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The role of explanations
in inductive learning

Peter A. Flach

ABSTRACT

Many AI problems involve dealing with incomplete knowledge, i.e. we have
partial knowledge about an unknown model, and we have to find out what else is
true about this model. Abduction and induction problems assume that our partial
knowledge is given in the form of a background theory T and examples E, and the
task is to extend T with a hypothesis H such that T and H together explain E. In this
paper, we investigate this notion of explanation, concentrating on the logical
properties which make it useful for induction. To this end, we set up a formal
framework for analysing explanation as a kind of inference relation, analogous to
the formal systems used to analyse non-monotonic inference relations. The two
basic questions addressed in this paper are the following: (:) Given that we define
explanation as logical implication wrt. some underlying logic, what properties of
the underlying logic (such as monotonicity) influence the induction process? (ií)
Are there alternative definitions of explanation, which could be used in induction?
Our answer to the second question is affirmative: we suggest that weak
explanation (logical consistency with. respect to the underlying logic) is the
appropriate notion to use in various induction problems, such as concept learning
from incomplete examples, and induction of weak theories. On the practical side,
we suggest how weak explanation can be used for deriving alternative
generalisation and specialisation operators for induction of Horn theories, by
manipulating the completion of such theories. Also, we show how background
theory, needed for concept learning from incomplete examples, can be represented
and handled on the meta-level.
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1. Introduction

Many problems in AI can be characterised as model inference problems (Shapiro, 1981), i.e. inferring an

unknown model M from a set of formulas F true in the model. Usually, the outcome of such a model inference

problem is represented by an extended theory F~H rather than a model (or a set of possible models). This type

of reasoning is in general unsound: the hypothesis H may be false in M, if it does not follow logically from F.

If nothing else is known, finding the right hypothesis is virtually impossible, because all that is known is that

it must be consistent with F. Therefore, additional constraints are necessazy, which depend on the problem at

hand.

For instance, in diagnostic or abductive tasks, we have a set R of cause-effect rules and a set E of effects,

and we aze to find an extended theory RvE~C which specifies the right causes C. We want these causes to

ezplain the effects, which in general is taken to mean that the effects follow logically from the rules plus the

causes: RuC k E. This poses an additional constraint on the possible models, and thus on the possible causes.

The set of possible models can be further restricted by only allowing specific formulas for R(e.g., Horn

clauses), E and C(e.g., ground facts).

The task of inductive learning is very similaz to abduction. We have a background theory T and a set of

examples E, and we are to find a general rule H(e.g., a concept definition or a logic program) which explains the

examples in some sense. Besides syntactical differences in the formulas involved, the main difference with

abductive reasoning is that inductive learning is, in general, required to be incremental: several examples aze

supplied one at a time, and the hypothesis should be updated after each new example. This amounts to revising a

theory to take new, conflicting information into account, without changing it too much; otherwise, the updated

theory would now conflict with examples seen earlier. The equation induction - abducrion f revision

probably captures this viewpoint more succinctly, and also stresses the connections between these problems,

which all involve reasoning with incomplete knowledge.

In this paper we concentrate on the role of explanations in inductive learning of logic programs. This

subfield of Machine Learning has recently been called Inductive Logic Programming or II.P (Muggleton 1990,

1991). In an ILP setting, background theory T and inductive hypothesis H are sets of first-order clauses, as well

as the set of examples E. Furthermore, explanation is usually defined as logical implication in the underlying

logic, which is called the base logic in this paper. What counts as an explanation depends crucially on the

properties of this base logic. For instance, if we know that Tweety is a bird, then the hypothesis `birds fly

unless they are abnormal' explains the fact that Tweety flies when interpreted as a default rule, but not when

interpreted as a statement in first-order logic. In turn, the properties of explanations influence the properties

of the induction process, such as convergence. In this paper, we propose a theoretical framework in which

crucial properties of the induction process can be identified and related to the base logic. Throughout the paper,

the consequence relation for this base logic will be denoted by h-.

This framework also allows us to introduce alternative definitions of explanation. In this paper, we

investigate one alternative, i.e. consistency wrt. the base logic. So, we define: a hypothesis H is a srrong

explanation or strong theory for the examples E, given a background theory T, iff T~H Fr E; H is a weak

explanation or weak theory iff TuH~E is consistent; we write TvHt~E M- O. We will investigate the

properties of strong and weak explanation, focussing on their utility wrt. the induction process, e.g. what

property of explanation guarantees convergence? Also, we will give an abstract characterisation of
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explanation, thus facilitating the comparison of weak and strong explana[ion (e.g., when is a weak explanation
also a strong explanation). Induction based on weak~strong explanation will correspondingly be called
wealc~strong induction.

In the sequel, we use the following concepts and notation. We write E KT H ifE is explained by H given
T, and HE -{H I E KT H} is the set of explanations of E(also referred to as the Version Space (Mitchell, 1982)).
We assume the existence of a pre-order on this set, notation H?T H' (H is as general as H' wrt. T). As usual,
this generality ordering is related to logical implication: H?T H' iff TvH ~ H'. Since k is then required to be
transitive (which in most cases implies monotonicity), we will not identify it with the base logic, but
interpret it throughout the paper as classical two-valued logical consequence.
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2. Properties of strong explanation

We start by studying the properties of strong explanation interpreted as a consequence relation. That is, we are
interested in structural properties of KT, a binary relation between logical sentences (T is assumed to be fixed).
Following other authors (Gabbay, 1985; Kraus et al., 1990), these properties (such as reflexivity and
transitivity) aze written as inference rules in the style of Gentzen. Most of the rules studied by these authors
aze geazed towazds non-monotonic reasoning, and have limited significance in the ptesent context. Instead, we
will identify a number of new rules, particularly suited for describing properties of explanation.

2.1 Using a classical base logic

In this section, we use a classical two-valued base logic: a kT ~i is defined as T, ~i k a. In (Kraus et al., 1990),
five elementary properties are listed, which any reasonable consequence relation should satisfy. Of these
properties, the following three are satisfied by strong explanation:

. Reflexivity: a KT a

Tk aH(3 , a KT Y
~ Left Logical Equivalence: R~TY

~R~rY,ary.R
. Cut:

aKTY

However, the properties of Right Weakening and Cautious Monotonicity do not hold, which suggests that

KT as defined here is too weak to be called a(deductive) consequence relation. Of course, this is as it should be,
since the problem of finding explanations is in general underconstrained (for instance, alternative explanations
may be jointly inconsistent).

On the other hand, strong explanation has some properties which are not shazed by traditional
consequence relations: these are the properties which make explanation useful for inductive learning. To
describe these properties, we introduce a number of new rules.

T~Y~~,aKrR
~ Explanation Strengthening:

a KrY
This rule expresses that any Y as general as some strong explanation ~i for a set of examples a is also a s[rong
explanation for a. Thus, the examples provide a lower bound on the set of possible hypotheses HE, such that a
hypothesis is in HE iff it is above the boundary. This boundary can either be represented by the least general
hypotheses not yet refuted, or the most general hypotheses already refuted; together with the generality
ordering, it determines the set of still possible hypothesest.

