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List of notation and acronyms

The chapters of this thesis contain distinct problems, and the notation and acronyms
may differ per chapter. Below we present the list of notation and acronyms common
for all chapters.

Rn n-dimensional Euclidean vector space

Rn
+ cone of non-negative n-dimensional real vectors

Rn
++ cone of strictly positive n-dimensional real vectors

Nn n-tuples of non-negative integers

Nn
+ n-tuples of positive integers

Sn space of n× n real symmetric matrices

Sn−1 unit sphere in Rn

[n] {1, . . . , n}

e vector of all ones of an appropriate dimension

In n× n identity matrix (we omit the subscript when the matrix size
is clear)

Jn n × n matrix of all ones (we omit the subscript when the matrix
size is clear)

C(V ) space of real-valued continuous functions on the set V

K(V ) space of symmetric real-valued continuous functions (kernels) on
the set V×V

COP(V ) cone of copositive kernels on the set V

PSD (V ) cone of positive definite kernels on the set V

T Vd space of d-tensors on the set V

Snd space of symmetric d-tensors on the set [n]

R[x] ring of polynomials in variables x
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Rd[x] ring of polynomials with degree not larger than d in variables x

R=d[x] ring of polynomials with degree equal to d in variables x

Sym(n) symmetric (or permutation) group on n elements

On orthogonal group in dimension n

⊗ Kronecker product

� A � B means that A−B is a positive semidefinite matrix

� A � B means that A−B is a positive definite matrix

IP integer programming / program

SDP semidefinite programming / program

LP linear programming / program

SOCP second-order cone programming / program

PSD positive semidefinite (for matrices)

p.d. positive definite (for kernels)

PO polynomial optimization

SOS sum-of-squares polynomials



CHAPTER 1

Introduction

In this thesis we obtain upper and lower bounds on several non-linear optimization
problems using linear programming (LP) and semidefinite programming (SDP) re-
laxations. Throughout the thesis we use the notation SDP (resp. LP) do refer to
both semidefinite (resp. linear) programming and program. The basic approach is to
exploit the structure of a given problem, e.g., its combinatorial nature or inherent
symmetry, to reformulate or relax the problem to the following general form:

inf
f

L0(f) (1.1)

s. t. L1(f) = 0,
f ∈ K(V ),

where V is a set, L0 and L1 are affine operators, and K(V ) denotes any of the
following convex cones of continuous functions on V : the cone of entry-wise non-
negative functions, the cone of positive (semi-) definite functions or the cone of
copositive functions. Therefore problem (1.1) generalizes a classical conic problem
where a convex function is minimized over the intersection of a convex cone and an
affine subspace. Throughout the thesis, we deal with V ⊆ Rn. Although some results
can be extended to more general sets, we usually leave such extensions out of the
scope of the thesis.
Different formulations of the initial problem would provide different relaxations. In
this thesis we analyze conic formulations (1.1) since they exist for many optimization
problems and allow to shift the hardness of the original problem to the conic con-
straint. As a result, the tools for dealing with the positive cones become available
for the original problem.
Non-negativity, positive (semi-) definiteness and copositivity can be viewed as dif-
ferent faces of one notion – positivity. From here on we refer to the three cones in
problem (1.1) as the positive cones. For more complex types of positive cones, there
exist inner and/or outer approximations based on simpler positive cones, such as
the cone of positive semidefinite matrices, the cone of non-negative matrices, or the
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second-order cone. In the sequel we treat the second-order cone as a special case of
the positive semidefinite cone.
Assume we have a problem formulated as in (1.1) over a given positive cone. If
optimization over this cone is not tractable, one can obtain LP or SDP relaxations
of the original problem using approximations. The relaxations have the form (1.1)
where the variables are matrices that belong to any of the mentioned cones, and the
constraints are affine in the matrix variables. Problems of this form are also known
as linear matrix inequality (LMI) problems.
LMI problems can be solved with the desired precision in polynomial time using, e.g.,
the interior point method by Nesterov and Nemirovski [156]. Hence one would like to
obtain an LMI reformulation of a given problem. However, such reformulations may
contain too many variables and constraints. Among others, this fact was pointed out
in [28, 89, 209, 228]. Therefore it is common to reformulate the given problem to
the form (1.1) and then use an LP or SDP relaxation to obtain LMI bounds on the
optimal value if needed (see, for instance, LP relaxations in [209]).

1.1 The many faces of positivity

Three types of functions are essential in this thesis: matrices, kernels and polynomi-
als. Let Sn be the cone of n×n real symmetric matrices. We generalize the notion of a
symmetric matrix to the notion of a kernel. Denote the set of real-valued continuous
functions on V ⊆ Rn by C(V ). The cone of kernels is the cone of symmetric real
continuous functions on V×V :

K(V ) = {F ∈ C(V×V ) : F (x, y) = F (y, x), ∀ x, y ∈ V }.

We say that K is a kernel on V if K ∈ K(V ). For any finite U of size n, K(U) is
isomorphic to the cone of symmetric n× n matrices; we abuse the notation modulo
this isomorphism, and thus we do not distinguish between kernels on finite sets and
matrices in the rest of the thesis. Given K ∈ K(V ) and U ⊆ V , we denote by
KU ∈ Sn the restriction of K to U × U . For all U ⊆ V and all K ∈ K(V ) we have
that KU ∈ K(U).
For n > 0 we denote the set of n-variate polynomials with real coefficients by
R[x] := R[x1, . . . , xn]. We denote by Rd[x] (respectively R=d[x] ) the subset of
R[x] of polynomials of degree not larger than (resp. equal to) d. The degree of
a p ∈ R[x] is denoted by deg p. For d ≥ 0 we define Nn

d = {α ∈ Nn : eᵀα ≤ d}. Given
h1, . . . , hm ∈ R[x] and α ∈ Nm

d , we use hα := ∏m
j=1 h

αj
j . In particular xα = ∏m

j=1 x
αj
j .

Also, we use the notation h to arrange the polynomials h1, . . . , hm in an array; that
is, h := [h1, . . . , hm]ᵀ. Finally, we use the names “homogeneous polynomials” and
“forms” interchangeably. Notice that Sn is isomorphic to the set of forms of degree
two.
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1.1.1 Tensor representations

The set of homogeneous polynomials of degree two is isomorphic to Sn, and similarly,
homogeneous polynomials of higher degrees are connected to tensors. For a positive
number d ∈ N, a tensor of order d ∈ N over a set V (or a d-tensor over V ) is a
real-valued function on V d. Denote by T Vd the set of d-tensors on the set V . Denote
by Sym(d) the group of permutations on d elements.

Definition 1.1. Let π ∈ Sym(n), σ ∈ Sym(d).

(a) We define the action π on any v ∈ Rn by πv = [vπ(1), . . . , vπ(n)]ᵀ. That is, π
permutes the entries of the vector.

(b) We define the right action of σ on any M = [m1, . . . ,md] ∈ Rn×d by Mσ =
[mσ(1), . . . ,mσ(d)]. That is, the right action of σ permutes the columns of M .
Now, let Mᵀ = [m′1, . . . ,m′n]. We define the left action of π on M by πM =
[m′π(1), . . . ,m

′
π(n)]ᵀ. That is, the left action of π permutes the rows of M .

Now, we define Snd , the set of symmetric d-tensors on V = [n], by

Snd :=
{
T ∈ T [n]

d : T (v1, . . . , vd) = T (vπ(1), . . . , vπ(d)) for all v1, . . . , vd ∈ V )

For T, S ∈ T [n]
d , we define the tensor inner product of T and S by

〈T, S〉 :=
∑
v∈[n]d

T (v)S(v). (1.2)

There exists a connection between polynomials, matrices and kernels via tensors.
Namely, for d = 2 and V = [n], a tensor is an n × n matrix. In this thesis we
abuse the notation and do not make a difference between Sn2 and Sn. For d = 2
and V ⊆ Rn, a symmetric and continuous tensor is a kernel. Finally, the connection
between tensors and polynomials is as follows: with a tensor T ∈ T [n]

d , we associate
a degree d form in n variables x:

T [x] :=
∑
v∈[n]d

T (v)
d∏
i=1

xvi = 〈T, x⊗d〉, (1.3)

where ⊗ denotes the Kronecker product, and

x⊗d = x⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
d

.

Moreover, for every homogeneous polynomial p ∈ R[x] there is a unique symmetric
tensor for which the representation above is true.
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Tensors, and symmetric tensors in particular, are widely used to obtain new results
about non-negative polynomials (for instance, in [57]) or copositive matrices (see,
e.g., [58]). In this thesis we use them not only for these purposes, but also to obtain
new results about copositive kernels (see Chapter 2).

1.1.2 Positive (semi-) definite cones

Table 1.1 shows the positive cones used throughout the thesis. Next, we formally
define these cones.

Table 1.1 – Positive cones considered in this thesis.

positive
(semi-) definite

non-negative copositive

matrices X X X
kernels X X X
polynomials X X

A matrix M ∈ Sn is called positive semidefinite if xᵀMx ≥ 0 for all x ∈ Rn \ {0}.
The matrix is called positive definite if xᵀMx > 0 for all x ∈ Rn \ {0}. An SDP is
a linear optimization problem over the cone of positive semidefinite matrices. For
more details on SDP, see the book [225].
We are also interested in the generalized idea of positive definiteness for kernels. Let
V ⊆ Rn. We follow the convention in the literature and call a kernel K ∈ K(V )
positive definite (p.d.) if for any finite U ⊂ V the matrix KU is positive semidefinite.
That is,

Definition 1.2. K ∈ K(V ) is positive definite (p.d.) if for any u1, . . . , un ∈ V and
x ∈ Rn,

n∑
i=1

n∑
j=1

K(ui, uj)xixj ≥ 0.

We denote the cone of p.d. kernels on V by PSD (V ). Notice that K is called positive
definite when KU is positive semidefinite and not necessarily positive definite. If
V ⊂ Rn is a compact set, there exists another characterization of p.d. kernels.

Theorem 1.3 (Lemma 1 in Bochner [20]). Let V ⊂ Rn be a compact set equipped
with a finite measure µ strictly positive on open subsets. Then K is a p.d. kernel on
V if and only if for any g(x) ∈ C(V ),∫

V

∫
V
K(x, y)g(x)g(y)dµ(x)dµ(y) ≥ 0.
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We denote by Sn−1 the unit sphere in Rn and byOn the orthogonal group in dimension
n; that is, the group of n×n orthogonal matrices where the group operation is matrix
multiplication.

Definition 1.4. Let P ∈ On, V ⊆ Rn and d > 0.

(a) We define the action of P on any v ∈ Rn by vP = Pv. Similarly, we define the
action of P on V by V P = {vP : v ∈ V }.

(b) We define the action of P on any F ∈ C(V d) as F P = F (vP1 , . . . , vPd ) for all
v1, . . . , vd ∈ V .

(c) We define the left action of P on any M ∈ Rn×n by MP = PM and the right
action by PM = MP . Similarly, we define the left action of P on anyM⊆ Rn×n

byMP = {MP : M ∈M} and the right action by PM = {PM : M ∈M}.

Based on Definition 1.4, we say that a function F ∈ C(V d) is invariant under the
action of On if F P (v1, . . . , vd) = F (v1, . . . , vd) for all P ∈ On and v1, . . . , vd ∈ V . In
this thesis we are particularly interested in p.d. kernels on Sn−1 invariant under the
action of On. General optimization problems over the cone of p.d. kernels are not
efficiently solvable. However, p.d. kernels on Sn−1 invariant under the action of On

are well-studied by Schoenberg [201] and are frequently used in optimization [13, 43,
44].

1.1.3 Entry-wise non-negative cones

A function f : V → R is called entry-wise non-negative if f(v) ≥ 0 for all v ∈ V . The
cone of entry-wise non-negative matrices is polyhedral, thus one can optimize over it
in polynomial time. The cone of entry-wise non-negative (on a given set) polynomials
is a complex object which has attracted a lot of research attention. Reznick [190] has
written a good historical overview of these studies. In the sequel we call entry-wise
non-negative polynomials simply non-negative.
Non-negative polynomials play an essential role in polynomial optimization (PO).
PO problem is a problem of the following form: let p, h1, . . . , hm ∈ R[x], we are
interested in computing

inf
x

p(x) s.t. h1(x) ≥ 0, . . . , hm(x) ≥ 0

= sup
λ

λ s.t. p(x)− λ ≥ 0 for all x such that h1(x) ≥ 0, . . . , hm(x) ≥ 0,

where the latter is the lower bound reformulation of the former. The lower bound for-
mulation shows that solving a PO problem is equivalent to characterizing all polyno-
mials non-negative on a feasible set of the problem. In general, optimization problems
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over non-negative polynomials are not efficiently solvable. One can approximate PO
problems using approximations to the cone of non-negative polynomials on a given
set.

1.1.4 Copositive cones

A matrix M ∈ Sn is called copositive if xᵀMx ≥ 0 for all x ∈ Rn
+. The matrix is

called strictly copositive if xᵀMx > 0 for all x ∈ Rn
+. A classical copositive problem

is a linear optimization problem over the cone of copositive matrices. Now, a kernel
K ∈ K(V ) is copositive if for any finite U ⊂ V the matrix KU is copositive. That is,

Definition 1.5. K ∈ K(V ) is copositive if for any u1, . . . , un ∈ V and x ∈ Rn
+,

n∑
i=1

n∑
j=1

K(ui, uj)xixj ≥ 0.

Copositive kernels were introduced by Dobre et al. [54], who also proposed an alter-
native definition in the spirit of Theorem 1.3.

Theorem 1.6 (Definition (2) in Dobre et al. [54] [20]). Let V ⊂ Rn be a compact set
equipped with a finite measure µ strictly positive on open subsets. Then K is a p.d.
kernel on V if and only if for any g(x) ∈ C(V ) such that g(x) ≥ 0 for all x ∈ V ,∫

V

∫
V
K(x, y)g(x)g(y)dµ(x)dµ(y) ≥ 0.

We denote the set of copositive kernels on V by COP(V ). Notice that PSD (V ) ⊂
COP(V ).
Finally, we consider the cone of copositive polynomials.

Definition 1.7. p ∈ R[x] is copositive if p(x) ≥ 0 for all x ∈ Rn
+.

Testing whether a given matrix is not copositive is NP-complete (see [148]), and
therefore copositive problems are not efficiently solvable. The same conclusion applies
to optimization problems over the cones of copositive kernels and polynomials as they
contain the cone of copositive matrices (up to isomorphisms).

1.2 Approximations to copositive cones and the cone of non-negative poly-
nomials

Some positive cones are hard to use in optimization while the other positive cones
are more amenable for optimization. Often one can approximate the former using
the latter. In this thesis we are especially interested in inner approximations to all
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copositive cones and the cone of non-negative polynomials; that is, in subsets of such
cones. Hence in the sequel we present the most well-known inner approximations
and provide references to existing outer approximations when possible.

1.2.1 Inner approximations to copositive cones

We first present a famous inner approximation to the cone of copositive polynomials
since this approximation underlies some results for the cones of copositive matrices
and kernels.

Theorem 1.8 (Pólya’s Positivstellensatz [83]). Let p ∈ R[x] be a homogeneous poly-
nomial such that p(x) > 0 for all x ∈ Rn

+ \ {0}. Then for some r > 0 all the
coefficients of (eᵀx)rp(x) are non-negative.

Given r > 0, a homogeneous polynomial for which the coefficients of (eᵀx)rp(x) are
non-negative is clearly copositive. Pólya’s Positivstellensatz implies that, when r

goes to infinity, the set of homogeneous polynomials in Rd[x] for which the coeffi-
cients of (eᵀx)rp(x) are non-negative converges to the set of copositive homogeneous
polynomials in Rd[x].
Pólya’s Positivstellensatz is frequently used in literature to obtain results about non-
negativity of polynomials and forms, such as [35, 171, 182, 206]. Outer approxima-
tions to the cones of non-negative polynomials on some sets, including the cone of
copositive polynomials, was proposed by Lasserre [117].
Now, we move to the cone of copositive matrices. This is the most well-studied
copositive cone. Extensive and structured information on this cone is provided in
the theses by Dickinson [49] and Groetzner [73] and in the surveys by Bomze [23] and
Dür [60]. There exist a variety of approximations to the cone of copositive matrices
from the inside [26, 35, 83, 171, 173, 233] and from the outside [26, 120, 230].
Throughout the thesis we regularly use sum-of-squares polynomials, denoted by SOS.

Definition 1.9. A polynomial p ∈ R2d[x] is SOS if p(x) = ∑m
i=1 qi(x)2 for some

q1, . . . , qm ∈ Rd[x],m ∈ N.

For a set V , we say that a sequence (Vr)r∈N+ is a hierarchy of subsets of V, or an inner
hierarchy, if Vr ⊆ Vr+1 ⊆ V for all r ∈ N+. One can define a hierarchy of supersets
of V , or an outer hierarchy, analogously. Consider any r > 0. The following inner
hierarchies for the cone of copositive matrices are frequently used in the literature
and were introduced by de Klerk and Pasechnik [35], Peña et al. [173] and Parrilo
[171], respectively. In the definitions of these hierarchies and later on e denotes the
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vector of all ones of an appropriate size.

Cnr :=
{
M ∈ Sn : (eᵀx)r(xᵀMx) has non-negative coefficients

}
, (1.4)

Qn
r :=

{
M ∈ Sn : (eᵀx)r(xᵀMx) =

∑
eᵀβ=r

xβxᵀNβx+
∑
eᵀβ=r

xβxᵀSβx, (1.5)

Nβ, Sβ ∈ Sn, Nβ ≥ 0 and Sβ � 0 for all β ∈ Nn, eᵀβ = r
}
,

Knr :=
{
M ∈ Sn :

(
n∑
i=1

x2
i

)r n∑
i=1

n∑
j=1

Mijx
2
ix

2
j is SOS

}
. (1.6)

From the definitions one can immediately see that Cnr ⊆ Qn
r ⊆ COP([n]) and Knr ⊆

COP([n]). Moreover,

Cnr ⊆ Cnr+1, Q
n
r ⊆ Qn

r+1, and Knr ⊆ Knr+1.

It is also known (see, e.g., [173] ) that Qn
r ⊆ Knr . This fact becomes clear from (1.7)

further. All in all, we have

Cnr ⊆ Qn
r ⊆ Knr ⊆ COP([n]).

Finally, every strictly copositive matrix is contained in ⋃
r Cnr ⊆

⋃
rQ

n
r ⊆

⋃
rKnr

[35, 173]. Hierarchies with the latter property are called convergent.
The convergence of Cnr follows from Pólya’s Positivstellensatz. Indeed, letM ∈ Sn be
strictly copositive. Then, for a vector of variables x = [x1, . . . , xn]ᵀ, the form xᵀMx

is larger than zero on Rn
+ \ {0}. Hence, by Pólya’s Positivstellensatz 1.8, there exists

r > 0 such that (eᵀx)rxᵀMx has non-negative coefficients.
The convergence of Knr follows from Pólya’s Positivstellensatz and some additional
observations. Namely, let M ∈ Sn be strictly copositive and consider r > 0 such that
all the coefficients of q(x) := (eᵀx)rxᵀMx are non-negative. Every x ∈ R+ can be
written as z2, z ∈ R. By substituting x2

i for each xi, i ∈ [n] into (eᵀx)rxᵀMx and
q(x), we obtain the expression that is an SOS.
The convergence of Qn

r follows from Cnr ⊆ Qn
r . Approximations Qn

r stem from the
result by Zuluaga et al. [233] that a homogeneous polynomial of degree r+ 2 is such
that p(x2

1, . . . , x
2
n) is an SOS if and only if

p(x) =
∑

β∈Nn,eᵀβ≤r+2
xβσβ(x), σβ is an SOS. (1.7)

Restricting ourselves to SOS of degrees zero and two in (1.7), we obtain the expres-
sions for Qn

r . From (1.7) and (1.6) it is clear that Qn
0 = Kn0 and Qn

1 = Kn1 .
As to infinite dimensional copositive programming, the most straightforward inner
approximation to the cone of copositive kernels is the cone of positive definite kernels.
In Chapter 2 we show how to generalize approximations Cnr and Qn

r for the case of
copositive kernels. The generalized approximations Qn

r include the set of p.d. kernels
as a subset.
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1.2.2 Inner approximations to the cone of non-negative polynomials

To approximate the cone of non-negative polynomials, it is common to use sums-
of-squares (SOS) polynomials, which are clearly non-negative. Verifying whether
a given polynomial is an SOS is equivalent to solving an SDP (see, for instance,
[171]). SOS polynomials of fixed degrees form a proper cone (closed, convex, pointed,
with nonempty interior). Recently, there have been successful attempts to apply
the interior point method directly to this cone, without SDP reformulation [170].
However, this approach has not yet been broadly used in the literature.
SOS polynomials frequently occur in relation to seminal Schmüdgen’s Positivstellen-
satz [199] and Putinar’s Positivstellensatz [183].

Theorem 1.10 (Schmüdgen’s Positivstellensatz [199]). Let h1, . . . , hm ∈ R[x] be
such that S = {x ∈ Rn : h1(x) ≥ 0, ..., hm(x) ≥ 0} is non-empty and compact, and
assume that p(x) > 0 for all x ∈ S. Then there is r ≥ 0 such that

p =
∑

α∈{0,1}m
σαh

α, (1.8)

for some SOS polynomials σα of degree r − deg hα for all α ∈ {0, 1}m.

For polynomials h1, . . . , hm ∈ R[x], we define their quadratic module as

QM(h1, . . . , hm) = {p ∈ R[x] : p = σ0 +
m∑
j=1

σjhj, σj, j ∈ {0, . . . ,m} are SOS.}

(1.9)

Definition 1.11. Let h1, . . . , hm ∈ R[x]. The quadratic module QM(h1, . . . , hm) is
called Archimedean if there exists N > 0 such that N − ‖x‖2 ∈ QM(h1, . . . , hm).

Theorem 1.12 (Putinar’s Positivstellensatz [183]). Let h1, . . . , hm(x) ∈ R[x] be such
that S = {x ∈ Rn : h1(x) ≥ 0, ..., hm(x) ≥ 0} is non-empty and QM(h1, . . . , hm) is
Archimedean, and assume that p(x) > 0 for all x ∈ S. Then there is r ≥ 0 such that

p = σ0 +
m∑
j=1

σjhj, (1.10)

for some SOS polynomials σj of degree r − deg hi for all j ∈ {0, . . . ,m}.

Clearly, sets of all polynomials which have representations (1.8), (1.10) are subsets
of polynomials non-negative on S. These and other representations that make the
non-negativity of p on S evident are called certificates of non-negativity of p on S.
The degree of SOS to use in certificates (1.8) and (1.10) is usually unknown. By grow-
ing the degree, one obtains a hierarchy of approximations to the set of non-negative
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polynomials. Notice that under the assumptions of Schmüdgen’s and Putinar’s Posi-
tivstellensatzen, when the degree of SOS goes to infinity, the resulting approximations
converge to the set of positive polynomials on S. This convergence is an important
property since it allows to obtain convergent approximations to PO problems on S
(see, for instance, [114]).
The size of the SDP corresponding to a general SOS certificate of non-negativity
grows exponentially with the number of variables n and the number of polynomials
m. To deal with this growth, much research attention is directed to certificates of
non-negativity that are not based on SOS. A well-known result that does not use
SOS is Handelman’s Positivstellensatz.

Theorem 1.13 (Handelman’s Positivstellensatz [82]). Let A ∈ Rm×n, b ∈ Rm, and
let S = {x : Ax ≤ b} be a non-empty polytope. If p(x) > 0 for all x ∈ S, then

p(x) =
∑
α∈Nm

cα(b− Ax)α, (1.11)

for some cα ≥ 0 for all α ∈ Nm.

Representation (1.11) is linear in cα, α ∈ Nm. Another certificate of this type was
proposed by Dickinson and Povh [48]. We present this certificate for the case of
compact sets.

Theorem 1.14 (Theorem 3.10. in [48]). Let p, h1, . . . , hm ∈ R[x], and let S = {x ∈
Rn

+ : h1(x) ≥ 0, . . . , hm(x) ≥ 0} be non-empty. Denote dmax = max{deg h1, . . . ,

deg hm, deg p}. Assume that h1(x) = 1 and hj(x) = M − eᵀx for some M > 0 and
j ∈ [m]. If p(x) > 0 for all x ∈ S, then there exists r ≥ 0 such that

(1 + eᵀx)dmax−deg p+r p(x) =
m∑
j=1

∑
αj∈Nn

dmax−deghj+r

cαjx
αjhj(x), (1.12)

where cαj ≥ 0 for all αj ∈ Nn
dmax−deg hj+r, j ∈ [m].

One could also replace SOS in the certificates by alternative subsets of non-negative
polynomials. Examples of such subsets are SOS constructed using subsets of mono-
mials in R[x] [96, 115, 218, 221], scaled diagonally dominant sums-of-squares [2, 3],
non-negative circuit polynomials [59, 91, 219] or hyperbolic polynomials [189, 197].
In Chapter 4 we derive a new certificate of non-negativity that is based not on SOS
but on copositive polynomials.

1.3 Copositive reformulations of hard optimization problems

Among all formulations (1.1), we are especially interested in copositive ones since
they exist for a large variety of problems. For instance, many discrete optimization
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problems can be written as classical copositive problems or duals of these prob-
lems [28]. Some examples are graph parameters, such as the independence number
[35], the chromatic number [80] and the fractional chromatic number [180]. A copos-
itive optimization problem is continuous and convex. This fact makes available tools
from convex optimization, such as symmetry reductions, to discrete optimization.
Problems in discrete geometry can, too, be formulated as problem (1.1) over the cone
of copositive kernels. Some examples are the stable set problem in topological pack-
ing graphs [54] and the measurable stable set problem in locally-independent graphs
[43]. There are only two major techniques by Bachoc and Vallentin [12] and Del-
sarte et al. [44] that are numerically efficient for the spherical codes problem, which
is an example of the stable set problem in topological packing graphs. Therefore
new approaches to deal with problems in discrete geometry are of interest for the
optimization community.
Finally, copositive polynomials appear in reformulations of general PO problems. For
instance, several broad classes of quadratic problems have copositive formulations
[14, 28, 29], and also optimization problems over sets defined by specific polynomial
equalities [175]. Using copositivity allows applying the existing results for copositive
polynomials to general PO problems. In Chapter 4 we show that a generic PO
problem can be formulated as an optimization problem over the cone of copositive
polynomials, which connects copositive programming to a variety of real-life problems
with PO formulations.

1.4 Exploiting structure in optimization problems

We write general optimization problems using formulation (1.1) to represent (or
relax) these possibly not convex problems as LMI problems. In this way, we can
work with non-convex problems using the machinery from convex analysis.

1.4.1 Symmetry

One of the advantages of conic optimization is the possibility to exploit the symmetry
of the problem efficiently. We say that a problem is symmetric if one can non-trivially
map the set of its variables onto itself without changing the structure of the problem.
For instance, one can permute or rotate the variables. Some typical symmetric
problems are graph coloring, constructing binary and spherical codes, scheduling
jobs on parallel machines. In this thesis we deal with each of these problems: we
consider the maximum k-colorable subgraph problem in Chapter 5, the spherical
codes problem in Chapters 2 and 3, and the problem of scheduling on selfish, not
identical machines in Chapter 6. All these problems are non-convex and NP-hard.
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Symmetry hampers the performance of enumeration algorithms for integer programs
(IP), such as branch and bound or branch and cut. Symmetry implies many optimal
solutions and many isomorphic subproblems in the enumeration tree. This fact leads
to wasting the computational effort of enumeration algorithms [138]. The primary
approach to tackling symmetry in an IP problem is to break this symmetry by fixing
the values of some variables, perturbing the problem or adding valid non-symmetric
inequalities to the problem. Most recent algorithms can recognize symmetrically
equivalent solutions and either discard them or treat them differently [68, 165, 178].
These algorithms reduce the size of the enumeration tree but do not simplify the
structure of the problem or reduce the number of variables in the problem.
On the other hand, symmetry helps to reduce the size of convex problems. Therefore
symmetry is the main structural property we use in this thesis. If problem (1.1) is
invariant under the action of a group, it is enough to optimize over the solutions
to the problem invariant under the action of this group. This approach can be
extremely efficient in convex programming, see [53], [70] or [37]. The space of
invariant solutions usually has a lower dimension than the original space of variables,
which results in dramatically reducing the size of the problem. We consider an
example of this procedure in Chapter 5. Also, the space of invariant solutions can
have an advantageous structure which allows for efficiently solvable approximations
to the original problem. We use this fact in Chapters 2, 3 and 6. For instance,
invariant positive definite kernels on the unit hypersphere [151, 201] have explicit
characterizations which we use in Chapter 3.

1.4.2 Strongly positive polynomials

Chapter 4 deals with polynomials which are “strongly positive”. To define this con-
cept, let p ∈ R[x] be a polynomial of degree deg p, and consider its highest degree
homogeneous component p̃(x) obtained by dropping from p(x) all the terms whose
total degree is less than deg p. This component determines the behavior of p at in-
finity on unbounded sets. Namely, if p̃(y) > 0 for some y ∈ Rn, then there is k > 0
such that p(ky) > 0 since the positive homogeneous component of the highest degree
dominates the behavior of p for k large enough. However, if p̃(y) = 0, we do not
know how the polynomial behaves when ky goes to infinity. This fact may complicate
detecting whether p is non-negative on a given unbounded set.
Consider p ∈ R[x] and a set S = {x ∈ Rn : h1(x) ≥ 0, . . . , hm(x) ≥ 0}. Let
S̃ = {x ∈ Rn : h̃1(x) ≥ 0, . . . , h̃m(x) ≥ 0}. We say that p is strongly positive on S
if p(x) > 0 for all x ∈ S, and p̃(x) > 0 for all x ∈ S̃ \ {0}. Assumptions related to
strong positivity have been used in the literature [48, 78, 79, 159, 185] to obtain valid
approximations of polynomial optimization problems. In Chapter 4 we show that
strongly positive polynomials have certificates of non-negativity based on copositive
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polynomials.

1.5 Overview of the thesis

The rest of this thesis consists of five self-contained chapters.
We begin in Chapter 2 where we study the kissing number problem using positive
definite approximations to the cone of copositive kernels. The kissing number is the
maximum number of non-overlapping unit hyper-spheres that can simultaneously
touch another unit sphere, in n-dimensional space. It has been shown by Dobre et al.
[54] that the maximum stable set problem in some infinite graphs, and the kissing
number problem in particular, reduces to a minimization problem over the cone of
copositive kernels. Optimizing over this infinite dimensional cone is not tractable,
and approximations of this cone have been hardly considered in the literature. We
propose two convergent hierarchies of subsets of copositive kernels, in terms of non-
negative and positive definite kernels. Using these hierarchies, we construct upper
bound relaxations to the kissing number problem.
To implement our bounds on kissing numbers, we extend the famous theorem of Schoen-
berg [201] that characterizes positive definite kernels on the unit sphere Sn−1 invariant
under the automorphisms of the sphere. This is done in Chapter 3. We obtain two
generalizations of Schoenberg’s theorem. The first one characterizes invariant (under
the action of On) p.d. kernels on a product of Sn−1 and a compact set which can
depend on given parameters. Our second result characterizes invariant (under the
action of On) continuous functions F on (Sn−1)r+2 such that F (·, ·, Z) is positive
definite for every Z ∈ (Sn−1)r. When Z is fixed, this class reduces to the class of
p.d. kernels invariant under the stabilizer of Z in the automorphism group of the
sphere. For r = 0 and r = 1, these kernels have been used to obtain upper bounds
on kissing numbers. We use our extension for r > 1 to implement the bounds for the
kissing number problem from Chapter 2. The resulting bounds for r ∈ {0, 1, 2} are
fast-to-compute and lie between the currently existing LP and SDP bounds.
In Chapter 4 we show how to certify the non-negativity of polynomials using copos-
itive polynomials. The certificates we obtain are valid for generic basic closed semi-
algebraic sets and have a fixed small degree, while commonly used SOS certificates
are guaranteed to exist only for compact sets and could have a large degree. The
main benefit of our copositive certificates of non-negativity is their ability to trans-
late results known exclusively for copositive polynomials to more general basic closed
semialgebraic sets. In particular, we show how to use copositive polynomials to con-
struct structured (e.g., sparse) certificates of non-negativity, even for unstructured
semialgebraic sets. Last but not least, copositive certificates can be used to obtain
hierarchies of tractable upper and lower bounds for PO problems.
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Next, in Chapter 5 we consider the maximum k-colorable subgraph problem. For a
given graph with n vertices, we look for the largest induced subgraph that can be
colored in k colors such that no two adjacent vertices have the same color. This is
a discrete optimization problem which admits a copositive reformulation and SDP
relaxations. We propose several new SDP relaxations for this problem. The initial
matrix size in the relaxations grows with n and k. We use the invariance of the
problem under the color permutations to reduce the matrix size in the problem to
order (n+1), independently of k or the particular graph considered. Our relaxations
show better numerical results than the existing SDP and IP-based relaxations for the
majority of tested graphs.
In the final Chapter 6 we consider the problem of allocating tasks to unrelated parallel
machines to minimize the time to complete all the tasks. The machines belong to
agents who have to be paid, aim to maximize their utility and can lie about processing
times of their machines. We are interested in the best approximation ratio Rn of a
subclass of truthful mechanisms for n tasks on two machines. Using the symmetry
of the problem, we propose a new continuous min − max optimization model for
finding Rn, as well as LP upper and lower bounds on Rn. The bounds are based on
pointwise and piecewise approximations of cumulative distribution functions. Our
method improves upon the existing bounds on Rn for small n. In particular, for
n = 2 we show that |R2 − 1.505996| < 10−6.

1.6 Contributions to the literature

This thesis is based on the five research papers listed below. Each paper contains
ideas and contributions from all its respective authors.

Chapter 2 O. Kuryatnikova and J. C. Vera. Positive semidefinite approxima-
tions to the cone of copositive kernels. 2018. Submitted. Extended
abstract [109], ArXiv preprint 1812.00274 [110].

Chapter 3 O. Kuryatnikova and J. C. Vera. Generalizations of Schoenberg’s
theorem on positive definite kernels. 2019. Working paper. ArXiv
preprint 1904.02538 [111].

Chapter 4 O. Kuryatnikova, J. C. Vera and L.F. Zuluaga. Copositive certifi-
cates of non-negativity for polynomials on unbounded sets. 2019.
Submitted.
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Chapter 5 O. Kuryatnikova, R. Sotirov and J. C. Vera. New SDP bounds
on the maximum k-colorable subgraph problem. 2019. Working
paper.

Chapter 6 O. Kuryatnikova and J. C. Vera. New bounds for truthful schedul-
ing on two unrelated selfish machines. Theory of Computing
Systems, 2019, [112], online first: https://doi.org/10.1007/
s00224-019-09927-x.

https://doi.org/10.1007/s00224-019-09927-x
https://doi.org/10.1007/s00224-019-09927-x




CHAPTER 2

Positive semidefinite approximations to the cone
of copositive kernels

2.1 Introduction

In this chapter we are interested in solution methods for infinite-dimensional copos-
itive optimization, that is the optimization model obtained by replacing (finite-
dimensional) copositive matrices with copositive kernels, which are their infinite-
dimensional counterpart. Generalizing copositive optimization to infinite dimensions
is inspired by successful infinite-dimensional generalizations of semidefinite program-
ming (SDP). Such generalizations have proven useful in obtaining bounds for graph
parameters in infinite graphs, by formulating an infinite-dimensional version of well-
known SDP relaxations. In these relaxations PSD matrices are generalized to p.d.
kernels. One of the applications of p.d. kernels is generalizing the famous Lovász
ϑ-number [129] from finite graphs to certain types of infinite graphs. This fact has
motivated some of the new results in packing problems in discrete geometry [38],
the bounds on the measurable chromatic number [13] and the measurable stable set
of infinite graphs [42]. In the finite case, some graph parameters for which Lovász
ϑ-number provides a bound, such as the stable set or the chromatic number, can be
formulated using copositive optimization. In the infinite case, the stable set problem
in topological packing graphs [54] and the measurable stable set problem in locally-
independent graphs [43] have been formulated using infinite-dimensional copositive
optimization. We expect that in future more problems will be represented using
infinite-dimensional copositive optimization and thus our results will be useful there.
Several methods have been proposed to approximately solve finite-dimensional copos-
itive problems. The most usual approach is to approximate the copositive cone from
the inside [35, 171, 173] or from the outside [120, 230]. Some researchers also exploit
the structure of the problem and properties of the objective function [26, 227]. In the
infinite-dimensional case, there are not many approximations for the cone of coposi-
tive kernels. The only known approach is to replace this cone by the better-studied
cone of p.d. kernels, which is a subset of the cone of copositive kernels. When the
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kernels are defined on the unit sphere in Rn, this results in a tractable relaxation of
an infinite-dimensional copositive program using the characterization of p.d. kernels
by Schoenberg [201], see Theorem 3.1.
One of the main contributions, In Section 2.3, is the definition of two converging
inner hierarchies of subsets of the cone of copositive kernels on V for any compact
V ⊂ Rn. Our inner approximations generalize two existing inner hierarchies for
copositive matrices (1.5) and (1.4), introduced in Chapter 1.The key element of our
approach is to redefine the approximations using tensors. We also show that the
new hierarchies provide converging upper bounds for the stable set problem when
applied to the results by Dobre et al. [54]. Another contribution of this chapter is
the application of the proposed hierarchies to construct convergent upper bounds on
the kissing number (see Section 2.4).
De Laat in his PhD thesis [38] and in the related papers with Vallentin [39] and De
Oliveira Filho [39, 40] provides a different type of p.d. kernel based approximation for
the stable set problem on compact topological packing graphs. These approximations
are not explicitly based on approximating the cone of copositive kernels but use a
generalized version of the broadly used Lasserre’s hierarchy [114]. The latter exploits
Putinar’s Positivstellensatz 1.12 on the polynomial optimization formulation of the
stable set problem. Another well-known approximation by Bachoc and Vallentin
[12] to a particular case of the stable set problem on compact topological packing
graphs – the kissing number problem – is also based on the generalized Lasserre’s
hierarchy. The relation between our approximations and the approximations based
on Lasserre’s hierarchy is an interesting question for further research.
The outline of the chapter is as follows. In Section 2.2 we introduce the notation and
provide more detail on copositive and positive definite kernels, as well as on tensors
and tensor operators. In Section 2.3 we introduce generalized hierarchies (2.9) and
(2.11), describe their main properties in Theorem 2.9 and show that they provide
convergent upper bounds for the stable set problem by Dobre et al. [54] (Theo-
rem 2.17). Finally, in Section 2.4, we show how to obtain hierarchies of convergent
upper bounds for the kissing number problem using our results.

2.2 Tensor operators and their properties

To introduce our hierarchies of subsets for COP(V ), we use the connection between
tensors, kernels, matrices, and polynomials described in Section 1.1.1 of Chapter 1.
We use tensor notation and terminology similar to Dong [58].
We begin by introducing two operators used to lift a given matrix to the space of
symmetric tensors. The first operator is a lifting operator. For r ≥ 0, we define the
r-stack, Stkr : T Vd → T Vd+r as the operator that stacks r copies of a given tensor T
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on each other; that is,

Stkr(T ) := T ⊗ e⊗r.

It follows that for all T ∈ T Vd , u1, . . . , ud, v1, . . . , vr ∈ V ,

Stkr(T )(u1, . . . , ud, v1, . . . , vr) := T (u1, . . . , ud). (2.1)

Notice that Stk0(T ) := T .

Remark 2.1. In this chapter the notation ui may refer to an entry of a vector, an
element of a tuple of vectors, or a column of a matrix. We provide no additional
information when the exact meaning of the notation is clear from the context.

The second operator is the symmetrization operator σ : T Vd → T Vd which we define
for any T ∈ T Vd and v1, . . . , vd ∈ V by

σ(T )(v1, . . . , vd) := 1
d!

∑
π∈Sym(d)

T (vπ(1), . . . , vπ(d)). (2.2)

Lemma 2.2. For T ∈ T Vd , u1, . . . , ud, v1, . . . , vr ∈ V we have

σ(Stkr(T ))(u1, . . . , ud, v1, . . . ,vr) := (2.3)
r!

(r+d)!

∑
w1,...,wd∈{u1,...,ud,v1,...,vr}

T (w1, . . . , wd).

Proof. The result follows immediately from the definitions (2.1) and (2.2).

Now, let M ∈ Sn and consider the polynomial (eᵀx)r(xᵀMx). Notice that for any
v ∈ [n]r+2 and π ∈ Sym(r + 2) we have xv1 · · ·xvr+2 = xvπ(1) · · ·xvπ(r+2) . Recall that
we abuse the notation and do not make a difference between Sn2 and Sn, and thus we
can apply tensor operators to M to obtain

(eᵀx)r(xᵀMx) = 〈M ⊗ e⊗r, x⊗(r+2)〉 (2.4)
= 〈σ(M ⊗ e⊗r), x⊗(r+2)〉 = 〈σ(Stkr(M)), x⊗(r+2)〉.

This implies that σ(Stkr(T )) is the unique symmetric tensor associated to (eᵀx)r(xᵀMx).
In this way we lift M ∈ Sn to the space Snr+2.

Lemma 2.3. Let d > 0, r ≥ 0, V ⊂ Rn, T, S ∈ T Vd . Then

(a) σ(T + S) = σ(T ) + σ(S).

(b) Stkr(T + S) = Stkr(T ) + Stkr(S).
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(c) Stkr+1(T ) = Stk1 (Stkr(T )) .

(d) If σ(T ) = σ(S), then σ (Stkr(T )) = σ (Stkr(S)).

Proof. a., b. and c. are straightforward. To prove d., assume σ(T ) = σ(S). For r = 0,

σ (Stkr(T )) = σ(T ) = σ(S) = σ (Stkr(S)) .

Using c. and induction, it is enough now to prove the statement for r = 1. For any
v1, . . . , vd+1 ∈ V ,

σ
(
Stk1(T )

)
(v1, . . . , vd+1) (2.3)= 1

(d+ 1)!
∑

w1,...,wd∈{v1,...,vd+1}
T (w1, . . . , wd)

= d!
(d+ 1)!

(
d+1∑
k=1

σ(T )(v1, . . . , vk−1, vk+1, . . . , vd+1)
)

= d!
(d+ 1)!

(
d+1∑
k=1

σ(S)(v1, . . . , vk−1, vk+1, . . . , vd+1)
)

=σ
(
Stk1(S)

)
(v1, . . . , vd+1).

Finally, we introduce the operator that projects high order tensors to lower order
tensors and matrices, in particular. For any d′ ≤ d, and v1, . . . , vd−d′ ∈ V we define
the d′-slice, Slcvvv : T Vd → T Vd′ by

Slcvvv(T )(u1, . . . , ud′) := T (u1, . . . , ud′ , v1, . . . , vd−d′) (2.5)
for all T ∈ T Vd , u1, . . . , ud′ ∈ V.

That is, the slice is obtained by fixing the last indices of the tensor at v1, . . . , vd−d′ .
For T ∈ T [n]

d consider its associated polynomial T [x] defined in (1.3). A monomial
in T [x] is denoted by xβ1

1 · · ·xβn = xβ where β ∈ Nn and ∑n
i=1 βi = d. Each xβ

corresponds to ∏d
i=1 xvi for some v ∈ [n]d. Permuting the elements of v does not

change the corresponding monomial. Let

Pβ = {v ∈ [n]d :
d∏
i=1

xvi = xβ}. (2.6)

Then the coefficient of the monomial xβ in T [x] is ∑v∈Pβ T (v). We use several
properties of T [x] which are described using the following two lemmas:

Lemma 2.4. Let n, d ∈ N+ and T ∈ T [n]
d . Let xβ be a monomial in T [x]. Then for

any u, v ∈ Pβ and π ∈ Sym(d)
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(a) πv ∈ Pβ.

(b) σ(T )(v) = σ(T )(u).

Lemma 2.5. Let n, d ∈ N+.

(a) For T ∈ T [n]
d+2, T [x] = ∑

v∈[n]d Slcvvv(T )[x]∏d
i=1 xvi

(b) For any r ∈ N and T ∈ T [n]
d : Stkr(T )[x] = (eᵀx)rT [x]

(c) For any T, S ∈ T [n]
d : S[x] = T [x] if and only if σ(S) = σ(T ).

Proof. a. Let T ∈ T |n|d+2. From (2.5),

T [x] =
∑

u∈[n]d+2

T (u)
d+2∏
i=1

xui =
∑
v∈[n]d

∑
u1,u2∈[n]

T (u1, u2, v)xu1xu2

d∏
i=1

xvi

=
∑
v∈[n]d

Slcvvv(T )[x]
d∏
i=1

xvi

b. Let T ∈ T [n]
d . First, consider the case r = 0:

Stkr(T )[x] = T [x] = (eᵀx)0T [x].

Now we show that Stk1(T )[x] = (eᵀx)T [x] using a., then, by Lemma 2.3 c., the
statement follows by induction.

Stk1(T )[x] =
∑

u∈[n]d+1

Stk1(T )(u)
d+1∏
i=1

xui

=
∑

ud+1∈[n]
xud+1

∑
u1,...,ud∈[n]

Stk1(T )(u)
d∏
i=1

xui = (eᵀx)T [x].

c. Let T, S ∈ T [n]
d . For any β ∈ Nn such that ∑n

i=1 βi = d, let Pβ be defined as in
(2.6). Then by Lemma 2.3 a. and Lemma 2.4, for any v ∈ Pβ

σ(T )(v) = 1
|Pβ|

∑
u∈Pβ

σ(T )(u) = 1
|Pβ|

σ

 ∑
u∈Pβ

T (u)
 = 1

|Pβ|
∑
u∈Pβ

T (u).

Recall that ∑u∈Pβ T (u) is the coefficient of xβ, which concludes the proof.
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2.3 Inner hierarchies for the cone of copositive kernels

In the sequel use the previously defined tensor operators together with the following
two sets of tensors.

Definition 2.6. A tensor T ∈ T Vd is entry-wise non-negative if T (v1, . . . , vd) ≥
0, for all v1, . . . , vd ∈ V . We use N V

d to denote the set of all entry-wise non-negative
d-tensors on V .

Definition 2.7. A tensor F ∈ T Vd+2 is 2-p.d. on V if it is continuous, and for all
v1, . . . , vd ∈ V , F (·, ·, v1, . . . , vd) ∈ PSD (V ).

In this section we generalize the hierarchies Cnr (1.4) and Qn
r (1.5) from matrices to

kernels. To provide an intuition for this generalization, we first write the hierarchy Cnr
in tensor form, based on (2.4):

Cnr =
{
M ∈ Sn : (eᵀx)r(xᵀMx) has non-negative coefficients

}
(2.7)

=
{
M ∈ Sn : σ(Stkr(M)) ∈ N [n]

r+2

}
. (2.8)

Based on the tensor reformulation (2.8), we introduce the following sets:

CVr =
{
K ∈ K(V ) : σ (Stkr(K)) ∈ N V

r+2

}
, (2.9)

=
{
K ∈ K(V ) :

∑
i,j∈[r+2]

K(vi, vj) ≥ 0 for all v1, . . . , vr+2 ∈ V
}
, (2.10)

QV
r =

{
K ∈ K(V ) : σ (Stkr(K))− σ(S) ∈ N V

r+2, (2.11)

for some 2-p.d. S ∈ T Vr+2

}
.

=
{
K ∈ K(V ) :

∑
i,j∈[r+2]

K(vi, vj)− σ(S)(v1, . . . , vr+2) ≥ 0 (2.12)

for all v1, . . . , vr+2 ∈ V, and some 2-p.d. S ∈ T Vr+2

}
,

where the equalities in (2.10) and (2.12) follow from Lemma 2.2. Proposition 2.8
shows that our constructions generalize the hierarchies Cnr (1.4) and Qn

r (1.5).

Proposition 2.8. For any r ∈ N,

Cnr = C[n]
r , Qn

r = Q[n]
r .

