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In survey studies, probabilistic expectations about uncertain events are typically elicited by 

asking respondents for their introspective beliefs.  If more complex procedures are feasible, 

beliefs can be elicited by incentive compatible revealed preference mechanisms (“truth 

serums”). Various mechanisms have been proposed in the literature, which differ in the 

degree to which they account for respondents’ deviations from expected value maximization. 

In this paper, we pit non-incentivized introspection against five truth serums, to elicit beliefs 

in a simple two-player game.  We test the internal validity (additivity and predictive power 

for own behavior), and the external validity (predictive power for other players’ behavior, or 

accuracy) of each method. We find no differences among the truth serums. Beliefs from 

incentivized methods are better predictors of subjects’ own behavior compared to 

introspection. However, introspection performs equally well as the truth serums in terms of 

accuracy and additivity.  
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1.  Introduction 

In decisions under uncertainty, information about the probabilities of the various events is 

often unavailable, and decisions have to be made on the basis of subjective probability 

judgments. Agents should form these subjective assessments of likelihoods (beliefs) 

according to the laws of probability, and evaluate alternatives by their belief-weighted 

expected utility (Savage 1954). Because of their importance in economic decisions, 

economists have elicited subjective beliefs in a wide range of applications. Game theorists 

have tested whether subjective beliefs about other players’ behavior can explain deviations 

from Nash equilibrium strategies (e.g. Bellemare, Kroeger & van Soest 2008; Blanco et al. 

2011; Costa-Gomez and Weizsäcker 2008; Rey-Biel 2009). Macroeconomists have studied 

the effect of beliefs about uncertain future income and demand on savings and investment 

decisions (Guiso, Japelli and Terlizzese 1992; Guiso and Parigi 1999). In development 

economics, researchers tried to link beliefs to decisions to adopt new variety of seed or to 

settle in natural disaster prone areas (Cameron and Shah 2011; Delavande, Gine, and 

McKenzie 2011), and health economists investigated whether wrong beliefs can explain risky 

health behaviors such as smoking or shunning of preventive care (Carman and Kooreman 

2010; Ahmed Khwaja, Frank Sloan and Martin Salm, 2006; Khwaja et al. 2007).  Although 

in theorizing it is typically assumed that agents form beliefs rationally, in empirical 

applications they may differ from the true unknown probabilities.  If they differ, it has been 

shown that subjective beliefs are often better predictors of behavior than objective 

likelihoods, even if the latter are available to the researcher.1  

 Various methods have been employed to elicit beliefs. The most common method 

involves directly asking respondents about their introspective beliefs.  Simple introspective 

questions can easily be included in surveys and are easy to explain to respondents.  On the 

downside, respondents may have little incentive to think carefully about the problem, thus 

adding noise.  More seriously, respondents may misrepresent their beliefs because of social 

desirability, or to influence what they believe is the goal of the research (Li 2007; Manski 

2004; Zizzo 2010). To overcome the problems of simple introspection, methods have been 

developed that extract beliefs from respondents’ revealed preferences between prospects that 
                                                      
1 E.g. Branch (2004) for macroeconomic expectations; Armantier & Treich 2009; Bellemare, Kroeger & van 
Soest 2008; Costa-Gomez & Weizsaecker 2008; Heinemann, Nagel & Ockenfels 2009; Nyarko & Schotter 
2002, for behavior in games; Haruvy, Lahav, & Noussair 2007 for trading in asset markets; Carman & 
Kooreman 2010 for medical decisions; Guiso, Japelli & Terlizzese 1992 for precautionary saving. See also 
Attanasio (2009) and Hurd (2009). 



3 

 

offer real monetary payoffs depending on the uncertain event of interest to the researcher.  If 

the monetary incentives dominate other motives, these mechanisms are incentive compatible, 

i.e., reporting true beliefs maximizes the respondent’s belief-weighted expected payoff 

(Hurwicz 1960).  Because it is in the best interest of the respondent to reveal her beliefs 

truthfully, incentive compatible methods have sometimes been called truth serums (Prelec 

2004).  Many truth serums assume that respondents are risk-neutral expected utility 

maximizers.  Because both risk neutrality and expected utility maximization may empirically 

be violated (Machina 1987; Starmer 2000), refinements have been developed that account for 

risk aversion and for non-linear probability weighting (Andersen et al. 2010; Heinemann et al. 

2009; Hossain and Okui 2011; Offerman et al. 2009).     

 Given the importance of measuring people’s subjective expectations in economics and 

other social sciences, an assessment of the costs and benefits of the different methods is 

warranted. While the cost of implementing a method in a specific setting (survey, 

experiment) can usually easily be assessed by the individual researcher, its relative benefits 

are less obvious.  There is little evidence yet on whether the various truth serums improve the 

quality of the elicited beliefs over and above the benchmark of simple introspection, and if 

so, by what degree. Similarly, there is little evidence on whether more complex (and thus 

theoretically more robust) methods yield more reliable data. In many applications it may be 

impossible to condition monetary incentives on an event of interest, because it falls outside 

the period in which the researcher has access to the subjects.  Even in laboratory experiments, 

the researcher may want to avoid complex belief elicitation tasks because they distract 

subjects form the main task of interest (Cabrales et al. 2010; Haruvy, Lahav, and Noussair 

2007). In these cases it is important to understand potential deviations from true beliefs 

caused by introspective questions or less robust truth serums. 

 The aim of the current paper is to study in a controlled environment whether (1) truth 

serums provide higher quality belief data than simple introspection, and (2) whether more 

complex truth serums are worth the additional effort because they elicit better data than less 

sophisticated truth serums.  In contrast to the previous literature, we consider a large set of 

truth serums, and compare the methods using three different quality criteria. Applications 

may be concerned with different aspects of the subjective beliefs, and differences in the rank-

order of the methods across the three criteria provide information on which methods best 

serve the goal of the researcher. To assess the benefits of different truth serums, the current 

paper pits introspection against five incentive compatible mechanisms of different degree of 
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complexity.2 In a between-subject design, we compare introspection to three widely used 

truth serums, viz. the outcome matching method (e.g., Kadane and Winkler 1988; Heinemann 

et al. 2009; Huck and Weizsäcker 2002), the probability matching method (e.g., Abdellaoui, 

Vossmann and Weber 2005; Arrow 1951, Hollard, Massoni, and Vergnaud 2010; Holt 2006), 

and the quadratic scoring rule (e.g., Brier 1950; Costa Gomes and Weizsäcker 2008; 

McKelvey and Page 1990; Nyarko and Schotter 2002; Rey-Biel 2009).  Moreover, we 

consider a correction method for outcome matching that controls for deviations from risk 

neutrality under expected utility used by Heinemann et al. (2009), and a correction method 

for the scoring rule that controls for deviations from risk neutrality, caused by either utility 

curvature or probability weighting introduced by Offerman et al. (2009). We elicit players’ 

beliefs in a simple two-person ultimatum game, and measure the internal and external validity 

of each method.  External validity concerns in how far the elicited beliefs match the true 

objective probabilities of the event (accuracy). As a measure of external validity we thus 

study the predictive power of the elicited beliefs for the behavior of the other players in the 

game. Internal validity concerns “the degree to which persons give internally consistent, 

sensible responses to the questions” (Manski 2004, p. 1343).  As measures of internal validity 

we employ the additivity of the elicited probabilities (Attanasio 2009; Tversky and Koehler 

1994), and the consistency of players’ beliefs with their own behavior in the game (Costa-

Gomez and Weizsäcker 2008; Costa-Gomez et al. 2008).   

 A few studies have directly compared subsets of the widely used methods, employing as 

a quality criterion the external validity (accuracy) of the elicited beliefs. Hoa and Houser 

(2010) compare two implementations of probability matching proposed by Karni (2009). 

Friedman and Massaro (1998), Sonnemans and Offerman (2001), and Rutstrom and Wilcox 

(2009), compare non-incentivized introspection with the quadratic scoring rule. Hollard, 

Massoni, and Vergnaud (2010) include introspection, the quadratic scoring rule and 

probability matching in their study.  Huck and Weizsäcker (2002) compare the quadratic 

scoring rule and outcome matching.  The evidence from this literature is mixed, and shows no 

clear advantage of incentivized methods over introspection. Similarly, no truth serum seems 

to dominate the others in terms of accuracy.  While Huck and Weizsäcker find that the 

scoring rule performs better than outcome matching, in Hollard et al.’s study the scoring rule 

gives worse results than either introspection or probability matching. However, none of these 

                                                      
2 Complexity refers the implementation of the task (number of questions asked, payment mechanism, and 
difficulty of instructions, and randomizations). 
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studies considered corrections for risk attitudes in the scoring rule or outcome matching 

methods. Consequently, deviations from risk neutrality have been brought forward to explain 

poor performance of these truth serums in some studies.  Hossain and Okui (2011) propose a 

new scoring rule method that is insensitive to deviations from expected value maximization, 

and show that it elicits more accurate beliefs than the quadratic scoring rule.  Andersen et al. 

(2010) compare the quadratic and the linear scoring rule, and elicit a large number of risky 

choices alongside the belief questions. They find no differences between the two methods, 

but show that correcting for risk attitudes influences the estimated subjective beliefs.  These 

studies support the view that risk corrections are important in belief elicitation.  

