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Abstract
The quadratic cycle cover problem is the problem of finding a set of node-disjoint
cycles visiting all the nodes such that the total sum of interaction costs between con-
secutive arcs is minimized. In this paper we study the linearization problem for the
quadratic cycle cover problem and related lower bounds. In particular, we derive var-
ious sufficient conditions for the quadratic cost matrix to be linearizable, and use
these conditions to compute bounds. We also show how to use a sufficient condition
for linearizability within an iterative bounding procedure. In each step, our algorithm
computes the best equivalent representation of the quadratic cost matrix and its opti-
mal linearizablematrix with respect to the given sufficient condition for linearizability.
Further, we show that the classical Gilmore–Lawler type bound belongs to the family
of linearization based bounds, and therefore apply the above mentioned iterative refor-
mulation technique. We also prove that the linearization vectors resulting from this
iterative approach satisfy the constant value property. The best among here introduced
bounds outperform existing lower bounds when taking both quality and efficiency into
account.

Keywords Quadratic cycle cover problem · Linearization problem · Equivalent
representations · Gilmore–Lawler bound

1 Introduction

A disjoint cycle cover in a directed graph is a set of node-disjoint cycles such that
every node belongs to exactly one cycle. The quadratic cycle cover problem (QCCP)
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is the problem of finding a disjoint cycle cover in a graph such that the total sum of
interaction costs between consecutive arcs isminimized. Sincewe assume that all cycle
covers in this paper are disjoint, we use the term cycle cover to denote this concept
throughout this work. The QCCP is proven to be NP-hard (Fischer et al. 2009). The
corresponding linear problem is called the cycle cover problem (CCP), in which one
wants to find a minimum cycle cover with respect to linear arc costs. It is well known
that the CCP is solvable in polynomial time.

In the literature several special cases with respect to the objective function of the
QCCP are considered. In the angular metric cycle cover problem (Angle- CCP) the
quadratic costs represent the change of the direction induced by two consecutive arcs.
The goal of Angle- CCP is to find a cycle cover of the graphwhileminimizing the total
angular costs. TheAngle- CCP has applications in robotics (Aggarwal et al. 1999). In
the same paper it is shown that Angle- CCP is NP-hard. Only recently Galbiati et al.
(2014) introduced another special case of the QCCP: the minimum reload cost cycle
cover problem (MinRC3). The MinRC3 problem asks for a minimum cycle cover in
an arc-colored graph under the reload cost model. A reload cost is an interaction cost
that is paid when two arcs of different colors are placed in succession on a cycle. The
goal of the MinRC3 problem is to find a cycle cover such that the total reload cost is
minimized. The problem is proven to be NP-hard in the strong sense (Galbiati et al.
2014). The notion of reload costs is introduced by Wirth and Steffan (2001), and it
has many applications in various fields, e.g., in cargo, energy and telecommunication
networks (Amaldi et al. 2011; Wirth and Steffan 2001). A detailed overview of the
MinRC3 problem and its applications can be found in Büyükçolak et al. (2019).
Several other combinatorial optimization problems including these reload costs have
been investigated, see e.g.,Amaldi et al. (2011),Galbiati (2008),Gamvros et al. (2012),
Gourvès et al. (2010), Wirth and Steffan (2001).

The QCCP is closely related to the quadratic traveling salesman problem (QTSP)
which is introduced in Jäger and Molitor (2008). The QTSP is the problem of finding
a Hamiltonian cycle in a graph minimizing a quadratic cost function. It has applica-
tions in bioinformatics, robotics and telecommunication (Fischer et al. 2014). When
we remove the subtour elimination constraints, the QTSP boils down to the QCCP.
Therefore, the QCCP is often used to provide lower bounds for the QTSP (Fischer
et al. 2014; Jäger and Molitor 2008; Staněk et al. 2019). For this reason, the quadratic
cycle cover problem is an interesting optimization problem that has received more
attention in the past few years.

Several papers have beenwritten about solutionmethods for theQCCP or its related
problems. Jäger and Molitor (2008) introduced the QCCP in order to use the QCCP
bounds as lower bounds in a branch-and-bound algorithm for the QTSP. Staněk et al.
(2019) use the QCCP combined with a rounding procedure to construct heuristics for
the QTSP. Aggarwal et al. (1999) provide a O(log n)-approximation algorithm for
the Angle- CCP. Fischer (2013) studies the polyhedral properties of the QCCP by
proving that some triangle inequalities are facet-defining. Galbiati et al. (2014) derive
various integer programming formulations for the MinRC3 problem. They exploit
one of those formulations together with a column generation approach to compute
lower bounds for the original problem. Moreover, in Galbiati et al. (2014) a local
search algorithm based on 2-exchange and 3-exchange neighbourhoods is constructed
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to compute upper bounds for theMinRC3 problem. Büyükçolak et al. (2019) study the
MinRC3 problem on complete graphs with an equitable or nearly equitable 2-edge
coloring. For these types of graphs (except some special cases) a polynomial time
algorithm is derived that constructs a monochromatic cycle cover.

We focus here on the linearization problem of the QCCP and its applications. An
instance of the quadratic cycle cover problem is called linearizable if there exists an
instance of the linear cycle cover problem such that the associated costs for both prob-
lems are equal for all feasible cycle covers. The linearization problem of the quadratic
cycle cover problem asks whether a given instance of the QCCP is linearizable. To
the best of our knowledge, this is the first paper about the linearization problem of the
QCCP.

In the past few years linearization problems have become an active field of research
formanycombinatorial optimizationproblems.Kabadi andPunnen study the lineariza-
tion problem of the quadratic assignment problem (QAP) and provide polynomial
time algorithms that solve it. In particular, Kabadi and Punnen (2011) (resp. Pun-
nen and Kabadi (2013)) present an O(n4) (resp. O(n2)) algorithm for the general
(resp. Koopmans-Beckmann) QAP linearization problem, where n is the size of the
problem. The linearization problem for the quadratic minimum spanning tree problem
and the quadratic traveling salesman problem are studied by Ćustić and Punnen (2018)
and Punnen et al. (2018), respectively. Hu and Sotirov (2019) develop a polynomial
time algorithm that solves the linearization problem of the quadratic shortest path
problem on directed graphs.

1.1 Main results and outline

In this paper, we first provide an elegant and compact proof that the quadratic cycle
cover problem is strongly NP-hard and not approximable within any constant factor
unless P = NP. Then, we consider the linearization problem of the QCCP and derive
various sufficient conditions for an instance of the QCCP to be linearizable. In par-
ticular, we provide three different types of weak sum conditions on the data matrix
for which the corresponding instance can be solved in polynomial time. Further, we
present a general framework inwhich each sufficient condition of linearizability can be
used to construct a lower bound on the optimal objective value. Each of these bounds
can be computed by a solving a linear programming problem, as long as the set of
linearizable matrices is a polyhedron. These types of bounds are called linearization
based bounds (LBB), and were recently introduced by Hu and Sotirov (2019) for gen-
eral binary quadratic problems. However, our LBBs exploit sufficient conditions of
linearizability suited for the QCCP.

Furthermore, we show how to use a sufficient condition of linearizability within
an iterative bounding procedure. In each iteration, we search for the best equivalent
representation of the objective and its optimal linearizable matrix that satisfies a par-
ticular sufficient condition of linearizability. We refer to the resulting bound as the
reformulation based bound (RBB). Our iterative bounding procedure can be seen as a
generalization of similar iterative procedures, see e.g., Carraresi andMalucelli (1992),
Rostami and Malucelli (2015) and Rostami et al. (2018).
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Finally, we consider the classical Gilmore–Lawler (GL) type bound (Gilmore 1962;
Lawler 1963). First, we show that the GL type bound for the QCCP can be obtained
by solving a single linear programming problem instead of solving m (integer) sub-
problems, where m equals the number of arcs in the graph. Then, we prove that the
GL type bound belongs to the family of linearization based bounds by providing the
appropriate sufficient condition. We implement our iterative bounding procedure to
compute the RBB using the GL type bound. In the literature, iterative approaches for
various problems that are based on the GL type bounds use dual variables to obtain
bounds, and do not search for equivalent reformulations that provide best bounds in
each iteration. Clearly, our approach outperforms others in terms of strength of the
bound. Another interesting result is that the linearization vectors resulting from this
iterative procedure satisfy the constant value property – yet another important property
for linearizability.

Our numerical results show that the introduced bounding approaches are efficient
and provide strong bounds compared to several methods from the literature. In partic-
ular, our most prominent bound can be computed within 60s for instances up to 15,000
arcs. Interestingly, the GL type bound that is known to be one of the computationally
cheapest bounds for quadratic optimization problems cannot be computed on such
large instances.

This paper is organized as follows. In Sect. 2, we formally introduce the QCCP and
prove its NP-hardness. In Sect. 3, the linearization problem for theQCCP is introduced
and several sufficient conditions for linearizability are derived. The general framework
for the computation of the linearization based bounds is discussed in Sect. 4. These
bounds are used in Sect. 5 to construct an iterative bounding procedure for each
sufficient condition. In Sect. 6, we consider the classical GL type bound and prove
that it belongs to the family of linearization based bounds. We also show how the
iterative procedure for this linearization based bound boils down to the computation
of the strongest GL type bound in each step. In Sect. 7, we briefly discuss several other
bounds from the literature. Numerical results are given in Sect. 8.

1.2 Notation

A directed graph G = (N , A) is given by a node set N and an arc set A ⊆ N × N .
For all nodes i ∈ N we denote by δ+(i) the set of arcs that are leaving i . Similarly,
δ−(i) denotes the set of arcs that are entering i . For all arcs e ∈ A we let e+ and e−
denote the starting and ending node of e, respectively. To avoid confusion, the letters
e, f and g are only used to denote arcs in this work.

For any square matrix M , we introduce the operator diag : Rn×n → R
n that maps

a matrix to a vector consisting of its diagonal elements. Moreover, we denote by
Diag : Rn → R

n×n its adjoint operator. That is, for any v ∈ R
n the matrix Diag(v)

equals a diagonal matrix with the entries of v on its main diagonal.
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2 The quadratic cycle cover problem

In this section, we formally introduce the quadratic cycle cover problem.
An instance I of theQCCP is specified by the pair I = (G, Q), whereG = (N , A)

is a directed graph with n vertices and m arcs and Q = (Qef ) ∈ R
m×m is a quadratic

cost matrix. The entries in Q are such that Qef = 0 if f is not a successor of e. In
other words, the quadratic cost of two arcs e and f can be nonzero only if the starting
node of f equals the ending node of e. In case we also consider linear arc costs, i.e.
we have a cost function p : A → R, we can put these arc costs on the diagonal of the
quadratic cost matrix. Therefore, we assume that the cost structure of an instance of
the QCCP is fully determined by its quadratic cost matrix.

