε-greedy (EG) policy. With EG, one randomly selects an

action a ∈ A with probability ε, and with probability 1− ε, one chooses the action

with the highest expected reward. A general way of setting starting parameters

would be θ̂a = 1/K for each a ∈ A. This results in a policy that selects actions as

follows:

Complete pooling:

Π(D, xt) := at =

Rand(a ∈ A) if u < ε

arg maxa(θ̂
a) otherwise

(3.2)

where u is a draw from Uniform(0, 1). For this policy (and UCB) the parameter θ̂a

is a proportion which, each time a new reward comes in, is updated using

nat+1 = nat + 1

θ̂at+1 = θ̂at +
rat − θ̂at
nat+1

for each arm where nat is the number of observations for that arm at time t.
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No pooling:

Π(D, xt) := at =

Rand(a ∈ A) if u < ε

arg maxa(θ̂
a
j ) otherwise

(3.3)

where θ̂aj can be computed the same as for the complete pooling case, only with

the rewards and number of observations for user j instead of all users.

Partial pooling:

Π(D, xt) := at =

Rand(a ∈ A) if u < ε

arg maxa(θ̃
a
j ) otherwise

(3.4)

where θ̃aj = (1− βj)θ̂aj + βj θ̂
a.

3.3.2 Upper Confidence Bound

Next, we consider the upper confidence bound (UCB) policy. This is an

asymptotically optimal policy, first described by Lai and Robbins (1985), which

works on the basis of optimism in the face of uncertainty. This means that, al-

though the knowledge regarding the arms is lacking, the policy constructs an edu-

cated guess for the expected payoff of each arm. If the educated guess resulted in

choosing an optimal action, then the policy is working optimally. If it is choosing

an action (multiple times) that is not optimal, the policy will take learning of this

and not choose the action in the future by adapting the educated guess.

Formally, UCB computes an upper bound for the confidence interval of the

statistic of interest and it selects the action that maximizes the upper bound. There

are multiple different types of confidence bounds considered in the literature (see

e.g., Auer, 2002; Auer et al., 2002; Langford, 2005). In our case, we use one that

is specifically derived from the beta-binomial distribution (Chapelle & Li, 2011;

Langford, 2005). Formally the policy selects the arm with the highest

θ̂at +

√
2θ̂at log 1

δ

nat
+

2 log 1
δ

nat
, δ =

√
1

t
,

where θ̂at and nat are defined as before and
√

2θ̂at log 1
δ

nt
+

2 log 1
δ

nt
provides the upper

confidence bound.

Before playing actions according to these bounds, the policy first plays all

the arms once to receive a rough estimate of the statistic of interest. The actions

that are not played often (i.e., have low nt), will have a higher chance of being
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played later on. In the unfortunate event of not choosing the optimal arm, UCB

eventually will be convinced to play it again due to the confidence bound. This

results in the following definition of the policy and its different versions:

Complete pooling:

Π(D, xt) := at =

a if na = 0

arg maxa(θ̂
a +

√
2θ̂a log 1

δ

na
+

2 log 1
δ

na
) otherwise

(3.5)

No pooling:

Π(D, xt) := at =


a if naj = 0

arg maxa(θ̂
a
j +

√
2θ̂aj log 1

δ

naj
+

2 log 1
δ

naj
) otherwise

(3.6)

Partial pooling:

Π(D, xt) := at =

a if naj = 0

arg maxa(θ̃
a
j ) otherwise

(3.7)

where θ̃aj = (1− βj)
(
θ̂aj +

√
2θ̂aj log 1

δ

naj
+

2 log 1
δ

naj

)
+ βj

(
θ̂a +

√
2θ̂a log 1

δ

na
+

2 log 1
δ

na

)
.

3.3.3 Thompson sampling

Finally, Thompson sampling is a Bayesian policy in which an action at is

randomly selected with a probability proportional to the belief that this action is

the best action to play given some (Bayesian) model of the relationship between

the action(s) and the rewards (Agrawal & Goyal, 2013b; Chapelle & Li, 2011). In

its general form, one sets up a Bayesian model using some prior P (θ) to obtain

posterior P (θ|D) ∝ P (D|θ)P (θ). To subsequently select an action proportional

to its probability of being optimal, it suffices to obtain a single draw θ′ from the

posterior P (θ|D) for each arm and then select the action with the largest posterior

draw. In our specific case, using a (conjugate) Beta(α, β) prior with the Bernoulli

likelihood, the posterior becomes P (θ|D) = Beta(α + Rc, β + n − Rc), with n the

number of plays, Rc the reward, and hyperparameters α and β. We can specify a

relatively non-informative (uniform) prior by setting α = 1 and β = 1 as starting

values. This results in the following policy (and versions thereof):

Complete pooling:

Π(D, xt) := at = arg max
a

(θ′a) (3.8)
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where θ′a is a single draw from the Beta(αa + Ra
c , β

a + na − Ra
c ) posterior for arm

a.

No pooling:

Π(D, xt) := at = arg max
a

(θ′aj ) (3.9)

where θ′aj is a single draw from the Beta(αaj +Ra
cj, β

a
j + naj −Ra

cj) posterior for arm

a and user j.

To implement partial pooling in a Bayesian setting, we use a Bayesian hi-

erarchical model, which in essence results in setting hyperpriors on the hyperpa-

rameters α and β. Chapter 5 of Gelman et al. (2013) describes a way to specify

a hyperprior for the beta distribution as follows: first, they define a reparame-

terization of α and β in terms of the mean φ = α
α+β

of the beta distribution and

κ = α+ β where κ is roughly inversely related to the variance of the beta distribu-

tion. With some rearranging we get α = κφ and β = κ(1− φ). Finally, we can set

priors as follows: φ ∼ Uniform(0, 1) and κ ∼ Pareto(1, 1.5) ∝ κ−5/2. See Gelman

et al. (2013) for more details on this hyperprior specification. This results in the

following (simplified) policy:

Partial pooling:

Π(D, xt) := at = arg max
a

(θ′aj ) (3.10)

where θ′aj is a single draw from the posterior P (θaj |D), which is the resulting poste-

rior given the hierarchical setup described above. In the complete and no pooling

case posteriors are conjugate, which means that updating the posteriors is straight-

forward. In the hierarchical setting we need to resort to numerical approximations

of the posterior. In the simulation study below we use Hamiltonian Monte Carlo

(HMC) sampling (Carpenter et al., 2017). Note that we have only defined one

partial pooling variant for Thompson sampling, and we do not use two different

shrinkage factors as we do with UCB and ε-greedy. The partial pooling of Thomp-

son sampling is comparable to the beta-binomial shrinkage factor used in UCB

and ε-greedy, meaning that it is derived based on the assumed underlying reward

distribution.

To conclude, we have provided three novel policies (the partial pooling ver-

sions of ε-greedy, UCB, and Thompson sampling for the Bernoulli bandit) to deal

with possible hierarchical structures. Note that contrary to common CMAB ap-

proaches, our proposals do not specify an independent reward model for each

unique value of the context (assuming J values of the context above, one for each

user). In the next section we examine the performance of our proposals.
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3.4 Simulation study

3.4.1 Design

In this simulation study, we compared the performance of the proposed adap-

tations and the standard solutions for the (C)MAB policies described above. The

comparison was done in terms of expected cumulative regret (see Equation 4.1).

To keep the study simple, the simulations were run using a 2-armed Bernoulli con-

textual bandit where the context was made out of a user identifier number j. We

varied the following factors to examine the performance of the policies:

1. Distribution of success probabilities: Each unique user j had user specific suc-

cess probabilities for each of the two arms that were drawn from a beta

distribution (i.e., θaj ∼ Beta(α, β)). We used three different beta distribu-

tions to generate the true parameters. Firstly, we used Beta(1.5, 1.5) for both

arms as this has a high variance and ensures that for some users the first arm

is optimal whereas for others the second arm is optimal. This approach en-

sures that the expected rewards for different arms will be different between

users which is likely beneficial for policies that take hierarchical structures

into account. Secondly, we used Beta(5, 5) for both arms as this has a lower

variance and the difference between arms for each user is smaller. Thirdly,

we used Beta(2.5, 1.5) (for arm A) and Beta(1.5, 2.5) (for arm B) as a third

distribution of success probabilities, which results in arm A being the better

arm overall – but with enough overlap such that arm B is better only for

some users.

2. Number of users / repeated observations: We varied the number of users J ∈
{50, 100, 500, 1000}. We generated T = 10 000 interactions, which resulted in

a different (average) number of observations per user nj ∈ {200, 100, 20, 10}.
A lower number of observations per user results in less information per user,

and the policies that only focus on the observations within a user have a

disadvantage. With a higher number of observations per user, exploiting the

dependence between users is less beneficial, as there is enough information

within the repeated measurements of the users.

3. Distribution of user visits: Sampling the context (i.e., user identifier) was

done in two different ways. The first approach was to uniformly random

sample a user identifier at each time t. As a result, all users approximately

had the same number of observations nj ∈ {200, 100, 20, 10}. This allowed

us to investigate how a uniform increase in the number of observations per

user affected the expected cumulative regret. Since in practice users rarely
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have approximately equal numbers of observations we also used a second

approach that is more in line with an empirically valid example (which was

based on a data set we used in our empirical study): based on the average

number of observations per user from that data set (λ = 7.58), we sampled

the nj ’s for each user from a Poisson distribution. Then, using the sampled

nj ’s, we created a normalized probability vector which we use to sample

the user identifier also for T = 10 000 interactions with the same variation

in the number of users: this resulted in on average the same number of

observations per user as in the uniform random sampling condition (i.e., nj ∈
{200, 100, 20, 10}). Thus, while in the first case the number of observations

for each user were relatively close together, in the second case there was

quite a large variation between users.

In total, this means that there were 24 conditions in our simulation study

(three levels for distribution of success probabilities, four levels for number of

users and two levels for the distributions of user visits). Together, these 24 con-

ditions were run for 1000 replications for each of the four (or three) different

variations of the three policies (in total 11) generating a total of 264 simulations.

The simulation was implemented in the R package contextual (R Core Team,

2019; van Emden & Kaptein, 2018). As discussed before, for the partial pooling

variant of Thompson sampling we resorted to HMC sampling, which was imple-

mented in Stan (Carpenter et al., 2017). Since HMC sampling is computationally

expensive, it was practically infeasible to recompute the posterior at each interac-

tion. We chose to only sample from the posterior each 10 interactions. Further-

more, we used a warmup of 10 samples after which we took 10 draws and we

re-used these draws in Stan each time such that Stan would start sampling the

posterior from the region where it left off. The code for this paper can be found at

https://github.com/Nth-iteration-labs/dependent-observations.

3.4.2 Results

Figure 3.3 shows the results for all the simulation conditions in terms of ex-

pected cumulative regret (the lower the regret, the better). We only show the

results for the uniformly random sampling of the user identifier, since we found

that the results for the uniform and Poisson distribution were almost identical. For

clarity, only the average cumulative regret at the end of each simulation is shown.

The results show a few general trends. Firstly, in almost all cases complete pooling

performed worse than no pooling or partial pooling. This indicates that a naive

bandit approach performs poorly. Secondly, with all policies (and their respective

versions), the regret was higher when the number of users was higher (i.e., fewer
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Figure 3.3: Results of the simulation study. Results for the Poisson condition are left
out as they were almost identical to the uniform condition. Partial BB is partial pooling
with the beta-binomial shrinkage factor and Partial with the heuristic shrinkage factor.
Partial BB is not defined for Thompson sampling. Also shown are the error bars for the
95% confidence intervals. For all policies the partial pooling approach outperforms both
the no pooling and the complete pooling approaches in most cases.

observations per user). Thirdly, comparing the two shrinkage factors with each

other shows that they are very competitive to each other and have different per-

formances depending on the scenario and policy (e.g., the beta-binomial shrinkage

factor tends to perform better when used in conjunction with UCB). Finally, and

as expected, in almost all cases the partial pooling approaches outperform both

the no pooling and the complete pooling approaches: this indicates clearly that

dealing with hierarchical dependencies in CMAB problems using a partial pooling

approach is beneficial.

As for the performance of the policies, with ε-greedy we see that for the sym-

metrical beta distributions partial pooling works better, but the heuristic shrink-

age factor performs better than the beta-binomial shrinkage factor. Also for the

unsymmetrical beta distribution, we see that the heuristic shrinkage factor always
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performs better than the complete and no pooling variant. The beta-binomial

shrinkage factor, however, suffers some regret increase for 500 and 1000 users.

With UCB we see that the beta-binomial shrinkage factor performed better

compared to the heuristic shrinkage factor. The heuristic shrinkage factor per-

formed roughly equivalent as the no pooling variant and thus showing not much

improvement in the case of the symmetrical beta distributions. When it comes to

the unsymmetrical beta distributions (the last row of the plot), we see that both

shrinkage factors perform better than the complete and no pooling variants for

UCB.

With Thompson sampling we see that for the symmetrical beta distributions

(first two rows), the partial pooling variant works as good or better than the no

pooling variant and always better than the complete pooling. With the unsym-

metrical beta distribution, we see that no pooling greatly suffers a regret increase,

but partial pooling not so much – albeit it performs slightly worse than complete

pooling for 500 and 1000 users.

To summarize, we found that partial pooling performs in almost all cases

better than their complete pooling and no pooling counterparts. This shows that

incorporating hierarchical structures that might be present in the data (be it via

partial pooling or otherwise) is of potential interest for future studies, as there is

minimal loss in performance (in the worst case) and only a potential increase.

3.5 Empirical evaluation

In this study, we investigated the performance of the different pooling vari-

ations on an empirical data set previously reported upon in Kaptein et al. (2018)

using offline evaluation (Li et al., 2011; Mary et al., 2014), which allows us to re-

use in the field collected data to compare the performance of difference policies.

In this experiment, users browsed products on a website. With each product page

view, the users were shown at random a strategy that would try to persuade them

to buy the product or no strategy at all (a control condition). These strategies

were: authority (e.g., "recommended product"), social proof (e.g., "bestseller")

and scarcity (e.g., "almost out of stock"). This data set is available in the provided

repository.

3.5.1 Design

The data that we used consisted of the data where users browsed a product

detail page, which displayed only a single product and a single strategy and adding

the product to a shopping basket was counted as a success (i.e., the click-through
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Figure 3.4: Results for the empirical evaluation for ε-greedy. The plot shows the
click-through rates (CTR) over time for each pooling type for ε-greedy. We can see that
the partial pooling variants heavily improve the CTR.

rate, CTR). The data consisted of 570 061 observations with an average of 7.58

observations per user (with a total of 75 132 users). We have selected the users

that had a minimum of 5 (to ensure enough information) and a maximum of 50

(to ensure that no bots would be included) observations. This left us with 23 436

users with 327 600 observations.

For the policies, we only considered ε-greedy and UCB policies and not

Thompson sampling, as these policies have shown to have both an improvement in

terms of regret and are computationally feasible to use. Furthermore, next to the

four variants of the policies, we have added a random policy that selects actions

uniform randomly to act as a performance baseline. The data can be considered as

containing four arms – the three different persuasion strategies and also a control

group where no strategy was displayed.

3.5.2 Results

Figure 3.4 and Figure 3.5 show the results for the empirical study in terms

of the CTR. For both UCB and ε-greedy, the partial pooling variants seemed to im-

prove the results compared to their baselines (with UCB complete pooling and the

random policy overlap in the plot). With ε-greedy we see again that the heuristic

shrinkage factor performs better. With UCB we can see that in the beginning the
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Figure 3.5: Results for the empirical evaluation for UCB. The plot shows the click-
through rates (CTR) over time for each pooling type for UCB. We see that the partial
pooling at least improves the complete pooling, but performs as well as the no pooling
variant.

beta-binomial partial pooling variant follows the no pooling variant, resulting in a

lower CTR in the beginning, but both the no pooling and the heuristic shrinkage

factor will perform better after a certain point. The heuristic shrinkage factor has

again (as in the simulation) the same performance as the no-pooling variant for

UCB – these lines almost completely overlap. Overall, this offline evaluation using

real-world data provides an externally valid demonstration that partial pooling is

beneficial.

3.6 Conclusions

In this paper we introduced partial pooling as a means of dealing with de-

pendent observations in the (contextual) multi-armed bandit problem. Both our

simulation and empirical study showed that adapting policies to exploit hierar-

chical structures in the data improves the performance of these policies. Taking

hierarchical structures into account can be beneficial for the CMAB problem and

does not exclusively pertain to the situations shown in this paper: based on the

overwhelming utility of hierarchical modeling in the social sciences we expect sim-

ilar results for different (i.e., non-Bernoulli) reward distributions or when multiple

(cross-)nestings are present in the data.
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Future research can be done to build upon the work shown in the paper. To

improve UCB further we could in the future derive shrinkage factors that are op-

timal under specific assumptions regarding the environment: thus, our focus on

hierarchical structures opens up a treasure trove of new theoretical challenges. We

tried to show, however, through an empirical approach that our general approach

is useful. For Thompson sampling the partial pooling worked well in terms of im-

proving rewards, but it comes at high computational cost. Further research could

be done on improving the computational cost, for example by using sequential

Monte Carlo methods (Doucet, De Freitas, & Gordon, 2001) or by implementing

bootstrap Thompson sampling (Eckles & Kaptein, 2019).