Proof. First, Cnr = C[n]
r follows immediately from (2.8). Next, define Pβ as in (2.6)

and let M ∈ Q[n]
r . Define N := σ (Stkr(K)) − σ (S) so that N = σ(N). Then

(eᵀx)rM [x] = N [x]+S[x] by Lemma 2.5. Using Lemma 2.5 again, the latter equality
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can be rewritten as

(eᵀx)rM [x] =
∑
v∈[n]r

Slcvvv(N)[x]
r∏
i=1

xvi +
∑
v∈[n]r

Slcvvv(S)[x]
r∏
i=1

xvi

=
∑
|β|=r

xβ
∑
v∈Pβ

Slcvvv(N)[x] +
∑
|β|=r

xβ
∑
v∈Pβ

Slcvvv(S)[x]

=
∑
|β|=r

xβN̂β[x] +
∑
|β|=r

xβŜβ[x]

where N̂β ≥ 0 and Ŝβ is p.d. for all possible β as sums of non-negative and positive
semidefinite kernels respectively. Thus M ∈ Qn

r .
Now let M ∈ Qn

r . By Lemma 2.5 this implies

(eᵀx)rM [x] = Stkr(M)[x] =
∑
|β|=r

xβNβ[x] +
∑
|β|=r

xβSβ[x]

=
∑
|β|=r

xβ
∑
v∈Pβ

1
|Pβ|

Nβ[x] +
∑
|β|=r

xβ
∑
v∈Pβ

1
|Pβ|

Sβ[x].

Define N̂ and Ŝ as follows:

N̂ : Slcvvv(N̂) = 1
|Pβ|

Nβ for all β ∈ Nn, |β| = r and v ∈ Pβ,

Ŝ : Slcvvv(Ŝ) = 1
|Pβ|

Sβ for all β ∈ Nn, |β| = r and v ∈ Pβ.

Then

Stkr(M)[x]=
∑
v∈[n]r

Slcvvv(N̂)[x]
r∏
i=1

xvi+
∑
v∈[n]r

Slcvvv(Ŝ)[x]
r∏
i=1

xvi = N̂ [x]+Ŝ[x],

where N̂ ∈ N [n]
r+2, S ∈ T

[n]
r+2, 2-p.d. The last equality follows from Lemma 2.5 a.

Hence, by the same lemma, σ (Stkr(M)) = σ(N̂) + σ(Ŝ), and thus σ (Stkr(M)) −
σ(Ŝ) ∈ N [n]

r+2.

Up to a diference in notation, Proposition 2.8 was also obtained by Dong [58] using
a different type of a proof.
For a set U contained in a vector space V , we denote by corU the algebraic interior
of U following the notation by Holmes [87]:

corU ={x ∈ U : for all y ∈ V there exists εy > 0 such that
x+ εy ∈ U for all ε ∈ [0, εy]}.

Notice that when V is a topological vector space, then corU includes the interior of
U (see. e.g., Chapter 15 in [87]). Moreover, corU coincides with the interior of U
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for non-empty convex sets in finite-dimensional spaces, such as the sets of copositive
or positive semidefinite matrices (see, for instance, Chapter 17 in [87]). Algebraic
interior is an important concept in convex optimization since it determines when two
convex sets can be separated by a hyperplane, see Chapter 4 in [87] for more details.
Next theorem shows that properties of C[n]

r , Q[n]
r proven in [35] and [173] respectively

can be generalized for compact V .

Theorem 2.9. Let V ⊂ Rn be a compact set. Then,

CV0 ⊆ CV1 ⊆ · · · ⊆ COP(V ), QV
0 ⊆ QV

1 ⊆ · · · ⊆ COP(V ),

and cor COP(V ) ⊆ ⋃r CVr ⊆ ⋃rQV
r .

The key ingredient in the proof of Theorem 2.9 is the characterization of the algebraic
interior of the copositive cone given in Proposition 2.10. When V is finite (i.e. for
matrices), the algebraic interior of the copositive cone equals its interior and consists
of those copositive matrices whose quadratic form is strictly positive on the standard
simplex ∆n := {x ∈ Rn : eᵀx = 1, x ≥ 0}. This implies, by compactness of the
simplex, that a matrix M ∈ cor COP(V ) if and only if there is ε > 0 such that
xTMx = ∑

v∈V
∑
u∈V M(v, u)xixj ≥ ε for all x ∈ ∆n. Proposition 2.10 shows that

for compact V the latter is true uniformly over all finite submatrices of a given p.d.
kernel K.

Proposition 2.10. Let V ⊂ Rn be a compact set. Then

cor COP(V )=
{
K ∈ K(V ) : there is ε > 0 such that for all n > 0

and all v1, . . . , vn∈V, x∈∆n :
n∑
i=1

n∑
j=1

K(vi, vj)xixj ≥ ε
}

(2.13)

Proof. Let K, ε be such that (2.13) holds. Let K̂ ∈ K(V ) be given. Since K̂ is
continuous and V×V is compact, K̂ attains its maximum on V×V . Let K̂∗ =
maxx,y∈V K̂(x, y). Then for any v1, . . . , vn ∈ V and x ∈ ∆n,

n∑
i=1

n∑
j=1

(
K(vi, vj)−

ε

K̂∗
K̂(vi, vj)

)
xixj

≥ ε− ε

K̂∗

max
i,j∈[n]

K̂(vi, vj)
n∑
i=1

n∑
j=1

xixj


≥ 0.

Hence K − ε
K̂∗
K̂ ∈ COP(V ) by definition, and thus K ∈ cor COP(V ). Now let

K ∈ cor COP(V ), and denote by J the kernel on V that is always equal to one.
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Then there is ε > 0 such that K − εJ ∈ COP(V ). Therefore for any choice of
v1, . . . , vn ∈ V ,

min
x∈∆n

n∑
i=1

n∑
j=1

K(vi, vj)xixj

= min
x∈∆n

n∑
i=1

n∑
j=1

(K − εJ) (vi, vj)xixj + ε
n∑
i=1

n∑
j=1

xixj

≥ ε.

To prove Theorem 2.9, we use several additional results. A result by Powers and
Reznick [182] on the rate of convergence in Pólya’s theorem (see, e.g., [83]), a char-
acterization of CVr in terms of CUr for all finite U ⊂ V , and the fact that if K ∈ QV

r ,
then for every finite U ⊂ V we have KU ∈ QU

r .

Lemma 2.11. Let V ⊂ Rn be a compact set, and let r ∈ N. Then K ∈ CVr if and
only if KU ∈ CUr for every finite U ⊂ V .

Proof. Let U ⊂ V be finite. If K ∈ CVr , then σ (Stkr(K)) ∈ N V
r+2, and thus

σ
(
Stkr(KU)

)
≥ 0, that is KU ∈ CUr . On the other hand, if KU ∈ CUr for each finite

U ⊂ V , then for any v1, . . . , vr+2 ∈ V we have σ
(
Stkr(K{v1,...,vr+2})

)
(v1 . . . , vr+2) =

σ (Stkr(K)) (v1 . . . , vr+2) ≥ 0. Hence K ∈ CVr .

Lemma 2.12. Let V ⊂ Rn be a compact set, and let r ∈ N. Then K ∈ QV
r implies

that KU ∈ QU
r for every finite U ⊂ V .

Proof. Let U ⊂ V be finite. If K ∈ CVr , then there is a 2-p.d. function S such
that σ (Stkr(K)) − σ(S) ∈ N V

r+2. Hence σ
(
Stkr(KU)

)
− σ(SU) ∈ N U

r+2, that is
KU ∈ QU

r .

We would like to emphasize the difference between the hierarchies CVr and QV
r .

Namely, while we can prove in Lemma 2.11 that if KU ∈ CUr for every finite U ⊂ V ,
then K ∈ CVr , we cannot show the analog of this statement for QV

r . The first reason
for this difference is that we work with non-symmetric tensors and use the sym-
metrization operator σ. Moreover, let KU ∈ QU

r for every finite U ⊂ V . Let U ⊂ V

be finite. Then there exists a 2-p.d. tensor SU ∈ T Ur+2 and a tensor NU ∈ N U
r+2 such

that σ
(
Stkr(KU)

)
−σ(SU) = NU . However, we cannot claim that SU or NU change

continuously with U .
The final result we need for the proof of Theorem 2.9 is as follows.
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Theorem 2.13 (Powers and Reznick [182]). Let M ∈ Sn be strictly copositive. Then
the polynomial (eᵀx)r∑n

i,j=1Mijxixj has only positive coefficients if r > L
k
− 2, where

L = maxij |Mij| and k = minx∈∆n xᵀMx.

Notice that the result from Theorem 2.13 is a certificate of copositivity of M . That
is, the expression that makes the copositivity of M evident. This certificate is a di-
rect consequence of Polya’s Positivstellensatz 1.8. Theorem 2.13 strengthens Polya’s
Positivstellensatz in the sense that it provides a bound on the number r.

Remark 2.14. The bound on r in Theorem 2.13 does not depend on the size of M .

Now we are ready to prove Theorem 2.9.

Proof of Theorem 2.9. Let r ≥ 0 and let K ∈ QV
r . Then by (2.11) there exists

a 2-p.d. S ∈ T Vr+2 such that σ (Stkr(K)) ≥ σ (S). First, we show that K ∈ QV
r+1.

Define N := σ (Stkr(K)) − σ (S) so that N = σ(N). Then by c. and d. in Lemma
2.3,

σ
(
Stkr+1(K)

)
= σ

(
Stk1(N)

)
+ σ

(
Stk1(S)

)
.

From the definition (2.1) of the stack operator, Stk1(S) ∈ T Vr+3 is 2-p.d. and
σ
(
Stk1(N)

)
∈ N V

r+3. Thus K ∈ QV
r+1. Analogously, CVr ⊆ CVr+1.

The fact that K ∈ COP(V ) follows by Lemma 2.12 and Proposition 2.8 since for any
finite U ⊂ V we have that KU ∈ QU

r ∈ COP(U). As CVr ⊆ QV
r by construction of CVr

(2.9) and QV
r (2.11), we also have CVr ⊆ COP(V ).

For the final part of the proof, let K ∈ cor COP(V ). Since K is continuous and V×V
is compact, K attains its maximum and minimum values on V×V .
Denote

L = max
x,y∈V

|K(x, y)|.

As K ∈ cor COP(V ), by Proposition 2.10 there is ε > 0 such that

min
x∈∆|U|

xᵀKUx ≥ ε,

for all finite U ⊆ V .
Let r > L

ε
− 2. By Theorem 2.13, KU ∈ CUr for any U ⊆ V , which implies K ∈ CVr

by Lemma 2.11. Thus, cor COP(V ) ⊆ CVr ⊆ QV
r
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2.3.1 Approximating the stability number of infinite graphs

The stability number of a graph is the largest number of vertices such that no two
of them are adjacent. In this subsection we introduce the copositive formulation of
the stability number problem on infinite graphs by Dobre et al. [54]. We also prove
that if the copositive formulation is strictly feasible, then the stability number can
be approximated as closely as desired by replacing COP(V ) with CVr or QV

r with r
big enough.
Following de Laat and Vallentin [39], we define a compact topological packing graph
as the graph where the vertex set is a compact Hausdorff topological space, and
every finite clique is contained in an open clique. A topological space V is Hausdorff
if every two distinct points in V have disjoint neighborhoods. In the sequel we use
the property that a compact Hausdorff topological space is normal; that is, every
two disjoint closed sets in it have disjoint open neighborhoods. The stability number
of compact topological packing graphs is finite since every vertex of such graph is a
clique and thus is contained in an open clique. This implies that any U ⊆ V has a
cover of open cliques. By compactness of U , this cover has a finite subcover. If U
is infinite, then some members of U belong to the same clique in this subcover, and
thus U cannot be a stable set.
The unit sphere Sn−1 with the usual topology is a compact Hausdorff topological
space. An example of a compact topological packing graph in this space is the graph
Gθn = (Sn−1, EG

θ
n) in which (u, v) ∈ EG

θ
n if and only if uᵀv ∈ (cos θ, 1). That is,

there is an edge between every two vertices when the angle between them is strictly
smaller than θ. Notice that if U is a finite clique, by definition of EGθn there is an
open spherical cap that contains U and forms a clique in EG

θ
n . Therefore Gθn is a

compact topological packing graph. An example of a graph that is not a compact
topological packing graph is the graph Hθ

n = (Sn−1, EH
θ
n) in which there is an edge

between two vertices when the angle between them is equal to θ. Any open subset
of Sn−1 has points with a distance less than θ. Hence no open subset can be a clique
in Hθ

n, and all cliques must be finite.

Theorem 2.15 (Theorem 1.2. from Dobre et al. [54]). Let G = (V,E) be a compact
topological packing graph. Then the stability number of G equals

α(G) = inf
K∈K(V ), λ∈R

λ (2.14)

s. t. K(v, v) = λ− 1 for all v ∈ V,
K(u, v) = −1 for all (u, v) 6∈ E, u 6= v,

K ∈ COP(V ).

An example of the stability number problem on a compact topological graph is the
spherical codes problem. In the spherical codes problem, the number of points on the
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unit sphere in Rn for which the pairwise angular distance is not smaller than some
value θ is maximized. This problem can be viewed as the stable set problem on the
graph Gθn = (Sn−1, EG

θ
n) introduced in the previous paragraph. A particular case of

the spherical codes problem when θ = π
3 is the kissing number problem, which we

analyze in detail later in Section 2.4.
The equality sign in the constraint “K(u, v) = −1 for all (u, v) 6∈ E, u 6= v” of
problem (2.14) and relaxations (2.16), (2.17) can be replaced by “≤” without loss
of generality. In the sequel we call two problems equivalent if from every feasible
solution to one problem one can construct a feasible solution to the other with the
same objective value.

Lemma 2.16. Problem (2.14) is equivalent to the following problem:

α(G) = inf
K∈K(V ), λ∈R

λ (2.15)

s. t. K(v, v) = λ− 1 for all v ∈ V,
K(u, v) ≤ −1 for all (u, v) 6∈ E, u 6= v,

K ∈ COP(V ).

Proof. If the solution (K,λ) is feasible for (2.14), then it is clearly feasible for (2.15),
and the objective values of the two problems coincide for this solution. Now, let
(K,λ) be feasible for problem (2.15). Define X := {(v, v) : v ∈ V } and Y := {(u, v) :
u, v ∈ V, (u, v) 6∈ E, u 6= v}. Every (v, v) ∈ X belongs to Cv × Cv where Cv ⊂ V

is an open clique. Since Cv × Cv ∩ Y = ∅, the sets X and Y are disjoint. As G is a
compact topological packing graph, X and Y are closed. In particular, X is closed
since V is closed, and Y is closed since its complement is open. Since V is Hausdorff
and compact, it is normal. Hence by Urysohn’s lemma (see, e.g., 15.6 in [222]), there
is a continuous function f : V × V → [0, 1] such that f(v, v) = 0 for all v ∈ V and
f(u, v) = 1 for all (u, v) 6∈ E, u 6= v. By construction, if (x, y) ∈ Y , then (y, x) ∈ Y .
Hence we can define a kernel

f̂(x, y) = max
{
− 1

2

(
f(x, y) + f(y, x)

)
, K(x, y)

}
for all x, y ∈ V.

We have f̂ ≥ K, and thus K ∈ COP(V ) implies f̂ ∈ COP(V ). Since λ ≥ α(G), we
have that λ ≥ 1 and f̂(v, v) = λ − 1 for all v ∈ V . Therefore (f̂ , λ) is feasible for
problem (2.14), and the objectives of the two problems coincide for this solution.

Define the following relaxations to problem (2.15) (and thus to problem (2.14) by
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Lemma 2.16):

γr(G) = inf λ (2.16)
s. t. K(v, v) = λ− 1 for all v ∈ V,

K(u, v) ≤ −1 for all (u, v) 6∈ E, u 6= v,

K ∈ CVr .

νr(G) = inf λ (2.17)
s. t. K(v, v) = λ− 1 for all v ∈ V,

K(u, v) ≤ −1 for all (u, v) 6∈ E, u 6= v,

K ∈ QV
r .

By Theorem 2.9, CVr ⊆ QV
r ⊆ COP(V ) for any r. Hence,

α(G) ≤ νr(G) ≤ γr(G). (2.18)

In the next theorem and further in this chapter we say that problem (2.15) is strictly
feasible if there exists feasible (K+, λ+) such that K+ ∈ cor COP(V ).

Theorem 2.17. Let G = (V,E) be a compact topological packing graph. Assume
problem (2.15) is strictly feasible. Then γr(G) ↓ α(G) and νr(G) ↓ α(G).

Proof. Let (K+, λ+) be a feasible solution to problem (2.15) such thatK+ ∈ cor COP(V ).
From the definition of infimum, for any n > 0 there is (Kn, λn) feasible for (2.15)
such that λn ≤ α(G) + 1

n
. Let

K+
n = 1

n
K+ +

(
1− 1

n

)
Kn and λ+

n = 1
n
λ+ +

(
1− 1

n

)
λn.

By convexity of (2.15) the pair (K+
n , λ

+
n ) is feasible for problem (2.15). Since K+ ∈

cor COP(V ), by Theorem 2.9 there is m > 0 such that K+
n ∈ CVr for all r ≥ m.

Hence,

lim
r→∞

γr(G) ≤ λ+
n = 1

n
λ+ +

(
1− 1

n

)
λn ≤ 1

n
λ+ +

(
1− 1

n

) (
α(G) + 1

n

)
.

Taking the limit when n→∞ on both sides and using the second inequality in (2.18)
we obtain

α(G) ≥ lim
r→∞

γr(G) ≥ lim
r→∞

νr(G).

The first inequality in (2.18) concludes the proof.

Now, we show some graphs for which the conditions of Theorem 2.17 are satisfied.
We use the following result by Motzkin and Straus [146]:
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Theorem 2.18 (Motzkin and Straus [146]). Let G = (V,E) be a finite graph with
adjacency matrix A and stability number α. Then

1
α

= min
x∈∆|V |

xᵀ(A+ I)x.

Proposition 2.19. let G = (V,E) be a compact topological packing graph that sat-
isfies the following conditions:

(a) every v ∈ V has an open neighborhood whose closure is a clique;

(b) every closed clique is contained in an open clique.

Then problem (2.15) is strictly feasible, and thus γr(G) ↓ α(G) and νr(G) ↓ α(G).

Proof. Since V is compact and every vertex is a clique, V can be covered by a finite
number m of open cliques. Moreover, by (a) each of these cliques’ closure is a clique
too. Denote these closures by C1, . . . , Cm. By (b), each Cj, j ∈ [m] is a subset of an
open clique Bj, j ∈ [m]. Define

X :=
⋃
j∈[m]

Cj × Cj; Y :=
⋃
j∈[m]

Bj ×Bj.

Then X is closed, Y is open, and X ⊂ Y . Moreover, {(v, v) : v ∈ V } ⊂ X. We have
that V \ Y and X are disjoint subsets of a compact Hausdorff space V . Hence, by
Urysohn’s lemma (see, e.g., 15.6 in [222]), there is a continuous function g : V ×V →
[0, 1] such that g(u, v) = 1 for (u, v) ∈ X and g(u, v) = 0 for (u, v) ∈ V \ Y . Let
Ĝ = (V, Ê) be the subgraph of G such that (u, v) ∈ Ê if (u, v) ∈ X. Then Ĝ has
a finite stability number since C1, . . . , Cm are cliques in Ĝ that cover V . Moreover,
α(Ĝ) ≥ α(G) since every edge in Ĝ is an edge in G too.
Define a kernel K(u, v) = 2α(Ĝ)g(u, v)− 1 for all K ∈ V . We claim that (K, 2α(Ĝ))
is strictly feasible for problem (2.15) with G. By definition, K(u, u) = 2α(Ĝ) − 1
and K(u, v) = −1 for (u, v) /∈ E. To show that K ∈ cor COP(V ), fix k > 0 and
u1, . . . , uk ∈ V . Let Ĝu = ({u1, . . . , uk}, Eu) be the graph defined by (i, j) ∈ Eu if
and only if (ui, uj) ∈ X. Notice that α(Ĝ) ≥ α(Ĝu). Let Au be the adjacency matrix
of Ĝu. By definition of g we have

g(ui, uj) ≥ Auij + Iij for all i, j ≤ k (2.19)
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Let x ∈ ∆k, then

k∑
i=1

k∑
j=1

K(ui, uj)xixj = 2α(Ĝ)
k∑
i=1

k∑
j=1

g(ui, uj)xixj −
k∑
i=1

k∑
j=1

xixj

≥ 2α(Ĝ) min
x∈∆k

xᵀ(Au + I)x− 1 (by (2.19))

= 2α(Ĝ)
α(Ĝu)

− 1 (by Theorem 2.18)

≥ 2α(Ĝ)
α(Ĝ)

− 1

= 1

Therefore K ∈ cor COP(V ) by Proposition 2.10. Hence γr(G) ↓ α(G) and νr(G) ↓
α(G) by Theorem 2.17.

The example from Proposition 2.19 shows that the algebraic interior of COP(Sn−1)
is non-empty. Notice that this is in contrast to corPSD (V ), which turns out to be
empty.

Proposition 2.20. Let V ⊂ Rn be compact. Then corPSD (V ) = ∅.

Proof. Let K ∈ PSD (V ). By Mercer’s theorem [142], there exists a sequence
(λi)i∈N+ , λi ∈ R+ for all i ∈ N+, and a sequence of orthonormal functions (ei)i∈N+ , ei ∈
C(V ) for all i ∈ N+ such that for all x, y ∈ V

K(x, y) =
∑
i∈N+

λiei(x)ei(y).

This also implies, for any probability measure µ strictly positive on open subsets of
V , that∫

x∈V
K(x, x)dµ(x) =

∑
i∈N+

λi <∞,

and thus limi→∞ λi = 0. If λi = 0 for some i ∈ N+, it is straightforward that
K /∈ corPSD (V ) by orthogonality of (ei)i∈N+ , using Theorem 1.3. Hence we assume
that λi > 0 for all i ∈ N+. Since limi→∞ λi = 0, there is an index set J ⊆ N+

and a subsequence (λj)j∈J of (λi)i∈N+ such that λj+1
λj
≤ 1

2 for all j ∈ J . Then
√
λj+1√
λj
≤ 1√

2 < 1 for all j ∈ J , and hence the series ∑j∈J λj converges by the ratio

test. For every i ∈ N+ define λ̂i =
√
λi if i ∈ J and λ̂i = 0 otherwise. The convergence

of ∑j∈J λj and the fact that (ei)i∈N+ have norm one and are uniformly continuous
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imply that∑i∈N+ λ̂iei(x)ei(y) is a uniformly convergent series of uniformly continuous
functions. Hence K̂(x, y) = ∑

i∈N+ λ̂iei(x)ei(y) is a kernel. For all x, y ∈ V we have

K(x, y)− εK̂(x, y) =
∑
i∈N+

(λi − ελ̂i)ei(x)ei(y).

Therefore for any ε > 0 there is L > 0 such that for all i > L such that i ∈ J , we have
λi
λ̂i

=
√
λi < ε. Hence λi − ελ̂i < 0 for all i > L such that i ∈ J . Using Theorem 1.3

and orthogonality of (ei)i∈N+ again, we see that K − εK̂ /∈ PSD (V ) for all ε > 0.
Therefore K /∈ corPSD (V ) and corPSD (V ) = ∅.

2.4 Bounds on the kissing number problem

The kissing number is the largest number κn of non-overlapping unit spheres in Rn

that can simultaneously touch other unit spheres. History of the problem is described
in detail in, for instance, Musin [150]. The value of κn is known for n = 1, 2, 3, 4, 8, 24.
Computing κ1 = 2 and κ2 = 6 is straightforward, but this is not the case for κn
with n > 2. The question of whether κ3 = 12 or κ3 = 13 is attributed to the
famous discussion between Isaac Newton and David Gregory in 1694, and the result
κ3 = 12 was proven only in 1953 by Schütte and van der Waerden [205]. The
numbers κ8 = 240 and κ24 = 196560 were found by Odlyzko and Sloane [164] and
Levenshtein [125] in 1979. Finally, κ4 = 24 was proven in 2003 by Musin [150]. A lot
of research has been done to approximate the kissing numbers in other dimensions
from above and below. In this chapter we are interested in obtaining upper bounds
using the hierarchies proposed in Section 2.3.
In 1977, Delsarte, Goethals and Seidel [44] proposed an LP upper bound used later
to obtain κ8 and κ24. To find this bound, one has to solve an infinite-dimensional
LP, which can be approximated by a semidefinite program (SDP). The LP bound is
not tight in general, for example, for κ4 it cannot be less than 25, as was shown by
Arestov and Babenko [7] in 1997. Musin [150] strengthened the LP bound for the
four-dimensional case to obtain κ4 = 24. In 2007, Pfender [177] strengthened the LP
bound and obtained the best existing upper bounds for n = 25 and n = 26. In 2008,
a new SDP upper bound was proposed by Bachoc and Vallentin [12]. Mittelman
and Vallentin [143] used this approach to compute upper bounds for 5 ≤ n ≤ 23.
Later these results were strengthened for dimensions 9 to 23 by Machado and de
Oliveira Filho [136] who exploited the symmetry of the SDP problem. Table 2.1
shows best-known bounds on the kissing numbers in some dimensions, bounds for
other dimensions can be found in [143] and [136]. Finally, Musin [151] proposed
a hierarchy generalizing the earlier mentioned linear and SDP approaches, but this
hierarchy has not been implemented and is not proven to converge.
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Table 2.1 – Best-known upper and lower bounds on the kissing number.

n 3 4 5 6 7 8 9 10 11 12 13 24 25 26
upper
bound

12
[205]

24
[150]

44
[143]

78
[12]

134
[143]

240
[125, 164]

363
[136]

553
[136]

869
[136]

1356
[136]

2066
[136]

196560
[125, 164]

278083
[177]

396447
[177]

lower
bound
[154]

12 24 40 72 126 240 306 500 582 840 1154 196560 197040 198480

ub−lb
lb

0 0 10 0.08 0.06 0 0.19 0.11 0.49 0.61 0.79 0 0.41 0.997

The kissing number κn can be reformulated as the stability number on a graph whose
vertex set is the unit sphere:

Definition 2.21. Gn = (Sn−1, E) is the graph with the edge set

E=
{

(u, v) ∈ Sn−1 × Sn−1 : uᵀv > 1
2

}
.

We have α(Gn) = κn, and thus the kissing number could be computed using (2.15),
and approximations γ(Gn) (2.16), ν(Gn) (2.17) could be used to find upper bounds
on κn.

2.4.1 Convergence of the hierarchies for the kissing number

Let n ∈ N, n ≥ 2. In this subsection we show that the hierarchies proposed in
Section 2.3 provide converging upper bounds on the kissing number κn. In view of
Theorem 2.17, we only need to show that there exists a kernel K ∈ cor COP(Sn−1)
feasible for problem (2.15) when G=Gn.

Corollary 2.22. For the graph Gn we have γr(Gn) ↓ κn and νr(Gn) ↓ κn.

Proof. The result follows from Proposition 2.19 since Gn satisfies the conditions from
this proposition.

Our next goal is to compute upper bounds on κn solving problems (2.16) and (2.17),
exploiting the symmetry of the graph Gn. Proposition 2.23 below shows that, simi-
larly to the finite case, γr is never tight for κn and γr provides only trivial bounds
for small r. Thus we further restrict our attention to νr(Gn).

Proposition 2.23. Let n > 0, r ≥ 0. Let γr(Gn) be the optimal value of prob-
lem (2.16) with G = Gn. Then γr(Gn) > κn for all r ∈ N, and if γr(Gn) < ∞, then
r ≥ κn − 1.

Proof. If problem (2.16) with G = Gn is infeasible, then γr(Gn) = ∞ > κn. So we
assume feasibility. Let (K,λ) be a feasible solution for problem (2.16) with G = Gn.
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Let U = {u1, . . . , uα(Gn)} ⊂ Sn−1 be a maximum stable set of Gn, and denote by GUn
the subgraph of Gn induced by U . We have then,

γr(GUn ) ≤ γr(Gn) <∞. (2.20)

Therefore by Theorem 4.2 from [35], r ≥ α(GUn )− 1 = α(Gn)− 1 = κn− 1. Moreover,
by Lemma 2.11 (KU , λ) is a feasible solution to problem(2.16) with G = GUn , and
Corollary 2 in [173] implies

κn < γr(GUn ). (2.21)

Using (2.20) we obtain κn < γr(Gn).

Remark 2.24. In the proof of Proposition 2.23 we use the results from [35] and
[173]. These papers consider problem (2.16) where the inequality sign in the constraint
“K(u, v) ≤ −1 for all (u, v) 6∈ E, u 6= v” is replaced by the equality sign. Using
either sign results in equivalent problems. This follows from the fact that the sum
of a copositive kernel and a non-negative kernel is copositive, applying the approach
from the proof of Lemma 2.16 to problems (2.16) and (2.17).

2.4.2 Using the symmetry of the sphere to simplify the problem

To implement the bound νr(Gn), we exploit convexity of problem (2.17) and invari-
ance of Gn under On similarly to [37, 53, 70]. Hence we only need to characterize the
subset of QSn−1

r invariant under the action of On, which we denote by
(
QSn−1
r

)On .
Let µH be the Haar measure on On. Considering On as a topological subspace of Rn×n

makes On a topological group; that is, taking products and inverses are continuous
operations. Let ΣOn be the Borel σ-algebra on On. Then we define µH as the unique
Borel probability measure on On such that µH(U) = µH(UP ) = µH(PU) for all
P ∈ On and U ∈ ΣOn (the notation UP is explained in Definition 1.4).

Proposition 2.25. Problem (2.17) for Gn is equivalent to the following problem:

νr(Gn) = inf
K,λ∈R

λ (2.22)

s. t. K(x, x) = λ− 1, for all x ∈ Sn−1,

K(x, y) ≤ −1, for all x, y with xᵀy ∈ [−1, 1
2 ],

K ∈
(
QSn−1

r

)On
.

Proof. For any d > 0 and continuous function F : Rd → R, define

FOn(x1, . . . , xd) :=
∫
P∈On

F (Px1, . . . , Pxd)dµH(P ).



Bounds on the kissing number problem 37

We claim that if K is feasible for problem (2.17), then so is KOn , and the objective
values for both kernels are the same. Therefore, by convexity of problem (2.17), we
can reduce ourselves to the solutions that are invariant under the action of On, which
leads us to problem (2.22).
Next, we prove the claim. Let (K,λ) be feasible for problem (2.17). Clearly,
KOn(x, x) = K(x, x) = λ − 1 for all x ∈ Sn−1 and K(x, y) ≤ −1 for all x, y ∈
Sn−1 such that xᵀy ∈ [−1, 1

2 ]. It is left to show that KOn ∈ QSn−1
r . We have

σ (Stkr(K))− σ(S) ∈ N V
r+2 for some S ∈ T Vr+2 that is 2-p.d. Therefore

σ
(
Stkr(KOn)

)
(x1, . . . , xr+2) =

∫
P∈On

σ (Stkr(K)) (Px1, . . . , Pxr+2)dµH(P )

=
(
σ (Stkr(K))

)On(x1, . . . , xr+2)

≥
(
σ(S)

)On(x1, . . . , xr+2)

= σ
(
SOn

)
(x1, . . . , xr+2)

= σ(Ŝ)(x1, . . . , xr+2),

where Ŝ = SOn is 2 p.d. since for every y1, . . . , yr ∈ Sn−1 we have

Ŝ(·, ·, y1 . . . , yr) = SOn(·, ·, y1 . . . , yr) =
∫
P∈On

S(·, ·, Py1 . . . , Pyr)dµH(P ),

which is p.d. since S(·, ·, x1 . . . , xr) ∈ PSD (Sn−1) for any x1, . . . , xr ∈ Sn−1.

The condition K ∈
(
QSn−1
r

)On cannot be implemented directly and requires further
simplification, which we do in two steps. First, we reduce the number of variables
in the problem. Namely, instead of n(r + 2)−variate functions we further work with(
r+2

2

)
−variate functions. Each argument of such a function corresponds to an inner

product between a pair of variables x, y, z1, . . . , zr ∈ Sn−1. As a result, the number
of variables does not grow with the dimension of the sphere. Second, we characterize(
QSn−1
r

)On in terms of these new variables. The second step is challenging, so we
perform it in the next Chapter 3 of the thesis.
Remark 2.26. From here on in this chapter and in Chapter 3 we use the notation
X = [x1, . . . , xd] ∈ (Sn−1)d to denote the matrix X which has the vectors x1, . . . , xd
as its columns.

We say that X = [x1, . . . , xd] ∈ (Sn−1)d if x1 ∈ Sn−1, . . . , xd ∈ Sn−1. Let

On (X) =
{
Z = (z1, . . . , zd) ∈ (Sn−1)d : XᵀX = ZᵀZ

}
be the orbit of X under the action of On. The set of all orbits O = {On(X) : X ∈
(Sn−1)d} is in natural correspondence with the elliptope:

Ed : =
{
Y ∈ Sd : there is X=(x1, . . . , xd) ∈ (Sn−1)d such that Yij=xᵀi xj

}
=
{
Y ∈ Sd : Yii = 1 for all i ∈ [d], Y � 0

}
. (2.23)
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For any F ∈ C
(
(Sn−1)d

)
invariant under the action of On there exists φF : Ed → R,

such that

F (X) = φF (XᵀX), for all X ∈ (Sn−1)d. (2.24)

That is, F depends on the inner products of xᵀ1x2, . . . , x
ᵀ
d−1xd only.

Proposition 2.27. Given d ≤ n, let F ∈ C
(
(Sn−1)d

)
be invariant under the action

of On and let φF : Ed → R be such that F (X) = φF (XᵀX), for all X ∈ (Sn−1)d,
then

(a) F is non-negative if and only if φF is non-negative.

(b) F is continuous if and only if φF is continuous.

Proof. Part a is straightforward as co-domains of φF and F coincide. Next we prove
statement b. Let φF be continuous. Since T is continuous, F is continuous as a
composition of continuous functions. Now let F be continuous. We want to show
that φF is continuous. Consider a sequence (Y k)k∈N+ in Ed such that limk→∞ Y

k = Y

and the corresponding sequence
(
φF (Y k)

)
k∈N+

. Since Ed is compact, Y ∈ Ed. Also,
for all k ∈ N+ there is Xk ∈ (Sn−1)d such that [Xk]ᵀ[Xk] = Y k. Since co-domains of
φF and F coincide, the co-domain of φF is compact as F is continuous and (Sn−1)d is
compact. Therefore

(
φF (Y k)

)
k∈N+

is a bounded sequence. Now, we restrict ourselves
to an arbitrary convergent subsequence of this sequence. Then, up to a convergent
subsequence of (Xk)k∈N+ , we have

lim
k→∞

φF (Y k) = lim
k→∞

F (Xk) = F ( lim
k→∞

Xk) = φF (Y ).

Proposition 2.27 allows replacing kernels on Sn−1 in problem (2.22) by continuous
functions φ : Er+2 → R.

Lemma 2.28. Problem (2.22) is equivalent to the following problem:

νr(Gn) = inf
φ,F

φ(1) + 1 (2.25)

s. t. φ(u) ≤ −1, for all u ∈ [−1, 1
2 ],

φ(xᵀ1x2) + · · ·+ φ(xᵀr+1xr+2) ≥ σ (S(x1, . . . , xr+2)) , (2.26)
for all x1, . . . xr+2 ∈ Sn−1,

φ ∈ C([−1, 1]), S ∈ C
(
(Sn−1)r+2

)On
S is 2-p.d.
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Proof. Let (K,λ) be feasible for problem (2.22). By (2.24), using Proposition 2.27
and E1 = [−1, 1], there exists φ ∈ C([−1, 1]) such that K(x, y) = φ(xᵀy) for all
x, y ∈ Sn−1. Moreover, φ(u) ≤ −1 for all u ∈ [−1, 1

2 ]. Finally, the constraint (2.26)
is satisfied by (2.12). Hence φ is feasible for problem (2.25) with the objective value
φ(1) + 1 = φ(xᵀx) + 1 = K(x, x) + 1 = λ, for all x ∈ Sn−1.
Now, let φ ∈ C([−1, 1]) be feasible for problem (2.25). Define K(x, y) := φ(xᵀy)
for all x, y ∈ Sn−1 and λ := φ(1) + 1. Then K is a kernel by Proposition 2.27,
K(x, x) + 1 = λ for all x ∈ Sn−1, and K(x, y) ≤ −1 for all x, y ∈ Sn−1 such that
xᵀy ∈ [−1, 1

2 ]. Hence (K,λ) is feasible for (2.22) using the definition (2.12) of QSn−1
r .

Moreover, the objective value for K equals φ(1) + 1.

To obtain numerical results, our next step is to characterize 2-p.d. tensors on
(Sn−1)r+2 invariant under the action of On. We perform this step in the next Chap-
ter 3 of the thesis.
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CHAPTER 3

Generalizations of Schoenberg’s theorem on
positive definite kernels

3.1 Introduction

The seminal theorem of I.J. Schoenberg [201] characterizes positive definite kernels
on the unit sphere Sn−1 invariant under the automorphisms of the sphere. Recall
that On is the orthogonal group in dimension n, which is the automorphism group
of Sn−1.

Theorem 3.1 (Schoenberg [201]). Let n ≥ 2. The kernel K ∈ K(Sn−1) is invariant
under the action of On and p.d. if and only if there exists ci ≥ 0 for i = 0, 1, . . . such
that

K(x, y) =
∑
i∈N

ciP
n
2−1
i (xᵀy), (3.1)

where the series converges absolutely uniformly. Also, the coefficients of the expan-
sion (3.1) are given by

ck = 1
pn/2−1,k

∫
x,y∈Sn−1

K (x, y)P
n
2−1
k (xᵀy)dωn(x)dωn(y), (3.2)

where ωn is the standard measure on the unit sphere Sn−1 in Rn, and

pn
2−1,k :=

∫
x,y∈Sn−1

∣∣∣P n
2−1
k (xᵀy)

∣∣∣2dωn(x)dωn(y).

We discuss details about Gegenbauer polynomials in Section 3.2.
In this chapter we provide two generalizations of the above result to positive definite
kernels on fiber bundles. Theorem 3.7 is based on the following idea: for a set V ,
characterize p.d. kernels on V × Sn−1 which are invariant under the action of On

when the arguments from V are fixed. There exist several extensions of Schoenberg’s
theorem in this direction. First, Guella et al. [77] characterized F in the case when
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V = Sm−1 for m = 1, 2, . . . ,∞. Next, the situation where V is a compact group was
considered in Berg and Porcu [17]. Finally, Guella and Menegatto [76] generalized
Schoenberg’s theorem for the case where V is a general set without any assumptions
about its algebraic structure or topology. Inspired by these results, we let the set
V ⊆ Rn depend on the choice of parameters from another given set B. We describe
the whole family of kernels generated by all possible choices of parameters in B. To
work in this setting, we use the notion of a fiber bundle, see Section 3.2.2 for more
details.
Next, Theorem 3.8 characterizes the class of continuous functions F (x, y, Z) on
(Sn−1)r+2 invariant under On such that F (·, ·, Z) is a p.d. kernel for every Z ∈
(Sn−1)r.
Our work is inspired by the connection of p.d. kernels to some combinatorial problems
on infinite compact graphs. The well known linear programming upper bound for the
kissing number problem by Delsarte et al. [44] can be obtained using Schoenberg’s
theorem 3.1. The extension of Schoenberg’s theorem by Bachoc and Vallentin [12]
is used to obtain the strongest existing SDP upper bounds on the kissing number
[12, 136, 143]. We use the results in this chapter to implement the hierarchy of upper
bounds νr (2.25) on the kissing number problem from Chapter 2. As a result, we
obtain alternative SDP bounds for this problem.
The kissing number problem is a particular instance of the more general spherical
codes problem. Both problems are described in Chapter 2. Schoenberg’s theorem has
been used to obtain bounds on spherical codes [11, 177], as well as bounds for other
problems from coding theory and discrete geometry, such as binary codes [203], sphere
packings [39, 40, 101], distance avoiding sets [43], measurable chromatic number [13],
one-sided kissing number [149]. The extension of Schoenberg’s theorem by Musin
[151] has been used to obtain bounds for the maximum number of equiangular lines
in Rn [41].
Schoenberg’s theorem has been generalized in several ways. First, let r ≥ 0, and
pick r distinct points in (Sn−1). Consider p.d. kernels invariant under the auto-
morphisms of the sphere fixing those points, that is the stabilizer of those points in
On. Schoenberg’s theorem describes the case r = 0, when no points are fixed. Next,
Bachoc and Vallentin [12] characterized the case when K is a polynomial and r = 1
point is fixed. Finally, Musin [151] characterized the case r ≤ n− 2. In this chapter
we extend this idea even further in Theorem 3.8. Namely, we consider the class of
continuous functions F (x, y, Z) on (Sn−1)r+2 such that F (·, ·, Z) is a p.d. kernel for
every Z ∈ (Sn−1)r. According to Definition 2.7 in Chapter 2 we call such functions
2-p.d. functions. There is a close connection between our result and [151], as for any
fixed Z ∈ (Sn−1)r we have that F (·, ·, Z) is a p.d. kernel invariant under the stabilizer
of Z. Thus Musin’s result characterizes F (·, ·, Z) for each fixed Z. However, it does
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not fully characterize F as the dependence on Z is not explicit in [151] since Z is
assumed to be constant.
The approach in this chapter differs from the approach by Musin [151]. Musin [151]
uses modified Gegenbauer polynomials and the corresponding modification of the
classical addition theorem for Gegenbauer polynomials [105]. On the contrary, we
reduce the class of considered functions to the case where Schoenberg’s theorem ap-
plies. To prove our results, we generalize the notion of a p.d. kernel from a kernel
on a set to a kernel on a fiber bundle. A fiber bundle is a natural object that relates
to 2-p.d. functions since every such function can be viewed as a family of kernels
parametrized by Z ∈ (Sn−1)r. Our result can be also viewed as a continuation of an-
other known extension of Schoenberg’s theorem due to Bochner [20] who generalized
the theorem for group invariant p.d. kernels on compact topological spaces.
By increasing r in νr (2.25), we obtain a hierarchy of upper bounds on the kiss-
ing number. We implement νr for r ∈ {0, 1, 2} using the characterization of 2-p.d.
functions on (Sn−1)r+2. The bound for level zero of the hierarchy coincides with
Delsarte, Goethals and Seidel [44] linear programming (LP) bound for the spherical
codes problem. The bound for level one is similar to the semidefinite programming
(SDP) bound for the spherical codes problem by Bachoc and Vallentin [12] but nu-
merically weaker (see Section 3.7).
We analyze the relation between our bounds and the bound in [12] in Section 3.7. The
results are not conclusive, so further research is needed to understand the connection
better. Our bound for level one of the hierarchy is numerically weaker than the bound
in [12]. However, in contrast to the approach in [12], we provide not one upper bound
but a sequence of convergent upper bounds on the kissing number. Higher levels of
our hierarchies could provide stronger bounds.
The outline of the chapter is as follows. In Section 3.2 we present the basic notation
and concepts used throughout the chapter and motivate our study. In particular,
Subsection 3.2.2 introduces fiber bundles and kernels on them. In Section 3.3 we
present our main Theorems 3.7 and 3.8. Section 3.4 contains major proofs. Further
observations and ideas about future research are considered in Section (3.5). In Sec-
tion 3.6, we describe the application of our results to the kissing number problem and
show computational results. In Section 3.7 we compare our optimization problems
with some well known existing upper bounds on the kissing number. All computa-
tions in this chapter are done in MATLAB R2017a with Yalmip [128] on a computer
with the processor Intel® CoreTM i5-3210M CPU @ 2.5 GHz and 7.7 GiB of RAM.
SDP programs are solved with MOSEK Version 8.0.0.64.
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3.2 Preliminaries and motivation

Throughout the chapter we use the following properties of p.d. kernels due to Schoen-
berg [200].

Theorem 3.2 (Schoenberg [200]). Let V ⊂ Rn be compact, then

(a) A sum of finitely many p.d. kernels on V is a p.d. kernel.

(b) An entry-wise product of finitely many p.d. kernels on V is a p.d. kernel.

(c) A continuous function which is a limit of a sequence of p.d. kernels on V is a
p.d. kernel.

Schoenberg [201] characterized p.d. kernels on the unit sphere invariant under the ac-
tion of On in terms of Gegenbauer, or ultraspherical, polynomials (see Theorem 3.1).
Gegenbauer polynomials Pα

k (t) : [−1, 1] → R of order α and degree k are in-
ductively defined for any α > −1

2 and k ≥ 0 (see, e.g., Chapter 6.4 in [5]), as
Pα

0 (t) = 1, Pα
1 (t) = 2αt and for k > 1

dPα
k (t) = 2t(k + α− 1)Pα

k−1(t)− (k + 2α− 2)Pα
k−2(t) (3.3)

For α > 0 we have Pα
i (t) ≤ Pα

i (1) and Pα
i (1) > 0, which implies that ∑i∈N ci in

expansion (3.1) converges.
For each fixed order α, Gegenbauer polynomials form an orthogonal basis, with
respect to the weight function (1− t2)α− 1

2 , for univariate polynomials on the interval
[−1, 1]. Thus, every univariate polynomial g(t) of degree k can be represented via its
Gegenbauer polynomial expansion

g(t) =
k∑
i=0

ciP
α
i (t), ci ∈ R. (3.4)

For α = n
2 − 1, the weight function (1− t2)α− 1

2 can be associated with ωn. Namely,
for any f ∈ C([−1, 1]) we obtain, by switching to polar coordinates,∫

x,y∈Sn−1
f(xᵀy)dωn(x)dωn(y) = ωn(Sn−1)ωn−1(Sn−2)

∫ 1

−1
f(t)(1− t2)

n−3
2 dt,

where ωn(Sn−1) = 2πn/2

Γ(n2 )
is the surface area of Sn−1. Based on this observation, in

the sequel we use the following notation

pn
2−1,k :=

∫
x,y∈Sn−1

∣∣∣P n
2−1
k (xᵀy)

∣∣∣2dωn(x)dωn(y)

= ωn(Sn−1)ωn−1(Sn−2)
∫ 1

−1

∣∣∣P n
2−1
k (t)

∣∣∣2(1− t2)n−3
2 dt.
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Recall that Z = [z1, . . . , zr] ∈ (Sn−1)r denotes the matrix Z which has the vectors
z1, . . . , zr as its columns (see Remark 2.26). Let

StabOn(Z) = {P ∈ On : PZ = Z, i.e., Pzi = ziforalli ∈ [r]}

be the stabilizer of Z in On. Musin [151] extended Schoenberg’s theorem by charac-
terizing p.d. kernels on the unit sphere invariant under the action of StabOn(Z).
To present this extension theorem, denote by R(Z) the range of Z, let ΠZ =
Z(ZᵀZ)−1ZT be the orthogonal projection onto R(Z), and let Π⊥Z = I − ΠZ , where
I is the identity matrix, be the orthogonal projection onto R(Z)⊥.

