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Bas Dietzenbacher∗† Elena Yanovskaya∗‡
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Abstract

This paper axiomatically studies the equal split-off set (cf. Branzei et al. (2006))
as a solution for cooperative games with transferable utility. This solution extends the
well-known Dutta and Ray (1989) solution for convex games to arbitrary games. By
deriving several characterizations, we explore the relation of the equal split-off set with
various consistency notions.
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1 Introduction

A solution for transferable utility games prescribes how to allocate joint revenues among
cooperating players while taking into account their economic opportunities in coalitions.
A well-known egalitarian solution for convex transferable utility games was defined in the
seminal paper of Dutta and Ray (1989). This solution can be considered as a compromise be-
tween egalitarianism and stability, where egalitarianism is formalized by Lorenz domination
and stability is modeled by core-like participation constraints. As a consequence, the Dutta
and Ray (1989) solution assigns to any convex game the unique Lorenz dominating core
allocation. Hougaard et al. (2001), Arin and Iñarra (2001), and Arin et al. (2008) extended
this approach to balanced games and analyzed Lorenz undominated core allocations.

In line with the ideas of Dutta and Ray (1989), and inspired by the computational
algorithm of their solution, Branzei et al. (2006) introduced the equal split-off set as an
extension to all transferable utility games. Imagine a group of cooperating players believing
in equality as a desirable social goal and facing the problem of sharing their joint revenues.
The arbitrator proposes equal division. However, some coalitions may complain since the
members can obtain more by equal division of the corresponding coalitional worth. The
arbitrator selects one coalition with the highest complaint, equally divides the worth among
its members, and lets them leave with their assigned payoffs. The remaining players now
face a reduced game in which the worth of a coalition equals the joint marginal contribution
of its members to the leaving players in the previous game. Again, the arbitrator proposes
equal division and the process is repeated until all players have left. The equal split-off set
consists of all allocations which can be generated by this procedure. Sanchez-Soriano et al.
(2014) showed that all equal split-off set allocations Lorenz dominate all core allocations.
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Dutta (1990) obtained two characterizations of the Dutta and Ray (1989) solution for
convex games. The main axioms in these characterizations are based on the consistency
principle. Imagine a group of cooperating players agreeing on applying a certain solution
concept for the allocation of their joint revenues. Suppose that some players leave with their
assigned payoffs and that the remaining players reevaluate their payoffs by applying the
solution to a reduced game. The solution is consistent if it prescribes for this reduced game
the same allocation as for the original game. Thomson (2011) provides a general introduction
to the consistency principle.

The exact interpretation of the consistency principle in cooperative games depends on
the axiomatic formulation, which is mainly determined by the specific definition of reduced
games. The results of Dutta (1990) involve the formulations proposed by Davis and Maschler
(1965) and Hart and Mas-Colell (1989), to which we refer as max-consistency and self-
consistency, respectively. Klijn et al. (2000) obtained similar results using weak variants of
these axioms which only require consistent allocations in situations where the richest players
leave with their assigned payoffs, to which we refer as rich-restricted consistency. Moreover,
they derived a third characterization based on an alternative consistency formulation which
closely resembles the definition of the equal split-off set, to which we refer as rich-restricted
marginal-consistency.

Recently, Llerena and Mauri (2017) introduced the class of exact partition games and
wondered whether the characterizations of Klijn et al. (2000) on convex games can be ex-
tended to this larger class. We show that the class of exact partition games is exactly the
class of games for which the equal split-off set intersects the core and we provide a full
answer to this open question. In particular, we show that the characterizations based on
max-consistency and marginal-consistency can be extended to exact partition games, but the
characterization based on self-consistency cannot. Moreover, we weaken the rather specific
rich-restricted marginal-consistency to the rich-restricted version of the well-known consis-
tency notion introduced by Moulin (1985), to which we refer as complement-consistency.
Both max-consistency and complement-consistency have been used in axiomatizations of
the core, respectively by Peleg (1986) and Tadenuma (1992). We show that rich-restricted
complement-consistency can also play a similar role as rich-restricted max-consistency in the
extended characterization of Klijn et al. (2000) on the class of exact partition games. As a
by-product, we provide a new characterization of the Dutta and Ray (1989) solution on the
class of convex games.

Next to consistency notions, the properties equal division stability and feasible richness
play a key role in the results of Klijn et al. (2000) on convex games and in our results on exact
partition games. On the class of all transferable utility games, the equal split-off set violates
equal division stability. Moreover, it violates rich-restricted max-consistency. However, the
equal split-off set does satisfy a weak form of equal division stability and rich-restricted
self-, complement-, and marginal-consistency. We show that all solutions satisfying feasible
richness, weak equal division stability, and rich-restricted self-, complement-, or marginal-
consistency on the class of all games necessarily prescribe equal split-off set allocations.

This paper is organized as follows. Section 2 provides preliminary notions and notations.
Section 3 formally introduces the equal split-off set and presents some elementary results.
Section 4 axiomatically characterizes the equal split-off set on the class of exact partition
games and Section 5 derives maximality results on the class of all games.
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2 Preliminaries

Let N be a nonempty and finite set. Denote 2N = {S | S ⊆ N}. A partition of N is a
collection {T1, . . . , Tm} ⊆ 2N \ {∅} such that

⋃m
k=1 Tk = N and Tk ∩ T` = ∅ for each pair

k, ` ∈ {1, . . . ,m} with k 6= `. An order of N is a bijection π : {1, . . . , |N |} → N . Let ΠN

denote the set of all orders of N . An allocation x ∈ RN Lorenz dominates y ∈ RN , denoted
by x �L y, if minS∈2N :|S|=k

∑
i∈S xi ≥ minS∈2N :|S|=k

∑
i∈S yi for each k ∈ {1, . . . , |N |}, with

at least one strict inequality. For all x ∈ RN , we define Rx0 = ∅ and for each k ∈ {1, . . . , |N |},

Rxk =
{
i ∈ N

∣∣ ∀j ∈ N \Rxk−1 : xj ≤ xi
}

and axk = xi for all i ∈ Rxk \Rxk−1.

A transferable utility game is a pair (N, v) where N is a nonempty and finite set of players
and v : 2N → R assigns to each coalition S ∈ 2N its worth v(S) ∈ R such that v(∅) = 0. Let
Γall denote the class of all games. The subgame (T, v|T ) of (N, v) ∈ Γall on T ∈ 2N \ {∅} is
defined by v|T (S) = v(S) for all S ∈ 2T .

A solution σ on a class of games Γ ⊆ Γall assigns to each (N, v) ∈ Γ a set of payoff
allocations σ(N, v) ⊆ RN such that

∑
i∈N xi = v(N) for all x ∈ σ(N, v). A solution σ on a

class of games Γ ⊆ Γall is a maximal solution on Γ satisfying certain properties if for each
solution σ′ on Γ satisfying these properties, σ′(N, v) ⊆ σ(N, v) for all (N, v) ∈ Γ.