Now let x ∈ {0, 1}m be a vector with xe = 1 if arc e belongs to a cycle cover, and
0 otherwise. Then the QCCP can be formulated as

OPT(Q) := min xT Qx

s.t. x ∈ X ,
(1)

where X denotes the set consisting of all disjoint cycle covers in G, i.e.

X :=
⎧
⎨

⎩
x ∈ {0, 1}m |

∑

e∈δ+(i)

xe =
∑

e∈δ−(i)

xe = 1 , ∀i ∈ N

⎫
⎬

⎭
. (2)

The above set equals the set of directed 2-factors in G. For the existence of such a
directed 2-factor in a directed graph, see e.g., Chiba and Yamashita (2018).

The quadratic cycle cover problem isNP-hard (Fischer et al. 2009). Also, the related
problemsAngle- CCP and theMinRC3 problem are shown to be NP-hard (Aggarwal
et al. 1999) and strongly NP-hard (Galbiati et al. 2014), respectively. We now provide
an alternative reduction that establishes strongNP-hardness which is based on a reduc-
tion from the quadratic assignment problem. We consider the Koopmans-Beckmann
form of the QAP introduced in Koopmans and Beckmann (1957). Let F and P be a
set of n facilities and n locations, respectively, w : F × F → R a weight function
and d : P × P → R a distance function. Without loss of generality, we assume that
dii = wi i = 0 for all i ∈ {1, . . . , n}. Then, we search for a bijection π : F → P such
that

∑n
i=1

∑n
j=1 dπ(i)π( j)wi j is minimized. The QAP is NP-hard in the strong sense

and not approximable within any constant factor (Sahni and Gonzalez 1976).

Theorem 1 The QCCP is NP-hard in the strong sense and cannot be approximated
within a constant factor unless P = NP.

Proof Let an instance I of theQAP be given, i.e., we consider sets F = {1, . . . , n} and
P = {1′, . . . , n′}with |P| = |F | = n, functionsw : F×F → R and d : P× P → R

and a positive integer K . We create an instance I ′ of the QCCP.
For the reduction we create a directed graph G = (N , A) that consists of cells. A

cell belongs to a single facility and consists of n nodes, each of them corresponding to
an assignment to one of the n locations. These nodes are specified by the pairs (i j ′)
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Fig. 1 Group consisting of n − 1
cells corresponding to facility 1

...

(1 1 )

(1 2 )

(1 n )

...

(1 1 )

(1 2 )

(1 n )

. . . ...

(1 1 )

(1 2 )

(1 n )

cell 1
{

cell 2

{

cell n 1

{

where i ∈ F and j ′ ∈ P . For each facility i ∈ F , we define a set of n − 1 identical
cells, which we call a group. The nodes corresponding to the same assignment within
a group are placed on a directed cycle, where the arcs are oriented from cell i to cell
i + 1 for i = 1, . . . , n − 2, and from cell n − 1 to cell 1. In this way, we obtain
n cycles per group, which we call inner cycles. We set the interaction cost between
each of the successive arcs within a group to zero for all groups. In Figure 1 the
group corresponding to facility 1 is given. In a similar fashion we construct groups
corresponding to the remaining facilities.

We now specify the connections between the groups. Each of the n−1 cells (in each
group) is connected to precisely one cell from the n − 1 other groups such that each
cell is connected to a different group. Hence, each cell in G is connected to exactly
one other cell in G. Since we have n groups and each group consists of n−1 cells, this
results in

(n
2

)
connections. Connecting the cells of two groups is done by introducing

a connection node and a relink node. Starting from the first group, we draw an arc
from every node of one of its cells to the connection node. Successively, we draw an
arc from the connection node to all the nodes of one of the cells of the second group.
The same is done for the relink node, now in the reverse direction. Figure 2 depicts an
overview of the connection between the last cell of group i and the first cell of group
j . We denote the cycles between the groups by outer cycles. In Figure 2 solid arcs
are used for the outer cycles, while the inner cycles are drawn using dashed arcs. A
similar connection via connection and relink nodes exists for all other pairs of groups.

Observe that any arc in G either belongs to an inner cycle or to several outer cycles.
The quadratic cost of a pair of successive arcs (e, f )where e belongs to an inner cycle
and f to an outer cycle or vice versa, is set to ∞. It remains to specify the interaction
cost between successive arcs on an outer cycle. We only specify the quadratic cost
between the arcs entering and leaving the connection node, other costs are set to
zero.

Let i and j be two distinct groups associated with facility i and j , respectively. Let
a node in group i be given by (i k′) with k′ ∈ P . Similarly, a node in group j is given
by ( j l ′) with l ′ ∈ P . Let eik′ denote the arc between (i k′) and the connection node
and let f jl ′ denote the arc between the connection node and ( j l ′). Then the quadratic
cost between eik′ and f jl ′ is defined as follows:
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Qeik′ , f jl′ :=
{
dk′l ′wi j + dl ′k′w j i if k′ �= l ′

∞ otherwise.

We repeat this construction for any two connected cells. Figure 3 gives a simplified
overview of G for n = 4. The circles in the center denote the connections between the
cells, where the connection and relink nodes are drawn using the symbols ‘•’ and ‘∗’,
respectively. The graphG has n2(n−1)+2

(n
2

) = O(n3) nodes and n2(n−1)+4
(n
2

) =
O(n3) arcs.

It remains to show that there exists a cycle cover in G with cost at most K if and
only if there exists a feasible assignment in I with cost at most K .

First, we verify that a cycle cover with finite cost in G corresponds to a feasible
assignment of facilities and locations. Note that the connection and relink nodes must
be covered by an outer cycle, since any other cycle would induce a cost of ∞. Besides
the connection and relink nodes, this cycle contains two nodes that each correspond
to an assignment of a different facility. Moreover, these facilities must be assigned
to different locations, otherwise this implies an infinite cost. The nodes in a cell that
are not covered by an outer cycle must be covered by an inner cycle. Consequently,
nodes on these inner cycles cannot belong to an outer cycle. Therefore, for each group
exactly one location is ‘chosen’ to be on an outer cycle, i.e., each facility is assigned
to some location. Moreover, no two facilities are assigned to the same location, since
this would imply a cost of ∞ at the connection node connecting these groups. We
conclude that a cycle cover with finite cost corresponds to a feasible assignment and
vice versa.

Observe that the objective value of a feasible assignment in theQAP instance equals
the total cost of the corresponding cycle cover in theQCCP instance. Namely, the latter
cost equals the sum of quadratic costs incurred at the

(n
2

)
connection nodes. If facility

i (resp. j) where i �= j is assigned to location k′ (resp. l ′) where k′ �= l ′, then this
cost equals dk′l ′wi j + dl ′k′w j i . Taking the sum over all connections, the total cost of
the cycle cover equals

∑n
i=1

∑n
j=1 dπ(i)π( j)wi j where π : F → P is the bijection

corresponding to the assignment.
We conclude that there exists an assignment for theQAP instance with cost at most

K if and only if there exists a feasible cycle cover in the correspondingQCCP instance
of cost at most K . Since the QAP is strongly NP-hard and the numbers defined in the
reduction are polynomially bounded (infinite costs can be replaced by an appropriate
value which is polynomially bounded in the largest number and the size of I), we
conclude that the QCCP is strongly NP-hard.

Moreover, as the QAP cannot be approximated within any constant factor (Sahni
and Gonzalez 1976) and the reduction above is clearly gap preserving, the result
follows. 
�

3 The QCCP linearization problem

In this section, we formally introduce the linearization problem for the QCCP and
derive various sufficient conditions for an instance of the QCCP to be linearizable.
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...
...

...

...

group i group jconnection node

relink node

...
...

...

...

Fig. 2 Connection between two cells of group i and j

cell 1

cell 2

cell 3

cell 1

cell 2

cell 3

cell 1 cell 2 cell 3

cell 1 cell 2 cell 3

group 1

group 2

group 3

group 4

Fig. 3 Simplified overview of G for n = 4

Several of these conditions are used later on to construct lower bounds for the optimal
value of the QCCP.

Let us consider the (linear) cycle cover problem. Given a cost function p : A → R,
the CCP is the problem of finding a cycle cover of minimum cost. It can be written as
follows:

min
x∈{0,1}m

{
pT x | x ∈ X

}
, (3)

where X is given in (2). Since the constraint set of X is totally unimodular, it follows
that the CCP is solvable in polynomial time. We call an instance I = (G, Q) of the
QCCP linearizable if there exists a cost vector p ∈ R

m such that xT Qx = pT x for
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all cycle covers x ∈ X . If such a vector p exists, we call p a linearization vector of Q
for the QCCP.

The QCCP linearization problem can be stated as follows: Given an instance
I = (G, Q) of the QCCP, verify whether it is linearizable and, if yes, compute a
linearization vector p of Q.

In the remaining part of this section we provide sufficient conditions for the
quadratic cost matrix Q to be linearizable. The first type of sufficient conditions for
linearizability are related to the constant value property (CVP) for cost vectors or cost
matrices. The definition associated with the CCP is stated below.

Definition 1 A cost matrix p satisfies the constant value property if pT x = pT x̄ for
all cycle covers x, x̄ ∈ X .

A similar definition holds for the quadratic version of the problem.

Definition 2 A cost matrix Q satisfies the constant value property if xT Qx = x̄ T Qx̄
for all cycle covers x, x̄ ∈ X .

When Q satisfies the constant value property then Q is linearizable, as stated by the
following proposition.

Proposition 1 Assume that Q satisfies the constant value property, i.e. xT Qx = ξ

where ξ ∈ R for all x ∈ X, then Q is linearizable with cost vector p defined as
pe = ξ/n for all e ∈ A.

Proof For all x ∈ X we have xT Qx = ξ = n ξ
n = xT p since x has exactly n nonzero

elements. 
�
Amore restricted version of the CVP is obtained when the interaction cost of a single
arc with its successor or predecessor is constant for all cycle covers x ∈ X . We refer
to these properties as the row and column constant value property, respectively. These
definitions are based on similar definitions by Punnen et al. (2018) for the QTSP.