Theorem 3.3 (Musin [151]). Let n ≥ 2 and n ≥ r + 2, and let Z ∈ (Sn−1)r be of
rank r. The kernel K ∈ K(Sn−1) is invariant under the action of StabOn(Z) and
p.d. if and only if there exist p.d. kernels ci on {x ∈ Rr : z = Zᵀy, y ∈ Sn−1} for
i = 0, 1, . . . such that

K(x, y) =
∑
i∈N

ci(Zᵀx, Zᵀy)P
n−r

2 −1
i

(Π⊥Z x
)ᵀ

Π⊥Z y

‖Π⊥Z x‖‖Π
⊥
Z y‖

 . (3.5)

When r = 1 and K is a polynomial, the result in Theorem 3.3 follows from the
decomposition by Bachoc and Vallentin [12], who use classical results on spherical
harmonics, see, e.g., Chapter 9 in [5].
Although this fact is not stated explicitly, in Theorem 3.3 functions ci can differ
for different choices of Z. More precisely, for each orbit ZOn = {PZ : P ∈ On} of
Z ∈ (Sn−1)r we have a different cZOni . Since Z is fixed, this dependence of ci on
the orbit of Z is implicit in Theorem 3.3. We generalize Theorem 3.3 taking this
dependence into account in order to characterize 2-p.d. functions on the unit sphere
invariant under the action of On.
We generalize Theorem 3.3 using the following observation. Let Z ∈ (Sn−1)r be of
rank r. For any x ∈ Rn we can write x = ΠZx + Π⊥Zx, where ΠZx ∈ R(Z) and
Π⊥Zx ∈ R(Z)⊥. Now, StabOn(Z) fixes ΠZS

n−1 and acts transitively on Π⊥ZSn−1.
Therefore for every x ∈ Sn−1 one can separate the fixed component ΠZx and exploit
the symmetry of the varying component Π⊥Zx. Notice that Π⊥Zx is isomorphic to the
unit sphere in Rn−r. Moreover, every action of StabOn(Z) on Π⊥Zx is associated with
an action of On on Sn−r−1. Hence, one can use Schoenberg’s theorem on Sn−r−1 to
characterize K(x, y) when the components of x and y that belong to ΠZx are fixed.
For every fixed Z that would provide expansion (3.5). Our goal is to show what hap-
pens when we let Z vary, as we can obtain a different expansion (3.5) for different Z.
To be able to work with all these expansions simultaneously, we consider a general-
ization of p.d. kernels on a set to p.d. kernels on a fiber bundle (see Subsection 3.2.2
for precise definitions).
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3.2.1 Motivation

Theorems 3.1 and 3.3 were used to obtain new upper bounds on the spherical codes
problem. Recall that in this problem, the number A(n, θ) of points on Sn−1 is max-
imized, for which the pairwise angular distance is not smaller than some value θ.
Schoenberg’s theorem (Theorem 3.1) leads to the linear programming upper bound
for the spherical codes problem by Delsarte et al. [44], and Musin’s theorem (Theo-
rem 3.3) when r = 1 leads to the semi-definite programming bounds by Bachoc and
Vallentin [12].
Our findings in this chapter are motivated by problem (2.25) in the previous Chap-
ter 2, which provides an upper bound on the kissing number problem. Let V = Sn−1,
r ≥ 1, and let F be a 2-p.d. function (see Definition 2.7) on the unit sphere invariant
under the action of On. Implementing problem (2.25) requires a characterization of
F . It is clear that for every fixed Z ∈ (Sn−1)r, F (·, ·, Z) is invariant under StabOn(Z),
and thus has the form as in Theorem 3.3. However, in the context of problem (2.25),
Z can vary. The question is then how to modify Theorem 3.3 to make explicit the
dependence on Z.

3.2.2 Fiber bundles and kernels on fiber bundles

We think on kernels parameterized by a set of parameters B. Here not only the
kernel depends on the parameters from B, but also the domain of the kernel might
depend on the choice of the parameters from B. Kernels on fiber bundles are not
usually used in optimization, but they have been studies in physics (see, e.g., [56]),
and they can be naturally associated to 2-p.d. functions (see Remark 3.5).
A fiber bundle is a map f : A→ B, where A is called the total space and B is called
the base space [90]. For each b ∈ B, Ab := f−1(b) ⊂ A is called the fiber over b. We
think of Ab as representing a set “parameterized by” b. Our definition of a bundle
is quite unrestrictive. In particular, we do not ask the fibers to be homeomorphic.
We assume the following about f : A → B. First, we restrict ourselves to the case
where A and B are Euclidean sets with natural topology. Next, as we work with
continuous functions over fiber bundles, we require that local cross sections exist in
f : A → B. That is, there exists a continuous map g : U → A, where U ⊆ B is an
open set and f(g(u)) = u for all u ∈ U . Finally, in some cases we require that the
map f is proper ; that is, preimages of compact sets under f are compact.

Definition 3.4. As examples, we define the following bundles which we frequently
use in the sequel.

1. Given A ⊂ Rn and B ⊂ Rm, let πA,B : A × B → B be the projection bundle
defined by πA,B(a, b) := b.
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2. Given bundles f1 : A1 → B and f2 : A2 → B, define

A1 ×B A2 := {(a1, a2) ∈ A1 × A2 : f1(a1) = f2(a2)}.

We define the fiber product bundle f1 ×B f2 : A1 ×B A2 → B as

f1 ×B f2(a1, a2) := f1(a1).

The fiber product is also called the Whitney sum. It has the property that for
every b ∈ B, (A1 ×B A2)b = (A1)b × (A2)b.

3. Given a bundle f : A → B and U ∈ Rk, let U×f : U × A → B be the bundle
such that U×f(u, a) := f(a). In the case U = Sn−1, we call Sn−1×f a cylinder.

Now, we introduce the notion of a kernel on a bundle. The idea is that for each
b ∈ B we have a kernel on Ab, and the dependence on b is continuous. Given a
bundle f : A→ B, we define a kernel on f to be a continuous map K : A×B A→ R
such that Kb : Ab × Ab → R is a kernel for each b ∈ B. We say K is p.d. on f if Kb

is p.d. for each b ∈ B.
We say that a bundle f : U → B is a subbundle of g : A→ B if U ⊆ A, and f = g|U .
We call f : U → B a projection subbundle if it is a subbundle of some projection
bundle.

Remark 3.5. Given any projection bundle πA,B : A × B → B, we have πA,B ×B
πA,B ∼= πA×A,B, and thus every p.d. kernel on a subbundle f : U → B of πA,B is
in correspondence with a continuous map K : U × U × B → R such that for each
b ∈ B, K(·, ·, b) = Kb is a p.d. kernel on Ub. In the sequel we abuse the notation
and make no difference between a kernel on projection subbundle f : U → B and its
corresponding continuous map.

Our last definition is the action of a group on a bundle. Given bundle f : A→ B and
group G, for G to act on f means that G acts both on A and on B, and both actions
are consistent with f . That is, for all g ∈ G and a ∈ A, f(a)g = f(ag). We denote
the orbit of a ∈ A under G by aG := {ag : g ∈ G}, and let OG(A) =

{
aG : a ∈ A

}
be

the set of orbits of A. We define bG and OG(B) analogously.
When G acts on a bundle f : A → B, it is natural to define the G-orbit bundle of
f as OG(f) : OG(A) → OG(B) such that OG(f)(aG) = f(a)G. Notice that in the
G-orbit bundle, for any bG ∈ OG(B) we have [OG(A)]bG = OG(Ab).
Now, we propose an extension of the group acting onB to a group acting on projection
bundle πA,B. Assume G acts on B. We define the vertical action of G on πA,B by
fixing the elements of A; that is, for all a ∈ A, b ∈ B and g ∈ G we define the
action of G on A × B by (a, b)g := (a, bg). Notice that this action and the action
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of G on B are consistent with πA,B, and thus define an action on πA,B. Moreover,
OG(πA,B) = πA,OG(B). For any projection subbundle f : U → B, we say that G
acts vertically on f if the action of G is the restriction of the vertical action on the
corresponding projection bundle. Notice that this is the case only if for any b ∈ B
and g ∈ G we have Ub = Ubg .
In general, looking at OG(f) is not enough to characterize p.d. kernels on f invariant
under the action of G as kernels are bivariate functions and thus one should look at
2-orbits, instead of 1-orbits. One exception is the case of vertical actions, as the
following straightforward proposition shows. From here on our groups of interest are
either On or its subgroups. Hence we formulate the proposition for On although it
could be generalized to a wider class of groups.

Proposition 3.6. Let A ⊂ Rm and B ⊂ Rn. Assume that On acts on B and endows
OOn(B) with the usual topology. Let f : A→ B be a projection subbundle such that
On acts vertically on f . Let K be a kernel on f invariant under the vertical action
of On. Define the function KOn as

KOn(a1, a2, b
On) := K(a1, a2, b) for all b ∈ B, a1, a2 ∈ Ab.

Then KOn is a kernel on OOn(f), and K is p.d. if and only if KOn is p.d.

Proof. The result follows from the definition of the vertical action and the On-orbit
bundle.

This work is motivated by 2-p.d. functions introduced in Chapter 2. Remark 3.5
explains that 2-p.d. functions on A are p.d. kernels on πA,Ar for some given r. In
chapter Chapter 2 we are interested is in (r + 2)-variate 2-p.d. functions on Sn−1

invariant under the natural action of On on (Sn−1)r+2. In the language of kernels
on fiber bundles, those are p.d. kernels on πSn−1,(Sn−1)r invariant under the natural
action of On on πSn−1,(Sn−1)r . In the rest of this chapter we characterize such kernels.

3.3 Main results

Next we present two generalizations of Schoenberg’s theorem (Theorem 3.1). Given
a bundle f : A → B, we define the horizontal action of On on the cylinder Sn−1×f

by (x, a)P = (Px, a) and bP = b, for each x ∈ Sn−1, a ∈ A, b ∈ B and P ∈ On. In
our first Theorem we characterize the p.d. kernels on cylinders, invariant under the
horizontal action of On. In particular, it allows to characterize invariant (under the
action of On) p.d. kernels on a product of Sn−1 and a compact set.

Theorem 3.7. Let n ≥ 2, r > 0,m > 0, and let A ∈ Rr, B ∈ Rm. Let f : A → B

be a bundle with proper f . Then a kernel K on the cylinder Sn−1×f is p.d. and
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invariant under the horizontal action of On if and only if there are p.d. kernels ci on
f , i = 0, 1, . . . such that for all b ∈ B, u1, u2 ∈ Sn−1, and a1, a2 ∈ Ab

Kb ([ u1
a1 ] , [ u2

a2 ]) =
∑
i∈N

(ci)b(a1, a2)P
n
2−1
i (uᵀ1u2). (3.6)

Also, the coefficients of the expansion are given by

(ck)b(a1, a2) = 1
pn/2−1,k

∫
u1,u2∈Sn−1

Kb ([ u1
a1 ] , [ u2

a2 ])P
n
2−1
k (uᵀ1u2)dωn(u1)dωn(u2). (3.7)

To show the intuition behind Theorem 3.7, let A ⊂ Rn, B ⊂ Rn be compact sets, and
consider a function G ∈ C

(
B×(A×Sn−1)2

)
. By fixing elements b ∈ B and a1, a2 ∈ A,

we obtain the function G(b, a1, a2, ·, ·) ∈ C(Sn−1×Sn−1). Assume that G(b, a1, a2, ·, ·)
is a kernel invariant under the action of On. Then G satisfies the conditions in
Theorem 3.7, and therefore it has expansion (3.6). However, Theorem 3.7 allows
considering a more general setting: using fiber bundles makes it possible for the set
A to depend on some parameters from the set B. Namely, for every b ∈ B we may
have Ab ⊂ Rn, and these sets may vary for different b. Theorem 3.7 allows us to work
with all these sets simultaneously. It says that even if A depends on B, the function
G still has representation (3.6).
Notice that πSn−1,(Sn−1)r is isomorphic to the cylinder Sn−1×id (Sn−1)r, where id (Sn−1)r
is the identity bundle on (Sn−1)r. Consider the (natural) action of On on πSn−1,(Sn−1)r .
This action is not horizontal, and thus Theorem 3.7 does not apply. Our second the-
orem describes p.d. kernels on the bundle πSn−1,(Sn−1)r which are invariant under the
action of On described in Section 1.1 of Chapter 1. Given r > 0, define

S = {Z ∈ (Sn−1)r : rankZ = r}. (3.8)

Notice that set S is dense in (Sn−1)r. Also, define

Er = {Y ∈ Sr : Y � 0, Yii = 1 for all i ∈ {1, . . . , r}} .

Theorem 3.8. Let r ≥ 0 and n ≥ r + 2. A kernel K on πSn−1,(Sn−1)r is p.d.
(
in

other words, a function K ∈ C
(
(Sn−1)r+1

)
is 2-p.d.

)
and invariant under the action

of On if and only if there are p.d. kernels ci, i = 0, 1, . . . on the projection subbundle
f :

{[
1 yᵀ

y Y

]
∈ Er+1 : Y � 0

}
→ {Y ∈ Er : Y � 0}, such that for all x, y ∈ Sn−1 and

Z ∈ S,

KZ(x, y) =
∑
i∈N

(ci)ZᵀZ(Zᵀx, Zᵀy)P
n−r

2 −1
i

(Π⊥Z x
)ᵀ

Π⊥Z y

‖Π⊥Z x‖‖Π
⊥
Z y‖

 . (3.9)

Theorem 3.8 characterizes 2-p.d. functions on (Sn−1)r+2. Let F be a 2-p.d. function
on (Sn−1)r+2. When we fix Z ∈ Sn−1, we obtain F (·, ·, Z) ∈ PSD (Sn−1) invariant un-
der StabOn(Z). This kernel is characterized in Theorem 3.3 and has expansion (3.5).
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What we show in Theorem 3.8 is that letting Z vary implies letting ci depend on ZᵀZ

in expansion (3.5). Notice that Theorem 3.3 follows from Theorem 3.8, as given any
Z ∈ (Sn−2)r and any p.d. kernel K on Sn−1 invariant under the action of StabOn(Z),
there is a p.d. kernel K̂ on πSn−1,(Sn−1)r invariant under the action of On such that
K̂Z(x, y) = K(x, y).

3.4 Proofs of main theorems

In this section we present the proofs of Theorems 3.7 and 3.8.

3.4.1 Proof of Theorem 3.7

Let K be a kernel on Sn−1×f . The “only if” part of the statement follows from
Theorems 3.2 and 3.1. To prove the converse, let K be p.d. and invariant under the
horizontal action of On. Let b ∈ B and a1, a2 ∈ Ab. The kernel

Ga1,a2
b (u1, u2) = Kb ([ u1

a1 ] , [ u2
a2 ]) +Kb ([ u1

a2 ] , [ u2
a1 ]) +Kb ([ u1

a1 ] , [ u2
a1 ]) +Kb ([ u1

a2 ] , [ u2
a2 ])

is p.d. on Sn−1 and invariant under On. From Schoenberg’s theorem (Theorem 3.1)
we have

Ga1,a2
b (u1, u2) =

∑
k≥0

(di)b(a1, a2)P
n
2−1
k (uᵀ1u2), (3.10)

where the (di)b(a1, a2) are non-negative, and the series (3.10) converges absolutely
uniformly.
As On acts transitively on Sn−1, we have

Kb ([ u1
a1 ] , [ u2

a2 ]) = Kb ([ u2
a1 ] , [ u1

a2 ]) = Kb ([ u1
a2 ] , [ u2

a1 ]) ,

thus,

Ga1,a2
b (u1, u2) = 2Kb ([ u1

a1 ] , [ u2
a2 ]) +Kb ([ u1

a1 ] , [ u2
a1 ]) +Kb ([ u1

a2 ] , [ u2
a2 ])

Gai,ai
b (u1, u2) = 4Kb ([ u1

ai ] , [ u2
ai ]) (i = 1, 2).

Defining (ck)b(a1, a2) = (dk)b(a1, a2)− 1
4(dk)b(a1, a1)− 1

4(dk)b(a2, a2) and using (3.10),
we obtain

Kb ([ u1
a1 ] , [ u2

a2 ]) =1
2

(
Ga1,a2
b (u1, u2)− 1

4G
a1,a1
b (u1, u2)− 1

4G
a2,a2
b (u1, u2)

)
= 1

2

∑
k∈N

(ck)b(a1, a2)P
n
2−1
k (uᵀ1u2). (3.11)



Proofs of main theorems 51

Remark 3.9. Notice that Schoenberg’s theorem can not be applied to Kb ([ u1
a1 ] , [ u2

a2 ])
directly, as this is not necessarily a p.d. kernel for all b ∈ B and a1, a2 ∈ Ab.
Intuitively the reason for this is that this function does not correspond to a “principal
submatrix” of Kb when a1 6= a2.

Next, we argue that ck’s are p.d. kernels on f . Fix k ≥ 0, then we claim that

Claim 3.10. For every b ∈ B, a1, a2 ∈ Ab,

(ck)b(a1, a2) = 1
pn/2−1,k

∫
u1,u2∈Sn−1

Kb ([ u1
a1 ] , [ u2

a2 ])P
n
2−1
k (uᵀ1u2)dωn(u1)dωn(u2)

Fix b ∈ B. Claim 3.10 and the continuity of K imply that (ck)b is continuous. From
(3.7) it follows that (ck)b(a1, a2) = (ck)b(a2, a1) for all a1, a2 ∈ Ab. Hence (ck)b is a
kernel.
From our assumptions, Ab is compact. We use Theorem 1.3 to show that (ck)b is p.d.
on Sn−1 × Ab. Let h ∈ C(Ab) be given, then∫

a1,a2∈Ab
(ck)b(a1, a2)h(a1)h(a2)dµ(a1)dµ(a2)

=
∫
a1,a2∈Ab
u1,u2∈Sn−1

Kb ([ u1
a1 ] , [ u2

a2 ])P
n
2−1
k (uᵀ1u2)h(a1)h(a2)dωn(u1) . . . dµ(a2)

≥ 0.

The inequality holds since Kb and P
n
2−1
k are p.d. on Sn−1 × Ab, and from Theorem

3.2.b their product is p.d. too.

To finish, we prove Claim 3.10. We know that
{
P
n
2−1
i

}
i∈N

is a sequence of orthog-
onal polynomials on Sn−1 under ωn. Fix k ≥ 0, b ∈ B and a1, a2 ∈ Ab. From
Schoenberg’s theorem 3.1 and the definition of (ci)b(a1, a2) in 3.11, we have that∑
i≥0(ci)b(a1, a2)P

n
2−1
i (uᵀ1u2) converges absolutely uniformly on Sn−1 × Sn−1. Hence,

as Pk is continuous on [−1, 1] and therefore bounded, the series∑
i≥0

(ci)b(a1, a2)P
n
2−1
i (uᵀ1u2)P

n
2−1
k (uᵀ1u2)

converges absolutely uniformly too. Therefore∫
u1,u2∈Sn−1

Kb

(
[ u1
a1 ] , [ u2

a2 ] , b
)
P
n
2−1
k (uᵀ1u2)dωn(u1)dωn(u2)

=
∫
u1,u2∈Sn−1

∑
i≥0

(ci)b(a1, a2)P
n
2−1
i (uᵀ1u2)P

n
2−1
k (uᵀ1u2)dωn(u1)dωn(u2)

=
∑
i≥0

(ci)b(a1, a2)
∫
u1,u2∈Sn−1

P
n
2−1
i (uᵀ1u2)P

n
2−1
k (uᵀ1u2)dωn(u1)dωn(u2)

= pn/2−1,k(ck)b(a1, a2).
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3.4.2 Proof of Theorem 3.8

The idea of the proof is to relate kernels on πSn−1,(Sn−1)r to kernels on cylinders over
Sn−r−1 and apply Theorem 3.7. We do this via continuous transformations using
Lemmas 3.11 and 3.12 below.

Lemma 3.11. Let f : C → B be a bundle with proper f . Let T : A → C be a con-
tinuous function. Let K be a kernel on f . Define L by Lb(a1, a2) = Kb(T (a1), T (a2))
for all b ∈ B, a1, a2 ∈ Ab.

1. L is a kernel on f ◦ T .

2. If K is p.d. on f , then L is p.d. on f ◦ T .

3. If T is surjective and L is p.d. on f ◦ T , then K is p.d. on f .

Proof. As T and K are continuous, L is continuous by definition. Also, for any b ∈ B
and any a1, a2 ∈ Ab, we have Lb(a1, a2) = Kb(T (a1), T (a2)) = Kb(T (a2), T (a1)) =
Lb(a2, a1). Thus L is a kernel on f ◦ T . Now assume K is p.d. on f . For any
k > 0, any b ∈ B, and any a1, a2, . . . , ak ∈ Ab, we have that [ Lb(ai,aj) ]1≤i,j≤k =
[Kb(T (ai),T (aj)) ]1≤i,j≤k � 0. Thus L is p.d. on f ◦ T . Now assume T is surjective
and L is p.d. on f ◦ T . Then given k > 0, any b ∈ B, and any c1, c2, . . . , ck ∈ Cb
there are a1, a2, . . . , ak ∈ Ab such that ci = T (ai). Thus the matrix [Kb(ci,cj) ]1≤i,j≤k =
[ Lb(ai,aj) ]1≤i,j≤k is p.d.. Therefore K is p.d. on f .

Let Z ∈ (Sn−1)r. We have dim(R(Z)⊥) = n− dim(R(Z)) = n− rankZ, and there-
fore R(Z)⊥ is isomorphic to Rn−rankZ . Namely, there is an isomorphism φZ between
Rn−rankZ−1 and R(Z)⊥. Analogously, R(Z) has dimension rankZ and thus is iso-
morphic to RrankZ , and there is an isomorphism γZ between RrankZ and R(Z). In the
sequel we restrict most of our arguments to S (3.8), to avoid “singularities” in further
proofs and definitions. In particular, the dependence on Z of the isomorphisms φZ
and γZ can not be continuous in the whole (Sn−1)r, but when we restrict ourselves to
S, φZ and γZ can be chosen continuous. For instance, let Ort : Rn×r → Rn×(n−r) be
such that Ort(Z) provides an orthonormal basis of R(Z)⊥ for any Z ∈ Rn×r of rank
r. Then the isomorphism between R(Z)⊥ and Rn−r can be viewed as the bijection:

φZ : Rn−r → R(Z)⊥, φZ(v) = Ort(Z)v for all v ∈ Rn−r.

We can construct a continuous isomorphism between Rr and R(Z) as the following
bijection

γZ : Rr → R(Z), γZ(u) = Z(ZᵀZ)−1u for all u ∈ Rr.
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We are particularly interested in the isomorphism between ΠZS
n−1 ⊂ R(Z) and

BZ := γ−1
Z ◦ ΠZS

n−1 = {Zᵀx : x ∈ Sn−1}.

Notice that for any Z ∈ S we can send x ∈ Π⊥ZSn−1 to the unit sphere in Rn−r by
normalizing x. Then, since StabOn(Z) is isomorphic to On−r, any action of StabOn(Z)
on Π⊥Sn−1 can be associated with an action of On−r on Sn−r−1. Hence we can use the
result for the orthogonal group acting on the unit sphere, described in Theorem 3.7.
To formalize this procedure, we need the following lemma.

Lemma 3.12. The maps

T1 : Sn−r−1 × {(u, Z) : Z ∈ S, u ∈ BZ} → {(x, Z) : Z ∈ S, x ∈ Sn−1}[ v
u
Z

]
7→

[
φZ(v)
√

1−‖γZ(u)‖2+γZ(u)
Z

]
T2 : {(x, Z) : Z ∈ S, x ∈ Sn−1 \ R(Z)} → Sn−r−1 × {(u, Z) : Z ∈ S, u ∈ BZ}

[ xZ ] 7→

 φ−1
Z (Π⊥Z x)

‖φ−1
Z (Π⊥Z x)‖
γ−1
Z (ΠZx)

Z


are continuous, T1 is surjective, T2 is injective, and T1◦T2 = id{(x,Z):Z∈S, x∈Sn−1\R(Z)}.

Proof. Continuity follows from the continuity of γZ , φZ and their inverses. It is a
straightforward calculation to check that T1 is a surjection and that we have T1◦T2 =
id{(x,Z):Z∈S, x∈Sn−1\R(Z)}. T2 is injective since for any x1, x2 ∈ Rn, if x1 6= x2 then either
ΠZx1 6= ΠZx2 or Π⊥Zx1 6= Π⊥Zx2.

Proof of Theorem 3.8 . First, denote

B := {(u, Z) : Z ∈ S, u ∈ BZ} =
{

(Zᵀx, Z) : Z ∈ S, x ∈ Sn−1
}
,

and consider the projection subbundle f : B → S . Clearly, f is proper. Let K be
a kernel on πSn−1,(Sn−1)r . Throughout the proof we use a function L on the cylinder
Sn−r−1×f defined by

LZ ([ u1
v1 ] , [ u2

v2 ]) = K
(
T1
([ u1

v1
Z

])
, T1

([ u2
v2
Z

]))
, (3.12)

for all v1, v2 ∈ Sn−r−1, Z ∈ S, u1, u2 ∈ BZ . By our assumptions K is a kernel on
πSn−1,(Sn−1)r . Since T1 is surjective by Lemma 3.12, we have that L is a kernel on
Sn−r−1×f by Lemma 3.11.
For the “only if” direction of the theorem, let K be a kernel on πSn−1,(Sn−1)r that has
expansion (3.9). Then K is invariant under the action of On as it is continuous and
depends only on inner products of x, y, z1, . . . , zr on a dense subset of its domain. To
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show that K is p.d., notice that expansion (3.9) of K implies L has an expansion of
type (3.6). Hence L is a p.d. kernel on Sn−r−1×f by Theorem 3.7. Therefore K is
p.d. when restricted to a kernel on πSn−1,S by Lemma 3.11, and thus K is p.d. by
continuity.
For the “if” direction of the theorem, let K be p.d. on the projection bundle
πSn−1,(Sn−1)r and invariant under the action of On. That is, KPZ(Px, Py) = KZ(x, y)
for all P ∈ On, x, y ∈ Sn−1 and Z ∈ (Sn−1)r. Then for any Z ∈ (Sn−1)r, KZ

is invariant under the action of StabOn(Z). Using Lemma 3.11, we obtain that L
is a p.d. kernel on Sn−r−1×f . As StabOn(Z) fixes ΠZS

n−1 and acts transitively on
Sn−1 ∩ R(Z)⊥, we have that L is invariant under the horizontal action of On−r on
Sn−r−1×f . From Theorem 3.7 there are p.d. kernels di on f , i = 0, 1, . . . such that
for all v1, v2 ∈ Sn−r−1, all Z ∈ S and u1, u2 ∈ BZ

LZ ([ u1
v1 ] , [ u2

v2 ]) =
∑
i≥0

(di)Z(u1, u2)P
n−r

2 −1
i (vᵀ1v2). (3.13)

Now, T1 ◦ T2 = id{(x,Z):Z∈S, x∈Sn−1\R(Z)} from Lemma 3.12. Thus for any Z ∈ S and
x1, x2 ∈ Sn−1 \ R(Z), we have

KZ (x1, x2) = LZ (T2 ([ x1
Z ]) , T2 ([ x2

Z ]))

=
∑
i≥0

(di)Z
(
γ−1
Z (ΠZx1), γ−1

Z (ΠZx2)
)
P
n−r

2 −1
i

((
φ−1
Z (Π⊥Z x1)
‖Π⊥Z x1‖

)ᵀ
φ−1
Z (Π⊥Z x2)
‖Π⊥Z x2‖

)

=
∑
i≥0

(di)Z(Zᵀx1, Z
ᵀx2)P

n−r
2 −1

i

(Π⊥Z x1

)ᵀ

Π⊥Z x2

‖Π⊥Z x1‖‖Π
⊥
Z x2‖

 , (3.14)

where we have used φ−1
Z (a1)ᵀφ−1

Z (a2) = aᵀ1a2.
To finish, we specify the form of the di’s. Let k ≥ 0. By Lemma 3.11 we have that
dk is a p.d. kernel on f : B → S . Notice that On acts vertically on f since for every
P ∈ On, x ∈ Sn−1 and Z ∈ S, we have (Zᵀx, Z)P = (Zᵀx, PZ). Next we show that
dk is invariant under this vertical action. That is, that for all Z ∈ S, v1, v2 ∈ BZ and
P ∈ On we have (dk)Z(v1, v2) = (dk)PZ(v1, v2). By (3.7) from Theorem 3.7,

(dk)PZ(v1, v2) = 1
p(n−r)/2−1,k

∫
u1,u2∈Sn−r−1

LPZ ([ u1
v1 ] , [ u2

v2 ])P
n−r

2 −1
k (vᵀ1v2)dωn(v1)dωn(v2).

Therefore it is enough to show that L is invariant under the vertical action of On on
Sn−r−1×f . By construction of φZ , γZ we have

φPZ(v) = PφZ(v), γPZ(u) = PγZ(u), and ‖γPZ(u)‖ = ‖γZ(u)‖.

Therefore

LPZ ([ u1
v1 ] , [ u2

v2 ]) = K
(
T1
([ u1

v1
PZ

])
, T1

([ u2
v2
PZ

]))
= K

(
[ P 0

0 P ]T1
([ u1

v1
Z

])
, [ P 0

0 P ]T1
([ u2

v2
Z

]))
= LZ ([ u1

v1 ] , [ u2
v2 ]) ,
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where the last but one equality holds by invariance of K under On. Now, we can
reduce ourselves to the orbit bundle of f under the vertical action of On. We have
thatOOn(S) = cor Er, OOn(B) =

{[
1 yᵀ

y Y

]
∈ Er+1 : Y � 0

}
andOOn(f) is a projection.

From Proposition 3.6 there is a p.d. kernel ci on OOn(f) :
{[

1 yᵀ

y Y

]
∈ Er+1 : Y � 0

}
→

{Y ∈ Er : Y � 0} such that for all Z ∈ S, v1, v2 ∈ BZ we have that (ck)ZᵀZ(v1, v2) =
(dk)Z(v1, v2).

3.5 Further observations

One question for further research is what shape the coefficients ci from expansion (3.9)
could have. We show one result in this direction: a Gegenbauer polynomial of or-
der

(
n−r

2 −1
)
used in (3.9) on πSn−1,(Sn−1)r can be considered as a p.d. kernel on

πSn−1,(Sn−1)r+1 , and therefore it can be expressed in a series of the form (3.9) with
coefficients ci of a particular but rather complex form. To simplify the notation,
given x, y ∈ Sn−1 and Z ∈ (Sn−1)r, define

〈x, y〉Z := (Π⊥Zx)ᵀΠ⊥Zy = xᵀy − (Zᵀx)ᵀ(ZᵀZ)−1Zᵀy.

Proposition 3.13. Let r ∈ N, x, y, q ∈ Sn−1 and Z ∈ (Sn−1)r, then

P
n−r

2 −1
k

(
〈x,y〉Z√

〈x,x〉Z
√
〈y,y〉Z

)
=

k∑
i=0
cn,rk,i

( 〈x,x〉[Zq]
〈x,x〉Z

)i/2( 〈y,y〉[Zq]
〈y,y〉Z

)i/2
P
n−r

2 − 3
2

i

(
〈x,y〉[Zq]√

〈x,x〉[Zq]
√
〈y,y〉[Zq]

)

· P
n−r

2 +i−1
k−i

(
〈x,q〉Z√

〈x,x〉Z
√
〈q,q〉Z

)
P
n−r

2 +i−1
k−i

(
〈y,q〉Z√

〈y,y〉Z
√
〈q,q〉Z

)

where cn,rk,i are positive constants.

Proof. We use the addition theorem for Gegenbauer polynomials. Let α > 0 and
k ∈ N, then for angles γ, θ, τ

Pα
k (cos θ cos τ + sin θ sin τ cos γ)

=
k∑
i=0

cαk,i (sin θ)
i (sin τ)i Pα− 1

2
i (cos γ)Pα+i

k−i (cos θ)Pα+i
k−i (cos τ),

where cαk,i are some positive constants that depend on α, k, i. More details about the
formula can be found in [105]. Define

cos γ = 〈x,y〉[Zq]√
〈x,x〉[Zq]

√
〈y,y〉[Zq]

cos θ = 〈x,q〉Z√
〈x,x〉Z

√
〈q,q〉Z

, sin θ =
√

1− cos2 θ,

cos τ = 〈y,q〉Z√
〈y,y〉Z
√
〈q,q〉Z

, sin τ =
√

1− cos2 τ .
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Now, expanding the expressions for the sines above and using the inverse formula for
block matrices, one can show that

sin θ =
√
〈x,x〉[Zq]
〈x,x〉Z

and

cos θ cos τ + sin θ sin τ cos γ = 〈x,y〉Z√
〈x,x〉Z

√
〈y,y〉Z

.

Substituting the corresponding expressions and orders of Gegenbauer polynomials in
the addition formula with α = n−r

2 − 1, the result follows.

The proof of Proposition 3.13 is based on the addition theorem for Gegenbauer
polynomials [105] and is related to the approach in Musin [151]. Namely, Musin
[151] modifies the addition theorem for Gegenbauer polynomials to characterize p.d.
kernels on Sn−1 invariant under the action of StabOn(Z) for a given Z ∈ (Sn−1)r.

3.6 Application to the kissing number problem

In this section we apply the results derived in this chapter to obtain bounds on the
kissing number problem introduced in Chapter 2. In particular, we show how to
implement problem (2.25). Consider the case r = 0. In this case the condition
F ∈ C ((Sn−1)r+2) is 2-p.d. reduces to the condition F is p.d. To implement this
condition, we use Schoenberg’s theorem 3.1.
Schoenberg’s theorem was used in [44] to obtain upper bounds on the spherical
codes, and the kissing number in particular. We use it when r = 0 to substitute the
condition S ∈ C ((Sn−1)r+2)On in problem (2.25) with expansion (3.1). This results
in an LP with infinitely many unknowns, the coefficients ci, i ∈ R+. This LP is
equivalent to the kissing number upper bound problem in [44] (see Section 3.7).
Now we move to the case r ≥ 1 and use Theorem 3.8. We use (3.9) to substitute the
condition S ∈ C ((Sn−1)r+2)On in problem (2.25) with r ≥ 1. Now we can rewrite
problem (2.25).

νr(Gn) = inf
φ,S

φ(1) + 1 (3.15)

s. t. φ(u) ≤ −1, for all u ∈ [−1, 1
2 ],

φ(xᵀ1x2) + · · ·+ φ(xᵀr+1xr+2)− σ (S(x1, . . . , xr+2)) ≥ 0, (3.16)
for all x1, . . . xr+2 ∈ Sn−1,

φ ∈ C([−1, 1]), S ∈ C
(
(Sn−1)r+2

)
S is of the form (3.9).

By restricting the last condition in this problem to a particular set of polynomials, we
obtain a tractable conic problem. This procedure is described in the next subsection.
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3.6.1 Implementation and numerical results

We use Stone-Weierstrass theorem and approximate continuous functions on Er+2

by polynomials of
(
d
2

)
variables. Recall that each variable corresponds to an inner

product between a pair of variables x, y, z1, . . . , zr ∈ Sn−1. Inspired by [12], we also
restrict the functions {ci}i∈N to use in (3.9). For an r-variate vector of variables
X and d ∈ N, let md(X) be the vector of all possible monomials in variables X of
degrees up to d. Let x, y ∈ Sn−1 and Z = [z1, . . . , zr] ∈ (∈ Sn−1)r. We denote

χ :=Zᵀx, υ := Zᵀy, Ω := ZᵀZ. (3.17)

We define ci(χ, υ,Ω) for every i ∈ N as follows:

ci(χ, υ,Ω):=mdi (χ)ᵀCi(Ω)mdi (υ) |Ω|i
√

(1−χᵀΩ−1χ) (1−υᵀΩ−1υ)
i

, (3.18)

where d ∈ N, |Ω| denotes the determinant of the matrix Ω, and for any Ω ∈ Er we
have Ci(Ω) � 0.
Proposition 3.14. Let n ∈ N+ and r,N ∈ N. Let x, y ∈ Sn−1 and Z = [z1, . . . , zr] ∈
S, where S is defined in (3.8). Consider a function S ∈ C ((Sn−1)r+2) with repre-
sentation (3.9) such that ci is of the form (3.18) for i ≤ N , and ci = 0 for all i > N .
Then S is 2-p.d. and invariant under the action of On, and representation (3.9) is
a polynomial in the inner products of x, y, z1, . . . , zr.

Proof. Since Z ∈ S, Ω ∈ Er is of full rank. By definition (3.18), ci is a p.d. ker-
nel a fixed Ω ∈ Er for all i ≤ N . Since the zero kernel is p.d., for all i ∈ N+,
the functions ci can be viewed as p.d. kernels on the projection subbundle f :{[

1 yᵀ

y Y

]
∈ Er+1 : Y � 0

}
→ {Y ∈ Er : Y � 0}. Therefore S is 2-p.d. and invariant

under the action of On by Theorem 3.8. Finally, ci is defined in such a way that each
element in expansion (3.9) is a polynomial in the inner products of x, y, z1, . . . , zr.

For r = 1, we have Ω = 1, therefore in case of QSn−1
1 , Ci(Ω) in (3.18) are symmetric

matrices, and the condition Ci(Ω) � 0 can be addressed with any SDP solver. For
r = 2, we define z := zᵀ1z2 ∈ [−1, 1]. Then Ci(Ω) = Ci(z) are polynomial matrices
in variables z; that is, matrices where each entry is a polynomial in R[z]. Our
implementation of the condition Ci(z) � 0 for r = 2 is inspired by the following
existing result.
Theorem 3.15 (Theorem 2 by Hol and Scherer [198]). Let M(z) : Rn → Sk be a
symmetric-valued polynomial matrix in variables z. Let h1, . . . , hm ∈ R[z] be such
that their quadratic module is Archimedean, as in Definition 1.11. If M(z) � 0 for
all z ∈ S = {z ∈ Rn : h1(z) ≥ 0, ..., hm(z) ≥ 0}, then there exist ε > 0 and (not
necessarily square) polynomial matrices T0(z), . . . , Tm(z) such that

M(z) = T0(z)ᵀT0(z) +
m∑
j=1

Tj(z)ᵀTj(z)hj(z) + εIk.
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Theorem 3.15 provides a certificate of positive definiteness of M(z) on S: if M(z)
has the representation from the theorem, it is clearly positive definite for any z ∈ S.
Based on this certificate, we require Ci(z) to have the following form:

Ci(z) = T 1
i (z)ᵀT 1

i (z) + (1−z2)T 2
i (z)ᵀT 2

i (z), (3.19)

where Ti(z), T 2
i (z) are polynomial matrices in variables z.

Representation (3.19) contains products of polynomial matrices. If we use this rep-
resentation directly, we end up with a non-linear program which is not efficiently
solvable. Therefore we reformulate representation (3.19) using PSD matrices. Our
reformulation is based on another result by Hol and Scherer [198].

Theorem 3.16 (Lemma 1 by Hol and Scherer [198]). Let M(z) : Rn → Sk be a
symmetric-valued polynomial matrix in variables z. Then M = T (z)ᵀT (z) for some
(not necessarily square) polynomial matrix T (z) if and only if there exist d > 0 and
a matrix H ∈ Sk(

n+d
d ) such that

M(z) = (md(z)⊗ Ik)ᵀ H (md(z)⊗ Ik), and H � 0. (3.20)

Now, (3.18) implies that Ci(z) is a matrix of the size
(

2+di
di

)
×
(

2+di
di

)
. Based on The-

orem 3.16, we obtain:

Ci(z) := M1
i (z)ᵀH1

iM
1
i (z)+(1− z2)M2

i (z)ᵀH2
iM

2
i (z), (3.21)

where H1
i � 0, H2

i � 0, and M j
i (z) = mdji (z) ⊗ I(2+di

di
) for some dji > 0 and all

j ∈ {1, 2}.

Next, we provide the details on the implementation of problem (3.15) using expan-
sion (3.9) and coefficients ci (3.18) with Ci as in (3.21). For QSn−1

0 , QSn−1
1 , QSn−1

2 we
use Gegenbauer polynomials of degrees up to N0 = 24, N1 = 12, N2 = 4, respectively.
For QSn−1

1 we set the degree di in (3.18) for each i ∈ [0, 1, . . . , N1] to 2N1 − 2i. For
QSn−1

2 for each i ∈ [0, 1, . . . , N2], we set d1
i = N2−i, d2

i = N2−i−1 and di = 2(N2−i).
We set some restrictions on the structure of the problem so that the total degree of the
polynomial in QSn−1

1 is 2N1, and the degree of each variable is at most N1; the total
degree of the polynomial in QSn−1

2 is 4N2, and the maximal degree of each variable is
2N2. This structure allows us to generate fewer monomials while solving polynomial
optimization problems. We also partially restrict the inequality constraint (3.16).
For QSn−1

0 , this inequality can be replaced by equality without loss of generality due
to the shape of the objective: the constraint will hold as equality in optimum. For
QSn−1

1 , QSn−1
2 , we replace the non-negativity condition in (3.16) by simpler, though

stronger, conditions. For QSn−1
2 , we require that the left-hand side in (3.16) is a sum
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of squares of polynomials (SOS). For QSn−1
1 , we say that the left-hand side in (3.16)

equals q1 + (1− (xᵀz1)2)q2, where q1, q2 are SOS.
For QSn−1

1 , the structural restrictions do not influence the rounded values of the
bounds, but the problem becomes substantially smaller. However, for QSn−1

2 , we
could solve the restricted problems up to N2=7, but the restrictions cause feasibility
issues. Therefore we present the bounds for N2=4 only.
Further, we undertake several steps which make the problem smaller and more numer-

ically stable. First, Gegenbauer polynomials are normalized so that P
n−r

2 −1
i (1) = 1

for all i ∈ [N ], this can be done without loss of generality and provides more nu-
merically stable optimization results. Next, we exploit invariance of problem (3.15)
under all possible permutations of the corresponding variables x, y, z1, z2 ∈ Sn−1.
This allows us to decrease the number of constraints in the problem; when equating
polynomials to SOS in (3.16), we only generate the constraints corresponding to the
orbits of monomials.
Table 3.1 shows the bounds we obtain. The bounds from problem (3.15) in the table
are rounded up. We do not use the exact arithmetic to check the feasibility of the
bounds, but we verify that all SDP constraints are satisfied, and equality constraints
violations are of the order 10−4 or smaller. The bound for QSn−1

2 cannot be computed
for n ≤ 3 since in this case n < r + 2, and Proposition 3.8 does not apply.
The bounds we could compute are not better than any of the best existing bounds,
however, for n ≤ 16 the results for QSn−1

1 are close to the best bounds, while obtained
in a much shorter time than in [136, 143]. The main reason is that our problems
are by construction smaller than the ones from [136, 143], due to the structural
restrictions mentioned earlier in this section. Also, we do not use the solver SDPA-
GMP with arbitrary precision arithmetic in contrast to [136, 143]. The bounds
obtained with SDPA-GMP can be feasible with high precision at the cost of longer
running times. The running times of our problems would increase if we solved them
with high precision.
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Table 3.1 – The upper bounds from problem (3.15) and the best existing
upper and lower bounds on the kissing number. The bounds for QSn−1

1 which
conicide with the best bounds are marked in bold.

Dimension
n

QS
n−1

0

24 Gegenb.
polynom.

QS
n−1

1

12 Gegenb.
polynom.

QS
n−1

2

4 Gegenb.
polynom.

Best
upper
bound

Best
lower

bound [154]
3 13.16 12.54 - 12[205] 12
4 25.56 24.50 25.77 24 [150] 24
5 46.34 45.16 47.74 44 [143] 40
6 82.64 78.90 85.93 78 [12] 72
7 140.17 136.30 154.90 134 [143] 126
8 240.00 240.00 297.21 240 [125, 164] 240
9 380.10 371.75 724.69 364 [136] 306
10 595.83 580.68 4,525.45 554 [136] 500
11 915.39 899.68 infeasible 870 [136] 582
12 1,416.10 1,384.68 infeasible 1,357 [136] 840
13 2,233.64 2,152.53 infeasible 2,069 [136] 1,154
14 3,492.22 3,307.45 infeasible 3,183 [136] 1,606
15 5,431.03 5,043.03 infeasible 4,866 [136] 2,564
16 8,313.79 7,863.00 infeasible 7,355 [136] 4,320
17 12,218.68 12,050.45 infeasible 11,072 [136] 5,346
18 17,877.07 18,008.00 infeasible 16,572 [136] 7,398
19 25,900.79 26,672.27 infeasible 24,812 [136] 10,668
20 37,974.01 39,554.23 infeasible 36,764 [136] 17,400
21 56,851.69 59,458.13 infeasible 54,584 [136] 27,720
22 86,537.49 88,326.01 infeasible 82,340 [136] 49,896
23 128,095.86 130,270.28 infeasible 124,416 [136] 93,150
24 196,560.00 196,560.02 infeasible 196,560 [125, 164] 196,560
25 278,364.38 282,690.33 infeasible 278,083 [177] 197,040
26 396,977.00 403,772.00 infeasible 396,447 [177] 198,480
30 1,653,914.18 1,749,936.18 infeasible 219,008
35 10,510,137.84 13,835,411.99 infeasible 370,892
40 infeasible infeasible infeasible 1,063,216

Approx.
solution

time
≤ 1 sec. 10 sec. 25 sec.

[136]: 12 hours,
[143]: ≥1 week

-
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Since the sum of copositive kernels is copositive, we could set the kernel in prob-
lem (3.15) to be the sum of the functions from QSn−1

0 , QSn−1
1 and QSn−1

2 . Table 3.1
suggests that this could provide potentially stronger bounds, but the resulting prob-
lems are numerically unstable and do not improve on the bounds from Table 3.1.
Nevertheless, using this approach we can compare the optimization problems for our
bounds and the existing SDP upper bound used in [12, 136, 143]. This is done in the
next section.
To conclude this section, we recall that the kissing number problem is a particular
case of the spherical codes problem. As it was mentioned before, in the spherical codes
problem we are interested in the maximum number of points on the unit sphere in
Rn for which the pairwise angular distance is not smaller than some value θ. The
kissing number problem corresponds to θ = π

3 . Figure 3.1 shows how the bounds
from QSn−1

0 and QSn−1
1 change when θ changes. For a more informative comparison,

we add lower bounds computed using the algorithm by Roebers [193].

Figure 3.1 – Upper bounds using QSn−1
0 and QSn−1

1 and lower bounds on the
size of the spherical codes for various angular distances θ.
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We have examined 3 ≤ n ≤ 8, and the results exhibit the same pattern for each n.
We choose n ∈ {7, 8} since for these dimensions the difference in performance is most
visible. The choice of θ is motivated by the lower bound algorithm in [193]: for a given
number of points on the unit sphere (which is equal to the lower bound in our case),
the algorithm finds a feasible allocation of the points with the minimum distance
θ. We run the algorithm for 30 min. using the lower bounds [20, 40, 60, . . . , 400] to
obtain θ for each of these lower bounds. Next, we solve problem (3.15) replacing 1

2
in the first constraint with the corresponding cos θ. We present the bounds for which
all SDP constraints are satisfied, and equality constraints violations are of the order
10−4 or smaller.

3.7 Connection to the existing upper bound approaches

In this section we provide some remarks on the connection between our relaxations
and the existing LP bound by Delsarte, Goethals and Seidel [44] and SDP bound
by Bachoc and Vallentin [12]. We start by showing that the LP bound equals our
bound for QSn−1

0 . As explained in Section 3.6.1, inequality (3.16) can be replaced
by equality. That is, in (3.16) we can consider p.d. kernels instead of the sum of a
non-negative and p.d. kernel. Hence our formulation for QSn−1

0 is equivalent to

inf
N0∑
k=0

ak + 1

s. t.
N0∑
k=0

akP
n
2−1
i (u) ≤ −1, for all u ∈ [−1, 1

2 ],

ak ≥ 0, for all k ∈ {0, . . . , N0}.

From the shape of the objective, using P
n
2−1

0 (u) = 1, it is clear that in optimality
a0 = 0. Therefore, our bound from QSn−1

0 coincides with the LP bound by Delsarte,
Goethals and Seidel [44].
Now let us consider the SDP bound. This bound is formulated in Theorem 4.2
from [12]. Fix d > 0, then

α(Gn) ≤ inf
d∑

k=1
ak + b11 + 〈F0, S

n
0 (1, 1, 1)〉+ 1 (3.22)

s. t.
d∑

k=1
akP

n
2−1
i (u)+2b12+b22+3

d∑
k=0
〈Fk, Snk (u, u, 1)〉 ≤ −1,

for all u ∈ [−1, 1
2 ]

ak ≥ 0, for all k ∈ {1, . . . , d},
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Fk � 0, for all k ∈ {0, . . . , d},[
b11 b12

b12 b22

]
� 0, (3.23)

b22+
d∑

k=0
〈Fk, Snk (u, v, t)〉 ≤ 0,

for all u, v, t ∈ [−1, 1
2 ] such that 1+2uvt−u2−v2−t2 ≥ 0, (3.24)

where Snk (u, v, t) ∈ Sd−k are defined for all k ∈ {0, . . . , d} by

(Snk )ij(u, v, t) = 1
6

∑
π∈Sym(3)

(Y n
k )ij(π[u, v, t]), for all i, j ∈ {0, . . . , d− k}

(Y n
k )ij(u, v, t) = uivjQn

k(u, v, t), for all i, j ∈ {0, . . . , d− k}

Qn
k(u, v, t) = P

n
2−1
k

(
t−uv√

1−u2
√

1−v2

)
.

Hence for a positive semi-definite matrix Fk we have

〈Fk, Snk (u, v, t)〉 = σ
(
md−k(u)ᵀFkmd−k(v)Qn

k(u, v, t)
)
.