. Compositionality: a kTY' R KrY
~Q KT Y

This rule means that an inductive hypothesis can be checked against a set of examples by checking it against each
example separately. This is a necessary condition if we don't want to remember every example during learning.
Together, Explanatíon Strengthening and Compositionality allow for the derivation of the following rule:

lAssuming there are ra infuute chains in the ordering.
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~ Explanation Updating:

Thus, ifY is a hypothesis explaining the examples seen so far a but not the next example p, it can be replaced by
some Y which is as general as Y and explains ~. If we want to describe the Version Space by its lower boundary,
each Y in the boundary not explaining ~i should be replaced by every least general Y which satisfies this
condition. This is, in essence, Mitchell's candidate elimination approach; the fact that this generally applicable
learning approach can be described by means of the above rules, suggests that these rules are both necessary and
sufficient to describe the role of strong explanations in inductive leaming.

Finally, we need a rule to guarantee convergence of the induction process:

~ Convergence:

TkY~R.aKrR
~

This rule generalises Left Logical Equivalence, Cut and Or, and expresses that a strong explanation for a also
explains anything implied by a. Consequently, strong induction enjoys the property that if a hypo[hesis Y is
refuted by a conjunction of examples ~i, it cannot be an explanation for any lazger conjunction of examples a.
Thus, the set of possible hypotheses shrinks monotonically when learning proceeds. Withont this propercy
learning would be very difficult.

2.2 The role of the base logic

If we now vary the base logic, we can investigate the conditions under which these three properties hold.
simply rewrite the rules for Convergence, Compositionality and Explanation Strengthening by using
identity a Kr ~i - T, ~i Fr a.

Conv:

Comp:

T k a-~R ~ a Kr Y
R~TY

a~rY,RKTY
a~R KT Y

Tk a-~(3 , T, Y F- a

T.YwR
T~Y~a,T,Y~R

T, Y Fr an~i

Right Weakening

ES:

Tk 1~~Y, a K~.Y,~KrY'
~R KT Y

T~ a-~~i , a KT Y
R~TY

T~Y-~~,T,Rwa
aKTY T,Yh-a

And

Monotonicity

We
the

The first two of these rules, Right Weakening and And, are guaranteed by any cumulative logic (the weakest
possible logical system according to (Kraus et al., 1990)). That is, strong induction is in principle possible for
any cumulative base logic.

On the other hand, the third rule shows that Explanation Strengthening requires monotonicity of the
base logic. lfiat is, when inducing a non-monotonic strong theory, the Version Space will contain holes. For
instance, when the background theory T contains the clause flies (X) :-bird (X) , not abnormal (x) ,
where not is implemented by negation as failure, and we wani to extend the theory in order to explain the
example f 1 i e s( t we e t y), we can add b i r d( t we e t y) but not the more general hypothesis
bird (tweety) ~ abnormal (tweety) . Thus, the Version Space cannot simply be represented by its
boundaries wrt. the generality ordering.

Several authors have proposed the use of non-monotonic logic in Inductive Logic Programming. Bain and
Muggleton (1991) propose a Closed Worid Specialization Algorithm, which would specialise the clause
flies (X) :-bird(X) to flies (X) :-bird(X) ,not abnormal (X) when it is known that
f 1 ie s( emu ) is false in the intended interpretation. Ling (1991) provides an alterna[ive algorithm, which
would include the clause f 1 ies( x):-b i rd( x), x~emu instead. The advantage of these approaches is, that



we can list exceptions to a rule, without having to specify that normal cases aze not exceptions (which would

be required if we used logical negation instead). However, as shown above, the added literals requ'ue special

treatment. For instance, CIGOL (Muggleton 8t Buntine, 1988), equipped with the Closed World

Specialization Algorithm, is perfectly happy to induce the theory ( b i rd ( t we et y), f 1i e s( t wee ty),

abnormal (tweety) , flies (X) :-bird (X) , not abnormal ( X) }, which does not scem to capture the

intuition behind the abnonmality predicate.

In this section, we have outlined a framework for describing and analysing the role of explanations in

induction, by viewing explanation as a consequence relation. We have identified the main properties of strong

explanation, and how these aze determined by the base logic. In the next section, we will do the same for weak

explanation.
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3. Properties of weak explanation

In this section, we let KT stand for weak explanation. First, we investigate weak explanation as consistency
wr[. a classical two-valued base logic. Then, we study how the properties of weak explanation depend on the
properties of the base logic.

3.1 Using a classical base logic

Perhaps surprisingly, Reflexivity dces not hold for weak explanation: an inconsistent set of examples dces not
have a weak explanation. Also, Compositionality is invalid, implying that for weak induction a new hypothesis
must be checked against the set of all previous examples, which must therefore be remembered.

We introduce two further rules for describing the properties of weak epxlanation.

~ S mmetr -
a Kr p

y y- R ~T a
This rule holds since examples and hypotheses can be interchanged in the defutition of weak explanation. This

may seem counter-intuitive, but consider the following statements:

(i) There exists a bird which flies
(ii) Every bird flies
(iii) `There exists a bird which doesn't fly' is false

(iv) `No bird flies' is false

The Symmetry-rule states: if you accept (ii) as an explanation for (í), then you should also accept (iv) as an
explanation for (iii) (since (i) and (iv) are logically equivalent, and so are (ií) and (iií)). Note that the second
statement dces not strongly explain the first, since it dcesn't guarantee the existence of any bird.

The `strong' rule Explanation Strengthening is replaced by its dual
T~ R-~r , a K,. R

. Explanation Weakening: a KT Y
This rule expresses that anything as specific as some weak explanation for a set of examples is also a weak
explanation for them. Thus, the examples provide an upper bound on the Version Space, such that a hypothesis
is ín Hg iff it is below the boundary.

This reversal of the generality ordering can be explained by noting that a strong theory describes
sufficient conditions, while a weak theory describes necessary conditions. Sufficient conditions for a concept
definition are rules that can be used to classify individuals as instances óf a concept, and necessary conditions
classify them as non-instances. For ínstance, a Horn theory can only specify the sufficient conditions for a
concept definition2; the necessary conditions must be expressed in a form which allows for the derivation of
negative information. Such a form can for instance be obtained by completing a Horn theory (Clark, 1978).
Now, if we have a concept definition which is both consistent (i.e., no instance is both positively and negatively
classified) en complete (i.e., each instance is positively or negatively classified), then this definition can be split
into two disjoint parts Suff and Nec, such that Suff classifies an instance positively if and only ifNec dces not
classify it negatively. In terms of logic:

2That is, under classical semantics; adopting a minimal model semantics amounts to interpreting a Horn
[heory as specifying both suff'icien[ and necessary conditions.
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SufJ' L~ I r~ Nec F{ -,l

where I denotes the statement that the instance belongs to the concept. In other words, Suff strongly explains I
if and only if Nec weakly explains I. Moreover, the orderings of sufficient and necessary conditions are
inversely related, since a theory is more general if it can derive more positive, and hence less negative,
information. The learning of necessary conditions will be further explored in section 5.

