

Tilburg University

Automatic mood classification using tf*idf based on lyrics

van Zaanen, M.; Kanters, P.H.M.

Published in:
11th International Society for Music Information Retrieval Conference (ISMIR 2010)

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
van Zaanen, M., & Kanters, P. H. M. (2010). Automatic mood classification using tf*idf based on lyrics. In J.
Downie, & R. Veltkamp (Eds.), 11th International Society for Music Information Retrieval Conference (ISMIR
2010) (pp. 75-80). TiCC.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. Nov. 2023

https://research.tilburguniversity.edu/en/publications/bdd6389b-f19e-499e-9fea-e7ad7bd16e0e

Grammatical Inference as Class Discrimination

Menno van Zaanen and Tanja Gaustad

TiCC, Tilburg University
Tilburg, The Netherlands

{M.M.vanZaanen, T.Gaustad}@uvt.nl

Abstract. Grammatical inference is typically defined as the task of find-
ing a compact representation of a language given a subset of sample
sequences from that language. Many different aspects, paradigms and
settings can be investigated, leading to different proofs of language learn-
ability or practical systems. The general problem can be seen as a one
class classification or discrimination task. In this paper, we take a slightly
different view on the task of grammatical inference. Instead of learning
a full description of the language, we aim to learn a representation of
the boundary of the language. Effectively, when this boundary is known,
we can use it to decide whether a sequence is a member of the language
or not. An extension of this approach allows us to decide on member-
ship of sequences over a collection of (mutually exclusive) languages. We
will also propose a systematic approach that learns language boundaries
based on subsequences from the sample sequences and show its effective-
ness on a practical problem of music classification. It turns out that this
approach is indeed viable.

Keywords: empirical grammatical inference, class discrimination, tf*idf

1 Introduction

Grammatical inference deals with the learning of languages. The task is typically
defined as follows: Given a set of example sequences, find a compact represen-
tation of the underlying language of which the sequences are examples. The
compact representation is called a grammar, the example sequences are gener-
ated from the grammar by a teacher and it is the learner that aims to find the
underlying grammar.

The field of grammatical inference is often divided into two subfields: formal
and empirical grammatical inference [1]. Formal grammatical inference investi-
gates learnability of classes of languages given a particular learning setting. The
result of this research is a formal, mathematical proof showing that a certain
class or family of languages is learnable (or not) provided the environment cor-
responds to the requirements of the learning setting. Probably the most famous
of these settings is that of identification in the limit [2], but others exist [3].

Here, however, we are more interested in empirical grammatical inference. In
contrast to formal grammatical inference, where mathematical proofs are pro-
vided on learnability of predetermined classes of languages, empirical grammati-
cal inference deals with learning of languages in situations where the underlying

grammar or class of grammars is not known. This typically leads to empirical
results on naturally occurring data and addresses practical learning situations.

In the ideal case, we would like to combine both formal and practical gram-
matical inference techniques. This means that we know formally that languages
can be learned in the setting under consideration and that in practice this is also
true. Knowing that a language is learnable formally does not necessarily mean
that it is also learnable in practice, due to, for instance, noise, limited amounts of
available data, or a (minor) mismatch between the practical and formal learning
settings.

In this paper, we propose to treat the problem of empirical grammatical
inference in a slightly different way. Instead of trying to learn a full, compact
representation of the underlying language, we redefine the task to find a represen-
tation of the boundary of the language. In many cases, both the learned grammar
or the learned boundaries can be applied. For instance, when the learned con-
struction is used to classify sequences into classes (such as inside or outside the
language), both representations are equally applicable.

In addition to the theoretical specification of our new language learning ap-
proach, we describe a practical implementation of the approach. This implemen-
tation relies on finding patterns in the shape of subsequences from the example
sequences for each of the languages. (In the case of learning sequence membership
of one language, negative examples are considered as an alternative language.)
The patterns that have high predictive power are selected and are subsequently
used to classify new sequences.

The paper is structured as follows. Firstly, we will specify the new approach
to empirical grammatical inference in more detail, including a discussion of the
advantages and disadvantages as well as a description of a practical system.
Next, the results of applying the practical system to two data sets are provided.
The paper ends with a conclusion.