To obtain an upper bound on α(Gn) comparable to problem (3.22), we use the fact
that the sum of copositive kernels is copositive. This implies we can relax (2.14) for
α(Gn) using the sum of QSn−1

0 and QSn−1
1 of degree d as follows:

α(Gn) ≤ inf
d∑

k=1
ak + g(1) + 1 (3.25)

s. t.
d∑

k=1
akP

n
2−1
k (u) + g(u) ≤ −1, for all u ∈ [−1, 1

2 ],

ak ≥ 0, for all k ∈ {1, . . . , d},
Ck � 0, for all k ∈ {0, . . . , d},
d∑

k=0
σ
(
md−k(u)ᵀCkmd−k(v)Qn

k(u, v, t)
)
−g(u)−g(v)−g(t) ≤ 0,

for all u, v, t ∈ [−1, 1] such that 1+2uvt−u2−v2−t2 ≥ 0, (3.26)

where the last constraint follows from Proposition 3.14 with r=1 and N = d.
Problems (3.22) and (3.25) are formulated using similar sets of variables and con-
straints, however our comparison of these problems is inconclusive because of the
following reasons. The variables b11, b12, b22 and the corresponding constraint (3.23)
appear naturally from the dual of problem (3.22), but do not fit naturally into our
framework. At the same time, the variables g do not appear in problem (3.22). How-
ever, the relation between the variables b11, b12, b22 and g is not straightforward since
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g is a polynomial while b11, b12, b22 are constant terms. We expect the bound (3.25)
to be weaker (3.22) since working with constant terms might be less restrictive than
working with a continuous function. Moreover, the requirement we impose by (3.26)
is stronger than (3.24) imposed in (3.22).
Problem (3.15) where the sum of QSn−1

0 , QSn−1
1 and QSn−1

2 is used could potentially
provide stronger bounds than problem (3.22) by Bachoc and Vallentin [12], but those
problems are even harder to compare. For the future, it would be interesting to see
whether one can combine our approach with the currently best approaches for the
kissing number problem by Bachoc and Vallentin [12] and Pfender [177].
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CHAPTER 4

Copositive certificates of non-negativity for
polynomials on unbounded sets

4.1 Introduction

Certificates of non-negativity are fundamental tools in optimization, and they un-
derlie powerful algorithmic techniques for various types of optimization problems.
Commonly used certificates of non-negativity of polynomials on basic semialgebraic
sets include the classical Pólya’s Positivstellensatz [83], the more modern Schmüd-
gen’s Positivstellensatz [199], and Putinar’s Positivstellensatz [183]. Herein, we use
the terms Positivstellensatz and certificate of non-negativity interchangeably (see
Section 1.2.2 in Chapter 1 for more details).
To illustrate the concept of a certificate of non-negativity, let p, h1, ..., hm be poly-
nomials. Assume we would like to know whether p is non-negative on the set
S = {x ∈ Rn : h1(x) ≥ 0, ..., hm(x) ≥ 0}. If there exist a polynomial F (x, u)
non-negative for all x ∈ Rn, u ∈ Rm

+ such that p(x) = F (x, h1(x), . . . , hm(x)), then
we are sure that p is non-negative on S. We call such F a certificate of non-negativity
for p. For instance, one could have F (x, u) = σ0(x) +∑m

i=1 σi(x)ui, where σ0, . . . σm
are sums-of-squares (SOS) polynomials [19]. From Putinar’s Positivstellensatz [183],
it is known that the latter certificate exists for p on S if the quadratic module gen-
erated by h1 . . . , hm is Archimedean and p(x) > 0 for all x ∈ S.
In this chapter we study certificates of non-negativity based on copositivity. Polyno-
mials that are non-negative on the non-negative orthant are called copositive poly-
nomials [see, e.g. 22]. More specifically, one can show that p is non-negative on
S = {x ∈ Rn : h1(x) ≥ 0, ..., hm(x) ≥ 0} by demonstrating that for some k ≥ 0

(1 + eᵀy + eᵀz)kp(y − z) = F (y, z, h1(y − z), . . . , hm(y − z)), (4.1)
where F (y, z, u) is copositive.

Such F is called a copositive certificate of non-negativity of p on S. For any x ∈ S,
taking x+ = max(x, 0) and x− = −min(x, 0), where the maximum and minimum are
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taken component-wise, we have that x+, x− ≥ 0 and therefore,

p(x) = p(x+− x−)
= F (x+, x−, h1(x+− x−), . . . , hm(x+− x−))(1 + eᵀx+ + eᵀx−)−k

= F (x+, x−, h1(x), . . . , hm(x))(1 + eᵀ|x|)−k ≥ 0,

as F is copositive. As before, we use e to denote the vector of all-ones of appropriate
dimension. For x ∈ Rn, |x| stands for the component-wise absolute value of x
(i.e., |x|i = |xi|, i = 1, . . . , n). In Theorems 4.8 and 4.11 we prove the existence of
copositive certificates under mild assumptions which hold generically. In particular,
no compactness or similar properties are assumed.
One essential property of the copositive certificates of non-negativity we propose is
that the degree of F in (4.1) is known a priori. Namely, this degree is bounded by the
maximum of the degree of p and twice the degree of the polynomials defining the set
S. As a consequence, questions on the non-negativity of polynomials on generic basic
semialgebraic sets reduce to finding a copositive polynomial satisfying (4.1) of small
and, more importantly, known degree. This result is in line with recent results by Huq
[89] on small copositive extended formulations for some combinatorial problems.
Optimization over the cone of copositive polynomials is hard [148]; however, this cone
has been well studied. In particular, there exists a plenty of tractable approximations
to it [see, e.g., 27, 92, 120, 134, 162, 231], as well as several certificates of copositivity
[for instance, 47, 83]. The main benefit of our copositive certificates of non-negativity
is their ability to translate results known exclusively for copositive polynomials to
more general basic closed semialgebraic sets (see Section 4.1.2 for a more detailed
explanation of our contributions).

4.1.1 Certificates of non-negativity and polynomial optimization

Classically, certificates of non-negativity based on SOS and non-negative coefficients
(SOS-certificates), have been used to solve/approximate polynomial optimization
(PO) problems [114, 172, 210]. PO encompass a wide variety of optimization prob-
lems including combinatorial and some non-convex optimization problems. Pólya’s,
Schmüdgen’s, and Putinar’s Positivstellensatzen are examples of SOS certificates,
and their applications in PO are illustrated in recent works [e.g., 35, 84, 97, 114,
116, 168, 172, 173, among numerous others]. Searching for a given SOS-certificate
of non-negativity of a fixed degree translates into solving a number of linear ma-
trix inequalities (LMI). As the degree of the SOS-certificate is not known a priori,
this method constructs a hierarchy of LMI approximations to the underlying prob-
lem. That is, optimization problems with a linear objective and LMI constraints
[see 19]. LMI problems usually have the form of a linear program (LP), second-
order cone program (SOCP) or semidefinite program (SDP), which can be solved
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to a given precision using interior-point methods [see 188]. The main drawbacks of
using SOS certificates are the exponential growth of the LMI hierarchies in terms of
the certificate’s degree and the lack of SOS-certificates for many interesting cases.
To guarantee the existence of SOS-certificates, usually some form of compactness is
needed [see 194, for a detailed analysis].
To deal with the fast-growing size of SOS certificates, one could use subsets of SOS
polynomials whose LMI reformulations do not result in full dimensional SDPs. For
instance, in certain cases the structure of the problem allows arguing that sparse SOS
certificates can be used as not all monomials have to be present in the certificates.
This approach results in smaller convergent approximations to PO problems over
some compact sets [examples are presented in 96, 115, 218, 221]. For non-structured
problems, one could use scaled diagonally dominant sums-of-squares (SDSOS) instead
of classical SOS. SDSOS are a type of SOS which result in LP or SOCP relaxations of
PO problems. Such relaxations are computationally cheaper than SDPs and provide
valid bounds [3] on PO problems. However these bounds are either not proven to
converge or require the use of additional methods to ensure convergence [2].
Another way to deal with the flaws of SOS certificates would be to replace SOS in
the expressions of certificates with different non-negative polynomials. Some existing
examples include hyperbolic polynomials and non-negative circuit polynomials. The
set of hyperbolic polynomials contains the set of SOS polynomials as a strict subset.
Hence replacing SOS with hyperbolic polynomials provides hyperbolic programming
relaxations of PO [197], which could potentially result in stronger bounds or faster
convergence compared to classical SOS relaxations. Hyperbolic programs can be
solved using interior-point methods, but efficient hyperbolic solvers are still under
development, and the hyperbolic cone is not yet fully understood [189]. Non-negative
circuit polynomials form neither a subset nor a superset of the cone of SOS polyno-
mials. The relation between the two sets of polynomials depends on the degree and
the number of variables [91]. Certificates based on non-negative circuit polynomials
result in geometric programming relaxations of PO problems [59, 219] which converge
under certain Archimedean conditions.
Given the key role that compactness plays for SOS certificates and their alternatives,
a question that has attracted much research attention is which certificates exist on
non-compact sets. In particular, Marshall [141], Powers [181] derive certificates of
non-negativity for the case in which the underlying domain is a cylinder with a com-
pact cross-section. Nguyen and Powers [158] derive certificates of non-negativity for
the case in which the underlying domain is a strip or a half-strip. For more general
settings, Demmel et al. [45], Marshall [140], Nie et al. [161], Vui and So’n [217], Wang
[220] provide certificates of non-negativity, based on Putinar’s and Schmüdgen’s Pos-
itivstellensatzen, that do not require the underlying set to be compact. The latter
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certificates exploit gradient, Jacobian and KKT ideals. More recently, Jeyakumar
et al. [95] have provided certificates of non-negativity for non-compact semialgebraic
sets if a certain modification of the set is compact. Following the results in [95],
Jeyakumar et al. [96] provide a certificate of non-negativity, based on Putinar’s Pos-
itivstellensatz, for coercive polynomials over possibly unbounded semialgebraic sets.
Also recently, Guo et al. [79] have derived conditions under which Schmüdgen’s Posi-
tivstellensatz can be used to certify the non-negativity of a polynomial on a possibly
unbounded convex set. Two other examples of research in this direction that are
related to the results in this chapter, are the works of Putinar and Vasilescu [185]
and Dickinson and Povh [48].

4.1.2 Contributions

Now we give more details about our contributions.

Existence of copositive certificates of non-negativity

A common assumption for the existence of SOS-certificates of non-negativity for
a polynomial p is the positivity of p. As we are interested in certifying the non-
negativity of a polynomial on a given set S that might be unbounded, we request p
to be not only positive on S, but also “strongly positive” on S (see Definition 4.5).
In Theorem 4.11 we show that, given polynomials h1, . . . , hm of degree at most d
such that S = {x ∈ Rn : h1(x) ≥ 0, . . . , hm(x) ≥ 0} is non-empty, for all p strongly
positive on S, we always have a copositive certificate F as given by (4.1) of degree
max{2d, deg(p)}. In particular, k = max{2d− deg(p), 0} in (4.1).
As we are interested in certifying the copositivity of F , and certificates of copositivity
usually exist for the interior of the cone of copositive polynomials, we show that for
the compact case we can construct copositive certificates that lie in this interior (see
Theorem 4.11). We also provide several equivalent characterizations of the interior
of the cone of copositive polynomials (see Corollary 4.19).
In Section 4.3.2 we show that the strong positivity condition is generic since it is
implied by a particular generic algebraic condition on S considered in [78, 79, 159].

Structure-rich certificates of non-negativity

The copositive approach we propose allows constructing a certificate of non-negativity
from any certificate of copositivity (and any certificate of non-negativity on the non-
negative orthant or standard simplex, in particular). This provides a universal proce-
dure to obtain new certificates with desired properties on generic basic semialgebraic
sets. To illustrate this approach, in Section 4.4, we construct two new certificates of
non-negativity on compact sets which do not require full-dimensional SOS polyno-
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mials. The special structure of these certificates provides computational advantages
when compared to classical SOS-based certificates. Notice that, even though we
focus on SOS, our methods could be used to obtain certificates of non-negativity
based on circuit, hyperbolic polynomials and/or any general type of certificate of
non-negativity on Rn (see Corollary 4.28).
Besides the new certificates, we also obtain an elementary proof of the seminal the-
orem by Handelman [82] and an alternative proof of Schmüdgen’s Positivstellen-
satz [199] which shortcuts the proof by Schweighofer [206].

Applications to polynomial optimization
Our contribution to PO is twofold. On the one hand, our certificates allow us to
apply to generic basic semialgebraic sets a variety of results which are valid only for
optimization over the non-negative orthant [see, e.g., 27, 47, 120, 134]. In particular,
we can use both inner and outer approximations to the cone of copositive polyno-
mials to obtain LMI hierarchies of upper and lower bounds for generic PO problems
(see, Section 4.5). This is in contrast with commonly used LMI hierarchies which
only provide lower bounds for (minimization) PO problems [see, 6, 19]. On the other
hand, under our assumptions a PO problem can be reformulated as an optimization
problem over copositive polynomials of a fixed degree. This result connects coposi-
tive optimization and PO in general and advances the ongoing research on copositive
reformulations of optimization problems. This line of research started with the work
by Bomze et al. [25] showing that (potentially non-convex) standard quadratic opti-
mization problems can be reformulated as copositive optimization problems. Further,
Burer [28], Arima et al. [8], Bai et al. [14], Bomze and Jarre [21], Burer and Dong
[29], Dickinson et al. [51], Eichfelder and Povh [61], Peña et al. [175], Xia and Zuluaga
[226], among many others, considered copositive reformulations of more general PO
problems.

The rest of the chapter is organized as follows. In Section 4.2, we introduce the
notation used throughout the chapter and some necessary basic results. Section 4.3
contains the main Theorems 4.8 and 4.11 which connect non-negative and coposi-
tive polynomials under certain assumptions that hold generically. In Section 4.4 we
derive two new certificates of non-negativity. In Section 4.5 we show how to refor-
mulate PO problems and obtain tractable upper and lower bounds on these prob-
lems using Theorem 4.11. Section 4.6 shows alternative proofs of Handelman’s [82],
Schmüdgen’s [199] Positivstellensatzen. We conclude in Section 4.7 with some closing
remarks.
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4.2 Preliminaries

For p ∈ R[x], with degree deg p = d, let Cd,α denote the multinomial coefficient
Cd,α := d!

(d−eᵀα)!α1!···αd! and Nn
d := {α ∈ Nn : eᵀα ≤ d}. Then, given p(x) ∈ R[x]

with deg p = d, we can write p(x) = ∑
α∈Nn

d
Cd,αpαx

α for some pα ∈ R , where
xα := xα1

1 · · · xαnn . We define ‖p‖ = max{|pα| : α ∈ Nn, eᵀα ≤ d}.

Lemma 4.1. Let p ∈ R[x]. For any x ∈ Rn we have

p(x) ≤ ‖p‖(1 + eᵀ|x|)deg p.

Proof. Given p ∈ R[x] with deg p = d, and x ∈ Rn we have

p(x) ≤
∑
α∈Nn

d

Cd,α|pα||x|α ≤ ‖p‖
∑
α∈Nn

d

Cd,α|x|α ≤ ‖p‖(1 + eᵀ|x|)d.

For any S ⊆ Rn, we define

P(S) = {p ∈ R[x] : p(x) ≥ 0 for all x ∈ S},

as the set of polynomials non-negative on S. Similarly, we define

P+(S) = {p ∈ R[x] : p(x) > 0 for all x ∈ S},

as the set of polynomials positive on S. Furthermore, let Pd(S) := P(S) ∩ Rd[x]
(resp. P+

d (S) := P+(S) ∩ Rd[x]) denote the set of polynomials of degree at most d
that are non-negative (resp. positive) on S. In this chapter we usually deal with
intPd(S) the interior of Pd(S). Since Rd[x] is a finite-dimensional vector space and
Pd(S) is convex, the interior and the algebraic interior of Pd(S) coincide [see, e.g.,
87, Chapter 17]. This fact is formally stated in Lemma 4.2.

Lemma 4.2. Let S ⊆ Rn. Then

intPd(S) = {p ∈ Pd(S) : for all q ∈ Rd[x] there exists ε > 0
such that p− εq ∈ Pd(S)}.

Central to our discussion are copositive polynomials [22] and sum-of-squares polyno-
mials (SOS) [19]. A polynomial is copositive if it is non-negative on the non-negative
orthant. Formally, a polynomial p ∈ Rd[x] is copositive if p ∈ Pd(Rn

+).
We call a set of the form S = {x ∈ Rn : h1(x) ≥ 0, . . . , hm(x) ≥ 0} where h1, . . . , hm ∈
R[x] a basic semialgebraic set.
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4.2.1 Strong positivity

One of the assumptions for the existence of classical SOS-certificates of non-negativity
of p on S like the ones derived by Schmüdgen [199], Putinar [183], and Handel-
man [82], is the positivity of p on S. In these classical theorems the assumptions also
imply compactness of the semialgebraic set S. Notice that

S compact⇒ intPd(S) = P+
d (S). (4.2)

When S is not compact, P+
d (S) ⊃ intPd(S). For example, the polynomial p(x) := 1

belongs to intPd(S) only when S is compact. We are interested in certifying the
non-negativity of a polynomial p on a given basic semialgebraic set S that might
be unbounded (i.e., not compact). In the existing results over non-compact sets,
the positivity on S alone is not enough. Usually, assumptions on the behaviour of
p at infinity; that is, the behaviour of p on the “directions” in which S becomes
unbounded, are necessary [see, e.g., 184, 190]. Our certificates are not an exception
to this rule, they exist for a subset of intPd(S) with a certain behavior at infinity
which we describe next.
Given a polynomial p ∈ Rd[x], let p̃(x) denote the homogeneous component of p(x)
of the highest total degree. That is, p̃(x) is obtained by dropping from p(x) all the
terms whose total degree is less than deg p. Notice that p̃(x) determines the behavior
of p at infinity. Namely, if p̃(y) > 0 for some y ∈ Rn, then there is t0 ∈ R such that
p(ty) > 0 for all t > t0, since the homogeneous component of the highest degree will
eventually dominate the behavior of p. Similarly if p̃(y) < 0, p will become eventually
negative in the y direction. However, if p̃(y) = 0, we do not know how p(ty) behaves
when t goes to infinity.

Definition 4.3. Let h1, . . . , hm, g1, . . . , gr ∈ R[x] and let S = {x ∈ Rn : h1(x) ≥
0, . . . , hm(x) ≥ 0, g1(x) = 0, . . . , gr(x) = 0}. We denote by S̃ the following set

S̃ =
{
x ∈ Rn : h̃1(x) ≥ 0, . . . , h̃m(x) ≥ 0, g̃1(x) = 0, . . . , g̃r(x) = 0

}
. (4.3)

Remark 4.4. Note that from Definition 4.3 it follows that if S ′ = S ∩ Rn
+, then

S̃ ′ = S̃ ∩ Rn
+, a fact that we will use throughout the chapter.

Definition 4.5 (Strong positivity). We say that p is strongly positive on S when

p ∈ P+(S) and p̃ ∈ P+(S̃ \ {0}). (4.4)

Strong positivity has been used in [184, Thm. 4.2] and [48, Property 3.5]. In partic-
ular, strong positivity on S is sufficient for the certificates of non-negativity in [48]
to exist. Theorem 4.11 shows that for any semialgebraic set S, copositive certificates
of non-negativity exists for polynomials that are strongly positive on S. Strongly
positive polynomials belong to intPd(S), as formally stated in Proposition 4.6.
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Proposition 4.6. Let S be a basic semialgebraic set. Then,
{
p ∈ R=d[x] : p ∈ P+

d (S), p̃ ∈ P+
d (S̃ \ {0})

}
⊆ intPd(S)

Proof. The inclusion follows from Proposition 4.17 and Lemma 4.16b in Section 4.3.2.

4.3 Copositive certificates of non-negativity

In this section, we prove our main results, namely, the existence of copositive certifi-
cates of non-negativity of the form (4.1) for all polynomials that are strongly positive
on a basic semialgebraic set. We first consider the particular case in which the semi-
algebraic set of interest is defined by equality constraints only. Lemma 4.7 is the
stepping stone to our copositive certificates of non-negativity.

Lemma 4.7. Let p, g1, . . . , gm ∈ Rd[x] be such that g1, . . . , gm ∈ P(Rn
+), and S ={

x ∈ Rn
+ : g1(x) = 0, . . . , gm(x) = 0

}
be non-empty. Let p ∈ R=d[x] be such that p ∈

P+ (S) and p̃ ∈ P+(S̃ \ {0}). Then there are F ∈ intPd(Rn
+) and αj ∈ Rd−deg gj [x]

for j = 1, . . . ,m such that

p(x) = F (x) +
m∑
j=1

αj(x)gj(x).

Since the proof of Lemma 4.7 is long and technical, we postpone it to Section 4.7.1.
Lemma 4.7 is an important result on its own. However, we do not focus much
attention on it since this lemma is inspired by a similar result by Peña et al. [176].
We do not present this result in the thesis as the manuscript [176] is unpublished,
and the proofs in it are not full. Our proof of Lemma 4.7 is not related to the results
in [176].
For ease of presentation, in what follows we often assume that S ⊆ Rn

+. However,
as shown in Section 4.3.1 this assumption can be made without loss of generality for
compact sets and can be removed after doubling the number of variables for non-
compact sets. Now, we prove the existence of copositive certificates under the extra
assumption S ⊆ Rn

+.

Theorem 4.8. Let p, h1, . . . , hm ∈ R[x], and S =
{
x ∈ Rn

+ : h1(x) ≥ 0, . . . , hm(x) ≥ 0
}

be non-empty. Let dmax = max{deg h1, . . . , deg hm, ddeg p
2 e}. Assume that p ∈ P+

2dmax (S)
and p̃ ∈ P+

2dmax(S̃ \ {0}). Then there exists F ∈ P2dmax(Rn+m
+ ) such that

(1 + eᵀx)2dmax−deg pp(x) = F (x, h1(x), . . . , hm(x)).
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Proof. Let dj = deg hj, j ∈ {1, . . . ,m}. Define gj : Rn+m → R as gj(x, u) :=(
(1 + eᵀx)dmax−djhj(x)− udmaxj

)2
for j = 1, . . . ,m. Let

U =
{

(x, u) ∈ Rn+m
+ : g1(x, u) = 0, . . . , gm(x, u) = 0

}
,

and let q(x) := (1 + eᵀx)2dmax−deg pp(x). We apply Lemma 4.7 to U and q. To do
this, we first check that the assumptions of the proposition hold. First, note that
S non-empy implies U non-empty. Also, for any (x, u) ∈ U we have x ∈ S and
thus q(x) > 0; that is, q ∈ P+

2dmax (U). Moreover, let (z, v) ∈ Ũ . We have that
g̃j(z, v) = (h̃j(z)(eᵀz)dmax−dj − vdmaxj )2, j = 1, . . . ,m. Hence, if z = 0, then v = 0.
If z 6= 0, then h̃j(z)(eᵀz)dmax−dj = vdmaxj ≥ 0 for j = 1, . . . ,m. Therefore z ∈ S̃,
which implies q̃(z) = (eᵀz)2dmax−deg pp̃(z) > 0, since p̃ ∈ P+

2dmax(S̃ \ {0}). Hence
q̃ ∈ P+

2dmax(Ũ \ {0}).
Lemma 4.7 implies that there is G ∈ intP2dmax(Rn+m

+ ) and αj ∈ R such that

q(x) = G(x, u) +
m∑
j=1

αjgj(x, u)

= G(x, u) +
m∑
j=1

αj
(
hj(x)(1 + eᵀx)dmax−dj − udmaxj

)2

︸ ︷︷ ︸
∗

.

The pre-multipliers α1, . . . , αm are real numbers since the degrees of g1, . . . , gm are
equal to 2dmax, as well as the degree of G. Hence, from the statement of Lemma 4.7,
α1, . . . , αm are polynomials of degree zero, i.e., constants. Since the right-hand side
of the representation depends on x and u while the left-hand side depends on x only,
u has to cancel out on the right-hand side. Since αj ∈ R and gj(x, u) depends on uj
only, the monomials with u1, . . . , um in the expression marked by ∗ do not cancel out
with each other. Thus all these monomials have to cancel out with monomials of G.
Moreover, G cannot contain any other monomials with u1, . . . , uj. Therefore in all
monomials in G the degrees of uj are dmax or 2dmax, for all j ∈ {1, . . . ,m}.
Now, taking uj = ((1 + eᵀx)dmax−djhj(x))1/dmax for all j ∈ {1, . . . ,m}, we obtain

(1 + eᵀx)2dmax−deg pp(x) = F (x, h1(x)(1 + eᵀx)dmax−d1 , . . . , hm(x)(1 + eᵀx)dmax−dm),

where F (x, u1, . . . , um) := G(x, u1/dmax

1 , . . . , u
1/dmax
m ) is a polynomial. To finish, notice

that G ∈ P2dmax(Rn+m
+ ) implies F ∈ P2dmax(Rn+m

+ ).

Next, we show a stronger version of Theorem 4.8 for compact sets. Namely, for com-
pact sets the pre-multiplier (1 + eᵀx)2dmax−deg p can be omitted, and the copositive
certificate F belongs to the interior of the cone of copositive polynomials.
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Theorem 4.9. Let p, h1, . . . , hm ∈ R[x], and let S = {x ∈ Rn : h1(x) ≥ 0, . . . , hm(x) ≥
0} be non-empty. Define dmax = max{deg h1, . . . , deg hm, ddeg p

2 e}. Let M > 0
be such that S ⊆ {x ∈ Rn

+ : eᵀx ≤ M}. If p ∈ P+
2dmax (S), then there exists

F ∈ intP2dmax(Rn+m+1
+ ) such that

p(x) = F

(
x, h1(x), . . . , hm(x),M − eᵀx+

m∑
j=1

(
(1 +M)dj‖hj‖ − hj(x)

))
.

Proof. Since S is bounded, S is compact. Since p ∈ P+
2dmax(S) = intP2dmax(S) (recall

(4.2)) and S is compact, there exists ε > 0 such that q(x) = p(x)− ε(1 + eᵀx)2dmax ∈
P+

2dmax(S). Let dj = deg hj, j ∈ {1, . . . ,m}. Define gj : Rn+m → R as gj(x, u) :=
(hj(x)− uj)2 for j = 1, . . . ,m. Also, let M̂ = ∑m

j=1(1 +M)dj‖hj‖ and

U :=
{

(x, u, v) ∈ Rn+m+1
+ : gj(x, u) = 0, (M̂ +M − eᵀx− eᵀu− v)2 = 0

}
.

We apply Lemma 4.7 to U and q. To do this, we first check that the assumptions
of the proposition hold. Let x ∈ S. For j = 1, . . . ,m let uj = hj(x) ≥ 0, from
Lemma 4.1. Let v = M̂ + M − eᵀx − eᵀu ≥ 0, from the assumption on M . Thus
U is non empty as (x, u, v) ∈ U . For any (x, u, v) ∈ U we have x ∈ S and thus
q(x) > 0; that is, q ∈ P+

2dmax (U). Moreover, (x, u, v) ∈ Ũ implies (x, u, v) ∈ Rn+m+1
+

and −eᵀu − eᵀx = v. Therefore Ũ = {0}. Hence q̃ ∈ P+
2dmax(Ũ \ {0}). Thus,

Lemma 4.7 implies that there is G ∈ intP2dmax(Rn+m+1
+ ), αj ∈ R2(dmax−dj)[x, u, v], for

all j ∈ {1, . . . ,m}, and β ∈ R2dmax−2[x, u, v] such that

q(x) = G(x, u, v)+
m∑
j=1

αj(x, u, v)gj(x, u) + β(x, u, v)(M̂+M−eᵀx−eᵀu− v)2.

Now, for any given x, take uj = hj(x) for j ∈ {1, . . . ,m}, and v = M̂+M−eᵀx−eᵀu
to obtain

p(x) = G
(
x, h1(x), . . . , hm(x), M̂ +M − eᵀx−

m∑
j=1

hj(x)
)

+ ε(1 + eᵀx)2dmax

= F

(
x, h1(x), . . . , hm(x),M − eᵀx+

m∑
j=1

(
(1 +M)dj‖hj‖ − hj(x)

))
,

where F (x, u, v) = G(x, u, v)+ε(1+eᵀx)2dmax . By Lemma 4.2, G ∈ intP2dmax(Rn+m+1
+ ),

and (1 + eᵀx)2dmax ∈ P2dmax(Rn+m+1
+ ) imply that F ∈ intP2dmax(Rn+m+1

+ ).

Notice that (as mentioned in the proof above) under the assumptions of Theorem 4.9
we have thatM−eᵀx+∑m

j=1

(
(1+M)dj‖hj‖−hj(x)

)
≥ 0 for all x ∈ S, by Lemma 4.1.

Therefore the representation of p we obtain in this theorem is clearly non-negative
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on S and defines a copositive certificate of non-negativity of p on S. Since F in
Theorem 4.9 lies in the interior of the cone of copositive polynomials, we can use
the existing certificates of copositivity to obtain new certificates of non-negativity on
compact sets (see Section 4.4).
We would like to emphasize the differences between Theorem 4.9 and Schmüdgen’s
Positivstellensatz (Theorem 4.40). Let S =

{
x ∈ Rn

+ : h1(x) ≥ 0, . . . , hm(x) ≥ 0
}
be

compact and let p ∈ P+(S). Schmüdgen’s Positivstellensatz shows that p(x) =
F (x, h1(x), . . . , hm(x)) for some F ∈ R[x, u] such that F (x, u) = ∑

α∈{0,1}m σα(x)uα,
where σα is an SOS polynomial for all α ∈ {0, 1}m. Such F is clearly copositive, how-
ever, the degree bounds for σα can be high and are nontrivial to compute [207]. On the
contrary, Theorem 4.9 guarantees a representation p(x) = F

(
x, h1(x), . . . , hm(x),M−

eᵀx+∑m
j=1

(
(1+M)dj‖hj‖−hj(x)

))
of degree 2dmax, where dmax = max{deg h1, . . . ,

deg hm, ddeg p
2 e}. Notice that the situation is similar when comparing Theorem 4.9

with Putinar’s Positivstellensatz (presented in (4.9)): the degree bounds for the latter
certificate are exponential in the degree of p and the number of variables [160].

4.3.1 Removing the condition S ⊆ Rn
+

In Theorem 4.8 we require that the basic semialgebraic set S is a subset of the
non-negative orthant. In general, the condition can be dropped after doubling the
number of variables; that is, by using the well known substitution xi = yi − zi, with
yi, zi ∈ R+ for each i ∈ {1, . . . , n}. Next, in Lemma 4.10 we show how to do this,
while maintaining the validity of the other assumptions of Theorem 4.8.

Lemma 4.10. Let p, h1, . . . , hm ∈ R[x], and let S = {x ∈ Rn : h1(x) ≥ 0, . . . , hm(x) ≥ 0}
be non-empty. Assume p ∈ P+(S) and p̃ ∈ P+(S̃ \ {0}). Define

T := {(y, z) ∈ R2n
+ : h1(y−z) ≥ 0, . . . , hm(y−z) ≥ 0} = {(y, z) ∈ R2n

+ : y−z ∈ S},

then T is non empty, p(y − z) ∈ P+(T ) and p̃(y − z) ∈ P+(T̃ \ {0}).

Proof. The statement follows since x ∈ S implies (max{0, x},−min{0, x}) ∈ T , and
T̃ = {(y, z) ∈ R2n

+ : y − z ∈ S̃}.

Theorem 4.11. Let p, h1, . . . , hm ∈ R[x], and let S = {x ∈ Rn : h1(x) ≥ 0, . . . , hm(x) ≥
0} be non-empty. Denote dmax = max{deg h1, . . . , deg hm, ddeg p

2 e}. Assume that
p ∈ P+

2dmax (S) and p̃ ∈ P+
2dmax(S̃ \ {0}). Then there is F ∈ P2dmax(R2n+m

+ ) such that

(1 + eᵀy + eᵀz)2dmax−deg pp(y − z) = F (y, z, h1(y − z), . . . , hm(y − z)).

Proof. Define T := {(y, z) ∈ R2n
+ : h1(y − z) ≥ 0, . . . , hm(y − z) ≥ 0} = {(y, z) ∈

R2n
+ : y − z ∈ S}. By Lemma 4.10, the conditions of Theorem 4.8 are satisfied for
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the polynomial p(y − z) ∈ R[y, z] and the set T ⊆ R2n. Thus the result follows after
applying Theorem 4.8 to p(y − z) ∈ R[y, z] and T ⊆ R2n

+ .

Doubling the number of variables to use results valid for set contained in the non-
negative orthant is a standard technique in polynomial optimization. Among others,
there is a recent work by Ahmadi and Hall [2] which exploits this technique. Ahmadi
and Hall [2] construct new certificates of non-negativity using certificates of global
positivity. Our results are connected to the results in [2] in the sense that we also
construct new certificates based on the existing ones (the certificates of copositivity).
Moreover, we use similar tools, such as doubling the number of variables or Pólya’s
theorem, in our proofs. However, in contrast to [2], our copositive certificates have
a known pre-multiplier in front of p in all our Theorems 4.8, 4.9, and 4.11. More-
over, the certificates we propose exist for generic basic semialgebraic sets while the
certificates from [2] are proven to exist on compact sets. It would be interesting to
see whether the latter certificates exist on more general sets too.
For compact semialgebraic sets S ⊆ Rn that do not belong to the non-negative or-
thant, doubling the number of the variables is not needed since we can translate
the set to the non-negative orthant. Similar to Lemma 4.10, the conditions of The-
orem 4.8 will be maintained after applying the translation. We use this fact in
Section 4.5 to reformulate PO problems over compact sets (see the proof of Corol-
lary 4.36).

4.3.2 Genericity of strong positivity

We say that a property holds generically on a given set if it holds on a dense subset of
this set. In this section we show that the strong positivity condition holds generically.
First we introduce some additional definitions. We define the homogenization of
p ∈ R[x] [see, e.g., 190] as the polynomial

ph(x0, x) = p
(
x1
x0
, . . . , xn

x0

)
x

deg(p)
0 . (4.5)

Notice that by construction,

p(x) = ph(1, x) and p̃(x) = ph(0, x). (4.6)

Definition 4.12. Let h1, . . . , hm ∈ Rd[x] and let S = {x ∈ Rn : h1(x) ≥ 0, . . . , hm(x) ≥
0}. We denote by Sh the following set

Sh =
{

(x0, x) ∈ Rn+1 : x0 ≥ 0, hh1(x0, x) ≥ 0, . . . , hhm(x0, x) ≥ 0
}
. (4.7)

Definition 4.13 (Guo et al. [78, 79] and Nie [159]). The semialgebraic set S is called
closed at infinity if

cl(cone({1} × S)) = Sh (4.8)



Copositive certificates of non-negativity 77

Closedness at infinity is one of the sufficient conditions for hierarchies of relaxations
to PO problems proposed in [78, 79, 159] to converge to the optimal value [see, e.g.,
159, Thm 2.5, condition (d)]. In [78, 159], this condition is shown to hold generically.

Proposition 4.14 (Nie [159, Sec. 3], Guo et al. [78, Sec. 2.2]). Generically, the
defining polynomials of a basic semialgebraic set S are such that S is closed at infinity.
That is, generically cl(cone({1} × S)) = Sh.

To connect closedness at infinity with strong positivity, we introduce the horizon
cone of S ⊆ Rn [191],

S∞ := {x : (0, x) ∈ cl(cone({1} × S))}.

The notation stems from the work by Peña et al. [175] who use an alternative defini-
tion of S∞ to obtain completely positive reformulations of equality constrained PO
problems. The following properties of the horizon cone are important throughout
the chapter.

Proposition 4.15 ([see, 175, 192]). For any S, V ⊆ Rn the following holds.

(a) If S 6= ∅ is bounded, then S∞ = {0}.

(b) (S ∪ V )∞ = S∞ ∪ V ∞.

(c) (S ∩ V )∞ ⊆ S∞ ∩ V ∞, but the reverse inclusion does not necessarily hold.

(d) Let A ∈ Rn×m, b ∈ Rm and S = {x ∈ Rn : Ax ≥ b}. Then S∞ = {x ∈ Rn :
Ax ≥ 0}.

Lemma 4.16. Let p ∈ R[x] and S ⊆ Rn. Then

(a) If p is bounded on S from below, then p̃ ∈ Pdeg p(S∞).

(b) If S is a basic semialgebraic set, then S∞ ⊆ S̃.

Proof. Statement (b) follows from (a). Now, we prove (a). Let p be bounded on S
from below with the lower bound λlb. Then p(x) − λlb ∈ Pdeg p(S). Let y ∈ S∞.
Then there exists λk > 0 and xk ∈ S for k = 1, . . . such that limk→∞ λ

k = 0 and
limk→∞ λ

kxk = y. For 0 ≤ ` < deg p, let f `(x) be the homogeneous component of
p(x)− λlb of degree `. We have that

lim
k→∞

(λk)deg p(p(xk)− λlb) = lim
k→∞

(λk)deg p

p̃(xk) +
∑

`<deg p
f `(xk)


= lim

k→∞

p̃(λkxk) +
∑

`<deg p
(λk)deg p−`f `(λkxk)

 = p̃(y).

As (λk)d(λk)d(p(xk)− λlb) ≥ 0 for all k we obtain p̃(y) ≥ 0.
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Using the horizon cone and Lemma 4.16, we can characterize intPd(S) for unbounded
S.

Proposition 4.17. Let d > 0, and let S ⊆ Rn be unbounded. Then intPd(S) ={
p ∈ R=d[x] : p ∈ P+

d (S), p̃ ∈ P+
d (S∞ \ {0})

}
Proof. Let p ∈ intPd(S), then it follows that p ∈ R=d[x] and p ∈ P+

d (S). To show
that p̃ ∈ P+

d (S∞ \ {0}), let y ∈ S∞, y 6= 0. Without loss of generality, y1 > 0. Then,
for some ε > 0 the polynomial q(x) = p(x) − εxd1 ∈ Pd(S). From Lemma 4.16a,
q̃ ∈ Pd(S∞), therefore p̃(y) ≥ εyd1 > 0. Thus, intPd(S) ⊆ {p ∈ R=d[x] : p ∈
P+
d (S), p̃ ∈ P+

d (S∞ \ {0})}. To show that intPd(S) ⊇ {p ∈ R=d[x] : p ∈ P+
d (S), p̃ ∈

P+
d (S∞ \ {0})}, let p ∈ R=d[x] such that p ∈ P+

d (S) and p̃ ∈ P+
d (S∞ \ {0}). For the

sake of contradiction, assume p /∈ intPd(S). Then there exists q ∈ Rd[x] such that
for k = 1, 2 . . . there exists xk ∈ S such that

p(xk)− 1
k
q(xk) < 0

The sequence xk, k = 1, . . . is unbounded. Define λk := 1
‖xk‖2

, k = 1, . . . so that
limk→∞ λ

k = 0. The sequence λkxk, k = 1, . . . is bounded and thus has a convergent
subsequence with a limit y ∈ S ′ := {y ∈ S∞ : ‖y‖ = 1}. We have then, for all ε,

0 > lim
k→∞

(λk)d(p(xk)− εq(xk)) =

p̃(y), if deg q < d

p̃(y)− εq̃(y), if deg q = d.

But p̃ ∈ P+
d (S ′) and S ′ is compact. Thus for some ε > 0 small enough we obtain a

contradiction.

Lemma 4.16 b and Proposition 4.17 together imply that every polynomial of degree
d that is strongly positive on S is in intPd(S) (as stated in Proposition 4.6).

Corollary 4.18. Let d > 0. Generically, the defining polynomials of a basic semi-
algebraic set S and a polynomial p ∈ Pd(S) are such that p is strongly positive on
S.

Proof. From Proposition 4.14, generically cl(cone({1} × S)) = Sh. Hence S̃ = {x :
(0, x) ∈ Sh} = S∞. If S is compact, then S̃ = {0}. Otherwise, using Proposition 4.17,

intPd(S) =
{
p ∈ R=d[x] : p ∈ P+

d (S), p̃ ∈ P+
d (S̃ \ {0})

}
.

Since p ∈ Pd(S), generically p ∈ intPd(S), and thus p is strongly positive.

Since we are especially interested in copositive polynomials, we next look at the
interior of the cone of copositive polynomials of degree at most d. Proposition 4.17
implies the following characterizations of the interior of Rn

+.
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Corollary 4.19. For any p ∈ Rd[x] the following statements are equivalent

(a) p ∈ intPd(Rn
+).

(b) deg p = d, p ∈ P+
d (Rn

+) and p̃ ∈ P+
d (Rn

+ \ {0}).

(c) deg p = d and ph ∈ P+
d (Rn+1

+ \ {0}).

Proof. Statement (b) follows from Proposition 4.17. Statement (c) follows from state-
ment (b) and (4.6).

4.3.3 Examples

By Proposition 4.17, if S is closed at infinity, then generically a non-negative polyno-
mial on S is strongly positive on S. Next, we present some examples of sets that are
closed or not closed at infinity and show several sufficient conditions for closedness
at infinty. One could expect that this condition is always satisfied for compact sets
or for sets generated by one constraint. However, Example 4.20 shows that both
statements are false.

Example 4.20 (Violation of closedness at infinity for a compact set generated by one
constraint). Let h(x1, x2) = −x4

1−x2
2+1. And let S = {(x1, x2) ∈ R2 : h(x1, x2) ≥ 0}.

Notice that (0, 0) ∈ S, so S is non-empty. Also, S ⊂ [−1, 1]2 and thus compact since
it is a bounded basic closed semialgebraic set. We have (0, 0, 1) ∈ Sh, but we claim
that (x0, x1, x2) ∈ cl(cone({1} × S)) and x0 = 0 implies x2 = 0. This is because for
any (x0, x1, x2) ∈ cone({1} × S) we have x4

1 + x2
2x

2
0 ≤ x4

0 which implies |x2| ≤ x0.

Example 4.21 (Violation of closedness at infinity for an unbounded set). Let h1(x) =
x1, h2(x) = x2, h3(x) = (x1x2 + 1)(x1 − x2) and let

S =
{
x ∈ R2 : h1(x) ≥ 0, h2(x) ≥ 0, h3(x) ≥ 0

}
.

For any t ≥ 0 we have that (0, 0, t) ∈ Sh. On the other hand, x = (x0, x1, x2) ∈
cone({1} × S) \ {0} we have x1 ≥ 0, x2 ≥ 0 and (x1x2 + x2

0)(x1 − x2) ≥ 0, that is
x1 ≤ x2. Thus (0, 0, t) /∈ cl cone({1} × S) for t > 0.

Now, we turn our attention to sufficient conditions for closedness at infinity. As this
property holds generically (see Proposition 4.14), it is not a surprise that there are
several families of semialgebraic sets for which closedness at infinity is straightforward
to verify.

Proposition 4.22. Let h1, . . . , hm ∈ R[x] and S = {x ∈ Rn : h1(x) ≥ 0, . . . , hm(x) ≥
0}. If any of the following conditions holds, then cl(cone({1} × S)) = Sh.
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(a) hm(x) = N − ‖x‖2 for some N > 0.

(b) h1, . . . , hm are homogeneous.

(c) hi(x) = qi1(x) · · · qiki(x) for some ki > 0 and qi1, . . . , qiki ∈ R1[x]. Notice that in
this case S is a union of polyhedra.

(d) n ≥ 2 and S = {x ∈ Rn :
(
xn−

∑n−1
i=1 x

2
i − b

)
q(x) ≥ 0, xn ≥ 0}, where b ∈ R and

q ∈ R[x] is such that q̃ ∈ P+(Rn \ {0}).

Proof. By construction, S̃ = {x : (0, x) ∈ Sh}. Hence S̃ = S∞ if and only if
cl(cone({1} × S)) = Sh. Moreover, from Lemma 4.16 (b) it follows that S̃ ⊇ S∞.
Therefore throughout this proof we only show that S̃ ⊆ S∞.

Proof of statement (a). Without loss of generality, let h1(x) = N − ‖x‖2. Then
h̃1(x) = −‖x‖2, therefore S̃ = {0} = S∞. The latter equality follows from Proposi-
tion 4.15 (a).

Proof of statement (b). Let x ∈ S̃. Then for every every j ∈ [m] and k > 0,
hj(kx) = h̃j(kx) = kdeg hj h̃j(x) ≥ 0. Since x = limk→∞

kx
k
, we see that x ∈ S∞.

Proof of statement (c). The statement follows from Proposition 4.15 (b) and (d). If
h1 is a product of finitely many polynomials of degree one, then S can be written
as a union of sets generated by linear equalities and inequalities. For example, if
h1(x) = x1(x2 + 1), then

S = Rn∩{{x1 ≥ 0, x2+1 ≥ 0}∪ {−x1 ≥ 0,−x2−1 ≥ 0}∪ {x1 = 0} ∪ {x2 + 1 = 0}} .

Proof of statement (d). On the one hand,

S̃ =
{
x ∈ Rn

+ :
(
−

n−1∑
i=1

x2
i

)
q̃ ≥ 0

}
= {(0, . . . , 0, xn)ᵀ : xn ≥ 0} .

On the other hand, for any xn ≥ 0 and k > 0, let xk =
(

k√
n−1 , . . . ,

k√
n−1 , k

2 + b
)
, and

λk = xn
k2 . Then xk ∈ S for all k, λk ↓ 0 and limk→∞ λkx

k = (0, . . . , 0, xn)ᵀ. Therefore

S∞ ⊇ {(0, . . . , 0, xn)ᵀ : xn ≥ 0} = S̃.

An important question in algebraic geometry and in optimization is when the non-
negativity of a polynomial on a set can or cannot be certified using the quadratic
module [see 19]. Putinar [183] answers this question affirmatively when the quadratic
module is Archimedean. Putinar’s Positivstellensatz [183] underlines LMI approxi-
mations of PO problems with compact or “compactifiable” feasible sets S [see, e.g.,
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95, 114, 115, 118] since one could add the norm-constraint N − ‖x‖2 ≥ 0 to the
description of such S. In our next example, we show that copositive certificates of
non-negativity could exist on the sets where the certificates based on the quadratic
module do not exist.
We say that polynomials {h1(x), . . . , hm(x)} satisfy the strong moment property
(SMP) if cl(QM(h1(x), . . . , hm(x))) = P(S), where S = {x ∈ Rn : h1(x) ≥
0, . . . , hm(x) ≥ 0}, (see Proposition 3.4.1. in [139]). SMP implies that p ∈ intP(S)
can be written in the form

p(x) = σ0(x) +
m∑
j=1

σj(x)hj(x), where σj is SOS for all j = 0, . . . ,m. (4.9)

Definition 4.23 (Tentacles). Given a compact set K ⊆ Rn with nonempty interior,
a tentacle of K in direction z is the set

TK,z := {(λz1x1, . . . , λ
znxn) : λ ≥ 1, x = (x1, . . . , xn) ∈ K} .

Netzer [157] shows that if S contains tentacles of a certain type, this set does not
satisfy the SMP.

Example 4.24 (A set that violates the SMP but is closed at infinity). Let n ≥ 2
and consider the set

S =
{
x ∈ Rn :

(
xn −

n−1∑
i=1

x2
i

)(
2
n−1∑
i=1

x2
i − xn

)
≥ 0, xn ≥ 0

}
.

Figure 4.1 shows this set for n = 2.

x1

x2

Figure 4.1 – Illustration of the set S ={
x ∈ R2 : (x2 − x2

1)(2x2
1 − x2) ≥ 0, x2 ≥ 0

}
(in gray).

This example is similar to one presented in [157, Section 6]. Let z = (1, . . . , 1, 2)ᵀ
and

K =
{
x ∈ Rn : |xn − n+ 1

2 | ≤
1

10n and |xi − 1| ≤ 1
10n i = 1, . . . , n−1

}
.
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We claim that the tentacle TK,z ⊆ S. From [157, Thm. 5.4] we obtain that {(xn −∑n−1
i=1 x

2
i )(2

∑n−1
i=1 x

2
i − xn)} does not satisfy the SMP. Thus, for some d > 0 there is

p ∈ intPd(S) for which no certificate of non-negativity of the form (4.9) exists. On
the other hand, from Proposition 4.22d the closedness at infinity condition holds.
Hence Theorem 4.11 implies that for all p ∈ intPd(S) a copositive certificate of
non-negativity exists.
To prove the claim, notice that if x ∈ S, then for every λ > 0, (λx1, . . . , λxn−1, λ

2xn) ∈
S. Thus, it is enough to show that K ⊂ S. Since n ≥ 2, for x ∈ K we have

xn−
n−1∑
i=1

x2
i ≥ n− 1

2 −
1

10n − (n− 1)
(
1 + 1

10n

)2
= 3

10 + 1+9n
100n2 > 0,

2
n−1∑
i=1

x2
i − xn ≥ 2(n− 1)

(
1− 1

10n

)2
− n+ 1

2 −
1

10n = n− 19
10 + 16n−1

50n2 > 0.