3.2 The role of the base logic

If we again vary the base logic, we can investigate the conditions under which Convergence and Explanation
Weakening hold. We can save some work by noting that each one of these can be rewritten into the other using
Symmetry. Rewriting the rule for Convergence by using the identity a kT ~i - T, a, ~i Ff 03 and taking the
contrapositive, we obtain:

Tka-~(3,aKTY Tka-~a,T,R,7W0
Conv: (3 ~r 7 ~ T, a, 7 F- t]

That is, T, ~i, 7 does not have a model implies T, a, 7 does not have a model. A sufficient condition for this is T,
a F-. (3, since then any model of T, a, Y is a model of T, ~, 7, and this is in ttun implied by T k a~~, provided the
base logic satisfies Reflexivity and Right Weakening (which any ctunulative logic does).

We conclude that induction of weak theories in a cumulative base logic is theoretically always possible;

moreover, the Version Space can always be represented by its boundaries (there are no holes). On the other hand,

we lose Compositionality, implying that a new hypothesis must be checked against the entire set of previous

examples. Since we have seen that strong induction of non-monotonic theories results in a Version Space with

holes, weak induction provides an interesting alternative.

3Note that the identity T, a, ~ I~ O-T, a I~-,~ requires Contraposition (hence a classical monotonic base
logic).
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4. Abstract analysis

The purpose of this section is to study different logical systems of explanation and their relationships. As in
(Kraus et al., 1990), we define such systems in an abstract way by means of structural rules, without reference
to the underlying base logic. We will define the systems SC (strong ezplanation wrt. cumulative base logic),

SM (strong explanation wrt. monotonic base logic), W(weak explanation), and CC (which combines SM and
W). The latter system is particularly interesting, since it relates strong and weak explanation. We will show
how to use weak explanation to generate strong explanations, and also that weak explanation gives a more
useful interpretation to a specific kind of examples.

4.1 Logical systems for strong explanation

The two lemmas in this section are duals of results by Kraus et al., and have been obtained by rewriting T, a F- R
to (3 KT a. We start by noting that Reflexivity and Convergence together imply T k a~R ~ R Kz a, i.e. a
hypothesis explains all its logical consequences given T. Our first system will be called SC, for strong
cumulative explanation, i.e. strong explanation wrt. a cumulative base logic. It consists of Reflexivity,
Convergence, and the following three new rules:

~ Right Logical Equivalence:
Tk RE--~Y , a KT R

~ Right Cut:

aKTY

aKTR~Y,RKTY
a KT Y

aKTY,RKTY
~ Right Extension: a KT R~Y

Right Logical Equivalence states that logically equivalent explanations explain exactly the same things.
Right Cut expresses that a part of an explanation, which is itself explained by another part, may be cut away
from the ezplanation. Right Extension states that an explanation may be extended by anything it expiains.
Together, these latter two rules imply Compositionality.

LEMMA 1(Kraus et al., 1990). Compositionality is a derived rule in SC.
Proof. Suppose a KT Y and R KT Y; by Right Extension we have a KT RnY. Also, because anRnY k
anR, we have anR KT anRnY. Using Right Cut gives an(3 KT RnY, and since by assumption R KT Y,
we can cut away (3 from the explanation to get ana KT Y. p

As was shown before, assuming a cumulative monotonic base logic (satisfying Monotonicity)
guazantees Explanation Strengthening. However, Kraus et al. show that a cumulative monotonic logic is
strictly weaker than classical logic, satisfying Contraposition. Our next system SM, for strong monotonic
explanation, models strong explanation wrt. a classical monotonic base logic. It consists of the rules of SC
plus the following rule:

~ Contraposition: a ~r R
~R KT~

8



LEMMA 2(Kraus et al., 1990). Explanation Strengthening is a derived rule in SM.
Proof. Suppose T k Y-~R and a kT (3; by Contraposition, it follows that ~~ KT-,a. Convergence
gives ~Y KT -~a, which finally results in a KT Y by Contraposition. O

4.2 Logical systems for weak explanation

In this section we develop a logical system for weak explanation. As in the previous section, this system is

obtained by rewriting structural properties of the base logic into structural properties of explanation, in this
case by rewriting T, a F~ ~i to -~a {~ aa

The system W consists of the previously introduced rules Symmetry, Convergence, Right Logical

Equivalence, plus the following three weak counterparts of rules in SC:

~ Weak Reflexivity: -~a It~. a

Weak Right Cut: a KT RnY. -~R ~r Y
~ aKrY

aKTY.~R1~rY
~ Weak Right Extension: a KT ~~Y

Weak Reflexivity and Convergence together imply T~ a~(3 ~-~R Itr a, i.e. no hypothesis explains the

negation of any of its logical consequences, given T. We have the following result.

LEMMA 3. Explanation Weakening is a derived rule in W.

Proof. Suppose T k ~i-~Y and a KT ~3; by Symmetry, it follows that ~i Kr. a. Convergence gives YYy.

a, which finally results in a kT Y by Symmetry. (]

Assuming Monotonicity of the base logic dces not enrich this logical system, because it does not
translate into rules previously underivable. We conclude that for weak explanation the precise na[ure of the
base logic is immaterial, as long as it is cumulative.

4.3 Negative examples

It is customary in inductive learning to have, besides the set of positive examples P which aze to be explained, a

set of negative examples N, to be explained in a different way. T'hus, an inductive leazning problem requires

two notions of explanation, k} and k', for positive and negative explanation, respectively (we omit the suffix T

for readability). Usually, these two notions satisfy the equivalence

aK}(3aa1~-R (~)

which means that, for a given hypothesis, each example is either positive or negative.
Note that if k denotes some notion of strong explanation used for positive examples, then its associated

definition of weak explanation, K~, can be used for negative examples, becattse ( ~`) then yields a k' a ra ~a K~ ~i.
This can be formalised as follows. Rewriting the rules for SC, SM and W using a K(3 ~ a 1~ ~, we obtain the

aHence, ~ should be interpreted as strong negation
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systems SC-, SM' and W'. Notice that Explanation Strengthening rewrites to Explanation Weakening and vice

versa, just as we would expects. We then have the following result.

LEMMA 4. Define -~a K" R iff a K~ R, then K- satisf es the rules of SM' i,,~` K~ satisfies the rules of

W.