 Building on the existing literature, the current paper studies a larger set of methods, 

including corrections for outcome matching and the scoring rule. The current paper also 

extends previous analyses by using criteria of both external and internal validity to compare 

truth serums and introspection. The existing evidence is completely silent on the comparative 

performance of methods in terms internal validity measures.3 We compare the empirical 

performance of the different methods, being agnostic about the theoretical validity of each 

method in our current setting and subject pool. We believe that in virtually all empirical 

applications, the researcher has little information about validity of the various assumptions 

underlying the methods (precise risk attitudes, violations of expected utility), and is interested 

only in eliciting high quality data. For example, if a method that does not control for 

incentive compatibility leads to smaller violations of additivity than a method that does 

control for incentive compatibility, we consider the former, theoretically less robust, method 

empirically preferable.          

 The current paper finds little evidence for improved empirical performance of more 

complex methods.  There are no robust differences among the five truth serums for any of the 

three criteria considered. Moreover, the results show that introspective belief measurement 

performs similar in terms of accuracy and additivity as the truth serums. However, 

incentivized beliefs are a better predictor of players’ own behavior in the game. The current 

study thus supports the view that introspection is a valid method to measure subjective beliefs 

in applications where accuracy and additivity are important. If more complex methods are 

                                                      
3 Armantier and Treich (2009) employ  introspection, a scoring rule and a prediction contest in their study of 
beliefs first price auctions. They show that subjective probabilities explain overbidding, and report that the 
elicitation method did not affect their results. Their study thus provides indirect evidence for the equivalence of 
introspection and scoring rule beliefs terms of internal validity.  
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feasible, there can be benefits from using incentive compatible mechanisms to predict agents’ 

behavior. 

 The paper proceeds as follows.  Section 2 gives definitions and notation.  Section 3 

introduces the belief elicitation methods that are considered in the current study, followed by 

the experimental design in Section 4.  Experimental results are presented in Section 5, and 

discussed in Section 6.  Section 7 concludes.  

2.  Definitions and Notation 

We study beliefs in the context of the ultimatum game.  In stage 1 of the game, a proposer 

proposes the division of an amount of €20 between herself and another player, called the 

responder. The proposer chooses from a menu of six possible allocations of the type 

(proposer receives, responder receives), viz. (€20, €0), (€16, €4), (€12, €8), (€8, €12), (€4, 

€16), and (€0, €20).  In stage 2, the responder decides whether to accept or to reject the 

proposal.  If she accepts, the proposal is implemented.  If she rejects, both players receive €0.  

 We elicit full strategies for responders in the ultimatum game.  That is, we let responders 

indicate for each possible proposal whether she accepts it or rejects it.  The game is resolved 

by matching the actual proposal to the respective strategy of the responder.  Before resolving 

the game, we elicit proposers’ beliefs about the rejection/acceptance probabilities for each of 

the six proposals, and elicit responders’ beliefs about the proposal.   

 Let E denote an uncertain event, such as whether the responder accepts the offer (€20, 

€0).  We call an event risky if objective probabilities are exogenously given, i.e., when the 

probability p of event E is known a priori.  In many situations no objective probabilities are 

available to the decision maker.  We call an event uncertain in this case.  In the ultimatum 

game, events based on behavior of the other player are uncertain.   

 In discussions of the theoretical properties of the truth serums, we assume that under 

uncertainty agents form subjective assessments of likelihoods of the uncertain events 

(beliefs), according to the laws of probability. That is, we assume that agents are 

probabilistically sophisticated (Machina and Schmeidler 1992).  Moreover, agents evaluate 

alternatives by the belief-weighted expected utility that each alternative yields (Savage 1954).  

More specifically, let xEy denote a prospect that yields outcome x if event E obtains and 

outcome y if Ec obtains, with Ec the complementary event not-E, and x and y designating 

monetary amounts in Euro.  Under expected utility, the prospect is evaluated by B(E)U(x) + 

B(Ec)U(y), where B(E) denotes the subjective belief in event E, U is a continuous and strictly 
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increasing utility function, and B(Ec) = 1 – B(E).  We call the prospect xE0 a bet on event E, 

paying x if E obtains and zero otherwise.  The certainty equivalent (CE) of a prospect is the 

certain amount that makes the agent indifferent between receiving the prospect or receiving 

the certain amount.  The matching probability p of event E is defined by the indifference 

between a prospect paying x if event E obtains (and nothing otherwise), and a prospect 

paying x with probability p (and nothing otherwise), i.e., xE0 ~ xp0.   

3.  Introspection, Truth Serums, and the Cost of Implementation  

This study measures beliefs in a simple ultimatum game with a restricted choice set, eliciting 

full strategies. This allows us to observe incentivized beliefs for strategies that are rarely 

implemented in actual play. We employ four methods to elicit beliefs of proposers and 

responders in the ultimatum game in a between subject design (introspection plus three truth 

serums).  After applying corrections for risk attitudes to two of the methods, we obtain in total 

6 different measurements of beliefs, which we describe in section 3.1. In section 3.2 we 

illustrate the differences in the cost of implementing each method, which underly the need to 

provide empirical estimates of the benefits of each method, to make an informed tradeoff 

between costs and benefits. 

 

3.1. Measuring Beliefs: The Elicitation Methods 

Introspection. In the introspection task each proposer was asked to state her beliefs 

concerning the rejection behavior of the responder in an introspective way.  For each of the 

six proposals, proposers stated the probability that the allocation would be rejected by the 

responder by reporting a number between 0 and 100.  Similarly, responders were asked to 

report for each proposal the probability that it was chosen by the proposer.  Subjects received 

a fixed payment of €5 for this task.4  

 

Outcome Matching.  With outcome matching, beliefs were inferred from indifference 

between a sure amount of money and the prospect xEy, i.e, 

  CE  ~  xEy  (1) 

                                                      
4 Details of the payment procedures for all methods are given in the experimental design section.  
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for some amounts x > y (e.g., Kadane and Winkler 1988, Heinemann et al. 2009). Under the 

assumption of expected value maximization it follows from the equality CE = B(E)x + 

(1B(E))y  that the belief B(E) is equal to (CE–y)/(x–y). In the experiment, for each of the six 

proposals, we presented proposers with 21 choices between a prospect that pays €15 if the 

proposal was accepted (event E) and zero otherwise, and some sure amount. The larger the 

subjective probability of acceptance, the more attractive the prospect becomes. The sure 

amount varied between €0 and €15 in equally sized steps, and the 21 choices were presented 

in a choice list (see appendix). For low sure amounts the prospect is commonly chosen, while 

for large sure amounts the sure amount is commonly preferred. The midpoint between the 

values for which the subject switched between a preference for the prospect to a preference 

for the sure amount is taken as the certainty equivalent from which the subjective belief can 

be calculated.  Similarly, for responders, for each proposal, a prospect paying €15 if the 

proposal was chosen by the proposer and zero otherwise was compared to 21 sure amounts in 

a choice list as described above.  Again, the larger the subjective probability that the proposer 

accepts the proposal, the more attractive the prospect becomes, and the larger the elicited 

certainty equivalent should be.  

 

Probability matching. In the probability matching task, we elicited for each subject the 

probability p that satisfies the indifference 

  xpy  ~  xEy  (2) 

for some  x > y.  Under a general expectation function with w(p) transforming (subjective) 

probabilities and U(x) transforming outcomes, w(B(E))U(x) + (1-w(B(E)))U(y) = w(p)U(x)+ 

(1-w(p)U(y) implies B(E) = p.5 Thus, probability matching is valid under a wide range of 

decision models, including expected utility, rank-dependent utility, and prospect theory.  

Probability matching was commonly used in early decision analysis (Raiffa 1968, §5.3; Yates 

1990 pp. 25-27).  More recent empirical measurements of beliefs through probability 

matching can be found in Holt (2006, Ch. 30), and in Abdellaoui, Vossman, and Weber 

(2005).  In the experiment we incentivized probability matching by using choice lists for both 

players and for each allocation as discussed for outcome matching above (see appendix).  

                                                      
5 From w(B(E))U(x)+(1-w(B(E)))U(y)=w(p)U(x)+(1-w(p)U(y) it follows that w(B(E))=w(p). The conclusion 

that B(E)=p thus hinges on the assumption that both subjective and objective probabilities are transformed 

equally (Wakker 2004).  
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Now, the choice lists involved choices between a prospect based on the decision of the other 

player (event E), and a prospect with a given probability p of winning the €15. There were 

again 21 choices in each list, with probability p ranging from 0 to 1 in equally-sized steps of 

.05. Probabilities were presented in terms of frequencies using a 20-sided die.   

  

Quadratic scoring rule. Beliefs can be measured through so-called scoring rules, introduced 

by Brier (1950) and de Finetti (1962), which have the advantage that a single choice suffices 

to determine the exact belief in an incentive compatible way.  Scoring rules have been used in 

many domains, including education (Echternacht 1972), finance (Shiller, Kon-Ya, and 

Tsutsui 1996), political science (Tetlock 2005), and experimental game theory (Costa Gomes 

and Weizsaecker 2008). The most popular scoring rule is the quadratic scoring rule (QSR; 

McKelvey and Page 1990, Nyarko and Schotter 2002).  When rewarded according to the 

quadratic scoring rule, the agent is offered the prospect 

  [a  b(1  r)2] E[ a  br2],  (3) 

with a>0 and b > 0. The parameter r  [0, 1] is chosen by the agent. A clairvoyant who 

knows that event E will obtain chooses r = 1 to maximize her payoff; a clairvoyant who 

knows that event E will not obtain chooses r = 0. A decision maker who is uncertain about 

the event E chooses r = B(E) to maximize her expected payoff.6    

 In the experiment, beliefs were elicited with the quadratic scoring rule by presenting 

subjects with a table that calculates for each of 21 values of r, r{0, .05, ..., .95, 1}, the 

payoff under event E and under its complement Ec according to Eq.3 (see appendix).  The 

parameters were set to a=€20 and b=€20, implying a symmetric payoff structure and a risk 

free payoff of €15 resulting from r=.5.  Subjects chose one row in the table, rather than 

directly reporting their subjective probabilities, and received a payoff depending on which 

event materialized.  Thus, for a proposer who believes that the proposal (€0; €20) is very 

likely to be accepted, it will be attractive to choose a row that yields a larger payoff under the 

event “proposal accepted” than under its complement.  Note that subjects were not told that 

truthful reporting of their belief maximizes their expected payoff, or any related claim 

referring to truthful revelation being in their best interest.  Although a similar list format was 

                                                      
6 This follows immediately from the first order condition of expected value maximization with respect to r, 

2bB(E)(1r) = 2br(1B(E)).  
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used as in the outcome and probability matching methods, in the scoring rule task 

respondents made only a single decision.  