Despite the fact that we focussed on a relatively simple example in terms of

the imposed hierarchical structure, we would like to stress that hierarchical struc-

tures are very common in practice: in online marketing for example we find user,

page and topic hierarchies (Ansari & Mela, 2003; Cheng & Cantú-Paz, 2010). To

our surprise, we find almost no research in the bandit literature that takes these

hierarchical structures explicitly into account, despite the fact that in science hier-

archical models are common-place. We hope to have demonstrated that hierarchi-

cal models – and the associated partial pooling of information within and between

clusters – can be of large benefit for CMAB problems and deserve more research

attention.
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Chapter 4

An Empirical Comparison of Offline Evaluation

Methods for the Continuous-Armed Bandit Problem

Abstract

The (contextual) multi-armed bandit (MAB) problem provides a formalization of sequential decision-
making which has many applications. However, validly evaluating MAB policies is challenging; we
either resort to simulations which inherently include debatable assumptions, or we resort to ex-
pensive field trials. Recently several offline evaluation methods have been suggested that are based
on empirical data, thus relaxing some of the assumptions, and can be used to evaluate multiple
competing policies in parallel. These methods are however not directly suited for the continuous-
armed (CAB) problem; an often encountered version of the MAB problem in which the action set is
continuous instead of discrete. We propose and evaluate a novel offline evaluation method devel-
oped specifically for the evaluation of CAB policies. We empirically demonstrate that our method
provides a relatively consistent ranking of policies. Also, we compare our approach to recent alter-
natives in a simulation study for parameter tuning. Finally, we detail how our method can be used
to select policies in a real-life CAB problem.

Keywords: offline evaluation, continuous-armed bandit problem, continuous treatments, dy-
namic policies

Submitted as Kruijswijk, J.M.A., Parvinen, P., Kaptein, M.C. An Empirical Compirason of Offline

Evaluation Methods for the Continuous-Armed Bandit Problem.
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4.1 Introduction

In the canonical multi-armed bandit (MAB) problem a gambler stands in

front of a row of slot machines, each with a (potentially) different payoff. It is

up to the gambler to decide in sequence which machine to play and, during the

course of sequentially playing the machines, she aims to make as much profit as

possible by simultaneously learning from the previous observations and using the

gained knowledge to steer future actions (Berry & Fristedt, 1985; Whittle, 1980).

The gambler needs to pick a strategy that dictates which arm to play next given

the previous observations.

The problem of finding such a strategy is complicated since at each inter-

action the gambler only observes the outcomes of the machine she played, and

she will never know the outcomes of the other possible courses of action at that

moment in time. This so-called omission of counterfactuals (Li et al., 2011) – not

being able to gain knowledge about all the possible outcomes – gives rise to the ex-

ploration versus exploitation trade-off (Berry & Fristedt, 1985): at each time point

an action can either be geared at gaining more knowledge regarding the machines

she is uncertain about (exploration), or it can be geared at using the knowledge

gained in earlier interactions by playing machines with a high expected pay-off

(exploitation). A good strategy balances this trade-off and does not waste too

many plays on gaining new knowledge, nor does it become too greedy and get

stuck exploiting a suboptimal machine (Kaelbling et al., 1996).

The MAB problem is easily extended to more general settings. One such ex-

tension is the contextual MAB (CMAB) problem (Langford & Zhang, 2008). In

the CMAB problem, at each interaction, the gambler observes the state of the

world (context), which might influence the optimal choice at that moment in

time (Beygelzimer et al., 2011; Bubeck & Cesa-Bianchi, 2012; Langford & Zhang,

2008). Both the MAB problem and the CMAB problem have been heavily ana-

lyzed (Wang et al., 2005). Furthermore, strategies, or in this literature more often

called policies, to address the (C)MAB problem have found many practical applica-

tions in recent years: examples include, but are not limited to, the personalization

of online news (Li et al., 2010), online advertisement selection (Cheng & Cantú-

Paz, 2010), website morphing (Hauser et al., 2009), adaptive clinical trials (Press,

2009; Williamson et al., 2017), and software to experiment with bandit policies

on the web (Kruijswijk, van Emden, Parvinen, & Kaptein, 2020).

In the current article we focus on another extension of the MAB formalization

coined the continuous-armed bandit (CAB) problem (Agrawal, 1995): this prob-

lem distinguishes itself apart from other formalizations by considering instead of

a set of discrete actions (the distinct slot machines) a continuous range of ac-
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tions. The CAB problem has also been analyzed (Agrawal, 1995; Kleinberg, 2004;

Krause & Ong, 2011), however the current theory focussed literature lacks applied

methods to evaluate the performance of different CAB policies. This is true despite

many applied settings in which this problem is encountered. Which include but

are not limited to, choosing an optimal price for selling a product to customers

encountered sequentially (Javanmard & Nazerzadeh, 2019), or choosing an opti-

mal treatment dose (Kallus & Zhou, 2018). In this paper we suggest and evaluate

a practical method for evaluating the performance of different CAB strategies in

an externally valid setting. Notably, we compare the performance of our method

with a recently published alternative.

As stated above, the omission of counterfactuals complicates finding a good

policy since it gives rise to the exploration-exploitation trade-off. Counterfactu-

als also complicate the evaluation of competing policies: due to the omission of

counterfactuals in the collected data resulting from field evaluations of a specific

policy, it is challenging to use these existing data to directly evaluate alternative

strategies. Therefore, if we want to empirically evaluate bandit policies we either

have to resort to running multiple field evaluations that are often very expensive

to carry out, or we have to resort to simulation based methods which often lack

external validity. Li et al. (2011) suggested an effective solution to this problem

for the (C)MAB problem: they proposed a method for the externally valid offline
– thus based on existing, pre-collected, data – evaluation of MAB policies. The

method relies on a single dataset, thus cutting costs, while it circumvents the va-

lidity problems that easily arise in simulations by using actual empirical data.

The offline MAB evaluation method suggested by Li et al. (2011) relies on

collecting – in the field – a dataset in which the actions where taken uniformly

at random at each interaction. Next, to evaluate a particular decision policy, the

sequence of data points is replayed and, at each interaction, the action suggested

by the policy under evaluation is compared to the action that is actually present

in the logged data at that point in the sequence. If the two actions match, the

data point gets “accepted” and its outcome is included in the evaluation of the

policy. If the actions do not match the interaction is simply ignored. This method

demonstrably provides unbiased estimates of the performance of distinct bandit

policies (albeit for a smaller number of interactions than the number of datapoints

collected in the initial field trial).

In practice, the method by Li et al. (2011) works well only when the num-

ber of actions is (relatively) low, the amount of observations is large, or both. If

however the action set is large, or the number of observations in the dataset small,

estimates of the performance of the different policies can only be obtained for a

(very) small number of interactions. Cleary, in the limit, the suggested method
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thus fails for the CAB problem; since theoretically the number of possible actions

is infinite, the probability that the actions suggested by a policy under evaluation

matches the randomly selected action in the existing dataset tends to zero. As a

result, no observations will be accepted and the evaluation of the policy fails.

Other methods for offline evaluation exist such as the method introduced by

Dudík, Langford, and Li (2011). The advantage of this method is that the dataset

does not have to be collected uniformly randomly, as long as the probability of

playing the action that was played is known (the propensity score). Some research

has been done on computing propensity scores when continuous treatments are

considered, but it still remains a complicated problem (Hirano & Imbens, 2004).

In practice, the method by Li et al. (2011) is a special case of the method by Dudík,

Langford, and Li (2011): when choosing actions uniform randomly the propensity

score is a constant and therefore it can be ignored. This means that the method by

Dudík, Langford, and Li (2011) shares a number of the same drawbacks for offline

evaluating policies for the CAB problem.

Kallus and Zhou (2018) recently introduced an offline evaluation method

for policies which consider continuous treatments. More specifically, the method

is designed to evaluate policies that we consider static. Static policies are policies

that have their parameters completely defined a priori. However, we are also in-

terested in offline evaluating dynamic policies: contrary to static policies, dynamic

policies are treatment allocation policies that change their behavior based on the

data collected (and thus do not have their parameters defined a priori). For exam-

ple, we consider online linear regression in combination with ε-greedy a dynamic

policy, as the coefficients of the model are updated during the interactions. Dy-

namic policies are contrasted to static policies in which effectively the mapping

from context to action at each timepoint is known a priori (i.e. a model with the

coefficients already known). Focusing on dynamic policies makes offline evalua-

tion even harder as now we need to not only focus on the overall outcomes, but we

are also interested in the learn rates during the sequential allocation procedure.

In this paper, we present and empirically evaluate a logical extension to the

method of Li et al. (2011) to make it suitable for the evaluation of CAB policies. We

evaluate the method in a case where the aim is to rank a number of dynamic poli-

cies based on their expected performance. Furthermore, we compare our method

to the method of Kallus and Zhou (2018) in a use case where the aim is to tune

and choose the learning parameters of a policy for the CAB problem. In the next

section, we introduce the CAB problem more formally and provide examples of

CAB policies. Next, we introduce the method by Li et al. (2011) and our extension

to the method and we discuss its rationale. We also give an introduction to the

method by Kallus and Zhou (2018). Then we evaluate the performance of our
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suggested method by showing through simulations that it allows one to consis-

tently order bandit policies for CAB problems, for multiple sizes of the problem

and for multiple true data generating models. Then we will showcase how param-

eter tuning would work in an online scenario (i.e. we have multiple experiments

to try different parameters). After this we will compare the two methods to do

offline parameter tuning and compare how they hold up against the online case.

Finally, we present the use of our method in the field of online marketing and dis-

cuss future research directions and possible improvements of our method. While

our suggested method does not provide unbiased estimates of the absolute perfor-

mance of the evaluated bandit policies – we explicate this below – it does provide

a cheap and straightforward method to provide a relative rank of distinct policies

and thus aid decision making when selecting policies for applied CAB problems –

even when the policies concerned are dynamic, i.e. changing over time.

4.2 Continuous-armed bandit problem

Before we introduce our extension to the method proposed by Li et al. (2011),

we first more formally introduce the MAB (and CAB) problem. Bandit problems

can be described as follows: at each time t = 1, ..., T , we have a set of possible

actions A. After choosing at ∈ A we observe reward rt. The aim is to find a policy
(Π(ht−1) where ht−1 is the historical data), which is a mapping from all the his-

torical data to the action at t, to select actions such that the cumulative reward

Rc =
∑T

t=1 rt is as large as possible. In the case of a CAB problem, the same for-

malization can be used, where the only difference is in the action set: in the CAB

problem we have A ∈ R (often constrained within some range [i, j]).

To assess how a policy performs we often look at the expected regret of the

policy which is defined by

E[RT ] = E

[
T∑
t=1

r∗t − rt
]

(4.1)

where rt is the reward at interaction t and r∗t is the reward of the action with the

highest expected reward (the optimal policy). Regret, as opposed to the cumula-

tive reward, Rc, provides an intuitive benchmark since a perfect strategy would

incur an expected regret of 0. Further note that if a suboptimal action has a non-

zero and non-decreasing probability of being selected, the regret will – in expecta-

tion – increase linearly. Most analytical work focusses on showing the asymptotic

sub-linear regret of distinct (C)MAB or CAB policies (e.g., Lai & Robbins, 1985).
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4.2.1 Continuous-armed bandit policies

Following are a few illustrations of CAB policies. We use these policies in the

simulation studies to evaluate our proposed method. The policies considered in

this paper are:

1. The Uniform random, UR, policy. In this policy simply a1,...,T ∼ Unif(i, j). The

regret of this policy is expected to grow linearly.

2. The ε-first, EF, policy. This is a greedy algorithm that has two phases. In

the first phase, which is restricted by a preset N number of interactions, the

policy explores: a1,...,N ∼ Unif(i, j). Next, a simple linear model is fit to the

observed data. The model that we fit using standard least squares estimation

is

r = β0 + aβ̂1 + a2β̂2 (4.2)

and subsequently, in the exploit stage we choose the action that maximizes

this fitted curve, aN+1,...,T = −β̂1
2β̂2

. The regret of this policy is expected to grow

linearly in both phases, however, in the first phase it will grow faster than in

the second phase, since it uses the expected (heuristically) optimal action in

the second phase (and stops exploring).

3. The Thompson sampling using Bayesian linear regression, TBL, policy. Thomp-

son sampling (Agrawal & Goyal, 2012; Scott, 2010; Thompson, 1933) is a

sampling method in which an action at is randomly selected with a probabil-

ity proportional to the belief that this action is the best action to play given

some (Bayesian) model of the relationship between the actions and the re-

wards. Consider all the historical data, previously denoted ht, consisting of

the history of the actions and rewards up to t. Further denote the parame-

ters θ = {β0, β1, β2} (as in Equation 4.2). We set up a Bayesian model using

some prior on P (θ) and obtain posterior P (θ|ht) ∝ P (ht|θ)P (θ). To subse-

quently select an action proportional to its probability of being optimal – and

thus to implement Thompson sampling – it suffices to obtain a single draw

θ′t from the posterior P (θ|ht) and then select the action that is optimal given

the current draw using at = −β̂′1
2β̂′2

(Scott, 2010). To compute P (θ|ht) we use

– using matrix notation – the well known online Bayesian linear regression

model (as described, e.g., by Box & Tiao, 1992) where we update at each
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time point:

J := J +
rta

T

σ2
, (4.3)

P := P +
aaT

σ2
(4.4)

and where J = Σ−1µ (i.e. the precision times the mean), P = Σ−1 (i.e.

the precision) and a = [1, a, a2]. Finally, we sample the sought after θ|ht ∼
N (µ,Σ) from which draws are obtained at each time point. We again use

the model presented in Equation 4.2. The regret of this policy is expected to

grow sub-linearly.

4. The Lock-in Feedback, LiF, policy. LiF is a novel algorithm developed by

Kaptein and Ianuzzi (2016) (see also Kaptein, van Emden, & Iannuzzi, 2016b).

LiF is inspired by a method that is frequently used in physics, coined lock in

amplification (Scofield, 1994; Wolfson, 1991) that is routinely used to find

– and lock in to – optima of noisy signals. LiF works by oscillating sam-

pled values with a known frequency and amplitude around an initial value

a0. Using the observed feedback from the oscillations in the evaluations of

f() it is straightforward to find the derivative f ′() at a0 and use a gradient

ascent updating scheme to find a∗t , see Algorithm 1 for details. This func-

tion is expected to grow linearly in terms of regret, although it is expected

that it grows slower than the first two policies (i.e., it reaches an optimum

faster, but because of its oscillating nature the expected regret keeps growing

linearly).

Algorithm 1 Implementation of the LiF policy as used in our evaluations. Here T
denotes the total length of the data stream of “accepted” actions.

Inputs: value a0, amplitude A, integration window i, learn rate γ, and frequency
ω
rΣ
ω ← 0 (cumulative rewards)

for t = 1, . . . , T do
at = a0 + A cosωt
rt = f(a0 + A cosωt) + εt
rΣ
ω = rΣ

ω + rt cosωt
if (t mod i == 0) then
r∗ω = rΣ

ω/i
a0 = a0 + γr∗ω
rΣ
ω = 0

end if
end for
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The above policies where chosen to a) include a very naive benchmark (the

UR policy), and a number of different approaches advocated in the (c)MAB or

CAB literature (Box & Tiao, 1992; Kaptein & Ianuzzi, 2016; Sutton & Barto, 2011).

Please note that the number of possible alternative policies we could have explored

is extremely large, ranging from simple heuristic strategies such as ε-greedy (Sut-

ton & Barto, 2011) to currently popular Gaussian processes (Djolonga, Krause,

& Cevher, 2013); we hope however to have included a selection of policies that

provides an informative evaluation of the merits of our proposed method.

4.3 Offline CAB policy evaluation

In many applied situations we have no knowledge about the actions with the

highest expected reward (i.e. we do not know r∗) and thus we will not be able to

compute the regret. In such cases the best we can do is compare the cumulative

reward Rc (or the average per time point reward Rc/T ) obtained over multiple

comparable runs – either in simulations or in field evaluations – of the policies

under evaluation. However, this highlights a clear challenge when evaluating

multiple policies: simulations likely contain assumptions that limit the external

validity of the evaluation, while in-field evaluations of multiple policies are often

difficult and expensive to carry out.