Proof. Left to the reader. O

Not explaining a is different from (positively) explaining -,a, as will be cleaz from an example: if T-

(sparrow (sparky) , penguin (tweety) }, then the Horn theory Hl - {sparrow (X) ~flies (X) } dces

not explain f 1 ie s( t weety), but it dces not explain ~ f 1 ie s( t wee t y) either (using strong monotonic
explanation). On the other hand, the theory H 2-{ s p a r r o w( x)~ f 1 i e s( x),

penguin(X)-~-,f 1ie s( X)} dces explain ~f 1 ies(tweety). Alternatively, using weak explanation, Hl
explains both flies (tweety) and-~flies (tweety), whileH2 ezplains-~flies (tweety) butnot
f 1 ie s( t weet y). In fact, learning weak explanations can be simulated by negating the examples,
interchanging positive and negative examples, and then learning a strong explanation.

We would like to suggest that it can be fruitful to weaken equivalence (~`), i.e. to allow one and the same
example to be both positive and negative. For instance, suppose we are learning the concept `sparrow', and we
have two examples: Spazky the small, brown sparrow, and Flap the big, brown falcon. That is, we are looking

for a theory positively explaining s m a 11 nb r o w n-~ s p a r r o w and negatively explaining
bignbrown-~sparrow. Now, if the teacher describes both Spazky and Flap incompletely, omitting their

size, then the positive and negative example become identical. Thus, we aze looking for a theory both positively

and negatively explaining brown-asparrow. In the case of weak explanation, this requirement can be
,fuifilled. In section 6, we will have a closer look at learning from such incompletely specified examples.

An analogous situation arises when we use strong explanation wrt. a non-monotonic base logic, i.e. a K4

R a R~- a. In that case, we can define either a K(3 p R F{ a or a K R a~i, -~a K[]. In the first case, we clearly
have equivalence (~), but not in the second case. As an example, let T- (bird (opus ), bird (tweety) ), p-
flies (opus),n- flies (tweety),andH- (flies (X) :-bird(X) ,not abnormal (X) },thenp Kt
H as desired, and n K~ H only for the second definition (because there is a model in which Tweety is abnonmal,
hence doesn't fly). Thus, we use the first definition if we explicitly want to include the abnormality of the
negative examples in our theory, and the second definition otherwise.

4.4 Combining weak and strong explanation

In this section, we explore the relation between weak and strong explanation. It is shown that the system W
can be obtained from SM by a simple transformation, and vice versa. That is, each notion of strong explanation
defines a notion of weak explanation, and conversely. Next, we show that under certain conditions these
corresponding notions of explanation aze equivalent, i.e. a hypothesis strongly explains a set of exarnples iff it
explains them weakly. Thus, weak explanation provides an alternative way of checking a potential explanation.
However, the conditions for the equivalence of weak and strong explanation also mean that the generality
ordering will not be very useful. Fortunately, there aze ways to overcome this problem, such that weak
explanation can be used for checking strong explanation, without losing the generality ordering.

yThus, combining SM and SM" or W and W' results in the celebrated Version Space model (Mitchell,
1982): the set of possible hypotheses is HpN - Hpn HN , and if Hp has a lowealupper boundary, Hp,1V has

both a lower and an upper boundary.
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The following lemma shows how each notion of strong explanation defines a corresponding notion of
weak explanation, and conversely. Throughout this section, we assume that ~ stands for strong negation (i.e.,
satisfying idempotence: -,-,a - a).

LEMMA 5. Define a K~. R i,~`-~a ~y. R, then KT sarisfies the rules of SM iff K~T satisfes the rules
of W.

Proof. Using the rewrite rule a KT R~~a it~r R6, each rule of SM rewrites (after re-arranging)
to a rule of W: Convergence and Right Logical Equivalence rewrite to themselves, Reflexivity
rewrites to Weak Reflexivity, Right Cut to Weak Right Extension, Right Extension to Weak
Right Cut, and Contraposition rewrites to Symmetry. O

The correspondence between strong and weak explanation suggests the following question: are there
conditions under which these two notions are equivalent (i.e. a KT R p a K~T (3)? In terms of our logical
systems, is there a system stronger than both SM and W? The answer can be obtained by comparing
Reflexivity, Right Cut and Right Extension in SM to their weak counterparts in W. The former can be derived
from the latter if the following rule is added to W:

. Consistent Ex lanation~
a Kr R

p ' ~a ltr R
Consistent Explanation expresses that a hypothesis cannot both explain an example and its negation.
Conversely, the weak rules can be derived from their strong counterparts under the following rule:

- Complete Explanation: ~a ~R
a Kr R

which states that any hypothesis always explains an example or its negation.
The following result shows that adding both Consistent Explanation and Complete Explanation to

either W or SM results in a system CC, for Complete Consistent Explanation, which is strictly stronger than
both.

LEMMA 6. In the presence of both Consistent Explanation and Complete Explanation,
Contraposition and Symmetry are equivalent.
Proof. Suppose a KT ~i; Consistent Explanation implies -~a 1~ R, Symmetry implies R{~ ~a, and
Complete Explanation implies ~(3 KT ~a. Conversely, a KT R implies -,a Itt. (i by Consistent
Explanation, Contraposition implies ~(31tr a, and Complete Explanation implies (3 KT a.0

CC is interesting because of the equivalence a KT (3 p~a ltt. R, thus providing two different ways of checking
explanations. However, CC itself is not very useful for induction, for the following reason. Since CC is
stronger than both W and SM, every rule of the latter two is a rule of CC. In particular, both Explanation
Strengthening and Explanation Weakening are rules of CC. That is, if a KT R, then for every 7 which is
comparable to R wrt. ?(i.e., (3 k 7 or y~ R), a KT 7. Thus, if we want to change an explanation in order to
accomodate for a new example, the new explanation will be incomparable to the original explanation! We can
get around this by using different representations for strong and weak explanations, as will be shown in
section 5.

óNote that this transfonnation from strong to weak ezplanation takes the same fonn as its inverse; i.e.,
corresponding notions of strong and weak explanation are completely dual.
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The system CC can also be constructed by means of the following two rules.

a K7. ~
~ Cons~stent Example: a Itt.~R

Consistent Example expresses that an example cannot be explained by both a hypothesis and its negation.

~ Complete Example: a ~~R
a r~R

Complete Example states that any example is always explained by a hypothesis or its negation.

LEMMA 7. In the presence of either Symmetry or Contraposition, Consistent Example and
Consistent Explanation are equivalent; so are Complete Example and Complete Explanation. ln
the presence of both Consistent Example and Complete Example, Contraposition and Symmetry
are equivalent.
Proof. Analogous to the proof of Lemma 6. p

In section 6, we give an example of a learning problem in which weak explanation provides an alternative way
of checking explanations for complete examples. However, in the case of incomplete examples, weak
explanation provides an alternative way of interpreting the examples.
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5. Learning necessary conditions by weak explanation

In the previous section, we showed that in the system CC, every weak explanation is a strong explanation and
vice versa. The intuitive interpretation of an explanation in CC is, that it consists of necessazy and sufficient
conditions which aze equal. As was shown however, this reduces the generality ordering to the trivial ordering

in which each explanation is only comparable with the empty explanation and the inconsistent explanation.