4.4 LP-based and sparse certificates of non-negativity on compact sets

Using Theorems 4.8, 4.9 and 4.11, one can construct from any certificate of coposi-
tivity a corresponding certificate of non-negativity for any given semialgebraic set S
and any strongly positive polynomial on S. In this section we use two certificates of
copositivity to illustrate this approach and obtain new certificates of non-negativity.
Our first example (see Corollary 4.26) is based on the celebrated Pólya’s certificate of
copositivity. Applying this certificate in optimization leads to LP approximations of
PO problems. More importantly, the certificate can be strengthened so that instead
of non-negative constant polynomials (resulting in LP approximations) one can use
any set of non-negative polynomials with non-zero constant terms, such as SOS,
scaled diagonally dominant SOS (SDSOS) [3], hyperbolic polynomials [197], non-
negative circuit polynomials [91], etc. (see Corollary 4.28). As a result, one obtains
convergent LMI hierarchies of approximations to PO problems which could provide
stronger bounds than the mentioned LP hierarchies.
Our second example is a sparse certificate of non-negativity for generic semialgebraic
sets. More precisely, we present an SOS-based certificate where all but two SOS poly-
nomials are univariate which results in the use of lower dimensional SDP constraints
in LMI approximations of PO problems (see Corollary 4.31). To obtain this result,
we propose a new sparse certificate of copositivity in Theorem 4.30.
In both examples we use certificates of copositivity which are guaranteed to exists
only for polynomials in intPd(Rn

+). For this reason we limit ourselves to compact
sets, in order to take advantage of Theorem 4.9 which guarantees the existence of
copositive certificate lying in the interior of the cone of copositive polynomials. Also,
for ease of presentation we work with S ⊂ Rn

+ since any compact set can be translated
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to the non-negative orthant. Corollary 4.36 in Section 4.5 shows how to implement
the results in this section for general compact sets.
The certificates we obtain in this section use rational polynomial expressions to certify
the non-negativity of a polynomial on a set S = {x ∈ Rn

+ : h1(x) ≥ 0, . . . , hm(x) ≥
0}. That is, the certificates are (basically) of the form G(h1(x), . . . , hm(x))p(x) =
F (h1(x), . . . , hm(x)), where F,G are copositive polynomials. The existence of such
rational certificates is in general guaranteed by the Krivine-Stengle Positivstellensatz
[107, 213]. However, the problem of finding such certificates is not tractable in general
because the denominator G is unknown [see, e.g., 95, for more details]. The ratio-
nal certificates of non-negativity introduced in this section have fixed denominators.
Hence, these certificates provide efficiently solvable lower bound approximations to
PO problems. We present examples of such approximations in Section 4.5.

4.4.1 LP certificates

Our first illustration of constructing new certificates of non-negativity using certifi-
cates of copositivity is based on Pólya’s certificate of copositivity [see, e.g., 83] (see
Theorem 1.8).

Corollary 4.25. Let d > 0 and F ∈ Rd[x] be such that F ∈ intPd(Rn
+). Then for

some r > 0 all the coefficients of (1 + eᵀx)rF (x) are non-negative.

Proof. The result follows from Corollary 4.19 c by applying Theorem 1.8 to F h.

Combining Theorem 4.9 and Corollary 4.25, we obtain the new certificate of non-
negativity stated in Corollary 4.26 below.
As before, for n > 0 and d ≥ 0 we define Nn

d = {α ∈ Nn : eᵀα ≤ d}. Given
h1, . . . , hm ∈ R[x] and α ∈ Nm

d , we use hα := ∏m
j=1 h

αj
j . In particular xα = ∏m

j=1 x
αj
j .

Also, we use the notation h to arrange the polynomials h1, . . . , hm in an array; that
is, h := [h1, . . . , hm]ᵀ.

Corollary 4.26. Let p, h1, . . . , hm ∈ R[x] and S = {x ∈ Rn : h1(x) ≥ 0, . . . , hm(x) ≥ 0}
be non-empty. Also, let M > 0 be such that S ⊆ {x ∈ Rn

+ : eᵀx ≤ M}, and let any
a ∈ Rn

+ and b ∈ Rm
+ be given. Denote dmax = max{deg h1, . . . , deg hm, ddeg p

2 e}. If
p ∈ P+

2dmax (S) then there exists r ≥ 0 and cα,β,η ≥ 0 for (α, β, γ) ∈ Nn+m+1
dmax(2dmax+r)

such that

(1 + aᵀx+ bᵀh(x))r p(x) =
∑

(α,β,γ)∈Nn+m+1
dmax(2dmax+r)

cα,β,γx
αh(x)β(M − eᵀx)γ. (4.10)

Proof. Let dj = deg hj. Denote gj(x) = (1 + M)dj‖hj‖ − hj(x). By Theorem 4.9,
there is F ∈ intP2dmax(Rn+m+1

+ ) such that
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p(x) = F (x, h(x),M − eᵀx+ eᵀg(x)). (4.11)

Let M̂ = 1 + M +∑m
j=1(1 + M)dj‖hj‖. â = M̂a + e, b̂j = M̂b + e. By construction

â > 0, b̂ > 0. Denote x̂i = xiâi for i ∈ {1, . . . , n} and ûj = uj b̂j for j ∈ {1, . . . ,m}.
Then

F (x̂, û, v) ∈ intP2dmax(Rn+m+1
+ ).

Applying Corollary 4.25, we obtain that there is r ≥ 0 and kα,β,γ ≥ 0 for (α, β, γ) ∈
Nn+m+1

2dmax+r such that

(1 + eᵀx̂+ eᵀû+ v)rF (x̂, û, v) =
∑

(α,β,γ)∈Nn+m+1
2dmax+r

kα,β,γx̂
αûβvγ.

Thus,

(1 + âᵀx+ b̂ᵀu+ v)rF (x, u, v) =
∑

(α,β,γ)∈Nn+m+1
2dmax+r

k̂α,β,γx
αuβvγ,

where k̂α,β,γ ≥ 0 for all (α, β, γ) ∈ Nn+m+1
2dmax+r. Using (4.11) we obtain that(

1 + âᵀx+ b̂ᵀh(x)+M − eᵀx+ eᵀg(x)
)r
p(x) = (4.12)∑

(α,β,γ)∈Nn+m+1
2dmax+r

k̂α,β,γx
αh(x)β

(
M − eᵀx+ eᵀg(x)

)γ
.

To finish the proof, notice that

1+âᵀx+b̂ᵀh(x)+M−eᵀx+eᵀg(x) =1 +
(
M̂a+ e

)ᵀ
x+

m∑
j=1

(M̂bj + 1)hj(x)

+
m∑
j=1

(
(1 +M)dj‖hj‖ − hj(x)

)
+M − eᵀx

=M̂(1 + aᵀx+ bᵀh(x)),

which, up to a positive constant multiplier, is equivalent to the left-hand side factor
of p(x) in (4.10). Also, for each j = 1, . . . ,m we have

gj(x) = (1 +M)dj‖hj‖ − hj(x)
= ‖hj‖((1 +M)dj − (1 + eᵀx)dj) +

∑
α∈Nn

dj

Cdj ,α(‖hj‖ − (hj)α)xα

= ‖hj‖(M−eᵀx)
dj−1∑
k=0

(M+1)dj−k−1(1+eᵀx)k+
∑
α∈Nn

dj

Cdeg hj ,α(‖hj‖−(hj)α)xα.

After replacing the expression for gj(x), j = 1, . . . ,m above into eᵀg(x) in the right
hand side of (4.12), the right-hand side of (4.12) is equivalent to the right-hand side
of (4.10).
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Remark 4.27. The choice of the vectors a, b in Corollary 4.26 is free, and we can
set a = 0, b = 0 to eliminate the pre-multiplier in front of p(x) in (4.10).

For every r ∈ N, the only unknowns in the certificate from Corollary 4.26 are the
non-negative constants cα,β,γ ≥ 0 for all (α, β, γ) ∈ Nn+m+1

dmax(2dmax+r). The representa-
tion (4.10) is linear in these constants. As we show in Section 4.5, we can use the
hierarchy (4.10) for every r ∈ N , to obtain LP lower bounds for PO problems over
compact semialgebraic sets. Setting a = e, b = 0 in (4.10) results in the certificate
from Theorem 1.14 by Dickinson and Povh [48].
Recently, it has been a topic of great interest to replace SOS-based certificates by
certificates based on other types of non-negative polynomials. The idea is to pro-
vide alternative certificates that can lead to LMI relaxation bounds that are com-
putationally cheaper to compute, but still provide quality bounds for the PO prob-
lem. This is typically done by replacing the full dimensional SOS polynomials on
non-negative certificates based on Putinar’s Positivstellensatz by SDSOS [3] (which
result in second-order cone programming (SOCP) relaxations), hyperbolic polynomi-
als [197] (which results hyperbolic programming relaxations) and non-negative circuit
polynomials [59, 219] (which result in geometric programming relaxations). Since
these alternative sets of polynomials are not necessarily supersets of SOS polynomi-
als, the resulting LMI hierarchies of bounds on PO problems can require additional
assumptions to converge [see, for instance, 59], are not proven to converge [e.g., 3] or
require the use of additional methods to ensure convergence [see e.g., 2]. In contrast,
all earlier mentioned subsets of non-negative polynomials can be used to strengthen
the LP-based certificates from Corollary 4.26 to obtain convergent LMI hierarchies
of bounds on PO problems with compact feasible sets.

Corollary 4.28. Let p, h1, . . . , hm ∈ R[x] and S = {x ∈ Rn : h1(x) ≥ 0, . . . , hm(x) ≥ 0}
be non-empty. Also, letM be such that S ⊆ {x ∈ Rn

+ : eᵀx ≤M}, and let any a ∈ Rn
+

and b ∈ Rm
+ be given. Denote dmax = max{deg h1, . . . , deg hm, ddeg p

2 e}. Let d ≥ 0
and let K ⊂ Pd(Rn) be such that R+ ⊆ K. If p ∈ P+

2dmax (S) then there exists r ≥ 0
and cα,β,γ ∈ K for (α, β, γ) ∈ Nn+m+1

dmax(2dmax+r) such that(
1 +aᵀx+ bᵀh(x)

)r
p(x) =

∑
(α,β,γ)∈Nn+m+1

dmax(2dmax+r)

cα,β,γ(x)xαh(x)β(M − eᵀx)γ. (4.13)

The computational benefits of the certificates arising from Corollary 4.28 have been
explored by Kuang et al. [108], who consider setting K to be: R+, as well as the
cone of quadratic diagonally dominant SOS (DSOS), SDSOS, and SOS polynomials.
The authors conclude that PO-hierarchies based on certificate (4.13) can be more
computationally efficient compared to the broadly used Lasserre’s hierarchies [114,
121], as well as the SDSOS hierarchies in [3].
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A final noteworthy characteristic of the LP certificates proposed in this section is that
the unknown r could be small, even without considering the additional strengthen-
ings, beyond the use of non-negative constant polynomials, in Corollary 4.28. That
is, the polynomials involved in the certificate (4.10) can have low degrees. This
implies that the LP one has to solve to find a certificate is not too large, as illus-
trated by Example 4.29. This situation is in contrast to the existing limited research
on LP certificates of non-negativity of polynomials [see, e.g., 35, 103, 119, 195, for
noteworthy examples].

Example 4.29 (Low degree convergence). We show that the polyhedral hierarchy
(4.10) could convergence for small r by considering an instance of the Celis-Dennis-
Tapia (CDT) problem [see 31]. This classical problem is concerned with the non-
negativity of a quadratic polynomial on the intersection of two ellipses. Recent ad-
vances on this problem have been made thanks to the use of polynomial optimization
techniques [see 24]. Specifically, for n ≥ 3 consider the polynomial q ∈ R[x]:

q(x) := −2x1 + 8x1

n∑
i=1

xi.

Note that q is not a copositive polynomial; that is, q 6∈ P(Rn
+). In particular,

q(x1, 0, . . . , 0) < 0 for 0 < x1 < 1/4.

However, we can use Corollary 4.26 to certify that q ∈ P(Be ∩ Be/2), where

Bc =
{
x ∈ Rn

+ : bc(x) := 1− ‖x− c‖2 ≥ 0
}
,

is the unitary ball centered at c ∈ Rn. In particular notice that(
1 + eᵀx+ be(x) + be/2(x)

)
q(x) = 8x1(eᵀx)

(
be(x) + be/2(x)

)
+ x1

((
5
2n− 6

)
+ 8(eᵀx)2 + 4

n∑
i=2

x2
i

)
,

for n ≥ 3. After expanding the right hand side, the expression above has the form
(4.10) with r = 1. In particular, this certifies that q is non-negative on the Be ∩Be/2.

4.4.2 Sparse certificates

As another illustration of the power of our approach, we construct sparse SOS-
certificates of non-negativity of polynomials over compact semialgebraic sets. For
that purpose, we first construct sparse certificates of copositivity. Then, using The-
orem 4.9, we translate the result to any compact semialgebraic set.
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Theorem 4.30. Let F ∈ intPd(Rn
+). Then there exist r ≥ 0, n-variate SOS polyno-

mials σ0 and σ1, and bivariate homogeneous SOS polynomials σ̂0, . . . , σ̂n such that

(1+eᵀx)rF (x) = σ0(x)+σ1(x)
∑

0≤i≤j≤n
xixj+(1+eᵀx)

n∑
i=0

σ̂i (xi, 1+eᵀx)xi, (4.14)

where x0 := 1.

Combining Theorem 4.30 and Theorem 4.9 we obtain a sparse certificate of non-
negativity on compact sets.

Corollary 4.31. Let p, h1, . . . , hm ∈ R[x], and S = {x ∈ Rn : h1(x) ≥ 0, . . . , hm(x) ≥ 0}
be non-empty. Let M > 0 be such that S ⊆ {x ∈ Rn

+ : eᵀx ≤ M}. Denote
X =

(
x1, . . . , xn, h1(x), . . . , hm(x),M − eᵀx + ∑m

j=1

(
(1 + M)dj‖hj‖ − hj(x)

))
. If

p ∈ P+ (S), then there exist n-variate SOS polynomials σ0 and σ1, and univariate
SOS polynomials σ̂1, . . . , σ̂n+m+1 such that

p(x) = σ0(x) + σ1(x)
((

1 +M +
m∑
j=1

(1 +M)dj‖hj‖
)2
− 1−

n+m+1∑
i=1

X2
i

)
(4.15)

+
n+m+1∑
i=1

σ̂i (Xi)Xi.

Proof. Denote X0 = 1. From Theorem 4.30, with d = deg p, and Theorem 4.9
we obtain that there are r ≥ 0 and n-variate SOS polynomials σ0 and σ1, and
homogeneous bivariate SOS polynomials σ̂0, . . . , σ̂n+m+1 such that

(1 + eᵀX)rp(x) = σ0(x) + σ1(x)
∑

0≤i≤j≤n+m+1
XiXj

+ (1+eᵀX)
n+m+1∑
i=0

σ̂i (Xi, 1+eᵀX)Xi.

Using X0 + eᵀX = 1 + eᵀX = 1 +M +∑m
j=1(1 +M)dj‖hj‖ and

∑
0≤i≤j≤n+m+1

2XiXj = (X0 + eᵀX)2 −
n+m+1∑
i=0

X2
i ,

we obtain (4.15), up to a positive constant multiplier.

The certificates constructed in Theorem 4.30 and Corollary 4.31 are sparse in the
sense that the SOS polynomial multipliers σ̂i, i = 1, . . . , n + m + 1 are all sparse.
Indeed while σ0 and σ1 are full SOS, each σ̂i is univariate. A univariate SOS of degree
d can be represented using a (d + 1) × (d + 1) SDP matrix which is much smaller
than the one needed to represent a multivariate SOS of the same degree.
The rest of this section shows the proof of Theorem 4.30.
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Lemma 4.32. Let S ⊂ Rn be non-empty and compact, and let p ∈ R[x]. Then
p ∈ P+(S ∩ Rn

+) if and only if

p(x) = q(x) +
n∑
i=1

xiσi(xi), (4.16)

where σ1, ..., σn are univariate SOS polynomials and q ∈ P+(S).

Proof. If S ⊂ Rn
+, then the result is straightforward, thus further in the proof we

assume that S * Rn
+. Without loss of generality, there exists k ≤ n such that

{x ∈ S, xi < 0} 6= ∅ for all i ∈ {1, . . . , k}, and {x ∈ S, xi < 0} = ∅ for all
i ∈ {k + 1, . . . , n}. Since p ∈ P+(S ∩ Rn

+), there exists ε > 0 such that x ∈ S and
x > −ε implies p(x) ≥ 0. Also, let M > 0 be such that x ∈ S implies x < M .
Let p0

min = min{p(x) : x ∈ S ∩ Rn
+}, and let pimin = min{p(x) : x ∈ S, xi ≤ −ε}

for i ∈ {1, . . . , k}. Consider the function fi(x) = aixie
−bixi for some ai > 0, bi > 0.

For any x ∈ Rn and i ∈ {1, . . . , n}, we have that fi(x) is positive for xi > 0 and
negative for xi < 0. For i ∈ {1, . . . , k}, we can tailor ai and bi so that max{fi(x) :
x ∈ S : xi ≤ −ε} ≤ −εai < pimin

n
and max{fi(x) : x ∈ S ∩ Rn

+} ≤ aiMe−biM <
p0

min
n

.
For i ∈ {k + 1, . . . , n}, we let fi(x) = 0. Defining f(x) = ∑n

i=1 fi(x) we obtain
p(x) > f(x) for all x ∈ S.
Let i ∈ {1, . . . , k}. We show that fi(x) can be approximated as closely as desired
by xiσi(xi), where σi is a univariate SOS, which implies p(x) = q(x) +∑n

i=1 xiσi(xi)
where q(x) ≥ 0 for all x ∈ S.
For any l ≥ 0 consider the Taylor approximation of et with 2l terms:

Tl(t) =
2l∑
j=0

tj

j! = 1 + t+ t2

2! + t3

3! + ...+ t2k

(2l)! .

Since the Taylor series converges uniformly on bounded intervals, by growing l, one
can approximate fi(x) to any desired accuracy by aixiTl(−bixi). Hence it is enough
to show that Tl(t) is an SOS, or equivalently, given that Tl is a univariate poly-
nomial, that Tl(t) ≥ 0 for all t [see, e.g., 190]. We prove the non-negativity of
Tl by contradiction. Assume Tl is not non-negative. Then it must have a zero as
Tl(0) = 1. Let t∗ be the largest zero of Tl. Then t∗ < 0 and T ′l (t∗) > 0. But for
any t, T ′l (t) = ∑2l−1

j=0
tj

j! = Tl(t) − t2l

(2l)! . Thus 0 < T ′l (t∗) = − (t∗)2l

(2l)! < 0, which is a
contradiction.

Remark 4.33. From the proof of Lemma 4.32 it follows that one could use the same
SOS polynomial σi = σ for i = 1, . . . , n in (4.16).

Now, we use the representation from Lemma 4.32 and some of the known certificates
of non-negativity on compact sets [174, 199] to prove Theorem 4.30.
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Proof of Theorem 4.30. Let ∆n be the standard simplex in Rn: ∆n =
{
x ∈ Rn

+ : eᵀx = 1
}
.

Denote the unit ball in Rn by Bn = {x ∈ Rn : ‖x‖2 ≤ 1}. We can write

∆n+1 = {(x0, x) ∈ Rn+1
+ : (x0 + eᵀx− 1)2 = 0} ∩ Bn+1.

Since F ∈ intPd(Rn
+), we have by Corollary 4.19c that F h ∈ P+

d (Rn+1
+ \ {0}) ∈

P+(∆n+1). Also, from [174, Corollary 2],

(x0 + eᵀx)2F h(x0, x) = q(x0, x) + h(x0, x)(x0 + eᵀx− 1)2, (4.17)

where h ∈ Rd[x0, x] and q ∈ P+
d+2

(
Rn+1

+ ∩ Bn+1
)
.

Hence by Lemma 4.32,

q(x0, x) = g(x0, x) +
n∑
i=0

xiσ̂i(xi), (4.18)

where g(x0, x) ∈ P+(Bn+1) and σ̂0, ..., σ̂n are univariate SOS polynomials. By Schmüd-
gen’s Positivstellensatz [199] (Theorem 4.40), we obtain

g(x0, x) = σ0(x0, x)+σ1(x0, x)
(

1−
n∑
i=0

x2
i

)
(4.19)

where σ0, σ1 are SOS polynomials. Now, we use the substitution (x0, x)→
(

1
1+eᵀx ,

x
1+eᵀx

)
,

and (4.17)-(4.19) to obtain:

F h
(

1
1+eᵀx ,

x
1+eᵀx

)
= σ′0

(
1

1+eᵀx ,
x

1+eᵀx

)
(4.20)

+σ′1
(

1
1+eᵀx ,

x
1+eᵀx

) ∑
n≥j>i≥0

xixj
(1+eᵀx)2 +

n∑
i=0

σ̂′i
(

xi
1+eᵀx

)
xi

1+eᵀx .

Note that: (i) from (4.5), it follows that F h( 1
1+eᵀx ,

x
1+eᵀx) = (1+eᵀx)−dF (x); (ii) for

any even large enough M ∈ N, we have that if σ(x0, x) is a SOS polynomial, then
(1+eᵀx)Mσ

(
1

1+eᵀx ,
x

1+eᵀx

)
is a SOS polynomial in n variables; and (iii) if σ(xi) is a SOS

polynomial for any i = 1, . . . , n, then (1+eᵀx)Mσ
(

xi
1+eᵀx

)
is a bivariate homogeneous

SOS polynomial in xi and (1+eᵀx). Hence the theorem follows by multiplying (4.20)
by (1+eᵀx)M for an even large enough M ∈ N.

4.5 Copositive certificates of non-negativity in polynomial optimization

In the spirit of the seminal work of Lasserre [114] and a large body of literature in PO,
now we present a convex reformulation of PO problems using Theorem 4.11. More
precisely, we reformulate a PO problem as an equivalent linear optimization problem
over the cone of copositive polynomials of a known fixed degree. An advantage
of using the copositive reformulation is that it allows constructing both inner and
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outer LMI hierarchies of approximations. Thus, it is possible to obtain arbitrarily
close upper and lower bounds to the underlying PO problem. Consider the following
standard PO problem:

λ∗ = inf
x
{p(x) : h1(x) ≥ 0, . . . , hm(x) ≥ 0}. (4.21)

Theorem 4.34. Let p, h1, . . . , hm ∈ R[x] and S = {x ∈ Rn : h1(x) ≥ 0, . . . , hm(x) ≥ 0}
be non-empty. Denote dmax = max{deg h1, . . . , deg hm, ddeg p

2 e}. Then λ∗cop ≤ λ∗,
where

λ∗cop = sup
λ,F

λ (4.22)

s. t. (1 + eᵀy + eᵀz)2dmax−deg p(p(y − z)− λ)
= F (y, z, h1(y − z), . . . , hm(y − z)),

F ∈ P2dmax(R2n+m
+ ),

and if S ⊆ Rn
+, then z = 0 and F ∈ P2dmax(Rn+m

+ ). If p̃ ∈ P+
2dmax(S̃ \ {0}), then

λ∗cop = λ∗.

Proof. If (λ, F ) is a feasible solution to (4.22), then F is a copositive certificate
of non-negativity for p(x) − λ on S, that is λ ≤ λ∗. Thus λ∗cop ≤ λ∗. Assume
p̃ ∈ P+(S̃ \ {0}). If p is unbounded from below on S, then (4.21) is infeasible and
its optimal value is λ∗ = −∞. It then follows from λ∗cop ≤ λ∗ that λ∗cop = −∞ also.
Assume therefore that p is bounded from below. Consider any λ < λ∗. Then we
have q := p − λ ∈ P+

2dmax(S), and q̃ = p̃ ∈ P+
2dmax(S̃ \ {0}). Hence the result follows

by applying Theorem 4.11 to q and S. Finally, if S ⊆ Rn
+, then we can set z = 0 by

Theorem 4.8.

Corollary 4.35. Generically, the defining polynomials of a basic semialgebraic set
S and a polynomial p are such that if we minimize p on S, then λ∗cop = λ∗.

Proof. By genericity of closedness at infinity, we have cl(cone({1} × S)) = Sh from
Proposition 4.14. Hence S̃ = {x : (0, x) ∈ Sh} = S∞. If p is unbounded on S from
below, then λ∗ = −∞ = λcop. If p is bounded on S from below, then p̃ ∈ P(S∞) by
Lemma 4.16 (a). Hence p̃ ∈ P(S̃). Therefore generically p ∈ R[x] is either unbounded
from below on S or has p̃ ∈ P+(S̃ \ {0}). We conclude by applying Theorem 4.34 to
the problem of minimizing p on S.

To numerically use problem (4.22), one can replace the condition F ∈ Pdmax(R2n+m
+ )

by any certificate of copositivity. Possible choices are Pólya’s Positivstellensatz [83,
Sec. 2.2], the certificate of copositivity we propose in Theorem 4.30, or the certificate
of copositivity by Dickinson and Povh [46, Thm. 2.4]. One could also construct
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convergent inner hierarchies for the cone of copositive tensors based on the method
by Bundfuss and Dür [27].
On compact sets, we obtain stronger results. Namely, certificates (4.13) and (4.15)
provide convergent lower bounds for (4.21). As an example, we present the usage of
certificate (4.13) below.

Corollary 4.36. Let p, h1, . . . , hm ∈ R[x], and S = {x ∈ Rn : h1(x) ≥ 0, . . . , hm(x) ≥
0} be non-empty. Define dmax = max{deg h1, . . . , deg hm, ddeg p

2 e}. LetM > 0 be such
that S ⊆ {x ∈ Rn : |x| ≤Me}. Let d ≥ 0 and let K ⊂ Pd(Rn) be such that R+ ⊆ K.
For any r ∈ N, define

λr = sup
λ,(cα,β,γ)

λ (4.23)

s. t. p(y −Me)− λ =∑
(α,β,γ)∈Nn+m+1

dmax(2dmax+r)

cα,β,γ(y)yαh(y −Me)β(2nM − eᵀy)γ,

cα,β,γ ∈ K for (α, β, γ) ∈ Nn+m+1
dmax(2dmax+r).

Then λ1 ≤ λ2 ≤ · · · ≤ λ∗, and limr→∞ λ
r = λ∗.

Proof. Let y := x+Me. Then y ∈ Rn
+ and

eᵀy ≤ eᵀx+ nM ≤ eᵀ|x|+ nM ≤ 2nM.

Define T := {y ∈ Rn
+ : h1(y−Me) ≥ 0, . . . , hm(y−Me) ≥ 0} = {y ∈ Rn

+ : y−Me ∈
S}. Since S is compact and non-empty, T is compact and non-empty. Moreover,
p(y − Me) ∈ P+

2dmax (T ). Hence the conditions of Corollary 4.28 are satisfied for
p(y −Me) ∈ R[y] on T ⊆ Rn

+. First,

λr ≤ inf{p(y −Me) : y ∈ T} = inf{p(y −Me) : y −Me ∈ S}
= inf{p(x) : x ∈ S} = λ∗.

Now, notice that if (λ, (cα,β,γ)) is feasible for problem (4.23) with r, then it is also
feasible for problem (4.23) with r+ 1. Hence λr is non-decreasing in r. To prove the
convergence, it is left to show that for any k > 0 there is r such that λr ≥ λ∗ − 1

k
.

Compactness of T implies that p(y −Me) is bounded on T from below. Consider
any λ∗ − 1

k
< λ < λ∗. Then we have q := p(y −Me) − λ ∈ P+

2dmax(T ). Hence, by
Corollary 4.28 with a = 0, b = 0, there is r and (cα,β,γ) such that (λ, (cα,β,γ)) is
feasible for problem (4.23) with r. Therefore λr ≥ λ ≥ λ∗ − 1

k
.

To obtain more information on λ∗ for general sets, we can additionally construct
upper bounds on λ∗ by applying to problem (4.22) outer – instead of inner – ap-
proximations to the cone of copositive polynomials. We do not present this approach
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here since the resulting bound is an upper bound on λ∗ only when (4.22) is a refor-
mulation of (4.21), for instance, when p̃ ∈ P+(S̃ \ {0}). Instead, in Proposition 4.37
we construct an upper bound on λ∗ that is always valid.

Proposition 4.37. Let p, h1, . . . , hm ∈ R[x] and S = {x ∈ Rn
+ : h1(x) ≥ 0, . . . , hm(x) ≥

0} be non-empty. Define dmax = max{deg h1, . . . , deg hm, ddeg p
2 e}. Let λ∗ be the ob-

jective value of (4.21) and let λlb ≤ λ∗ and ε > 0 be given. Define

λε = sup
λ,F

λ (4.24)

s. t. (1 + eᵀy + eᵀz)2dmax−deg p(p(y − z)− λ+ ε(1 + eᵀy + eᵀz)deg p)
= F (y, z, h1(y − z), . . . , hm(y − z), p(y − z)− λlb),

F ∈ P2dmax(R2n+m+1
+ ).

Then λε ≥ λ∗ and limε→0+ λε = λ∗.

Proof. Let Slb := {x ∈ S : p(x) ≥ λlb} and Tlb := {(y, z) ∈ R2n
+ : y − z ∈ Slb}.

We have S̃lb = {x ∈ S̃ : p̃(x) ≥ 0} and T̃lb := {(y, z) ∈ R2n
+ : y − z ∈ S̃lb}. Let

q(y, z) = (1 + eᵀy + eᵀz)deg p. Notice that Slb is non empty, which implies that Tlb
is non empty. Also, p̃(x) ∈ P(S̃lb), which implies that p̃(y − z) ∈ P(T̃lb). Since
q̃(y, z) ∈ P+(R2n

+ \ {0}), it follows that p̃(y − z) + εq̃(y, z) ∈ P+(T̃lb \ {0}). Then,
using Theorem 4.34 we obtain that

λε = inf{p(y − z) + εq(y, z) : (y, z) ∈ Tlb} ≥ inf{p(y − z) : (y, z) ∈ Tlb} (4.25)
= inf{p(x) : x ∈ Slb} = inf{p(x) : x ∈ S} = λ∗

To show the convergence, notice that λε is non-increasing in ε, and thus it is enough
to show that for any k > 0 there is ε such that λε < λ∗ + 1

k
. Fix k, let xk ∈ S

be such that p(xk) < λ∗ + 1
2k . Define yk = max(x, 0), zk = −min(x, 0), and let

εk := 1
2kq(yk,zk) , we have λεk ≤ p(yk − zk) + q(yk,zk)

2kq(yk,zk) = p(xk) + 1
2k < λ∗ + 1

k
.

To numerically use the upper bound λε, we can use any outer approximation to the
set of copositive polynomials. Some examples are the simplicial partitions approach
by Bundfuss and Dür [27], the simplex discretization approach by Yildirim [231] and
the moment matrices approach by Lasserre [117, 120].
Proposition 4.37 illustrates how the copositive certificates of non-negativity proposed
in Theorems 4.8 and 4.11 can be used, in contrast to the use of classical certificates
of non-negativity [see, e.g., 114], to obtain not only lower but also upper bounds for
PO problems. This allows obtaining realistic estimates of how far the convergent
lower bounds from Corollary 4.36 are from the optimal value λ∗ of problem (4.21).
Besides improving estimates for λ∗, the proposed construction of bounds extends the
range of applications of results specific for copositive polynomials (such as Pólya’s
theorem or the results from [27, 46, 117, 231]) to general basic semialgebraic sets.
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4.6 Relationship to Handelman’s and Schmüdgen’s Positivstellensatzen

In this section we obtain Handelman’s Positivstellensatz [82] (see Theorem 1.13 in
Chapter 1) and Schmüdgen’s [199] Positivstellensatz (see Theorem 1.10 in Chapter 1)
using Corollary 4.26. Although we mentioned both Positivstellensatzen in Chapter 1,
we recite them later in this section for convenience. Besides the cited classical proofs
by Handelman and Schmüdgen, there are a few other proofs [18, 182, 206] for the
first theorem and [18, 204, 206] for the second one. The alternative proofs exploit
tools from various fields of mathematics, but mainly abstract algebra. Our proofs
are different in the sense that we use Corollary 4.26 and standard optimization tools,
with minimum use of algebraic tools. Our approach to Schmüdgen’s theorem partially
follows the approach of Schweighofer [206]. Both our proof and the proof in [206]
exploit a result by Berr and Wörmann [18] (Proposition 4.41). In both our approach
and the proof of Schweighofer [206], the polynomial p(x) is associated with some
copositive polynomial F (x, h1(x), . . . , hm(x)). This polynomial is homogenized, and
Pólya’s theorem (Theorem 1.8) is applied to it. However, the ways in which the
existence of F (x, h1(x), . . . , hm(x)) is established are different: our reasoning goes
through Corollary 4.26, while Schweighofer [206] uses tools from algebraic geometry.
We apply our approach first to prove Handelman’s Positivstellensatz [82], which we
present below for convenience of the reader.

Theorem 4.38 (Handelman’s Positivstellensatz [82]). Let A ∈ Rm×n, and let S =
{x : Ax ≤ b} be a non-empty polytope. Let p ∈ P+(S). Then

p(x) =
∑
α∈Nm

cα(b− Ax)α,

for some cα ≥ 0 for all α ∈ Nm.

For our alternative proof, we use the following version of Farkas’ lemma.

Proposition 4.39 (Ziegler [232, Proposition 1.9]). Let A ∈ Rm×n and b ∈ Rn be
such that S = {x : Ax ≤ b} is non-empty. If c0 + cᵀx ∈ P1(S), then there exist
u, u0 ≥ 0 such that c0 + cᵀx = uᵀ(b− Ax) + u0.

Proof of Theorem 4.38. Let x̂i = minx∈S xi. We use the translation x → y − x̂.
Define S ′ = {y ∈ Rn : A(y − x̂) ≤ b} ⊂ Rn

+ so that S ′ ⊂ Rn
+. Clearly, S ′ is non

empty. Also, as S is compact, S ′ is compact and there is M > 0 such that S ′ ⊆ {y ∈
Rn

+ : eᵀy ≤ M}. From Corollary 4.26, after letting a = 0 and b = 0, it follows that
as p(y − x̂) ∈ P+ (S ′), there exists d ≥ 0 and cα,β,γ ≥ 0 for (α, β, γ) ∈ Nn+m+1 such
that

p(y − x̂) =
∑

(α,β,γ)∈Nn+m+1

cα,β,γy
α(A(y − x̂)− b)β(M − eᵀy)γ.
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Now, substitute back y → x + x̂. We have xi + x̂i ∈ P1(S) for all i = 1, . . . , n,
and M − eᵀ(x + x̂) ∈ P1(S). The result then follows by using Proposition 4.39
to replace xi + x̂i for all i ∈ {1, . . . , n}, and M − eᵀ(x + x̂) in the representation
above, respectively by expressions of the form ui

ᵀ(b− Ax) + ui0 for some ui, ui0 ≥ 0,
i = 1, . . . , n+ 1.

Now we prove Schmüdgen’s Positivstellensatz, which we again present below for
convenience.

Theorem 4.40 (Schmüdgen’s Positivstellensatz [199]). Let p, h1, . . . , hm ∈ R[x] be
such that S = {x ∈ Rn : h1(x) ≥ 0, ..., hm(x) ≥ 0} is non-empty and compact, and
let p ∈ P+(S). Then there is r ≥ 0 such that

p =
∑

α∈{0,1}m
σαh

α, (4.26)

for some SOS polynomials σα of degree r − deg(hα) for all α ∈ {0, 1}m.

The approach to prove Theorem 4.40 is the same used to prove Theorem 4.38. First
we use a weaker result that allows us to add redundant constraints to the semialge-
braic set S that can then be written in terms of the original constraints defining S.
For that we use a result by Berr and Wörmann [18].

Proposition 4.41 (Berr and Wörmann [18], Schweighofer [206]). Let h1, . . . , hm ∈
R[x] be such that S = {x ∈ Rn : h1(x) ≥ 0, ..., hm(x) ≥ 0} is non-empty and compact.
Then for every polynomial p ∈ R[x] there exists t ∈ R+ such that t+p and t−p have
a representation of the form (4.26).

The proposition is weaker than Schmüdgen’s Positivstellensatz: it holds for every
p ∈ R[x] and does not require positivity of p on S. Intuitively, since S is bounded,
one can make the minimum of t± p as large as desired by growing t. Theorem 4.40
shows that for p > 0 on S, there is representation of the form (4.26) for t+ p, where
t = 0.

Proof of Theorem 4.40. For i = 1, . . . n, apply Proposition 4.41 on S to obtain
x̂ ∈ Rn

+ such that for i = 1, . . . , n,

xi + x̂i =
∑

α∈{0,1}m
σiα(x)h(x)α. (4.27)

and M > 0 such that

M − eᵀ(x+ x̂) =
∑

α∈{0,1}m
σ̂α(x)ĥ(x)α. (4.28)
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Next, apply the translation x → y − x̂ obtaining S ′ = {y ∈ Rn
+ : y − x̂ ∈ S}. Then

we have that S ′ ⊆ Rn
+ and non empty. From Corollary 4.26, after letting a = 0 and

b = 0, it follows that as p(y − x̂) ∈ P+ (S ′), there exists d ≥ 0 and cα,β,γ ≥ 0 for
(α, β, γ) ∈ Nn+m+1 such that

p(y − x̂) =
∑

(α,β,γ)∈Nn+m+1

cα,β,γy
αh(y − x̂)β(M − eᵀy)γ, (4.29)

The result then follows after replacing y by x+ x̂, substituting representations (4.27)
and (4.28) into (4.29), expanding, and using the fact that the product of SOS poly-
nomials is a SOS polynomial.

4.7 Conclusion and questions for further research

In this chapter we propose copositive certificates of non-negativity of polynomials
over semialgebraic sets. We show that under some mild assumptions, such a coposi-
tive certificate of small and known degree exists on a given basic closed semialgebraic
set, not necessarily compact (see Theorems 4.8 and 4.11). Moreover, these assump-
tions hold generically. Certifying copositivity is an NP-hard problem. However, one
can use existing outer and inner approximations to the set of copositive polynomials.
These approximations, in combination with the copositive certificates we propose, de-
liver new results about the non-negativity of polynomials over generic semialgebraic
sets. In particular, we obtain LMI hierarchies of upper and lower bounds on polyno-
mial optimization problems and derive new structured certificates of non-negativity
on compact sets. A question for future research is to evaluate the performance of the
bounds and certificates we propose in optimization. Another question is to compare
the performance of our approach with the performance of classical approximations
to PO problems, such as Lasserre’s hierarchy [114].

4.7.1 Proof of Lemma 4.7

Preliminaries about the notation in this section are provided in Section 1.1.1 of
Chapter 1. Let Cnd denote the cone of completely positive tensors:

Cnd := cone
{
x⊗d : x ∈ Rn

+

}
. (4.30)

Notice that Cnd ∈ Snd , and if T ∈ Cnd , then for any u ∈ [n]d we have T (u1, . . . , ud) =
xu1 · · ·xud .

Proposition 4.42 ([175]). For any d, n > 0, Cnd is a proper cone (closed, pointed,
convex, with non-empty interior).
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Now, let COPnd be the dual cone of Cnd , i.e.,

COPnd := {T ∈ Snd : 〈T,C〉 ≥ 0 for all C ∈ Cnd } , (4.31)

where the inner product of two tensors is defined in (1.2). Since Cnd is proper, so is
COPnd . We call COPnd the cone of copositive tensors.
To connect copositive polynomials and completely positive tensors, we introduce the
operator Cd(p) : Rd[x] → Sn+1

d . For p ∈ R=d[x] define its homogenization ph as
in (4.5). We can write ph(x0, x) = ∑

α∈Nn+1,eᵀα=d x
α1
0 . . . xαn+1

n phα. For any u ∈ [n+1]d
we define

Cd(p)(u1, . . . , ud) := α1! . . . αn+1!
d! phα, (4.32)

where for every k ∈ [n+1], αk is the number of times k−1 appears in u ∈ [n+1]d.
With this notation, for any p ∈ Rd[x] and a ∈ Rn we have

p(a) = 〈Cd(p), [ 1
a ]⊗d〉 (4.33)

The latter is equivalent to writing p(x) = ph(1, x).
Let q, h1, ..., hm ∈ R=d[x] and consider the following pair of problems

inf q(x) (4.34)
s. t. hi(x) = 0 for i = 1, ...,m

x ≥ 0

inf 〈Cd(q), Y 〉 (4.35)
s. t. 〈Cd(hi), Y 〉 = 0 for i = 1, ...,m
〈Cd(1), Y 〉 = 1
Y ∈ Cn+1

d

Proposition 4.43 (Theorem 5 from [175]). Let q, h1, ..., hm ∈ R=d[x]. Consider a
non-empty set S =

{
x ∈ Rn

+ : h1(x) = 0, . . . , hm(x) = 0
}
. Assume that the following

conditions hold for all j ∈ [m]:

(a) hj(x) ≥ 0 for all x ∈ Rn
+,

(b) q̃(x) ∈ Pd(S̃).

Then the optimal values problems (4.34) and (4.35) are the same and one of the
problems attains its optimal value if and only if the other one does.
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We use Proposition 4.43 together with the standard conic dual problem of prob-
lem (4.35):

sup λ (4.36)

s. t. Cd(q)− λCd(1)−
m∑
i=1

Cd(hi)yi ∈ COPn+1
d

It is important for our proof that strong duality holds between problems (4.35) and
(4.36).

Theorem 4.44. For d > 0 let q, h1, . . . , hm ∈ R=d[x]. Consider a non-empty set
S =

{
x ∈ Rn

+ : h1(x) = 0, . . . , hm(x) = 0
}
. If q ∈ P+

d (S), q̃ ∈ P+
d (S̃ \ {0}), and

the assumptions of Proposition 4.43 hold, then strong duality holds between prob-
lems (4.35) and (4.36), and problem (4.36) has a feasible solution with λ ≥ 0.

Proof. S ⊆ Rn
+ and is non-empty, hence problem (4.34) is feasible. Therefore prob-

lem (4.35) is also feasible from (4.33). Since q ∈ P+(S), the optimal value of prob-
lem (4.34) is finite and positive. The conditions of Proposition 4.43 are satisfied.
Hence the optimal value of problem (4.35) is equal to the optimal value of prob-
lem (4.34), is finite and positive. Therefore, if strong duality holds between prob-
lems (4.35) and (4.36), problem (4.36) has a feasible solution with λ ≥ 0.
Now, we prove the statement about strong duality. Consider the following cone:

K =
{

(〈Cd(h1), Y 〉, ..., 〈Cd(hm), Y 〉, 〈Cd(1), Y 〉, 〈Cd(q), Y 〉) : Y ∈ Cn+1
d

}
⊂ Rm+2.

the fact that K is a cone follows from the definition of the tensor inner product and
from Y ∈ Cn+1

d . We claim that K is closed. In this case, since problem (4.35) is
feasible, by Theorem (“zero duality gap”) in Chapter IV.7.2 in Barvinok [15], strong
duality holds between problems (4.35) and (4.36). To finish the proof of the theorem,
we show that K is closed.
Let (Kk)k∈N ⊂ K and K = limk→∞K

k. Show that K ∈ K. For each k ∈ Kk

by definition there is Y k ∈ Cn+1
d . First let the sequence (Y k)k∈N have a conver-

gent subsequence. Since Cn+1
d is closed, the limit Y of this subsequence is in Cn+1

d .
Therefore, assuming that we work on a convergent subsequence of (Y k)k∈N and the
corresponding subsequence of (Kk)k∈N,

K = lim
k→∞

Kk = lim
k→∞

(
〈Cd(h1), Y k〉, ..., 〈Cd(hm), Y k〉, 〈Cd(1), Y k〉, 〈Cd(q), Y k〉

)
=
(
〈Cd(h1), lim

k→∞
Y k〉, ..., 〈Cd(hm), lim

k→∞
Y k〉, 〈Cd(1), Y k〉, 〈Cd(q), lim

k→∞
Y k〉

)
= (〈Cd(h1), Y 〉, ..., 〈Cd(hm), Y 〉, 〈Cd(1), Y 〉, 〈Cd(q), Y 〉) for some Y ∈ Cn+1

d .

Thus K ∈ K. Now let the sequence (Y k)k∈N have no convergence subsequence. We
show that this contradicts to the assumption that the sequence (Kk)k∈N converges.
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By definition, for every k ∈ N,

Y k =
p∑
i=1

[
xk0
xk

]
i
⊗
[
xk0
xk

]
i
⊗ · · · ⊗

[
xk0
xk

]
i︸ ︷︷ ︸

d

,

where
[
xk0
xk

]
i
∈ Rn+1

+ for all i ∈ [p]. Since (Y k)k∈N is contained in a closed set and has
no convergent subsequence, it is unbounded. Therefore the sequence

([
xk0
xk

]
i

)
k∈N

is

unbounded for some i ∈ [p]. Denote this sequence by
([

yk0
yk

])
k∈N

.
Let Kj denote the jth element of K. By the assumptions of the theorem, hj ∈
Pd(Rn

+) for all j ∈ [m]. Therefore, since R̃n
+ = Rn

+ and using Lemma 4.16, we have
h̃j ∈ Pd(Rn

+). Hence hhj ∈ Pd(Rn
+) by (4.6) and

Kj = lim
k→∞

Kk
j = lim

k→∞
〈Cd(hj), Y k〉 = lim

k→∞

p∑
i=1

hhj (xk0,i, xki ) ≥ lim
k→∞

hhj (yk0 , yk),

Km+1 = lim
k→∞

Kk
m+1 = lim

k→∞
〈Cd(1), Y k〉 = lim

k→∞

p∑
i=1

(xk0,i)d ≥ lim
k→∞

(yk0)d,

Let ∆n+1 = {x ∈ Rn+1 : eᵀx = 1} be the standard simplex in Rn+1. Since
[
yk0
yk

]
∈

Rn+1
+ is unbounded, for every k ∈ N large enough we can write

[
yk0
yk

]
= (yk0 + eᵀyk)

[
ȳk0
ȳk

]
, where

[
ȳk0
ȳk

]
=
[
yk0/(yk0 +eᵀyk)
yk/(yk0 +eᵀyk)

]
∈ ∆n+1.

Therefore we have for all j ∈ [m]

Kj ≥ lim
k→∞

hhj (yk0 , yk) = lim
k→∞

hhj (ȳk0 , ȳk)(yk0 + eᵀyk)d,

Km+1 ≥ lim
k→∞

(yk0)d = lim
k→∞

(ȳk0)d(yk0 + eᵀyk)d.

Since
[
yk0
yk

]
∈ Rn+1

+ , the sequence (yk0 + eᵀyk)k∈N diverges. The inequality above for
Km+1 implies then that limk→∞ ȳ

k
0 = 0. Hence the inequality above for Kj implies

that for all j ∈ [m] limk→∞ h
h
j (ȳk0 , ȳk) = 0. Since

([
ȳk0
ȳk

])
k∈N

is a sequence in ∆n+1, it
has a convergent subsequence with the limit

[
0
ȳ

]
∈ ∆n+1. Further we assume that

we work on this convergent subsequence. As hhj is continuous and using (4.6),

0 = lim
k→∞

hhj (ȳk0 , ȳk) = hhj (0, ȳ) = h̃j(ȳ).

Hence ȳ ∈ S̃. If S̃ = {0}, we immediately obtain a contradiction since ȳ ∈ ∆n+1. If
S̃ 6= {0}, we use q̃(ȳ) > 0. Then

lim
k→∞

qh(ȳk0 , ȳk) = qh(0, ȳ) = q̃(ȳ) > 0.
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Since q has degree d,

Km+2 = lim
k→∞
〈Cd(q), Y k〉 ≥ lim

k→∞
qh(yk0 , yk) = lim

k→∞
qh(ȳk0 , ȳk)(yk0 + eᵀyk)d =∞.

This contradicts to the fact that Km+2 is finite. Hence the sequence (Y k)k∈N is
bounded and the cone K is closed.