Definition 3 A cost matrix Q satisfies the row CVP if there exists some b ∈ R
m such

that for all arcs e ∈ A we have Qef = Qeg = be for all f , g ∈ δ+(e−) and Qef = 0
otherwise. A cost matrix Q satisfies the column CVP if there exists some c ∈ R

m such
that for all arcs e ∈ A we have Q f e = Qge = ce for all f , g ∈ δ−(e+) and Q f e = 0
otherwise.

It is not hard to verify that an instance of the QCCP is linearizable if the cost matrix
Q satisfies the row or column CVP.

Proposition 2 If Q satisfies the row CVP or the column CVP, then Q is linearizable.

Proof We prove the case when Q satisfies the row CVP. Assume that b ∈ R
m is

such that for all arcs e ∈ A, Qef = Qeg = be for all f , g ∈ δ+(e−) and Qef = 0
otherwise. Since Qef = 0 when e and f are not successors, we know that xT Qx =∑

e∈A
∑

f ∈δ+(e−) Qef xex f . We have

∑

e∈A

∑

f ∈δ+(e−)

Qef xex f =
∑

e∈A

xebe
∑

f ∈δ+(e−)

x f =
∑

e∈A

xebe = xT b.
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The proof for the column CVP is similar. 
�
A matrix Q ∈ R

m×m is called a sum matrix if there exist b, c ∈ R
m such that

Qef = be + c f for all e, f . A weak sum matrix is a matrix for which this property
holds except for the entries on the diagonal, i.e., Qef = be + c f for all e �= f .
The weak sum property is used as a condition for linearizability for several quadratic
problems, see e.g., Hu and Sotirov (2018) and Punnen et al. (2018). Since in this work
we only incur a cost when two arcs are successive, we use a different form of the
weak sum condition in which we only put a restriction on successive arcs. We call this
condition the incident weak sum property.

Definition 4 A matrix Q is called incident weak sum if there exist vectors b, c ∈ R
m

such that Qef = be + c f for all e ∈ A, f ∈ δ+(e−) and Qef = 0 otherwise, i.e.,
Qef = be + c f for all pairs of arcs e, f such that f is a successor of e. If such vectors
b and c exist, these vectors are called supporting vectors of Q.

If the quadratic cost matrix Q is an incident weak sum matrix, then Q is linearizable
as stated in the following proposition.

Proposition 3 Let Q be an incident weak sum matrix with supporting vectors b, c ∈
R
m. Then Q is linearizable with cost vector p = b + c.

Proof We show that for all x ∈ X we have xT Qx = pT x where p = b+ c. Note that
we have xT Qx = ∑

e∈A
∑

f ∈δ+(e−) Qef xex f , since Qef = 0 for all arcs that are not
successors. Now,

∑

e∈A

∑

f ∈δ+(e−)

Qef xex f =
∑

e∈A

∑

f ∈δ+(e−)

(be + c f )xex f

=
∑

e∈A

bexe
∑

f ∈δ+(e−)

x f +
∑

f ∈A

c f x f

∑

e∈δ−( f +)

xe

=
∑

e∈A

bexe +
∑

f ∈A

c f x f =
∑

e∈A

pexe.

Here we use that
∑

f ∈δ+(e−) x f = ∑
e∈δ−( f +) xe = 1, since x is a cycle cover. 
�

From Proposition 3 it follows that the incident weak sum property is a sufficient
condition for Q to be linearizable. By including linear arc costs, this result remains
valid, since we only increase the entries on the diagonal of Q.

Moreover, note that when Q satisfies the row or column CVP, then Q is an incident
weak summatrix. Next, we provide a special type of instance for which the cost matrix
is not by definition linearizable, but for which we can still obtain its optimal value by
solving a linear cycle cover problem.

Definition 5 A matrix Q ∈ R
m×m is called a symmetric product matrix if Q = aaT

for some vector a ∈ R
m .

Equivalently, we can say that Q is a symmetric product matrix if it is a symmetric
positive semidefinite matrix of rank one. Instances with such a quadratic cost matrix
can be solved in polynomial time, as stated in the following proposition.
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Proposition 4 If the quadratic cost matrix Q is a symmetric product matrix, i.e. Q =
aaT for some a ∈ R

m, then the optimal cycle cover can be computed in polynomial
time.

Proof Let Q be such that Q = aaT for some a ∈ R
m . Then,

xT Qx = xT aaT x = (aT x)T (aT x) = (aT x)2.

Minimizing xT Qx over all x ∈ X is then equivalent to minimizing aT x over all cycle
covers x ∈ X . 
�

Until now we considered instances for which Q is of the desired type, i.e., Qef =
0 when f is not a successor of e. Below we derive two sufficient conditions for
linearizability of a matrix Q which can have nonzero interaction cost between non-
consecutive arcs. Although these cost matrices do not meet the assumptions of the
QCCP, we can still use them to derive strong bounds for the objective value of the
original problem. This is addressed in Sect. 4.

Punnen et al. (2018) introduce a generalized version of the weak sum property for
the QTSP. Their approach can be applied to the QCCP. However, since Punnen et al.
(2018) prove the condition to hold for complete graphs, we provide a proof for general
digraphs.

First, we define some new terminology. Instead of writing Qef for e, f ∈ A we can
also write Qi j,kl with (i, j), (k, l) ∈ A. Let N+

i denote the set of nodes j for which
there exists an arc (i, j) ∈ A, i.e., N+

i := { j ∈ N | (i, j) ∈ A}. Similarly, let N−
i be

the set of nodes j for which an arc ( j, i) ∈ A exists, i.e., N−
i := { j ∈ N | ( j, i) ∈ A}.

Now we can introduce the notion of a generalized weak sum matrix and prove that it
is linearizable.

Definition 6 Q is called a generalized weak sum matrix if there exist B,C ∈ R
m×n

and D, T ∈ R
n×m such that Qi j,kl = bi j,k + ci j,l + di,kl + t j,kl for all i, j, k, l with

(i, j), (k, l) ∈ A. If such B,C, D and T exist, these matrices are called supporting
matrices of Q.

Now we can prove the following proposition.

Proposition 5 If Q is a generalized weak summatrix with supporting matrices B,C ∈
R
m×n and D, T ∈ R

n×m, then Q is linearizable with cost vector p given by pi j =∑n
k=1 bi j,k + ∑n

k=1 ci j,k + ∑n
k=1 dk,i j + ∑n

k=1 tk,i j .

Proof Let b̄i j := ∑n
k=1 bi j,k , c̄i j := ∑n

k=1 ci j,k , d̄i j := ∑n
k=1 dk,i j , t̄i j := ∑n

k=1 tk,i j
and pi j = b̄i j + c̄i j + d̄i j + t̄i j for all (i, j) ∈ A. Then, for x ∈ X ,
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xT Qx =
∑

i∈N

∑

j∈N+
i

∑

k∈N

∑

l∈N+
k

Qi j,kl xi j xkl

=
∑

i∈N

∑

j∈N+
i

∑

k∈N

∑

l∈N+
k

bi j,k xi j xkl +
∑

i∈N

∑

j∈N+
i

∑

l∈N

∑

k∈N−
l

ci j,l xi j xkl

+
∑

k∈N

∑

l∈N+
k

∑

i∈N

∑

j∈N+
i

di,kl xi j xkl +
∑

k∈N

∑

l∈N+
k

∑

j∈N

∑

i∈N−
j

t j,kl xi j xkl

=
∑

i∈N

∑

j∈N+
i

xi j
∑

k∈N
bi j,k

∑

l∈N+
k

xkl +
∑

i∈N

∑

j∈N+
i

xi j
∑

l∈N
ci j,l

∑

k∈N−
l

xkl

+
∑

k∈N

∑

l∈N+
k

xkl
∑

i∈N
di,kl

∑

j∈N+
i

xi j +
∑

k∈N

∑

l∈N+
k

xkl
∑

j∈N
t j,kl

∑

i∈N−
j

xi j

=
∑

i∈N

∑

j∈N+
i

(b̄i j + c̄i j + d̄i j + t̄i j )xi j =
∑

i∈N

∑

j∈N+
i

pi j xi j ,

where we use the fact that
∑

l∈N+
k
xkl = ∑

k∈N−
l
xkl = ∑

j∈N+
i
xi j = ∑

i∈N−
j
xi j = 1

since x is a cycle cover. 
�
Note that an incident weak sum matrix can be seen as a special case of a generalized
weak sum matrix. That is, for all (i, j) ∈ A we set bi j, j = bi j and bi j,k = 0 for all
k �= j and for all (k, l) ∈ A we set tk,kl = tkl and t j,kl = 0 for all j �= k. Moreover, let
C and D be the zeromatrix. Thenwe have Qi j, jl = bi j, j+ci j,l+di, jl+t j, jl = bi j+t jl
for all (i, j), ( j, l) ∈ A and Qi j,kl = 0 otherwise.

When Q is a generalized weak summatrix, we need 4mn parameters to describe Q.
This number can be reduced by considering a more restricted version of a generalized
weak sum matrix.

Definition 7 Q is called a restricted generalized weak sum matrix if there exist C ∈
R
m×n , D ∈ R

n×m and b, t ∈ R
m such that Qi j, jl = bi j + ci j,l + di, jl + t jl for all

i, j, l with (i, j), ( j, l) ∈ A and Qi j,kl = ci j,l + di,kl otherwise. If such C, D and
b, t exist, these are called supporting matrices and vectors, respectively.

We can show that restricted generalized weak sum matrices are linearizable.

Proposition 6 If Q is a restricted generalized weak summatrix with supporting matri-
ces C, D and supporting vectors b, t , then Q is linearizable with vector p given by
pi j = bi j + ∑n

k=1 ci j,k + ∑n
k=1 dk,i j + ti j .

Proof Define B ∈ R
m×n and T ∈ R

n×m as follows:

Bi j,k =
{
bi j if k = j

0 otherwise
∀(i, j) ∈ A, ∀k ∈ N

Tk,i j =
{
ti j if k = i

0 otherwise
∀(i, j) ∈ A, ∀k ∈ N
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Now the matrices B,C, D and T are such that they satisfy the conditions of Proposi-
tion 5. This implies that Q is linearizable with vector p′ given by p′

i j = ∑n
k=1 bi j,k +

∑n
k=1 ci j,k + ∑n

k=1 dk,i j + ∑n
k=1 tk,i j . Since

∑n
k=1 bi j,k = bi j and

∑n
k=1 tk,i j = ti j

it follows that Q is linearizable with vector p := bi j +∑n
k=1 bi j,k +∑n

k=1 dk,i j + ti j .