Therefore, it is better to keep weak and stmng explanations separate, and to transform one into the other if

necessary. This will be discussed in the present section.

As before, let KT denote strong explanation and K~T denote the corresponding notion of weak

explanation (i.e., a KT R~-~a 1t~r R), and suppose every complete and consistent explanation can be split into

two disjoint parts R and R~`, such that a KT (3 iff -,a {~. (3~`. If in addition ~` is idempotent, we have a KT R a a

K~r R~`; thus, we can check a KT R by first [ransforming (3 to R~`, and then checking whether R~ weakly explains
a. Furthermore, if T k a~(3 implies T~ R~`~a~`, we can generalise (3 by specialising R~. For instance, let R be a

Horn theory, and let R~` denote the augmentation obtained by predicate completion, i.e. the only-if pazts of

predicate definitions, then we can check whether a is strongly explained (logically implied) by (i by checking

whether a is weakly explained by (consistent with) R~. The following example illustrates this

correspondence.

Let element (E, L) be a predicate with intended interpretation: E occurs in the list L. Consider the

hypothesis (element (x, [x I Y] )), stating that element (x, Y) is true if x is the first element of the list

Y. This hypothesis is not a strong explanation for the example element ( 2,[ 1, 2, 3]). This can be proved by
constructing the completion 3Y1: Y- [x I Y1 ]:-element (x, Y) of the initial hypothesis, and proving that

the completed hypothesis is not a weak explanation of the example. Thus, we prove that they aze logically

inconsisten[, by resolving 3Y1 : Y- (X I Y1 ]:-element (X, Y) ~ with element (2, [ 1, 2, 3]), yielding the

~Y1:Y-[XIY1]:-element(X,Y) element(2, [1,2,3])`r
~Y1: [1,2,3]-[21Y1]

Figure 1. Proving the inconsistency of a completed hypothesis
with an example.

formula ~Y1: [ 1, 2, 3]-( 2 I Y1 ](fig. 1). This formula is unsatisfiable under the standazd interpretation of
- as syntactical identity ( i.e. unification). A possible way to make the fomula satisfiable is by disjoining it
with 3z3Y2 :[ 1, 2, 3]-[ z, 2 I Y2 ](which is 3z3Y2 : Y- [ z, x I Y2 ] under the substitution (x~2,
Y~ [ 1, 2, 3] }). This amounts to specialising the completed formula to

~We retain the existential quantifier in order to avoid Skolem functors.
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~Y13Z3Y2:Y-[XIY1];Y-[Z,XIY27:-element(X,Y)

which in turn amounts to generalising the original hypothesis to {e 1 e me n t( X,[ X I Y l),
element (X, [ Z, X I Y] )).

Horn domain Completion domain

completion ~,
Tt Tt

generalisation specialisation

specialisation ' generalisation

- T - Q-~- T. r
inverse completion 2

N
~

Figure 2. The duality between Horn theories and
completed theories.

Thus, generalisation and specialisation can be related to each other by means of predicate completion, as

depicted in fig. 2. This duality can be exploited in various ways. First of all, an operator for Hom theories

could be applied to completed theories, yielding a new operator when transformed back to the Horn domain.

For instance, a generai-purpose specialisation operator for clausal theories such as Shapiro's (1981) refinement

operator could be turned into a generalisation operator by performing completion-specialisation-inverse
completion. Instead of implementing both generalisation and specialisation operators, a system might include
only one type and realise the other by means such transformations.

Secondly, [he completion domain might suggest specific operators which yield new and interesting
operators when transformed to the Horn domain. For instance, in the above example the completed theory is
specialised by adding a literal to a clause, which corresponds to adding a clause to the corresponding Horn
theory. This also shows that the relation between specialisation in one domain and generalising in the other is
not trivial and needs further investigation. Such a study will also lead to a better understanding of the relation
between operators which change theories on the clause level (such as the Absorption operator (Muggleton ~
Buntine, 1988)), and those which operate on the literal level (such as refinement operators).
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6. Concept learning from incomplete examples
In the previous section, we saw how weak explanation could be useful in the context of strong explanation, by
assigning a second interpretation to Horn theories (as expressed by their completions) in order to achieve
completeness of explanations. As was shown in section 4.4, the same effect can be achieved by assuming
completeness of examples,which is expressed by the rule Complete Example. This rule states that any instance
is always correctly classified by either a hypothesis or its negation. If this property dces not hold, then some
relevant infonnation has been omitted from the description of the instance. Given this property, any weak
explanation is also a strong explanation, and we might again use the former notion to implement the latter.
However, in this section we are interested in incomplete examples: we will show that weak explanation
assigns the right interpretation to incomplete examples, and we will show that complete examples can be
represented just as incomplete examples, provided we add certain axioms to our background theory.

Consider a universe of birds, described by the properties colour (black, brown, golden) and size (small,
big). By means of these properties, we can distinguish between blackbirds, falcons, sparrows and eaglesg (fig.
3). In this figure, a concept is any subset of the universe. Throughout, we will assume that the concept can be
described by means of the given properties, that is, we consider only unions of the smallest blocks. An eacample
is a description of a member of the universe in tenms of the given properties. Clearly, an example also
corresponds to one or more blocks9. An example is complete if it corresponds to exactly one smallest block,
and incomplete otherwise. A concept explains a complete example if and only if it contains the block
associated with the example. We call this the inclusion condition.

COLOUR
black brown golden

SIZE

small

big

blackbir

falcon

Figwe 3. A universe of birds.

Now, what about incomplete examples? Suppose we are learning the concept of sparrow. As a positive
example, the teacher describes Sparky the sparrow as a brown bird. This example is incomplete, because it
corresponds to two blocks. The teacher clearly forgot to mention that Sparky is a small bird. Still, we can use
the incomplete example to conclude that the rule `all sparrows aze black', which describes a necessary

gThis representation is taken from (Banerji, 1969), and the example is bonrowed from (Muggleton, 1987).
gThe rule Consistent Example en.sures that an example corresponds to at least one block.
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condition for sparrowness, must be false in the intended interpretation. That is, a concept explains an

incomplete example if and only if it contains at least one of the blocks associated with the example, which

means that the concept and the union of blocks associated with the example have a non-empty intersection. This

we call the intersection condition.

The main point now is, that this second definition of explanatíon also works for complete ezamples: a

concept contains a block if and only if it has a non-empty intersection with it. This can be reformulated in our

theoretical framework as follows. The intersection condition means that the concept is a weak explanation for

the example, because it does not necessarily assign the same classification to each instance of the example. The

inclusion condition, on the other hand, means that the concept is a strong explanation for the example. Thus we

have, for complete examples, that a concept is a strong explanation if it is a weak explanation.