Proof of Lemma 4.7. We have deg p = d, p ∈ P+(S) and p̃ ∈ P+(S̃ \{0}). Hence
there exists ε > 0 such that q(x) = p(x)− ε(1 + eᵀx)d ∈ P+(S) and q̃ ∈ P+(S̃ \ {0}).
Since S ⊆ Rn

+, we can write S =
{
x ∈ Rn

+ : g1(x) = 0, . . . , gm(x) = 0
}
, where gj(x) =

(1+eᵀx)d−deg hjhj(x) for all j ∈ [m]. Then the conditions of Theorem 4.44 are satisfied
for q and S. Therefore problem (4.36) is feasible with some λ ≥ 0 and from (4.33)
we obtain

p(x)− ε(1 + eᵀx)d = λ+G(x) +
m∑
j=1

yj(x)gj(x),

where degG = d, G ∈ P(Rn
+) and yj ∈ Rd−deg gj [x] for all j ∈ {1, . . . ,m}.

Finally, denote F (x) := ε(1+eᵀx)d+λ+G(x). Then F ∈ intP(Rn
+) by Corollary 4.19

(b).





CHAPTER 5

New SDP upper bounds on the maximum
k-colorable subgraph problem

5.1 Introduction

For a given graph, the maximum k-colorable subgraph (MkCS) problem is to find the
largest induced subgraph that can be colored in k colors such that no two adjacent
vertices have the same color. The MkCS is also known as the maximum k-partite
induced subgraph problem since the k-coloring corresponds to a k-partition of the
subgraph. A natural extension of this problem is to assign weights to the vertices of
the graph and ask for the k-colorable subgraph of the maximum weight.
We remark that in the literature the name “maximum k-colorable subgraph problem”
is sometimes used for the maximum k-cut problem [67, 169]. In the latter problem
one searches for the partition of the graph into k subsets such that the number of
edges crossing the parts is maximized. If we color vertices in the resulting subsets
in different colors, the crossing edges are properly colored, that is, the endpoints of
these edges have different colors. Hence the goal of the maximum k-cut problem is
to find a maximum properly k-colorable subgraph. This definition shows that the
MkCS is different from the maximum k-cut problem. We do not consider the latter
problem in this chapter, and refer interested readers to [67, 72, 169, 186, 212, 215]
for more information on the maximum k-cut problem and semidefinite programming
(SDP) relaxations for it.
The MkCS falls into the class of NP-complete problems considered by Lewis and
Yannakakis [126]. Moreover, even approximating this problem is hard [133]. For
k = 1 the MkCS reduces to the famous maximum stable set problem, which has been
shown to be NP-complete by Karp [104]. Another well-known problem from the list
of Karp [104] related to the MkCS is the chromatic number problem: to determine
whether the vertices of a given graph can be colored in k colors. If we can solve the
MkCS for a given number of colors, we can clearly solve the maximum stable set and
the chromatic number problems. On the other hand, the MkCS on a given graph can
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be formulated as an instance of the stable set problem on the Cartesian product of
that graph and the complete graph on k vertices. However, not all efficient algorithms
for the maximum stable set and the chromatic number problems result in efficient
algorithms for the MkCS. For instance, on perfect graphs, the chromatic number and
the stability number can be computed in polynomial time while the MkCS is NP-
complete on some perfect graphs [229]. In this sense the MkCS is harder than the
maximum stable set and the chromatic number problems. Nevertheless, the MkCS
is polynomial-time solvable on special classes of graphs. Some examples are graphs
where every odd cycle has two non-crossing chords for any k [1], clique-separable
graphs for k = 2 [1], chordal graphs for fixed k [229], interval graphs for any k [229],
circular-arc graphs and tolerance graphs for k = 2 [152].
In contrast to the stable set and chromatic number problems, the MkCS has been
rarely considered in the literature. Januschowski and Pfetsch [93] notice that such
a lack of attention might be precisely related to the connection of the MkCS to the
earlier mentioned prominent problems. However, MkCS has a number of applications,
such as channel assignment in spectrum sharing networks (Wi-Fi or cellular) [16, 81,
85, 214], VLSI problems [66, 137] and human genetic research [66, 127]. Therefore
we believe that the k-colorable subgraph deserves a thorough study on its own.
Besides the case k = 1, i.e., the stable set problem, the second case that has attracted
some attention in the literature is k = 2. The corresponding problem is called the
maximum bipartite subgraph problem. It has been studied, among others, by Fouil-
houx and Mahjoub [65], Lee et al. [123], and Hüffner [88]. The case with k > 2 is the
least studied. Some significant sources of information on this case are Narasimhan
[152] and Narasimhan and Manber [153]. The latter paper introduces an upper bound
on the optimal value of the MkCS called “the generalized ϑ-number”. This name is
after the famous ϑ-number by Lovász [129], which is an upper bound on the size of
the largest stable set of a graph. For a given graph, the generalized ϑ-number is the
minimum sum of the k largest eigenvalues over the family of matrices that have ones
on the diagonal and in the entries corresponding to the non-edges of the graph. For
k = 1 this corresponds to one of the definitions of the ϑ-number by Lovász [129].
Narasimhan and Manber [153] proposed their bound at the end of the 1980s. At that
time, providing computational results on such a problem was not possible. Alizadeh
[4] formulated the generalized ϑ-number problem by [153] using SDP and included it
within the promising applications of the interior point methods for SDP. Also, Mo-
har and Poljak [144] presented the bound by Narasimhan and Manber [153] among
important applications of eigenvalues of graphs in combinatorial optimization. How-
ever, to our knowledge, the quality of the generalized ϑ-number by Narasimhan and
Manber [153] is still not evaluated.
Other related works look at integer programming (IP) formulations of the MkCS and
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solve or approximate them using linear programming (LP) [30, 93, 94]. Januschowski
and Pfetsch [93], and Campêlo and Corrêa [30] provide computational results for some
k > 2 and large graphs up to 1085 vertices. Finally, Hertz et al. [86] analyze the
performance of various existing online algorithms on the MkCS.

Outline and main results

In this chapter we propose several SDP upper bounds on the optimal value of the
MkCS. We evaluate the quality of these bounds numerically and find that our bounds
outperform the existing approaches on all tested graphs. We work with the basic
version of the MkCS, but our results extend immediately to the weighted version of
the problem.
We begin our analysis of the MkCS with the bound by Narasimhan and Manber
[153]. We write it as an SDP following the approach of Alizadeh [4] and show how
to obtain the same bound starting with an IP formulation of the MkCS. Our next
question of interest is how to tighten the generalized ϑ-number. Recall that for
k = 1 the generalized ϑ-number equals the ϑ-number by Lovász [129]. A natural way
to tighten the latter bound is to add non-negativity constraints to one of its SDP
formulations. This results in the so-called Schrijver ϑ′-number [202]. Applying the
same procedure to the generalized ϑ-number, we obtain the generalized ϑ′-number.
For any k, both the generalized ϑ- and ϑ′-numbers require solving an SDP with one
matrix of order n, for a graph with n vertices.
We proceed by considering alternative SDP upper bounds for the MkCS. For this
purpose we use vector lifting or matrix lifting SDP relaxations of one of the classical
IP formulations of the MkCS. The size of the resulting relaxations depends on n

and k, and the larger k is, the larger the SDP matrices involved in the problems
are. We reduce the sizes of the SDPs by exploiting the invariance of the MkCS
under permutations of the colors; that is, it does not matter which label is assigned
to each color in our SDP relaxations. All constraints in the problems are satisfied
with any labeling, and the objective does not change if the labeling changes. This
property is inherited by our SDP relaxations from the IP formulations of the MkCS.
By exploiting the invariance, our strongest SDP relaxation reduces to a problem with
two SDP constraints of the order n+1 and n, respectively, for a graph with n vertices.
This matrix size does not depend on the value of k or the type of graph. Notice that
the size of the SDP formulation of the generalized ϑ-number by Alizadeh [4] does not
depend on the number of colors k and cannot be reduced using the invariance under
the color permutations.
We evaluate the quality of all SDP bounds on graphs used in the earlier research [30,
93] with up to 200 vertices. Januschowski and Pfetsch [93] solve the MkCS for
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some graphs to optimality, and we compare our bounds to these optimal values.
For some of the tested graphs, we obtain the optimal values too. Campêlo and
Corrêa [30] propose an IP formulation of the MkCS by representatives and implement
a Lagrangian decomposition of that formulation. To our knowledge, [30] contains
the only available numerical experiments with upper bounds for the MkCS, which
motivates the choice of [30] as a benchmark. Our computational results show that
even the weakest among our SDP bounds is at least as good as both the generalized
ϑ-number by Narasimhan and Manber [153] and its strengthening ϑ′-number. At the
same time, the generalized ϑ-number is at least as good as the bounds from [30] for
six out of eight compared graphs.
We introduce the MkCS formulation in Section 5.2. Next, in Section 5.3 we look
at the generalized ϑ-number by Narasimhan and Manber [153] and strengthen this
bound. In Section 5.5 we propose several new SDP bounds and compare them to
each other. In section 5.6 we present the symmetry reduction procedure for problems
from Section 5.5. Section 5.7 contains numerical experiments. We compare the
performance of all SDP bounds to the performance of other bounds existing in the
literature. We summarize the results and list some questions for future research in
Section 5.8.

5.2 Problem formulation

In this section we formally introduce the maximum k-colorable subgraph problem.
Let G = (V,E) be a simple undirected graph with the vertex set V and the edge set
E. Let |V | = n, and let k be a given integer such that 1 ≤ k ≤ n− 1. We say that
G is k-colorable if one can assign to each vertex in G one of the k colors such that
adjacent vertices in G do not have the same color. A graph G′ = (V ′, E ′) is called
an induced subgraph of a given graph G = (V,E) if V ′ ⊆ V and E ′ ⊆ E is such that
E ′ contains all edges in E connecting the vertices in V ′.
The maximum k-colorable subgraph problem is to find an induced k-colorable sub-
graph with maximum cardinality in the given graph. Any k-colorable subgraph is
also k-partite, so MkCS is also called the maximum k-partite subgraph problem. We
denote by α(G) and αk(G) for k ≥ 2 the stability number (the maximum cardinality
of a stable set) and the maximum number of vertices in a k-partite subgraph of G,
respectively.
The MkCS can be formulated as an IP. Let X ∈ {0, 1}n×k be the matrix with one in
the entry (i, r) if vertex i ∈ [n] is colored with color r ∈ [k] and zero otherwise. We
use [n] to denote the set {1, . . . , n}. The MkCS can be formulated as the following
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IP:

αk(G) = max
X∈{0,1}n×k

∑
i∈[n],r∈[k]

Xir (5.1)

s. t. Xir +Xjr ≤ 1, for all {ij} ∈ E, r ∈ [k]∑
r∈[k]

Xir ≤ 1, for all i ∈ [n].

This formulation is also used by Januschowski and Pfetsch [93, 94] to whose results
we refer in Section 5.7. In Section 5.5 we provide another integer programming
formulation for the MkCS problem that contains nonlinear constraints and is more
suitable for deriving semidefinite programming relaxations.

5.3 The generalized ϑ-number

In this section we review the so-called generalized ϑ-number by Narasimhan and
Manber [153], which is an eigenvalue upper bound for the MkCS, and its SDP for-
mulation by Alizadeh [4]. Finally, we strengthen the resulting SDP bound and obtain
the generalized ϑ′-number.

5.3.1 Eigenvalue and SDP formulations of the generalized ϑ-number

For a matrix A ∈ Rn×n, let λi(A) be the ith largest eigenvalue of A. For A,B ∈ Sn, the
trace inner product of A and B is denoted by 〈A,B〉 := ∑

i,j∈[n] AijBij. Throughout
the chapter we use the notation Im (resp. Jm) for the identity matrix (resp. the
matrix of all ones) of dimension m×m. If the dimension of the matrices is clear from
the context, we omit the subsctipt. Narasimhan and Manber [153] introduce the
following upper bound for αk(G):

αk(G) ≤ ϑk(G) = min
A∈Sn

{
k∑
r=1

λr(A) : Aij = 1 for {ij} /∈ E or i = j

}
. (5.2)

Notice that the minimum in problem (5.2) is attained since the maximal eigenvalue
of feasible matrices can be bounded from above without loss of generality. This
implies that the absolute values of entries of feasible matrices can be bounded, see,
e.g., Lemma 4 in Narasimhan and Manber [153] for the proof. Therefore one can
restrict the optimization to a compact subset of the feasible set. To show that we
can bound the maximal eigenvalue, notice that problem (5.2) is feasible and the trace
of all feasible solutions is n. Therefore ϑk(G) is finite. Let (Am)m>0 be a sequence
of solutions to (5.2) such that limm→∞

∑k
i=1 λi(Am) = ϑk(G). As ϑk(G) is finite

and for any m the trace of Am is fixed, λ1(Am) is bounded from above. Otherwise
λk+1(Am), . . . , λn(Am) are unbounded from below, which leads to a contradiction.
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To show that ϑk(G) is an upper bound on αk(G), we follow the reasoning of Mohar
and Poljak [144] who use Fan’s theorem.

Theorem 5.1 (Fan [64]). Let A be a symmetric matrix with eigenvalues λ1(A) ≥
λ2(A) ≥ · · · ≥ λn(A). Then

k∑
i=1

λi(A) = max
X
{〈A,XXᵀ〉 s. t. XᵀX = Ik} . (5.3)

Theorem 5.2 ([144]). Let G be a graph, then αk(G) ≤ ϑk(G).

Proof. We sketch the proof by [144] for convenience. Let X∗ ∈ {0, 1}n×k be the
optimal solution to problem (5.1). That is, for every r ∈ [k] the rth column of X∗ is
the incidence vector of the stable set colored in color r. Let X̂ be the matrix whose
columns are the columns of X∗ normalized to one. By construction X̂ᵀX̂ = Ik.
Therefore, by Theorem 5.1 for any matrix A feasible to problem (5.2),

αk(G) = 〈A, X̂X̂ᵀ〉 ≤ max
X
{〈A,XXᵀ〉 s. t. XᵀX = Ik} =

k∑
i=1

λi(A).

Hence αk(G) ≤ ϑk(G).

For k = 1, ϑk(G) is the eigenvalue formulation of the ϑ-number by Lovász [129].
In the original paper by Narasimhan and Manber [153], ϑk(G) is introduced for the
clique number of G, which implies that ϑk(G) is defined for the complement of G.
We work with the stability number αk(G) and therefore define ϑk(G) for G. Our
notation coincides with notation in Mohar and Poljak [144].

It is known that problem (5.3) can be formulated as an SDP. Next, we present several
SDP formulations of (5.3). For this purpose we again use Fan’s Theorem 5.1. For a
given symmetric matrix A, consider the following pair of primal and dual SDPs:

p∗ = max
Z∈Sn
{〈A,Z〉 s. t. 〈I, Z〉 = k, Z � 0, I − Z � 0} (5.4)

d∗ = min
Y ∈Sn,µ

{〈I, Y 〉+ µk s. t. −A+ µI + Y � 0, Y � 0} . (5.5)

The theorem below shows that the optimal values of both problems (5.4) and (5.5)
are equal to the sum of k largest eigenvalues of a given matrix A.

Theorem 5.3 ([166]). Let A be a symmetric matrix with eigenvalues λ1(A) ≥
λ2(A) ≥ · · · ≥ λn(A). Then ∑k

i=1 λi(A) = p∗, where p∗ is defined in (5.4).

The proof of Theorem 5.3 uses the properties of projection matrices and can be found
in the work of Overton and Womersley [166].
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Corollary 5.4. Define p∗ and d∗ as in (5.4) and (5.5), respectively. Then p∗ = d∗,
and both problems attain the optimal value.

Proof. Define Λ as the diagonal matrix such that Λii = λi(A). Let UΛUᵀ be the
spectral decomposition of A and define the following diagonal matrix:

Mij =

λi(A)− λk(A), i = j ≤ k

0, otherwise.

We show that (Y, µ) :=
(
UMUᵀ, λk(A)

)
is feasible for problem (5.5), with the ob-

jective value equal to p∗. Then p∗ = d∗ follows from the fact that the problems are
dual, using weak duality. First, Y � 0 as Y has the same eigenvalues as M and
M � 0. Next, −A+ µI + Y = −U(Λ−M)Uᵀ + λk(A)I. The matrix −U(Λ−M)Uᵀ

has the same eigenvectors as A, and its minimum eigenvalue is −λk(A). Therefore
−A + µI + Y has the same eigenvectors as A and its minimum eigenvalue is zero.
By Theorem 5.3 we obtain

d∗ ≤ 〈I, Y 〉+ µk =
k∑
i=1

(λi(A)− λk(A)) + kλk(A) =
k∑
i=1

λi(A) = p∗.

Hence strong duality holds and (Y, µ) is the optimal solution to problem (5.5). At
the same time, let Uk be the matrix that consists of the first k columns of U . Since
the ith column is the ith unitary eigenvector of A, Z = UkU

ᵀ
k is the optimal solution

to problem (5.4). Therefore the optimal value is attained in both problems.

The first SDP reformulation of (5.2) follows from Theorem 5.3.

Corollary 5.5.

ϑk(G) = min
A,Y ∈Sn,µ

〈I, Y 〉+ µk (5.6)

s. t. − A+ µI + Y � 0,
Y � 0, Aij = 1 for {ij} /∈ E or i = j.

Note that Y in problem (5.5), and thus in problem (5.6), is the dual variable cor-
responding to constraint I − Z � 0 in (5.4). For k = 1 constraint I − Z � 0 in
problem (5.4) becomes redundant since Z is positive-semidefinite and its eigenvalues
sum to one. Therefore when k = 1, Y in problem (5.6) can be set to zero, which
leads to one of the standard formulations of the ϑ-number by Lovász [129]:

ϑ(G) = min
A∈Sn,µ

µ (5.7)

s. t. − A+ µI � 0, Aij = 1 for {ij} /∈ E or i = j.
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From here on we use the following notation: for all i ∈ [n], E ii = eie
ᵀ
i , and for

i, j ∈ [n] such that i 6= j, E ij = eie
ᵀ
j + eje

ᵀ
i , where ei is the unit vector with one in

the ith entry.

Corollary 5.6. The optimal values of the following problems are equal to ϑk(G)

min
Y ∈Sn,{xij}{ij}∈E ,µ

〈I, Y 〉+ µk (5.8)

s. t.
∑
{ij}∈E

E ijxij − J + µI + Y � 0, Y � 0.

max
Z∈Sn

〈J, Z〉 (5.9)

s. t. Zij = 0 for {ij} ∈ E,
〈I, Z〉 = k,

Z � 0, I − Z � 0,

and problem (5.9) is strictly feasible.

Proof. Reformulation (5.8) follows immediately from the definition of A in prob-
lem (5.6) and the fact that A− J = ∑

{ij}∈E E ijxij for some xij ∈ R for all {ij} ∈ E.
Problem (5.9) is the dual of problem (5.8). Moreover, Z = k

n
I is strictly feasible for

problem (5.9). This implies that strong duality holds for problems (5.8) and (5.9).

Alternatively, SDP relaxation (5.9) can be obtained directly from problem (5.1). As
before, let X ∈ {0, 1}n×k be the optimal solution to problem (5.1), and let X̂ be the
matrix whose columns are the columns of X normalized to one. Then the matrix
Z = X̂X̂ᵀ is feasible for problem (5.9) with the objective value αk(G). Clearly,
Z � 0. Moreover, the objective value is αk(G) since

(
X̂X̂ᵀ

)
ij

= 1
cr

if vertices i and
j are colored with color r, and cr is the total number of vertices colored in color
r;
(
X̂X̂ᵀ

)
ij

= 0 otherwise. The first constraint is satisfied by construction of X̂.
The second and the last constraints in (5.9) are satisfied since the columns of X̂ are
normalized to one, Z = X̂X̂ᵀ has k eigenvalues equal to one, and n− k eigenvalues
equal to zero.
For k = 1 constraint I−Z � 0 in problem (5.9) becomes redundant since Z is positive-
semidefinite and its eigenvalues sum to one. In this case problem (5.9) reduces to
another formulation of the ϑ-number by Lovász [129], i.e.,

ϑ(G) = max
Z∈Sn

〈J, Z〉 (5.10)

s. t. Zij = 0 for {ij} ∈ E,
〈I, Z〉 = 1,
Z � 0.
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Also, the dual of problem (5.10) is a classical formulation of the ϑ-number by Lovász
[129], which corresponds to problem (5.8) with Y = 0.

5.3.2 Strengthening the generalized ϑ-number

Here we introduce a natural strengthening of the SDP relaxation (5.9). Note that
all entries of the optimal solution to the integer programming problem (5.1) are non-
negative. Therefore, we can add the non-negativity constraints to the matrix variable
in (5.9) to strengthen the relaxation. This leads us to the following SDP relaxation:

ϑ′k(G) = max
Z∈Sn

〈J, Z〉 (5.11)

s. t. Zij = 0 for {ij} ∈ E
〈I, Z〉 = k

Z � 0, I − Z � 0,
Z ≥ 0.

Note that for k = 1, ϑ′k equals the ϑ′ upper bound on α(G) by Schrijver [202].

5.4 Copositive reformulation

We can obtain a copositive reformulation of problem (5.1) using the approach by Peña
et al. [175]. One could also use the approach by Burer [28]. However, to satisfy the
conditions in [28], one has to deal with the linear IP formulation of the MkCS (5.1)
and add a number of slack variables and constraints to turn it into an equality con-
strained problem over a bounded feasibility set. This makes the final copositive
formulation larger and motivates us to choose an alternative approach. The ap-
proach by Peña et al. [175] that we use applies to equality constrained polynomial
optimization problems. Therefore we first write the MkCS in this form. We begin
with replacing linear inequality “edge constraints” in problem (5.1) by non-linear
equality constraints:

αk(G) = max
X∈{0,1}n×k

∑
i∈[n],r∈[k]

Xir (5.12)

s. t. XirXjr = 0, for all {ij} ∈ E, r ∈ [k] (5.13)∑
r∈[k]

Xir ≤ 1, for all i ∈ [n]. (5.14)
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Now, we add a binary slack variable to each inequality constraint in (5.12) to obtain
an equality constrained problem.

αk(G) = max
X∈{0,1}n×(k+1)

∑
i∈[n],r∈[k]

Xir (5.15)

s. t. Xi,rXj,r = 0, for all {ij} ∈ E, r ∈ [k]∑
r∈[k+1]

Xir = 1, for all i ∈ [n].

Next, we rewrite the binary constraints to obtain a polynomial optimization formula-
tion of the MkCS. Then we square the second constraint and the objective to satisfy
the conditions in (5.16).

αk(G) = max
X∈Rn×(k+1)

∑
i∈[n],r∈[k]

X2
ir (5.16)

s. t.
( ∑
r∈[k+1]

Xir − 1
)2

= 0, for all i ∈ [n]

Xi,rXj,r = 0, for all {ij} ∈ E, r ∈ [k]
XirXil = 0, for all i ∈ [n], r, l ∈ [k], l 6= r

Xir(1−Xir) = 0, for all i ∈ [n], r ∈ [k]
Xir ≥ 0, for all i ∈ [n], r ∈ [k].

The third constraint is redundant, we add it to obtain a more intuitive copositive
reformulation. All polynomials and the order of the constraints in problem (5.16)
are such that this problem satisfies the conditions of Theorem 4 by Peña et al. [175].
This allows us to write (5.16) as a copositive program. We refer the interested reader
to [175] for the details of the reformulation since the procedure is straightforward,
but requires much new notation that we do not use later in the chapter.
To write the copositive program, we need some new notation as well, and this notation
is frequently used in the sequel. Assume that X ∈ {0, 1}n×(k+1) is the matrix with
one in the entry (i, r) if vertex i is colored with color r and zero otherwise, where
color k+1 represents the uncolored vertices. That is, X is feasible for problem (5.15),
and the first k columns of X form a feasible solution to any of the formulations of
the MkCS we use, such as problem (5.16). Let vec(·) be the operator that produces a
vector from a matrix by stacking its columns onto each other. Consider the following
matrix:[

1 yT

y Y

]
=
[

1
vec(X)

] [
1 vec(X)ᵀ

]
=
[

1 vec(X)ᵀ
vec(X) vec(X)vec(X)ᵀ

]
. (5.17)

This matrix has a certain block structure. Y consists of (k + 1)2 blocks of the size
n×n. We denote by Y rl the n×n block of Y located in position (r, l) ∈ [k+1]×[k+1].
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From here on we denote by e the vector of all ones, use the subscripts i, j to indicate
vertices and use superscripts r, l to indicate colors.
Using the notation above and Theorem 4 by Peña et al. [175] for (5.16), we obtain
the following copositive program for αk(G):

αk(G) = max
Y ∈Sn(k+1),y∈Rn(k+1)

∑
r∈[k]

∑
i∈[n]

Y rr
ii

s. t.
k∑
r=1

Y rr
ii + 2

∑
1≤r 6=l≤k

Y rl
ii − 2

k∑
r=1

y(r−1)n+i + 1 = 0,

for all i ∈ [n]
Y rr
ij = 0, for all {ij} ∈ E, r ∈ [k]
Y rl
ii = 0, for all i ∈ [n], r, l ∈ [k+1], r 6= l

Y rr
ii = y(r−1)n+i, for all i ∈ [n], r ∈ [k+1][
1 yT

y Y

]
∈ CPn(k+1).

= max
Y ∈Sn(k+1)

∑
r∈[k]

∑
i∈[n]

Y rr
ii (5.18)

s. t.
∑

r∈[k+1]
diag Y rr = e

Y rr
ij = 0, for all {ij} ∈ E, r ∈ [k]
Y rl
ii = 0, for all i ∈ [n], r, l ∈ [k+1], r 6= l[

1 (diag Y )T
diag Y Y

]
∈ CPn(k+1).

Testing whether a given matrix is completely positive is NP-hard [50], so we do not
attempt to solve problem (5.18) directly. However, the complete positivity condition
in (5.18) can be relaxed to the SDP condition. This approach provides an SDP upper
bound on αk(G) different from the generalized ϑ- and ϑ′-numbers.

5.5 Matrix and vector lifting SDP relaxations

Next, we propose several SDP relaxations that differ from the generalized ϑ- and
ϑ′-numbers considered earlier. We present our relaxations in the order from the
strongest to the weakest one. We also show which constraints have to be added or
removed to make each pair of relaxations equivalent, meaning that from every feasible
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solution to one problem one can construct a feasible solution to the other with the
same objective value. The first bound is a relaxation of copositive problem (5.18).
Clearly, every completely positive matrix is doubly non-negative, that is, PSD and
non-negative. This fact leads to the following upper bound on αk(G):

Vector lifting SDP relaxation of problem (5.15)

θ1
k(G) = max

Y ∈Sn(k+1)

∑
r∈[k]

∑
i∈[n]

Y rr
ii (5.19)

s. t.
∑

r∈[k+1]
diag Y rr = e

Y rr
ij = 0, for all {ij} ∈ E, r ∈ [k]
Y rl
ii = 0, for all i ∈ [n], r, l ∈ [k+1], r 6= l

Y ≥ 0,
[

1 (diag Y )T
diag Y Y

]
� 0.

The name of the problem above is motivated by the fact that this problem can be
obtained using the classical vector lifting SDP relaxation of problem (5.15) (see e.g.,
[224] for this approach in graph partitioning). A vector lifting relaxation of (5.15) is
based on the same matrix (5.17) that we use for the copositive reformulation (5.18).
As a result, every feasible solution to IP formulation (5.15) provides a feasible solution
to problem (5.19). Hence θ1

k(G) is an upper bound on αk(G).
In relaxation (5.19), Y is of size n(k+1)×n(k+1), which is computationally demand-
ing. Therefore we consider a smaller vector lifting SDP relaxation, which is derived
from problem (5.12) using the same construction as in (5.17), where X is a feasible
solution to problem (5.12).

Vector lifting SDP relaxation of problem (5.12)

θ2
k(G) = max

Y ∈Snk

∑
r∈[k]

∑
i∈[n]

Y rr
ii (5.20)

s. t. Y rr
ij = 0, for all {ij} ∈ E, r ∈ [k] (5.21)
Y rl
ii = 0, for all i ∈ [n], r, l ∈ [k], r 6= l (5.22)

Y ≥ 0,
[

1 (diag Y )T
diag Y Y

]
� 0.

In problem (5.20) we do not use several types of constraints which seem reasonable
for the MkCS but are redundant. First, the constraint ∑r∈[k] diag Y rr ≤ e arises
naturally from the last constraint in problem (5.12) but is redundant.

Lemma 5.7. The constraint ∑r∈[k] diag Y rr ≤ e is redundant for problem (5.20).
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Proof. Let Y be feasible for problem (5.20). For any i ∈ [n] consider the princi-
pal submatrix Ŷ of Y of the size (k+1) × (k+1) that has the diagonal [1, yᵀ] :=
[1, Y 11

ii , ..., Y
kk
ii ]. Since Y rl

ii = 0 for r, l ∈ [k] such that r 6= l, the submatrix has the
form

Ŷ =
[
1 yᵀ

y diag y

]
,

where diag y is the diagonal matrix with y on the diagonal. Since Ŷ � 0, we have

eᵀdiag ye− eᵀyyᵀe =
k∑
r=1

yr − (
k∑
r=1

yr)2 =
k∑
r=1

Y rr
ii − (

k∑
r=1

Y rr
ii )2 ≥ 0,

which implies ∑r∈[k] Y
rr
ii ≤ 1.

Lemma 5.7 follows immediately using the invariance of problem (5.20) under the color
permutations. Since the problem is convex and invariant, it is enough to consider only
the solutions Y invariant under the color permutations. In Section 5.6 we reformulate
problem (5.20) using this type of solutions. The resulting reformulation (5.37) makes
the redundance of the constraint ∑r∈[k] diag Y rr ≤ e evident.
Next, the clique constraints ∑i∈C diag Y rr

ii ≤ 1, where C ⊆ [n] denotes a set of
indices of vertices in a clique, are redundant for problem (5.20) for any C. The
reason is the equivalence of problem (5.20) to the Lovász ϑ-problem of the Cartesian
product of G and a complete graph on k vertices, see Section 5.6.3 for more details.
Clique constrains are well known to be redundant for the Lovász ϑ-problem, which
is proven, for instance, in Chapter 9 of [135]. Notice that since the clique constraints
are redundant for (5.20), they are also redundant for (5.19).
Relaxation (5.20) is less computationally demanding than (5.19) since Y is of the size
nk×nk. However, (5.20) is in general weaker than the SDP relaxation (5.19), see,
for example, [28, 187]. Next, we show that this is the case for our problems and that
the relaxations become equivalent after adding several natural inequality constraints
to problem (5.20). For i, j ∈ [n] and l, r ∈ [k], we add

1−
∑
r∈[k]

Y rr
ii −

∑
r∈[k]

Y rr
jj +

∑
r∈[k]

∑
l∈[k]

Y rl
ij ≥ 0, for all i > j (5.23)

Y ll
ii −

∑
r∈[k]

Y rl
ij ≥ 0, for all i 6= j, l. (5.24)

These inequalities are based on the reformulation-linearization technique by Sherali
and Adams [209]. In particular, inequalities (5.23) are linearizations of the products
of pairs of constraints (5.14). Inequalities (5.24) represent multiplication of element-
wise non-negativity constraint on X with each individual constraint in (5.14). These
inequalities were also used by Rendl and Sotirov [187] in a similar way we use them
in this chapter.
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Theorem 5.8. Problem (5.20) with additional constraints (5.23), (5.24) is equivalent
to problem (5.19).

Proof. First, let Y be feasible for problem (5.19). Then Y (1:kn, 1:kn) is feasible
for problem (5.20) by construction of both problems. Now, let Z be feasible for
problem (5.20) such that it also satisfies (5.23), (5.24), and denote z = diag Z. For
ease of presentation we write constraints (5.23) and (5.24) as matrix inequalities
using the following transformation matrix:

Mtr =


1 −(m1)ᵀ
. . . . . .

1 −(mn)ᵀ

 , mi(j) =

1, j ∈ {i, n+ i, . . . , n(k−1) + i}
0, otherwise.

(5.25)

Then inequalities (5.23) can be written as follows:

Mtr

[
1 zᵀ

z Z

]
Mᵀ

tr ≥ 0. (5.26)

Inequalities (5.24) can be written as follows:

Mtr

[
zᵀ

Z

]
≥ 0. (5.27)

We claim that

Y =
[

Z [ z Z ]Mᵀ
tr

Mtr [ zᵀZ ] Mtr [ 1 zᵀ
z Z ]Mᵀ

tr

]
(5.28)

is feasible for problem (5.19). First, it follows from (5.26), (5.27) and the feasibility
of Z for (5.20) that Y ≥ 0. Now, define

ẑ = e−
∑
r∈[k]

diag Zrr = Mtr

[
1
z

]
. (5.29)

For each i ∈ [n], the ith diagonal entry of Mtr [ 1 zᵀ
z Z ]Mᵀ

tr equals

1−
∑
r∈[k]

Zrr
ii −

∑
r∈[k]

Zrr
ii +

∑
r∈[k]

∑
l∈[k]

diag Zrl
ii = 1−

∑
r∈[k]

Zrr
ii = ẑi,

where we use (5.22) for the first equality and (5.29) for the second one. Hence∑
r∈[k+1] diag Y rr = e. Next, we prove that for each r ∈ [k], the block of Mtr [ zᵀZ ]

that corresponds to Y (k+1)r has a zero diagonal. For r ∈ [k] and i ∈ [n],

Y
(k+1)r
ii = Y rr

ii −
∑
l∈[k]

Y rl
ii = 0.
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Finally,

[
1 (diag Y )T

diag Y Y

]
=


1 zᵀ ẑᵀ

z Z [ z Z ]Mᵀ
tr

ẑ Mtr [ zᵀZ ] Mtr [ 1 zᵀ
z Z ]Mᵀ

tr

=
[
I

Mtr

] [
1 zᵀ

z Z

] [
I Mᵀ

tr

]
� 0

since [ 1 zᵀ
z Z ] � 0.

Notice that the additional vector in the first row and column in both problems (5.19)
and (5.20) could be omitted to obtain smaller SDP relaxations, however, these re-
laxations are trivial with the optimal value at least n. One could use, for example,
Y = 1

k+1I and Z = 1
k
I as solutions to the first and the second relaxations, respec-

tively.
Problem (5.20) is still large, especially when k grows. Next, we consider the so-called
matrix lifting relaxation to reduce the size of the matrix variables in the relaxations
even more, see, for example [52] for more information. The idea behind this type
of relaxations is as follows. As before, let X be a solution to problem (5.12) and
consider

Y =
[
Ik
X

] [
Ik Xᵀ

]
=
[
Ik Xᵀ

X XXᵀ

]
.

Linearizing the block XXᵀ, we obtain the matrix lifting relaxation of problem (5.12):

Matrix lifting SDP relaxation of problem (5.12)

θ3
k(G) = max

Z∈Sn,X∈Rn×k
〈I, Z〉 (5.30)

s. t. Zij = 0 for {ij} ∈ E
Zii ≤ 1 for i ∈ [n]
Zii =

∑
r∈[k]

Xir for i ∈ [n] (5.31)

Z ≥ 0, X ≥ 0[
Ik Xᵀ

X Z

]
� 0.

The new relaxation is not stronger than the previous ones.

Theorem 5.9. Problem (5.30) is equivalent to (5.20) without constraint (5.22).

Proof. First, let Y be feasible for problem (5.20) without constraint (5.22). We
show that Z := ∑

r∈[k] Y
rr and X := [diag Y 11, . . . , diag Y rr] are feasible for prob-

lem (5.30). Constraints of problem (5.20) for Y and Lemma 5.7 imply that all but
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the last constraints of (5.30) hold for (Z,X). To prove that the last constraint holds
too, we use the Schur complement. First, for every r ∈ [k] and a principal submatrix[

1 (diag Y rr)ᵀ
diag Y rr Y rr

]
of
[

1 (diag Y )ᵀ
diag Y Y

]
we have that

Y rr − diag Y rr(diag Y rr)ᵀ � 0,

from where it follows

Z −XXᵀ =
∑
r∈[k]

Y rr −
∑
r∈[k]

diag Y rr(diag Y rr)ᵀ

=
∑
r∈[k]

(Y rr − (diag Y rr(diag Y rr)ᵀ) � 0.

Now, let (Z,X) be feasible for problem (5.30). Denote by X(:, r) the rth column of
X. We show that Y rr := 1

k
Z and Y rl := 1

k
XXᵀ for all r, l ∈ [k], r 6= l are feasible for

problem (5.20) without constraint (5.22). Constraints of problem (5.30) for (Z,X)
imply that all constraints of problem (5.20) hold for Y , except for the SDP constraint
and (5.22). Next, we prove that the SDP constraint of problem (5.20) holds for Y .
First we use the Schur complement and the last constraint of problem (5.30) to
obtain:

0 � Z −XXᵀ = kY rr −XXᵀ. (5.32)

Next, from constraint (5.31) it follows

diag Y rr = 1
k
diag Z = 1

k

∑
r∈[k]

X(:, r). (5.33)

Finally, consider any w ∈ Rnk and for r ∈ [k] denote wr = w(r−1)n+1:rn. Denote
y = diag Y , then

wᵀ(Y−yyᵀ)w =
∑
r,l∈[k]

(wr)ᵀY rlwl −
( k∑
r=1

(wr)ᵀdiag Y rr

)2

(5.32)
≥ 1

k

∑
r,l∈[k]

(wr)ᵀXXᵀwl −
( k∑
r=1

(wr)ᵀdiag Y rr

)2

(5.33)= 1
k

∑
r,l∈[k]

(wr)ᵀ
k∑

m=1
X(:,m)X(:,m)ᵀwl − 1

k2

( k∑
r=1

(wr)ᵀ
k∑

m=1
X(:,m)

)2

= 1
k

k∑
m=1

( k∑
r=1

(wr)ᵀX(:,m)
)2
− 1

k2

( k∑
m=1

k∑
r=1

(wr)ᵀX(:,m)
)2

= 1
k2

[
‖e‖2

k∑
m=1

( k∑
r=1

(wr)ᵀX(:,m)
)2
−
( k∑
m=1

1
k∑
r=1

(wr)ᵀX(:,m)
)2]
≥ 0,

where e is the vector of all ones of length k, and the last inequality follows from the
Cauchy-Schwarz inequality. Hence the SDP constraint in (5.20) holds for Y .
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Notice that constraints Yii ≤ 1 for i ∈ [n] are redundant when k = 1. A reasonable
question is how to strengthen problem (5.30). At the end of Section 5.6 we consider
several types of constraints that could be useful, and now we mention several types
of constraints that do not help. First, we could use the fact that for the optimal
solutions of problems (5.1) and (5.12), XᵀX = diag z for some z > 0. Thus
diag z − XᵀX � 0 and, by the Schur complement,

[
In X
Xᵀ diag z

]
� 0. However, the

latter constraint is redundant: one can always take z = Xᵀe, then diag z −XᵀX is
a diagonally dominant matrix, given (5.31) and constraints on Y . In the sequel we
show that constraints Xir + Xjr ≤ 1 for {ij} ∈ E, r ∈ [k] and k ≥ 1 are redundant
too.

Proposition 5.10. Constraints

Xir +Xjr ≤ 1 for {ij} ∈ E, r ∈ [k] (5.34)

are redundant for problem (5.30).

Proof. Let (X, Y ) be a feasible solution to problem (5.30).
First let k = 1, and therefore m = 1. From (5.31) we have that Yii = Xim, Yjj = Xjm.
Therefore from the last constraint of problem (5.30):

1 Xim Xjm

Xim Yii 0
Xjm 0 Yjj

 � 0 =⇒ YiiYjj−YiiX2
jm−YjjX2

im = YiiYjj(1−Xim−Xjm) ≥ 0.

The inequality above together with non-negativity of Y implies that Xim +Xjm ≤ 1.

Now let k ≥ 2. Denote the average over all column permutations of X by X̄. Let
Pij ∈ Sk+n be the matrix that corresponds to the permutation of the ith and the jth
entries in a vector in Rk+n. Since problem (5.30) is invariant under the permutations
of colors, for all i, j ∈ [k], the matrix Pij

[
Ik X

ᵀ

X Y

]
P ᵀ
ij is feasible for problem (5.30).

Since the problem is also convex, (X̄, Y ) is a feasible solution to it as well. Recall
that Sym(k) is the group of permutations on k elements. Then for every i, j ∈ [n],
r ∈ [k],

X̄ir + X̄jr = 1
k!

∑
π∈Sym(k)

(Xiπ(r) +Xjπ(r)) = 1
k!

k∑
r=1

(k− 1)!(Xir +Xjr) = Yii+Yjj
k
≤ 1.

Hence there is a feasible solution with the same objective value as for (X, Y ) but
with constraints (5.34) satisfied.

Finally, we could try the reformulation-linearization technique, similarly to con-
straints (5.23) and (5.24). In this case, for all i 6= j, l ∈ [k] by construction of
Y and X in problem (5.30), we obtain (1− Yii)(1− Yjj) ≥ 0 and X2

i,k(1− Yjj) ≥ 0.
However, we cannot linearize these constraints naturally for problem (5.30).
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5.6 Symmetry reduction on colors

Next, we exploit the invariance of the MkCS under the permutations of the colors
to reduce the sizes the vector and matrix lifting SDP relaxations. We begin with a
simple example of using the invariance of the MkCS. Consider a trivial SDP relaxation
based on the optimal solution X ∈ {0, 1}n×k to problem (5.12) and Y = XXᵀ.

θ4
k(G) = max

Y ∈Sn×n
〈I, Y 〉 (5.35)

s. t. Yij = 0 for {ij} ∈ E
Yii ≤ 1 for i ∈ [n]
Y � 0.

The optimal value of the problem above equals n using, for example, Y = I as a
solution. Problem (5.35) can be obtained from problem (5.20) if we omit the first row
and column of this problem and do the symmetry reduction on colors, as we describe
further in this section. Thus using the symmetry we confirm that the additional row
and column are crucial for our vector lifting SDP relaxations.
Now, we show how to reduce the size of the largest SDP constraints of problem (5.20)
and problem (5.30) to (n + 1) × (n + 1). Vector lifting relaxations are usually not
strictly feasible, which hampers numerical stability of the interior point method that
we use to solve SDPs. The symmetry-reduced problems are strictly feasible which
is an advantage for our solution method. We begin with a lemma related to strict
feasibility:

Lemma 5.11. Let n ≥ 1, k ≥ 1, and let e be the vector of all ones of the size n.
Then

M :=
 k 1

(n+1)e
ᵀ

1
(n+1)e

1
(n+1)I

 � 0. (5.36)

Proof. From M � 0, using the Schur complement, we have that M � 0 if and only
if k(n+ 1)I − eeᵀ � 0. For any x ∈ Rn \ {0}

xᵀ(k(n+ 1)I − eeᵀ)x = k(n+ 1)‖x‖2 − (xᵀe)2

= (k + (k − 1)n)‖x‖2 + (n‖x‖2 − (xᵀe)2)
≥ (k + (k − 1)n)‖x‖2

> 0.

The latter inequality holds since k ≥ 1.

Now, we reduce problem (5.20) with constraints (5.23) and (5.24) using the following
result, the proof of which can be found, for instance, in [80].



Symmetry reduction on colors 119

Theorem 5.12 (Lemma 2.8 in [80]). Let Y ∈ Rkn be a block matrix that consists of
k2 blocks of the size n×n. Let Y have a matrix A ∈ Sn as its diagonal blocks, and a
matrix B ∈ Sn as its non-diagonal blocks, i.e.

Y =


A B . . . B

B A . . . B
... ... . . . ...
B B . . . A


︸ ︷︷ ︸

k blocks

= I ⊗ A+ (J − I)⊗B.

Then Y � 0 if and only if A−B � 0 and A+ (k − 1)B � 0.

Theorem 5.13. Problem (5.19) and problem (5.20) with additional constraints
(5.23), (5.24) are equivalent to the following problem:

θ5
k(G) = max

Z,X∈Sn×n
〈I, Z〉 (5.37)

s. t. Zij = 0, for {ij} ∈ E
Xii = 0, for i ∈ [n] (5.38)
Z ≥ 0, X ≥ 0
Z −X � 0 (5.39)[

1 (diagZ)ᵀ
diagZ Z + (k − 1)X

]
� 0. (5.40)

1−Zii−Zjj+Zij+(k − 1)Xij ≥ 0, for i, j ∈ [n], i > j (5.41)
Zii−Zij−(k − 1)Xij ≥ 0, for i, j ∈ [n], i 6= j, (5.42)

and the latter problem is strictly feasible.

Proof. First, (5.19) and (5.20) with additional constraints (5.23), (5.24) are equiv-
alent by Theorem 5.8. We show that (5.20) with (5.23), (5.24) is equivalent to (5.37).
Let Y be a feasible solution to problem (5.20) with additional constraints (5.23), (5.24).
If we permute the color labels, we permute the “columns” and “rows” of blocks in Y .
For instance, permuting color r and color l results in permuting blocks Y pl and Y pr,
for all p ∈ [k], and then permuting blocks Y lp and Y rp, for all p ∈ [k].
By construction problem (5.20) with constraints (5.23), (5.24) is convex and invariant
under the color permutations. Therefore Ȳ , the average over all color permutations
of Y , is feasible for problem (5.20). By construction, Ȳ has the form

Ȳ = 1
k


Z X . . . X

X Z . . . X
... ... . . . ...
X X . . . Z


︸ ︷︷ ︸

k blocks

= 1
k
I ⊗ Z + 1

k
(J−I)⊗X. (5.43)
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Problem (5.20) with constraints (5.23), (5.24) can be restricted without loss of gen-
erality to Y of the form above, which results in problem (5.37). Indeed, the objective
and all linear constraints of problem (5.37) are obtained by rewriting the objective
and the corresponding linear constraints of problem (5.20) with (5.23), (5.24) for Y
defined in (5.43). Now, consider the SDP constraint[

1 (diag Y )T
diag Y Y

]
� 0,

which, by the Schur complement, is equivalent to Y −diag Y (diag Y )ᵀ � 0. We have

Y − diag Y (diag Y )ᵀ = 1
k
I ⊗ (Z − 1

k
diag Z(diag Z)ᵀ)

+ 1
k
(J − I)⊗ (X − 1

k
diag Z( diag Z)ᵀ).

Hence by Theorem 5.12, the SDP constraint holds if and only if

Z −X � 0, Z + (k − 1)X − diag Z(diag Z)ᵀ � 0. (5.44)

To show strict feasibility of (5.37), we construct a feasible solution (Z,X) to this
problem that strictly satisfies all inequalities and SDP constraints. Let AḠ be the
adjacency matrix of the complement of G and define M as in (5.36). Then M � 0
by Lemma 5.11. Since also 1

k(n+1)I � 0, there exists 0 < ε < 1
k(n+1)(k+1) such that

1
k
M + ε

[
0 0ᵀ

0 AḠ + (k − 1)(J − I)

]
� 0 and 1

k(n+1)I + εAḠ − ε(J − I) � 0. (5.45)

Define Z = 1
k(n+1)I + εAḠ, X = ε(J − I). By the choice of ε and (5.45), (Z,X)

strictly satisfies all constraints of problem (5.37), except for possibly (5.41). To see
that constraints (5.41) are strictly satisfied too, notice that these constraints are valid
for all i, j ∈ [n], i > j. Hence they appear in the problem when n ≥ 2. Therefore, for
all i, j ∈ [n], i > j and the chosen (Z,X), we have

1−Zii−Zjj+Zij+(k − 1)Xij ≥ 1− 2
k(n+1) = kn+k−2

k(n+1) ≥
1

k(n+1) .

Next, we reduce the matrix lifting relaxation (5.30).
Theorem 5.14. Problem (5.30) is equivalent to the following problem:

θ6
k(G) = max

Z∈Sn×n
〈I, Z〉 (5.46)

s. t. Zij = 0 for {ij} ∈ E
Zii ≤ 1 for i ∈ [n]
Z ≥ 0[

k diagZᵀ

diagZ Z

]
� 0,

and the latter problem is strictly feasible.
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Proof. Let (Z,X) be a feasible solution to problem (5.30). Since problem (5.30)
is convex and invariant under the permutations of the colors, (X̄, Y ), where X̄ is
the average over all column permutations of X, is feasible for problem (5.30). By
construction, all columns of X̄ are equal to each other. Therefore it is enough to
consider the solutions (Z,X), such that all the columns of X are equal to each other.
Denote a column of X by x, then the problem reduces to

max
Z∈Sn×n

〈I, Z〉

s. t. Zij = 0 for {ij} ∈ E
Zii ≤ 1 for i ∈ [n]
Zii = kxi for i ∈ [n]

Z ≥ 0,
[
Ik ex

ᵀ

xe
ᵀ

Z

]
� 0,

where e ∈ Rk is the vector of all ones. Use the Schur complement and the third
constraint to rewrite the last constraint:

Z � 0, Z − xeᵀexᵀ = Z−kxxᵀ = Z− 1
k
diagZ(diagZ)ᵀ � 0.