 

Corrections for risk attitude. It is easy to see that in contrast to the probability matching 

method, the outcome matching method and the scoring rule are not incentive compatible if 

the respondent is not risk neutral. In the case of the scoring rule, for example, choosing r=.5 

perfectly hedges the agent. If the agent is risk averse, the perfectly hedged prospect may be 

preferred over a risky one deriving from her true belief. Because risk attitude is typically 

found to deviate from risk neutrality, we consider refinements of these two methods that 

account for these deviations. 

 For the quadratic scoring rule we used the refinement proposed by Offerman et al. (2009) 

that corrects reported beliefs for risk aversion caused by utility curvature and non-linear 

probability weighting.7  The method involves eliciting subjects’ parameter r for risky events 

with known probability (e.g. a dice roll in our experiment). If the objective probability equals 

p, a deviation away from r = p indicates that the respondent hedges due to risk aversion.8 

Offerman et al. (2009, sec. 11.4.) show that beliefs can be corrected by fitting the non-linear 

function p = r+r2 (called the correction function) at the individual level using a set of 

objective probabilities p and the corresponding values of r reported by the subject. This yields 

estimated parameters * and *. Under uncertainty, the corrected beliefs then follow from the 

rE, reported for the uncertain event E of interest, as B(E) = *rE+*(rE)2.  

 For outcome matching, under expected utility with utility function U(x) the elicited 

belief equals B(E) = (U(CE) – U(y))/(U(x) – U(y)) (e.g. Heinemann et al. 2009). Hence, for 

concave utility the ratio between numerator and denominator becomes larger compared to 

risk neutrality.  Uncorrected beliefs would thus be biased downwards under risk aversion.  

We measured the utility function from a risky decision task and corrected reported beliefs for 

utility curvature in outcome matching.   

 

3.2. Cost of Implementation 

We have argued that more theoretical robustness comes at higher implementation costs, 

which suggests a tradeoff between cost and potential empirical benefits. In Table 1 we 

                                                      
7 Kothiyal et al. (2011) generalize the correction techniques introduced by Offerman et al. (2009), and discuss 
methods to increase incentives for beliefs close to r=.5.  
8 Some deviations would obviously indicate risk seeking, but this is less common and poses no problems for the 
correction method. 
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summarize the implementation cost for the six measurement methods. Clearly, the truth 

serums require more effortful elicitation than simply asking subjects to report their belief. 

Moreover, theoretically more robust methods add additional costs in the form of multiple 

scoring rule tables, additional randomizations, or additional lottery choices. These 

implementation tools require more time and additional instructions, and potentially require 

more trust from the subjects if randomizations to play lotteries and to select 

choices/tables/choice lists are not easily observable by the subjects. The latter is often the 

case in computerized surveys and experiments.  

 

   TABLE 1: Implementing Truth Serums Experimentally 

 Cost of implementation per event  Theoretical benefit: 
Valid under 

Introspection 1 verbal question - 

Outcome Matching 1 choice list of 21 choices EV 

Probability Matching 1 choice list of 21 choices; 1 random-
ization with known probabilities 

EV, EU, RDU, PT 

Quadratic Scoring Rule 1 table of 1 choice EV 

Outcome Matching 
(corrected) 

1 choice list of 21 choices; plus 1 risky 
choice question (once) 

EV, EU 

Quadratic Scoring Rule 
(corrected) 

1 table of 1 choice; plus 10 tables of 1 
choice each (once)  

EV, EU, RDU, PT 

Notes: EV=expected value; EU=expected utility maximizations; RDU=Rank-dependent 
utility; PT=prospect theory maximization  
 

4.  Experimental Design 

General Procedures. Two-hundred-six undergraduate students from a wide range of 

disciplines participated in a computerized experiment that was conducted in the Tilburg 

University CentERlab.9 The experiment had three stages. In stage 1, subjects played an 

ultimatum game using a full strategy method. The game was not resolved until the end of the 

experiment.  Proposers’ and responders’ beliefs about the other player’s behavior in the game 

were elicited in Stage 2. Stage 3 measured risk attitudes by a simple lottery choice task. For 

subjects in the scoring rule treatment, the third stage also elicited the parameters used for the 

                                                      
9 The experiment used the z-Tree package by Fischbacher (2007). 
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correction method discussed in section 3. Subjects were given written instructions before 

each stage.10   

 No games, lotteries or belief-elicitation bets were resolved until the end of the 

experiment.  After all decisions had been made by the subjects, one stage and one decision 

within this stage were randomly selected for each participant for real payment. This was done 

to prevent hedging and wealth effects (Starmer and Sugden 1991; Thaler and Johnson 1990; 

Blanco et al. 2010). The decisions were resolved and paid in private, and all randomizations 

for lotteries were done by throwing dice.   

 

Stages and Treatments. The first stage was identical for all subjects.  They were randomly 

assigned the role of either proposer or responder in the ultimatum game, and made their 

proposal or rejection/acceptance decisions as described in Section 2.  The ultimatum game 

has been employed as a baseline task here because it provides a natural tension between the 

game theoretic prediction and fairness-related intuitions.  All non-zero proposals should be 

accepted and thus the smallest non-zero amount been proposed for the responder if both 

players care only about monetary payoffs.  Fairness considerations by either player will lead 

to deviations from this prediction.  Because no player knows whether the other person 

considers such fairness issues in her choices, there is strategic uncertainty and beliefs become 

non-trivial.  For proposers, the beliefs are an important input to their decision: given a belief 

that low proposals are rejected with high probability, even a proposer maximizing her 

expected monetary payoff (and thus not concerned with fairness) will offer a positive amount 

to the responder (Manski 2004, Bellemare et al. 2008). 

 The second stage belief measurement was implemented as a 4-treatment between-subject 

design. The treatments measured introspection (N=52), outcome matching (N=52), 

probability matching (N=50), and scoring rule (N=52) beliefs. Details of the different 

methods are discussed in section 3.  For proposers we elicited beliefs about acceptance 

probabilities for each of the six proposals.11  For responders, we elicited for each proposal the 

probability that it was chosen by the proposer.  We additionally elicited for proposers their 

beliefs about the rejection probability for the proposal (€12, €8).  We expected this proposal 

to yield subjective probabilities of both acceptance and rejection that were clearly bounded 

away from zero or one.  For responders, we additionally elicited the probability that the 
                                                      
10 Instructions and screen shots for different treatments can be found in the appendix. 
11The six proposals of the type (proposer receives, responder receives) were (€20, €0), (€16, €4), (€12, €8), (€8, 
€12), (€4, €16), and (€0, €20). See Section 2 for details.  
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proposal (€12, €8) was not chosen by the proposer.  These questions came after the questions 

regarding the acceptance (for proposers) and “was-chosen” (for responders) probabilities.  

For the proposal (€12, €8) we therefore obtained the subjective probability of the event E that 

the proposal was accepted/chosen, and the subjective probability of its complement Ec 

(proposal was rejected/not chosen).  This allows us to study the additivity of the subjective 

beliefs, i.e. whether these belief measures add up to exactly 100%.  Moreover, for responders 

we also study additivity of the choice probabilities over all six proposals.  

 The third stage of the experiment measured individual utility functions to control for 

deviations from risk neutrality; all subjects did the same task.  The certainty equivalent of the 

prospect 100.50 was elicited by a simple choice list.  For subjects in the scoring rule treatment, 

this stage contained an additional task.  For these subjects we elicited scoring rule parameters 

r for 10 objectively known probabilities as described in section 3.  This allows us to correct 

reported scoring rule beliefs for nonlinear risk attitude.  

5.   Results  

This section presents the experimental results, and assesses the internal validity (do reported 

beliefs adhere to the laws of probability; do choices reflect subjective beliefs) and external 

validity (do reported beliefs successfully predict other players’ behavior) of the elicitation 

methods used in the experiment.  We first give the results of the ultimatum game and the 

utility estimation and risk attitude correction.   

 

Ultimatum game.  The probability that each allocation was chosen by the proposers, and the 

acceptance probabilities of responders for each allocation in the ultimatum game are given in 

Table 2.  These probabilities serve as a benchmark for the analyses of the subjective beliefs 

below.  

   TABLE 2: Choice and Acceptance Probabilities Ultimatum Game  

 

 Allocation 

 (€20, €0) (€16, €4) (€12, €8) (€8, €12) (€4, €16) (€0, €20) 

Choice 
probability 

5.88% 19.61% 65.69% 6.86% 1.96% 0.00% 

Acceptance 
probability 

13.73% 43.14% 90.20% 95.10% 92.16% 88.24% 
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 As typically found, proposers send positive amounts to responders with the modal 

proposal close to the equal split.  On average, proposers send about 36% (€7.18) of the pie to 

responders, which is consistent with earlier findings (e.g. Roth 1995, chapter 4; Oosterbeek et 

al. 2004).  Although positive offers in the ultimatum game can be interpreted in terms of 

social preferences (Fehr and Schmidt 2003), they can also derive from expected payoff 

maximization if the proposer believes that low offers are rejected (Manski 2004, Bellemare et 

al. 2008).  Below we study if beliefs predict choices even in the absence of a social 

preference specification.  