6.1 A logical reformulation

The points made so faz will now be given a more rigorous treatment by means of a reformulation in logic. The

interpretation assigned by the intersection condition to incomplete examples (i.e., interpreting missing

attribute values as DON'T KNOW rather than as DON'T CARE) means that the examples should be represented

by existential statemen[s like sparrow(sparky) ~ brown(sparky) rather than by universal

statements such as sparrow (x) :-brown (x) (which is false in the intended interpretation). On the other

hand, for complete examples the universal statement is always true in the intended interpretation. That is, we

must extend our background theory T such that for example sparrow (sparky) ~ brown (sparky) ~

small (sparky) implies sparrow (X) : -brown (X) , small (X) , given T.

We show how to do this by means of an example. Suppose that the teacher already informed us that

Sparky is a brown sparrow, without telling whether Spazky is small or big. Now she adds that Flap is a big

brown falcon, that is, a non-sparrow. Looldng at fig. 3, we should be able to conclude that Sparky must be small

(assuming that the concept of sparrow is consistent). We can handle this line of reasoning deductively, if we

add certain axioms to our background theory (fig. 4).

sparrow(Y):-sparrow(X),
big(X),brown(X),
big(Y),brown(Y)

:-sparrow(flap) 6~
big(flap) á
brown(flap)

:-sparrow(X),big(X),brown(X) sparrow(sparky) 6
brown(sparky)

:-big(sparky) ~ big(X);small(X)

small(sparky)

Figure 4. Sparky is small.

The crucial point in fig. 4 is the top-left axiom. It is in fact an instance of a second-order axiom

P(Y) :-big (X) , brown (X) , P(X) , big (Y) , brown (Y) , which states that whatever is true or false

about one big brown bird, must be equally true orfalse about every big brown bird. This is an expression of the
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fact, that big8tbrown is an undividable block in fig. 3. Put differently: it índicates the limita[ions of the
concept language in a declarative way. We need one such axiom for every block in fig. 3. In addition, we need
axioms stating that for every property, each bird can be assigned exactly one of its values. For instance, for the
property colour we would have black (X) ; brown (X) ; golden (X) , : -black (X) , brown (X) , : -
black (x) , golden (x) , and :-brown (X) , golden (X) . Note, that all these axioms can be
automatically derived, if we know which properties there are, and which values each property has. That is, a
large amount of first-order axioms can be represented by a few higher-order axioms. For instance, the axiom
:-b1ack( x), brown ( x) is a logical consequence of the following second-order theory:

fIP, V1, V2, X: property (P) nP (Vl) nP (V2) -~-, (Vl (X) nV2 (X) )
property(colour)

colour(black)

colour(brown)
Since a general-purpose theorem prover for second-order logic will be too inefficient, we prefer a specialised
meta-interpreter instead. In the following sections, we describe a meta-level representation of the necessazy
axioms, and two meta-interpreters for reasoning with them.

6.2 Representation of background axioms

The above theory is represented on the meta-level as follows:

axioml ( ( [ ] : - [Vl (X) , V2 (X) ] ) ) : -

property(P,Values),
select two(Values,V1,V2).

select two(List,First,Second):-
select(List,First,Listl),
select(Listl,Second,List2).

select([XIXs],X,Xs).
select([XIXs],Y,Zs):-

select(Xs,Y,Zs).

property(colour,[black,brown,golden]).

Here, clauses (not necessarily Horn) are represented on ihe meta-level by terms Head: -Body, where Head
and aody are lists of literals. We use the possibility, provided by some Prologs, of using vaziables in functor
position~o. As expected, axioml ( ( [ ] : - [black (x) , brown ( x) ] ) ) is a logical consequence of this
program.

The following program represents axioms like black (x) ; brown (X) ; golden (x) :
axiom2((Head:-[])):-

property(P,Values),
. construct(Values,X,Head).
construct ( [ ] , X, [ ] ) .
construct([VIVs],X,[V(X)IRest]):-

construct(Vs,X,Rest).

property(colour,[black,brown,golden]).

Second-order axioms like P (Y) : -P (x) , big (x) , brown (x) , big (Y) , brown ( Y) aze represented
by the following program, which allows for the instantiation of the predicate variable P:

IOAlternatively, we could use -., to construct the terma ezplicitly.
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axiom3(Axiom):-
to be learned(P),
axiom3(P,Axiom).

axiom3 (P, ( [P (X) ] : - [P (Y) I Body] ) ) : -
properties(Props),
prop-values(Props,Values),
construct(Values,X,XBody),
construct(Values,Y,YBody),
append(XBody,YBody,Body).

prop-values([],[]).
prop-values([PlProps],[Vivalues]):-

property(P,PValues),
element(V,PValues)
prop-values(Props,Values).

to be-learned(sparrow).
properties([colour,size]).
property(colour,[black,brown,golden]).
property(size,[small,big]).

In the remaining two sections, we describe two meta-interpreters for reasoning with background axioms which
aze represented in this way.

6~.3 Extending incomplete examples

The following program is a meta-interpreter for carrying out proofs as in fig. 4. The predicate extend~ 3 takes
two examples, one positive and one negative, and yields an extension for the incomplete example, if possible.
The program uses the predicate resolve~ 3, which implements a resolution step for full clausal logic.

extend(PosNeg,NegPos,Extension):-
prove-with-axiom3(PosNeg,Fl),
prove-list(NegPos,F1,F2),
prove with axiom2(F2,Extension).

prove-with-axiom3(Example,F):-
axiom3(Axiom),
prove-list(Example,Axiom,F).

prove list((],F,F).
prove list([HIT],A,F):-

resolve ( H, A, R) ,
prove list ( T, R, F) .

prove-with-axiom2(In,Out):-
axiom2(Axiom),
resolve(In,Axiom,0ut).

The following three queries illustrate how the program works. The fust query shows that the program is able
to handle the proof of fig. 4.
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?-extend([ ([]:-[sparrow(flap)]), ([big(flap)]:-[]),
([brown(flap)]:-[]) ],

[ ([sparrow(sparky)]:-[]), ([brown(sparky)]:-[]) ],
Extension).

Extension - [small(sparky)]:-[]
The second query shows, that the program works equally well for an incomplete negative example and a
complete positive example ( in fact, the order of the first two arguments is immaterial). Furthenmore, it shows
that the extension need not be a definite clause.

?-extend(( ([]:-[sparrow(bruce)]), ([small(bruce)]:-[]) ],
[ ([sparrow(sparky)]:-[]), ([brown(sparky)]:-[]),

([small(sparky)]:-[]) ],
Extension).

Extension - [black(bruce),golden(bruce)]:-[]
Finally, we show that some additional information can be deduced, even if both examples aze incomplete. The
query now has several answers, depending on the colours of Bruce and Sparky.

?-extend([ ([]:-[sparrow(bruce)]), ([small(bruce)]:-[]) ],
[ ([sparrow(sparky)]:-[]), ([small(sparky)]:-[]) ],
Extension).