To address these problems Li et al. (2011) proposed a method to obtain un-

biased estimates of the expected cumulative reward of different policies using a

single, externally valid, dataset. Algorithm 2 details the proposed method: we

run sequentially through a stream of logged data in which the actions have been

selected uniformly at random. At each event in the stream, the policy under eval-

uation proposes an action. If the action proposed by the policy is the same as the

action of the logged event, then the event is counted towards the evaluation of

the policy and the observed reward is added to the total payoff. Note that if there

are K actions, then the number of valid events T in the evaluation process is a

random number with expected value L/K, where L is the length of the logged

data set. Thus, during the evaluation datapoints are “accepted” with probability

paccept = 1
K

. In the online setting, L = T and in the offline setting E(T ) = L
K

. Here

we consider the online setting our true evaluation of the policies (i.e. based on

simulations that do not need offline evaluation).

Li et al. (2011) show that, under a number of assumptions regarding the

collection of the logged dataset and the stationarity of the process, the method de-

scribed in Algorithm 2 provides an unbiased estimate of the performance of policy

Π. As such, the method makes it possible to compare multiple competing policies

in an externally valid setting without the recurring costs of repeating field trials. In
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practice, however, the method fails for the often encountered CAB problem. This

is due to the fact that with continuous action space the probability that a logged

action is equal to a suggested action by the policy is very low: as K grows paccept
decreases and we have for the CAB problem K → ∞ and paccept → 0. Thus, the

method fails.

Algorithm 2 Policy evaluator with finite data stream for the MAB problem.

Inputs: policy Π; stream of events S of length L
h0 ← (An initially empty history)
Rc ← 0 (An initially zero total payoff)
T ← 0 (An initially zero counter of valid events)
for t = 1, 2, . . . , L do

Get the t-th event (a, ra) from S
if Π(ht−1) = a then

update Π(ra, a)
ht ← CONCATENATE(ht−1, (a, ra))
Rc ← Rc + ra
T ← T + 1

else
ht ← ht−1

end if
end for
Output: Rc and T (or Rc/T for the average reward)

4.3.1 The delta method

In an attempt to solve this problem and to provide a practically usable method

for the offline evaluation of CAB policies we propose an alternative to the method

suggested by Li et al. (2011), which we call the delta method. Algorithm 3 de-

scribes our logical adaptation of Algorithm 2 to provide an evaluation method for

the CAB problem. The difference between the two algorithms is in the if state-

ment that determines acceptance of the proposed action: instead of constraining

the suggested action to be exactly equal to the logged action, we compare the dis-

tance between the action logged in the dataset, a, with the action proposed by the

policy, Π(ht−1). If the absolute distance between these two actions is less than the

tuning parameter δ, we accept the data point, and else it will be discarded. Intu-

itively the proposed change corresponds to the difference between the evaluation

of a PDF of a discrete versus a continuous random variable. Note here that we

update the policy not with the logged action a but rather with the action that was

proposed by the policy (Π(ht−1)). Hence providing a noisy estimate of the reward

at Π(ht−1).
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Algorithm 3 Offline policy evaluation for the CAB problem

Inputs: policy Π; stream of events S of length L with actions selected randomly
in the range [i, j]
h0 ← (An initially empty history)
Rc ← 0 (An initially zero total payoff)
T ← 0 (An initially zero counter of valid events)
for t = 1, 2, . . . , L do

Get the t-th event (a, ra) from S
if |a− Π(ht−1, )| < δ then

update Π(ra,Π(ht−1))
ht ← CONCATENATE(ht−1, (Π(ht−1), ra))
Rc ← Rc + ra
T ← T + 1

else
ht ← ht−1

end if
end for
Output: Rc and T

4.3.1.1 Properties of the delta method

Before we empirically evaluate the applied use of proposed method in an ex-

tensive simulation study in the next sections, it is worthwhile to analyze the role of

the tuning parameter δ and to reflect on the resulting estimates of Rc that follow

from our procedure. This is most easily done by keeping in mind a very simple

CAB formalization where the true data generating process is merely a parabola

constrained within the range [0, 1], say rt = f(at) = −(at − .5)2 + ε where ε repre-

sents some random noise and we have E(ε) = 0. Note that Π∗(t) = a∗t = .5. Clearly,

a large value of δ (e.g., .25) will lead to accepting a high number of proposed ac-

tions (and thus large number of evaluations T ), but will also lead to high variation

in the realizations of f(at): the policy evaluates f() at Π(ht−1, x), and receives as

a result f(at) which might be at most δ away. Hence, for large δ, the performance

of the policy will be poor since it obtains erroneous evaluations of f(at), and the

estimated cumulative regret will be (severely) biased. The exact way in which

a policy will be biased by these erroneous evaluations of f() heavily depends on

the way in which the policy incorporates the history ht−1 when selecting the next

action. These problems diminish as δ decreases, however, the number of accepted

observations T will decrease accordingly. Hence, δ should be chosen as small as

possible, however the expected number of accepted events T = pacceptL = 2δ
b−aL

(with range of actions [i, j]) should be as close as possible to the expected number

of events occurred in the real-life setting for which the policy is evaluated. This

implies that in practice one would like to collect a dataset containing uniformly

randomly selected actions in range [i, j] with length L = 2δ
(a−b)/T ′ where T ′ is the
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desired length of the policy evaluation for the applied problem.

Note that as long as δ > 0 the estimated expected reward E(Rc) is down-

wardly biased for concave functions since even if the policy converges exactly on

the optimal action (e.g., selecting at=t′,...,t=T = a∗ = .5 for some t′) the evalua-

tions of f(at) originate uniformly randomly from the interval [a∗− δ, a∗+ δ]. Since

each evaluation for which at 6= a∗ leads, in expectation, to a reward rt ≤ r∗t , the

expected cumulative reward of the policy under consideration is downwardly bi-

ased. Nonetheless, for the comparison of the relative performance of applied CAB

policies this is not as cumbersome as it might sound; as long as the ranking of

policies is relatively consistent for the desired scale of the problem T the method

is still useful to select one out of a number of competing policies. We will demon-

strate below that this is the case for a range of values of δ as well as for multiple

true data generating functions f(). Hence, our proposed method is valuable in

practice.

4.3.2 The kernel method

In Kallus and Zhou, 2018 the authors have developed an offline evaluation

method for policies with continuous treatments that results in a consistent estima-

tor in terms of bias and variance. It can use both the doubly robust (see Dudík et

al., 2014) and the inverse propensity score weighting (IPW) methods (see Horvitz

and Thompson, 1952). IPW methods are used when the original actions in the

logged data set are not generated uniform randomly. The IPW is then used to

weight the reward based on the probability of being chosen (the propensity score).

Both these cases we do not consider and we assume that the propensity score (later

named Q) is equal for every action. In Kallus and Zhou, 2018 the authors propose

an alternative for the IPW method by applying a smoothing (kernel) function on

the if-statement in Algorithm 2, which results in an algorithm as shown in Algo-

rithm 4 (hereafter called the kernel method). Here, H is the horizon (a tuning

parameter), K a kernel function (either a Gaussian or a Epanechnikov kernel)

and Q the propensity score. The if-statement in Algorithm 2 is used to compare

the suggested action with the logged action in the dataset. The kernel smoothing

is made to deal with this problem by weighting the rewards: the further away an

action, the reward is included less and less.1

The downside of this evaluation method is that in practice every selected

action will be accepted and evaluated. This means that when we select an action

a that is far away from the logged event, the policy will receive a reward near

0. Consider the ε-first, LiF and TBL policies: they have learning parameters that

determine how they update the policy itself based on the data collected. Since
1Note that this only works for relatively smooth functions.

89



4

Chapter 4

Algorithm 4 The kernel method

Inputs: policy Π; stream of events S of length L
h0 ← (An initially empty history)
Rc ← 0 (An initially zero total payoff)
for t = 1, 2, . . . , L do

Get the t-th event (a, ra, Qa) from S

Set evaluated reward re = K
(

Π(ht−1)−a
H

)
ra
Qa

update Π (re,Π(ht−1)
ht ← CONCATENATE(ht−1, (Π(ht−1), re))
Rc ← Rc + re

end for
Output: Rc/(LH)

the actual rewards are not observed, but rather a downweighted version thereof,

the weights will need to make their way into the update of the parameters of the

policy; this is often not straightforward.

We consider policies that have learning parameters as dynamic policies: the

policies will change their behavior (e.g. update parameters) based on the data

that are collected. They are contrasted to static policies, which do not update

any parameters (and are not constrained by learning parameters) over time. Ef-

fectively this means that any policy that uses historical data (i.e. data collected

during the “run” itself) is dynamic. Dynamic policies are negatively affected by

the kernel method, as they will receive heavily biased rewards and update accord-

ing to those rewards, possibly resulting in wrongly updated policies. Nevertheless,

we will consider the kernel method also in a simulation study where we look at

tuning the learning parameters of two policies and compare the kernel method

with our delta method.

4.4 Simulation study

To evaluate our proposed method we perform two simulation studies. We

have implemented these simulations in the R package contextual (van Emden

& Kaptein, 2018). Contextual allows us to quickly implement different bandit

policies and evaluate them for multiple iterations.2 We first examine the perfor-

mance of the four introduced CAB policies while collecting data “online” – as we

know the true data generating model, we are able to evaluate the proposed actions

by the policy directly into the models and observe their rewards and run as many

evaluations as we want. Next, we collect an offline evaluation dataset S by gather-

ing rewards r1,...,L from our data generating models for actions chosen uniformly
2The implementation can be found on https://github.com/Nth-iteration-labs/

offline-evaluation-continuous-bandits.
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at random: a1...,L ∼ Unif[0, 1]. Subsequently, to evaluate the offline evaluation

methods, we can compare the performance of the policies between the online and

offline scenarios.

We specify two different true reward functions, which we will use for both

simulation studies. We have data generating models f1() and f2() of which we

want to find the optimum. In a field experiment we would not know these models,

but here we assume it takes one of the following two forms:

rt = f1(at) = −(at − c)2 + 1 + ε (4.5)

with c ∼ U(0.25, 0.75) and ε ∼ N (0, 0.01) and

rt = f2(at) = g(x;µ1, σ1, a, b) + g(x;µ2, σ2, a, b) + ε (4.6)

where g() is the density function of the truncated normal distribution and µ1 ∼
U(0.15, 0.2), µ2 ∼ U(0.7, 0.85), σ1 ∼ U(0.1, 0.15), σ2 ∼ U(0.1, 0.15), a = 0, b = 1

and again ε ∼ N (0, 0.01). In practice, Equation 4.5 is a unimodal and Equation 4.6

is a bimodal function (and hence more challenging for any CAB policy). The two

reward functions used were both varied across simulation runs (i.e. the means and

variances vary) to not favor particularities of the distinct policies under scrutiny.

We conducted both simulation studies using the data generating processes

described above. The first study focusses on ranking policies in terms of regret

and comparing their online (or true) behavior versus their behavior using the delta

method. The second study focusses on choosing the learning parameters that will

result in the highest cumulative reward for a given number of interactions using

both the delta and kernel offline evaluation methods.

4.4.1 Policy ranking

In this simulation study we first ran 103 repetitions of L = T = 104 interac-

tions to obtain online estimates of the performance of the 4 policies; this provides

our benchmark. Next, we ran 103 repetitions, each on a data set S of length

L = 104 with different values of δ ∈ (.01, .05, .1, .2, .5), of Algorithm 3 for each

of the 4 policies under consideration. This results in multiple offline evaluations

of the same policies which we subsequently compare with the true online perfor-

mance. Note that the total length of the offline evaluations differs for different

values of δ. Also note that the reward functions f() also differed for the online

and offline situations, each repetition we randomly generated a different f() (as

explained above). In the simulation studies we have chosen for a smaller prac-

tical scale in terms of number of interactions, as a simulation study on a larger
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scale might be interesting to investigate the properties for an infinite horizon

for T , but a smaller scale is more useful for situations where we know that the

amount of data will be rather small. For LiF, we chose starting values a0 ∼ U(0, 1),

A = 0.05, i = 25, γ = .1, ω = 1. And for TBL this was J = [0, 0.25,−0.25] and

P = diag(2, 2, 5).

In this simulation study, we will only look at the delta method. The main

reason for this is that using the kernel method for evaluating dynamic policies

is not trivial. While the kernel method provides accurate estimates of the (aver-

age) reward for static policies, the inherent weighting of observations makes it

challenging to implement and evaluate dynamic policies validly. For any policy in

which the behavior is changed due to the incoming data stream, the weights have

to be accounted for thus making a change to the original policy. While in many

cases this might be possible, one would still not be evaluating the actual policy but

rather a revised version of the policy especially tailored to conform to the specific

kernel being used.

4.4.1.1 Results

The unimodal model Figure 4.1 shows the results for the unimodal model in

terms of empirical regret (see Equation 4.1). The upper left panel shows the

performance of the four policies in the online simulation study. Here it is clear that

TBL performs very well and evaluates the function close to its maximum relatively

quickly leading to a small regret. Also LiF seems to converge, but, due to its

continuous oscillations, the regret keeps increasing; a linear increase is expected

for this policy. EF performs as expected; first it incurs high regret due to the

exploration stage, after which regret is small in the exploitation stage. Given

the relatively simple true reward function the exploitation stage often evaluates

the reward function close to its maximum. The subsequent panels (left to right)

show the performance of the distinct policies in terms of regret averaged over

the 103 simulation runs for decreasing values of δ. Depicted are both the average

regret over the 103 simulation runs, as well as their empirical standard errors

(the confidence bands). Note that the standard errors for the offline evaluations

increase heavily towards the higher values of the plot; this is caused by the fact

that higher values of T become less and less likely in the offline evaluation.

As expected, for large values of δ a large number of observations is obtained

(e.g., T is large), but the performance of the policies is severely affected by the

extremely noisy evaluation of the true reward function. At δ = .5 this results

in an evaluation that provides hardly any information regarding the relative per-

formance of the different policies. However, as δ decreases (and subsequently T

decreases), we find a more and more clear ordering of the policies. To illustrate,
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Figure 4.1: The results for the offline policy ranking simulation using a unimodal data
generating model in terms of cumulative regret averaged over the simulation runs. The
upper left panel shows the performance of the four policies for the online simulation. The
other panels show the performance for the four policies for the offline evaluation with
varying δ’s. The lines are plotted together with their 95% confidence bounds. Duly note
that the confidence bounds can be misleading, since for low δ’s we have a low amount of
T and also only a few repetitions left to average over (as compared to higher δ’s). At the
lower δ’s, UR and EF have the same performance (because EF is not yet in the exploitation
phase) and only EF is visible in the plot.

Table 4.1 presents the relative rank order of the policies in terms of lowest regret

evaluated at T = 1750. The table makes clear that our proposed offline CAB policy

evaluation method consistently ranks the policies that are being compared. Note

that for smaller δ’s, T = 1750 is not observed. One conclusion that can be drawn

from this is that we need a relatively large offline data set for the method to work

well.

The bimodal model Figure 4.2 shows the results for the bimodal, model. The

first panel again shows the performance of the different policies in an online sim-

ulation. The figure displays a similar pattern for the UR and EF policies as before:

steep linear regret for the UR policy, and the same regret in the exploration stage

for EF, after which in the exploitation stage the regret is even higher; note that

in this more complex case the optimum is not clearly found in the exploitation

stages. Our implementation of TBL and LiF seem to have a comparable perfor-
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Table 4.1: Table displaying the rank order of the four policies under scrutiny at T = 1750
for the online and offline evaluations for the unimodal model. Note that at this point by
design UF and EF are in a tie. Further note that for small δ, T = 1750 is not observed.

Rank Online δ = .5 δ = .2 δ = .1 δ = .05 δ = .01

1 TBL TBL? TBL TBL n/a n/a

2 LiF LiF? LiF LiF n/a n/a

3 EF/UR EF/UR EF/UR EF/UR n/a n/a

4 EF/UR EF/UR EF/UR EF/UR n/a n/a
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Figure 4.2: The results for the offline policy ranking simulation using a bimodal data gen-
erating model in terms of cumulative regret. The upper left panel shows the performance
of the four policies for the online simulation. The other panels show the performance for
the four policies for the offline evaluation with varying δ’s. The lines are plotted together
with their 95% confidence bounds. Duly note that the confidence bounds can be mislead-
ing, since for low δ’s we have a low amount of T and also only a few repetitions left to
average over (as compared to higher δ’s).

mance; note that given our current specification of the model used for both TBL

(Equation 4.2) as well as the implementation of LiF both policies are likely to get

“stuck” in a local maximum thus incurring returning (linear) regret.

Table 4.2 again displays the relative rank ordering of the policies. Note that

in this case again a clear – and correct – separation is visible between the EF and

UR policies and the TBL and LiF policy: TBL and LiF are clearly preferred. This also
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Table 4.2: Table displaying the rank order of the four policies under scrutiny at T = 1750
for the online and offline evaluations for the bimodal model.