Throughout this paper, Γ is the generic notation for a class of games, (N, v) is the generic
notation for a game in Γ, and σ is the generic notation for a solution on Γ.

Let (N, v) be a game. The core is given by

C(N, v) =

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N),∀S ∈ 2N :
∑
i∈S

xi ≥ v(S)

}
.

The Weber set is given by

W (N, v) = conv
({
µπ(N, v)

∣∣ π ∈ ΠN
})
,

where µπ(N, v) ∈ RN corresponding to π ∈ ΠN is for each k ∈ {1, . . . , |N |} given by

µππ(k)(N, v) = v({π(`) ∈ N | ` ≤ k})− v({π(`) ∈ N | ` < k}).

Note that W (N, v) 6= ∅. Weber (1988) and Derks (1992) showed that C(N, v) ⊆ W (N, v).
A game (N, v) is convex (cf. Shapley (1971) and Ichiishi (1981)) if C(N, v) = W (N, v). Let
Γconv denote the class of all convex games.

3 The equal split-off set

In this section, we formally introduce the equal split-off set as a solution for all transferable
utility games and present some elementary results. The equal split-off set is based on the
computational algorithm of the egalitarian Dutta and Ray (1989) solution for convex games.
Consider an arbitrary cooperative game for which we face the problem of sharing the worth
of the grand coalition among the players. One of the coalitions with highest average worth
is selected and the members equally divide this worth and leave. The remaining players
determine the joint marginal contribution of each subgroup to the departed players in the
game. One of the subgroups with highest average contribution is selected and the members
equally divide this contribution and leave. This process continues and results in a payoff
allocation for the players. The equal split-off set consists of all allocations which can be
generated by this procedure.

3



Definition 1 (cf. Branzei et al. (2006))
Let (N, v) be a game. Define N0 = N , v0 = v, and T0 = ∅. The equal split-off set
ESOS(N, v) consists of all payoff allocations x ∈ RN for which there exists a partition
{T1, . . . , Tm} of N such that for each k ∈ {1, . . . ,m},

Tk ∈ argmax
S∈2Nk\{∅}

vk(S)

|S|
and xi = max

S∈2Nk\{∅}

vk(S)

|S|
for all i ∈ Tk,

where (Nk, vk) is the game defined by

Nk = Nk−1 \ Tk−1 and vk(S) = vk−1(S ∪ Tk−1)− vk−1(Tk−1) for all S ∈ 2Nk .

Example 1
Let (N, v) with N = {1, 2, 3} be the game given by

v(S) =


9 if S = N ;

8 if S = {1, 2};
5 if S = {1};
0 otherwise.

The equal split-off set is ESOS(N, v) = {(5, 3, 1)} corresponding to partition {{1}, {2}, {3}}.
Note that ESOS(N, v) ⊆ C(N, v). 4

Example 2
Let (N, v) with N = {1, 2, 3} be the game given by

v(S) =

{
1 if S ∈ {{1, 2}, {1, 3}, N};
0 otherwise.

The equal split-off set is ESOS(N, v) = {( 1
2 ,

1
2 , 0), ( 1

2 , 0,
1
2 )} corresponding to partitions

{{1, 2}, {3}} and {{1, 3}, {2}}. The core is C(N, v) = {(1, 0, 0)}. 4

Example 3
Let (N, v) with N = {1, 2, 3} be the game given by

v(S) =

{
1 if |S| ≥ 2;

0 otherwise.

The equal split-off set is ESOS(N, v) = {( 1
2 ,

1
2 , 0), ( 1

2 , 0,
1
2 ), (0, 1

2 ,
1
2 )} corresponding to par-

titions {{1, 2}, {3}}, {{1, 3}, {2}}, and {{2, 3}, {1}}. The core is C(N, v) = ∅. 4

Note that for each x ∈ ESOS(N, v) with corresponding {T1, . . . , Tm} the following holds:

• xi = xj for all i, j ∈ Tk with k ∈ {1, . . . ,m};

• xi ≥ xj for all i ∈ Tk and j ∈ T` with k, ` ∈ {1, . . . ,m} and k ≤ `;

•
∑k
`=1

∑
i∈T`

xi = v(
⋃k
`=1 T`) for each k ∈ {1, . . . ,m}.

This means that for each x ∈ ESOS(N, v),

•
∑
i∈Rx

k
xi = v(Rxk) for each k ∈ {1, . . . , |N |};

• axk =
v(Rx

k)−v(Rx
k−1)

|Rx
k\R

x
k−1|

for each k ∈ {1, . . . , |N |} with Rxk−1 6= N .
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The following two punctual properties for solutions play a central role throughout this paper.

Nonemptiness
σ(N, v) 6= ∅.

Feasible richness
for each x ∈ σ(N, v),

∑
i∈Rx

1
xi ≤ v(Rx1).

Nonemptiness requires that a solution assigns to any game at least one allocation. Feasible
richness requires that the richest players should be able to obtain their payoffs by themselves.1

Clearly, the equal split-off set satisfies nonemptiness and feasible richness. The core violates
these properties in general. Sanchez-Soriano et al. (2014) showed that each equal split-off
set allocation Lorenz dominates each (other) core allocation.

Theorem (cf. Sanchez-Soriano et al. (2014))
Let (N, v) be a game. For each x ∈ ESOS(N, v) and each y ∈ C(N, v) \ {x}, x �L y.

This result implies that the intersection of the equal split-off set and the core consists of
at most one allocation. This also follows from the results of Llerena and Mauri (2016). We
show that the equal split-off set consists of one allocation if it intersects the core.

Lemma 1
Let (N, v) be a game. If ESOS(N, v) ∩ C(N, v) 6= ∅, then |ESOS(N, v)| = 1.

Proof. Assume that ESOS(N, v) ∩ C(N, v) 6= ∅. Let x ∈ ESOS(N, v) ∩ C(N, v) and let
y ∈ ESOS(N, v). We show by induction that Rxk = Ryk for all k ∈ {1, . . . , |N |}. Clearly,
Rx0 = Ry0 . Let k ∈ {1, . . . , |N |} and assume that Rx` = Ry` for all ` < k. Suppose that
Rxk−1 6= N . Since x, y ∈ ESOS(N, v),

(Rxk \Rxk−1), (Ryk \R
y
k−1) ∈ argmax

S∈2
N\Rx

k−1\{∅}

v(S ∪Rxk−1)− v(Rxk−1)

|S|
.