 Responders’ acceptance probabilities also showed a typical pattern by increasing from 

about 14% for the lowest offers to above 90% for proposals around the equal split. 

Acceptance was then decreasing slightly to 88.24% when the complete pie was offered to the 

responder.  Thus, some responders accepted intermediate offers, but rejected low and high 

offers.  This behavior has been found before, and can be explained by moral concerns of 

responders (e.g., Bellemare et al. 2008; Hennig-Schmidt et al. 2008).  

 

Risk Attitudes and Corrections.  In total, twelve subjects switched multiple times between the 

option yielding a certain amount of money and the option yielding the prospect 100.50.  These 

observations were excluded from the analysis.  The average certainty equivalent of the 

prospect 100.50 was €4.56.  In total, 70.62% percent of subjects were risk averse, which is in 

line with what is commonly found in studies on individual decision making.  For the 

parametric specification we assume the power utility function, U(x) = x, where 1- is the 

coefficient of constant of relative risk aversion (CRRA), and =1 indicates risk neutrality.  

The average (median)   in our sample is .978 (.931), which is significantly smaller than 1 

(Wilcoxon signed-rank test, z = ; p<.01). The elicited certainty equivalents in the 

outcome matching treatment were corrected for curvature of the utility function at the 

individual level using these CRRA estimates.  

 Reported beliefs in the scoring rule treatment were corrected for non-linear risk attitudes 

using the elicited correction function as discussed in section 3.  Risk corrections do not make 

sense for respondents who are not responsive to objective probabilities, and we excluded 6 

subjects for whom the correlation between objective probability and scoring rule parameter r 

was very low.12 In Appendix C we give the results of the risk correction choices which 

                                                      
12 Excluded subjects had correlations of zero (4 times), .13, and .20. The lowest correlation of included subjects 
was .71.  
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confirm that subjects’ reported probabilities deviate from the objective known probabilities. 

The data also suggest that most deviations from the known probability were due to risk 

attitude and not pure noise. For both high and low probabilities, subjects are biased toward 

the .5 probability, but not beyond the .5 probability. For instance, for objective probability .8 

we observed implied reported probabilities in the range .5 to .8, but virtually no such reported 

probabilities below .5.  Thus, there seems to be little purely random choice, which would 

imply such a pattern (i.e., reported beliefs on the “other side” of the .5 probability).  

 

Internal Validity of the Elicited Beliefs.  As described in Section 4, for the proposal (€12, €8) 

we elicited both rejection and acceptance beliefs from proposers, and choice and not-choice 

beliefs from responders.  Because the events are complements, their subjective probabilities 

should add up to 100 percent.  This allows us to assess the internal validity of the different 

methods by testing whether elicited beliefs are additive.  For responders we can also test 

whether the predicted choice probabilities over all 6 proposals add up to 100%.    

 
TABLE 3: Additivity 

Notes: Entries medians (means) of the sum of the reported probabilities; */** significantly larger than 100% 
based on a two-sided Wilcoxon signed-ranks test, 5%/1% significance level.  
 

 The first row of Table 3 gives medians and means of the sum of proposers’ reported 

probabilities of the event “(€12, €8) accepted” and its complement. There is a clear additivity 

bias, with the sum of the subjective probabilities significantly larger than 100% for all 

methods except the corrected scoring rule. Given the size of the deviations for the corrected 

scoring rule, however, this insignificance appears to be caused by larger variation rather than 

better additivity properties. The second row present results for the sum of the responders’ 

reported probabilities of the event “(€12, €8) chosen” and its complement.  Results are closer 

 Introspection Outcome 
Matching 

Probability 
Matching 

QSR Outcome 
Matching 

(Corrected) 

QSR 
(Corrected)

Proposers 
(€12, €8) 

105  
(105.5)* 

120  
(116)*  

105  
(113.8)* 

110  
(108.85)* 

119.83  
(118.22)** 

109.94 
(107.64) 

Responders 
(€12, €8) 

105 
(106.65)* 

105 
(103) 

100 
 (99.40) 

102.5 
(107.12)  

106.65  
(106.65) 

103.61 
(107.32) 

Responders 
(6 proposals) 

155.5 
(183.27)** 

185  
(210)**  

190  
(199.80)** 

227.5 
(235.58)**

245.25  
(226.29)**  

203.67 
(208.59)** 
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to additivity, and deviations are insignificant for all truth serums.13  The last row shows 

additivity of the responders’ expected choice probabilities for all six proposals.  We find that 

all deviations are large and significant, and that introspection performs significantly better 

than the quadratic scoring rule (Mann-Whitney-U test, z=2.255, p<.05) for the case of 

responders’ beliefs over the 6 proposals. For this case, the correction of the quadratic scoring 

rule for deviations from risk neutrality improves additivity (Wilcoxon test, z=3.412, p<.01), 

replicating the finding in Offerman et al. (2009). We do not observe any other significant 

differences among the truth serums. The results show that elicited beliefs suffer from 

significant non-additivity, with the implied probabilities of the unions of events being too 

large. With 6 events considered, violations of additivity are more pronounced than for 2 

events only. Overall there is little evidence of more complex methods outperforming simpler 

methods; in particular, introspection does not consistently underperform compared to the 

truth serums. 

 The second measure of internal validity concerns the consistency of proposers’ beliefs 

with their own choices in the ultimatum game (Costa-Gomez and Weizsäcker 2008, Rey-Biel 

2009).  We calculate proposers’ optimal choices in the game under the assumption that they 

maximize (1) expected value, (2) expected utility with CRRA utility function, or (3) a Fehr-

Schmidt (1999) social preference utility function that considers differences in payoffs among 

the agents. The social preference function is parameterized using estimates in Bellemare et al. 

(2008) for all subjects. Results are in Table 4.  

 
TABLE 4:  Percentage of Proposers’ Choices Consistent with Reported Beliefs 

Note: Numbers are percentages. EV=Expected value maximization; EU= Expected utility maximization, 
FS=Fehr-Schmidt expected social preference function maximization; FS parameterized with =0.85 and β= 
0.32; EU is based on individual CRRA estimates. */** indicates significant better prediction than random at 
5%/1% significance level. 
 

 Table 4 shows that the truth serums predict around 30-40% of the choices, which is 

significantly better than chance in most cases. Surprisingly, the performance is only mildly 

                                                      
13 The same results obtain if we pool the data from proposers and responders. 

 
Observed 

frequencies 
 

Intro-
spection 

Outcome 
Matching

Probability 
Matching 

QSR Outcome 
Matching 

(Corrected) 

QSR 
(Corrected)

EV 66** 19 32* 32* 31* 28 35* 
EU 64** 17 28 30* 32* 32* 45** 
FS 66** 19 28 36** 35* 24 35* 
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affected by the utility function employed. Introspection performs poorly on this measure of 

consistency, with predictions correct in less than 20% of the cases. We do not find significant 

differences in performance among the truth serums. The table also includes predictions using 

the actual acceptance probabilities as shown in Table 2. We observe that in the current setting 

the objective probabilities (observed frequencies) predict behavior much better than the 

subjective beliefs. While objective probabilities are not available in many settings, the results 

show that subjective probabilities elicited by introspection may not improve predictions in 

comparison to simple random choice. The truth serums perform better, but still cannot 

account for much of the variation in actual behavior. The numbers are similar to the findings 

in Costa-Gomes and Weizsäcker (2008), while Rey-Biel (2009) finds higher rates of best-

response to stated beliefs. Armantier and Treich (2009) find clear evidence that subjective 

probabilities are better predictors than objective probabilities in a first price auction 

experiment. 

 In sum, the internal validity of the subjective beliefs is affected little by the complexity 

of the elicitation method. Truth serums perform better in predicting own choices than 

introspection. On the other hand, they can lead to even larger deviations from additivity than 

introspection does. Directly providing a probability estimate may help participants to adhere 

to the basic additivity principles, compared to the revealed preference measures in which 

probabilities are not explicitly specified. We find evidence that correcting for nonlinear risk 

attitudes improves the additivity of beliefs elicited by the QSR.  

 

External Validity of the Elicited Beliefs.  The third quality criterion that we employ concerns 

the external validity of the elicited beliefs. We assess the consistency of the beliefs with the 

actual observed choice/acceptance probabilities.  Table 5 shows the observed acceptance 

frequencies of responders for each proposal, as well as the reported beliefs of the proposers in 

the different treatments. The subjective probabilities of the proposers appear to be 

systematically distorted towards uniform beliefs in almost all treatments.  That is, for 

proposals that are rarely accepted, proposers are too optimistic; for proposals that are likely to 

be accepted, proposers are too pessimistic. A similar pattern in reported beliefs was found by 

Costa-Gomez and Weizsäcker (2008) and Bellemare et al. (2009), and is consistent with 

conservatism in reported beliefs (Edwards 1954).  It is also consistent with the tendency for 

agents to overweight low probabilities and underweight large probabilities, i.e., with an 
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inverse-S shaped probability weighting function (Tversky and Kahneman 1992; Carman and 

Kooreman 2010).  

 Table 5 also shows the effect of the correction methods for the QSR and outcome 

matching. For the QSR, risk aversion biases reported beliefs toward uniformity as discussed 

in section 3. The correction leads to significantly less uniformity (comparison column 6 and 

8, p<.05, Wilcoxon test). For outcome matching, concave utility leads to a downward bias in 

reported beliefs.14  Comparison of columns 4 and 7 of Table 5 shows that correction increases 

the beliefs (p<.05, Wilcoxon test). However, the uniformity bias remains strong for corrected 

outcome matching.  