Rank Online δ = .5 δ = .2 δ = .1 δ = .05 δ = .01

1 LiF TBL? LiF LiF n/a n/a

2 TBL LiF? TBL TBL n/a n/a

3 EF/UR EF/UR EF/UR EF/UR n/a n/a

4 EF/UR EF/UR EF/UR EF/UR n/a n/a

carries through the offline evaluation. In any case, the offline evaluation would

lead one to select a policy that performs relatively well on the current problem.

4.4.2 Offline parameter tuning

In this simulation, we will look at finding the learning parameters that will

result in the highest cumulative reward for a given horizon. We start by retrieving

benchmark values via an online simulation, which we then use to compare the

results from the offline evaluation methods. In this study we will use both the delta

and the kernel method. We will use the kernel method in this scenario to find out

if the kernel method is able to provide us information about the relative difference

between the performance of the different learning parameters, despite the fact that

will we not be able to properly weigh the observations for the policies. Next to that

we are interested in a performance estimate, we are interested in which setting of

learning parameters will give us the best performance – there the (improper) use

of the kernel method might be able to provide information. We simulate with

T = 104 interactions and repeat it 104 times. For LiF, we are interested in finding

an optimal amplitude A, so we run the simulation for a number of amplitudes

between 0.002 and 0.2. Furthermore, we limit the actions of the LiF policy to be

[0, 1]. The rest of the parameters for LiF are set as follows: i = 50, γ = 0.1,

ω = τ/i3 and a0 ∼ Uniform(0, 1) (i.e. each repetition of simulation we set a

different starting point). For TBL we are interested in finding an optimal prior

precision P . We set J = [5, 4,−4] and we run the simulations for number of

different precisions between P = diag(0.01, 0.01, 0.02) (i.e. low prior precision)

and P = diag(10, 10, 20) (i.e. high prior precision).

4.4.2.1 The desired true values of the learning parameters.

Figure 4.3 shows the results for the online parameter tuning scenario. We see

different amplitudes for LiF and a low to high prior precision for TBL, expressed
3The constant τ = 2π ≈ 6.2831.
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Figure 4.3: The results of testing LiF and TBL on online data on both data generating
models. The top left panel shows the results for online simulation with LiF on Equation
4.5 and the top right panel shows the results with LiF for Equation 4.6. We find that
an amplitude around 0.115 has the highest expected average reward per interaction for
Equation 4.5 and an amplitude of 0.035 for Equation 4.6. The bottom left panel shows the
results for online simulation with TBL on Equation 4.5. The bottom right panel shows the
results with TBL for Equation 4.6. We see in both cases that a medium precision achieves
the highest average reward per interaction.

in average reward per interaction for the two different data generating models.

Here, we find that an amplitude around 0.115 has the highest expected average

reward per interaction for the evaluation on Equation 4.5 and around 0.035 for

the evaluation on Equation 4.6. Further note that amplitudes going towards 1

and higher will result in low average reward – intuitively this makes sense as the

actions are in [0, 1] and a higher amplitude will make the policy bounce around the

action space too much. For TBL we see that we need to look at a prior precision

that is neither high nor low. A too high precision will leave us exploring too little,

and a too low precision will leads us to exploiting too late. These results will be

used to validate the results of parameter tuning in the offline case later on.
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4.4.2.2 Offline parameter tuning

We have implemented both Algorithm 3 and 4 in an offline evaluation setting

for parameter tuning (for Algorithm 4 we return the rewards as generated by the

kernel method and thereby not weighing the observation itself). With the online

simulation we would generate a reward each time LiF and TBL suggested an ac-

tion, but now we generate a dataset of random actions and rewards beforehand.

The actions are uniform randomly sampled between 0 and 1 and the rewards are

generated using the data generating models Equation 4.5 and 4.6. The dataset

exists of 104 interactions and is repeated 104 times (each time having a different

dataset). Then we run through the dataset row-by-row and evaluate the actions

based on the evaluation algorithms. Again we use LiF with the following param-

eters: i = 50, γ = 0.1, ω = τ/i and a0 ∼ Uniform(0, 1) and we are looking to

optimise the amplitude A under these conditions. Once more, we explore the

range of amplitudes between 0.002 and 0.2. For TBL we also matched the same

setting as in the online case: J = [5, 4,−4] and we explore different prior preci-

sions between P = diag(0.01, 0.01, 0.02) and P = diag(10, 10, 20). Furthermore,

for the delta method we look at δ = {0.01, 0.1, 0.5} and for the kernel method we

set h = 10(−4/5) (suggested by Kallus and Zhou, 2018) and Q = 1 as the density

function for the uniform distribution in our range is a constant.

4.4.2.3 Results

Figure 4.4 shows the results for the unimodal reward data generating model.

We have also plotted the results for the online evaluation as it allows is to usefully

compare the results. This was not possible for the kernel method as this skewed

the scale of the plot too much and in place we have plotted a dotted line to show-

case the optimal parameters from the online evaluation. What we find is that

the kernel method fairly captures the tendency of different learning parameters.

However, it does underestimate the average reward per interaction, as it is a factor

10 lower than in the online scenario. For the delta method we see that it is able

to describe the tendency of the different learning parameters, as is especially the

case for δ = 0.1, but gives results with higher variance than the kernel methods.

This method is, however, able to provide a similar estimate of the average reward

per interaction of the original online scenario. A higher delta (δ = 0.5) does not

capture the data well enough, while a lower delta (δ = 0.01) has too little data to

provide a consistent estimate (δ = 0.1 accepts on average 103 interactions while

δ = 0.01 only accepts 102 on average).

Figure 4.5 shows the results for the bimodal data generating model. For the

kernel method, we again see that the average reward per interaction is underesti-
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Figure 4.4: The results of testing LiF and TBL on offline data with the kernel (left) and
delta (right) evaluation methods for the unimodal function. Top panels are LiF, bottom
panels are TBL. For the delta method, we also plotted the parameters of the online eval-
uation. For the kernel method, plotting the online variant would skew the scale resulting
in unclear view of its performance. To compare to the true parameters of the online eval-
uation, we highlighted the optimum with a dotted line.

mated. Here the evaluation of TBL with the kernel method has a higher variance,

which can be due to the fact that TBL might be more sensitive to underestimating

rewards than LiF. For the delta method, the most stable results are shown once

more by setting δ = 0.1.

Looking at these results, we see that in an effort to find the most optimal

learning parameters, we would combine the results of both methods and their

strengths to a) provide a good estimate of the expected average reward and b)

provide a reasonable estimate of which learning parameters work best. Using

these results, we would end up with setting learning parameters that are close to

the most optimal learning parameters.

4.5 Offline evaluation using field data

After evaluating the performance of our method, we demonstrate how it can

be used in practice. In collaboration with a company that (re-)sells products online

98



4

An Empirical Comparison of Offline Evaluation Methods for the Continuous-Armed Bandit Problem

0.27

0.28

0.29

0.30

0.31

0.00 0.05 0.10 0.15 0.20

Amplitude

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r 

in
te

ra
c
ti
o
n

Kernel

0

1

2

3

0.00 0.05 0.10 0.15 0.20

Amplitude

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r 

in
te

ra
c
ti
o
n

Online

0.01

0.1

0.5

0.24

0.26

0.28

Low High

Prior precision

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r 

in
te

ra
c
ti
o
n

Kernel

0

1

2

3

Low High

Prior precision

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r 

in
te

ra
c
ti
o
n

Online

0.01

0.1

0.5

Figure 4.5: The results of testing LiF on offline data with the kernel (left) and delta
(right) evaluation methods for the bimodal function. Top panels are LiF, bottom panels
are TBL. For the delta method, we also plotted the parameters of the online evaluation. For
the kernel method, plotting the online variant would skew the scale resulting in unclear
view of its performance. To compare to the true parameters of the online evaluation, we
highlighted the optimum with a dotted line.

by offering rebates for online stores we collected a dataset for offline CAB policy

evaluation. The company negotiates deals with existing online stores, and offers

a share of these deals to its customers. For example, an online store that sells

sportswear can offer a 10% total discount to the rebate company. Next, the rebate

company splits this discount between herself and the end-customer. The current

practice is to split the discount 50-50: if a customer wants to buy a pair of shoes

from a online store that cost 50$, the rebate company receives a total 5$ cashback

from the online store and gives 2.5$ to the customer.

The company, however, does not know whether the 50-50 split actually max-

imizes their revenue. This gives rise to a CAB problem in which the action consists

of the rebate percentage offered and the rewards consists of the revenues gen-

erated. Note that it is expected that a single maximum of this “split-revenue”

function exists: passing a large part of the discount on to the customer likely leads

to a large volume, but little revenue for the rebate company, while passing on a

small discount likely leads to a smaller volume.
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Figure 4.6: Revenue of the participating rebate company as a function of the proposed
split.

We collected a data stream S in which the split proportion was selected ran-

domly, at ∼ Uniform(0, 1), and used this data stream to evaluate different CAB

policies. The offered discount to the customer was yt = 10at and the reward of

the CAB policies are some function of the proposed discount, r = f(y). Using

StreamingBandit (Kruijswijk et al., 2020) we collected a field data set consisting

of a total of 2448 data points (each consisting of a split at, and the actual revenue

rt). Figure 4.6 shows the revenue of the rebate company against these random

splits.4

As in our simulation studies, we run an offline evaluation using the empirical

data 103 times. We choose δ = 0.1; this leads in expectation to around 500 valid

observations which aligns roughly with the median number of visits the rebate

company expects per newly introduced product (often the rebate offers are valid

only for specific products and for a limited period). We have used the same starting

values for the policies as in the simulation studies, except for EF, where we limit

the exploratory phase to N = 100. Note that since we have no knowledge about

the action with the highest expected reward, we can only compute the cumulative
4Note that the figure seems to favor very low splits; this might not be feasible in the long run.

Our current analysis only considers a single shot purchase, and obviously a more reasonable and
sustainable approach would include the customer lifetime value as a whole; most likely favoring
higher customer discounts.
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Figure 4.7: Average cumulative reward and confidence bounds of four different CAB
policies using our offline evaluation method.

reward, as discussed before. Figure 4.7 shows the cumulative reward of the 4

policies also used in our simulation study. The evaluations show that EF (and

in a sense TBL) obtain the highest cumulative reward. This analysis thus would

encourage the company to use EF (or TBL) for the optimization of their revenue.

This result is in-line with earlier studies that show that (for small-scale problems)

simple heuristics often outperform asymptotically optimal policies (Kuleshov &

Precup, 2014).

4.6 Conclusion

In this paper we proposed and empirically evaluated an offline policy evalu-

ation method for the CAB problem that is inspired by the work by Li et al. (2011).

The method works by sequentially running through logged events while compar-

ing the logged action with the action suggested by a policy under evaluation. Next,

the distance between the suggested action and logged action is compared and, if

this distance is small enough, the data point gets accepted and evaluated. We

showed that using this method the rank ordering of CAB policies stays relatively

intact and hence that the method is potentially of use to select CAB policies for

applied problems. In future studies, incorporating more reasonable competitors

for the current policies would increase the strength of this method further. Our

work, however, raises a number of questions.

Firstly, it seems that the ranking of policies is influenced by the complexity

of the data generating model. Apparently, some policies are more robust to the
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noise introduced by our offline evaluation method than others and this interacts

with our offline evaluation method; we will be looking for ways to quantify this

difference and possibly correct for it.

Secondly, we would like to scrutinize further the effect of the tuning param-

eter δ, and perhaps quantify the behavior of distinct policies as δ decreases: as

δ → 0 the actual (or online) behavior of the policy should surface and hence it is

interesting to study the behavior of policies as a function of δ.

Furthermore, especially in relation to the introduced noise (first remark) and

the scrutinization of δ (second remark), we did not consider a multi-dimensional

action space, in which case the quality of the estimation of E(Rc) might be even

more dependent on the chosen delta and the smoothness of the expected reward.

Future research should ideally also take this into account.

Thirdly, there is currently no clear guidance on how to set δ. We must stress,

however, that with our method, one can explore multiple values of δ for the offline

evaluation and re-run it, since the choice of δ does not impact the collection of the

training data. We have described the trade-off between a large and small δ before

and we think it is useful to explore the robustness of the policies using multiple

choices for δ. Nonetheless, a clear cut way of choosing δ would make this method

more user friendly.

Finally, we would like to further study ways in which the noise introduced by

the approximate evaluation of the true data generating model can be corrected.

While currently the distance between the suggested and the logged action is not

taken into account when updating the policy, we are experimenting with meth-

ods that update the parameters of a policy using a weight that is proportional to

this distance (e.g., update the parameters of the policy using a discount that is

dependent on |a−Π(ht−1)| (as in Algorithm 3)). The weight could for example be

calculated using the kernel from the kernel method. This would effectively result

in a combination of our delta method with the kernel method. However, as iden-

tified in the first simulation study in Section 4.4.1, how to update policies using

this weight is not trivial and dependent on the policy.

Additionally to the remarks of our current research, we have looked at an-

other possibility for extending the method by Li et al. (2011) to use for the CAB

problem. This would be to bin the continuous action space, such that we create

an offline policy evaluator that is comparable to the method by Li et al. (2011).

Firstly, our method can be considered a quite dynamic – and hence more continu-

ous – form of binning (i.e., a bin centered around the evaluated action). Secondly,

this also introduces a hyperparameter (similar to δ), determining the amount of

bins, which would be (more) highly application dependent. Hence, we think that

the solution proposed in this paper is more appropriate.
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Furthermore, in our second simulation study we have looked into how offline

evaluation can help with parameter tuning for dynamic policies with continuous

treatments. We have compared two methods against online evaluation, where the

combination of both methods provides the experimenter potentially with useful

insights. Offline policy evaluation for the dynamic policies is beneficial for the

design of future experiments where continuous treatments are concerned. Firstly,

because employing simulation models to compare different policies will not al-

ways enable the researchers to capture the mechanisms of the real world. This is

especially significant in cases where doing multiple field trials is expensive. And

secondly, we are often interested in dynamic processes, where parameters should

be able to adapt. Researchers are not always in the fortunate position to have a

fundament of earlier literature to explore as was the case in Kaptein, van Emden,

and Iannuzzi, 2016b, which in turn can lead to arbitrarily choosing parameters.

Offline evaluation of dynamic policies allows researchers to compare multiples

policies, different tuning parameters and settings of a policy. Nevertheless both

discussed methods have weaknesses and they already show in this relatively sim-

ple problem: we consider no context and one-dimensional data. Two interesting

research directions that can potentially be useful for future research are the use of

the Direct Method (DM) (Dudík et al., 2014) and General Adversarial Networks

(GAN) (Bai, Guan, & Wang, 2019). Both the DM and the GAN solutions fit models

to the existing data to generate “similar” data – again using assumptions. Using

those models, one can potentially evaluate any policy.

Effectively, we fear that we currently do not yet have the most appropriate

methods to properly evaluate CAB policies offline. We content that the method

and its empirical analysis presented in this paper provide an initial step towards

the development of valid and effective offline policy evaluation method for CAB

policies.
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A Tutorial on Using Sequential Allocation Procedures

in Web-based Research

Abstract

In recent years scientists from various disciplines are increasingly interested in applying sequen-
tial treatment allocation procedures in experiments. Sequential allocation procedures allow re-
searchers to capitalize on information that is collected while running their experiments. This
information can potentially be used to make more informed decisions for treatment allocation in
the remainder of the experiment, or, conversely, stop the experiment when sufficient data is col-
lected. Simultaneously, the internet has facilitated researchers to conduct experiments quicker,
easier and cheaper. Online platforms that offer services to conduct such experiments, typically also
allow researchers to do some form of treatment allocation. However, despite the technological
advances and the interest in sequential allocation procedures, most studies and platforms still use
very simple designs (e.g., simple randomized allocation). In this article, we show how to deploy
sequential allocation procedures in common front-end survey and experimentation platforms us-
ing a back-end software application called StreamingBandit. We demonstrate this by integrating
StreamingBandit in Qualtrics (an online survey platform). We show how, when StreamingBan-
dit is integrated to the desired platform, it is easy to adapt experiments to use different types of
allocation procedures. We close off by showing a web-based field experiment that applied Stream-
ingBandit and sequential treatment allocation. With this work, we enable researchers to reap the
fruits of sequential decision making in future (web-based) experiments using standard tools.