Extension - (brown(sparky),golden(sparky)]:-[black(bruce)] ;
Extension - [brown(bruce),golden(bruce)]:-[black(sparky)] ;
Extension - [black(sparky),golden(sparky)]:-[brown(bruce)] ;
Extension - [black(bruce),golden(bruce)]:-[brown(sparky)] ;
Extension - [black(sparky),brown(sparky)]:-[golden(bruce)] ;
Extension - [black(bruce),brown(bruce)]:-[golden(sparky)]

6.4 Classifying unseen instances

The following program is a meta-interpreter for classifying new birds on the basis of previous examples. The
first clause handles the trivíal case, where the complete description of the new bird matches a previous
complete example. Alternatively, if the example is incomplete, we can try to extend it.

classify(Examples,Desc,Class):-
element(Ex1,Examples),
prove-with-axiom3(Ex1,F1),
prove-list(Desc,Fl,Class).

classify(Examples,Desc,Class):-
element(Ex1,Examples),
prove with axiom3(Ex1,F1),
prove-list(Desc,F1,F2),
element(Ex2,Examples),
extend(Ex1,Ex2,Extension),
resolve(F2,Extension,Class).

Again, we illustrate the operation of the program with three queries. The first query asks for a classification of
a small, brown bird, given that Spazky is a brown sparrow, while Flap is a big brown non-sparrow. There aze
two alternative answers, depending on whether the incomplete example is extended or not:
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?-classify([ [([sparrow(sparky)]:-[]),([brown(sparky)]:-[])],
(([]:-[sparrow(flap)]), ([brown(flap)]:-[]),
([big(flap)]:-[])] ],

[ ([brown(bird)]:-[]), ([small(bird)]:-[]) ],
Class)

Class - [sparrow(bird)]:-[small(sparky)] ;
Class - [sparrow(bird)]:-[]

The second query repeats the first one, except that this time the description of the new bird is also incomplete:
we only know that it is small. In this case, it can only be classified if we assume that it is brown:

?-classify([ [([sparrow(sparky)]:-[]),([brown(sparky)]:-[])],

[([]:-[sparrow(flap)]), ([brown(flap)]:-[]),
([big(flap)]:-[])] ],

[ ( [ small (bird) ] : - [ ] ) ] ,

Class)

Class - [sparrow(bird)]:-[small(sparky), brown(bird)] ;
Class - [sparrow(bird)]:-[brown(bird))

The situation changes if we leave the size of the new bird unspecified, while stating that it is brown. In this
case, we can assign two alternative classifications, depending on the size of the new bird.

?-classify([ [([sparrow(sparky)]:-[]),([brown(sparky)]:-[])),

[([]:-[sparrow(flap)]), ([brown(flap)]:-[]),
([big(flap)]:-(])] ],

[([brown(bird)]:-[])],
Class)

Class - [sparrow(bird)]:-(small(sparky), small(bird)] ;
Class - [sparrow(bird)]:-[big(sparky), big(bird)] ;
Class - []:-[sparrow(bird), big(bird)] ;
Class - [sparrow(bird)]:-[small(bird)]

Note, that the second answer is in fact true but useless: if Sparky were big, the two examples would be
logically inconsistent. On the other hand, the third answer correctly states that if the new bird is big, then it
must be a non-sparrow.

Since the above program performs classification of unseen instances, it seems that it is already a learning
program. However, this is not the case, since classiEcation is only based upon previous examples, and not on
inductive generalisations. Every inference step (such as inferring missing attribute values) is deductively
justified by the background theory. In this respect, the program resembles the Version Space method, which
maintains every possible hypothesis, such that classification is always deductively justified by the examples
and the language bias. Also note that, while Version Space classification is three-valued (instance of the
concept, not an instance of the concept, unknown), the above program can give conditional classifications,
depending on missing attribute values.

In conclusion, we note that the framework sketched above also enables a systematic approach to the
incorporation of additional, domain-dependent background knowledge into the learning process. Such
background knowledge expresses dependencies between properties: if I know something about the values an
object has for these properties, than I also know something about the possible values for that property. For
instance, in fig. 3 we could add the property shade with values bright (all golden b'vds and some brown birds)
and dark (all black birds and some brown birds). This means that bright black birds and dark golden birds do
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not exist. Instead of 2~3rt2-12 blocks, there are only 8 blocks. This is true in general: background knowledge
reduces the number of atoms in the concept lattice. The higher-order logical framework alluded to above
should contain mechanisms to express such background knowledge. See (Flach 8c Veelenturf, 1989) for an
initial study of such mechanisms.
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7. Finding structure in data

In the previous two sections, we gave examples of induction problems in which both weak and strong

explanations occurred. In this section, we discuss cases in which hypotheses are never strong enough to be more

than weak explanations. Such hypotheses are called weak theories. A simple example of this type of leaming is

provided by the problem of inducing type hierarchies from typed individuals (Flach, 1990a). For example, from

bird (sparky) , sparrow (sparky) , bird (flap) and :-sparrow (flap) , we might induce the

theory {bird (X) : -sparrow (X) ), but not {sparrow (X) : -bird (X) }, because the latter is inconsis[ent

with what we know about Flap. The first theory does not imply any of the examples, but is consistent with

them. Therefore, it is a weak explanation but not a strong one. Weak theories aze not meant to subsume the

examples; rather, they describe certain structural properties found in the examples.

More contrived induction problems of this type can be found in the field of databases (Flach, 1990b).

Let R be a database relation concerning beers, bars, and drinkers. A typical tuple from R would be

r( jones, heineken, j immys) , meaning that Jones drinks Heineken at Jimmy's. Suppose that every baz

serves only one beer; this is expressed as

Beerl-Beer2:-r(Drinkerl,Beerl,Bar),r(Drinker2,Beer2,Bar)

This is known as a functional dependency in database theory. It shows that the two tuples

r( jones, heineken, j immys ) and r( smith, heineken, j immys ) con[ain redundant informa[ion: if

Jones drinks Heineken at Jimmy's, and Smith goes to Jimmy's, she can only drink Heineken. Thus, R can be

decomposed into two separate relations, one about drinkers and the beers they drink, and one about bazs and the

beer they serve.
Alternatively, suppose that if a drinker drinks a beer, she drinks it in every bar in which it is served. This

is expressed as

r(Drinkerl,Beer,Bar2):-r(Drinkerl,Beer,Bar1),r(Drinker2,Beer,Bar2)

and it is known as a multivalued dependency. In this case, R contains redundant information also: if Jones

drinks Heineken at Jimmy's, and Smith drinks Heineken in the Pink Panther, we know that Jones also drinks

Heineken in the Pink Panther, and Smith also drinks Heineken at Jimmy's. Again, R can be decomposed into two

relations.