Since x ∈ C(N, v), for all T ∈ argmax
S∈2

N\Rx
k−1\{∅}

v(S∪Rx
k−1)−v(Rx

k−1)

|S| ,∑
i∈T

xi =
∑

i∈T∪Rx
k−1

xi −
∑

i∈Rx
k−1

xi ≥ v(T ∪Rxk−1)− v(Rxk−1) = |T |axk =
∑
i∈T

axk ≥
∑
i∈T

xi.

This means that

Rxk \Rxk−1 =
⋃

argmax
S∈2

N\Rx
k−1\{∅}

v(S ∪Rxk−1)− v(Rxk−1)

|S|
.

Suppose that Rxk 6= Ryk. Then

ayk+1 = max
S∈2N\Ry

k\{∅}

v(S ∪Ryk)− v(Ryk)

|S|
≥
v(Rxk)− v(Ryk)

|Rxk \R
y
k|

=
|Rxk \R

y
k|a

y
k

|Rxk \R
y
k|

= ayk.

This is a contradiction. Hence, Rxk = Ryk for all k ∈ {1, . . . , |N |}. Since x, y ∈ ESOS(N, v),
this implies that x = y.

1Klijn et al. (2000) called this the bounded maximum payoff property and Llerena and Mauri (2017)
called this property rich player feasibility.
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The following example shows that the converse of Lemma 1 does not hold, i.e. the equal
split-off set does not necessarily intersect the core if it consists of one allocation.

Example 4
Let (N, v) with N = {1, 2, 3, 4} be the game given by

v(S) =


8 if S = N ;

6 if S = {1, 2};
5 if S = {1, 3};
0 otherwise.

The equal split-off set is ESOS(N, v) = {(3, 3, 1, 1)} with corresponding {{1, 2}, {3, 4}}.
Clearly, |ESOS(N, v)| = 1 and ESOS(N, v) * C(N, v). We know that (3, 3, 1, 1) Lorenz
dominates each allocation in C(N, v). 4

If the equal split-off set intersects the core, then it consists of the Lorenz dominating
core allocation. Moreover, it is contained in the Weber set since the core is contained in the
Weber set. We show that the equal split-off set is contained in the Weber set in general.

Theorem 1
Let (N, v) be a game. Then ESOS(N, v) ⊆W (N, v).

Proof. Let x ∈ ESOS(N, v) with corresponding partition {T1, . . . , Tm}. Let k ∈ {1, . . . ,m}.
Then Tk ∈ argmaxS∈2Nk\{∅}

vk(S)
|S| and xi = vk(Tk)

|Tk| for all i ∈ Tk. This means that

∑
i∈Tk

xi =
∑
i∈Tk

vk(Tk)

|Tk|
= |Tk|

vk(Tk)

|Tk|
= vk(Tk) = vk|Tk

(Tk)

and for all S ∈ 2Tk \ {∅},∑
i∈S

xi =
∑
i∈S

vk(Tk)

|Tk|
≥
∑
i∈S

vk(S)

|S|
= |S|vk(S)

|S|
= vk(S) = vk|Tk

(S),

so (xi)i∈Tk
∈ C(Tk, vk|Tk

). This implies that (xi)i∈Tk
∈W (Tk, vk|Tk

), i.e. there is wk ∈ RΠTk

+

with
∑
πk∈ΠTk w

k
πk

= 1 such that for all i ∈ Tk, denoting Pπk
i = {j ∈ Tk | π−1

k (j) < π−1
k (i)},

xi =
∑

πk∈ΠTk

wkπk
µπk
i (Tk, vk|Tk

)

=
∑

πk∈ΠTk

wkπk
(vk|Tk

(Pπk
i ∪ {i})− vk|Tk

(Pπk
i ))

=
∑

πk∈ΠTk

wkπk
(vk(Pπk

i ∪ {i})− vk(Pπk
i ))

=
∑

πk∈ΠTk

wkπk

((
v(

k−1⋃
`=1

T` ∪ Pπk
i ∪ {i})− v(

k−1⋃
`=1

T`)

)
−

(
v(

k−1⋃
`=1

T` ∪ Pπk
i )− v(

k−1⋃
`=1

T`)

))

=
∑

πk∈ΠTk

wkπk

(
v(

k−1⋃
`=1

T` ∪ Pπk
i ∪ {i})− v(

k−1⋃
`=1

T` ∪ Pπk
i )

)
.
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Define w ∈ RΠN

+ by

wπ =

{∏m
k=1 w

k
πk

if π = (π1, . . . , πm) with πk ∈ ΠTk for each k ∈ {1, . . . ,m};
0 otherwise.

Then ∑
π∈ΠN

wπ =
∑

π1∈ΠT1

· · ·
∑

πm∈ΠTm

m∏
k=1

wkπk

=
∑

π1∈ΠT1

· · ·
∑

πm∈ΠTm

w1
π1
· · ·wmπm

=
∑

π1∈ΠT1

w1
π1
· · ·

∑
πm∈ΠTm

wmπm

= 1.

Let i ∈ N and let k ∈ {1, . . . ,m} such that i ∈ Tk. Then∑
π∈ΠN

wπµ
π
i (N, v) =

∑
π1∈ΠT1

· · ·
∑

πm∈ΠTm

w1
π1
· · ·wmπm

µπi (N, v)

=
∑

π1∈ΠT1

w1
π1
· · ·

∑
πk∈ΠTk

wkπk
µπk
i (Tk, vk|Tk

) · · ·
∑

πm∈ΠTm

wmπm

=
∑

πk∈ΠTk

wkπk
µπk
i (Tk, vk|Tk

)

= xi.

Hence, x ∈W (N, v).

A class of games for which the equal split-off set intersects the core is the class of convex
games. For convex games, Branzei et al. (2006) showed that the equal split-off set coincides
with the Dutta and Ray (1989) solution. In the next section, we study the equal split-off set
on the full class of games for which it intersects the core.

4 Exact partition games

In this section, we axiomatically study the equal split-off set on the class of exact partition
games and derive several characterizations based on various consistency notions. A game
is an exact partition game if there is a core allocation for which all richest players whose
assigned payoffs belong to the k highest ones can obtain their payoffs by themselves.

Definition 2 (cf. Llerena and Mauri (2017))
A game (N, v) is an exact partition game if there exists x ∈ C(N, v) such that for each
k ∈ {1, . . . , |N |},

∑
i∈Rx

k
xi = v(Rxk).

Let Γexp denote the class of all exact partition games. Clearly, Γconv ⊆ Γexp ⊆ Γall. We
show that the equal split-off set intersects the core of a game if and only if it is an exact
partition game.

7



Lemma 2
Let (N, v) be a game. Then ESOS(N, v) ∩ C(N, v) 6= ∅ if and only if (N, v) ∈ Γexp.