Keywords: sequential allocation procedures, sequential decision making, web-based research,
StreamingBandit, multi-armed bandit, experimental design

Submitted as Kruijswijk, J.M.A., Kaptein, M.C. A Tutorial on Using Sequential Allocation Proce-

dures in Web-based Research.
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5.1 Introduction

A critical component of designing experiments is deciding which treatment

to allocate to which subject, in other words, deciding on the treatment allocation

rule. Typically, treatment allocation is determined a priori and often it is done uni-

formly at random. For instance, in a traditional randomized controlled trial (RCT)

with a 2-by-2 between-subjects design we randomly allocate subjects to one of

the four conditions with a probability of 1/4 (if the randomization ratio is equal

over all conditions). However, throughout science, the use of sequential alloca-

tion procedures in the design of experiments is becoming more widespread (for

a survey and examples, see e.g., Bouneffouf & Rish, 2019; Clement et al., 2015;

Kaibel & Biemann, 2019; Press, 2009). Sequential allocation procedures make

treatment allocation decisions while running the trial, often in a one-by-one fash-

ion. Using sequential allocation procedures allows researchers to capitalize on

information gathered from earlier treatment allocations and those results to use

in future treatment allocations. For example, a researcher may be interested in

estimating the effect of two different conditions where possibly the variance be-

tween those conditions greatly differ (i.e. the observations in one condition have a

higher variance than in the other), which can in turn result to unreliable estimates.

Using a sequential treatment allocation procedure would allow to dynamically al-

locate conditions based on the observed variance, and allocate more treatments

to the condition with the highest observed variance to increase estimation preci-

sion (Kaptein, 2014). Another example might be a researcher that is interested in

applying early stopping rules when certain conditions are met or when constraints

fail (see e.g., Berry, 2006).

The possibilities of using sequential allocation procedures are enormous. Re-

search has already shown a hint of the potential, which include the design of

adaptive clinical (medical) trials (Berry, 2012; Coffey & Kairalla, 2008; Durand et

al., 2018), behavior modeling of human decision making in patients with mental

disorders (Bouneffouf, Rish, & Cecchi, 2017), the study of social phenomena that

suffer from noisy signals (e.g. treatment heterogeneity and confounders) (Kaptein

et al., 2017), and influence maximization in social network analysis (Vaswani et

al., 2017). These examples are a small portion of the studies that benefitted from

using sequential allocation procedures.

Parallel to this development, the surge of the internet has enabled researchers

to do experiments quicker, easier and cheaper. Websites like Amazon’s Mechani-

cal Turk (MTurk) facilitate the crowdsourcing of subjects on a large scale to use

for conducting experiments (Amazon, 2012). Next to that, websites such as Sur-

veyMonkey and Qualtrics ease the process of conducting a survey (Qualtrics,
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2005; SurveyMonkey, 1999). They both offer extensive software to create surveys

(amongst others) and to deploy them easily. Both MTurk and the likes of Sur-

veyMonkey and Qualtrics allow current research to be more flexible and enable

research to be deployed to a wider audience than possible in traditional research.

One downside of these websites is that, although they facilitate conducting surveys

and simple experiments in an easy way, they are in some regards limited when it

comes to applying different types of (sequential) allocation procedures. For exam-

ple, Qualtrics only allows simple (uniform) randomization within its survey flow.

The possible benefits that sequential allocation procedures provide in the design

of experiments might thus not always be trivial to implement in these scenarios.

In this article, we want to show how to incorporate sequential allocation

procedures for experiments in web-based studies where such features do not yet

readily exist. We do this using our own developed software called Streaming-

Bandit (see our full paper for details on the software (Kruijswijk et al., 2020)).

StreamingBandit was designed to create sequential allocation procedures and to

easily integrate with existing software and websites. As a running example, we

will demonstrate its use with Qualtrics, but note that StreamingBandit can be

integrated into any platform that allows for customized web service integration

(explained in more detail in Section 5.3).

To the best of our knowledge, our approach is novel in that it provides re-

searchers a flexible tool to apply any type of (sequential) allocation procedure.

Other approaches have tried to create systems or frameworks that allow easy de-

ployment of experiments in web-based experiments. These approaches are limited

when compared to StreamingBandit in the sense that they only 1) allow for a lim-

ited set of allocation procedures, 2) are (black-box) optimization software tuned

towards optimizing outcomes of experiments (e.g., optimizing click-through rates

for advertisements on the web), or 3) require more programming knowledge. For

example, PlanOut (Bakshy, Eckles, & Bernstein, 2014), AE (or AX) by Facebook

(Bakshy et al., 2018), APONE (Marrero & Hauff, 2018) and DEXPER (Williams

et al., 2017) are frameworks and software to deploy experiments on the web.

DEXPER is a proof-of-concept web service for dynamic experimentation for (edu-

cational) platforms, but it is mostly geared towards optimization of outcomes and

has only implemented a limited set of allocation procedures. APONE is a web

service to simplify running A/B tests, but it therefore is limited to only allocat-

ing treatments uniformly at random. AX is an adaptive experimentation platform

designed in Python, but it is also geared towards optimization of sequential appli-

cations and is not built with a framework to translate allocation procedures such

as StreamingBandit. PlanOut, a framework and package for developing adaptive

experiments, is the most flexible of these examples, as it allows its users to im-
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plement any type of allocation procedure, but it is a Python package rather than a

complete application that uses a REST architecture design and thus requires more

extensive knowledge of programming than StreamingBandit does – i.e. it can be

used when programming whole applications but it is less easy to use in combina-

tion with existing (survey) tools. Next to these general frameworks and software,

some research has been done on implementing allocation procedures in Qualtrics

specifically. For example, Weber (2019) shows how to implement a discrete choice

experiment (DCE) and Dropp (2014) shows how to implement a conjoint analysis

design. However, none of the works focus on supplying a generic toolkit to im-

plement any type of allocation procedure. This is exactly what we provide in this

paper, a flexible framework and toolkit for implementing any type of sequential

allocation scheme in a web-based format.

The article is structured as follows. In Section 5.2, we will introduce a for-

malization of sequential allocation procedures and show a few examples of ex-

isting and practically applicable sequential allocation procedures to illustrate our

formalization. Here we also make clear that the traditional, uniform random al-

location is just a special case of a sequential allocation procedure in which the

allocation itself is independent of the intermediary results. Then in Section 5.3 we

will introduce and illustrate the basic usage principles of StreamingBandit, which

is the back-end software that we use for the actual treatment allocation logic. In

Section 5.4, we will show how to apply sequential allocation procedures by us-

ing Qualtrics as a front-end to StreamingBandit. Again, this choice of front-end

is arbitrary. And concluding, in Section 5.5, we show an example of a recently

conducted experiment that used a sequential allocation procedure – this example

shows how some experimental designs benefit from using a sequential allocation

procedure, as this experiment would have been virtually impossible without us-

ing one. Note that this article is intended for researchers that are interested in

benefitting from sequential allocation procedures. The applications are not lim-

ited to the examples shown in this article – we are merely showing a hint of all

the possibilities. Also note that to be able to follow the article, we assume basic

familiarity with the Python programming language, some statistics knowledge and

working knowledge of Qualtrics. Despite this, the article might still provide use-

ful information on a) sequential allocation procedures and b) deploying them in

web-based research for those who are less familiar with the prerequisites. All the

code and exported Qualtrics experiments (QSF files) are available on GitHub at

https://github.com/Nth-iteration-labs/sequential-experimentation-on-the-web.
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5.2 Formalization of sequential allocation

procedures

Sequential allocation procedures are commonly researched under the head-

ing of the multi-armed bandit (MAB) problem. The classical MAB problem can

be described as follows: subjects are assigned to one of a multitude of treatments

(also called arms or actions) in a one-by-one fashion with the intent to, during

the experiment, maximize an outcome that is possibly affected by the treatments

(also called reward) (Berry & Fristedt, 1985; Whittle, 1980). Note here that the

prototypical objective of the MAB problem contrasts that of the RCT. The MAB

problem originally focusses on maximizing the outcome over all allocations, while

in the RCT framework we are interested in finding the treatment or arm with the

highest effect. Additionally, while in the traditional RCT framework we are used

to thinking about assigning subjects to one of a number treatment arms, in the

MAB problem we think of assigning one of the arms to the (sequentially emerg-

ing) subjects. Despite this difference, the MAB formalization can help us to frame

experiments as a sequential decision problem. The vast MAB literature offers us

strategies to address these problems. These strategies typically try to balance the

learning of the outcomes (called exploration) and selecting the treatment that

has the highest expected outcome (called exploitation). This is also known as

the exploration-exploitation trade-off. As said before, traditional experiments are

used to estimate the effect of an arm and not necessarily to maximize the overall

outcome within the experiment. Incorporating MAB allocation procedures in clin-

ical trials can therefore be challenging when confidence about the estimation of a

statistic is a high priority – for example, traditionally MAB allocation procedures

have severe limitations in terms of statistical power. However, recent research has

been trying to overcome this (for further discussion see e.g., Villar et al., 2015;

Williamson et al., 2017).

For the remainder of the paper, we use the formal definition of the MAB

problem to construct the allocation procedures for the experiments. To give a

formal definition, the MAB problem can be described as follows: at each time

t = 1, . . . , T (also called interactions) we choose an action a (i.e., treatment) from

a set of possible actions A. After choosing action a ∈ A we observe a reward rt.

The objective in the canonical MAB problem is to find a policy Π : Dt−1 → at that

maps all historical data D (consisting of tuples of {(a1, r1), . . . , (at−1, rt−1)}) to the

next action at and tries to maximize the cumulative reward RC =
∑T

t=1 rt. Here

we are less interested in policies that perform well, but rather we treat a policy

as a formal sequential treatment allocation procedure and demonstrate how to

implement flexible policies. A generalization of the MAB problem is the contextual
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MAB (CMAB) problem, where covariates or features of the subjects can also be

taken into account (in the so-called context), which possibly further influence the

reward outcome. When we consider the CMAB problem, we observe context xt
before choosing an action at. A policy is then defined as Π : (xt,Dt−1) → at

(Dt−1 is now composed of {(x1, a1, r1), . . . , (xt−1, at−1, rt−1)}). The MAB literature

explores many different policies, often with the goal of maximizing reward. A few

popular examples include Upper Confidence Bound (UCB) methods (Auer et al.,

2002; Lai & Robbins, 1985; Li et al., 2010) and Thompson sampling (Chapelle &

Li, 2011; Thompson, 1933).

Using the formalization, the RCT can be interpreted as a potential solution to

a MAB problem: patients typically arrive in a one-by-one fashion and are randomly

assigned (possibly based on certain conditions) to a treatment condition. The

treatment allocation in the RCT framework can be formulated as follows (and is

just one of many possible policies):

Π(D) := at =

Rand(a ∈ A) if t < ε

arg maxa(θ̂
a) otherwise

(5.1)

where θ̂a is the estimate of the effect of an action. In the first interactions

we randomly select an action with A = {treatment, control} (i.e., the exploration

phase). We do this until the number of interactions reaches a threshold ε (with 0 <

ε < T ). Then after exploring for ε interactions, we always choose the treatment

with the highest expected outcome (i.e., the exploitation phase). In the MAB

literature, this policy is known as ε-first (Sutton & Barto, 2011).

Another example of a MAB policy is Thompson sampling, which works as

follows: based on prior information and data from the current experiment, se-

lect an action at proportionally to probability of being optimal. Typically, using a

posterior distribution, it suffices to sample a θ′a from P (θ|D) for each action and

select the action with the highest θ′a. Thompson sampling performs asymptotically

optimal (for more details, see e.g. Agrawal and Goyal (2012)) and is easy to im-

plement if it is easy and computationally efficient to sample from P (θ|D) (e.g. we

have a closed-form expression for the posterior via a conjugate prior). If it is not

easy to sample from the posterior, it can for example be replaced with a bootstrap

distribution (Eckles & Kaptein, 2019). Formally, this policy can be written as:

Π(D) := at = arg max
a

(θ′a) (5.2)

where θ′a is a single draw from the posterior P (θ|Dt−1) for arm a. To be able

to easily conduct experiments that utilize sequential allocation procedures on the

web, we built software that uses the framework of the MAB formalization, as it
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gives us a rigid structure and a vast literature to establish these procedures. In the

next section, we introduce this software.

5.3 StreamingBandit

StreamingBandit is a Python application that is designed with the purpose to

easily allow researchers to experiment with (sequential) treatment allocation pro-

cedures in a web environment (Kruijswijk et al., 2020). Figure 5.1 shows a visual

overview of how StreamingBandit could be applied in a web-based experiment.

The chosen experimentation front-end communicates with StreamingBandit to

implement the allocation procedure in the experiment. In turn the experimenta-

tion front-end serves the experiment to the subjects behind their computer and

returns the outcome of the experiment to StreamingBandit to update the sequen-

tial allocation procedure.

Before we dive into the details of how the StreamingBandit back-end can

be implemented in a front-end service such as Qualtrics (see next Section 5.4)

we will first give a small demonstration of how StreamingBandit works inter-

nally. For detailed installation instructions for StreamingBandit, please refer to

the paper (Kruijswijk et al., 2020) or the GitHub repository https://github.com/

nth-iteration-labs/streamingbandit. For the remainder of the paper we assume

that StreamingBandit is installed.

Experimentation front-end
(e.g. Qualtrics)

StreamingBandit
back-end

Survey

setReward

getAction

Figure 5.1: Visual overview of how the StreamingBandit back-end is integrated with an
experimentation front-end.

5.3.1 Implementation details

StreamingBandit is built based on the observation that any bandit policy

can be split into two distinct functional steps: 1) choosing the treatment and 2)

updating the history (or parameters). These two steps are implemented into two

so-called web API endpoints. Web API endpoints allow a user to communicate

with software over the internet using the HTTP protocol (the same you use when

entering websites in your browser, clarifying examples will be shown later). These

two core API endpoints in StreamingBandit allow the user to select an action (the

first API endpoint is called getAction) and return a reward (the second API end-

point called setReward). The advantage of StreamingBandit is that once it is in-
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tegrated as a back-end to communicate with whatever front-end (e.g. Qualtrics),

it is straightforward to change the sequential allocation procedure from within

StreamingBandit – you are not tied to only one type of experimental design. The

provided codebase enables switching from a traditional RCT sampling scheme to

Thompson sampling, amongst others, with just a few lines of Python code.

We can more formally define the core functionality of StreamingBandit; the

decision step, which results in the getAction API endpoint and the summary step,

which results in the setReward API endpoint. The two steps formally look as

follows:

1. The decision step: using xt and θt−1, and often using some (statistical) model

relating the actions, the context, and the reward which is parametrized by

θt−1, a next action at is selected. Making a request to StreamingBandit’s

getAction API endpoint returns an object containing the selected action.

2. The summary step: θt−1 is updated using the new information {xt, at, rt}.
Thus, in this step, θt = g(θt−1, xt, at, rt) where g() is some update function.

Making a request to StreamingBandit’s setReward endpoint containing an

object including a complete description of {xt, at}, and the reward rt, allows

one to update θt and subsequently influence the actions selected at t+ 1.

These two steps are implemented in Python code that is automatically stored

in a custom database. The stored code for each experiment will be loaded into an

internal Experiment class. This class contains several functions that help to store

and retrieve parameters from a database – which relieves some burden on the

user. The most important of these functions will be discussed in the examples in

Section 5.3.2 and Section 5.4.

Oftentimes the statistical models or parameters θ that are used in allocation

procedures are (based on) common estimators such as the mean and proportion.

For example in ε-first, we want to select an action with the highest expected reward

in the exploitation phase. We look at the average of all historical rewards and

select the action with the highest mean. The most widely used estimators – such as

the mean, variance and others – are already implemented in StreamingBandit in

separate classes (in the base module, examples will be shown later) so most users

will not have to implement estimators themselves.1 The estimators share similar

functionality (e.g. they all have an update function), which makes it easy to switch

from one estimator to another. Additionally, the software allows to easily save

multiple estimators, for instance when you need an estimator for each different

condition, in a list (using the built-in base.List class). This list also contains some
1For complete information on the implemented estimators and models, please refer to the

documentation at: https://nth-iteration-labs.github.io/streamingbandit/.
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functionality to easily choose a random action, or the action with the maximum

value of the estimator.

5.3.1.1 Ensuring computational scalability

To ensure that the implemented procedures in StreamingBandit do not suf-

fer from a decline in performence in cases where experiments have a lot of data,

we assume that at the latest interaction t all the information that is necessary to

select a new treatment can be summarized using a limited set of parameters θt.

Effectively, all the prior data, Dt−1 are “summarized” into θt. This choice makes

that the computations are bounded by the dimension of θ and the time required

to update θ instead of growing as a function of t. Note that this effectively forces

users to implement an online policy; the complete dataset Dt−1 is not revisited at

subsequent interactions (also called streaming (or online) updating, see e.g. Ippel,

Kaptein, and Vermunt (2016a), Michalak et al. (2012)).