If we want to find out what functional dependencies (fds) hold for R, we could proceed as follows.
Initially, FD contains all possible fds. For each fd in FD, look for two tuples which refute it; if found, remove
it from FD. This is a rather naive approach, because more general fds such as

Beerl-Beer2:-r(Drinkerl,Beerl,Bar),r(Drinker2,Beer2,Bar)

imply more specific ones like

Beerl-Beer2:-r(Drinker,Beerl,Bar),r(Drinker,Beer2,Bar)

Thus, if the latter is refuted by two tuples, the former is also. Instead of maintaining the full set of fds, we
keep only their most general elements; if they aze refuted, we look at the refuting tuples in order to see how far
they must be specialised. Full details can be found in (Flach, 1990b).
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The important point here is, that this process can be reformulated as induction of a weak theory. Tuples
are positive examples, which are supplied one at a time. A hypothesis is a set of fds. The relation between tuples
and fds is logical consistency, not implication. The set of possible hypotheses is bounded from above by one
most general hypothesis (since Explanation Weakening holds instead of Explanation Strengthening). This
most general explanation can be specialised by specialising its elements that are found inconsistent.

If we want to learn what multivalued dependencies (mvds) hold for R, we could proceed in a similaz
way. There is, however, an important difference between fds and mvds: fds are always refuted by tuples in the
relation, while mvds can only be refuted by two tuples which are in the relation, and one tuple which ís not.
For example, the mvd

r(Drinkerl,Beer,Bar2):-r(Drinkerl,Beer,Bar1),r(Drinker2,Beer,Bar2)

can be refuted by demonstra[ing that r( s m i t h, h e i n e k e n, j i m m y s) and
r( jones, heineken, pinkpanther) are in the relation, bu[ r(smith, heineken, pinkpanther) is
not. We could use the Closed World Assumption and assume that if a tuple is not known to be in the relation,
then it is not in the relation. However, this is only possible if the entire relation is presented to the learner at
once.

If we want to induce mvds incrementally, negative information must be explicitly available during the
induction process. Since it is somewhat unrealistic to demand that every possible tuple should be marked as
being in the relation or not, we suggested a q u e r y i n g approach in (Flach, 1990b): if

r( smith, heineken, pinkpanthe r) has not yet been presented by the teacher, we just ask her whether it

is in the relation or not. If it is not, the mvd is refuted; if it is, we add it as a positive example and try to refute

the mvd in a different way (for instance by asking whether r( jones, heineken, jimmys) is in the
relation).

Note that Compositionality dces not hold when inducing weak theories. Thus, a hypothesis weakly
explaining examples sepazately dces not necessarily weakly explain their conjunction. For example, if

H-(sparrow(X) :-bird(X) },E1-bird(flap) andE2-:-sparrow(flap),wehaveEl {cTH,E2~.H,

but not El nE2 KT. tl. The reason here is, that different examples are related to each other by way of the constants
they contain. For the same reason, Compositionality dces not hold for inducing fds and mvds. Therefore, these
procedures must remember every example. After each new example, hypotheses must be tested against the
entire set of examples.

23



8. Related work

In this paper, we view explanation as the central notion in induction. This relation bears some similarity with

the covers relation introduced by De Raedt in his Generic Concept Learning algorithm GENCOL (de Raedt,
1991). However, since De Raedt defines generality in terms of the covers relation (concept Cl is more general

than C2 iff the set of examples covered by Cl contains those covered by C2), this in fact defines covers(C, e) as

~ C~e, i.e. strong explanation. In our framework, we achieve additional freedom by defining explanation and
generality seperately.

Explanation is a central notion in many forms of reasoning, such as abduction and diagnosis. Each of
these types of reasoning can be characterised as a model inference problem, i.e. extending a partial theory (or
preferring certain models), such that it entails some given factsll. Zadrozny (1990) describes the role of
explanations in abduction in a way very similar to the analysis presented in this paper, by means of structural
properties. Poole ( 1989) describes two models of diagnosis: consistency-based diagnosis, resulting in a
minimal description of abnormal components which is consistent with the observations, and abductive
diagnosis, resulting in a minimal diagnosis which implies the observations. Obviously, these two models can be
reformulated in terms of weak and strong explanation. Also, Poole notes that the two models use different
descriptions of normal andlor abnormal behaviour, whereas in our model we showed that weak and strong
explanations differ with respect to the kind of condition (necessary~sufficient). It seems that a further
integration of models of induction, abduction and diagnosis is possible and desirable.

Induction is also related to theory revision: how to change a given theory in order to take new

information into account. G~rdenfors ( 1988) distinguishes three revision operators: expansion incorporates

non-conflicting information in the theory, revision takes care of new information which contradicts the

current theory, and contraction changes the theory such that it no longer implies some facts. These operators

are abstrac[ly defined by their structural properties. There is a strong relationship between revision operators

and explanation: for instance, the expansion of a theory T with new information A can be defined as the set (B I

B KT A), i.e. the set of formulas explained by A, given T. It can then be shown that structural properties of

strong explanation translate to G~rdenfors' rationality postulates for expansion operators. Another

interesting parallel concerns his notion of epistemic entrenchment, which is an ordering on formulas used to

define revision and contraction operators: this ordering seems to be closely related to the generality ordering

used in inductive learning. Whereas our framework describes the static properties of explanations, G~rdenfors'

framework can be used to describe the dynamics of explanations when taking new examples into account. On

the other hand, revision operators are based on classical logic; it would be interesting to redefine them in terms

of explanations, thereby gaining the flexibility of varying the underlying logic.

11Note the correspondence with non-monotonic reasoning.
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9. Concluding remarks

In this paper, we have outlined a logical framework for analysing notions of explanation. We believe such a
framework to be useful, because explanation is a central concept in many AI problems, such as diagnosis and
learning. The framework allows the study of the crucial properties of explanations in an abstract setting,
without too much reference to the underlying languages. More specifically, the framework offers an analysis
of

~ the properties that make explanation useful for inductive learning (such as Convergence);
- the relation between these properties and the logical properties of the base logic (like

monotonicity);
~ abstract definitions of explanation (the logical systems SC, SM, W, and CC);
. alternative definitions of explanation, and their interrelations.
Furthermore, we have applied this framework to vazious topics in inductive learning. We have shown

that the duality between weak and strong explanation has a parallel in the duality between learning necessazy
and sufficient conditions, which can be expressed by means of predicate completion. We claim that a better
understanding of this parallel will increase our knowledge of operators for generalisation and specialisation.
Other applications include handling missing attribute values in logic, and discovering structure in data.

We have outlined some of the parallels between our framework and existing models of abduction and
theory revision, and we are presently pursuing a further study of these pazallels. Furthermore, since we
presented explanation as an inference relation, it would be nice to have a model-theoretic chazacterisation of it,
including a representation theorem (soundness and completeness). This would allow us to prove statements
like 'in the system SM, we have a KT ~i iff T~~i~a'. Finally, we are working on an implementation of some of
the ideas illustrated in this paper, in particular the use of predicate completion, and induction of non-monotonic
theories.
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