To show strict feasibility, consider M defined in (5.36). M � 0 by Lemma 5.11. Let
AḠ be the adjacency matrix of the complement of G. Then there exists ε > 0 such
that M + ε

[
0 0ᵀ

0 AḠ

]
� 0. Therefore matrix Z = 1

(n+1)I + εAḠ is a strictly feasible
solution to problem (5.46) by construction.

Theorem 5.15. Problem (5.46) is equivalent to problem (5.37) without constraints
(5.38), (5.41), (5.42).

Proof. First, let (Z,X) be a feasible solution to (5.37) without constraints (5.38),
(5.41), (5.42). We claim that Z is feasible for problem (5.46), and the objective
values of the problems evaluated in the corresponding solutions are equal. First,
Zii ≤ 1 follows from the SDP constraint of problem (5.37). Other linear constraints
in (5.46) are feasible as they form a subset of the linear constraints of (5.37). Now,
consider the SDP constraint in (5.46). From (5.39) and (5.40),

Z − 1
k
diag Z(diag Z)ᵀ

(5.40)
� Z − 1

k
Z − k−1

k
X = k−1

k

(
Z −X

) (5.39)
� 0.

Since diag Z(diag Z)ᵀ � 0, the above implies that Z � 0. Therefore the SDP
constraint of problem (5.46) follows by the Schur complement.

Now, let Z be a feasible solution to (5.46). We claim that (Z, 1
k
diag Z(diag Z)ᵀ) is a

feasible solution to problem (5.37) without constraints (5.38), (5.41), (5.42), and the
objective values of the problems evaluated in the corresponding solutions are equal.
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The linear constraints of problem (5.37), besides (5.38), (5.41), (5.42), are clearly
satisfied by (Z, 1

k
diag Z(diag Z)ᵀ). The SDP constraint of problem (5.46) implies

Z � 0 and

Z −X = Z − 1
k
diag Z(diag Z)ᵀ � 0,

by the Schur complement. Therefore SDP constraint (5.39) is satisfied. Finally,

Z + (k − 1)X = Z + (k−1)
k

diag Z(diag Z)ᵀ � 0

and

Z + (k − 1)X − diag Z(diag Z)ᵀ = Z + (k − 1)X − kX = Z −X � 0,

which implies SDP constraint (5.40).

If we omit constraints (5.41), (5.42), Theorem 5.15 is an analogue of Theorem 5.9 for
the corresponding symmetry-reduced problems. Using symmetry, we reduce the vec-
tor and matrix lifting relaxations whose size depends on k to smaller problems whose
size does not depend on k. At the end, the symmetry-reduced problems have almost
the same matrix size as the smaller ϑ-number (5.9) and ϑ′-number (5.11) problems.
Namely, problems (5.9) and (5.11) have two SDP constraints of size n×n, the first re-
duced problem (5.37) has two SDP constraints of sizes n×n and (n+1)×(n+1), and
the weaker reduced problem (5.46) has one SDP constraint of size (n + 1)×(n + 1).
Overall, problems (5.9), (5.11) and (5.46) may still be substantially smaller than
problem (5.37) since the latter has a large number of linear constraints (5.41), (5.42).
Notice that if we do not use these constraints, we obtain the symmetry-reduced
analog of problem (5.20).
The final relaxation we consider is the symmetry-reduced version of problem (5.19).

Corollary 5.16. Problem (5.19) and problem (5.37) are equivalent to the following
problem:

θ7
k(G) = max

Z,X,A,B∈Sn×n
〈I, Z〉 (5.47)

s. t. Zij = 0 for {ij} ∈ E
Xii = 0, for i ∈ [n]
Bii = 0, for i ∈ [n]
Zii + Aii = 1 for i ∈ [n]
Z ≥ 0, X ≥ 0, A ≥ 0, B ≥ 0
Z −X � 0

k
√
k(diagZ)ᵀ (diagA)ᵀ√

k diagZ Z + (k − 1)X B

diagA B A

 � 0.
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Proof. First, problem (5.19) and problem (5.37) are equivalent by Theorem 5.8 and
Theorem 5.13. Now, consider a feasible solution Y to problem (5.19). The problem is
invariant under permutations of the k colors, which correspond to the first k2 blocks
of Y . Further we use the same approach as in the proof of Theorem 5.13, so the
details are omitted. By invariance and convexity of the problem, it is enough to
consider the solutions of the form

Y = 1
k


1 (e⊗ diagZ)ᵀ (diagA)ᵀ

e⊗ diagZ I ⊗ Z + (J − I)⊗X e⊗B
diagA (e⊗B)ᵀ A

 .
We obtain problem (5.47) using the Schur complement and Theorem 5.12.

We close this section with Figure 5.1 that shows the relations among all SDP re-
laxations in this chapter. Equalities in Figure 5.1 represent equivalence between
problems.

Figure 5.1 – Relations among SDP upper bounds on the MkCS. The strongest
relaxation with the smallest size of SDP constraints is highlighted in bold.

ϑ′k(G) construct.
≤ ϑk(G)

θ1
k(G) Thm.5.8

≤ θ2
k(G) Thm.5.9

≤ θ3
k(G) construct.

≤ θ4
k(G)

≤ ?Conj.5.17

Thm.5.13= Thm.5.14=

Cor.5.16=

αk(G) construct.
≤ θ5k(G) Thm.5.15

≤ θ6
k(G)

θ7
k(G)

The figure shows that the relationship between θ6
k(G) (5.46) and ϑ′k(G) (5.11) is to be

established. However, our numerical experiments in Section 5.7 suggest the following
result.

Conjecture 5.17. The upper bound θ6
k(G) (5.46) is at least as good as the upper

bound ϑ′k(G) (5.11).

5.6.1 Boolean quadric polytope inequalities

Our strongest SDP having the smallest size of SDP constraints is problem (5.37). To
further strengthen this problem, one can add inequalities from the boolean quadric
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polytope (BQP) (see, e.g, Padberg [167]). Namely, let X be a feasible solution to
binary problem (5.12) and consider Y = vec X(vec X)ᵀ. Then for all i, j, p ∈ [nk]
the following BQP inequalities are valid for Y :

0 ≤ Yi,j ≤ Yi,i (5.48)
Yi,i + Yj,j ≤ 1 + Yi,j (5.49)
Yi,p + Yj,p ≤ Yp,p + Yi,j (5.50)
Yi,i + Yj,j + Yp,p ≤ Yi,j + Yi,p + Yj,p + 1. (5.51)

By construction, the BQP inequalities are valid for problem (5.12), and adding them
to problem (5.20) provides a possibly stronger upper bound than problem (5.20)
alone.
Doing the symmetry reduction on colors, we consider only those feasible solutions Y
to problem (5.20) that can be written as in (5.43). Therefore for all i, j, p ∈ [n], i 6=
j 6= p, the following valid inequalities can be added to (5.37):

0 ≤ Zi,j ≤ Zi,i, 0 ≤ Xi,j ≤ Zi,i (5.52)

Zi,i + Zj,j ≤ k + Zi,j, Zi,i + Zj,j ≤ k +Xi,j (5.53)

Xi,p +Xj,p ≤ Zp,p +Xi,j, Zi,p + Zj,p ≤ Zp,p + Zi,j (5.54)
Xi,p +Xj,p ≤ Zp,p + Zi,j, Xi,p + Zj,p ≤ Zp,p +Xi,j

Zi,p +Xj,p ≤ Zp,p +Xi,j

Zi,i + Zj,j + Zp,p ≤ Xi,j +Xi,p +Xj,p + k (5.55)
Zi,i + Zj,j + Zp,p ≤ Zi,j + Zi,p + Zj,p + k

Zi,i + Zj,j + Zp,p ≤ Zi,j +Xi,p +Xj,p + k

Zi,i + Zj,j + Zp,p ≤ Xi,j +Xi,p + Zj,p + k,

Zi,i + Zj,j + Zp,p ≤ Xi,j + Zi,p +Xj,p + k.

Inequalities (5.52) correspond to inequalities (5.48), inequalities (5.53) correspond to
(5.49), and so on.
Some of the BQP constraints (5.52)– (5.55) are redundant for problem (5.37). First,
inequalities (5.52) follow from inequalities (5.42). Also, inequalities (5.53) are re-
dundant since the 2-clique constraints are redundant for problems (5.19),(5.20). As
a result, in numerical experiments we use inequalities of the type (5.54) and (5.55).
Notice that the first inequality in each of the two sets (5.54) and (5.55) is only valid
for k ≥ 3.
Next, one could also look at the triangle inequalities for Y in (5.17): Yij+Yjp−Yip ≤ 1
for any i, j, p ∈ [n]. These inequalities follow from (5.50), the fact that Yii ≤ 1,
and the non-negativity of Y . Therefore we do not consider them in our numerical
experiments.
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5.6.2 Symmetry reductions for other partition problems

Notice that a k-colorable subgraph of a graph corresponds to a partition of this
graph’s vertices into k+1 subsets, i.e., k stable sets and the rest of the vertices.
Therefore we could consider the k-colorable subgraph problem as a partition prob-
lem. Some other partition problems are also invariant under the permutations of the
subsets, e.g., the k-equipartition problem (see, e.g., [102, 186, 224] for the problem
formulation) and the max-k-cut problem (see, e.g., [186, 212] for the problem formu-
lation). Therefore one could apply the symmetry reduction used in this section to
those problems.
Interestingly, in contrast to MkCS, the vector and matrix lifting relaxations are equiv-
alent for the max-k-cut and k-equipartition problems. de Klerk et al. [36] have proven
the equivalence for the max-k-cut, and Sotirov [211] has proven the equivalence for
the k-equipartition. In their proof, de Klerk et al. [36] exploit the mentioned invari-
ance of the max-k-cut problem under permutations of the subset. We show that using
the symmetry reduction with respect to this invariance is a short way to illustrate
the equivalence.
We denote relaxations of the max-k-cut problem on graph G by ck(G) and relaxations
of the k-equipartition by pk(G). The vector lifting relaxations of both problems are
particular cases of the relaxation of the general graph partition problem byWolkowicz
and Zhao [224].
Let L be the Laplacian of G. The symmetry-reduced versions of vector lifting relax-
ations are

cvk(G) = max
Z,X∈Sn

1
2〈L,Z〉

s. t. Xii = 0, for i ∈ [n]
Zii = 1, for i ∈ [n]
Z ≥ 0, X ≥ 0
Z −X � 0
Z + (k − 1)X − J � 0.

pvk(G) = min
Z,X∈Sn

1
2〈L,Z〉

s. t. Xii = 0, for i ∈ [n]
Zii = 1, for i ∈ [n]
Z ≥ 0, X ≥ 0
Z −X � 0
Z + (k − 1)X − J � 0
Ze = n

k
e.

Next, we look at the matrix lifting relaxations. For the k-equipartition, reducing the
classical matrix lifting SDP relaxation results in well-known relaxation by Karisch
and Rendl [102], which is equivalent to relaxation by Sotirov [212]. Similarly, for
the max-k-cut, reducing the classical matrix lifting SDP relaxation results in the
relaxation by van Dam and Sotirov [215], which is equivalent to the relaxation by
Frieze and Jerrum [67].
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cmk (G) = max
Z∈Sn

1
2〈L,Z〉

s. t. Zii = 1, for i ∈ [n]
Z ≥ 0,
Z − 1

k
J � 0.

pmk (G) = min
Z∈Sn

1
2〈L,Z〉

s. t. Zii = 1, for i ∈ [n]
Z ≥ 0
Z − 1

k
J � 0

Ze = n
k
e.

To show that the vector and matrix lifting relaxations are equivalent, observe that
for both the k-equipartition and max-k-cut one can construct feasible solutions to
the matrix lifting relaxation from the vector lifting relaxation with the same ob-
jective value, and the other way round. First, from a feasible solution Z to each
of the symmetry-reduced matrix-lifting relaxations we obtain a feasible solution
(Z, 1

k−1(J−Z)) to the corresponding symmetry-reduced vector lifting relaxation. For
the opposite direction, a feasible solution (Z,X) to each of the symmetry-reduced
vector lifting relaxations provides a feasible solution Z to the corresponding ma-
trix lifting relaxation, as in the case of MkCS. Hence the vector and matrix lifting
relaxations are equivalent.

5.6.3 The MkCS as the maximum stable set problem

In this section we show that the MkCS problem on a graph G can also be consid-
ered as the stable set problem on the Cartesian product of the complete graph on
k vertices and G. Then, we show how is the Schrijver’s ϑ′-number on the Cartesian
product of mentioned two graphs related to the vector lifting relaxation (5.20).

We denote by Kk = (Vk, Ek), where Vk = [k] the complete graph on k vertices. The
Cartesian product Kk2G of graphs Kk and G = (V,E) is a graph with the vertex
set Vk × V and the edge set E2 where two vertices (u, i) and (v, j) are adjacent if
u = v and (i, j) ∈ E or i = j and (u, v) ∈ Ek. The following result shows that the
MkCS problem on G corresponds to the stable set problem on Kk2G.

Theorem 5.18. Let G = (V,E), and let Kk be the complete graph on k vertices.
Then αk(G) = α(Kk2G).

Proof. First, if S1, . . . , Sk are disjoint stable sets in G, then 1 × S1, . . . , k × Sk is a
stable set in Kk2G. On the other hand, let S be a stable set in Kk2G of the largest
cardinality. Then S can be partitioned into S1, . . . , Sk such that S1 = 1×Ŝ1, . . . , Sk =
k × Ŝk, Ŝ1 ⊆ V, . . . , Ŝk ⊆ V . Moreover, Ŝ1, . . . , Ŝk are disjoint since u ∈ Ŝl ∩ Ŝp for
some l, p ∈ [k] with l 6= p implies that there is an edge between (l, u) and (p, u) that
is also in the stable set S. Hence Ŝ1, . . . , Ŝk are disjoint stable sets in G.
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Let us now compare the bounds for the two problems. The Schrijver’s ϑ′-number on
Kk2G is as follows

ϑ′(Kk2G) = max
Y ∈Snk

〈J, Y 〉 (5.56)

s. t. Y rr
ij = 0, for all {ij} ∈ E, r ∈ [k]
Y rl
ii = 0, for all i ∈ [n], r, l ∈ [k], r 6= l

〈I, Y 〉 = 1,
Y � 0
Y ≥ 0,

where Y is of the size nk × nk. The above SDP relaxation follows directly from
(5.11), (5.10), and the definition of Kk2G. We show below the following interesting
result:

ϑ′(Kk2G) = θ2
k(G) ≥ αk(G),

where θ2
k(G) is the optimal value of the vector lifting relaxation (5.20). To see this,

first, notice that any feasible solution to the vector lifting relaxation (5.20) provides
a feasible solution to problem (5.56). In particular let Y be feasible for (5.20), then
it readily follows that Ŷ = 1

〈I,Y 〉Y is feasible for (5.56), see also [74]. Moreover, the
SDP constraint in the vector lifting relaxation (5.20) implies

〈J, Ŷ 〉 = 1
〈I,Y 〉〈J, Y 〉 ≥

1
〈I,Y 〉〈J, diag Y diag Y ᵀ〉 = 〈I, Y 〉.

For the opposite direction, we refer to Galli and Letchford [69] that showed if Ŷ is
feasible for (5.56), then there is a feasible solution Y for (5.20) such that 〈I, Y 〉 ≥
〈J, Ŷ 〉, where

Yij = Ŷij

∑kn

m=1 Ŷim
∑kn

m=1 Ŷjm

〈J,Ŷ 〉ŶiiŶjj
for i 6= j, and Yii =

(∑kn

j=1 Ŷij

)2

〈J,Ŷ 〉Ŷii
, for i ∈ [kn].

Note that the authors of [69] and [74] consider the SDP relaxations ϑ-number that
do not include the non-negativity constraints on the matrix variables, in contrast to
our relaxations (5.20) and (5.56).

5.7 Numerical results

In this section we compare the performance of all SDP bounds considered in this
chapter with the existing results on MkCS. We are aware of two papers with numeri-
cal results on MkCS for general graphs and k: Campêlo and Corrêa [30], Januschowski
and Pfetsch [93]. In the former paper the authors present an IP formulation of the
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MkCS by representatives and implement a Lagrangian decomposition of that formu-
lation. As a result, they obtain upper and lower bounds on the size of the maximum
k-colorable subgraph. In the latter paper the authors propose a branch-and-cut
method that accounts for both the symmetry with respect to the color permutations
and the inner graph symmetry. They present the results only for the cases where
they were able to solve the problem to optimality, and we can use only these graphs
for comparison. We test our relaxations on the graphs from these papers where the
number of vertices is not larger than 2001. This size is the largest one we can han-
dle using up to 15 GB of RAM without exploiting the structure of the graphs. All
computations were done in MATLAB R2018b with Yalmip [128] on a computer with
two processors Intel® Xeon® Gold 6126 CPU @ 2.60 GHz and 512 GiB of RAM. SDP
programs were solved with MOSEK Version 8.0.0.80.
Tables 5.1, 5.2 show our numerical results. In Table 5.1 we present the results for
the graphs from [30]. These graphs are complements of the graphs that were used as
benchmarks in the Second DIMACS Implementation Challenge for the max-clique
problem [98]. In Table 5.2 we present the results for the graphs from [93]. Graphs
marked by 02 were used as benchmarks in the COLOR02 symposium [99]. Other
graphs are benchmarks from the Second DIMACS Challenge [98] or their comple-
ments. All graphs in the tables that end with “-c” are complements of the original
graphs.
Now, we briefly describe the graphs. We begin with DIMACS graphs. “genA_pB-C”
are artificially generated graphs with A vertices, edge density B and large, known
embedded clique of the size C. “kellerA” with n vertices are graphs used to establish
the results on Keller’s conjecture in Rn [34, 113]. The vertices of these graphs are
n-tuples of 0, 1, 2, 3. Two vertices are adjacent iff there is a position at which the
difference of the corresponding components is 2 modulo 4 and if there is a further
position at which the corresponding components are different. “sanA_pB_C” and
“sanrA_pB_C” are randomly generated graph instances that have A vertices and
edge density B. “c-fatA-B” are graphs with A vertices. “Ca.b” are random graphs
on a vertices with edge probability b. “hammingA-B” are Hamming graphs on A-
bit words with an edge iff the two words are at least hamming distance B apart.
“JohnsonA-B-C” are Johnson graphs generated by binary vectors of length A and
weight B, with two vertices adjacent iff the Hamming distance between them is at
least C. The last two graph types are vertex-transitive.
Next, consider the COLOR02 graphs. “Myciel” are graphs based on the Mycielski
transformation. They are triangle free, but the coloring number increases in prob-

1We do not consider the graph “brock200.2” from [30] since it is not clear whether this graph or
its complement was used in [30]. The density of the graph is 50%, so the bounds for the graph and
the complement could be similar.
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lem size so that the graphs can have arbitrary large gaps between ω(G) and χ(G).
The “FullIns” and “Insertions” graphs are a generalization of the Mycielski graphs.
“DSJc.n.p” are standard random graphs where an edge between two vertices appears
with probability p “QueenA-A” graph is a graph with vertices that correspond to the
squares of the A×A chess board and are connected by an edge if the corresponding
squares are in the same row, column, or diagonals (according to the queen move rule
at the chess game).
In our computations, we use the symmetry-reduced versions from Section 5.6 since
they are equivalent to the versions from Section 5.5, but smaller and strictly feasible.
We do not consider problem (5.47) since it is equivalent to problem (5.37) but has
larger SDP constraints. To implement problem (5.37) with BQP inequalities (5.54)
and (5.55), we use the cutting plane method. We add at most 2n BQP inequalities
of each type at every iteration of the method and do at most four iterations.
We mark the graphs for which we obtain the optimal values in italic blue. We mark
the best bounds for the given graph and k by boldface. All bounds are rounded to
the nearest third digit. The reported times are the solver running times.
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Table 5.1 – Results for graphs with up to 200 vertices considered by Campêlo
and Corrêa [30].

Graph G gen200_p0.9_55-c keller4-c san200_0.7_2-c san200_0.9_2-c
n 200 171 200 200
|E| 1990 5100 5970 1990
density, % 10 35 30 10
Vertex-transitive? no no no no
k 2 3 2 3 2 3 2 3
Upper bound [30] value 109.00 161.60 27.90 41.90 36.00 54.000 117.00 184.00

time, sec. 46 71 27 30 32 28 1800 46
ϑk(G) (5.9) value 103.230 150.52 28.02 42.04 35.99 53.98 109.05 157.29

time, sec. 278 306 62 75 216 251 291 318
ϑ′k(G) (5.11) value 102.79 149.70 26.93 40.40 35.68 53.34 108.68 156.59

time, sec. 497 472 121 138 373 404 558 488
θ6
k(G) (5.46) value 100.84 146.22 26.93 40.40 35.63 53.24 106.61 152.84

time, sec. 330 309 64 74 197 189 426 307
θ5
k(G) (5.37) w.o. value 100.52 146.01 26.93 40.40 35.61 53.24 106.24 152.26

(5.41) and (5.42) time, sec. 2427 3435 983 1087 2315 2699 3437 3878

θ5
k(G) (5.37)

value 100.36 145.61 26.93 40.40 35.60 53.240 106.03 151.44

time, sec. 3330 4123 1099 1298 3587 3650 3271 4055
θ5
k(G) (5.37) with value 100.36 145.35 26.93 40.40 35.60 53.22 106.03 151.16

(5.54) and (5.55) time, sec. 14187 10893 1217 1190 12066 5508 13590 11889

Lower bound [30] value 69 99 20 30 31 43 75 98

Graph G c-fat200-5-c c-fat200-2-c C125.9-c gen200_p0.9_44-c
n 200 200 125 200
|E| 11427 16665 787 1990
Density, % 57 84 10 10
Vertex-transitive? n/a n/a no no
k 2 3 2 3 2 3 2 3
Upper bound [30] value 116.00 172.00 46.00 68.00 79.40 115.60 88.00 132.00

time, sec. <1 <1 <1 <1 70 125 378 364
ϑk(G) (5.9) value 120.69 181.04 46.33 68.33 75.61 112.86 88.00 132.00

time, sec. 36 40 7 7 29 32 330 330
ϑ′k(G) (5.11) value 120.69 181.04 46.33 68.33 75.09 112.18 88.00 132.00

time, sec. 61 52 9 8 51 54 507 460
θ6
k(G) (5.46) value 120.69 181.03 46.00 68.00 74.63 107.26 88.00 131.94

time, sec. 35 33 5 5 29 25 258 258
θ5
k(G) (5.37) w.o. value 120.69 181.01 46.00 68.00 74.41 106.96 88.00 131.90

(5.41) and (5.42) time, sec. 902 1018 940 726 228 322 2176 3013

θ5
k(G) (5.37)

value 120.69 175.99 46.00 68.00 74.12 105.90 88.00 131.84

time, sec. 1199 1148 879 616 295 342 2976 3528
θ5
k(G) (5.37) with value 119.42 175.23 46.00 68.00 74.10 105.31 87.99 131.66

(5.54) and (5.55) time, sec. 7649 6955 3627 639 1130 1806 13570 16242

Lower bound [30] value 116 172 46 68 61 81 64 93
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Table 5.2 – Results for graphs with up to 200 vertices considered by
Januschowski and Pfetsch [93].

Graph G 021-FullIns_4 021-Insertions_4 024-FullIns_3 025-FullIns_3 c-fat200-1-c c-fat200-2-c
n 93 67 114 154 200 200
|E| 593 232 541 792 18366 16665
Density, % 14 10 8 7 92 84
Vertex-transitive? no no no no n/a n/a
k 3 3 3 3 6 7 7 8
αk(G) [93] 87 63 106 144 72 84 156 178
ϑk(G) (5.9) value 93.00 67.00 114.00 154.00 72.00 84.00 156.33 178.33

time, sec. 6 2 18 85 2 2 7 6
ϑ′k(G) (5.11) value 93.00 67.00 114.00 154.00 72.00 84.00 156.33 178.33

time, sec. 8 2 22 100 2 3 10 10
θ6
k(G) (5.46) value 92.59 67.00 107.400 145.33 72.00 84.00 156.00 178.00

time, sec. 11 1 20 89 1 1 5 4
θ5
k(G) (5.37) w.o. value 92.57 67.00 107.31 145.25 72.00 84.00 156.00 178.00

(5.41) and (5.42) time, sec. 107 14 230 1047 577 739 615 537

θ5
k(G) (5.37)

value 92.43 67.00 107.30 145.25 72.00 84.00 156.00 178.00

time, sec. 103 10 196 713 776 778 620 644
θ5
k(G) (5.37) with value 91.33 67.00 107.25 145.23 72.00 84.00 156.00 178.00

(5.54) and (5.55) time, sec. 554 34 901 3551 806 804 638 673

Graph G hamming6-4-c Johnson8-4-4-c 02DSJC125.9 c-fat200-1 gen200_p0.9_44
n 64 70 125 200 200
|E| 1312 560 6961 1534 17910
Density, % 65 23 90 8 90
Vertex-transitive? yes yes no no no
k 4 5 4 4 5 6 10 4
αk(G) [93] 16 20 52 16 20 23 180 20
ϑk(G) (5.9) value 21.33 26.67 56.00 16.00 20.00 23.96 184.67 20.00

time, sec. <1 <1 1 <1 <1 <1 300 3
ϑ′k(G) (5.11) value 16.00 20.00 56.00 16.00 20.00 23.95 184.67 20.00

time, sec. <1 <1 2 <1 <1 1 742 3
θ6
k(G) (5.46) value 16.00 20.00 56.00 16.00 20.00 23.73 184.67 20.00

time, sec. <1 <1 <1 <1 <1 <1 300 2
θ5
k(G) (5.37) w.o. value 16.00 20.00 56.00 16.00 20.00 23.73 184.67 20.00

(5.41) and (5.42) time, sec. 3 3 9 103 92 145 3612 955

θ5
k(G) (5.37)

value 16.00 20.00 56.00 16.00 20.00 23.73 184.65 20.00

time, sec. 3 3 9 104 106 141 5184 847
θ5
k(G) (5.37) with value 16.00 20.00 56.00 16.00 20.00 23.73 184.65 20.00

(5.54) and (5.55) time, sec. 4 4 10 115 118 147 5485 1002
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Graph G gen200_p0.9_55 02myciel5 02myciel6 02queen6_6 san200_0.9_1 san200_0.9_2 sanr200_0.9
n 200 47 95 36 200 200 200
|E| 17910 236 755 580 17910 17910 17863
Density, % 90 22 17 92 90 90 90
Vertex-transitive? no no no no no no no
k 4 4 5 3 6 4 4 4
αk(G) [93] 17 44 46 83 32 16 16 16
ϑk(G) (5.9) value 18.22 47.00 47.00 95.00 35.98 16.10 17.23 17.92

time, sec. 5 <1 <1 5 <1 4 4 4
ϑ′k(G) (5.11) value 18.20 47.00 47.00 95.00 35.98 16.08 17.21 17.91

time, sec. 6 <1 <1 6 <1 4 5 4
θ6
k(G) (5.46) value 18.15 47.00 47.00 95.00 35.84 16.08 17.21 17.91

time, sec. 4 <1 <1 4 <1 3 3 2
θ5
k(G) (5.37) w.o. value 18.15 47.00 47.00 95.00 35.84 16.08 17.21 17.91

(5.41) and (5.42) time, sec. 1238 1 2 43 <1 1103 963 871

θ5
k(G) (5.37)

value 18.15 47.00 47.00 95.00 35.81 16.08 17.21 17.91

time, sec. 1365 1 2 37 <1 1282 1136 888
θ5
k(G) (5.37) with value 18.15 47.00 47.00 93.32 35.81 16.07 17.20 17.91

(5.54) and (5.55) time, sec. 1386 4 7 366 3 2897 2036 918

Table 5.1 shows that for all compared graphs, except “c-fat200-5-c”, SDP bounds
are are at least as good as the upper bounds from [30]. In particular, for six out of
eight graphs the best SDP bound is strictly better than the upper bound from [30],
and for one graph all bounds are tight. Table 5.2 shows that we can find the optimal
value for six out of eighteen graphs from [93].
The best bounds, as expected, are provided by the symmetry-reduced vector lifting
relaxation θ5

k(G) (5.37) with BQP constraints (5.54) and (5.55). However, in many
cases the potentially stronger vector lifting relaxations (all modifications of θ5

k(G))
provide the same bound as cheaper SDP relaxations, especially the matrix lifting
relaxation θ6

k(G) (5.46). Also, the solution times for the bounds based on θ5
k(G) are

substantially larger than the times for other relaxations. This is especially remarkable
for θ5

k(G) with BQP constraints since in this case problem (5.37) has to be solved
several times during the cutting places algorithm.
For all graphs the bound θ6

k(G), which is the weakest among our relaxations, is at
least as good as the bound ϑ′k(G), and therefore ϑk(G). The computational time of
all three bounds is similar, so θ6

k(G) is the most preferable of them in terms of both
bound quality and solution time.

5.8 Conclusion and questions for future research

In this work we analyze the existing SDP upper bounds and propose several new SDP
upper bounds for the maximum k-colorable subgraph problem. The initial size of
our new SDP relaxations depends on the number of colors k. We show how to reduce
the sizes of SDP relaxations using symmetry with respect to the color permutations.
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The reduction results in several SDP relaxations with at most two SDP constraints
of order at most (n+1) for any k and any graph type.
We compute all SDP bounds for graphs considered in [30, 93] with up to 200 vertices.
We compare the resulting numbers to the optimal solutions obtained in [93] and to
the upper and lower bounds from [30]. We solve the problem for some graphs to
optimality and obtain stronger bounds than in [30] for all but one tested graphs.
Also, the numerical experiments suggest that the weakest of the new SDP bounds is
at least as good as the existing one for all graphs.
The main drawback of all SDP bounds analyzed in this chapter is the fact that
solving SDP relaxations becomes too computationally demanding for graphs with
more than 200 vertices. Many graphs from real life problems, and some graphs
from [30, 93], have inherent symmetry which can be exploited to reduce the size of our
SDP problems even further. For small graphs, instead of exploiting the symmetry,
we can try to break it by fixing one vertex to be colored or uncolored (see, e.g.
,[187]). That is, we can fix the variable corresponding to that vertex to zero or one.
On vertex-transitive graphs, fixing the values of one vertex is enough. For general
graphs, breaking the symmetry for each of the vertices will provide a valid upper
bound on αk(G). Applying this approach to the relaxations from Section 5.6, one
could improve the resulting bounds.





CHAPTER 6

New bounds for truthful scheduling on two
unrelated selfish machines

6.1 Introduction and main results

Scheduling on unrelated parallel machines is a classical discrete optimization prob-
lem. In this problem one has to allocate n independent, indivisible tasks to m

simultaneously working unrelated machines (not necessarily identical). The goal is
to minimize the time to complete all the tasks. This time is called a makespan, and
the scheduling problem is also called the minimum makespan problem. Lenstra et
al. [124] proved that the problem is NP-complete, even for the case n = m = 2, and
that a polynomial-time algorithm cannot achieve an approximation ratio less than 3

2
unless P = NP .
We restrict ourselves to the case of m = 2 machines. For this case there is a linear-
time algorithm by Potts [179] and a polynomial-time algorithm by Shchepin and
Vakhania [208] which provide 3

2 -approximations. Both algorithms use linear relax-
ations of integer programs and rounding techniques. We are interested in truthful
scheduling on unrelated machines. For this problem, the earlier mentioned algorithms
are not suitable and the best approximation ratio is still unknown.
Truthful scheduling stems from the minimum makespan problem in the setting of
algorithmic mechanism design. In this setting, every machine belongs to a rational
agent who requires payments for performing tasks and aims to maximize his or her
utility. Nisan and Ronen [163] introduced this approach to model interactions on the
Internet, such as routing and information load balancing. The minimum makespan
problem is one of many optimization problems considered in algorithmic mechanism
design. These include, among others, combinatorial auctions (see, e.g., [10], [55] and
references therein) and graph theoretic problems, such as the shortest paths tree [75]
and the maximum matching problem [216].
To solve the minimum makespan problem in algorithmic mechanism design, one can
use an allocation mechanism. An allocation mechanism consists of two algorithms:
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one allocates tasks to machines, and the other one allocates payments to agents (the
machines’ owners). The goal of the mechanism is to minimize the makespan. We
consider direct revelation mechanisms. These mechanisms collect the information
about running times from each agent and allocate tasks and payments based on this
information according to a policy known to the agents in advance. To maximize their
utilities, the agents can lie about processing times of their machines. As a result,
direct revelation mechanisms may be hard to implement correctly.
A truthful mechanism motivates the agents to tell the right processing times of their
machines. That is, telling the truth becomes a dominant strategy for each agent
regardless of what the other agents do. This property guarantees that the processing
times used to construct the mechanism are correct. Hence the makespan can be
estimated in advance without additional assumptions. There is a vast literature on
truthful mechanisms [33, 147, 163, 196]. Not all task allocation algorithms correspond
to truthful mechanisms. No truthful allocation mechanism is known, for example,
for the previously mentioned linear programming (LP) relaxations with rounding
by Potts [179] and Shchepin and Vakhania [208]. Therefore the best approximation
ratio for truthful scheduling on unrelated machines is one of the hardest fundamental
questions in mechanism design.
Saks and Yu [196] showed that a task allocation algorithm corresponds to a truthful
mechanism if and only if the algorithm is monotone. Intuitively, a task allocation
algorithm is monotone if it assigns a higher load to a machine as long as the running
times on this machine decrease (see Section 6.2 for the formal definition of mono-
tonicity). In this chapter we concentrate on monotone task allocation algorithms and
do not consider the allocation of payments.
Nisan and Ronen [163] show that no deterministic monotone algorithm can achieve
an approximation ratio less than 2, but randomized algorithms can do better in
expectation. From here on we say that a randomized allocation algorithm has some
property, e.g., monotonicity, if this property holds with probability one according to
the distribution of the random bits of the algorithm. Randomized algorithms that
are truthful in this sense give rise to universally truthful mechanisms considered in
this chapter.
A deterministic algorithm is task-independent when the allocation of any task does
not change as long as the processing times of this task stay fixed. Every determin-
istic monotone allocation algorithm on two machines with a finite approximation
ratio is task-independent (Dobzinski and Sundararajan [55]). Therefore, if a given
randomized algorithm has a finite expected approximation ratio, this algorithm is
task independent with probability one. Hence we can restrict ourselves without loss
of generality to monotone and task-independent randomized algorithms to find the
best truthful approximation ratio for two machines.
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Finally, we restrict our attention to scale-free algorithms. An algorithm is scale-
free if scaling all running times by some positive number does not influence the
output. Following Lu [130], we note that for m = 2, scale-freeness and allocation
independence imply that the allocation of each task depends only on this task’s
running times ratio, which simplifies the analysis. Scale-free algorithms are widely
used in the literature, and the latest most efficient algorithms for truthful scheduling
on two machines by Chen et al. [32], Lu [130] or Lu and Yu [131] are scale-free. In the
sequel we work with monotone, task-independent, scale-free (denoted by MIS) task
allocation algorithms. These algorithms have proven to provide good upper bounds
on approximation ratios in scheduling [32, 130, 131, 132, 163]. Lu and Yu [130, 131,
132] present a way to construct a payment allocation procedure for MIS algorithms
which results in truthful allocation mechanisms.
To conclude the discussion about the properties of algorithms, notice that another,
less restrictive, way to define randomized algorithms would be to say that the prop-
erties hold in expectation over the random bits of the algorithm. Randomized algo-
rithms that are truthful in this sense correspond to truthful in expectation mecha-
nisms. One can convert LP relaxations with rounding to such mechanisms for certain
classes of problems (e.g., for combinatorial auctions), see Azar et al. [10], Elbassioni
et al. [62] or Lavi and Swamy [122]. Truthful in expectation mechanisms could per-
form better in expectation than the universally truthful ones. In this chapter we do
not analyze the former type of mechanisms. We refer the reader to Auletta et al. [9]
and Lu and Yu [132] for more information on truthfulness in expectation.
Denote by Rn the best worst-case expected approximation ratio of randomized MIS
algorithms for the makespan minimization on two machines with n tasks. For sim-
plicity, in the rest of the chapter we call Rn the best approximation ratio. Our
approach translates the problem of finding Rn from the context of truthful schedul-
ing to the context of non-linear optimization. This approach was not common until
recently when several successful truthful or truthful in expectation mechanisms have
been constructed using linear or nonlinear programs [10, 32, 62, 122]. This chapter
continues the trend to combine optimization with mechanism design and has the
following contributions:

1. A Min−Max formulation for Rn, see (6.19) in Corollary 6.14.
2. A unified approach to construct upper and lower bounds on Rn, see Section 6.4.

In formulation (6.19), the outer minimization is over multivariate cumulative
distribution functions (CDFs) and the inner maximization is over the positive
orthant in two dimensions. This problem is in general not tractable, so we build
bounds on the optimal value. The lower bounds are the result of restricting
the inner maximization to a finite subset of the positive orthant. To obtain
the upper bounds, we restrict the outer minimization to the set of piecewise
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constant CDFs. This is a general approach which could work for anyMin−Max

problem that requires optimizing over a set of functions, not necessarily CDFs.
3. New upper and lower bounds on Rn for n ∈ {2, 3, 4} and the task allocation

algorithms corresponding to the given upper bounds (see Table 6.1). To our
knowledge, the resulting upper bounds are currently the best for all monotone
algorithms (not only MIS) on two machines.

Table 6.1 – Bounds on Rn

n
Lower bound Upper bound

existing new existing new

2
1.505949

[130]

1.5059953
1.5068

[32]
1.5059964

3 1.5076 1.5861
[32]

1.5238
4 1.5195 1.5628

4. Almost tight bounds on R2 (see Table 6.1).
For n = 2 tasks the initial problem (6.19) simplifies to a new problem (6.36),
where the outer minimization is over univariate CDFs. We use piecewise ra-
tional CDFs to obtain the upper and lower bounds with a gap not larger than
10−6.

The outline of the chapter is as follows. In Section 2 we provide more details about
randomized MIS algorithms for two machines, describe results from earlier research
and formulate the basic optimization problem for Rn. In Section 3 we exploit the
symmetry of this problem to analyze the performance of MIS algorithms and to prove
our Min −Max formulation (6.19) for Rn. In Section 4 we construct and compute
bounds on the optimal value of the Min−Max problem for several small n. Section
5 analyzes the case with two tasks in more detail to improve the bounds for this
case. Section 6 concludes the chapter. Section 7 provides the omitted proofs. All
computations are done in MATLAB R2017a on a computer with the processor Intel®
CoreTM i5-3210M CPU @ 2.5 GHz and 7.7 GiB of RAM. To solve linear programs,
we use IBM ILOG CPLEX 12.6.0 solver.

6.2 Preliminaries

Unless otherwise specified, lower-case letters denote numbers, bold lower-case letters
denote vectors, and capital letters denote matrices. We use parentheses to denote
vectors and brackets to denote intervals, e.g., (x1, x2) is a vector and [x1, x2] or [x1, x2)
are intervals.
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The input into the minimum makespan problem with m machines and n tasks is a
matrix of processing times T = (Tij), i ∈ [m], j ∈ [n]. We describe the solution to
the problem by a task allocation matrix X ∈ {0, 1}m×n, such that Xij = 1 if task j
is processed on machine i and Xij = 0 otherwise. Now, for given X and T , we define
the makespan of machine i Mi and the overall makespan M .

Mi(X,T ) :=
n∑
j=1

XijTij, M(X,T ) := max
i
Mi(X,T ), (6.1)

The optimal makespan for T is

M∗(T ) := min
X∈{0,1}m×n

M(X,T ). (6.2)

For an allocation algorithm A and an input matrix T , XA,T ∈ {0, 1}m×n denotes the
output of A on T . If A is randomized, XA,T is a random variable and M(XA,T , T ) is
the expected makespan. The worst-case (expected) approximation ratio of algorithm
A equals the supremum of the ratio M(XA,T ,T )

M∗(T ) over all time matrices T . We refer the
reader to Motwani and Raghavan [145] for a comprehensive discussion on randomized
algorithms.

6.2.1 The best approximation ratio of randomized MIS algorithms

According to Section 6.1, randomized MIS algorithms are monotone, task-independent
and scale-free (MIS) with probability one. Therefore, by fixing the random bits of a
randomized MIS algorithm, we obtain a deterministic MIS algorithm with probability
one. We provide next a formal description of deterministic MIS algorithms.
A task allocation algorithm is monotone if for every two processing time matrices
T and T ′ which differ only on machine i, ∑n

j=1(XA,Tij − XA,T
′

ij )(Tij − T ′ij) ≤ 0 (see
[33]). That is, the load of a machine increases as long as the running times on this
machine decrease. An algorithm is task-independent if the allocation of a task de-
pends only on its running times. To be precise, for any two time matrices T and T ′
such that Tij = T ′ij for task j and all i ∈ [m], the allocation of task j is identical, i.e.,
XA,Tij = XA,T

′

ij , for all i ∈ [m]. An algorithm is scale-free if the multiplication of all
running times by the same positive number does not change the allocation. That is,
for any T ∈ Rm×n

++ and λ > 0, the outputs of the algorithm on the inputs T and λT
are identical.

Deterministic MIS algorithms for m = 2 are characterized by Lu [130]:

Theorem 6.1 (Lu [130]). All deterministic MIS algorithms for scheduling on two
unrelated machines are of the following form. For every task j ∈ [n], assign a
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threshold zj ∈ R++ and one of the following two conditions: T1j < zjT2j or T1j ≤
zjT2j. The task goes to the first machine if and only if the corresponding condition
is satisfied.

Let C be the class of (randomized) algorithms which randomly assign a threshold zj
and a condition T1j < zjT2j or T1j ≤ zjT2j to each task j and then proceed as given
in Theorem 6.1 for the deterministic case. With probability one a randomized MIS
algorithm is a MIS algorithm, and therefore of the form given by Theorem 6.1. Hence,
to find the best approximation ratio, it is enough to consider only algorithms in C.
Next, we show that to find the best approximation ratio, we can restrict ourselves to
a subclass of C.
Let Pn be the family of Borel probability measures supported on the positive or-
thant, i.e. supp(P) ⊆ Rn

++ for all P ∈ Pn, where supp(P) is the support of P. We use
EP[ ] and PP[ ] to denote the expectation and the probability over the measure P,
respectively. In the sequel we use the notions of a probability measure and the cor-
responding probability distribution interchangeably. This depends on which notion
is more suitable. For a P ∈ Pn we define algorithm AP as follows:

Algorithm 6.2. a monotone, task-independent, scale-free task allocation algorithm
AP for 2 machines

Input: processing time matrix T = (Tij) ∈ R2×n
++

Output: allocation X ∈ {0, 1}2×n

1. Draw a vector of thresholds (z1, z2, . . . , zn) according to P

2. For each task j = 1, 2, . . . , n do

3. If T1j
T2j

< zj: X1j ← 1, X2j ← 0

4. Else: X1j ← 0, X2j ← 1

5. Output X

Denote the family of all algorithms of the form above by APn :

APn := {AP : P ∈ Pn}.

Consider a measure P ∈ Pn and the corresponding algorithm AP ∈ APn . Let XP,T ∈
{0, 1}2×n be a randomized allocation produced by AP on time matrix T . For every
P we define the expected makespan of AP on T as

M(P, T ) = EP max
{ ∑
j∈[n]

T2jX
P,T
2j ,

∑
j∈[n]

T1jX
P,T
1j

}
. (6.3)
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Recall that M∗(T ), defined in (6.2), denotes the optimal makespan for T . Let
Rn(P, T ) be the expected approximation ratio of AP on T and Rn(P) be the worst-
case approximation ratio:

Rn(P, T ) = M(P, T )
M∗(T ) , (6.4)

Rn(P) = sup
T∈R2×n

++

Rn(P, T ) (6.5)

It could happen that for some P the ratio Rn(P, T ) is unbounded in T . We do
not consider these cases as we know that Rn ≤ 1.5861 (see Section 6.2.2). To avoid
technicalities, we work on R+ = R+∪{∞} so that the supremum supT∈R2×n

++
Rn(P, T )

is always defined.
When a tie T1j

T2j
= zj occurs for some j ∈ [n], algorithms from family APn send task j

to the second machine. In general, an algorithm in C could send the task to the first
or the second machine. Next, we show that this behavior at the ties does not affect
the worst-case performance:

Theorem 6.3. For a given number of tasks n, let P ∈ Pn and define

T :=
{
T ∈ R2×n

++ : Pz∼P
[
zj = T1j/T2j

]
= 0 for all j ∈ [n]

}
. (6.6)

Let Rn(P) be defined as in (6.5), then

Rn(P) = sup
T∈T

Rn(P, T ).

To prove Theorem 6.3, we introduce some additional notation. First, ρ(T ) denotes
the vector of the running time ratios

ρ(T ) :=
(
T11
T21
, T12
T22
, . . . , T1n

T2n

)
. (6.7)

Second, for z ∈ Rn
++ we denote by Az the algorithm in APn with the thresholds fixed

at z. Finally, for T ∈ R2×n
++ we let Xz,T andM(z, T ) be the output and the makespan

of Az on T , respectively. We begin with a lemma.

Lemma 6.4. For a given number of tasks n, let P ∈ Pn. For every time matrix T ∈
R2×n

++ , there exists a sequence of time matrices {Tk}k>0 ⊂ R2×n
++ such that Pz∼P

[
zj =

Tk,1j/Tk,2j
]

= 0 for all j ∈ [n] and k, and

Rn(P, T ) = lim
k→∞

Rn(P, Tk).

Proof. Consider a sequence of non-negative numbers {εk} such that
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1. Pz∼P
[
zj = ρ(T )j + εk

]
= 0, ∀ k ∈ N, j ∈ [n]

2. lim
k→∞

εk = 0

A sequence with these properties exists since for every j ∈ [n] the case Pz∼P
[
zj =

a
]
> 0 is possible for countably many a ∈ R++ only. Next, we build a sequence of

time matrices {Tk}k>0, Tk = (Tk,ij):

Tk,1j = T1j + εkT2j and Tk,2j = T2j for all j ∈ [n].

Notice that T = limk→∞ Tk. By adding εkT2j to every task on the first machine,
we ensure that Pz∼P

[
zj = Tk,1j/Tk,2j

]
= 0 for all j ∈ [n] and k. For each k and all

j ∈ [n], i ∈ {1, 2}, we have Tij ≤ Tk,ij. SoM∗(T ) ≤M∗(Tk) ≤M(X∗, Tk), where X∗
is the optimal allocation for T . X∗ is finite (binary, in particular) and T = limk→∞ Tk.
Combining this with (6.1), we see that M(X∗, Tk) tends to M∗(T ) when k tends to
infinity. Therefore

lim
k→∞

M∗(Tk) = M∗(T ). (6.8)

For every time matrix Tk and task j, consider the event Bk,j : “ρ(T )j < zj ≤ ρ(Tk)j”.
Let Bk = ⋃n

j=1Bk,j and let Bc
k be the complement of Bk. When Bk happens, outcomes

of Az on T and Tk are different, otherwise they are the same. By construction of Az,
M(z, T ) is finite for any T . Hence

Ez∼P
[
M(z, Tk)−M(z, T ) | Bc

k

]
= 0, for all k ∈ N. (6.9)

For any j ∈ [n] we have ρ(Tk)j → ρ(T )+
j . Since the CDF of P is continuous from the

right,

lim
k→∞

Pz∼P
[
zj ≤ ρ(Tk)j

]
= Pz∼P

[
zj ≤ ρ(T )j

]
,

which implies

lim
k→∞

Pz∼P[Bk] = lim
k→∞

Pz∼P

[
n⋃
j=1

Bk,j

]
≤

n∑
j=1

lim
k→∞

Pz∼P
[
Bk,j

]

=
n∑
j=1

lim
k→∞

(
Pz∼P

[
zj ≤ ρ(Tk)j

]
−Pz∼P

[
zj ≤ ρ(T )j

])
= 0. (6.10)

Finally, for any k ∈ N

M(P, Tk)−M(P, T ) = Ez∼P
[
M(z, Tk)−M(z, T ) | Bk

]
Pz∼P[Bk]

+ Ez∼P
[
M(z, Tk)−M(z, T ) | Bc

k

](
1−Pz∼P[Bk]

)
(6.9)= Ez∼P

[
M(z, Tk)−M(z, T ) | Bk

]
Pz∼P[Bk]

≤ |T |1Pz∼P[Bk]
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Thus by (6.10),

lim
k→∞

M(P, Tk) = M(P, T ), (6.11)

and

Rn(P, T ) = M(P, T )
M∗(T )

(6.8),(6.11)= lim
k→∞

M(P, Tk)
M∗(Tk)

= lim
k→∞

Rn(P, Tk).