Proof. Assume that ESOS(N, v) ∩ C(N, v) 6= ∅. Let x ∈ ESOS(N, v) ∩ C(N, v). Since
x ∈ ESOS(N, v),

∑
i∈Rx

k
xi = v(Rxk) for each k ∈ {1, . . . , |N |}. Hence, (N, v) is an exact

partition game.
Assume that (N, v) is an exact partition game. Let x ∈ C(N, v) such that for each

k ∈ {1, . . . , |N |},
∑
i∈Rx

k
xi = v(Rxk). Let k ∈ {1, . . . , |N |} such that Rxk−1 6= N . Then

axk =
v(Rx

k)−v(Rx
k−1)

|Rx
k\R

x
k−1|

. Since x ∈ C(N, v), for all S ∈ 2N\R
x
k−1 \ {∅},

axk =

∑
i∈S a

x
k

|S|
≥
∑
i∈S xi

|S|
=

∑
i∈S∪Rx

k−1
xi −

∑
i∈Rx

k−1
xi

|S|
≥
v(S ∪Rxk−1)− v(Rxk−1)

|S|
.

This means that

Rxk \Rxk−1 ∈ argmax
S∈2

N\Rx
k−1\{∅}

v(S ∪Rxk−1)− v(Rxk−1)

|S|
.

Hence, x ∈ ESOS(N, v).

The following egalitarian stability property plays a central role throughout this section.

Equal division stability

for each x ∈ σ(N, v) and each S ∈ 2N \ {∅}, there is i ∈ S such that xi ≥ v(S)
|S| .

Equal division stability states that no coalition should be better off by equally dividing the
worth among its members. By Lemma 1 and Lemma 2, the equal split-off set satisfies equal
division stability on the class of exact partition games since it is contained in the core.

Llerena and Mauri (2017) formulated the open question whether the characterizations
of the Dutta and Ray (1989) solution for convex games obtained by Klijn et al. (2000)
can be extended to the class of exact partition games. Klijn et al. (2000) reformulated the
characterizations of Dutta (1990) based on the consistency principle. Consider a cooperative
game for which we apply a certain solution to allocate the worth of the grand coalition
among the players. Some players leave with their assigned payoffs and the remaining players
reevaluate their payoffs on the basis of a reduced game. The solution is consistent if it
prescribes the same allocation for the reduced game as for the original game. Davis and
Maschler (1965) defined the worth of a coalition in such a reduced game as the maximal joint
surplus in cooperation with any subgroup of departed players when these departed players
are assigned their solution payoffs. Peleg (1986) used the corresponding consistency axiom,
to which we refer as max-consistency, in a characterization of the core. Klijn et al. (2000)
used a weaker version which only requires consistent allocations when all richest players leave,
to which we refer as rich-restricted max-consistency, in combination with feasible richness
and equal division stability to characterize the Dutta and Ray (1989) solution.

Rich-restricted max-consistency
for each x ∈ σ(N, v) with Rx1 6= N , xN\Rx

1
∈ σ(N \Rx1 , vxmax), where

vxmax(S) =


v(N)−

∑
i∈Rx

1
xi if S = N \Rx1 ;

maxQ⊆Rx
1
{v(S ∪Q)−

∑
i∈Q xi} if ∅ ⊂ S ⊂ N \Rx1 ;

0 if S = ∅.
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Theorem (cf. Klijn et al. (2000))
The Dutta and Ray (1989) solution is the unique solution on Γconv satisfying nonemptiness,
feasible richness, equal division stability, and rich-restricted max-consistency.

Llerena and Mauri (2017) showed that the equal split-off set satisfies rich-restricted max-
consistency on the class of exact partition games. We show that this characterization in
terms of nonemptiness, feasible richness, equal division stability, and rich-restricted max-
consistency can be extended to the class of exact partition games. This result is stronger
than the result of Llerena and Mauri (2017) in which the axiom core selection is used instead
of the weaker equal division stability axiom. The proof is provided in the Appendix.

Theorem 2
The equal split-off set is the unique solution on Γexp satisfying nonemptiness, feasible rich-
ness, equal division stability, and rich-restricted max-consistency.

The empty solution, which assigns to any exact partition game the empty set, satisfies
feasible richness, equal division stability, and rich-restricted max-consistency, but violates
nonemptiness. The solution which coincides with the core for any two-player game, and co-
incides with the equal split-off set for any other exact partition game, satisfies nonemptiness,
equal division stability, and rich-restricted max-consistency, but violates feasible richness.
The equal division solution, which divides the worth of the grand coalition in any exact
partition game equally among the players, satisfies nonemptiness, feasible richness, and rich-
restricted max-consistency, but violates equal division stability. The solution which assigns
(5, 4, 0) to the game in Example 1, and coincides with the equal split-off set for any other
exact partition game, satisfies nonemptiness, feasible richness, and equal division stability,
but violates rich-restricted max-consistency. This means that the properties in Theorem 2
are independent.

Hart and Mas-Colell (1989) proposed a reduced game in which the worth of a coalition is
defined as the total payoff to the members in the joint subgame with all the departed players.
Dutta (1990) defined the corresponding consistency axiom for general multi-valued solutions,
to which we refer as self-consistency. Klijn et al. (2000) showed that the corresponding rich-
restricted version can replace rich-restricted max-consistency in their characterization of the
Dutta and Ray (1989) solution.

Rich-restricted self-consistency
for each x ∈ σ(N, v) with Rx1 6= N , xN\Rx

1
∈ σ(N \Rx1 , v

fx

self ) for a selector fx of σ, where

vf
x

self (S) =
∑
i∈S

fxi (S ∪Rx1 , v|S∪Rx
1
) for all S ⊆ N \Rx1 .

Theorem (cf. Klijn et al. (2000))
The Dutta and Ray (1989) solution is the unique solution on Γconv satisfying nonemptiness,
feasible richness, equal division stability, and rich-restricted self-consistency.

As the following example shows, the equal split-off set violates rich-restricted self-consistency
on the class of exact partition games, since subgames of exact partition games are not
necessarily exact partition games. This means that the characterization of Klijn et al. (2000)
involving rich-restricted self-consistency cannot be extended to this domain.
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Example 5
Let (N, v) ∈ Γexp with N = {1, 2, 3} be the exact partition game from Example 1. Then

ESOS(N, v) = {(5, 3, 1)}, R(5,3,1)
1 = {1}, and for any selector f (5,3,1) of ESOS,

vf
(5,3,1)

self ({3}) = f
(5,3,1)
3 ({1, 3}, v|{1,3}),

where

v|{1,3}(S) =

{
5 if S = {1};
0 otherwise.