2 Approach

The research presented in this paper introduces two novelties. First, we redefine
the task of grammatical inference as a discrimination task. The new task is to
identify the boundary of the underlying language(s) rather than to construct a
compact representation of it (in the form of e.g. a grammar). Second, we propose
a practical system that identifies patterns that describe language boundaries
based on the example sequences. We apply an existing statistical measure to
identify patterns that are useful for the identification of the boundary. Both
aspects will now be described in more detail.

2.1 Class Discrimination

Languages can be visualized in the sequence space (the space that contains all
possible sequences) and are typically described as an area in the shape of a circle
or oval, like a Venn diagram. The area contains all sequences that are part of

the language and all sequences outside the area are non-members. Typically, the
aim of grammatical inference is to find a grammar that describes the entire area
of the language.

Most often, grammatical inference approaches aim to learn a representation
in the form of a grammar that fully describes the underlying language from which
the example sequences are drawn. The advantage of learning a full description
is that this can also be used to generate more sequences in the language, which
leads to a proper generalization of the sample sequences. However, grammatical
inference settings, such as identification in the limit or PAC learning do not
specify that such a full description from a generative point of view is required.

In contrast to learning a full description of the language, we propose to find a
representation of the line describing the boundary of the language only. Once we
know this boundary, essentially we also know which sequences are in the language
and which are out, without having an explicit representation of the sequences
that are part of the language (which one has in the case of a grammar). Note
however, that generating sequences (in addition to the ones known from the
learning sample) in the language is non-trivial in this case.

When looking for the boundary between languages (where in the case of
learning one language L, the other language would be its complement LC), we
do not need to know exactly which sequence is inside the language. We are only
interested in sequences that are close to the boundary of the language.

This idea of finding a representation of the boundary of the language can be
compared to the supervised machine learning methods based on support vector
machines (SVMs) [4]. Given a set of training examples belonging to either one of
two categories, an SVM model is built that predicts into which category a new,
unseen example falls. The model represents the examples as points in the instance
space mapped in such a way that the examples from the two categories are
divided by a clear margin. Ideally, the boundary falls right in the middle of the
margin and this boundary represents the largest distance to the nearest training
data points of any class, thereby minimizing the generalization error of the SVM
classifier. Unseen examples are mapped into the instance space and, based on
which side of the boundary they fall on, their class is predicted. Interestingly,
SVMs only rely on examples that are close to the boundary. Examples that are
far away from the boundary are not used to build the vector that distinguishes
the areas describing the classes.

Alternatively, our approach can be seen as being similar to the k-NN (Nearest
Neighbor) supervised machine learning approach [5]. Here, just as in the SVM
case, the training instances are placed in the instance space. Classification of
a particular (unseen) instance is then performed by finding the instances from
the training data that are closest to the unseen instance. The assigned class is
found by taking a majority vote over all classes of the nearest instances. The
boundaries in this situation are computed on the fly.

In a way, the k-NN approach does not aim to learn a complete description
of the boundary in the sense of a formula describing that boundary. Whereas
SVMs aim to learn linear classifiers on a mapped instance space (allowing for

non-linear classification), k-NN only computes local boundaries when required
for classification. At no point in time a complete formal description of the bound-
ary is known (although this can be extracted from the known instances in the
instance space if required).

With the approach described here, we essentially treat the task of grammat-
ical inference as a discrimination task. Without creating a description of all the
sequences in the language, we can still decide for unseen sequences in which area
of the sequence space they should be placed. It also means means that such
an inference system can be used to distinguish between one or more languages
at the same time. The difference there is that boundaries between each of the
languages need to be learned.

Note that the practical approach we will describe here identifies patterns that
can be used to distinguish language membership of example sequences. Each
pattern only describes a small part of the language boundary. In that sense, it
fits in between SVMs and the k-NN classifiers. The patterns are simple (just like
the simple representation used in the SVM context) and each one describes a
small part of the boundary, just like a k-NN classifier does.

So far, we have not said anything about the properties of the boundaries.
For instance, what shape the boundaries should have or whether the boundaries
may overlap (allowing sequences to be in multiple languages at the same time).
We will discuss some properties of the boundaries in the next section, which
describes a practical system. However, more work needs to be done in this area
for alternative practical systems.

2.2 tf*idf Pattern Identification

The discussion so far has been quite abstract. It may be unclear exactly how we
should find the boundaries between languages or perhaps even how we should
describe these boundaries. To show that this abstract idea can actually lead to
a practical system, we will propose a working system that is entirely based on
the theoretical approach that was described in the previous section.