�

4 Linearization based bounds for theQCCP

In this section we show how the sufficient conditions for linearizability can be used to
derive bounds for the optimal value of the QCCP. The construction of these bounds is
provided in Sect. 4.1. Section 4.2 shows some preliminary numerical results of these
bounding procedures.

4.1 Construction of linearization based bounds

When an instance of theQCCP is linearizable, we can solve the problem in polynomial
time by solving the corresponding linear cycle cover problem. When a quadratic cost
matrix Q is not linearizable, we can still use the sufficient conditions for linearizability
to find lower bounds for the optimal value of the problem. This approach is introduced
by Hu and Sotirov (2019) for general binary quadratic problems. We here use tailor
made sufficient conditions for the QCCP, which leads to efficient lower bounds as we
show later in the numerical results.

Before we proceed, let us recall the linear cycle cover problem. We introduce the
matrixU ∈ R

n×m withUie = 1 if node i is the starting node of arc e and 0 otherwise.
Similarly, we define V ∈ R

n×m with Vie = 1 if node i is the ending node of arc e and
0 otherwise. Since the matrix [UT , V T ]T is totally unimodular, the optimal value of
the CCP using cost vector p equals

OPT (p) := min
x∈Rm

{pT x |
[
U
V

]

x = 12n , x ≥ 0} (4)

= max
y∈R2n

{1T
2n y | [UT , V T ]y ≤ p}, (5)

where 12n ∈ R
2n equals the vector of ones. Note that (3) and (4) are equivalent

optimization problems. The corresponding dual problem is given in (5).
When Q is linearizable with linearization vector p, we can find the optimal value

for theQCCP by computing OPT (p) using (4) or (5). If Q is not linearizable, we can
search for a linearizablematrix Q̂ that is as close as possible toQ. Toguarantee that Q̂ is
indeed linearizable, it should satisfy one of the sufficient conditions for linearizability
derived in Sect. 3. We define the sets Si (Q), for i = 1, 2, 3, consisting of cost matrices
Q̂ such that Q̂ is linearizable w.r.t. a sufficient condition for linearizability and Q− Q̂
is elementwise nonnegative. We have
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S1(Q) := {Q̂ ∈ R
m×m | Q̂ is an incident weak sum matrix and Q − Q̂ ≥ 0},

S2(Q) := {Q̂ ∈ R
m×m | Q̂ is a restricted generalized weak sum matrix and

Q − Q̂ ≥ 0},
S3(Q) := {Q̂ ∈ R

m×m | Q̂ is a generalized weak sum matrix and Q − Q̂ ≥ 0}.

Remark 1 We do not consider the sets of cost matrices Q satisfying the row or column
CVP, since these are special types of incident weak sum matrices. These type of
matrices are contained in S1.

Si (Q) can be seen as the set of all the linearizable cost matrices of a specific type that
are suitable for obtaining lower bounds for the optimal value of the problem. For this
purpose, we define for i = 1, 2, 3 the set τi (Q) of cost vectors p̂ ∈ R

m as

τi (Q) := { p̂ ∈ R
m | xT p̂ = xT Q̂x for all x ∈ X , Q̂ ∈ Si (Q)}.

It is clear that for all i and all p̂ ∈ τi (Q) we have

OPT (Q) = min
x∈X {xT Qx} ≥ min

x∈X {xT Q̂x} = min
x∈X {xT p̂} = OPT ( p̂).

So, indeed, OPT ( p̂) is a lower bound for the optimal objective value of the QCCP
for all i and p̂ ∈ τi (Q). By maximizing over all cost vectors in τi (Q), we obtain the
strongest linearization based bound with respect to the set Si (Q), which we denote by
viLBB , see also Hu and Sotirov (2019):

viLBB := max
p̂∈τi (Q)

{OPT ( p̂)} = max
y∈R2n

p̂∈Rm

{1T
2n y | [UT , V T ]y ≤ p̂ , p̂ ∈ τi (Q)}. (6)

The corresponding bounding approaches are denoted by LBB1, LBB2 and LBB3,
respectively.

Remark 2 Recall that the matrices in S2(Q) and S3(Q) can have nonzero interaction
cost for non-consecutive arcs, so they do not satisfy the assumptions on the quadratic
cost matrix of the QCCP. Nevertheless, they can still be used to derive lower bounds
for the original problem. In other words, we search for the general quadratic cost
matrix that is linearizable and as close as possible to Q that gives us the best lower
bound.

As long as the set τi (Q) is a polyhedron, the corresponding bound viLBB can be
calculated by solving the linear programming problem (6). The sets τi (Q) for i =
1, 2, 3 are indeed nonempty polyhedra, since they can be described by a finite number
of linear equalities and inequalities. These polyhedral descriptions are provided in
Table 1.

By construction, we have τ1(Q) ⊆ τ2(Q) ⊆ τ3(Q) for all quadratic cost matri-
ces Q. Consequently, we can establish the following result about the quality of the
corresponding linearization based bounds.
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Table 1 Polyhedral descriptions of the sets τ1(Q), τ2(Q) and τ3(Q)

Set Type of cost
matrix

(In)equalities which describe the set

τ1(Q) Incident weak
sum matrix

be + c f ≤ Qef
p̂e = be + ce b, c ∈ R

m
∀e ∈ A, f ∈ δ+(e−)

∀e ∈ A

τ2(Q) Restricted
generalized
weak sum
matrix

bi j + ci j ,l + di, jl + t jl ≤ Qi j , jl
ci j ,l + di,kl ≤ Qi j ,kl
p̂i j = bi j + ∑n

k=1 ci j ,k + ∑n
k=1 dk,i j + ti j

b, t ∈ R
m ,C ∈ R

m×n , D ∈ R
n×m

∀(i, j), ( j, l) ∈ A
∀(i, j), (k, l) ∈ A, j �= k
∀(i, j) ∈ A

τ3(Q) Generalized weak
sum matrix

bi j ,k + ci j ,l + di,kl + t j ,kl ≤ Qi j ,kl
p̂i j = ∑n

k=1 bi j ,k + ∑n
k=1 ci j ,k+ ∑n

k=1 dk,i j + ∑n
k=1 tk,i j

B,C ∈ R
m×n , D, T ∈ R

n×m

∀(i, j), (k, l) ∈ A
∀(i, j) ∈ A

Theorem 2 For all instances of the QCCP, we have v1LBB ≤ v2LBB ≤ v3LBB.

Proof The proof follows immediately from the construction of the linearization based
bounds and the definitions of the incident weak sum matrix, the restricted generalized
weak sum matrix and the generalized weak sum matrix. 
�
Hu and Sotirov (2019) argue that the linearization based bounds can be improved by
extending the sets τi (Q) using a skew symmetric matrix M . That is, since each skew
symmetric matrix is linearizable, a matrix Q̂ is linearizable if and only if Q̂ + M is
linearizable for all M with M + MT = 0. Using this, the set τ1(Q) can be extended
to:

τ skew1 (Q) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p̂ ∈ R
m

be + c f + Mef ≤ Qef , ∀e ∈ A, f ∈ δ+(e−)

p̂e = be + ce, ∀e ∈ A

Mef = 0, ∀e ∈ A, f /∈ δ+(e−)

b, c ∈ R
m, M ∈ R

m×m, M + MT = 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(7)

Note that in τ skew1 (Q) we only include skew symmetric matrices whose support cor-
responds to the pairs of successive arcs in G, since adding dense skew symmetric
matrices would increase computational complexity. Since τ1(Q) ⊆ τ skew1 (Q), it fol-
lows that we can obtain a stronger bound by maximizing over τ skew1 (Q), see Sect. 8.
The same extension can be applied to any set τi (Q).

4.2 Preliminary results

In order to check the quality of the bounds derived above, we perform a preliminary
numerical study. We create instances according to the G(n, p) Erdős–Rényi model
(Erdős and Rényi 1959). Here n equals the number of nodes and p equals the proba-
bility that an arc is included. We create instances for various values of n and p. The
interaction cost between any two successive arcs is drawn uniformly at random as an
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Table 2 Bounds and computation times in seconds of linearization based bounds on Erdős–Rényi instances

p n m OPT LBB1 LBB2 LBB3

Bound Time Bound Time Bound Time

0.1 20 44 923 923 0.047 923 0.264 923 0.051

25 76 1039 971 0.005 971 0.477 999 1.227

30 100 1082 1066 0.013 1066 0.899 1082 0.787

0.3 15 61 485 478 0.010 478 0.635 485 0.714

20 118 438 377 0.031 384 1.265 390 77.21

25 172 382 291 0.050 295 2.531 295 869.0

0.5 15 116 226 215 0.034 215 1.407 215 90.39

20 177 255 189 0.059 190 12.05 190 2105

25 306 n.a. 172 0.516 173 353.6 n.a. 3600

0.7 15 149 173 127 0.017 128 0.986 128 580.5

20 263 n.a. 116 0.094 116 7.778 n.a. 3600

25 396 n.a. 129 0.194 129 18.26 n.a. 3600

integer from {1, . . . , 100}. In Table 2 we present the bounds v1LBB, v2LBB and v3LBB
and the computational times required for computing them. Experiments are performed
using a pcwith an Intel(R) Core(TM) i5-6500CPU, 3.20GHz and 8GBmemory using
CPLEX 12.6 as the solver. The maximum computation time is set to 3600s and we
put ‘n.a.’ in the table when this maximum is reached before a solution is obtained.

By construction, the optimal solution has always an integer objective value. There-
fore, we round up all bounds to the nearest integer. The results of Table 2 show that
the linearization based bounds LBB1, LBB2 and LBB3 do not differ significantly,
especially for the larger instances. At the same time, the computation times differ
significantly. It turns out that LBB1 is most efficient. Therefore, this bound can be
preferred when taking both quality and efficiency into account.

5 Reformulated LBB approach

In this section we discuss how a reformulation of the quadratic cost matrix can be used
to obtain a non-decreasing sequence of lower bounds that are based on the linearization
based bound. It is important to note that one can construct such a bounding procedure
using any sufficient condition for linearizability, not only the ones discussed in Sect. 4.