Since C({1, 3}, v|{1,3}) = ∅, we have ({1, 3}, v|{1,3}) /∈ Γexp. This means that the equal
split-off set violates rich-restricted self-consistency on the class of exact partition games. 4

Klijn et al. (2000) proposed a third type of reduced game in which the worth of a
coalition is defined as the joint marginal contribution to the departed players. We refer to
the corresponding consistency axiom as marginal-consistency. Klijn et al. (2000) showed that
rich-restricted marginal-consistency can replace feasible richness and rich-restricted max- or
self-consistency in the characterization of the Dutta and Ray (1989) solution.

Rich-restricted marginal-consistency
for each x ∈ σ(N, v) with Rx1 6= N , xN\Rx

1
∈ σ(N \Rx1 , vxmarg), where

vxmarg(S) = v(S ∪Rx1)− v(Rx1) for all S ⊆ N \Rx1 .

Theorem (cf. Klijn et al. (2000))
The Dutta and Ray (1989) solution is the unique solution on Γconv satisfying nonemptiness,
equal division stability, and rich-restricted marginal-consistency.

We show that this characterization can be extended to the class of exact partition games.

Theorem 3
The equal split-off set is the unique solution on Γexp satisfying nonemptiness, equal division
stability, and rich-restricted marginal-consistency.

The empty solution satisfies equal division stability and rich-restricted marginal-consistency,
but violates nonemptiness. The equal division solution satisfies nonemptiness and rich-
restricted marginal-consistency, but violates equal division stability. The core satisfies non-
emptiness and equal division stability, but violates rich-restricted marginal-consistency. This
means that the properties in Theorem 3 are independent.

To our knowledge, the rather specific marginal-consistency has never been applied else-
where in the literature. We show that rich-restricted marginal-consistency is in fact stronger
than the rich-restricted variant of the well-known consistency axiom proposed by Moulin
(1985), to which we refer as complement-consistency. In the corresponding reduced game,
the worth of a coalition is defined as the joint surplus in cooperation with all departed players
when they are assigned their solution payoffs.

Rich-restricted complement-consistency
for each x ∈ σ(N, v) with Rx1 6= N , xN\Rx

1
∈ σ(N \Rx1 , vxcomp), where

vxcomp(S) =

{
v(S ∪Rx1)−

∑
i∈Rx

1
xi if ∅ ⊂ S ⊆ N \Rx1 ;

0 if S = ∅.
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Lemma 3
If a solution satisfies rich-restricted marginal-consistency, then it satisfies rich-restricted
complement-consistency.

Proof. Let Γ ⊆ Γall be a class of games and let σ be a solution on Γ. Assume that σ satisfies
rich-restricted marginal-consistency. Let (N, v) ∈ Γ and let x ∈ σ(N, v) such that Rx1 6= N .
By rich-restricted marginal-consistency, xN\Rx

1
∈ σ(N \Rx1 , vxmarg). For all S ⊆ N \Rx1 ,

vxcomp(S) = v(S ∪Rx1)−
∑
i∈Rx

1

xi = v(S ∪Rx1)−

∑
i∈N

xi −
∑

i∈N\Rx
1

xi


= v(S ∪Rx1)−

(
v(N)− vxmarg(N \Rx1)

)
= v(S ∪Rx1)− (v(N)− (v(N)− v(Rx1)))

= v(S ∪Rx1)− v(Rx1) = vxmarg(S).

This means that vxcomp = vxmarg and xN\Rx
1
∈ σ(N \ Rx1 , vxcomp). Hence, σ satisfies rich-

restricted complement-consistency.

The core violates rich-restricted marginal-consistency, but satisfies complement-consistency.
Tadenuma (1992) used complement-consistency in a characterization of the core. We de-
rive an alternative characterization of the equal split-off set on the class of exact partition
games in terms of nonemptiness, feasible richness, equal division stability, and rich-restricted
complement-consistency.

Theorem 4
The equal split-off set is the unique solution on Γexp satisfying nonemptiness, feasible rich-
ness, equal division stability, and rich-restricted complement-consistency.

The empty solution satisfies feasible richness, equal division stability, and rich-restricted
complement-consistency, but violates nonemptiness. The solution which coincides with the
core for any two-player game, and coincides with the equal split-off set for any other
exact partition game, satisfies nonemptiness, equal division stability, and rich-restricted
complement-consistency, but violates feasible richness. The equal division solution satis-
fies nonemptiness, feasible richness, and rich-restricted complement-consistency, but vio-
lates equal division stability. The solution which assigns (5, 4, 0) to the game in Exam-
ple 1, and coincides with the equal split-off set for any other exact partition game, satis-
fies nonemptiness, feasible richness, and equal division stability, but violates rich-restricted
complement-consistency. This means that the properties in Theorem 4 are independent.

Since complement-reduced convex games are convex games, the result of Theorem 4 is
also valid on the class of convex games, providing a new characterization of the Dutta and
Ray (1989) solution.

Theorem 5
The Dutta and Ray (1989) solution is the unique solution on Γconv satisfying nonemptiness,
feasible richness, equal division stability, and rich-restricted complement-consistency.

5 Arbitrary games

In this section, we study the equal split-off set on the class of all transferable utility games.
On this domain, equal division stability is incompatible with nonemptiness, which implies
that the equal split-off set violates equal division stability. However, the equal split-off set
generally does satisfy a weak form of equal division stability.

11



Weak equal division stability

for each x ∈ σ(N, v), there are T ∈ argmaxS∈2N\{∅}
v(S)
|S| and i ∈ T such that xi ≥ v(T )

|T | .

Weak equal division stability states that there should be a coalition with maximal average
worth which is not better off by equally dividing the worth among its members. Clearly, the
equal split-off set satisfies weak equal division stability on the class of all games.

In fact, all characterizations on the class of exact partition games in the previous section
can be strengthened by weakening equal division stability to weak equal division stability.
This does not imply that these stronger characterizations are also valid on the class of all
games. As the following example shows, the equal split-off set violates rich-restricted max-
consistency on the class of all games.

Example 6
Let (N, v) ∈ Γall with N = {1, 2, 3, 4} be the game from Example 4. Then ESOS(N, v) =

{(3, 3, 1, 1)}, R(3,3,1,1)
1 = {1, 2}, and

v(3,3,1,1)
max (S) =

{
2 if S ∈ {{3}, {3, 4}};
0 otherwise.

This means that ESOS({3, 4}, v(3,3,1,1)
max ) = {(2, 0)}, so (1, 1) /∈ ESOS({3, 4}, v(3,3,1,1)

max ).
Hence, the equal split-off set violates rich-restricted max-consistency on the class of all
games. 4

Surprisingly, in contrast to the class of exact partition games, the equal split-off set does
satisfy rich-restricted self-consistency on the class of all games. Moreover, we show that all
solutions satisfying feasible richness, weak equal division stability, and rich-restricted self-
consistency necessarily prescribe equal split-off set allocations. To our knowledge, this is the
first axiomatic result of a multi-valued solution involving self-consistency.