 
TABLE 5: Observed Acceptance Frequencies versus Proposer’s Beliefs 

Notes: Numbers are percentages; */**/*** denotes significant different from observed frequencies based on a 
two-sided Wilcoxon signed-rank test at the 10%/5%/1% Level. Standard deviations in parenthesis. 
 

  As a measure of accuracy of reported beliefs, we calculate mean Brier scores, the 

average squared deviation between the actual choice frequencies and the reported beliefs, for 

each of the six allocations over all proposers (Costa-Gomez and Weizsaecker 2008). Lower 

scores indicate higher levels of accuracy. Results are in Table 6. All methods perform better 

than a random prediction derived from uniform distribution between 0 and 100.15 Among the 

                                                      
14 In B(E)=(CE-y)/(x-y), for concave utility, the difference x-y is overestimated compared to U(x) – U(y) more 
strongly than the difference CE-y is overestimated compared to U(CE)-U(y).  
15 Scores for random prediction calculated as  

ଵ

ଵ଴ଵ
∑ ሺܾ݋ݎ݌ ݁ݑݎݐ െ ݊ሻଶଵ଴଴

௡ୀ଴ .  

Allo-
cation 

Observed 
Frequency 

Intro-
spection 

Outcome 
Matching

Probability 
Matching 

QSR Outcome 
Matching 

(corrected) 

QSR 
(corrected) 

(€20, €0) 14 42*** 
(36) 

50*** 
(22) 

44*** 
(22) 

41***
(26) 

52*** 
(18) 

39*** 
(30) 

(€16, €4) 43 58** 
(28) 

58** 
(27) 

45 
(22) 

44 
(18) 

60*** 
(22) 

40 
(24) 

(€12, €8) 90 71*** 
(25) 

65*** 
(27) 

62*** 
(20) 

67***
(16) 

66*** 
(18) 

70*** 
(21) 

(€8, €12) 95 82** 
(19) 

73*** 
(23) 

66*** 
(19) 

72***
(21) 

74*** 
(20) 

76*** 
(23) 

(€4, €16) 92 87 
(19) 

75*** 
(26) 

71*** 
(21) 

73***
(19) 

75*** 
(23) 

80** 
(20) 

(€0, €20) 88 94*** 
(17) 

73 
(33) 

71** 
(30) 

78 
(24) 

74 
(30) 

82 
(27) 
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different elicitation methods, however, there are no systematic differences. In particular, 

introspective beliefs are as accurate as incentivized beliefs.  

 

TABLE 6: Mean Brier Score of Reported Beliefs by Proposers 

Notes: Lower scores represent higher levels of accuracy. a: for each event the belief is calculated as the 
random prediction from a uniform distribution *: significantly different form random prediction at the 5% 
significance level, Mann-Whitney U test 

 

 For responders, Table 7 and 8 show the results of the analogous analyses. There is 

conservatism in the beliefs with a tendency toward uniform beliefs. The correction methods 

affect beliefs in the same direction as discussed above for proposers. Regarding the accuracy, 

there are no significant differences in the mean Brier scores between any of the methods, with 

all mean scores very similar. All methods improve accuracy compared to the benchmark of 

random predictions. 

 Interestingly, although the correction for the QSR reduces the risk aversion bias and 

increases average accuracy for all events (Table 5 and 7), variances of the corrected beliefs, 

and also brier scores, go up. In Appendix C we have shown that for known probabilities, 

subjects are biased toward probability .5, but not beyond the middle of the table. For 

unknown probabilities, however, subjects may be less well calibrated, holding beliefs lower 

than .5 for an event that occurs with a probability above .5 for instance. In this situation, 

correction for risk aversion will further move the corrected beliefs away from the objective 

probabilities, reducing accuracy. That is, eliminating the risk aversion bias in QSR beliefs 

does not necessarily increase accuracy. 

 

 

 

     

Allo-
cation 

Random 
predictiona 

Intro-
spection 

Outcome 
Matching

Probability 
Matching 

QSR Outcome 
Matching 

(corrected) 

QSR 
(corrected)

(€20, €0) .219 0.205 0.177 0.141 0.138 0.176 0.151 

(€16, €4) .089 0.098 0.089 0.046 0.033 0.076 0.057 

(€12, €8) .241 0.096 0.115 0.121 0.080 0.091 0.084 

(€8, €12) .282 0.052 0.100 0.116 0.094 0.081 0.089 

(€4, €16) .257 0.035 0.098 0.086 0.070 0.079 0.052 

(€0, €20) .226 0.033 0.128 0.115 0.066 0.106 0.073 

Mean 0.219 0.087* 0.118* 0.104* 0.080* 0.102* 0.084* 
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    TABLE 7: Observed Choice Frequencies versus Responder’s Beliefs 

Notes: Numbers are percentages; ***/**/* denotes significant different from observed frequencies based on a 
two-sided Wilcoxon signed-rank test, at the 1%/5%/10% level. Standard deviations in parenthesis.  
 

 

 

   TABLE 8: Mean Brier Score of Reported Beliefs by Responders 

Notes: Lower scores represent higher levels of accuracy. a: for each event the belief is calculated as the 
random prediction from a uniform distribution *: significantly different form random prediction at the 5% 
significance level, Mann-Whitney U test. 

 

6.   Discussion  

This paper compares the performance of introspective belief measurement to five incentive 

compatible elicitation methods, or truth serums, of different degree of complexity. More 

complex methods are more difficult to implement in survey studies, economic experiments, 

Allo-
cation 

Observed 
Frequency 

Intro-
spection 

Outcome 
Matching

Probability 
Matching 

QSR Outcome 
Matching 

(corrected) 

QSR 
(corrected)

(€20, €0) 6 27 
(14) 

33*** 
(14) 

39*** 
(25) 

39***
(24) 

36*** 
(18) 

34*** 
(27) 

(€16, €4) 20 48*** 
(29) 

41*** 
(14) 

46*** 
(21) 

54***
(26) 

44*** 
(16) 

47*** 
(28) 

(€12, €8) 66 54** 
(29) 

45*** 
(13) 

45*** 
(22) 

62 
(18) 

47*** 
(16) 

63 
(20) 

(€8, €12) 7 35*** 
(30) 

38*** 
(14) 

30*** 
(23) 

43***
(13) 

40*** 
(21) 

37*** 
(16) 

(€4, €16) 2 16** 
(21) 

28*** 
(17) 

16*** 
(16) 

28***
(22) 

30*** 
(23) 

20*** 
(21) 

(€0, €20) 0 2** 
(4) 

25*** 
(21) 

25*** 
(19) 

11***
(21) 

28*** 
(23) 

8 
(21) 

Allo-
cation 

Random 
predictiona 

Intro-
spection

Outcome 
Matching

Probability 
Matching 

QSR Outcome 
Matching 

(corrected) 

QSR 
(corrected)

(€20, €0) 0.282 0.196 0.094 0.167 0.163 0.122 0.144 

(€16, €4) 0.179 0.160 0.066 0.113 0.181 0.085 0.152 

(€12, €8) 0.106 0.095 0.061 0.091 0.033 0.059 0.040 

(€8, €12) 0.274 0.168 0.123 0.102 0.146 0.150 0.113 

(€4, €16) 0.319 0.063 0.111 0.042 0.113 0.132 0.074 

(€0, €20) 0.338 0.002 0.106 0.096 0.054 0.131 0.050 

Mean 0.250 0.114* 0.093* 0.102* 0.115* 0.113* 0.096* 
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or decision analyses. A researcher who is constrained in terms of time, number of questions 

asked, or funds for monetary incentives therefore needs to make an informed trade-off 

between the cost and the benefits of complexity. The current study includes three widely used 

truth serums, and two corrected methods that account for deviations from risk neutrality. 

Importantly, we consider a larger range of quality criteria to rank methods than previous 

studies did. We test both the internal validity (additivity, prediction of own behavior), and the 

external validity (accuracy of other players’ behavior) of the elicited beliefs. Our findings 

suggest that there is no clear benefit from using more complex methods. First, there are 

virtually no differences in the performance of the truth serums for any of the quality criteria. 

Second, comparison of the incentivized methods with simple introspection does not reveal a 

clear advantage for the truth serums.  

 Accuracy. In terms of accuracy of the beliefs, the introspective method provides equally 

good predictions as the incentive compatible methods. All methods generally perform better 

than random prediction. The evidence regarding the accuracy of introspective versus 

incentivized beliefs is mixed in the literature (Friedman and Massaro 1998;  Hollard et al. 

2010; Sonnemans and Offerman 2001; Rutstroem and Wilcox 2009). The current data 

support the view that there are no clear differences in accuracy between introspection and 

incentivized methods.  

 A potential explanation for the observed differences in the literature lies in the presence 

or absence of an underlying social decision task. Non-incentivized methods may be affected 

by misrepresentation of beliefs, in contrast to simple lack of effort and increased noise due to 

the lack of incentives. Beliefs in social settings may be more prone to, possibly unconscious, 

justification and accountability pressures (Vieider 2011; Vieider and Tetlock 2010; Zizzo 

2010).  Indeed, studies that elicited beliefs about events in individual decision tasks found no 

evidence of a bias in introspective beliefs (Friedman and Massaro 1998; Hollard et al. 2010; 

Sonnemans and Offerman 2001), while Rutstroem and Wilcox (2009) report worse 

performance of introspection than the QSR in a task based on the prediction of another 

player’s behavior. The current study involved beliefs in an ultimatum game―a strategic 

setting that has often been associated with justification and strategic misrepresentation of 

attitudes and beliefs―and finds similar accuracy among incentivized and non-incentivized 

methods. Thus, intentional misrepresentation does not seem to be a omnipresent problem in 

belief elicitation in social settings.  