Suppose we are given a sufficient condition for linearizability. Let S(Q) and τ(Q)

be as in Sect. 4, but now for a general sufficient condition. That is, S(Q) is the set
consisting of all linearizable cost matrices Q̂ of this type with Q̂ ≤ Q and τ(Q)

consists of the corresponding linearization vectors. Moreover, we assume that the set
τ(Q) is a polyhedral set. Let Q0 be the initial quadratic cost matrix. If Q̂0 ∈ S(Q0),
we know there exists some p1 ∈ τ(Q0) such that xT Q̂0x = xT p1 for all x ∈ X . This
leads to the following reformulation of the objective function

123



1112 Journal of Combinatorial Optimization (2020) 39:1096–1128

xT Q0x = xT Q̂0x + xT (Q0 − Q̂0)x = xT p1 + xT (Q0 − Q̂0)x (8)

for all cycle covers x ∈ X . By letting p0 be them×1 zero vector and Q1 := Q0− Q̂0,
this relation can be written as xT p0 + xT Q0x = xT p1 + xT Q1x for all x ∈ X . The
vector p1 is taken to be the largest linearization of the matrix Q0 (see (6)) with Q1
being the residual quadratic part. Recall that the bound vLBB is calculated by only
taking the linear part of this new objective function into account. By construction we
have xT p0 ≤ xT p1 for all x ∈ X and 0 ≤ Q1 ≤ Q0.

Now we can proceed in a similar way by considering the linearization problem
of the residual cost matrix Q1. In other words, we search for a linearizable matrix
in S(Q1) and its corresponding linearization vector p2. If we let Q2 be the new
residual matrix, then the objective function can be reformulated as xT p0 + xT Q0x =
xT (p1+ p2)+xT Q2x . Since xT p1 ≤ xT (p1+ p2), a stronger bound can be obtained.
This procedure can be repeated to obtain a sequence of bounds.However, it is in general
not possible to find a vector p2 for which this bound has strictly improved. That is,
since p1 + p2 ∈ τ(Q0) this would imply that p1 is not the optimal solution to (6).
Thus, applying this procedure iteratively, the resulting sequence of bounds remains
constant after the first iteration. To overcome this issue, we need to reformulate the
residual cost matrix in each step.

In the literature, various iterative bounding procedures have been proposed, see
e.g., Burkard et al. (2009), Punnen et al. (2019), Rostami and Malucelli (2015) and
Rostami et al. (2018). In this paper we introduce a new approach that is different in
two ways. First, the existing bounding procedures are mainly based on the classical
Gilmore–Lawler type bound. Our approach is based on general sufficient conditions
for linearizability and we can show that the Gilmore–Lawler type bounding procedure
is a special case of this approach, see Sect. 6. Second, the existing bounding procedures
mostly use a fixed reformulation of the cost matrix in each iteration. However, using
a fixed reformulation is in general not the best one can do. Here, we search for the
reformulation of the cost matrix that results in the strongest bound in the next iteration.
For this purpose, we define the notion of an equivalent representation of a matrix, see
e.g., Punnen et al. (2019).

Definition 8 Let (G, Q) be an instance of the QCCP. Then (G, R) is an equivalent
representation of (G, Q) if xT Qx = xT Rx for all x ∈ X .

If there is no confusion about the graph G under consideration, we say that R is an
equivalent representation of Q. It is easy to verify that a matrix R is an equivalent
representation of Q if for all e, f ∈ A we have Ref + R f e = Qef + Q f e. Here, we
focus on a specific type of equivalent representation, which we call an η-equivalent
representation of Q.

Definition 9 Given η ∈ [0, 1], an equivalent representation Qη := ηQ + (1 − η)QT

of Q is called an η-equivalent representation.

In other words, an η-equivalent representation is obtained by taking a convex combina-
tion of Q and QT . Moreover, it follows that if R and Q are equivalent representations,
then a linearization of R is also a linearization of Q and vice versa.
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Instead of considering the linearization problem of the residual matrix Q1, we can
consider the linearization problem of Qη

1 for some η ∈ [0, 1]. Since Qη
1 has a different

structure than Q1, it is in general possible to find a linearizable matrix Q̂1 ∈ S(Qη
1)

and a corresponding linearization vector that result in a strictly stronger bound.
As already mentioned above, many approaches in the literature are based on taking

a fixed value for η, e.g. η = 1
2 which corresponds to the case of symmetrizing. This

does not give the best bound in general. Instead, we search for η ∈ [0, 1] that results
in the strongest bound in each iteration. Suppose we are in step k of the algorithm in
which we consider the linearization problem of the residual matrix Qk−1. Then the
optimal equivalent representation of Qk−1 and its corresponding vector pk ∈ τ(Qη

k−1)

can be computed simultaneously by solving the following problem:

rk := max
y∈R2n

pk∈Rm

η∈[0,1]

{1T
2n y | [UT , V T ]y ≤ pk, pk ∈ τ(Qη

k−1)}, (9)

which equals the additional amount of quadratic cost that can be linearized in iteration
k. Note that if the set τ(Qk−1) is a polyhedron, then τ(Qη

k−1) is also a polyhedron and
the corresponding problem (9) can be solved in polynomial time. For the sufficient
conditions mentioned in Sect. 4 this is indeed the case.

Finally, we provide a newbounding procedure that is based on iteratively finding the
best equivalent representation of the residual cost matrix and its optimal linearizable
matrix. Starting with Q0 = Q, the goal is to find the best linearizable matrix Q̂k−1
of an equivalent representation of the residual matrix Qk−1 and its corresponding
linearization vector pk . In each iteration we compute rk by (9) and let dk = dk−1 + pk
which equals the total linearization vector of Q. The final bound is given by the sum
of all rk’s, which we call the reformulation based bound. The procedure is given in
Algorithm 1.

Algorithm 1 LBB Reformulation Algorithm
1: Q0 = Q, d0 = 0, k = 1, r0 = ∞
2: while rk−1 > 0 do
3: Compute rk , pk and η using (9).
4: Construct the linearizable matrix Q̂k−1 using the optimal solution of (9). � See Remark 3
5: Qk ← ηQk−1 + (1 − η)QT

k−1 − Q̂k−1
6: dk ← dk−1 + pk
7: k ← k + 1
8: end while
9: vRBB = ∑k−1

i=1 ri
10: return dk , vRBB

Remark 3 Note that steps 3 and 4 of Algorithm 1 depend on the specific sufficient
condition for linearizability. For instance, for the incident weak sum condition we
construct in step 4 the linearizable matrix Q̂k−1 in the following way (Q̂k−1)e f :=
be + c f for all e ∈ A, f ∈ δ+(e−) and (Q̂k−1)e f := 0 otherwise, where b, c ∈ R

m

are obtained from (9).
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Hu and Sotirov (2019) show that in the case that the linearizable matrix Q̂ is of the
form Q̂ = [UT , V T ]Y +Diag(z) for some Y ∈ R

2n×m and z ∈ R
m , the bound vRBB

is dominated by the solution of the first level RLT relaxation introduced by Adams
and Sherali (1986, 1990). Here RLT stands for reformulation linearization technique.
In Hu and Sotirov (2019) it is moreover shown that the first level RLT bound, denoted
by vRLT 1, can be obtained by searching for the optimal linearizable matrix Q̂ of the
form Q̂ = [UT , V T ]Y + M + Diag(z) where M is a skew symmetric matrix.

Our preliminary numerical results show that the above algorithm does not improve
significantly the LBB1 bound. However, in the next sectionwe show that our approach
outperforms known iterative approaches related to the Gilmore–Lawler bounds.

6 The Gilmore–Lawler type bound

In this section we consider the classical Gilmore–Lawler type bound. The GL proce-
dure is awell-knownapproach to construct lower bounds for quadratic 0-1optimization
problems, see e.g., Gilmore (1962), Lawler (1963), Rostami andMalucelli (2015) and
Rostami et al. (2018).We provide a compact formulation of theGL type bound that can
be used to compute the bound by a single LP-problem, instead of solving m subprob-
lems. Moreover, we show that this bound in fact belongs to the family of linearization
based bounds. Therefore, based on the results of Sect. 5, we provide a bounding proce-
dure that computes the best GL type bound in each step of the algorithm.We conclude
this section by testing this new bounding procedure on some preliminary test instances.

6.1 The classical GL type bound

In the objective function of the QCCP, see (1), we have the quadratic term xex f for
each two arcs e, f ∈ A placed in succession on a cycle. To get rid of this quadratic
term, for each given arc e ∈ A, potentially in the solution, we consider the cycle
cover containing e with minimum interaction cost with e. We denote this minimum
contribution of arc e to a solution by ze. In particular, for all e ∈ A we have

ze := min{Qe,:x | x ∈ X , xe = 1}, (Pe)

where Qe,: denotes the eth row of the cost matrix Q. The feasible set of (Pe) equals
the set of all node-disjoint cycle covers containing arc e. If this set is empty, then we
set ze equal to 0 since arc e cannot contribute to a cycle cover.

Let z ∈ R
m be the vector consisting of the elements ze for all e ∈ A. Then the

classical GL type bound is obtained by solving the following CCP:

vGL := min{zT x | x ∈ X}. (GL)

Note that the constraint matrices of (Pe) and (GL) are totally unimodular. For this
reason, we can drop the integrality constraints and solve (GL) and (Pe) for all e ∈ A
as linear programming problems.
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Besides computing the GL type bound by solving (GL) and (Pe) for all e ∈ A,
we can also obtain its value by solving an integer linear programming (ILP) problem.
The problem (GLI LP ) is defined as follows:

(GLI LP ) min
∑

e∈A

∑

f ∈A

Qef ye f

s.t.
∑

f ∈δ+(i)

ye f =
∑

f ∈δ−(i)

ye f = xe ∀i ∈ N ,∀e ∈ A
(10)

yee = xe ∀e ∈ A (11)

ye f ∈ {0, 1}, x ∈ X ∀e, f ∈ A (12)

It follows from the constraints that if xe = 1, then ye,: := [ye1, . . . , yem] is the
characteristic vector of the cheapest cycle cover containing arc e and if xe = 0, then
ye,: equals the zero vector.

Let (CGL I LP ) be the continuous relaxation of (GLI LP ). In this continuous relax-
ation we can omit the upper bounds on xe and ye f for all e, f ∈ A, since it is never
optimal to set the value of these variables larger than one. We can compute the GL
type bound by solving (CGL I LP ) as stated by the following theorem. This theorem
is based on a similar result for the QMST, see Rostami and Malucelli (2015).

Theorem 3 The optimal value of (CGL I LP ) equals vGL.