Lemma 4
The equal split-off set satisfies rich-restricted self-consistency on Γall.

Proof. Let (N, v) ∈ Γall and let x ∈ ESOS(N, v) such that Rx1 6= N . Then
∑
i∈Rx

1
xi =

v(Rx1) and Rx1 ∈ argmaxT∈2N\{∅}
v(T )
|T | . Let S ⊆ N \Rx1 . Then

Rx1 ∈ argmax
T∈2S∪Rx

1 \{∅}

v|S∪Rx
1
(T )

|T |
.

This means that there is a selector fx of ESOS such that fxi (S ∪ Rx1 , v|S∪Rx
1
) = xi for all

i ∈ Rx1 . Let fx be such a selector of ESOS. Then

vf
x

self (S) =
∑
i∈S

fxi (S ∪Rx1 , v|S∪Rx
1
)

=
∑

i∈S∪Rx
1

fxi (S ∪Rx1 , v|S∪Rx
1
)−

∑
i∈Rx

1

fxi (S ∪Rx1 , v|S∪Rx
1
)

= v(S ∪Rx1)−
∑
i∈Rx

1

xi

= v(S ∪Rx1)− v(Rx1).

This means that xN\Rx
1
∈ ESOS(N \ Rx1 , v

fx

self ). Hence, the equal split-off set satisfies
rich-restricted self-consistency on Γall.
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Theorem 6
The equal split-off set is the maximal solution on Γall satisfying feasible richness, weak equal
division stability, and rich-restricted self-consistency.

The solution which coincides with the core for any game with at most two players, and
coincides with the empty set for any other game, satisfies equal division stability and rich-
restricted self-consistency, but violates feasible richness. The equal division solution satisfies
feasible richness and rich-restricted self-consistency, but violates weak equal division stability.
The solution which assigns (5, 4, 0) to the game in Example 1, and coincides with the equal
split-off set for any other game, satisfies feasible richness and weak equal division stability,
but violates rich-restricted self-consistency. This means that the properties in Theorem 6
are independent.

Whereas max-consistency and complement-consistency played symmetric roles in the
characterizations on the class of exact partition games, the equal split-off set satisfies rich-
restricted complement-consistency on the class of all games although it violates rich-restricted
max-consistency. Moreover, all solutions satisfying feasible richness, weak equal division
stability, and rich-restricted complement-consistency necessarily select from the equal split-
off set.

Theorem 7
The equal split-off set is the maximal solution on Γall satisfying feasible richness, weak equal
division stability, and rich-restricted complement-consistency.

The core satisfies equal division stability and rich-restricted complement-consistency,
but violates feasible richness. The equal division solution satisfies feasible richness and rich-
restricted complement-consistency, but violates weak equal division stability. The solution
which assigns (5, 4, 0) to the game in Example 1, and coincides with the equal split-off set
for any other game, satisfies feasible richness and weak equal division stability, but violates
rich-restricted complement-consistency. This means that the properties in Theorem 7 are
independent.

Similar to the results in the previous section, rich-restricted marginal-consistency can
replace feasible richness and rich-restricted complement-consistency in the characterization
of the equal split-off set.

Theorem 8
The equal split-off set is the maximal solution on Γall satisfying weak equal division stability
and rich-restricted marginal-consistency.

The equal division solution satisfies rich-restricted marginal-consistency, but violates
weak equal division stability. The core satisfies equal division stability, but violates rich-
restricted marginal-consistency. This means that the properties in Theorem 8 are indepen-
dent.

The equal split-off set of Branzei et al. (2006) can be considered as a marginal-reduced
equal split-off set which coincides with the complement-reduced equal split-off set in the fa-
mily of reduced equal split-off sets described by Llerena and Mauri (2016). Future research
could characterize this full family or axiomatically compare the original equal split-off set
with other equal split-off sets in this family, in particular the max-reduced equal split-off
set.
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Appendix

Theorem 2
The equal split-off set is the unique solution on Γexp satisfying nonemptiness, feasible rich-
ness, equal division stability, and rich-restricted max-consistency.

Proof. Clearly, the equal split-off set satisfies nonemptiness and feasible richness on Γexp.
By Lemma 1 and Lemma 2, the equal split-off set satisfies equal division stability on Γexp.
Llerena and Mauri (2017) showed that the equal split-off set satisfies rich-restricted max-
consistency on Γexp.

Let σ be a solution on Γexp satisfying nonemptiness, feasible richness, equal division
stability, and rich-restricted max-consistency. We show by induction on the number of
players that σ(N, v) consists of one uniquely defined allocation for all (N, v) ∈ Γexp. By
nonemptiness, σ(N, v) = {v(N)} for all (N, v) ∈ Γexp with |N | = 1. Let k ∈ N and assume
that σ(N, v) consists of one uniquely defined allocation for all (N, v) ∈ Γexp with |N | ≤ k.
Let (N, v) ∈ Γexp with |N | = k+1. By nonemptiness, there is x ∈ σ(N, v). By equal division

stability, ax1 ≥ maxS∈2N\{∅}
v(S)
|S| . By feasible richness,

ax1 =
|Rx1 |ax1
|Rx1 |

=

∑
i∈Rx

1
ax1

|Rx1 |
=

∑
i∈Rx

1
xi

|Rx1 |
≤ v(Rx1)

|Rx1 |
≤ max
S∈2N\{∅}

v(S)

|S|
.

This means that ax1 = maxS∈2N\{∅}
v(S)
|S| and Rx1 ∈ argmaxS∈2N\{∅}

v(S)
|S| .

Denote Uv =
⋃

argmaxS∈2N\{∅}
v(S)
|S| . Since (N, v) is an exact partition game, Lemma

1 and Lemma 2 imply that Uv ∈ argmaxS∈2N\{∅}
v(S)
|S| . Suppose that Rx1 6= Uv. By rich-

restricted max-consistency, xN\Rx
1
∈ σ(N \ Rx1 , vxmax). By equal division stability, there is

i ∈ Uv \Rx1 such that

xi ≥
vxmax(Uv \Rx1)

|Uv \Rx1 |
≥
v(Uv)−

∑
i∈Rx

1
xi

|Uv \Rx1 |
=
|Uv|ax1 − |Rx1 |ax1
|Uv \Rx1 |

=
|Uv \Rx1 |ax1
|Uv \Rx1 |

= ax1 .