22 

 

 A few studies have pointed out that uncorrected outcome matching and scoring rule 

methods are not incentive compatible in the presence of deviations from risk neutrality, and 

may thus fail to elicit true beliefs (Andersen et al. 2010; Heineman et al. 2009; Hollard et al. 

2010; Hao and Houser 2010, Offerman et al 2009; Sonnemans and Offerman 2001). We find 

evidence for deviations caused by deviations from risk neutrality, and find that the methods 

proposed to correct these methods work in the intended direction: for outcome matching, the 

downward bias is reduced, and for the QSR the bias toward uniform beliefs is reduced by 

using corrected measures. However, these corrections did not lead to an overall significantly 

increased accuracy of beliefs.  

 Predicting behavior. In predicting proposers’ own choices from their beliefs, truth 

serums improve on random prediction while introspection does not. This holds true for 

different specifications of the (social) utility function. The predictive power of all methods is 

at best modest, however, and objective probabilities clearly outperform subjective beliefs. 

Our results are consistent with the previous findings of modest internal validity of subjective 

beliefs (Costa-Gomes and Weizsaecker 2008), although the poor performance of 

introspection in predicting choice behavior is somewhat surprising. There is evidence 

showing that non-incentivized introspective beliefs predict behavior in many settings 

(Bosman and van Winden 2002; Carman and Kooreman 2010; Guiso et al. 1992; Guiso and 

Parigi 1999). However, the link between subjective probabilities and behavior might be 

weaker in strategic interaction task compared to individual decisions. In the current setting, 

unobserved social preferences that are not properly modeled by the expected (social) utility 

function may play an important role in the decision process. For instance, the favorable 

allocations (€4, €16) and especially (€0, €20) are rejected by roughly 10% of the responders. 

Such behavior cannot be explained by the models that we considered. It is therefore 

conceivable that in situations that do not involve strong social aspects, e.g. the medical 

decisions studied in Carman and Kooreman (2010) or the financial decisions studied by 

Guiso et al (1992) and Guiso and Parigi (1999), the predictive power of subjective beliefs is 

higher than in the current task. 

 Additivity. Violations of additivity have often been observed for subjective beliefs, and 

Tversky and Koehler (1994) offer a psychological account of such violations. Consistent with 

their theory, we find that violations of additivity are more severe for 6 events compared to 2 

events. Tversky and Koehler (1994) conjecture that non-additivity may be a problem 
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particularly related to introspective beliefs.16 However, Offermann et al. (2009) find non-

additivity for the QSR and the corrected QSR. The current paper shows that non-additivity is 

strong for all five truth serums, and that introspection sometimes outperforms incentive 

compatible methods. Correcting the scoring rule beliefs for risk attitudes reduces deviations 

from additivity, but the absolute level of deviation from additivity remains large.  

7.   Conclusion  

Subjective beliefs are an important input in many economic policy and management 

decisions, ranging from expectations about macroeconomic variables to individual 

epidemiological risk factors in medical decisions. The most commonly used method to elicit 

subjective beliefs outside experimental settings and decision analyses involves the simple 

reporting of introspective beliefs (Delavande 2011, Hurd 2009). The reason for the popularity 

of the non-incentivized introspective method lies in its simplicity and the potential difficulty 

of implementing incentive compatible payments on survey panels and for events that are 

unobservable during the time frame of the study. In experiments, simple methods are often 

preferred because they potentially distract subjects from the main task of interest (Cabrales et 

al 2010; Haruvy et al. 2007). Our study compared simple introspection to five incentive 

compatible belief elicitation methods of different complexity, where more complexity implies 

theoretically more robust methods. We compare the different methods in a controlled setting 

with uncertain events with probabilities unknown to the subjects, but observable by the 

researcher. That allows us to study both internal and external validity in an environment of 

natural uncertainty. We found little evidence for improved performance of more complex 

truth serums. Moreover, the results show that introspective beliefs measurement performs 

similar in terms of accuracy and additivity as the incentivized methods. This finding supports 

the view that introspection is a valid method to measure subjective beliefs in many 

applications. However, incentivized beliefs are a better predictor of players’ own behavior in 

the game. Incentivized methods may also reduce the risk of participants knowingly or 

unknowingly misrepresenting their beliefs. On balance, thus, our findings imply that if 

complexity is feasible, like in laboratory experiments or expert decision analysis, researchers 

can benefit from using more complex and incentivized methods. For many purposes, 

however, introspection will serve the researcher just as well.   

                                                      
16 See also Attanasio (2009). 



24 

 

References 

Abdellaoui, Mohammed, Frank Vossmann, and Martin Weber (2005). Choice-Based 

Elicitation and Decomposition of Decision Weights for Gains and Losses under 

Uncertainty. Management Science 51, 13841399. 

Andersen, Steffen, John Fountain, Glenn W. Harrison, and Elisabet Rutstroem (2010). 

Estimating Subjective Probabilities. Working paper, CEAR. 

Armantier, Olivier and Nicolas Treich (2009). Subjective Probabilities in Games: An 

Application to the Overbidding Puzzle. International Economic Review 50, 1079–1102. 

Arrow, Kenneth J. (1951). Alternative Approaches to the Theory of Choice in Risk-Taking 

Situations. Econometrica 19, 404–437. 

Attanasio, Orazio (2009). Expectations and Perceptions in Developing Countries: Their 

Measurement and Their Use.  American Economic Review 99, 8792. 

Bellemare, Charles, Sabine Kroger, and Arthur van Soest (2008). Measuring Inequity 

Aversion in a Heterogeneous Population Using Experimental Decisions and Subjective 

Probabilities. Econometrica 76, 815–839. 

Blanco, Mariana, Dirk Engelmann, Alexander K. Koch, and Hans-Theo Norman (2010). 

Belief Elicitation in Experiments: Is There a Hedging Problem? Experimental 

Economics, 13, 412–438.  

Blanco, Mariana, Dirk Engelmann, Alexander K. Koch, and Hans-Theo Norman (2011). 

Preferences and Beliefs in a Sequential Social Dilemma: A Within-Subject Analysis. 

Working paper, Mannheim University.  

Bosman, Ronald, and Frans van Winden (2002). Emotional Hazard in a Power-to-Take 

Experiment. Economic Journal 112, 147–169. 

Branch, William A. (2004). The Theory of Rationally Heterogeneous Expectations: Evidence 

from Survey Data on Inflation Expectations. Economic Journal 114, 592–621. 

Brier, Glenn W. (1950). Verification of Forecasts Expressed in Terms of Probability. Monthly 

Weather Review 78, 13. 

Cabrales, Antonio, Raffaele Miniaci, Marco Piovesan, and Giovanni Ponti (2010). Social 

Preferences and Strategic Uncertainty: An Experiment on Markets and Contracts. 

American Economic Review 100, 2261–2278. 

Cameron, Lisa , and Manisha Shah (2011). Risk-Taking in the Wake of Natural Disasters. 

Working paper, Monash. 



25 

 

Carman, Katie G., and Peter Kooreman (2010). Flu Shots, Mammogram, and the Perception 

of Probabilities. Netspar working paper 2010-14.  

Costa-Gomes, Miguel, and Georg Weizsäcker (2008). Stated Beliefs and Play in Normal-

Form Games. Review of Economic Studies 75, 729–762. 

Costa-Gomes, Miguel, Steffen Huck, and Georg Weizsäcker (2008). Beliefs and Actions in 

the Trust Game: Creating Instrumental Variables to Estimate the Causal Effect. Working 

paper, DIW Berlin.  

de Finetti, Bruno (1962).  Does It Make Sense to Speak of “Good Probability Appraisers”?”.  

In Isidore J. Good (ed.), The Scientist Speculates: An Anthology of Partly-Baked Ideas, 

William Heinemann Ltd., London. Reprinted as Ch. 3 in Bruno de Finetti (1972), 

Probability, Induction and Statistics.  Wiley, New York. 

Delavande Adeline, Xavier Gine, and David McKenzie (2011). Measuring subjective 

expectations in developing countries: A critical review and new evidence. Journal of 

Development Economics, 151–163. 

Echternacht, Gary J. (1972).  The Use of Confidence Testing in Objective Tests. Review of 

Educational Research 42, 217236. 

Edwards, Ward (1954). The Theory of Decision Making. Psychological Bulletin 51, 

380417. 

Fehr, Ernst and Klaus Schmidt (1999). A theory of fairness, competition and cooperation. 

 Quarterly Journal of Economics, 114, 817–868. 

Fehr, Ernst, and Klaus Schmidt (2003). Theories of Fairness and Reciprocity - Evidence and 

Economic Applications. In: M. Dewatripont, L. Hansen and St. Turnovsky (Eds.), 

Advances in Economics and Econometrics - 8th World Congress, Econometric Society 

Monographs, Cambridge, Cambridge University Press, 208–257. 

Fischbacher, Urs (2007). Z-Tree: Zurich Toolbox for Ready-Made Economic Experiments. 

Experimental Economics 10, 171–178. 

Friedman, Daniel, and Dominic W. Massaro (1998). Understanding Variability in Binary and 

Continuous Choice. Psychonomic Bulletin & Review 5, 370–389. 

Guiso, Luigi, Tullio Jappelli, and Daniele Terlizzese (1992). Earnings Uncertainty and 

Precautionary Saving. Journal of Monetary Economics 30, 307–337. 