The representation of the boundary between languages we use here consists
of subsequences. These are consecutive symbols that occur in the example lan-
guage sequences that the system received during learning. In fact, for practical
purposes, we search for subsequences of a certain length, which means they can
be seen as n-grams (with n describing the length of the subsequence).

By using n-grams as the representation of our patterns, we explicitly limit
the languages we can identify. In fact, using patterns of a specific length, we
can learn the boundaries of the family of k-testable languages [6]. This family
contains all languages that can be described by a finite set of subsequences of
length k. It may be clear that these subsequences of length k correspond well
with our patterns of fixed length n.

Note, however, that we do not present a formal proof of learnability of this
family of languages (which has already been shown before [7]), but we will im-
plicitly assume that the language(s) we are trying to learn are in fact k-testable

or if they are not, we will provide an approximation of the language that is
k-testable.

The subsequences we are interested in should help us decide whether an
unseen sequence is part of the language (or in the more generic case, it should
help us identify which language the sequence belongs to). Therefore, we will use
the subsequences as patterns. During testing, the patterns are matched against
the to be classified sequence (counting number of occurrences per language).
Based on this information, the sequence is classified.

For the patterns to be maximally useful, during learning we would like to
identify patterns (i.e. subsequences in the shape of n-grams) that are maximally
discriminative between languages and that at the same time occur often.

To measure the effectiveness and usability of the patterns, we apply a clas-
sic statistical measure from the field of information retrieval, namely the “term
frequency*inverse document frequency” (tf*idf) weight [8]. This measure con-
sists of two terms, term frequency (tf) which measures the regularity and inverse
document frequency (idf) which measures the discriminative power of the pat-
tern.

Originally, in the context of information retrieval, the tf*idf weight is used to
evaluate how relevant a document in a large document collection is given a search
term. In its classic application, tf*idf weights are computed for all documents
separately in the collection with respect to a search term.

The first part of the tf*idf metric is tf . It is defined as the number of times a
given term appears in a document. Simply counting the number of occurrences,
will yield a bias towards longer documents. To prevent this, the tf measure is
often normalized normalized by the length of the document. This results in the
following metric:

tf i,j =
ni,j∑
k nk,j

(1)

where ni,j describes the number of occurrences of term ti in document dj . The
denominator represents the length of document dj , which is measured as the
total number of terms in document dj .

The idea behind tf is that when the term ti occurs frequently in certain
documents, these documents are considered more relevant to the term than doc-
uments with fewer instances. Taking this into the extreme, when no occurrences
of the term are found in a document that document is probably not about the
topic represented by the term. (In the case of natural language terms, this may
not always be true. In fact, this has led to research into, for instance, stemming,
pseudo relevance feedback and automatic synonym generation [9].)

The second part of the tf*idf is idf . For a given term ti, it is calculated as
follows:

idf i = log
|D|

|{d : ti ∈ d}|
(2)

where |D| is the total number of documents in the collection and |{d : ti ∈ d}|
is the number of documents that contain the term ti.

The idf measures relevance of a term with respect to the documents. Intu-
itively, this can be described as follows. On the one hand, terms that occur in
all documents are not particularly useful when deciding which document is rel-
evant. On the hand, terms that occur only in one or a few documents are good
indicators, as those documents are probably about the term under consideration.

To obtain the tf*idf weight for a particular term, the term frequency tf and
inverse document frequency idf are combined:

tf*idf i,j = tf i,j × idf i (3)

The default way of computation of tf*idf provides us with an indication of
how relevant a particular document is to a particular term. This metric can be
extended, resulting in tf*idf scores for multiple terms. In this case, the tf*idf for
all documents is computed for each of the terms. These tf*idf values are then
summed and the documents that have the highest tf*idf scores (representing
that these documents are most relevant with respect to the terms) are preferred.

In the research presented here, we extend the tf*idf metric in a different way.
Instead of computing the tf*idf score of a collection of terms (in the sense of a
“bag-of-terms”), we want to be able to compute the tf*idf score of a sequence
of terms with a fixed order. This corresponds to treating n-grams (a sequence of
terms) as if it is a single term. The underlying idea behind using sequences of
terms instead of single terms is that we think that sequences are more informative
than single terms to determine the boundary between languages (and this will
be shown empirically in Section 3).