This is a contradiction, so Rx1 = Uv. If Rx1 = Uv = N , then σ(N, v) consists of one uniquely
defined allocation x. Suppose that Rx1 = Uv 6= N . By rich-restricted max-consistency,
xN\Rx

1
∈ σ(N \Rx1 , vxmax), where σ(N \Rx1 , vxmax) consists of one uniquely defined allocation

since |N \Rx1 | ≤ k. Hence, σ(N, v) consists of one uniquely defined allocation.

Theorem 3
The equal split-off set is the unique solution on Γexp satisfying nonemptiness, equal division
stability, and rich-restricted marginal-consistency.

Proof. Clearly, the equal split-off set satisfies nonemptiness and rich-restricted marginal-
consistency on Γexp. By Lemma 1 and Lemma 2, the equal split-off set satisfies equal
division stability on Γexp.

Let σ be a solution on Γexp satisfying nonemptiness, equal division stability, and rich-
restricted marginal-consistency. We show by induction on the number of players that σ(N, v)
consists of one uniquely defined allocation for all (N, v) ∈ Γexp. By nonemptiness, σ(N, v) =
{v(N)} for all (N, v) ∈ Γexp with |N | = 1. Let k ∈ N and assume that σ(N, v) consists of
one uniquely defined allocation for all (N, v) ∈ Γexp with |N | ≤ k. Let (N, v) ∈ Γexp with
|N | = k + 1. By nonemptiness, there is x ∈ σ(N, v).
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By equal division stability, ax1 ≥ maxS∈2N\{∅}
v(S)
|S| . If Rx1 = N , then

ax1 =
|N |ax1
|N |

=

∑
i∈N a

x
1

|N |
=

∑
i∈N xi

|N |
=
v(N)

|N |
≤ max
S∈2N\{∅}

v(S)

|S|
.

By rich-restricted marginal-consistency, if Rx1 6= N , then

ax1 =
|Rx1 |ax1
|Rx1 |

=

∑
i∈Rx

1
ax1

|Rx1 |
=

∑
i∈Rx

1
xi

|Rx1 |
=

∑
i∈N xi −

∑
i∈N\Rx

1
xi

|Rx1 |

=
v(N)− vxmarg(N \Rx1)

|Rx1 |
=
v(Rx1)

|Rx1 |
≤ max
S∈2N\{∅}

v(S)

|S|
.

This means that ax1 = maxS∈2N\{∅}
v(S)
|S| and Rx1 ∈ argmaxS∈2N\{∅}

v(S)
|S| .

Denote Uv =
⋃

argmaxS∈2N\{∅}
v(S)
|S| . Since (N, v) is an exact partition game, Lemma

1 and Lemma 2 imply that Uv ∈ argmaxS∈2N\{∅}
v(S)
|S| . Suppose that Rx1 6= Uv. By rich-

restricted marginal-consistency, xN\Rx
1
∈ σ(N \Rx1 , vxmarg). By equal division stability, there

is i ∈ Uv \Rx1 such that

xi ≥
vxmarg(U

v \Rx1)

|Uv \Rx1 |
=
v(Uv)− v(Rx1)

|Uv \Rx1 |
=
|Uv|ax1 − |Rx1 |ax1
|Uv \Rx1 |

=
|Uv \Rx1 |ax1
|Uv \Rx1 |

= ax1 .

This is a contradiction, so Rx1 = Uv. If Rx1 = Uv = N , then σ(N, v) consists of one uniquely
defined allocation x. Suppose that Rx1 = Uv 6= N . By rich-restricted marginal-consistency,
xN\Rx

1
∈ σ(N \Rx1 , vxmarg), where σ(N \Rx1 , vxmarg) consists of one uniquely defined allocation

since |N \Rx1 | ≤ k. Hence, σ(N, v) consists of one uniquely defined allocation.

Theorem 4
The equal split-off set is the unique solution on Γexp satisfying nonemptiness, feasible rich-
ness, equal division stability, and rich-restricted complement-consistency.

Proof. Clearly, the equal split-off set satisfies nonemptiness and feasible richness. By Lemma
1 and Lemma 2, the equal split-off set satisfies equal division stability on Γexp. By Lemma 3,
the equal split-off set satisfies rich-restricted complement-consistency on Γexp since it satisfies
rich-restricted marginal-consistency.

Let σ be a solution on Γexp satisfying nonemptiness, feasible richness, equal division
stability, and rich-restricted complement-consistency. We show by induction on the number
of players that σ(N, v) consists of one uniquely defined allocation for all (N, v) ∈ Γexp. By
nonemptiness, σ(N, v) = {v(N)} for all (N, v) ∈ Γexp with |N | = 1. Let k ∈ N and assume
that σ(N, v) consists of one uniquely defined allocation for all (N, v) ∈ Γexp with |N | ≤ k.
Let (N, v) ∈ Γexp with |N | = k+1. By nonemptiness, there is x ∈ σ(N, v). By equal division

stability, ax1 ≥ maxS∈2N\{∅}
v(S)
|S| . By feasible richness,

ax1 =
|Rx1 |ax1
|Rx1 |

=

∑
i∈Rx

1
ax1

|Rx1 |
=

∑
i∈Rx

1
xi

|Rx1 |
≤ v(Rx1)

|Rx1 |
≤ max
S∈2N\{∅}

v(S)

|S|
.

This means that ax1 = maxS∈2N\{∅}
v(S)
|S| and Rx1 ∈ argmaxS∈2N\{∅}

v(S)
|S| .
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Denote Uv =
⋃

argmaxS∈2N\{∅}
v(S)
|S| . Since (N, v) is an exact partition game, Lemma

1 and Lemma 2 imply that Uv ∈ argmaxS∈2N\{∅}
v(S)
|S| . Suppose that Rx1 6= Uv. By rich-

restricted complement-consistency, xN\Rx
1
∈ σ(N \ Rx1 , vxcomp). By equal division stability,

there is i ∈ Uv \Rx1 such that

xi ≥
vxcomp(U

v \Rx1)

|Uv \Rx1 |
=
v(Uv)−

∑
i∈Rx

1
xi

|Uv \Rx1 |
=
|Uv|ax1 − |Rx1 |ax1
|Uv \Rx1 |

=
|Uv \Rx1 |ax1
|Uv \Rx1 |

= ax1 .

This is a contradiction, so Rx1 = Uv. If Rx1 = Uv = N , then σ(N, v) consists of one
uniquely defined allocation x. Suppose that Rx1 = Uv 6= N . By rich-restricted complement-
consistency, xN\Rx

1
∈ σ(N \ Rx1 , vxcomp), where σ(N \ Rx1 , vxcomp) consists of one uniquely

defined allocation since |N \ Rx1 | ≤ k. Hence, σ(N, v) consists of one uniquely defined
allocation.

Theorem 6
The equal split-off set is the maximal solution on Γall satisfying feasible richness, weak equal
division stability, and rich-restricted self-consistency.