Guiso, Luigi, and Giuseppe Parigi (1999). Investment and Demand Uncertainty. Quarterly 

Journal of Economics 114, 185227.  



26 

 

Hao, Li, and Daniel Houser (2010). Getting it right the first time: Belief elicitation with 

novice participants. Working paper, George Mason University. 

Haruvy, Ernan, Yaron Lahav, and Charles N. Noussair, C. N. (2007). Traders’ Expectations 

in Asset Markets: Experimental Evidence. American Economic Review 97, 1901–1920.  

Heinemann, Frank, Rosemarie Nagel, and Peter Ockenfels (2009). Measuring Strategic 

Uncertainty in Coordination Games. Review of Economic Studies 76, 181–221. 

Hennig-Schmidt, Heike, Zhu-Yu Li, and Chaoliang Yang (2008). Why People Reject 

Advantageous Offers: Non-Monotonic Strategies in Ultimatum Bargaining. Journal of 

Economic Behavior and Organization 65, 373–384.  

Hollard, Guillaume, Sebastien Massoni, and Jean-Christophe Vergnaud (2010). Subjective 

belief formation and elicitation rules: Experimental evidence. Working paper, CES Paris. 

Holt, Charles A. (2006). Webgames and Strategy: Recipes for Interactive Learning. Addison-

Wesley, forthcoming.  

Hossain, Tanjim and Ryo Okui (2011). The Binarized Scoring Rule. Working paper, Toronto. 

Huck, Steffen and Georg Weizsäcker (2002). Do Players Correctly Estimate What Others 

Do? Evidence of Conservatism in Beliefs. Journal of Economic Behavior and 

Organization 47, 7185. 

Hurd, Michael D. (2009). Subjective Probabilities in Household Surveys. Annual Reviews of 

Economics 1, 543–562.  

Hurwicz, Leonid (1960). Optimality and Informational Efficiency in Resource Allocation.   

In: Kenneth J. Arrow, Samuel Karlin, and Patrick Suppes (1960, Eds), Mathematical 

Methods in the Social Sciences, 1746, Stanford University Press, Stanford, CA. 

Kadane, Joseph B., and Robert L. Winkler (1988). Separating Probability Elicitation from 

Utilities. Journal of the American Statistical Association 83, 357363. 

Karni, Edi (2009). A Mechanism Design for Probability Elicitation. Econometrica 77, 603 –

606. 

Khwaja, Ahmed, Dan Silverman, Frank.A. Sloan, and Yang Wang (2007). Are Mature 

Smokers Misinformed? Journal of Health Economics 28, 385–397. 

Khwaja, Ahmed, Frank Sloan, and Martin Salm (2006) Evidence on Preferences and 

Subjective Beliefs of Risk Takers: The Case of Smokers. International Journal of 

Industrial Organization 24, 667–682. 



27 

 

Kothiyal, Amit, Vitali Spinu, and Peter P. Wakker (2011). Comonotonic Proper Scoring 

Rules to Measure Ambiguity and Subjective Beliefs. Journal of Multi-Criteria Decision 

Analysis, forthcoming.  

Li, Wei (2007). Changing One’s Mind when the Facts Change: Incentives of Experts and the 

Design of Reporting Protocols. Review of Economic Studies 74, 1175–1194. 

Machina, Mark  J. (1987). Decision-Making in the Presence of Risk. Science 236, 537–543. 

Machina, Mark J., and David Schmeidler (1992). A More Robust Definition of Subjective 

Probability. Econometrica 60, 745780. 

Manski, Charles F. (2004). Measuring Expectations. Econometrica 72, 1329–1376. 

McKelvey, Richard, and Talbot Page (1986). Common Knowledge, Consensus, and 

Aggregate Information. Econometrica 54, 109127. 

Nyarko, Yaw  and Andrew Schotter (2002). An Experimental Study of Belief Learning Using 

Elicited Beliefs. Econometrica 70, 9711005. 

Offerman, Theo, Joep Sonnemans, Gijs van de Kuilen, and Peter P. Wakker (2009). A Truth-

Serum for Non-Bayesians: Correcting Proper Scoring Rules for Risk Attitudes. Review of 

Economic Studies 76, 1461–1489. 

Oosterbeek, Hessel, Randolph Sloof, and Gijs van de Kuilen (2004). Cultural Differences in 

Ultimatum Game Experiments: Evidence from a Meta-Analysis. Experimental 

Economics 7, 171–188. 

Prelec, Drazen (2004). A Bayesian Truth Serum for Subjective Data. Science 306, 462466. 

Raiffa, Howard (1968). Decision Analysis. Addison-Wesley, London. 

Rey-Biel, Pedro (2009). Equilibrium play and best response to (stated) beliefsin normal form 

games. Games and Economic Behavior 65, 572–585. 

Roth, Al (1995). Bargaining Experiments. In: J. Kagel and A. Roth (eds.), The Handbook of 

Experimental Economics. Princeton: Princeton University Press, 3109.   

Ruthstrom, E. Elisabeth  and Nathaniel T. Wilcox (2009). Stated Beliefs versus Inferred 

Beliefs: A Methodological Inquiry and Experimental Test. Games and Economic 

Behavior 67, 616–632. 

Savage, Leonard J. (1954). The Foundations of Statistics. Wiley, New York.  (2nd edition 

1972, Dover Publications, New York.) 

Shiller, Robert J., Fumiko Kon-Ya, and Yoshiro Tsutsui (1996). Why Did the Nikkei Crash? 

Expanding the Scope of Expectations Data Collection. The Review of Economics and 

Statistics 78, 156164. 



28 

 

Sonnemans, Joep  and Theo Offerman (2001). Is the quadratic scoring rule really incentive 

compatible? Working paper, University of Amsterdam.  

Starmer, Chris (2000). Developments in Non-Expected Utility Theory: The Hunt for a 

Descriptive Theory of Choice under Risk.  Journal of Economic Literature 38, 332–382. 

Starmer, Chris  and Robert Sugden (1991). Does the Random-Lottery Incentive System Elicit 

True Preferences? An Experimental Investigation. American Economic Review 81, 

971978. 

Tetlock, Philip E. (2005). Expert Political Judgment.  Princeton University Press, Princeton, 

NJ. 

Thaler, Richard H.  and Eric J. Johnson (1990). Gambling with the House Money and Trying 

to Break Even: The Effects of Prior Outcomes on Risky Choice. Management Science 

36, 643660. 

Tversky, Amos  and Daniel Kahneman (1992). Advances in Prospect Theory: Cumulative 

Representation of Uncertainty.  Journal of Risk and Uncertainty 5, 297–323. 

Tversky, Amos and Derek J. Koehler (1994). Support Theory: A Nonextensional 

Representation of Subjective Probability. Psychological Review 101, 547–567. 

Vieider, Ferdinand M. (2011). Separating Real Incentives and Accountability. Experimental 

Economics, forthcoming. 

Vieider, Ferdinand M. and Philip E. Tetlock (2010). Accountability: A Meta-Analysis of 

Effect Sizes and Situated Identity Analysis of Research Settings. Working Paper, UPenn. 

Wakker, Peter P. (2004). On the Composition of Risk Preference and Belief. Psychological 

Review 111, 236241. 

Yates, J. Frank (1990). Judgment and Decision Making. Prentice Hall, London. 

Zizzo, Daniel J. (2010). Experimenter demand effects in economic experiments. 

Experimental Economics 13, 75–98.  

 

 

 

 



29 

 

Appendix (not for publication; will be made available online) 

A Example Instructions  

This appendix provides the instructions for the ultimatum game task and for the different 

belief elicitation methods (between-subject). We give for each method instructions for either 

the responder or the proposer. Screenshots of the choice lists are given in appendix B. In the 

experiment, instructions were given on the left hand side of the screen, while decision forms 

and choice lists were given on the right hand side of the screen.   

  

Ultimatum game task, general 

In this experiment, participants are randomly assigned the role of proposer or responder. In the first period,17 

proposers are asked to divide €20 between themselves and a responder,  by choosing 1 of the 6 possible 

allocations depicted in the table below:  

 

At the same time, responders are asked whether they would accept or reject each of the 6 possible allocations. 

At the end of the experiment, each proposer is randomly matched with a responder. The earnings of proposers 

and responders in the first period are determined by whether or not the responder accepted the allocation chosen 

by the proposer.  

If the responder accepted the allocation chosen by the proposer, the €20 is divided between the proposer and the 

responder in accordance with the chosen allocation. If the responder rejected the allocation chosen by the 

proposer, the earnings of the responder and proposer in the first period are equal to €0. 

 

Ultimatum game task, proposer 

You are a proposer. On the right, you are asked to choose an allocation by typing in a number from 1 till 6. At 

the end of the experiment, the computer will select one period at random to be paid for real. If the computer then 

selects period 1, your earnings are determined as follows. First, you will be randomly matched with a responder. 

This responder was asked to accept or reject each of the 6 possible allocations in period 1. If the responder that 

is matched to you rejected the allocation you have chosen in period 1, you and the responder will receive €0. If 

                                                      
17 In the experiment we used the term period instead of stage. Each decision screen was a period, that is, there 
were more periods than stages as defined in the design section because stage 2 contained 7 different belief 
questions.  

 Allocation 1 Allocation 2 Allocation 3 Allocation 4 Allocation 5 Allocation 6 

Proposer €20 €16 €12 €8 €6 €4 

Responder €0 €4 €8 €12 €16 €20 
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the responder that is matched to you accepted the allocation you have chosen in period 1, the €20 will be divided 

between you and the responder in accordance with the allocation chosen by you.  

For instance, if the computer selected period 1 to be paid for real, you chose Allocation 4 in period 1, and the 

responder matched to you accepted Allocation 4 in period 1, you will get €8. In this case, the responder matched 

to you will get €12. 