5.3.2 Example allocation procedure in StreamingBandit

To give a small demonstration of what an experiment looks like in Stream-

ingBandit, let us take a look at code for a 2-by-2 between-subjects design with

two different drugs A and B. Our four conditions would be as follows: A, B, A&B

and None. For N = 100 subjects, we want to randomly allocate each of these four

treatment conditions. In traditional experiments, after N = 100 we typically select

the action that has the highest expected reward (i.e. if we were to select the best

treatment condition after the experiment). In StreamingBandit, our getAction

code would look as follows:2

# Retrieve parameters from database

propl = base.List(self.get_theta(key="treatment"), base.Proportion,

["A", "B", "AB", "None"])↪→

# Check if exploration phase has ended

if propl.count() > 100:

# If so, select the action with highest expected reward

self.action["treatment"] = propl.max()

else:

# If not, select a random action

self.action["treatment"] = propl.random()

2Note that we do not need to import any packages. StreamingBandit imports a standard set
of packages automatically when executing the code.
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In the first line, we get our current parameters from the database using the se c

lf.get_theta function from the Experiment class. The parameters are put in a

base.List class, to enable some functionality that we would like to have. We tell

this list that the parameters are proportions (of successes) using base.Proportion

and that we have four different options (our conditions). Then we count how

many times we have already given out an action using the propl.count() func-

tion. If this count is higher than 100, we pick the treatment with the highest

proportion of successes. If this count is lower than or equal to 100, we randomly

pick a treatment. Now effectively any front-end service can use the getAction API

endpoint as follows:

http://HOST:8080/getaction/<exp_id>?key=<key>

where <exp_id> and <key> are unique strings provided by StreamingBan-

dit and HOST is the location of the installed StreamingBandit instance (e.g. the

IP address of your server). Putting this HTTP call into our browser, we receive the

following the response in the format of a JavaScript Object Notation (JSON): { c

"action": {"treatment": "AB"}, "context": {}}. StreamingBandit commu-

nicates using JSON as it is a widely accepted standard on the web and is also

human-readable and thus readily applicable in many situations. In this example

response, StreamingBandit has now randomly selected action AB.3

Then, when data has been collected for this subject, we want to update the

parameters (i.e. update if the experiment was a success or not) inside Streaming-

Bandit and we do this with the following code for the setReward endpoint:

# Retrieve parameters for the played action from database

prop = base.Proportion(self.get_theta(key="treatment",

value=self.action["treatment"]))↪→

# Update the proportion with the built-in update function and the

reward↪→

prop.update(self.reward["value"])

# Update the parameters in the database

self.set_theta(prop, key="treatment",

value=self.action["treatment"])↪→

In the first line, we select only the parameters from the database from the treat-

ment that has been chosen. In our case, this will be AB for the first time and this is

done using the value argument of the self.get_theta function. Then we put this

in a base.Proportion class. We use the built-in update() function to incorporate
3Due to randomness it is possible that users receive a different treatment.
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Table 5.1: An example of how the treatment allocation with ε-first and Thompson sam-
pling can play out. For ε-first, after 100 interactions, the action with the highest observed
reward is selected. For Thompson sampling, after 100 interactions, the policy keeps select-
ing actions proportionally to the probability of begin optimal.

ε-first Thompson sampling

Interaction at P (at) at P (at)

1 A&B 0.25 A&B 0.25

2 A 0.25 A&B 0.3

3 None 0.25 B 0.25
...

...
...

...
...

101 B 1 B 0.9

102 B 1 B 0.9

the returned outcome (i.e. reward) and in the final line, we put our updated pa-

rameters back in the database. We can use the setReward API endpoint using the

following HTTP call:

http://HOST:8080/setreward/<exp_id>?key=<key>&action={"treatment":" c

AB"}&reward={"value":1}↪→

Calling this HTTP call results in the following JSON output:

{"status": "success", "action": {"treatment": "AB"}, "context": {},

"reward": {"value": 1}}}.↪→

StreamingBandit returns a success status in the resulting output, we know

that StreamingBandit has successfully ran the setReward code and updated our

parameters. Table 5.1 illustrates how the allocated treatments can potentially play

out (in this case assuming that treatment B will have the eventual highest expected

reward). The probability of selecting an action is 0.25 in the first 100 interactions,

after which one action is played forever (and thus the probability of selecting that

action is 1).

5.3.3 From ε-first to Thompson sampling

Using the first implemented example, we can demonstrate one of the core

strengths of StreamingBandit: changing the allocation procedure without even

touching the front-end application. We could for example change from randomly

uniform allocation to Thompson sampling by changing our getAction code to read

the following:
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# Retrieve parameters from the database and store them in a

Thompson sampling class↪→

propl = thmp.BBThompsonList(self.get_theta(key="treatment"),

["A","B","AB","None"])↪→

# Select an action using the built-in Thompson sampling function

self.action["treatment"] = propl.thompson()

In the first line, we again get our parameters from the database and we insert it

in our Thompson sampling class. Then we use the built-in thompson() function to

sample one of the four treatments with a Thompson sampling scheme. Interest-

ingly, our setReward code does not even need to be changed as we are updating

the parameters in the same way. Thus by changing only a few lines of code, we

have implemented a true sequential allocation procedure – the front-end exper-

imentation software needs no adaptations. Table 5.1 illustrates, in the last two

columns, how the allocated treatments can play out. Thompson sampling always

selects actions proportionally to their probability of being optimal. As it might

turn out that action B is optimal, it will select that action more often than others.

This section has shown a hint of the capabilities of StreamingBandit. The

functionality of StreamingBandit, however, goes beyond implementing the getAc-

tion and setReward calls – such as testing and simulating the intended behavior

of the allocation procedures. The complete range of capabilities are discussed in

length in the original paper (Kruijswijk et al., 2020). For the remainder of the

examples that will be shown in the next sections, we will cover extra details of the

software where needed.

5.4 Implementation examples of allocation

procedures

In this section we will describe how StreamingBandit makes it easy for re-

searchers to implement complex treatment allocation procedures in web-based

experiments. We focus on the use of Qualtrics as a front-end – although as said

before, Qualtrics serves merely as an example and using StreamingBandit is not

limited to only Qualtrics. Qualtrics is a well-known online tool that allows users

to easily develop and deploy surveys (amongst others). Internally, Qualtrics offers

different tools to handle the randomization of a survey. It is, however, limited to

only doing a random coin flip and using conditional statements (i.e. "if coin flip

is 0 go A, if it is 1 go B", or "if male go A, if female go B") and does not feature

any extras. In the remainder of this section, we will show how to easily integrate
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StreamingBandit in Qualtrics to enhance your experiments. We use Qualtrics as

an example as it is very intuitive to use. To demonstrate a wide range of features,

we implement the following procedures:

1. Between-subjects design

2. Between-subjects design with balancing

3. Within-subjects and mixed design

4. Thompson sampling for increasing estimation precision

To connect StreamingBandit with Qualtrics for all the examples, we use a

few tricks inside Qualtrics. Qualtrics provides so-called Web Service blocks within

their Survey Flow. These Web Service blocks allow a user to input any HTTP URL

(such as the getAction and setReward calls) and consequently to catch the re-

sponse and save it inside the survey – this is done via the so-called Embedded
Data. Based on the value stored in the Embedded Data, which then represents the

treatment condition, the survey can then be branched to different variants of the

surveys. In the examples below we show this is done exactly.

5.4.1 Between-subjects design

Although a between-subjects design is feasible to do solely within Qualtrics,

we show how it is done using StreamingBandit. In this case, we only need to use

the getAction call, as we are not yet interested in integrating the results for the

sake of the allocation of the conditions. Figure 5.2 shows the complete steps in

pictures and code, which we explain step by step.

1. (see Figure 5.2a) The code for the getAction call is only one line of code in

which we select a random action. Using the following HTTP call:

http://HOST:8080/getaction/<exp_id>?key=<key>

we will receive the following result:

{"action": {"treatment": 2}, "context": {}}

2. (see Figure 5.2b) Then we use the Web Service block within the Survey Flow
of Qualtrics and fill in the details as shown in Figure 5.2b. We fill in the right

information for the HTTP call (where HOST is the IP address of the Stream-

ingBandit instance) using the supplied key and exp_id from Streaming-

Bandit. We save the returning action.treatment as Embedded Data (which

captures the "action": {"treatment": 2} part of the result of the HTTP

call).
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3. (see Figure 5.2c) We can then use the saved action.treatment value to

branch our survey. Inside the Survey Flow we can insert a Branch and branch

to a certain set of questions based on the treatment that is stored in the

Embedded Data. Figure 5.2c shows how this is done for condition 1.

4. (see Figure 5.2d) And of course this must also be done for condition 2, which

is shown in Figure 5.2d.

# Select a random action
self.action["treatment"] = random.randint(1,2)

(a) Code for selecting just a random action for a between-subjects design with no stopping
rules.

(b) Shown here is a Web Service block that calls the getAction API call of our StreamingBandit
instance. We insert the right key and exp_id and save the returning action.treatment as
Embedded Data.

(c) An example of how to branch your survey using the Survey Flow of Qualtrics. We use our
saved Embedded Data variable action.treatment as a conditon. If it returned 1, we go to the
survey block of condition 1.
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(d) An example of how to branch your survey using the Survey Flow of Qualtrics. We use our
saved Embedded Data variable action.treatment as a conditon. If it returned 2, we go to the
survey block of condition 2.

Figure 5.2: The flow for a between-subjects design implementation in Qualtrics using
StreamingBandit.

In the survey itself we can now add two blocks of questions, each for the

separate conditions. In Figure 5.3 an example introduction text is shown and

Figure 5.4 shows how the subject perceives the introduction text for this survey.

Figure 5.3: Examples of two blocks of questions for different conditions in the survey,
which can be linked in the Survey Flow to the different branches.
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Table 5.2: An example of how the treatment allocation can occur for the between-subjects
design for the subjects that are sequentially entering the survey.

Subject Selected treatment

1 1

2 1

3 2

4 1
...

...

Figure 5.4: The eventual introduction text shown to a subject doing the survey.

Table 5.2 shows an example of how the conditions are allocated to the sub-

jects that are taking the survey. Subjects are randomly put into either condition 1

or condition 2 for as long as the survey is conducted. Using these steps we have

now implemented a between-subjects treatment allocation procedure. If need be,

the conditions can be changed and extended – for example, the random.choice
function can be used to choose between two string conditions.

5.4.2 Between-subjects design with balancing

When sending out a large batch of surveys with multiple treatment condi-

tions it can happen that for one (or multiple) conditions there are proportionally

far fewer responses. One way to combat this is to send out another batch of sur-

veys, but this takes time and does not ensure that the responses will be balanced in

the end. Effectively, if we feel that the order in which the subjects arrive is already

random, we can allocate the conditions in a less or non-random order to balance

out the number of fulfilled surveys. To then make sure that we have a balanced

number of fulfilled surveys, we have to keep a count of the number of finished

surveys for each condition and then allocate conditions based on the number of

finished surveys per condition (i.e. the surveys with less finished surveys will get

more subjects allocated). This is already a sequential design in the sense that the
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future allocations depend on the previous ones. Figure 5.5 shows the complete

steps, which we explain step by step.

1. (see Figure 5.5a) The getAction code will involve a little bit more code, as

we need to keep count of the number of survey requests we have had and

the number of finished surveys we have had. In this example we will con-

tinue with two conditions (i.e. 1 and 2). In the first two lines, we get the

counts for the number of requests and number of finished surveys from the

database. Then we first check if the number of total requests (so the count

for 1 and 2 combined) is smaller than our preset n = 1000. If this is the

case, we randomly select a condition. If this is not the case, we select the

condition with the lowest count (after the else-statement) using the built-in

min-function. After we have selected an action, we make sure to increment

the request count for the selected condition as shown in the last three lines.

2. (see Figure 5.5b) As we want to keep track of the number of finished surveys

as well, we will call the setReward API call at the end of the survey. In

the code as shown in the block in Figure 5.5b we get the count data for

the specific condition from the database, update it and store it again in the

database. Then we can use the following HTTP call to set the reward:

http://HOST:8080/setreward/<exp_id>?key=<key>&action={"treatmen c

t":1}&reward={"finished":1}↪→

The resulting response shows a success:

{"status": "success", "action": {"treatment": 1}, "context":

{}, "reward": {"finished": 1}}↪→

3. (see Figure 5.5c) The only thing that is left to do is to adapt the Survey Flow
to send a call to the setReward call when a survey is finished. Figure 5.5c

shows how this is done for the first condition. For the second condition this

is equivalent but with the specific numbers changed.
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# Set the number surveys before balancing
n = 1000
# Retrieve both the number of handed out surveys and the number

of fulfilled surveys from the database↪→

request_countl = base.List(self.get_theta(key="request_count"),
base.Count, ["1", "2"])↪→

fulfill_countl =
base.List(self.get_theta(key="fulfilled_surveys"),
base.Count, ["1", "2"])

↪→

↪→

# For the first n surveys, give a random condition
if request_countl.count() < n:

self.action["treatment"] = request_countl.random()
# Then, give the condition with the lowest fulfilled surveys
else:

# We select the action with the least amount of fulfilled
surveys↪→

self.action['treatment'] = fulfill_countl.min()

# Increase request count before storing it in the database again
count = base.Count(self.get_theta(key="request_count",

value=self.action["treatment"]))↪→

# Again we can use a built-in function to increment the count
count.increment()
self.set_theta(count, key="request_count",

value=self.action["treatment"])↪→

(a) Code for selecting an action in a between-subjects design with balancing.

# Retrieve the count of fulfilled surveys from the database
count = base.Count(self.get_theta(key="fulfilled_surveys",

value=self.action["treatment"]))↪→

# Update the count using a built-in update function
count.update(self.reward["finished"])
# Store the count in the database
self.set_theta(count, key="fulfilled_surveys",

value=self.action["treatment"])↪→

(b) Code for setting a reward in a between-subjects design with balancing.
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(c) An extended branch in the Survey Flow that returns a reward when the survey is finished,
to keep count of the number of finished surveys.

Figure 5.5: The flow for a between-subjects design with balancing of conditions im-
plemented in Qualtrics using StreamingBandit.

And with a few adaptations, we have made sure that the conditions will be

proportionally balanced. The subjects will not experience a different survey than

in the regular between-subjects design, but the allocation of the treatments will be

different, as shown in Table 5.3.

Table 5.3: An example of the treatment allocation for a between-subjects design with bal-
ancing. After 1000 interactions, the treatment with the lowest amount of fulfilled surveys
is selected – in this case it is condition 2 – which ensures that the number of 1’s and 2’s is
(almost) always equal.

Interaction Selected treatment

1 1

2 2

3 2

4 1
...

...

1001 2

1002 2
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5.4.3 Within-subjects and mixed designs

In some experiments the design requires the subjects to take tests multiple

times – either under different conditions or over multiple time periods. This type of

design (a within-subjects or repeated measures design) requires the experimenter

to be able to deal with returning subjects as they will have to take test on differ-

ent moments. This means that we have to remember a) who the subject is and b)

which tests the subject took up until the current moment. Using StreamingBandit

we can implement these requirements from within the getAction call: we will first

check if a new identifier needs to be created (i.e. is this subject returning?) and

we can then give a random action based on the previous tests of the user. Note

that with this implementation we are not only able to implement a within-subjects

design, but can also be used to set up a mixed design for example (a combina-

tion of a within-subjects and between-subjects design). The specification of the

treatment conditions can be a combination of multiple independent variables (as

in mixed designs). In this example, we will use a within-subject design with three

different treatment conditions: "A", "B", "C". Figure 5.6 shows the complete steps.

1. (see Figure 5.6a) First, in Qualtrics we will have a first block that asks for a

user identifier, and if it is a new subject it asks the subject to click Next to get

a new user identifier. Entering the user identifier is done using a text entry

question in Qualtrics.

2. (see Figure 5.6b) Then we make sure the given result (the user identifier) is

saved in an Embedded Data field, so that we can use the response to send to

StreamingBandit.

3. (see Figure 5.6c) We can now send a call to StreamingBandit, but we have

not implemented any allocation procedure in StreamingBandit. The block

in Figure 5.6c shows the code to get the desired treatment allocation be-

havior in the getAction call. First of all, if the user_id field is empty (i.e. a

subject pushed the next button and is a new subject), we will generate a new

random string.4 Then we generate a random action. If the user_id field is

not empty, we check if it is a correct identifier by checking if the returned

result from the database is not empty (i.e. the user has already finished a

test before). If this is the case, we return another random treatment or if the

subject has already done all three tests we return a "finished". If the subject

has input a wrong identifier, we return "wrong_id". Both of these have to be

handled within Qualtrics in the Survey Flow (see Figure 5.6g).
4To make sure it is not a duplicate (which is highly unlikely) we check it against the identifiers

of all other subjects (in the while-loop).
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4. (see Figure 5.6d) Then, we use the code for the setReward call as shown in

Figure 5.6d. Here we update the count of the finished treatments so that next

time we will know which condition(s) the subject already has been through.

5. (see Figure 5.6e and 5.6f) Now we can set up the calls within Qualtrics. We

do this using two branches, where in the first branch the subject is a new

subject (i.e. the text entry was left empty), this is done in Figure 5.6e. We

set up the Web Service similar to the ones we have done before, but now also

make sure to save the returned identifier in an Embedded Data field. Then

we can show a block with the new identifier to the subject to save for later.