Proof Let λe,i and αe,i be the dual variables corresponding to constraints (10), i.e.
λe,i corresponds to

∑
f ∈δ+(i) ye f = xe and αe,i corresponds to

∑
f ∈δ−(i) ye f = xe.

Similarly, let μi and γi be the dual variables corresponding to the first and second
equalities of constraints (2), and θe the dual variable corresponding to constraints
(11). The dual problem of (CGL I LP ) is as follows:

(DCGLI LP ) max
∑

i∈N
μi +

∑

i∈N
γi

s.t. λe, f + + αe, f − ≤ Qef ∀e, f ∈ A, f �= e
(13)

λe,e+ + αe,e− + θe ≤ Qee ∀e ∈ A
(14)

−
∑

i∈N
λe,i −

∑

i∈N
αe,i + γe− + μe+ − θe ≤ 0 ∀e ∈ A.

(15)

Constraint (15) can be rewritten as γe− + μe+ ≤ ∑
i∈N λe,i + ∑

i∈N αe,i + θe for all
e ∈ A. In order to maximize the objective function of (DCGLI LP ), we maximize the
right hand side of this inequality subject to constraints (13)–(14). This gives for each
e ∈ A the following subproblem:
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z′e := max

{
∑

i∈N
λe,i +

∑

i∈N
αe,i + θe | (13), (14)

}

. (DCPe)

For each fixed e ∈ A the subproblem given above equals the dual of the continuous
relaxation of (Pe). By strong duality we know z′e = ze for all e ∈ A. Substitution of
this term into constraint (15) gives a rewritten formulation for (DCGLI LP ):

max

{
∑

i∈N
μi +

∑

i∈N
γi | μe+ + γe− ≤ ze ∀e ∈ A

}

.

This problem equals the dual of the continuous relaxation of (GL). Because of strong
duality, it follows that the optimal objective value of (CGL I LP ) equals vGL . 
�
We can show that the Gilmore–Lawler type bound for the QCCP in fact belongs to
the family of linearization based bounds introduced in Sect. 4. That is, we can obtain
vGL by searching for a linearizable quadratic cost matrix Q̂ of a specific type that is
as close as possible to Q. The required linearizability condition on Q̂ is given below,
and it differs from the sufficient conditions presented in Sect. 3.

Proposition 7 If there exists B,C ∈ R
m×n and t ∈ R

m such that Qef = Be, f ++Ce, f −
for e �= f and Qee = Be,e+ + Ce,e− + te for all e ∈ A, then Q is linearizable with
vector p given by pe = te + ∑n

i=1 Be,i + ∑n
i=1 Ce,i .

Proof Let Q̃ be defined as Q̃e f = Be, f + + Ce, f − for all e, f ∈ A. Then Q̃ can
be seen as a generalized weak sum matrix where D and T are equal to the zero
matrix, see Definition 6. According to Proposition 5, Q̃ is linearizable with vector
p̃ = ∑n

i=1 Be,i +∑n
i=1 Ce,i . Since Q = Q̃+Diag(t), it follows that Q is linearizable

with vector p given by pe = te + ∑n
i=1 Be,i + ∑n

i=1 Ce,i . 
�
Similar to the notation used in Sect. 4, let SGL(Q) denote the set of all linearizable
cost matrices Q̂ ∈ R

m×m that satisfy the conditions of Proposition 7. Moreover, let
τGL(Q) be the following polyhedron:

τGL(Q) := { p̂ ∈ R
m | xT p̂ = xT Q̂x for all x ∈ X , Q̂ ∈ SGL(Q)}, (16)

and

vGL
LBB := max

y∈R2n

p̂∈Rm

{1T
2n y | [UT , V T ]y ≤ p̂, p̂ ∈ τGL(Q)}. (17)

Now we prove the main result of this section which states that the classical Gilmore–
Lawler type bound can be seen as a special case of linearization based bound.

Theorem 4 We have vGL
LBB = vGL.
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Proof By using the polyhedral description of SGL(Q) following from Proposition 7,
the optimization problem in (17) can be written as follows:

vGL
LBB = max

2n∑

i=1

yi (18)

s.t. [UT , V T ]y ≤ p̂ (19)

Be, f + + Ce, f − ≤ Qef ∀e, f ∈ A, f �= e (20)

Be,e+ + Ce,e− + te ≤ Qee ∀e ∈ A (21)

p̂e = te +
n∑

i=1

Be,i +
n∑

i=1

Ce,i ∀e ∈ A (22)

y ∈ R
2n, p̂, t ∈ R

m, B,C ∈ R
m×n . (23)

We show that this optimization problem is equivalent to (DCGLI LP ), the dual prob-
lem of the continuous relaxation of (GLI LP ). Take Be,i = λe,i and Ce,i = αe,i for
all e ∈ A and i ∈ N , where λ and α denote the dual vectors belonging to constraints
(10). Similarly, let t = θ where θ equals the dual vector to constraints (11). Finally,
let y = [μT , γ T ]T , where μ and γ are the dual variables belonging to constraints (2).
By substitution of these variables and combining constraints (19) and (22), we obtain
the problem (DCGLI LP ), i.e., the dual of (CGL I LP ). Thus, we have vGL

LBB = vGL .

�

Theorem 4 shows that the GL type bound belongs to the family of linearization based
bounds. This is also shown by Hu and Sotirov (2019) and Rostami et al. (2018), how-
ever our proof is very different as we exploit the fact that vGL can be obtained by
solving an LP problem, i.e., (CGL I LP ). Additionally, we show here that the compu-
tation of the GL type bound is equivalent to the search for the optimal linearizable
cost matrix Q̂ satisfying the properties of Proposition 7.

6.2 The best Gilmore–Lawler type bound

Section 6.1 shows that the calculation of the classical GL type bound fits in the general
framework discussed in Sect. 4. In this section we apply the reformulation procedure
of Sect. 5 to the GL type bound. We also show that our approach outperforms several
iterative approaches from the literature.

In order to apply Algorithm 1 to the sufficient condition for linearizability of Propo-
sition 7, we need to define how to calculate rk for each iteration k, see (9). We rewrite
the set τGL(Q), see (16), as follows:

τGL(Q) = { p̂ ∈ R
m | t ∈ R

m, B,C ∈ R
m×n, (20), (21), (22)},

which is clearly a polyhedron. Then for all k ≥ 1 we calculate the additional amount
of quadratic cost that is linearized by solving:
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rk := max
y∈R2n

pk∈Rm

η∈[0,1]

{1T
2n y | [UT , V T ]y = pk, pk ∈ τGL(Qη

k−1)}. (24)

Observe that as opposed to the constraints in (9), we have replaced the constraint
[UT , V T ]y ≤ pk by an equality constraint. This does not change the value of rk . To
verify this, suppose we solve (24) using the inequality constraint [UT , V T ]y ≤ pk
and let ŷ, p̂k and t̂ be the corresponding optimal solutions. Let e ∈ A be such that the
inequality constraint is satisfied with strict inequality. Then without changing ŷ, we
can reduce t̂e (and thus p̂e) such that we get equality for e ∈ A. Although it changes
the linearization vector p̂, the resulting bound remains equal. To verify this, notice that
only the left hand side of constraint (21) is decreased, so the solution is still feasible
and the optimal value rk remains unchanged. From this, it follows that onemay replace
[UT , V T ]y ≤ pk by an equality constraint and solve rk as in (24).

Algorithm 1 using (24) to compute rk, pk and η gives a new bounding procedure for
the QCCP. We call the resulting bound the reformulated GL type bound (RGL) and
denote its value by vRGL . By construction, it iteratively computes the best Gilmore–
Lawler type bound among all equivalent representations of the quadratic cost matrix.

The algorithm proposed in this section satisfies another interesting property, namely
the vectors dk satisfy the constant value property for all k ≥ 0. This is an important
property for linearizability because the set of linearizable cost matrices for combinato-
rial optimization problems with interaction costs can be characterized by the constant
value property, under certain conditions, see Lendl et al. (2019).

Theorem 5 All dk where k ≥ 0 computed during the RGL approach, satisfy the
constant value property, i.e., we have xT dk = x̄ T dk for all feasible cycle covers
x, x̄ ∈ X.

Proof We apply a proof by induction on k. Note that the vector d0 equals the m × 1
vector of zeros which trivially satisfies the constant value property.

Now assume that the induction hypothesis is true for iteration k−1, i.e., xT dk−1 =
x̄ T dk−1 for all feasible cycle covers x, x̄ ∈ X . In iteration k we solve (24). Let ŷ ∈ R

2n

and p̂ ∈ R
m be the optimal variables for this problem and split ŷ = [μT , λT ]T with

μ, λ ∈ R
n . It follows that [UT , V T ]ŷ = UTμ + V T λ = p̂. Now let x ∈ X be any

feasible cycle cover in G. Then we can sum up the rows of this system of equalities
for all arcs e ∈ A in the cycle cover implied by x :

∑

{e∈A:xe=1}
(μe+ + λe−) =

∑

{e∈A:xe=1}
p̂e ⇔

∑

i∈N
μi +

∑

i∈N
λi = xT p̂

where we use the fact that each vertex is visited exactly once on a cycle cover. So the
quantity xT p̂ is equal for all x ∈ X . As a result, p̂ satisfies the constant value property.

The vector dk is constructed as dk−1 + pk with pk = p̂. Since dk−1 and p̂ satisfy
the constant value property, it follows that dk satisfies the constant value property. 
�
Remark 4 Since the GL type bound can be computed both as a linearization based
bound and by solving (CGL I LP ) (see Theorem 4), the iterative approach derived in
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Table 3 Bounds and computation times in seconds of GL type bounds on Erdős–Rényi instances

p n m OPT GL RGLsym RGL

Bound Time Bound Time Bound Time

0.1 20 44 923 923 0.017 923 0.015 923 0.088

25 76 1039 681 0.039 864 4.652 1018 95.52

30 100 1082 781 0.053 899 2.412 1082 15.18

0.3 15 61 485 347 0.061 368 1.481 485 7.140

20 118 438 223 0.068 263 3.482 418 3600

25 172 382 176 0.136 190 5.105 276 3600

0.5 15 116 226 102 0.336 110 2.602 222 1835

20 177 255 93 0.118 103 5.365 169 3600

25 306 n.a. 66 0.296 75 13.80 105 3600

0.7 15 149 173 63 0.080 67 3.530 117 1236

20 263 n.a. 52 0.181 54 9.624 63 269.3

25 396 n.a. 56 0.365 62 18.77 79 1085

this section can also be defined in terms of (CGL I LP ). In that case, we iteratively
compute vGL and reformulate the quadratic cost matrix using the dual variables of
(CGL I LP ). The details of this equivalent approach can be found in Meijer (2018).