Proof. Clearly, the equal split-off set satisfies feasible richness and weak equal stability on
Γall. By Lemma 4, the equal split-off set satisfies self-consistency on Γall.

Let σ be a solution on Γall satisfying feasible richness, weak equal division stability,
and rich-restricted self-consistency. We show by induction on the number of players that
σ(N, v) ⊆ ESOS(N, v) for all (N, v) ∈ Γall. For all (N, v) ∈ Γall with |N | = 1, σ(N, v) = ∅
or σ(N, v) = {v(N)}, so σ(N, v) ⊆ ESOS(N, v) = {v(N)}. Let k ∈ N and assume that
σ(N, v) ⊆ ESOS(N, v) for all (N, v) ∈ Γall with |N | ≤ k. Let (N, v) ∈ Γall with |N | = k+1.
If σ(N, v) = ∅, then σ(N, v) ⊆ ESOS(N, v). Suppose that σ(N, v) 6= ∅ and let x ∈ σ(N, v).

By equal division stability, ax1 ≥ maxS∈2N\{∅}
v(S)
|S| . By feasible richness,

ax1 =
|Rx1 |ax1
|Rx1 |

=

∑
i∈Rx

1
ax1

|Rx1 |
=

∑
i∈Rx

1
xi

|Rx1 |
≤ v(Rx1)

|Rx1 |
≤ max
S∈2N\{∅}

v(S)

|S|
.

This means that ax1 = maxS∈2N\{∅}
v(S)
|S| and Rx1 ∈ argmaxS∈2N\{∅}

v(S)
|S| . If Rx1 = N ,

then σ(N, v) ⊆ ESOS(N, v). Suppose that Rx1 6= N . By rich-restricted self-consistency,

xN\Rx
1
∈ σ(N \Rx1 , v

f
self ) for a selector f of σ, where σ(N \Rx1 , v

f
self ) ⊆ ESOS(N \Rx1 , v

f
self )

since |N \Rx1 | ≤ k. Hence, σ(N, v) ⊆ ESOS(N, v).

Theorem 7
The equal split-off set is the maximal solution on Γall satisfying feasible richness, weak equal
division stability, and rich-restricted complement-consistency.

Proof. Clearly, the equal split-off set satisfies feasible richness and weak equal stability on
Γall. By Lemma 3, the equal split-off set satisfies rich-restricted complement-consistency on
Γall since it satisfies rich-restricted marginal-consistency.

Let σ be a solution on Γall satisfying feasible richness, weak equal division stability, and
rich-restricted complement-consistency. We show by induction on the number of players that
σ(N, v) ⊆ ESOS(N, v) for all (N, v) ∈ Γall. For all (N, v) ∈ Γall with |N | = 1, σ(N, v) = ∅
or σ(N, v) = {v(N)}, so σ(N, v) ⊆ ESOS(N, v) = {v(N)}. Let k ∈ N and assume that
σ(N, v) ⊆ ESOS(N, v) for all (N, v) ∈ Γall with |N | ≤ k. Let (N, v) ∈ Γall with |N | = k+1.
If σ(N, v) = ∅, then σ(N, v) ⊆ ESOS(N, v). Suppose that σ(N, v) 6= ∅ and let x ∈ σ(N, v).
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By equal division stability, ax1 ≥ maxS∈2N\{∅}
v(S)
|S| . By feasible richness,

ax1 =
|Rx1 |ax1
|Rx1 |

=

∑
i∈Rx

1
ax1

|Rx1 |
=

∑
i∈Rx

1
xi

|Rx1 |
≤ v(Rx1)

|Rx1 |
≤ max
S∈2N\{∅}

v(S)

|S|
.

This means that ax1 = maxS∈2N\{∅}
v(S)
|S| and Rx1 ∈ argmaxS∈2N\{∅}

v(S)
|S| . If Rx1 = N , then

σ(N, v) ⊆ ESOS(N, v). Suppose that Rx1 6= N . By rich-restricted complement-consistency,
xN\Rx

1
∈ σ(N\Rx1 , vxcomp), where σ(N\Rx1 , vxcomp) ⊆ ESOS(N\Rx1 , vxcomp) since |N\Rx1 | ≤ k.

Hence, σ(N, v) ⊆ ESOS(N, v).

Theorem 8
The equal split-off set is the maximal solution on Γall satisfying weak equal division stability
and rich-restricted marginal-consistency.

Proof. Clearly, the equal split-off set satisfies weak equal division stability and rich-restricted
marginal-consistency on Γall.

Let σ be a solution on Γall satisfying weak equal division stability and rich-restricted
marginal-consistency. We show by induction on the number of players that σ(N, v) ⊆
ESOS(N, v) for all (N, v) ∈ Γall. For all (N, v) ∈ Γall with |N | = 1, σ(N, v) = ∅ or
σ(N, v) = {v(N)}, so σ(N, v) ⊆ ESOS(N, v) = {v(N)}. Let k ∈ N and assume that
σ(N, v) ⊆ ESOS(N, v) for all (N, v) ∈ Γall with |N | ≤ k. Let (N, v) ∈ Γall with |N | = k+1.
If σ(N, v) = ∅, then σ(N, v) ⊆ ESOS(N, v). Suppose that σ(N, v) 6= ∅ and let x ∈ σ(N, v).

By weak equal division stability, ax1 ≥ maxS∈2N\{∅}
v(S)
|S| . If Rx1 = N , then

ax1 =
|N |ax1
|N |

=

∑
i∈N a

x
1

|N |
=

∑
i∈N xi

|N |
=
v(N)

|N |
≤ max
S∈2N\{∅}

v(S)

|S|
.

By rich-restricted marginal-consistency, if Rx1 6= N , then

ax1 =
|Rx1 |ax1
|Rx1 |

=

∑
i∈Rx

1
ax1

|Rx1 |
=

∑
i∈Rx

1
xi

|Rx1 |
=

∑
i∈N xi −

∑
i∈N\Rx

1
xi

|Rx1 |

=
v(N)− vxmarg(N \Rx1)

|Rx1 |
=
v(Rx1)

|Rx1 |
≤ max
S∈2N\{∅}

v(S)

|S|
.

This means that ax1 = maxS∈2N\{∅}
v(S)
|S| and Rx1 ∈ argmaxS∈2N\{∅}

v(S)
|S| . If Rx1 = N , then

σ(N, v) ⊆ ESOS(N, v). Suppose that Rx1 6= N . By rich-restricted marginal-consistency,
xN\Rx

1
∈ σ(N\Rx1 , vxmarg), where σ(N\Rx1 , vxmarg) ⊆ ESOS(N\Rx1 , vxmarg) since |N\Rx1 | ≤ k.

Hence, σ(N, v) ⊆ ESOS(N, v).
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