Figure 5.6f shows the text block with the content that will be shown to a

new user.

6. (see Figure 5.6g and 5.6h) The second branch is shown in Figure 5.6g. If

the subject has input an identifier (i.e. the text entry was not left empty), we

can send this to StreamingBandit. In the returned action.treatment, we

can now see whether the input identifier was correct. If this was incorrect,

we send the user to the end of the survey. Figure 5.6h shows the text block

with content that will be shown to a returning user.

7. (see Figure 5.6i and 5.6j) Figure 5.6i then shows how to branch for the

different treatment conditions. "A" is shown here, but it would be similar for

the other conditions as well. Figure 5.6j shows a branch for when the subject

has finished all the tests (i.e. the returned action.treatment is equal to

"finished").

(a) A question with a text entry that will ask the subjects for an identifier.

(b) Saving the identifier in an Embedded Data field in the Survey Flow of Qualtrics.
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# If we have a new user, we generate a new random string
if self.context["user_id"] == "":

# Generate a random string
self.context["user_id"] = hex(random.getrandbits(42))[2:-1]

# If the string already exists in the database, generate a
new one until it is unique↪→

while self.get_theta(key="finished" +
self.context["user_id"]) != {}:↪→

self.context["user_id"] =
hex(random.getrandbits(42))[2:-1]↪→

# Generate a random action using the base.List class and
the random() function↪→

member_finished = base.List(self.get_theta(key="finished" +
self.context["user_id"]), base.Count, ["A", "B", "C"])↪→

self.action["treatment"] = member_finished.random()
# or if we have an existing user, we generate an action that

has not been shown yet↪→

elif self.get_theta(key="finished" + self.context["user_id"])
!= {}:↪→

# Retrieve the finished conditions from the database
member_finished = base.List(self.get_theta(key="finished" +

self.context["user_id"]), base.Count, ["A", "B", "C"])↪→

# If the user still has not done all three conditions,
select a random one↪→

if member_finished.count() < 3:
self.action["treatment"] = member_finished.random()
# If we selected a random action, check if it has been

played already↪→

while int(member_finished.get_dict()[self.action["treat c

ment"]]['n']) >
0:

↪→

↪→

# If so, generate a new action until we find one
that has not been played yet↪→

self.action["treatment"] = member_finished.random()
# If the user has done all conditions, return a "finished"
else:

self.action["treatment"] = "finished"
# Assertion: if the user has supplied a wrong identifier
else:

self.action["treatment"] = "wrong_id"

(c) Code for selecting an action in a within-subjects or mixed design.
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# If a condition was finished, we can update the parameters in
the database↪→

if self.reward["finished"] is 1:
# Retrieve the counts from the database for the played

condition↪→

finished_treatment =
base.Count(self.get_theta(key="finished" +
self.context["user_id"],
value=self.action["treatment"]))

↪→

↪→

↪→

# Increment the count
finished_treatment.increment()
# Store it in the database again
self.set_theta(finished_treatment, key="finished" +

self.context["user_id"], value=self.action["treatment"])↪→

(d) Code for setting a reward in a witin-subjects and mixed design.

(e) A branch in the Survey Flow that handles a new subject.

(f) The text block with the content that will be shown to new subjects.

127



5

Chapter 5

(g) A branch in the Survey Flow that handles a returning subject.

(h) The text block with the content that will be shown to returning subjects.
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(i) The branch for a specific treatment condition.

(j) The branch for when the subject has finished all the tests.

Figure 5.6: The flow for a within-subjects or mixed design implemented in Qualtrics
using StreamingBandit.

Figure 5.7 shows an overview of how the subject will arrive at the different

survey conditions. This feature of remembering a subject identifier is very useful

and the use is not limited to just doing a within-subjects design. For example, it

could also be used when the experimenter wants to the subject to be able to save

the survey and complete it at a later time.
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New user ID Assigned to
survey B

Login page Survey

Existing user ID Assigned to
survey A

Login page Survey

Existing user ID Assigned to
survey C

Login page Survey

Existing user ID Show finish
page

Login page Survey

Figure 5.7: Visual overview of how one and the same subject experiences the within-
subjects survey. The first time, the subject will be supplied with a user identifier and
assigned to a random condition. Then after supplying the user identifier two more times
the subject will be assigned to a random condition that it has not experienced yet. Finally,
the subject will be redirected to a finished page when it tries to login again.

5.4.4 Thompson sampling for increasing estimation precision

The previous examples display the implementation details of relatively com-

mon experimental designs. Even there, StreamingBandit allows us to advance

the design of experiments in Qualtrics. In this example we illustrate how to take

an extra step by implementing an adaptive design. In this specific case, we are

interested in making sure that the we will have precise estimates of our effects in

an experiment where we (a priori) assume that the variances of the observations

differs between two experimental conditions. When the variances of the observa-

tions of the treatment conditions are assumed to be unequal, it pays off to increase

the number of subjects allocated to the highest variance condition to ultimately

improve the precision of the mean difference estimator (Kaptein, 2014).

For example, assume we have a survey with two groups: one group receives

questions with statements that people tend to agree on (i.e. we assume a low vari-

ance in the observations) and another group receives questions with statements

that people do not tend to agree on (i.e. we assume a high variance). Kaptein

(2014) uses Thompson sampling and computes the posterior variance for each

condition (i.e. σ2
1 and σ2

2) using a normal-inverse χ2 model (to be done in the

setReward call). Then in the getAction call a draw d from each of the two pos-

teriors is obtained and the treatment is selected for which d
n

is highest, where n

is the number of subjects that were previously allocated to that treatment. Thus,

the condition with the highest expected variance will be selected. Another bene-

fit of this is that if the prior assumption of unequal variances does not hold true,

this sampling scheme will still balance the number of subjects accordingly. This

sampling scheme has already been implemented in StreamingBandit, so our code

will be relatively easy to generate, but we will explain the steps. Figure 5.8 shows
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the complete steps of implementing a Thompson sampling scheme for increasing

estimation precision in a scenario of questions with potentially different outcomes

on the variance.

1. (see Figure 5.8a) First we set up the different conditions with different ques-

tions. Figure 5.8a shows an example for our first condition (i.e. assumed low

variance). We set up a question that “almost everybody agrees with” and use

a slider to give an agreement from 0 to 100. We do this exactly the same for

the second condition, but we simply change the question into a question that

“people tend not to agree on”.

2. (see Figure 5.8b) Then for the code: in the getAction code we retreive the

data from the database and using the built-in experimentThompson function

we select the treatment condition.

3. (see Figure 5.8c) When a survey has been completed, we can update the

variance of the selected condition in the setReward call, which can be any

continuous reward. Integrating these calls into Qualtrics will be similar to

the previous designs, so for an example look at Figure 5.2b.

4. (see Figure 5.8d) Now in returning the reward, we have to specify what the

returned reward will be. In Qualtrics we can select this reward to be an

Embedded Data field, which is the answer to our questions. We can use the

total reward of that question. Of course, we can use different measures here,

another possible option would be to return the mean of different ratings (e.g.

a likert scale rating).

(a) Example of a question block with a question with a continuous outcome.
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# Retrieve the parameters from the database and store it in the
built-in ThompsonVarList class↪→

var_list =
thmp.ThompsonVarList(self.get_theta(key="treatment"),
["control","treatment"])

↪→

↪→

# Select an action using the built-in sampling function
self.action["treatment"] = var_list.experimentThompson()

(b) Code for selecting an action using a Thompson sampling scheme for increasing estimation
precision.

# Retrieve the variance parameters for the played action
var = base.Variance(self.get_theta(key="treatment",

value=self.action["treatment"]))↪→

# Update the variance using a built-in update function
var.update(self.reward["value"])
# Store the parameters in the database
self.set_theta(var, key="treatment",

value=self.action["treatment"])↪→

(c) Code for setting a reward for the Thompson sampling scheme for increasing estimation
precision.

(d) A branch in the Survey Flow for our Thompson sampling scheme, which is very similar to
previous branches, with the difference being that we return a total sum of our questions in
the reward.

Figure 5.8: The flow for our Thompson sampling scheme implemented in Qualtrics
using StreamingBandit.
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Table 5.4: An example of the treatment allocation for a Thompson sampling scheme for
increasing estimation precision. For the first few subjects, the precision of the estimates
for both conditions are relatively even, which results in randomly selectting either of the
two conditions. After 50 subjects, the treatment condition (i.e. the condition with the
highest observed variance) will be selected more often until the precision has increased.
After 100 subjects, the precision is relatively even again.

Interaction Selected treatment Condition with lowest expected precision

1 control approximately equal

2 treatment approximately equal

3 treatment approximately equal

4 control approximately equal
...

...
...

50 treatment treatment

51 treatment treatment
...

...
...

100 control approximately equal

101 treatment approximately equal

This setup now ensures that we balance the different conditions based on the

variance of the observed outcome variable. Table 5.4 shows an example of how

the treatments can be allocated. As subjects come in, this adaptive design will

select the treatment with the highest observed variance, which in turn ensures

that the eventual estimation of the effect will be approximately equally precise for

both conditions.

5.5 Recent field example

To demonstrate an implementation of a sequential allocation procedure in

practice, we will take a look at the experiment done by Kaptein, van Emden, and

Iannuzzi (2016b). The authors wanted to re-affirm the existence of the heavily

debated decoy effect using a sequential allocation procedure. The decoy effect

describes a human bias when deciding between three offers, where one of the

offers is a decoy that rationally should have no influence on the decision (see e.g.,

Huber, Payne, & Puto, 1982). What is found, however, is that this decoy does

have influence on the decision making process as people tend to go for the more

expensive offer in the presence of a decoy. One example of the decoy effect is in

a scenario where the subject wants to buy a laptop, as shown in Figure 5.9. In

the left example three options are presented: the option with 1.1 GB RAM is a

so-called decoy to attract more potential buyers to the option with 2.0 GB RAM,
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You need a new laptop computer. All other
things being equal about the options, which
laptop would you choose?

You need a new laptop computer. All other
things being equal about the options, which
laptop would you choose?

o 4.0 GB RAM - 14 Hrs Average Battery Life o 4.0 GB RAM - 14 Hrs Average Battery Life

o 1.1 GB RAM - 20 Hrs Average Battery Life o 2.0 GB RAM - 24 Hrs Average Battery Life

o 2.0 GB RAM - 24 Hrs Average Battery Life

Figure 5.9: An example of the laptop scenario used in the decoy effect study. Left is shown
an example with a decoy, right is an example without a decoy.

which is a competitor for the 4.0 GB RAM. The example on the right is a scenario

without a decoy.

The decoy effect has been heavily debated in research, where some repli-

cations of earlier research disputed the practical relevance and existence of the

effect. In their paper Kaptein, van Emden, and Iannuzzi (2016b) argue that this is

likely due to the suboptimal placings of the decoys in a grid of properties (i.e. the

values that the decoy can take are suboptimal) and use a novel sequential alloca-

tion procedure to automatically find the decoy that maximizes the choice switch.

Designing the experiment using a sequential allocation procedure allowed the re-

search to be effective where it otherwise could not: earlier research was hampered

by the fact that the decoy had to be determined a priori, which could result in not

finding an effect or experiments that could not be reproduced.

The sequential allocation procedure used in the experiment is called Lock-in

Feedback (LiF). LiF is a policy developed for the continuous-armed bandit problem

(CAB). In the CAB problem, the actions are based on a continuous range instead

of a discrete number of arms – for example choosing a price from a price range

for a product. LiF aims to seek the maximum of a continuous function y = f(x)

(or a reward function), where y in this case would be the probability of switching

the choice and x would be an attribute that you wish to change (i.e. the battery

life in a laptop). The maximization of the function is done using oscillation on the

attribute xwith time, these oscillations introduce variance in the chosen attributes.

Using rewards (feedback) on these chosen attributes, LiF tries to find the optimum

of y. For more details on LiF and how it works, see Kaptein and Ianuzzi (2016).

The experiment was done using a customized front-end survey that was writ-

ten in Drupal (a PHP based framework to build websites) (Buytaert et al., 2001).

The subjects were recruited using Amazon’s MTurk (Amazon, 2012). The authors

considered five different scenarios to use the decoy, of which the laptop example

was one. If the scenarios had multiple attributes (e.g. a laptop scenario with differ-

ent size of RAM and battery life), they would only change one attribute dimension

(e.g. only the battery life) for the decoy. The experiment used a between-subjects

design, where one of the three conditions was a sequential allocation procedure.
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These three conditions were:

1. Baseline: no decoy was present and participants were presented with a

choice between two products.

2. Random: a decoy was present, but the different values for the decoy were

selected based on hardcoded values tailored to the specific scenario at play.

The hardcoded values were supplied in the context of the getAction call (i.e.

self.context["min"] and self.context["max"]).

3. Lock-in Feedback: a decoy was present and the values of the decoy were se-

lected based on previous interactions in the experiment and the parameters

of the LiF policy. The LiF policy was updated based on the selected item by

the participants. As LiF contains a multitude of tuning parameters, we refer

the readers to Kaptein, van Emden, and Iannuzzi (2016b) for more details.

The flexibility of StreamingBandit allowed the researchers to completely im-

plement this complex sampling scheme relatively easy. The code for the getAction

call looks as follows:

# If we have not assigned a condition to a user yet (i.e. new

user), do so↪→

if not("condition" in self.get_theta("user_id",

self.context["user_id"])):↪→

# Note that this is the first allocation to the Drupal survey

self.action["note"] = "First allocation"

# Randomly select an action

draw = random.choice(["baseline", "random", "lockin"])

# Store the condition in the database

self.set_theta({"condition":draw}, "userid",

self.context["userid"])↪→

# Set the action from the selected condition (also for the next

time a user comes in)↪→

self.action["condition"] = self.get_theta("userid",

self.context["userid"])["condition"]↪→

# If the condition is baseline, we do not need to select a decoy

if self.action["condition"] == "baseline":

# And we can return "none"

self.action["decoy"] = "none"

# If the condition is random, we select a random decoy
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elif self.action["condition"] == "random":

# This is done using the supplied bounds (min and max in the

context)↪→

self.action["decoy"] = np.random.uniform(self.context["min"],

self.context["max"])↪→

# If the condition is lockin, we use the LiF policy to select a

decoy↪→

elif self.action["condition"] == "lockin":

# We retrieve the parameters from the database

theta = self.get_theta(all_float=False, key="question",

value=self.context["question"])↪→

# Using the supplied parameters, we instantiate a LiF object

lif_pol = lif.LiF(theta, x0=self.context['x0'],

A=self.context['A'], T=150, gamma=.06, omega=1.0,

lifversion=1)

↪→

↪→

# Using the built-in function, we select ("suggest") an action

suggestion = lif_pol.suggest()

# We make sure that the suggestion will not be lower than 0

if suggestion["x"] < 0:

self.action["x"] = 0

else:

self.action["x"] = suggestion["x"]

# We also supply the t and x0, so that LiF can be updated the

next time again↪→

self.action["t"] = suggestion["t"]

self.action["x0"] = suggestion["x0"]

As the experiment progresses through the five different scenarios, we have to

remember which condition a participant was put in. The Drupal survey supplied

the user indentifier in the context. The first lines make sure that if the user iden-

tifier is not known, they get assigned a condition. Then the condition is retrieved

from the database and based on the condition, three different things can happen.

Either we return no decoy (first condition), we return a random decoy based on

the supplied hardcoded values (second condition) or (third condition) we retrieve

the parameters for LiF from the database (and the context supplies which scenario

(or question) is being shown now) and select a suggested action from LiF.

Then to update the parameters, we have the following code for the setRe-

ward call:
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# We only need to update parameters when LiF is the condition

if self.action["condition"] == "lockin":

# Get the parameters from the database

theta = self.get_theta(all_float=False, key="question",

value=self.context["question"])↪→

# Instantiate a LiF class again

lif_pol = lif.LiF(theta, x0=self.context['x0'],

A=self.context['A'], T=150, gamma=.06, omega=1.0,

lifversion=1)

↪→

↪→

# Update the parameters using a built-in update function

lif_pol.update(self.action["t"], self.action["x"],

self.reward["r"], self.action["x0"])↪→

# Store the parameters in the database

self.set_theta(lif_pol, key="question",

value=self.context["question"])↪→

We only have to update parameters if the selected condition was LiF (checked

using the if-statement). Here we do the same thing as in other examples: we get

the parameters from the database (only the parameters for the specific question,

given in the context), update the instantiated LiF object and store it in the database

again. In their experiment, the authors have shown that a) the decoy effect does

definitely exist and b) that sequential allocation procedures are a viable option

of finding the most optimal position for the decoy – a conclusion that was hard

to draw with other experimental designs, and StreamingBandit played a crucial

role.