Since the linearizable matrix Q̂ of Proposition 7 can be written in the form Q̂ =
[UT , V T ]Y + Diag(z) for some Y ∈ R

2n×m and z ∈ R
m , it follows from Hu and

Sotirov (2019) that we have vRGL ≤ vRLT 1.

6.3 Preliminary results

For the instances considered in the preliminary results of Sect. 4, we now test
our Gilmore–Lawler type bounds. First, we compute the classical GL type bound,
after symmetrizing the quadratic cost matrix Q. This bound is denoted by GL .
Moreover, we consider the iterative GL type bounding approach where we sym-
metrize the quadratic cost matrix in each iteration. That is, we apply Algorithm 1
using (24) where instead of optimizing over η, we set η = 1

2 . We denote this
bound by RGLsym . Finally, we report the bound RGL which is introduced in
Sect. 6.2. The maximum computation time is set at 3600s. The results are given
in Table 3.

From Table 3 it follows that the iterative approaches significantly improve the
classical GL type bound. Among these iterative approaches, RGL provides much
stronger bounds than RGLsym . We conclude that this new approach of calculating the
best GL type bound in each step provides better bounds than when setting η = 1

2 in
the reformulation. However, it turns out that this improvement in the quality comes at
the cost of efficiency. Clearly, we can stop our algorithm after a pre-specified number
of iterations and/or time.
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7 Other bounds for theQCCP

In this section we present several known bounding approaches from the literature that
can be applied to the QCCP. In the next section, we compare those bounds with the
bounds introduced in this paper. We consider a column generation approach and a
mixed integer linear programming (MILP) based bound.

Galbiati et al. (2014) construct a column generation approach for theMinRC3. This
approach can be extended to the QCCP. To the best of our knowledge, this is the only
implemented lower bounding approach for the MinRC3 in the literature.

Let C be the set of all directed cycles in G. Moreover, let C ⊆ C be a subset of
cycles such that it contains at least one cycle cover. Letwc be the cost of a cycle c ∈ C.
Then the restricted master problem (RMP) is given by:

(RMP) min
y

∑

c∈C
wc yc

s.t.
∑

c∈C:i∈c
yc = 1 ∀i ∈ N

(25)

yc ≥ 0 ∀c ∈ C. (26)

Let π ∈ R
n be the vector of dual variables corresponding to constraint (25). Then

the subproblem (SP) searches for the cycle in C with the smallest (negative) reduced
costs with respect to π , i.e.

(SP) min
x,z

{xT Qx − zTπ |
∑

e∈δ+(i)

xe =
∑

e∈δ−(i)

xe = zi ∀i ∈ N ,

∑

e∈A

xe ≥ 2, x ∈ {0, 1}m, z ∈ {0, 1}n},

where zi = 1 if vertex i is on the cycle and 0 otherwise. As stated in Galbiati et al.
(2014), the problem (SP) is strongly NP-hard itself. The quadratic objective function
can be linearized by standard linearization techniques. A lower bound on the optimal
value of the QCCP can be obtained by iteratively solving the master problem and its
corresponding subproblem. If a cycle with negative reduced cost is found, we add it
to the set C. This procedure is repeated until no more cycle with negative reduced cost
is found or after some predefined stopping criteria. The obtained bound is denoted by
vCG .

Based on a procedure by Glover (1975) and Adams et al. (2004), we present the
QCCP as an MILP problem. Let us first fix an equivalent representation of (G, Q).
Let ze be computed as in (Pe) for all e ∈ A, see Sect. 6.1. Moreover, we define for all
e ∈ A

qmax
e := max{Qe,:x : x ∈ X , xe = 0}.
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Note that qmax
e can be obtained by solving a linear programming problem. Then the

QCCP can be formulated as an MILP:

(MI LP) min
x,y

∑

e∈A

ye

s.t. ye ≥ zexe ∀e ∈ A

(27)

ye ≥ Qe,:x − qmax
e (1 − xe) ∀e ∈ A

x ∈ X , y ∈ R
m .

(28)

If we relax the binary constraint on x , then we obtain a lower bound for the QCCP.
We call this bound the MILP based bound and we denote its value by vMI LP . The
next result shows that vMI LP is at least as large as the Gilmore–Lawler type bound.

Theorem 6 The MILP based bound dominates the Gilmore–Lawler type bound, i.e.,
vGL ≤ vMI LP .

Proof Letβ, δ ∈ R
m+ denote the dual variables of (27) and (28), respectively.Moreover,

letμ, γ ∈ R
n denote the dual variables of the cycle cover constraints

∑
e∈δ+(i) xe = 1

and
∑

e∈δ−(i) xe = 1 for all i ∈ N , respectively. Then the dual of the MILP based
bound equals

(DMI LP) vMI LP := max
β,δ,μ,γ

∑
i∈N μi + ∑

i∈N γi − ∑
e∈A δeqmax

e

s.t. βe + δe = 1 ∀e∈ A
μe+ + γe− ≤ zeβe + δT Q:,e + δeqmax

e ∀e∈ A
βe, δe ≥ 0 ∀e∈ A,

where Q:,e equals the eth column of Q. Now set δe = 0 for all e ∈ A. Then, βe = 1
for all e ∈ A due to the first set of constraints above. Then, (DMI LP) reduces to

max
μ,γ

∑

i∈N
μi +

∑

i∈N
γi

s.t. μe+ + γe− ≤ ze ∀e ∈ A.

This problem equals the dual of the continuous relaxation of (GL). Hence, it follows
that vGL ≤ vMI LP . 
�
Note the MILP based bound and the Gilmore–Lawler type bound are comparable if
the same equivalent reformulation of (G, Q) is used in their computations.

8 Numerical results

In this section we test our bounding approaches on a set of test instances and compare
themwith several approaches from the literature.We take into account the linearization
based bound LBB1 from Sect. 4.1, the classical GL type bound GL from Sect. 6.1,
the reformulated GL type bound RGL discussed in Sect. 6.2, the column generation
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approach CG and the MILP based bound MI LP from Sect. 7, and the first level
RLT bound RLT 1, see Adams and Sherali (1986, 1990). The GL bound and the
MILP based bound are computed after symmetrizing Q. Note that we do not take into
account LBB2 and LBB3, since our preliminary experiments from Sect. 4.2 show
that LBB1 is preferred when taking both quality and efficiency into account.

All lower bounds are implemented in Matlab on a pc with an Intel(R) Core(TM)
i5-6500 CPU, 3.20 GHz and 8 GB memory using CPLEX 12.6 as the solver.
We consider the following types of instances:

– Erdős-Rényi instances These instances are created via the G(n, p) Erdős–Rényi
model (Erdős and Rényi 1959). The number of nodes is fixed to n and each arc
is included with probability p independent of the other arcs. The quadratic cost
between any pair of successive arcs is chosen discrete uniformly at random out of
{0, . . . , 100}.

– Manhattan instances The Manhattan instances are introduced in Comellas et al.
(2008) and resemble the street pattern of modern cities like Manhattan. Given a
finite set of positive integers (n1, n2, . . . , nk), the graph consists of a n1 × n2 ×
· · · × nk directed grid. Each node in the interior is adjacent to its 2k neighbours.
The nodes on the boundary are also incident to the corresponding nodes on the
opposite boundary. For each dimension k, the arcs belonging to the same layer of
the grid point in the same direction. However, the arcs of two consecutive layers
point in the opposite direction. This results in a graph containing a large number of
cycles. The quadratic cost between any pair of successive arcs is chosen discrete
uniformly at random out of {0, . . . , 10}.

– Angle-distance instances The Angle-distance instances are originally constructed
for the QTSP in Fischer (2013). The number of nodes n and the graph density
p are given. The (x, y)-coordinates of each node is chosen discrete uniformly at
random out of {0, . . . , 500}2. Exactly �pn(n − 1)� arcs are chosen uniformly at
random from the total set of arcs. For each arc e ∈ A, let de denote the Euclidean
distance between the endpoints of e. Moreover, for each two successive arcs e and
f , let αe f denote the turning angle (in radians). Given some constant ρ ∈ R+, the
quadratic cost of two successive arcs e and f is calculated as:

Qef =
⌈

0.1

(

ρ · αe f + de + d f

2

)⌉

.

Similar as in Fischer (2013), we take ρ = 40.

For Erdős–Rényi and Angle-distance instances, preliminary experiments show that
instances up to approximately 300 arcs can be solved to optimality within one hour.
For the Manhattan instances the limit is around 2000 arcs, due to the small density of
these types of graphs.

In total we consider two sets of experiments: experiments on small instances and
experiments on large instances. Since the optimum, RLT 1 and CG cannot be cal-
culated for large instances, we only test these approaches on the smaller instances.
Moreover, we include the bounds introduced in this paper, namely LBB1 and RGL .
The value and computation times (in seconds) on small Erdős–Rényi instances can be
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Table 4 Bounds and computation times in seconds of RLT 1, CG, LBB1 and RGL on small Erdős–Rényi
instances

p n m OPT RLT 1 CG LBB1 RGL

Value Time Value Time Value Time Value Time Value Time

0.3 20 119 319 10.28 301 4.825 289 102.3 260 0.020 285 3600

25 177 386 19.04 331 20.09 331 928.9 305 0.040 280 3600

30 280 n.a. 3600 284 70.62 n.a. 3600 274 0.134 185 3600

0.5 20 195 236 211.0 181 17.00 n.a. 3600 175 0.121 129 3600

25 327 n.a. 3600 141 82.52 n.a. 3600 136 0.233 89 3600

30 442 n.a. 3600 168 385.0 n.a. 3600 162 0.322 99 3600

found in Table 4. This table contains 6 instances for n = 20, 25, 30 and p = 0.3, 0.5.
The results on Manhattan and Angle-distance instances are reported in Tables 5 and
6 , respectively. For the Angle-distance instances we take the same values for n and
p as for the Erdős-Rényi instances, while for the Manhattan instances we consider
several two- and three-dimensional instances. The maximum computation time is set
to 3600s. When after this time no bound is computed, we report ‘n.a.’ in the tables.
Since the optimal value is always integer, we round up all bounds.