Proof of Theorem 6.3 . Recall that T is defined in (6.6). By Lemma 6.4, for
every T ∈ R2×n

++ there exists a sequence of time matrices {Tk}k>0 ⊂ T such that

Rn(P, T ) = lim
k→∞

Rn(P, Tk) ≤ sup
T∈T

Rn(P, T ).

Hence

Rn(P) = sup
T∈R2×n

++

Rn(P, T ) ≤ sup
T∈T

Rn(P, T ).

The opposite inequality holds since T ⊂ R2×n
++ .

Theorem 6.3 has the following implication:

Corollary 6.5. The best approximation ratio over all randomized MIS algorithms is
the best approximation ratio over all algorithms in APn.

By Corollary (6.5), the best approximation ratio over all randomized MIS algorithms
is

Rn = inf
P∈Pn

Rn(P). (6.12)

Later in the chapter we show that Rn(P) is invariant under permutations of the tasks
for every P ∈ Pn (see Theorem 6.6). Therefore, to compute Rn using (6.12), we can
restrict the optimization to the distributions P ∈ Pn invariant under permutations
of the random variables corresponding to the thresholds (z1, . . . , zn) (see Theorem
6.8). For such distributions, Rn(P) is determined by the worst-case performance of
AP on each pair of the tasks. See Section 6.3.2, and Theorem 6.11 in particular,
for more detail. This means that for every T ∈ R2×n

++ , one can find the expected
approximation ratio of AP by applying to all pairs of tasks the algorithm AP2 , where
P2 is the bivariate marginal distribution of P (by invariance, this distribution is the
same for all pairs of thresholds). We use this property of family APn to construct
problem (6.19) for Rn, which is one of the main results of this chapter.
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6.2.2 Connection to the current knowledge on monotone algorithms

The best approximation ratio for all monotone task allocation algorithms is not
known. For deterministic algorithms with n tasks and m machines, when n and m
tend to infinity, the ratio lies in the interval [1 + φ, m], where φ is the golden ratio.
The upper bound is due to Nisan and Ronen [163], and the lower bound is due to
Koutsoupias and Vidali [106]. To compute this lower bound, the authors use a matrix
of processing times where the numbers of rows and columns tend to infinity. If n or
m is finite, the lower bound may be different. Koutsoupias and Vidali [106] present
bounds for several finite time matrices as well. For randomized algorithms, the best
approximation ratio lies in the interval [2 − 1

m
, 0.83685m]. The lower bound is due

to Mu’alem and Schapira [147] who use Yao’s minimax principle (for some details on
this principle see, e.g., Motwani and Raghavan [145]). The upper bound is due to
Lu and Yu [131]. The gap between the bounds grows with m, and the case with the
smallest number of machines, m = 2, has gained much attention in the literature.
For m = 2, Nisan and Ronen [163] have shown that the best approximation ratio
of deterministic monotone algorithms is equal to 2, for any finite n. The ratio for
randomized monotone algorithms lies in the interval [1.5, 1.5861]. Chen et al. [32]
compute the upper bound using an algorithm from family APn with independently
distributed thresholds. The lower bound is the earlier mentioned bound by Mu’alem
and Schapira [147]. There exist tighter lower bounds for certain cases. Lu [130] shows
that algorithms from family APn (and thus, by Corollary 6.5, all randomized MIS
algorithms) cannot achieve a ratio better than 25

16 (= 1.5625) for sufficiently large n.
Chen et al. [32] prove that algorithm AP cannot do better than 1.5852 when P is a
product measure, i.e., when the thresholds are independent random variables.
The cases with m = 2 and small n > 2 are not well studied. Chen et al. [32] present
upper bounds for some n. Finding these bounds requires solving some non-convex
optimization problems. However, the numerical method used by Chen et al. [32] does
not guaranty global optimality.
The case with m = 2, n = 2 is the simplest one, but even for this case the best
approximation ratio is unknown. The ratio for algorithms from family AP2 lies in
the interval [1.505949, 1.5068]. The upper bound is due to Chen et al. [32], the lower
bound is computed by Lu [130] using Yao’s minimax principle. Notice that Lu [130]
states that the lower bound is 1.506, but we repeated the calculations from this
chapter and obtained the number 1.505949. Thus, when reporting results, we use
this number as the currently best lower bound. We improve this bound and show
that |R2 − 1.505996| < 10−6, in particular, R2 < 1.506.
From the description above, one can see that the existing bounds for truthful schedul-
ing on unrelated machines are obtained using ad hoc procedures or (for the lower
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bounds) Yao’s minimax principle. This chapter develops a unified approach to con-
struct upper and lower bounds on Rn for any fixed n and provides an alternative
to Yao’s minimax principle for the construction of lower bounds. As a result, we
improve the bounds for truthful scheduling for m = 2 and n ∈ {2, 3, 4}.
Next, we compare our approach to the existing methods for upper bounds in [10, 32,
62, 122] that use optimization. First, our method for upper bounds generalizes the ap-
proach by Chen et al. [32]. This generalization considers a broader class of algorithms
and thus provides stronger upper bounds. The methods in [10, 62, 122] allow con-
structing truthful in expectation algorithms for some algorithmic mechanism design
problems. These methods use LP relaxations of the corresponding integer problems.
The minimum makespan problem on unrelated machines is not among the problems
for which the approaches in [10, 62, 122] are guaranteed to work. Our approach is
fundamentally different. First, we use the tools from continuous optimization to ob-
tain possibly non-linear, but tractable approximations. Second, our algorithms are
universally truthful. Next, our method works for the minimum makespan problem
on unrelated machines. An open question for further research is for which other
problems this technique could be useful.
Finally, we obtain new bounds only for small n ≤ 4 because of the growing size of
the lower bound optimization problems. However, one can make these problems less
computationally demanding by using, for example, the column generation technique
(see, e.g., Gilmore and Gomory [71]). With a more efficient lower bound computation,
one could obtain new bounds for n > 4 with our approach since the solution to the
upper bound problem is a relatively simple construction based on the solution to the
lower bound problem, as described in Section 6.4.

6.3 Using the symmetry of the problem to obtain a new formulation for
the best approximation ratio

In this section we exploit the fact that problem (6.12) is invariant under permuting
the tasks and the machines to simplify formulation (6.12) and obtain formulation
(6.19) in Section 6.3.2.

6.3.1 Using the symmetry of the problem

Recall that by Definition 1.1, the group Sym(n) acts on a given time matrix from the
right T by permuting its columns. Now, to reflect row permutations in T we define
another group called Sinv. The group Sinv consists of the identity action id. and the
action inv. which takes element-wise reciprocals of any vector x = (x1, . . . , xn) ∈ Rn

++:

idx = x, invx =
(

1
x1
, 1
x2
, . . . , 1

xn

)
.
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Now, we define the action of Sinv×Sym(n) on Pn. Given P ∈ Pn, γ ∈ Sinv, π ∈
Sym(n) and a random variable z ∼ P, we consider the transformation z→ γzπ. We
define γPπ ∈ Pn as the distribution of γzπ. Next, we prove that problem (6.12) is
convex and invariant under the action of Sinv×Sym(n) on P. As a result, to find the
infimum in (6.12), it is enough to optimize over the distributions P invariant under
the action of Sinv×Sym(n). This approach is regularly used in convex programming,
see Dobre and Vera [53], Gatermann and Parrilo [70] or de Klerk et al. [37].
Given distributions P1, . . . ,Pk ∈ Pn, and weights αi ≥ 0 for all i ∈ [k] such that∑k
i=1 αi = 1, we define the convex combination ∑k

i=1 αiPi ∈ Pn as the distribution
where we draw from Pi, i ∈ [k] with probability αi. The construction of ∑k

i=1 αiPi
and definitions (6.3),(6.4) imply that

Rn

(
k∑
i=1

αiPi, T
)

=
k∑
i=1

αiRn(Pi, T ).

Therefore, using (6.5), we have

Rn

(
k∑
i=1

αiPi
)
≤

k∑
i=1

αiRn(Pi), (6.13)

that is, Rn(P) is convex in P. Now, we show the invariance of Rn(P) under the action
of Sinv×Sym(n).

Theorem 6.6. For any given number of tasks n, P ∈ Pn, γ ∈ Sinv and π ∈ Sym(n),

Rn(P) = Rn(γPπ).

To prove Theorem 6.6, let σid be the identity action of S2 and σswap be the non-
identity action of S2. We say that that the group S2×Sym(n) acts on a matrix in
R2×n by permuting the two rows and the n columns of this matrix, see Definition 1.1.
Namely, for A ∈ R2×n and (σ, π) ∈ S2×Sym(n), the action of (σ, π) ∈ S2×Sym(n)
on A is

σAπ := (Aσi,πj).

We show that for any T ∈ R2×n
++ the optimal makespan M∗(T ) is invariant under the

actions of S2×Sym(n) on T . Moreover, the expected makespan M(P, T ) is invariant
under the actions of S2×Sym(n) on T and Sinv×Sym(n) on P. These two results
together imply Theorem 6.6.

Lemma 6.7. M∗(T ) = M∗(σTπ) for all (σ, π) ∈ S2×Sym(n), T ∈ R2×n
++
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Proof. Consider a time matrix T and actions π ∈ Sym(n), σ ∈ S2. Let X∗ = (X∗ij)
be an optimal allocation matrix for T . Then σTπ = (Tσi,πj), σX∗π = (X∗σi,πj). This
implies

M∗(σTπ) ≤ max
i

{ ∑
j∈[n]

Tσi,πjX
∗
σi,πj

}
= max

i

{ ∑
j∈[n]

TijX
∗
ij

}
= M∗(T ).

Analogously, for the time matrix σTπ and actions π−1 ∈ Sym(n), σ−1 ∈ S2, we
obtain

M∗(T ) ≤M∗(σTπ).

Proof of Theorem 6.6. Let P ∈ Pn, z ∈ Rn
++ and T ∈ R2×n

++ . Since we are
interested in Rn(P), by Lemma 6.4 we can assume without loss of generality that T
is such that Pz∼P

[
zj = T1j/T2j

]
= 0 for all j ∈ [n]. Consider (γ, π) ∈ Sinv×Sym(n)

and y = γzπ. Let σ = σid if γ =id . and σ = σswap if γ =inv . Then Az sends task j to
machine i on T if and only if Ay sends task πj to machine σi on σTπ. As a result,
TijX

z,T
ij = TσiπjX

y,σTπ
σiπj for all i, j and

M
(
z, T

)
= max

i

{ ∑
j∈[n]

TijX
z,T
ij

}
= max

i

{ ∑
j∈[n]

TσiπjX
y,σTπ
σiπj

}

= max
i

{ ∑
j∈[n]

TijX
y,σTπ
ij

}
= M

(
y, σTπ

)
.

Therefore

M(P, T ) = Ez∼PM
(
z, T

)
= Ey∼γPπM

(
y, σTπ

)
= M(γPπ, σTπ), (6.14)

Combining this with Lemma 6.7, obtain

Rn(P, T ) = Rn(γPπ, σTπ).

By Theorem 6.3,

Rn(P) = sup
T∈T

Rn(P, T ) = sup
T∈T

Rn(γPπ, σTπ) = Rn(γPπ),

where T is defined in (6.6).

Theorem 6.8. For any given number of tasks n,

Rn = inf
P∈Pn

Rn(P) such that P is invariant under the action of Sinv×Sym(n).

(6.15)
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Proof. As problem (6.15) has a smaller feasibility set than problem (6.12), the opti-
mal value of problem (6.15) is not smaller than Rn. To prove the opposite inequality,
we show that for any distribution P ∈ Pn there is a distribution Q ∈ Pn invariant
under the action of Sinv×Sym(n) such that Rn(Q) ≤ Rn(P). Given P ∈ Pn, take
αi = 1

2(n!) for i ∈ [2(n!)] and consider the convex combination

Q := 1
2(n!)

∑
(γ,π)∈Sinv×Sym(n)

γPπ.

By construction, Q has the required invariance property and

Rn(Q)
(6.13)
≤ 1

2(n!)

∑
(γ,π)∈Sinv×Sym(n)

Rn(γPπ) Theorem 6.6= 1
2(n!)

∑
(γ,π)∈Sinv×Sym(n)

Rn(P)

= Rn(P).

6.3.2 New formulation for the best approximation ratio

From Theorem 6.8, problem (6.12) is invariant under permuting the tasks and the
machines. In the sequel we exploit the invariance under permuting the tasks only.
First, this simplifies the presentation. Second, in our numerical computations using
the invariance under the two types of permutations produced the same bounds as
using invariance under task permutations only.
Let Cn ⊂ Pn be the family of probability measures invariant under the actions of
Sym(n):

Cn = {P ∈ Pn | P = Pπ, for all π ∈ Sym(n)}. (6.16)

In the rest of the chapter we restrict the optimization to the distributions from Cn.

Corollary 6.9. For any given number of tasks n,

Rn = inf
P∈Cn

Rn(P). (6.17)

Proof. The Corollary follows from Theorem 6.8 and

{P ∈ Pn | P = γPπ, for all (γ, π) ∈ Sinv × Sym(n)} ⊂ Cn ⊂ Pn.

Proposition 6.10 next is straightforward but crucial for our analysis.
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Proposition 6.10. Let P ∈ Cn. Then P has a cumulative distribution function
(CDF) invariant under permutations of the variables. Moreover, for 0 < k < n, all
k-variate marginal distributions are identical. In particular, P is a joint distribution
of n identically distributed random variables.

By Proposition 6.10, if P ∈ Cn, then all univariate marginal distributions of P are
identical and all bivariate marginal distributions of P are identical. Denote the cor-
responding univariate and bivariate CDFs by FP and HP, respectively, and define

φP(x, y)= 1+y−min
{

1, 1−1/x + y
}
FP(x)−yFP(y)+ min

{
1+1/x, 1+y

}
HP(x, y)

(6.18)

First, we present a result by Chen et al. [32], which follows from Lu and Yu [132]

Theorem 6.11 (Chen et al. [32]). For any given number of tasks n, P ∈ Cn, and
T ∈ R2×n

++ ,

Rn(P, T ) ≤ max
j,k∈[n]

φP
(
T1j

T2j
,
T1k

T2k

)
.

Notice that this upper bound is defined by only two tasks out of n. Using Theo-
rem 6.11, we obtain the following formulation for Rn(P):

Theorem 6.12. For any given number of tasks n, and P ∈ Cn,

Rn(P) = sup
x,y∈R++

φP(x, y).

Proof. By Theorem 6.11, Rn(P) ≤ supx,y∈R++ φ
P(x, y). Next, we prove the opposite

inequality. Consider P ∈ Cn. We start with the case n = 2 and proceed similarly to
Lu and Yu [132]. Denote the bivariate marginal distribution of P by P2. Consider a
time matrix T ∈ R2×2

++ and denote T11
T21

by x, T12
T22

by y. Construct the following matrix
T0:

Task 1 Task 2
Machine 1 1 y

Machine 2 1/x 1
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The expected makespan of AP2 on this instance is M(P2, T0):

M(P2, T0) = Pz∼P2

[
z1 > x, z2 > y

]
(1 + y) + Pz∼P2

[
z1 > x, z2 ≤ y

]
+ Pz∼P2

[
z1 ≤ x, z2 > y

]
max

{
1/x, y

}
+ Pz∼P2

[
z1 ≤ x, z2 ≤ y

](
1 + 1/x

)
=
[
1−H(x, y)−

(
F (y)−H(x, y)

)
−
(
F (x)−H(x, y)

)]
(1 + y)

+
(
F (y)−H(x, y)

)
+
(
F (x)−H(x, y)

)
max

{
1/x, y

}
+H(x, y)

(
1 + 1/x

)
= 1 + y − F (x)

(
1 + y −max

{
1/x, y

})
− yF (y)

+H(x, y)
(
y −max

{
1/x, y

}
+ 1 + 1/x

)
= 1 + y −min

{
1, 1− 1/x + y

}
F (x)− yF (y)

+ min
{

1 + 1/x, 1 + y
}
H(x, y)

= φP(x, y).

Denote the minimum makespan on T0 by M∗. By construction M∗ ≤ 1, hence

R2(P2) ≥ R2(P2, T0) = M(P2, T0)
M∗ ≥M(P2, T0) = φP(x, y).

This holds for all x, y ∈ R++, therefore

R2(P2) ≥ sup
x,y∈R++

φP(x, y).

Now, fix n > 2. Choose a small ε > 0 and consider the following time matrix Tε:

Task 1 Task 2 Task 3 . . . Task n
Machine 1 1 y ε . . . ε

Machine 2 1/x 1 ε . . . ε

The expected makespan of AP on this instance, M(P, Tε), satisfies

M(P2, T0) ≤M(P, Tε) ≤M(P2, T0) + (n− 2)ε,

and the optimal makespan, M∗(Tε), satisfies

M∗ ≤M∗(Tε) ≤M∗ + (n− 2)ε.

Using the result for n = 2,

Rn(P) ≥ lim
ε→0

Rn(P, Tε) = lim
ε→0

M(P, Tε)
M∗(Tε)

= M(P2, T0)
M∗ ≥ φP(x, y),

which holds for all x, y ∈ R++.
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Remark 6.13. Theorem 6.12 implies that the worst-case approximation ratio for n
tasks and P ∈ Pn is the worst-case approximation ratio for two tasks and the bivariate
marginal distribution of P.

The next corollary is the main result of this section, and we use it throughout the
rest of the chapter.

Corollary 6.14. For any given number of tasks n,

Rn = inf
P∈Cn

sup
x,y∈R++

φP(x, y). (6.19)

Proof. The result follows from Corollary 6.9 and Theorem 6.12.

Corollary 6.15. Rn+1 ≥ Rn for all n ≥ 2.

Proof. The result follows from Corollary 6.14.

6.4 Upper and lower bounds on the best approximation ratio

To find Rn using (6.19), one needs to optimize over a family of distributions, which is
computationally intractable. Therefore we construct upper and lower bounds on the
optimal value of the problem. The idea is to restrict the attention to some subset of
feasible distributions or some subset of R2

++, over which it is easier to solve problem
(6.19).

1. For the lower bound, we take a finite set S ⊂ R++ and find the supremum
in (6.19) for x, y ∈ S only. A conventional approach to lower bounds is to
propose several good-guess time matrices T , use these matrices to build a ran-
domized instance of the minimum makespan problem and apply Yao’s minimax
principle. Our approach is different as we evaluate randomized algorithms on
deterministic instances.

2. For the upper bound, we find a good-guess distribution P and solve the inner
maximization problem for this distribution. The distribution is built using the
solution to the lower bound problem for n ∈ {2, 3, 4}. For n = 2 we propose a
more efficient approach in Section 6.5.

6.4.1 Characterizing CDFs

To implement the ideas above, we have to optimize over distributions. For this
purpose we represent a distribution via its CDF. To characterize CDFs, we follow
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Nelsen [155]. For x,y ∈ Rn such that xi ≤ yi for all i ∈ [n], we define the n-
box Bxy :=

[
x1, y1

]
×
[
x2, y2

]
× · · · ×

[
xn, yn

]
. The set of vertices of Bxy is Vxy ={

x1, y1
}
×
{
x2, y2

}
× · · · ×

{
xn, yn

}
. The sign of vertex b ∈ Vxy is defined by

sgn(b) :=

 1, if bi = xi for an even number of entries i
−1, if bi = xi for an odd number of entries i.

Given a set D ⊆ R, define D :=
(
D ∪ {0} ∪ {∞}

)
. A function G : Rn → R is called

n-increasing on Dn when
∑

b∈Vxy
sgn(b)G(b) ≥ 0, for all x ≤ y, x,y ∈ Dn (6.20)

Remark 6.16 (Chapter 2.1 in Nelsen [155]). For n > 1, the fact that G is n-
increasing does not necessarily imply that G is non-decreasing in each argument, and
the other way round.

The following family of functions captures the concept of CDF.

Definition 6.17. Let S ⊆ R++. Gn(S) is the family of functions G : Sn → [0, 1]
satisfying the conditions below.

1. G is right continuous on Sn

2. G is n-increasing on Sn

3. G(z) = 0 for all z in Sn such that at least one of zi = 0

4. G(∞, . . . ,∞) = 1

Theorem 6.18 (Definition 2.10.8. in Nelsen [155]). A function G : Rn

++ → [0, 1] is
a CDF of some P ∈ Pn if and only if G ∈ Gn(R++).

6.4.2 Formulation of upper and lower bounds

To construct the upper bound, we restrict the inner maximization in problem (6.19)
to a subset of R++. We do this using the next lemma.

Lemma 6.19. Let S ⊆ R++ be a finite set. Then g ∈ Gn(S) if and only if there
exists G ∈ Gn(R++) such that g = G|Sn. That is, g is a restriction of G to Sn.

Proof. If there is G ∈ Gn(R++) such that g = G|Sn , then g ∈ Gn(S) by definition of
Gn(R++). On the other hand, let g ∈ Gn(S) and consider a number a > max{s : s ∈
S}. Let Sa = S∪{a} and define a new function ĝ : Sa

n → [0, 1] such that ĝ(z) = g(z)
for z ∈ Sn. For z /∈ Sn, construct a new vector y by replacing all occurrences of
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a in z with ∞ and define ĝ(z) = g(y). Consider the following piecewise constant
function:

G(z1, . . . , zn) := ĝ
(

max
x∈Sa
{x : x ≤ z1}, . . . ,max

x∈Sa
{x : x ≤ zn}

)
. (6.21)

It is straightforward to show that G ∈ Gn(R++) and g = G|Sn . See Figure 6.1 for an
illustration of the case n = 1.

Remark 6.20. The choice of a in the proof of Lemma 6.19 is free and might influence
our upper bound computations in Section 6.4.3.

Figure 6.1 – S = {1
3 ,

2
3 , 1,

3
2 , 3}, n = 1. The left plot: a function g ∈ Gn(S).

The right plot: a function G ∈ Gn(R++).
Notice that G is a CDF and g is the restriction of G to Sn.
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For a finite S ⊂ R++ and g ∈ Gn(S), we define the restriction of the objective in
problem (6.19) to S:

φg(x, y) = 1 + y −min
{

1, 1− 1/x + y
}
g(x,∞, . . . ,∞)− yg(y,∞, . . . ,∞) (6.22)

+ min
{

1 + 1/x, 1 + y
}
g(x, y,∞, . . . ,∞) for all x, y ∈ S.

By Lemma 6.19, φg = φP|S2 for some P ∈ Pn.

Theorem 6.21. Given a number of tasks n, for any P ∈ Cn and finite S ⊂ R++, we
have

Rn(P) ≥ Rn ≥ Rn(S):= inf
g∈Gn(S)

sup
x,y∈S

{
φg(x, y) : g(z) = g(zπ) for all π ∈ Sym(n), z ∈ Sn

}
(6.23)

Proof. The first inequality follows immediately from Corollary 6.14. Now, we prove
the second inequality. Every P ∈ Cn has a CDF GP ∈ Gn(R++) invariant under
permutations of the variables by Proposition 6.10. At the same time, every such
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invariant G ∈ Gn(R++) corresponds to some PG ∈ Cn. Combining this with Corol-
lary 6.14, we obtain

Rn = inf
G∈Gn(R++)

sup
x,y∈R++

{φPG(x, y) : G(z) = G(zπ) for all π ∈ Sym(n), z ∈ Rn

++}

≥ inf
G∈Gn(R++)

sup
x,y∈S
{φPG(x, y) : G(z) = G(zπ) for all π ∈ Sym(n), z ∈ Rn

++}

= inf
g∈Gn(S)

sup
x,y∈S
{φg(x, y) : g(z) = g(zπ) for all π ∈ Sym(n), z ∈ Sn}.

The last equality holds by Lemma 6.19. Notice that if G ∈ Gn(R++) is invariant
under permutations of the variables, then so is the g := G|Sn . On the other hand, if
g ∈ Gn(S) is invariant under permutations of the variables, then so is the G defined
in (6.21).

6.4.3 The implementation and numerical results

Let S ⊂ R++. To compute the lower bound Rn(S) from (6.23), we use the epigraph
form of the optimization problem for Rn(S):

Rn(S) = inf
g∈Gn(S), t∈R

t (6.24)

s.t. φg(x, y) ≤ t for all x, y ∈ S
g(z) = g(zπ) for all π ∈ Sym(n), z ∈ Sn

The optimization variable in the problem above is g. This variable is a vector in
R(|S|+2)n which represents a function g ∈ Gn(S). We slightly abuse the notation and
do not use a bold symbol for g to underline that g corresponds to a function with a
finite support. Family Gn(S) is an infinite family of functions g, and each of these
functions is defined on a finite set Sn with cardinality (|S| + 2)n. For the purpose
of optimization, this means that we consider all vectors g ∈ R(|S|+2)n which satisfy
the four conditions in Definition 6.17 and the invariance property. All mentioned
conditions are linear, and there are finitely many of them. Therefore the optimization
over the infinite family of functions Gn(S) can be written as a finite LP. We use the
invariance of g (the second constraint) and Conditions 3-4 in Definition 6.17 to reduce
the number of variables in problem (6.24) (the size of g as a vector). To ensure that g
corresponds to an n-increasing function as specified in (6.20), it is enough to consider
x,y ∈ Sn such that xi, yi are consecutive points in S for all i ∈ [n]. This reduces the
number of constraints in problem (6.24).
To compute the upper bound Rn(P) using formulation (6.23), we first construct a
good-guess distribution P. Given a set S and the solution g to the lower bound
problem (6.23) on S, we use the distribution Pg which corresponds to the CDF
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(6.21) based on g. To construct this CDF, we choose a number a > max{s : s ∈ S},
as explained in the proof of Lemma 6.19. In the rest of this section we work with
Sa = S ∪ {a}. To solve (6.23) for Pg, we define the following set of intervals:

IS =
{
I1, . . . , I|S|+2

}
=
{

[0, s1), . . . , [s|S|, a), [a,∞)
}
,

This set of intervals covers R+, therefore by (6.23)

Rn(Pg)= sup
x,y∈R++

φPg(x, y) = max
Ii,Ij∈IS

{
sup

x∈Ii,y∈Ij
φPg(x, y)

}
. (6.25)

We solve the inner maximization problem in (6.25) for each pair i, j ∈ [|S| + 2].
The expression for φPg (6.18) for the case xy ≥ 1 is different from the case xy < 1.
To simplify the computations when the line xy = 1 crosses the rectangle Ii×Ij, we
restrict our attention to S of a particular type. Consider a collection of k−1 positive
real numbers r1 < r2 < · · · < rk−1 < 1, let

Sk = {s1, s2, . . . , s2k−1} =
{
r1, r2, . . . , rk−1, 1, 1

rk−1
, . . . , 1

r2
, 1
r1

}
. (6.26)

For any a > 1
r1
, Sk,a = Sk∪{a} subdivides R+ into 2k+1 intervals ISk . First, consider

a pair of intervals Ii, Ij ∈ ISk such that i /∈ {1, 2k+1} and j /∈ {1, 2k+1} (i.e., neither
of them are the first or the last interval). Due to the choice of Sk, the line xy = 1
crosses the rectangle Ii×Ij if and only if i+j = 2k+1. Denote the bivariate marginal
CDF and the univariate marginal CDF of Pg by Hg and Fg, respectively. Then

φPg(x, y)=


1+y−Fg(x)−yFg(y)+

(
1+1/x

)
Hg(x, y) i+j≥2k+1, xy≥1

1+y
(
1−Fg(x)−Fg(y)+Hg(x, y)

)
−
(
1−1/x

)
Fg(x)+Hg(x, y) i+j≤2k + 1, xy<1.

(6.27)

We construct the CDF of Pg using (6.21), therefore

Hg(x, y) = g(si−1, sj−1,∞, . . . ,∞) for all (x, y) ∈ Ii × Ij (6.28)
Fg(x) = g(si−1,∞, . . . ,∞) for all x ∈ Ii.

That is, the marginal CDFs are constant on Ii× Ij and Ii, respectively. As the range
of a CDF is [0, 1], we conclude that for x ∈ Ii, y ∈ Ij, φPg(x, y) is non-increasing in
x and non-decreasing in y. The latter holds since for any P ∈ P2 invariant under S2

and for any x, y ∈ R,

HP(x, y) = FP(x) + FP(y)− 1 + Pz∼P[z1 > x, z2 > y] ≥ max
{

0, FP(x) + FP(y)− 1
}
.

(6.29)

Hence the optimal value of the inner maximization problem in (6.25) can be obtained
by first substituting the CDFs (6.28) into the function (6.27) and then substituting
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x = si−1, y = sj. Note that this optimum is not attained. For the case i+j = 2k+1,
i.e., when the line xy = 1 crosses the rectangle Ii × Ij, the result holds due to the
choice of Sk.
When i ∈ {1, 2k+1} or j ∈ {1, 2k+1}, the function φPg(x, y) simplifies, and we solve
such cases separately. The solution approach resembles the one from the previous
paragraph.
In numerical experiments we use uniform finite sets

Suk =
{

1
k
, 2
k
, . . . , k−1

k
, 1, k

k−1 , . . . , k
}
. (6.30)

Table 6.2 shows the best obtained bounds and the k we use to compute these bounds.

Table 6.2 – Bounds for the case of two machines and 2, 3, 4 tasks based on
Theorem 6.21

n
Lower bound Upper bound

k
Current New Current New

2
1.505949

[130]

1.505980
1.5068

[32]
1.5093 250

3 1.5076 1.5861
[32]

1.5238 50
4 1.5195 1.5628 20

We round the lower bounds Rn(Suk ) down and the upper bounds Rn(Pg) up. We verify
all upper bounds with exact arithmetics using the MATLAB symbolic package and
the following procedure. First, we obtain the optimal solution g to problem (6.24)
and round the elements of the set Suk and the number a to the 8th digit. Next,
we transform the rounded values into rational numbers and compute Rn(Pg) as a
rational number. By Lemma 6.19 and Theorem 6.21, the rounded g provides the
algorithm APg with the worst-case approximation ratio Rn(Pg).
The upper bound for n = 2 in Table 6.2 is worse than the best existing upper bound.
We improve our result and obtain a new best exiting upper bound for n = 2 in the
next section.

6.5 More precise bounds for two tasks

In this section we analyze the case with n = 2 tasks and m = 2 machines in more
detail. Now, to obtain an upper bound, we do not simply use some good-guess
distribution as we did before, but we optimize over a subset of Cn (6.16). Moreover,
as a side result of this optimization, we obtain a non-uniform set Sk which produces
a better lower bound than the one from Table 6.2 in the previous section.
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Problem (6.19) simplifies for n = 2. Given F ∈ G1(R++), define

H(x, y) := max
{

0, F (x) + F (y)− 1
}
. (6.31)

H is a copula, i.e., there is PH,F ∈ P2 for which H is its CDF and F is its marginal
CDF. See Nelsen [155] for the detailed description of copulas and their properties.
Moreover, by construction PH,F ∈ C2. Therefore we can rewrite problem (6.19) using
univariate marginal CDF’s.

Theorem 6.22. Consider family G1(R++) from Definition 6.17.

R2 = inf
F∈G1(R++)

sup
x,y∈R++

1 + y −min
{

1, 1− 1/x + y
}
F (x)− yF (y) (6.32)

+ min
{

1 + 1/x, 1 + y
}

max
{

0, F (x) + F (y)− 1
}
.

Proof. Given F ∈ G1(R++), let

φF (x, y) = 1 + y −min
{

1, 1− 1/x + y
}
F (x)− yF (y)

+ min
{

1 + 1/x, 1 + y
}

max
{

0, F (x) + F (y)− 1
}
.

Consider any P ∈ C2 with the univariate CDF FP. Define φP(x, y) as in (6.18). From
(6.29) for all x, y ∈ R++,

φP(x, y) ≥ φFP(x, y).

Thus

R2
(6.19)= inf

P∈C2
sup

x,y∈R++

φP(x, y) ≥ inf
P∈C2

sup
x,y∈R++

φFP(x, y) ≥ inf
F∈G1(R++)

sup
x,y∈R++

φF (x, y).

On the other hand, for all F ∈ G1(R++) there is copula H from (6.31) with the
corresponding distribution PH,F ∈ C2. Hence

R2 = inf
P∈C2

sup
x,y∈R++

φP(x, y) ≤ inf
F∈G1(R++)

sup
x,y∈R++

φPH,F (x, y)

= inf
F∈G1(R++)

sup
x,y∈R++

φF (x, y).

Remark 6.23. Nelsen [155] shows that for n > 2 the function

G(x1, . . . , xn) = max
{

0,
n∑
i=1

F (xi)− n+ 1
}

is not a CDF. We do not see other suitable n-variate CDFs which would have a
bivariate margin H from (6.31). As a result, the proof of Theorem 6.22 fails for
n > 2.
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6.5.1 New upper bound for two tasks

To compute a new upper bound on R2, we restrict the set of functions in problem
(6.32) to the family of piecewise rational univariate CDFs. We say that a function
is piecewise rational if it can be written as a fraction where both the numerator and
the denominator are polynomials. The domain of each CDF is subdivided into pieces
by Sk defined in (6.26). Given Sk, we introduce a collection of intervals:

ISk =
{
I1, I2, . . . , Ik, Ik+1, . . . , I2k−1, I2k

}
=
{

[0, r1), [r1, r2), . . . , [rk−1, 1),
[
1, 1/rk−1

)
, . . . ,

[
1/r2, 1/r1

)
,
[
1/r1,+∞

)}
. (6.33)

Remark 6.24. We build the intervals using the points from Sk only. This is different
from Section 6.4.3 where we use an additional number a > max Sk to construct the
intervals.

Given ISk and a family of continuous functions F , we consider CDFs which “piece-
wisely” belong to F .
Definition 6.25. CF(Sk) is a family of functions F : R++ → [0, 1] such that

F (x) =



f1(1/x) x ∈ I1

f2(1/x) x ∈ I2

. . .

fk(1/x) x ∈ Ik
1− fk(x) x ∈ Ik+1

. . .

1− f2(x) x ∈ I2k−1

1− f1(x) x ∈ I2k,

(6.34)

f1(x) = 0, fi(x) ∈ F , fi(x) is non-decreasing, fk(1) ≤ 0.5, 0 ≤ fi(xi) ≤ fi+1(xi) for
all i < k. By construction, F is a CDF and thus CF(Sk) ⊂ G1(R++). Restricting
the minimization in problem (6.32) to CF(Sk) provides an upper bound on R2. We
use the symmetry of F to simplify the expression for this bound.

Proposition 6.26. Define Sk as in (6.26) and consider family CF(Sk) from Defini-
tion 6.25. R2 is not larger than

R2
(
CF(Sk)

)
= inf

F∈CF (Sk)
sup

x,y∈R++

1 + y −min
{

1, 1− 1/x + y
}
F (x)− yF (y) (6.35)

+ min
{

1 + 1/x, 1 + y
}

max
{

0, F (x) + F (y)− 1
}

= inf
F∈CF (Sk)

sup
x,y∈R++, xy≥1

y − 1/x +
(
1 + 1/x− y

)
F (y) + 1/xF (x). (6.36)

Proof. Let F ∈ CF(Sk). Problem (6.35) is a restriction of problem (6.32) to a smaller
set of functions. Therefore the former problem defines an upper bound on R2.
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Next, we show the equality between (6.35) and (6.36). Denote by φF the objective
of problem (6.35). We claim that for every x, y ∈ R++,

φF (x, y) ≤ sup
x,y∈R++, xy≥1

φF (x, y).

Let x̂ > 0, ŷ > 0. First, consider the case x̂ŷ ≥ 1. By construction of (6.34), x̂ŷ ≥ 1
implies F (x̂) + F (ŷ) ≥ F (x̂) + F

(
1/x̂
)
≥ 1. Then

φF (x̂, ŷ) = 1 + ŷ − F (x̂)− ŷF (ŷ) +
(
1 + 1/x̂

)
(F (x̂) + F (ŷ)− 1)

= ŷ − 1/x̂ +
(
1 + 1/x̂− ŷ

)
F (ŷ) + 1/x̂F (x̂). (6.37)

Now, let x̂ŷ < 1. By construction of ISk in (6.33), there are Ii, Ij ∈ ISk such that
x̂ ∈ Ii, ŷ ∈ Ij. The set Sk is finite, therefore there is a sequence {(xt, yt)}∞t=1 such
that for all t the following holds: xt ∈ Ii, yt ∈ Ij, xt → x̂+, yt → ŷ+, xtyt < 1 and
xt, yt /∈ Sk. For all x ∈ R++ \ Sk we have F (x) + F

(
1/x
)

= 1. Hence for all t

φF (xt, yt) = 1 + yt −
(
1− 1/xt + yt

)
F (xt)− ytF (yt)

= yt
(
1− F (yt)

)
+
(
1− 1/xt + yt

)(
1− F (xt)

)
+ 1/xt − yt

= 1/xt − yt +
(
1− 1/xt + yt

)
F
(

1/xt
)

+ ytF
(

1/yt
)

(6.37)= φF
(

1/yt, 1/xt
)
. (6.38)

Finally, F is right continuous in (x̂, ŷ), and so is φF (x̂, ŷ). Since xt → x̂+, yt → ŷ+,

φF (x̂, ŷ) = lim
t→∞

φF (xt, yt)
(6.38)= lim

t→∞
φF
(

1/yt, 1/xt
)
≤ sup

x,y∈R++, xy>1
φF
(
x, y

)
.

The last inequality follows from
(

1/yt
)(

1/xt
)
> 1.

6.5.2 Implementing the new upper bound for two tasks

In this subsection, for a given Sk, we choose F in Definition 6.25 to be the family of
linear univariate functions

F := {c0 + c1x : c0, c1 ∈ R}. (6.39)

Then CF(Sk) includes, in particular, the CDFs from [32, 130, 131, 163] where the
authors use piecewise functions with domains subdivided into 2, 4 or 6 intervals. We
observe that the upper bounds are better when the domains are subdivided more
times or when each piece has a more complex form than a constant function, i.e.,
when c1 can be non-zero. We improve upon the existing upper bounds by using a
larger number of pieces and letting c1 be non-zero in each piece. Define

φF (x, y) := y − 1/x +
(
1 + 1/x− y

)
F (y) + 1/xF (x). (6.40)
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Let X :=
{

(x, y) ∈ R2
++: xy ≥ 1

}
. Consider two formulations for R2

(
CF(Sk)

)
which

are equivalent to problem (6.36)

R2
(
CF(Sk)

)
= inf

F∈CF (Sk), t
t (6.41)

s.t. φF (x, y) ≤ t, for all (x, y) ∈ X
= inf

F∈CF (Sk), t
t (6.42)

s.t. sup
x∈Ii,y∈Ij

φF (x, y) ≤ t, for all i+ j ≥ 2k + 1.

The second equality follows from the equivalence of problems (6.36) and (6.35) since
for Sk defined in (6.26) xy ≥ 1 implies x ∈ Ii, y ∈ Ij with i + j ≥ 2k + 1. We use
problems (6.41) and (6.42) to approximate R2

(
CF(Sk)

)
with high precision. Namely,

we use relaxations of problem (6.41) to compute lower bounds on R2
(
CF(Sk)

)
, and

we use feasible solutions to problem (6.42) to compute upper bounds on R2
(
CF(Sk)

)
.

For F ∈ CF(Sk) satisfying (6.34) and (6.39), the variables in problem (6.41) are(
t, {c0

i }ki=1, {c1
i }ki=1

)
. This problem is LP with infinitely many constraints: each

(x, y) ∈ X induces a linear constraint. Such problems can be well approximated
using the cutting-plane approach introduced by Kelley [100]. Namely, we start with
a finite set Y ⊂ X and restrict the set of constraints in (6.41) to its finite subset
generated by (x, y) ∈ Y . As a result, we obtain a finite linear problem. Denote its
optimal solution by (F , t). Then t is a lower bound on R2

(
CF(Sk)

)
.

Next, we substitute F in (6.42) and find a feasible t. We compute the supremum
for each pair i, j ∈ [2k] with i + j ≥ 2k + 1 using the Karush-Kuhn-Tucker (KKT)
conditions. For each pair of intervals the inner maximization problem in (6.42) either
is linearly constrained or satisfies the Mangasarian-Fromovitz constraint qualification.
Therefore the optimum is among the KKT points, see, e.g., Section 3 in Eustaquio
et al. [63] for more details. All problems are simple and have similar structure.
Therefore we do not write the KKT conditions explicitly, but consider all possible
critical points from the first order conditions and from the boundary conditions. This
set contains all the KKT points, and thus the optimal one. At the end we choose the
point (x, y) with the maximal value of φF (x, y) among the critical points. We describe
the procedure of computing the critical points for function (6.40) at the end of this
subsection. Let t be the maximum of φF (x, y) over all pairs of intervals. The solution
(F , t) is feasible for problem (6.42). Thus t is an upper bound on R2

(
CF(Sk)

)
. Let

(x∗, y∗) be a point such that φF (x∗, y∗) = t. If |t − t| > 10−8, we proceed from
the beginning by restricting problem (6.41) to the updated set Y ← Y ∪ {(x∗, y∗)}.
Otherwise we stop.
To obtain numerical results, we use uniform sets Suk of the form (6.30). We work with
family CF(Suk ) from Definition 6.25, where the underlying family of functions F is
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defined in (6.39). We initialize the cutting-plane procedure with Y =
{

(x, y) : x, y ∈
Suk , xy ≥ 1

}
. The best obtained upper bound is indicated in bold in Table 6.3, it is

stronger than the currently best upper bound 1.5068.

Table 6.3 – Upper bounds on the best approximation ratio for 2 tasks

k 5 10 16 50 100
Upper bound on R2 1.5174 1.5096 1.5066 1.5060 1.5059964

We verify the upper bound 1.5059964 using exact arithmetics in a similar way as we
do it for the upper bounds in Table 6.2 of Section 6.4.3.

Possible critical points computation for function (6.40).

Next, we show how to find possible critical points for the function

φF (x, y) = y − 1/x +
(
1 + 1/x− y

)
F (y) + 1/xF (x),

with F defined in (6.34) using (6.39) on Ii × Ij such that i, j ∈ [2k], i+ j ≥ 2k + 1.
By construction, in each interval F is differentiable, and φF is differentiable on Ii×Ij
(the expression simplifies for i = 1 and j = 2k). The first derivatives of the function
φF (x, y) are:

∂φF (x, y)
∂x

= 1
x2

(
1− F (x)− F (y) + ∂F (x)

∂x
x

)
and

∂φF (x, y)
∂y

=1− F (y) +
(
1 + 1/x− y

)∂F (y)
∂y

.

Next, we consider the three possible cases for i, j. For each of these cases we
substitute F (x), F (y) from (6.34) and find the analytical solution to the system
∂φF (x,y)

∂x
= 0, ∂φF (x,y)

∂y
= 0. For this purpose we use Wolfram|Alpha [223]. The ob-

tained solution is denoted by (x∗, y∗).

Case 1. k < i ≤ 2k, 1 ≤ j ≤ k.

In this case F (x) = 1− c0
i − c1

ix, F (y) = c0
j + c1

j/y and y ∈ (0, 1). Hence

∂φF (x, y)
∂x

= 1
x2

(
c0
i − c0

j −
c1
j

y

)
,
∂φF (x, y)

∂y
≥ 0.

The latter holds since F (y) ≤ 1, F (y) is non-decreasing by construction, and y ∈
(0, 1). The sign of the derivative with respect to x does not depend on x. The func-
tion φF (x, y) is non-decreasing in y and is either non-increasing or non-decreasing in
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x. We not know this in advance, so we use the set
{

(si−1, sj), (si, sj)
}
as possible

critical points.

Case 2. k < i ≤ 2k, k < j ≤ 2k.

In this case F (x) = 1− c0
i − c1

ix, F (y) = 1− c0
j − c1

jy and y ≥ 1. Hence

∂φF (x, y)
∂x

=1/x2
(
c0
i − 1 + c0

j + c1
jy
)
,
∂φF (x, y)

∂y
= c0

j −
(
1 + 1/x− 2y

)
c1
j .

As in Case 1 , the sign of the derivative with respect to x does not depend on x,
hence φF (x, y) is non-increasing or non-decreasing in x. We do not know this in
advance, so we start with the set {si−1, si}× {sj−1, sj, y

∗} as possible critical points.
If i+j = 2k+1 (that is, the line xy = 1 crosses the rectangle Ii×Ij), we additionally
consider the point ( 1

y∗
, y∗). We check all pairs for feasibility and exclude the infeasible

ones.

Case 3. 1 ≤ i ≤ k, k < j ≤ 2k.

In this case F (x) = c0
i + c1

i/x, F (y) = 1− c0
j − c1

jy, and

∂φF (x, y)
∂x

= 1
x2

(
− c0

i + c0
j + c1

jy −
2c1
i

x

)
,
∂φF (x, y)

∂y
= c0

j −
(
1 + 1/x− 2y

)
c1
j .

The sign of the derivatives is unknown, so we start with the set {si−1, si, x
∗} ×

{sj−1, sj, y
∗} as possible critical points. If i + j = 2k + 1 (that is, the line xy = 1

crosses the rectangle Ii× Ij), we additionally consider the set
{

(x∗, 1
x∗

), ( 1
y∗
, y∗)

}
. We

check all resulting pairs for feasibility and exclude the infeasible ones.

When x ∈ I1 or y ∈ I2k, φF (x, y) simplifies by construction of (6.34). In our compu-
tations we analyze these situations separately.

6.5.3 New lower bound for two tasks

The cutting-plane approach from Section 6.5.1 generates not only the upper bound
with the corresponding CDF, but also the set of points Y . Using Y , we build a
new set S∗k of the form (6.26), which is not uniform as in (6.30). We consider all
(x, y) ∈ Y involved in the binding constraints of problem (6.41) at the last cutting-
plane iteration. Next, we take the corresponding x, y and their reciprocals, order
ascending, round to the 8th digit and obtain S∗k with k = 82. For this set the lower
bound Rn(S∗k) from problem (6.24) is 1.5059953, which is stronger than our lower
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bound from Table 6.2. As a result, the lower and upper bounds become very close
to each other: |R2 − 1.505996| ≤ 10−6.

6.6 Conclusion and questions for further research

We consider randomized MIS algorithms to the minimum makespan problem on
two unrelated parallel selfish machines. We propose a new Min−Max formulation
(6.19) to find Rn, the best approximation ratio over randomized MIS algorithms. The
minimization in (6.19) goes over distributions and the maximization goes over R2

++.
The problem is generally intractable. Therefore we build upper and lower bounds
on the optimal value. To obtain the lower bound, we solve the initial problem on a
finite subset of R2

++. Using the resulting solution, we construct a piecewise constant
cumulative distribution function (CDF) for which the worst-case performance is easy
to estimate. In this way, we obtain the upper bound on Rn. We implement this
approach and find new bound for n ∈ {2, 3, 4} tasks.
For n = 2 the best CDF is a known function of univariate margins (copula). We
parametrize these margins as piecewise rational functions of degree at most one. The
resulting upper bound problem (6.36) is a linear semi-infinite problem. We solve it
by the cutting-plane approach. This approach provides the upper bound 1.5059964
and the CDF for which the algorithm achieves this bound.
As a side result of the cutting-plane approach, we obtain the lower bound 1.5059953,
so |R2 − 1.505996| ≤ 10−6. This work leaves several questions for future research.
First, our approach could be made more numerically efficient to provide better bounds
for m = 2 machines. For example, column generation could solve lower bound prob-
lem (6.23) on denser grids and for the larger number of tasks n. Parametrizing
distributions of more than two variables could improve the results for the upper
bound problem (6.23). Second, we work with m = 2, machines but there are al-
gorithms for m > 2 machines with similar properties, e.g., by Lu and Yu [132]. It
would be interesting to see how our approach works in the case of more than two
machines. Finally, the piecewise- and pointwise- constructions could be suitable for
other problems with optimization over low dimensional functions, including other
problems from algorithmic mechanism design.
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