Please choose an allocation by typing in a number from 1 till 6 on the right side of the screen. 

 

Ultimatum game task, responder 

You are a responder. On the right, you are asked to reject or accept each of the 6 possible allocations. At the end 

of the experiment, the computer will one period at random to be paid for real. If the computer then selects period 

1, your earnings are determined as follows. First, you will be randomly matched with a proposer. This proposer 

was asked to choose 1 of the 6 possible allocations in Period 1. If you have rejected the allocation chosen by the 

proposer in period 1, you and the proposer matched to you will receive nothing. If you have accepted the 

allocation chosen by the proposer in Period 1, the € 20 will be divided between you and the proposer in 

accordance with the allocation chosen by the proposer.  

For instance, if the computer selected period 1 to be paid for real, the proposer matched to you chose Allocation 

4 in Period 1, and you accepted Allocation 4 in period 1, you will get €12. In this case, the responder matched to 

you will get €8. 

Please reject or accept each of the 6 possible allocations, by ticking the "reject" or "accept" button for each 

allocation on the right side of the screen.   

 

Belief task, proposer, introspection  

You are a proposer. At the end of the experiment, you will be randomly matched with a responder. This 

responder was asked to accept or  reject each of the 6 possible allocations in period 1. 

On the right, we ask you to report the probability that you think that the responder matched to you accepted 

Allocation 1 in period 1. We ask you to report this probability in percentages, ranging from 0% to 100%. For 

example, if you are completely sure the responder matched to you at the end of the experiment accepted 

Allocation 1 in period 1, you should report a probability of 100%. If you are not sure whether the responder 

matched to you accepted Allocation 1, you should report a probability between 0% and 100%.   

At the end of the experiment, the computer will select one period  at random to be paid for real. If the computer 

then selects period 2, your earnings are €5. 

 

Belief task, proposer, probability matching  

You are a proposer. At the end of the experiment, you will be randomly matched with a responder. This 

responder was asked to accept or reject each of the 6 possible allocations in period 1. 

On the right, you see a list of choices between options labeled Option A, and Option B. In each choice, Option 

A yields Asset [asset number], depicted below:  
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     Asset [asset number]   

If the responder matched to you accepted allocation [alloc. number]:  €15 

If the responder matched to you rejected allocation [alloc. number]:  €0  

 

 

Thus, Asset [asset number] yields €15 if the responder matched to you at the end of the experiment accepted 

Allocation [alloc. number] in the first period.  If the responder matched to you at the end of the experiment 

rejected Allocation [alloc. number] in the first period, Asset [asset number] yields €0. 

In each choice, Option B yields an amount of money depending on the roll of a 20-sided die. To determine the 

amount of money that Option B yields, a 20-sided die will be rolled at the end of the experiment. For instance, 

Option B in Choice 4 yields €15 if the roll with the 20-sided die is 1, 2, or 3.  Otherwise, Option B in Choice 4 

yields €0. 

Now please take a look at Choice 1 in the list of choices on the right. We imagine that most people would 

choose Option A in Choice 1, since Option A then gives a chance of an amount higher than zero, whereas 

Option B gives €0 for sure. Similarly, we imagine that most people would choose Option B in Choice 21, since 

Option B then gives €15 for sure, whereas Option A only gives a chance of €15. Hence, we imagine that most 

people would switch from choosing Option A to Option B at some point in the list.  

You are asked to make 21 choices between Option A and Option B by ticking the box corresponding with the 

option you prefer. Although we imagine that most people would switch from Option A to Option B at some 

point in the list, it is entirely up to you what to do in each of the choices. At the end of the experiment, the 

computer will select one period  at random to be paid for real. If the computer then selects period [current 

period], your earnings are determined as follows.   

First, you will be randomly matched with a responder, and the computer will select 1 of the 21 choices at 

random. The option you have chosen in that choice will then be paid out for real, depending on the roll of the 

20-sided die (if you have chosen Option B) or the decision made by the responder matched to you (if you have 

chosen Option A). Thus, each of your choices could eventually be the one that determines the payment you 

receive.  

 

Belief task, responder, outcome matching 

You are a responder. At the end of the experiment, you will be randomly matched with a proposer. This 

proposer was asked to choose 1 of the 6 possible allocations in period 1. On the right, you see a list of choices 

between options labeled Option A, and Option B. In each choice, Option A yields Asset [asset number], 

depicted below:  

     Asset [asset number]   

If the responder matched to you did choose allocation [alloc. number]:      €15 

If the responder matched to you did not choose allocation [alloc. number]:  €0  

 

Thus, Asset [asset number] yields €15 if the proposer matched to you did choose Allocation [alloc. number] in 

the first period. If the proposer matched to you did not choose Allocation [alloc. number] in the first period, 

Asset [asset number] yields €0. In each choice, Option B yields a certain amount of money.  
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Now please take a look at Choice 1 in the list of choices on the right. We imagine that most people would 

choose Option A in Choice 1, since Option A then gives a chance of an amount higher than €0, whereas Option 

B gives €0 for sure. Similarly, we imagine that most people would choose Option B in Choice 21, since Option 

B then gives €15 for sure, whereas Option A only gives a chance of €15. Hence, we imagine that most people 

would switch from choosing Option A to Option B at some point in the list. You are asked to make 21 choices 

between Option A and Option B by ticking the box corresponding with the option you prefer. Although we 

imagine that most people would switch from Option A to Option B at some point in the list, it is entirely up to 

you what to do in each of the choices. At the end of the experiment, the computer will select one period  at 

random to be paid for real. If the computer then selects period [current period], your earnings are determined as 

follows. First, you will be randomly matched with a proposer, and the computer will select 1 of the 21 choices at 

random. The option you have chosen in that choice will then be paid out for real, depending on the decision 

made by the proposer matched to you in case you have chosen Option A in that choice.  Thus, each of your 

choices could prove to be the one that determines the payment you receive.  

 

Belief task, responder, QSR 

 

You are a responder. At the end of the experiment, you will be randomly matched with a proposer. This 

proposer was asked to choose one of the six possible allocations in period 1. 

On the right, you see a Decision Table with 21 numbered rows.18 Each row yields an amount of euros, 

depending on whether the proposer matched to you did or did not chose Allocation 1 in the first period. The 

amount of euros that each row yields if the proposer matched to you did choose Allocation 1 is shown in the 

second column of the Decision Table. The amount of euro that each row yields if the proposer matched to you 

did not choose Allocation 1 is shown in the third column of the Decision Table.   

For instance, if the responder matched to you at the end of the experiment did choose Allocation 1 in the first 

period, Row 5 yields €7.20. If the responder matched to you at the end of the experiment did not choose 

Allocation 1 in the first period, Row 5 yields €19.20. 

You are asked to choose a row by typing in the number of the row of your choice in the box below the Decision 

Table. At the end of the experiment, the computer will select one of the periods at random to be paid for real. If 

Period [current period] then is selected, you will receive the amount of euro corresponding to the row that you 

have chosen, depending on whether the proposer matched to you did or did not choose Allocation 1. Thus, each 

of your choices could prove to be the one that determines the payment you receive. 

 

Risk aversion task 

On the right, you see a list of choices between options labeled Option A and Option B. In each choice, Option A 

yields Asset [asset number], depicted below:  

Asset [asset number] 

 if roll of 20-sided die is 1-10:  €10 

if roll of 20-sided die is 11-20:  €0 

                                                      
18 See screen shot example in Appendix B. 
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Thus, Asset [asset number] yields €10 if the roll of a 20-sided die is 1 till 10 (1, 2, 3, 4, 5, 6, 7, 8, 9, or 10). If the 

roll of a 20-sided die is 11 till 20 (11, 12, 13, 14, 15, 16, 17, 18, 19, or 20), Asset [asset number] yields €0. To 

determine the amount of money that Asset [asset number] yields, a 20-sided die will be rolled at the end of the 

experiment. In each choice, Option B yields a certain amount of money. 

Now please take a look at Choice 1 in the list of choices on the right. We imagine that most people would 

choose Option A in Choice 1, since Option A then gives a chance of an amount higher than €0, whereas Option 

B gives €0 for sure. Similarly, we imagine that most people would choose Option B in Choice 21, since Option 

B then gives €10 for sure, whereas Option A only gives a chance of €10. Hence, we imagine that most people 

would switch from choosing Option A to Option B at some point in the list.  

You are asked to make 21 choices between Option A and Option B by ticking the box corresponding with the 

option you prefer. Although we imagine that most people would switch from Option A to Option B at some 

point in the list, it is entirely up to you what to do in each of the choices.   

At the end of the experiment, the computer will select one period at random to be paid for real. If the computer 

then selects period [current period], your earnings are determined as follows. First, the computer will select 1 of 

the 21 choices at random. The option you have chosen in that choice will then be paid out for real, depending on 

the roll of the 20-sided die in case you have chosen Option A in that choice. Thus, each of your choices could 

prove to be the one that determines the payment you receive.   
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B Example Screen Shots 

Screenshot, table outcome matching  
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Screen shot, table probability matching 
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Screen shot, table QSR 
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C Risk Correction of Scoring Rule Beliefs 

Figure C1 illustrates the effect of risk attitude on beliefs elicited by the uncorrected QSR. The 

figure plots the median reported probabilities, implied by the scoring rule choices, against the 

true probabilities of the known risks. All deviations bias the reported beliefs toward .5. All 

deviations are significantly different than the true probability except for p=.5 (two-sided 

Wilcoxon tests).   

 

Figure C1: Objective Probabilities versus QSR-implied Probabilities for Known Risks 
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