For the smaller instances, we see that RLT 1 performs best in quality. When it can
be computed, it is often close to the optimal value and it dominates the other bounds.
LBB1 is often very close to RLT 1, but can be computed much more efficiently.
Namely, for the Erdős–Rényi and the Angle-distance instances the computation time
of LBB1 for all small instances is below 0.4 s, whereas RLT 1 cannot be computed
within one hour for some of these instances. The column generation approach provides
strong bounds, but in most cases it is not able to compute a bound in a time span of one
hour. The reformulated GL type bound performs well on the Manhattan and Angle-
distance instances, see Tables 5 and 6 . Although its total computation time is large,
the advantage of this approach is that it provides a bound in a short time and then
iteratively improves the value. This makes it possible to stop the procedure at any
given time and still obtain a bound. The bounds computed by RGL are in almost all
cases dominated by LBB1.

When takingboth efficiency andquality into account,we conclude that the lineariza-
tion based bound LBB1 outperforms the other approaches. Based on Tables 4, 5 and 6
, the value of LBB1 is at least 75% of the optimal value for the Erdős-Rényi instances.
For theAngle-distance andManhattan instances, this percentage equals 98% and 96%,
respectively.

For the larger instances, we only compute the bounds that can be computed effi-
ciently. That is, we do not consider the iterative approaches, but only the bounds GL ,
MI LP and LBB1. We also investigate the effect of a reformulation by adding an
optimal incident skew symmetric matrix to the cost matrix, see Sect. 4.1. We apply
this reformulation to LBB1, which implies that we optimize over the set τ skew1 (Q),
see (7), instead of τ1(Q). The resulting bound is denoted by LBB1skew. For the Man-
hattan instances this bound is omitted, since preliminary experiments showed that this
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Table 5 Bounds and computation times in seconds of RLT 1, CG, LBB1 and RGL on small Manhattan
instances

Instance n m OPT RLT 1 CG LBB1 RGL

Value Time Value Time Value Time Value Time Value Time

(5, 5) 25 50 103 0.483 103 1.534 103 1.484 103 0.006 103 5.756

(10, 10) 100 200 418 2.335 418 1.974 418 1645 418 0.022 371 16.06

(4, 4, 4) 64 192 199 6.312 193 9.415 196 691.4 193 0.081 175 3600

(6, 6, 6) 216 648 700 23.67 683 1152 n.a. 3600 683 0.568 551 3600

(8, 8, 8) 512 1536 1566 394.1 n.a. 3600 n.a. 3600 1530 1.213 n.a. 3600

(10, 10, 10) 1000 3000 n.a. 3600 n.a. 3600 n.a. 3600 3113 3.754 n.a. 3600

Table 6 Bounds and computation times in seconds of RLT 1,CG, LBB1 and RGL on smallAngle-distance
instances

p n m OPT RLT 1 CG LBB1 RGL

Value Time Value Time Value Time Value Time Value Time

0.3 20 114 474 2.490 474 1.719 474 416.5 474 0.002 474 64.35

25 180 553 323.9 553 4.119 n.a. 3600 552 0.004 553 1559

30 261 512 2951.0 512 19.52 n.a. 3600 512 0.079 494 3600

0.5 20 190 276 177.8 276 6.732 n.a. 3600 276 0.053 274 1319

25 300 342 2163.6 340 53.43 n.a. 3600 338 0.142 320 3600

30 435 n.a. 3600 381 490.5 n.a. 3600 377 0.332 355 3600

reformulation does not improve the bounds for most Manhattan instances. This could
be due to the sparsity of Manhattan instances. The bounds and computation times (in
seconds) for the Erdős-Rényi, Manhattan and Angle-distance instances are reported in
Tables 7, 8 and 9 , respectively. For the Erdős-Rényi and Angle-distance instances we
take for n values between 30 and 100 nodes and consider p = 0.3 and p = 0.5. For
the Manhattan instances we consider large two-dimensional instances and one large
three-dimensional instance. The maximum computation time for these bounds is set
to 1800s. Again, we round up all bound values.

For the larger instances, we see that LBB1 in all cases dominates GL and MI LP
in both quality and efficiency. The difference in quality is most present for the Erdős-
Rényi instances, see Table 7. For theManhattan instances, we see thatGL and MI LP
can be calculated efficiently for instances up to 3000 arcs. However, LBB1 remains
efficient even for larger instances. In particular, bounds for Manhattan instances up to
15,000 arcs can be computed within 60s.

Moreover, we conclude from Tables 7 and 9 that the addition of an incidence skew
symmetric matrix to the set τ1(Q) only improves the bounds for some of the instances.
In general, it turns out that the Erdős-Rényi instances can successfully be improved
by this method, whereas for the Angle-distance instances only in a few cases there is
an improvement. Although the computation times of LBB1skew are larger than those
of LBB1, bounds can still be computed in a reasonable time span.

123



Journal of Combinatorial Optimization (2020) 39:1096–1128 1125

Table 7 Bounds and computation times in seconds of GL , MI LP , LBB1 and LBB1skew on large Erdős–
Rényi instances

p n m GL MI LP LBB1 LBB1skew

Value Time Value Time Value Time Value Time

0.3 30 284 111 0.272 122 0.435 230 0.083 232 0.766

40 468 117 0.645 131 1.006 265 0.179 278 1.711

50 754 121 1.598 130 2.410 267 0.404 274 4.184

60 1062 103 4.068 118 5.788 272 0.726 272 8.048

70 1481 114 8.910 123 12.94 255 1.660 258 15.38

80 1842 113 14.26 122 20.82 263 2.740 267 24.67

90 2385 114 23.25 122 37.61 259 5.296 261 41.74

100 2962 119 36.03 126 63.49 269 13.32 270 69.90

0.5 30 434 73 0.557 79 0.783 161 0.182 163 9.218

40 793 69 1.607 74 2.364 166 0.554 169 10.38

50 1197 72 4.323 77 6.682 165 1.185 167 15.74

Table 8 Bounds and computation times in seconds ofGL , MI LP and LBB1 on largeManhattan instances

Instance n m GL MI LP LBB1

Value Time Value Time Value Time

(20, 20) 400 800 1237 5.31 1472 7.491 1537 0.100

(30, 30) 900 1800 2813 56.24 3343 86.46 3517 0.410

(40, 40) 1600 3200 5101 346.8 6028 553.5 6302 1.388

(50, 50) 2500 5000 7983 1225.3 9424 1897.8 9828 2.838

(17, 17, 17) 4913 14739 n.a. 1800 n.a. n.a. 15398 54.79

Table 9 Bounds and computation times in seconds of GL , MI LP , LBB1 and LBB1skew on Angle-
distance instances

p n m GL MI LP LBB1 LBB1skew

Value Time Value Time Value Time Value Time

0.3 30 261 456 0.238 467 0.410 525 0.054 525 6.957

40 468 507 0.693 516 0.984 567 0.463 567 7.795

50 735 622 1.567 631 2.223 709 0.317 709 9.982

60 1062 609 3.684 618 5.401 684 0.694 684 13.97

70 1449 656 7.436 666 12.37 746 1.331 747 21.63

80 1896 749 13.03 756 23.77 867 2.613 867 31.96

90 2403 815 20.33 826 39.99 933 4.838 933 48.81

100 2970 810 30.35 823 66.04 951 12.50 952 78.62

0.5 30 435 339 0.516 343 0.876 373 0.168 373 16.59

40 780 411 1.456 418 2.386 464 0.474 464 16.21

50 1225 466 4.159 473 7.550 534 1.177 535 22.34
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9 Conclusion

In this paper we consider the linearization problem for the QCCP and its applications.
We provide several sufficient conditions for linearizability, and show how these condi-
tions can be used to obtain strong lower bounds for theQCCP. The linearization based
bound LBB1, resulting from the incident weak sum property, is the most efficient
LBB in terms of complexity and quality, see Table 2. We show here that the GL type
bound for the QCCP also belongs to the family of linearization based bounds, see
Theorem 4, by providing the appropriate sufficient condition, see Proposition 7.

The first level RLT bounds and/or the GL type bounds are the only linearization
based bounds for quadratic binary optimization problems that are implemented for
various binary quadratic optimization problems up to date. This paper shows that
besides these two well-known bounds, the linearization based bounds introduced here
are worth considering.

Here, we also present how each sufficient condition can be used in an iterative
bounding procedure. In particular, we introduce a new reformulation technique in
which we search for the best equivalent representation of the residual cost matrix
and its optimal linearizable matrix, see Algorithm 1. We show how the resulting
iterative procedure computes the best GL type bound in each iteration. Our approach
outperforms known iterative bounding procedures that use the GL type bounds, see
Table 3. Moreover, we prove that the resulting linearization vectors in each step satisfy
the constant value property, see Theorem 5.

Finally, our numerical results show that our approach outperforms several other
bounds from the literature if we take into account both quality and efficiency. Although
the linearization based bounds LBB1 are dominated by the well known first level RLT
bounds, they can be computed extremely fast. For the Manhattan instances, LBB1
bounds for instances up to 15,000 arcs can be computed within 60s. However, other
approaches fail to provide bounds for instances of this large sizes.

We expect that similar bounding procedures can be successfully applied to other
binary quadratic optimization problems, such as the quadratic assignment problem,
the quadratic minimum spanning tree, and the quadratic traveling salesman problem.
However, this is a subject of our future research.
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Lendl S, Ćustić, PunnenAP (2019) Combinatorial optimization problemswith interaction costs: complexity

and solvable cases. Discrete Optim 33:101–117

123

http://arxiv.org/abs/1802.02426


1128 Journal of Combinatorial Optimization (2020) 39:1096–1128

Punnen AP, Kabadi SN (2013) A linear time algorithm for the Koopmans Beckmann QAP linearization and
related problems. Discrete Optim 10(3):200–209

Punnen AP, Pandey P, Friesen M (2019) Representations of quadratic combinatorial optimization prob-
lems: a case study using quadratic set covering and quadratic knapsack problems. Comput Oper Res
112:104769

Punnen AP, Walter M, Woods BD (2018) A characterization of linearizable instances of the quadratic
traveling salesman problem. arXiv: 1708.07217v3

RostamiB,ChasseinA,HopfM, FreyD,BuchheimC,Malucelli F, GoerigkM (2018) The quadratic shortest
path problem: complexity, approximability and solution methods. Eur J Oper Res 268(2):473–485

Rostami B, Malucelli F (2015) Lower bounds for the quadratic minimum spanning tree problem based on
reduced cost computation. Comput Oper Res 64:178–188

Sahni S, Gonzalez T (1976) P-complete approximation problems. J ACM 23:555–565
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