5.6 Conclusions

In this paper we have shown how experimenters can effectively design ex-

periments that use complex, sequential treatment allocation schemes in web-based

(front-end) platforms using StreamingBandit as a back-end. We provided an ex-

tensive tutorial on how to implement a variety of treatment allocation schemes

that can be consumed by a front-end platform. The presented work provides a

generic framework that allows researchers to easily adapt and test any type of

treatment allocation procedure. As shown, for example, going from a between-

subjects design to a Thompson sampling policy only requires changing a few lines

of code in StreamingBandit.
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One limitation of StreamingBandit is that it requires the desired front-end

platform to be capable of integrating API requests. This is a very common internet

standard, however, which was one of the design considerations for StreamingBan-

dit. Nevertheless, once StreamingBandit is integrated it provides an extremely

flexible platform for the design of experiments.

StreamingBandit serves to fulfill the opportunity to use sequential decision

problems in behavioral sciences identified in Eckles and Kaptein (2019). It has

already been applied in multiple experiments, such as the example of the decoy

experiment. Other examples of applying StreamingBandit in practice are also

shown in Kaptein et al. (2017), Kruijswijk, Parvinen, and Kaptein (2019) and

Parvin, Chessa, Kaptein, and Paternò (2019) and these examples also display a hint

of cases in which sequential allocation procedures might be beneficial to apply. We

hope that this paper will enable the adaptation of sequential allocation procedures

in future (web-based) research.
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Epilogue

6.1 Overview

With this thesis we aimed to introduce, and extend the use of, sequential

allocation procedures to researchers from social sciences and other applied fields.

Another goal was to further develop the methodology of the multi-armed ban-

dit problem and develop a flexible software tool to be able to easily implement

sequential allocation procedures in experiments. We provided various empirical

examples, illustrating the usefulness and applicability of experiments using se-

quential allocation procedures: in Chapter 2 and 5 we showed how to set up

an experiment with a sequential allocation procedure for a decoy experiment, in

Chapter 2 and 4 how to collect and analyze field data, and in Chapter 3 another

offline analysis of existing empirical data. To further facilitate the use of the devel-

oped tools, all the work in this thesis is open source. As a result, StreamingBandit

is actively being picked up, used, and improved by the open-source community.

In Chapter 2 and 5, we introduced StreamingBandit as a framework and

software application. The framework identifies how multi-armed bandit policies

can be summarized into two steps: a summary step (where we update the parame-

ters of a policy) and a decision step (where we use the policy to choose an action).

We introduced the software and next to a detailed explanation, we provided am-

ple examples of how StreamingBandit can be utilized to implement (sequential)

allocation procedures in (web-based) research. We demonstrated its flexibility by

showing how the software can be used to implement any type of allocation pro-

cedure, whether it is sequential in nature or not. StreamingBandit has already

shown its capabilities in several experiments, some of which have been highlighted

throughout the chapters (Kaptein et al., 2017; Kaptein, van Emden, & Iannuzzi,

2016b; Kruijswijk et al., 2019; Parvin et al., 2019).

In Chapter 3, we introduced methods to model hierarchical dependencies

139



6

Chapter 6

in several types of multi-armed bandit policies. We showed, through simulations

and an empirical study, that taking hierarchical dependencies into account in the

policies improves the performance when such dependencies are – potentially, in

the case of empirical studies – present. We used methods that are commonly

known in the more traditional statistical literature: a shrinkage factor approach

(Ippel et al., 2019) and a Bayesian hierarchical modeling approach, which both

showed improvements when incorporated in the existing MAB policies.

In Chapter 4, we extended an offline evaluation method developed by Li et

al. (2011) such that it can also be used for continuous-armed bandit problems.

Furthermore, we compared our method to the work of Kallus and Zhou (2018),

who introduced an offline evaluation method for static policies with continuous

treatments – this work was introduced in the literature after we first started work-

ing on our method. Our work showed a relatively consistent ranking of policies

in offline evaluations. Furthermore, we showed how to use both our method and

the method by Kallus and Zhou (2018) for offline parameter tuning of continuous-

armed bandit policies.

6.2 Further methodological considerations

In this thesis, we mainly discussed our methods and tools in light of solving

the goal of the canonical multi-armed bandit problem: through sequential inter-

actions, try to maximize the outcome over all interactions. Although such a goal

serves its purpose for many social science applications (as shown throughout the

chapters), it is not suitable for every type of experiment. For example, contrary

to maximizing the overall reward, in the traditional experiment we often focus

on estimating the effects of the treatments under consideration, or on selecting

the overall best treatment. In this section, we briefly touch upon considerations

that should be taken when choosing for sequential allocation procedures in such

cases and we highlight alternative uses of sequential allocation procedures (some

of which were already briefly mentioned in the previous chapters). These method-

ological considerations are:

• Hypothesis testing: testing hypotheses in experimental comparisons (e.g. dif-

ference in means between two groups),

• Best-arm identification: select the best performing treatment within a given

number of possible interactions,

• Optimal design: designing an experiment to sample as optimally as possible

with respect to a statistical estimate of interest.
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Rather than discussing these alternative goals and methodologies in full, we

suggest the reader to consult the cited sources for in depth discussions on these

topics. However, we would like to stress that these alternative methodologies can,

and often very easily, also be implemented using StreamingBandit.

6.2.1 Hypothesis testing

The most common use of randomized controlled trials is for testing hypothe-

ses on differences between experimental conditions. When using sequential al-

location procedures, one of the biggest cautions that should be taken is to avoid

using improper methods of hypothesis testing – for example when the methods

are designed to deal with fixed sample sizes, which is violated in the sequential

treatment allocation case. While typically the necessary sample size to achieve the

required power of the relevant tests is determined a priori, it is also often the case

that due to (e.g.) costs, an as small as possible number of subjects is preferred.

However, stopping data collection based on continuous updating of the p-value for

a specified null hypothesis, as appealing as this might look, can and will often lead

to inflated type I error rates, and thus to invalid conclusions (this is also known

as the multiple testing problem (Hsu, 1996)). To tackle this problem, solutions

have been proposed for obtaining so-called always valid p-values (Johari, Pekelis,

& Walsh, 2015) and controlling (online) false discovery rates (Jamieson & Jain,

2018; Yang, Ramdas, Jamieson, & Wainwright, 2017).

Closely related to the literature on hypothesis testing is the vast literature on

Bayesian adaptive clinical trials (see e.g., Berry, 2006, 2012). In this literature,

several aspects of the design of experiments are studied, among which is early

stopping. Early stopping is often applied in high-cost experiments (e.g., in clinical

trials) which should not be run longer than necessary. Using sequential experi-

mentation and Bayesian statistics allows stopping rules to be used to adapt the

experiment based on the observed data as it is coming in, instead of, for exam-

ple, relying on the a priori sample size computations (which often rely on possible

wrong values for the effect sizes).

6.2.2 Best-arm identification

One interesting alternative to the MAB problem is that of best-arm identi-

fication (also called the pure exploration problem) (Audibert, Bubeck, & Munos,

2010): given a fixed number of possible interactions and a set of treatments, se-

lect the best performing treatment. The goal now is not to, over time, maximize

the cumulative reward (or minimize the regret), but to maximize the probability

of selecting the best treatment given those fixed number of interactions. In this

141



6

Chapter 6

scenario, we are interested in distinguishing the single best treatment between the

best possible treatments, and we thus want to be as confident as possible about

the choosing the best arm given those fixed number of interactions. We therefore

want to explore more between multiple promising candidates. This is in contrast

to the traditional MAB problem, where we are interested in losing as little reward

as possible during exploration (Kaufmann, Cappé, & Garivier, 2016). See, for ex-

ample, Jamieson and Nowak (2014), Russo (2016) for simple policies for best

arm identification and Libin et al. (2018) for an application in an epidemiological

setting.

6.2.3 Optimal design

The literature that concerns the optimal design of experiments deals with

methods for developing study designs that are optimal with respect to statistical

estimates of interest – for example, minimizing the standard errors of the effect

size estimates (Chernoff, 1972; Goos & Jones, 2011). In such a scenario, the view

of sequentially allocation treatments can be beneficial, although traditionally the

optimal design literature is not focused on sequential allocation. One example

that has already been highlighted in Chapter 2 and 5 is the use of a Thompson

sampling scheme to increase estimation precision when estimating the difference

between two means for two groups with unequal variances (Kaptein, 2014). In

the traditional setting, we rely again on a priori assumptions that may not be true

(or less valid) in practice. By using data collected during the experiment, we can

adapt the experiment while running and improve estimation precision or efficiency

even more (Kaptein, 2014; Ryan, Drovandi, McGree, & Pettitt, 2016; Whitehead

& Brunier, 1995).

6.3 Future research directions

Next to looking at other methodological alternatives as we did in the previous

section, several directions for future research can be identified for each chapter

based on the results of this thesis, which will contribute to the growth of the

methodology for, and use of, sequential allocation procedures.

Further work could be done to improve the outreach and the user-friendliness

of StreamingBandit, introduced in Chapter 2. Firstly, the default policies and

libraries could be improved and expanded to contain a more diverse set of se-

quential allocation procedures. Although StreamingBandit allows researchers to

implement any type of allocation procedure, having a larger set of default options

would allow researchers who are less experienced with Python and such tools in
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general to make more optimal use of the strength of StreamingBandit. Secondly,

the process of installing and maintaining StreamingBandit could be improved to

increase the outreach of the software. In that sense, the installation of Streaming-

Bandit is relatively straightforward provided that there is experience with either

Docker (Merkel, 2014) or handling the command-line. Providing StreamingBan-

dit as a binary installation format or as Software as a Service (SaaS), where users

can directly use a live version of StreamingBandit hosted on a cloud platform,

would make using the software even easier. However, running a SaaS applica-

tion brings in a factor of maintenance costs and time, which makes it harder to

implement.

The work in Chapter 3 could be extended in multiple ways. Firstly, as identi-

fied in the discussion of the chapter, further research could be done in identifying

useful methods for partial pooling, such as more efficient ways of estimating pos-

teriors for the Bayesian models. While hierarchical models have proven useful

throughout the social sciences, they are often hard to update and evaluate on-

line – a feature that is necessary for most practical CMAB applications (Agarwal

et al., 2017; Ansari & Mela, 2003; Ippel et al., 2016b). For the Bayesian models,

this could for example be done via sequential Monte Carlo methods (Doucet et al.,

2001) or bootstrapped Thompson sampling (Eckles & Kaptein, 2019). Secondly, as

a large portion of the bandit literature focusses on the contextual MAB problem,

the methods discussed in this chapter could be used to improve state-of-the-art

contextual MAB policies, such as the popular LinUCB algorithm (Li et al., 2010).

We developed the delta method in Chapter 4 as a simple way of evaluat-

ing continuous-armed bandit policies offline. Our solution provides initial steps

towards effective offline policy evaluation for dynamic policies. Although our

current solution showed relative consistent ranking, there is still room for im-

provement. Two obvious potential options could be: 1) extend the Doubly Robust

method developed in Dudík et al. (2014) using regression methods and inverse

propensity scoring for continuous treatments (Hirano & Imbens, 2004) and 2) try

to combine the kernel method of Kallus and Zhou (2018) with our evaluation

method – for example to use kernel smoothing on the rewards when the proposed

actions fall within the acceptance range.

While thesis is more practically oriented than theory driven, especially the

topics discussed in Chapter 3 and 4 could be put under more theoretical scrutiny.

For Chapter 3 regret bounds could have been derived depending on specific en-

vironmental assumptions (e.g., the distribution of the rewards), which becomes

even more important with complex (contextual) MAB policies using shrinkage

factors or Bayesian hierarchical modeling – such as an extension of the LinUCB al-

gorithm. For Chapter 4 the extra theoretical scrutiny includes further scrutinizing
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the effect of the tuning parameter δ and performing additional bias analyses for

possible extensions of the proposed delta method. Nevertheless, we believe that

simulation and empirical (offline) evaluation studies are complementary to theo-

retical work, as a) they typically rely on less (or weaker) assumptions, b) many

algorithms tend to be impractical to use, and c) their empirical behavior is often

poorly understood, as also identified in Bietti, Agarwal, and Langford (2018).

Finally, more work could be done on enabling less technical researchers to

incorporate complex policies in their research. Future research could be done on

determining which (type of) sequential allocation procedure is useful in which

(type of) experiment. As an example, contextual is a useful R package that pro-

vides tools to simulate and develop policies for different multi-armed bandit prob-

lems (van Emden & Kaptein, 2018). Such work is important to further expedite

the use of sequential allocation procedures in experiments, especially for applied

researchers.
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Summary

In experiments that consider the use of subjects, a crucial part is deciding which

treatment to allocate to which subject – in other words, constructing the treat-

ment allocation procedure. In a classical experiment, this treatment allocation

procedure often simply constitutes randomly assigning subjects to a number of

different treatments. Subsequently, when all outcomes have been observed, the

resulting data is used to conduct an analysis that is specified a priori. Practically,

however, the subjects often arrive at an experiment one-by-one. This allows the

data generating process to be viewed differently: instead of considering the sub-

jects in a batch, intermediate data from previous interactions with other subjects

can be used to influence the decisions of the treatment allocation in future inter-

actions. A heavily researched formalization that helps developing strategies for

sequentially allocating subjects is the multi-armed bandit problem. In this thesis,

methods to expedite the use of sequential allocation procedures are developed.

This is done by building upon the extensive literature of the multi-armed bandit

problem. The thesis also introduces and shows many (empirical) examples of the

usefulness and applicability of sequential allocation procedures in practice.

Although the multi-armed bandit literature provides a formalization for se-

quential allocation procedures, it is still notoriously hard to develop and evaluate

policies – as treatment allocation procedures are called in the MAB literature –

that tackle applied instances of multi-armed bandit problems and to apply those

policies in studies. The thesis addresses some of the problems involved. Chapter

2 introduces a framework and a software application, called StreamingBandit,

to address some of the issues of developing and evaluating MAB policies to ap-

ply them in experiments. The framework identifies how to formally summarize

sequential allocation procedures into two steps, which helps implementing any

allocation procedure in the software proposed in this chapter. The user-friendly

software for developing, evaluating and deploying sequential allocation proce-

dures on the web is introduced with detailed explanations. Furthermore, various

examples showing how to create and implement sequential allocation procedures

are presented.

Chapter 3 introduces various methods for dealing with nested data structures
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in sequential allocation procedures and applies these methods to several popular

policies. One example – the one that is considered in this chapter and is very

common in the social sciences – of a nested data structure occurs when subjects

are returning for multiple interactions. The observations are then nested within

subjects over time and are thus dependent observations. The traditional statisti-

cal literature already provides us with methods to deal with such dependencies –

which are all too often ignored in the multi-armed bandit literature. Two methods

that are considered here are a shrinkage factor approach and a Bayesian hier-

archical modeling approach. Through simulations and an empirical study it is

shown that taking such hierarchical dependencies into account greatly improves

the performance of sequential allocation procedures when these dependencies are

present.

To evaluate and validate sequential allocation procedures in the field with-

out resorting to multiple field evaluations or to simulation based methods that

lack external validity, so-called offline evaluation can be performed. Offline eval-

uation methods use data collected in the field to evaluate sequential allocation

procedures. Currently, these methods are developed mostly for experiments that

consider discrete treatments; the continuous case is hardly covered. Chapter 4

introduces a new method to evaluate sequential allocation procedures for contin-

uous treatments. The proposed delta method is compared to a recently introduced

method that considers only static procedures, in which model (or policy) parame-

ters are not updated based on the previous interactions. The chapter details sev-

eral simulation and empirical studies to evaluate the proposed method and shows

that it achieves relative consistent ranking of sequential allocation procedures in

offline evaluations.

Chapter 5 ensures that the results presented in this thesis can be used by re-

searchers in the social sciences: it shows step-by-step how to integrate Streaming-

Bandit into a front-end web application to implement sequential treatment alloca-

tion procedures. Several currently available web applications allow researchers to

do experiments through the web, but they are often limited to very simple treat-

ment allocation procedures such as simple uniform random treatment allocation.

However, by integrating StreamingBandit within these web applications, it be-

comes possible to use much more advanced allocation procedures, and truly bene-

fit from the results presented in this thesis. This is illustrated using an application

with Qualtrics, an online platform for conducting experiments and surveys. We

show that once StreamingBandit is integrated within a Qualtrics application, it

becomes easy to modify and thus experiment with different allocation procedures.

Furthermore, the chapter gives an illustration of a recently completed experiment

using StreamingBandit with sequential allocation procedures.
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Summary

Concluding, in Chapter 6 the contributions and limitations of the research

in this thesis are discussed. The chapter also discusses considerations that can

be taken when using sequential allocation procedures for hypothesis testing, best-

arm (or treatment) identification and for the use of the optimal design of exper-

iments. Finally, future research directions are also provided, such as improving

the outreach and user-friendliness of StreamingBandit and putting the methods

developed in Chapter 3 and 4 under more theoretical scrutiny.
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