The modification of the computation of the tf*idf weights is rather straight-
forward. Instead of counting single terms (for instance in the computation of the
tf), n-grams are counted as if they are single terms (with single terms being a
specific case where n = 1). For instance, ni,j is the number of occurrences of a
particular n-gram ti in document dj .

To summarize, during the learning phase, the learner receives example se-
quences from the languages under consideration. Out of these sequences, all
n-gram patterns are extracted and for each of these, the tf*idf score is com-
puted (with respect to each of the languages). Patterns that have a non-zero
tf*idf are retained as patterns for classification afterwards. Note that if patterns
occur in all languages, their idf will be zero (and the idf will be high if it only
occurs in one language). At the same time, if the patterns occur more often,
they are considered more important, which increases the overall tf*idf value for
that pattern due to a higher tf .

During classification, a new, unseen sequence is presented. All patterns are
matched against it, leading to a score for each of the languages. This score is
calculated by summing the tf*idf scores for each match of a pattern, keeping
track of the tf*idf per language. The sequence is then classified into the language
that has the highest combined tf*idf value.

In Section 3 we will describe experiments performed with fixed length n-
grams, but also with n-grams of varying sizes. This brings up an interesting
aspect of tf*idf . Shorter patterns (with small n) have a higher likelihood of

occurring compared to longer patterns (with large n). This means that the tf*idf
will typically be higher for short patterns. To reduce this effect, we multiply each
tf*idf score by n, the length of the n-gram. This leads to a higher impact for
longer patterns (which, if they can be found in the sequence to be classified, gives
more pronounced evidence that the sequence actually belongs to that language).

2.3 Imperfect Languages and Noise

So far, we have assumed that there is a perfect distinction between the languages.
In the simplest case, we consider a language L and its complement LC . This
means that all possible sequences come from either L or LC .

In practice, it might be that the situation is more difficult. Firstly, there
may be an area in sequence space that is not described by any language. This
happens when the sequence space is not perfectly partitioned. In other words,
the sequence space S is not entirely covered by the languages (L1, . . . , Ln): S ⊃⋃n

i=1
Li. In this case, sequences exist that are not a member of any language.

The system will decide (perhaps randomly) that the sequence is a member of
one of the known languages, because it assumes that the entire sequence space
is covered by the languages.

Secondly, there may be an overlap between the languages. For instance, se-
quences that really belong to L are presented to the learner as sequences from
LC or vice versa. If this occurs, the training data contains noise.

A major advantage of the use of tf*idf in this system is that if noise occurs in
the data, the patterns dealing with the subsequences containing the noise are now
automatically ignored in the pattern identification phase. This works through
the idf component in the tf*idf formula. When noise introduces sequences in the
wrong language, the patterns that would otherwise have been found (because
they are distinctive for the sequences in a particular language) will now receive a
zero idf and hence a zero tf*idf , which then results in the pattern being dropped.
This allows for a very robust practical system.

3 Empirical Results

To empirically evaluate the effectiveness of the tf*idf pattern identification and
discrimination approach to detecting boundaries between languages, we test this
approach in two practical experiments. The next section describes the data sets
and classification tasks used, followed by an explanation of the data representa-
tion.

3.1 Data Sets and Classification Tasks

To evaluate our approach, we compiled two separate data sets from the area
of music classification. Both data sets were retrieved from the **kern scores
website1 [10].

1 http://kern.ccarh.org/

The two different data sets lead to two different classification tasks. Firstly,
we have a binary class data set containing folksongs. One class (i.e. language)
consists of Asian folksongs and the other of European folksongs. Both are taken
from the Essen Folksong Collection. This data set is called country. An overview
of the data set can be found in Table 1.

We will use these data sets to show the feasibility of the approach. Music has
a fairly limited amount of symbols (compared to for instance natural language),
but the training data is extracted from real world data. Music also has inherent
“rules” or restrictions, which we aim to learn here. Furthermore, music allows
us to experiment with different representations easily.

Table 1. Overview of the country data set

Class Description # of pieces

Asia Chinese folksongs 2,241
(4 provinces)

Europe European folksongs 848
(19 countries plus misc)

Total 3,089

The aim of the country classification task is discriminating folksongs. Two
classes are distinguished: Asian folksongs and European folksongs. Even though
the original data set has more fine-grained classes, we have not tried to further
distinguish either collection into sub-classes (e.g. different provinces or countries)
as we expect there to be a partial overlap between the songs from different
European countries.

Intuitively, the country task is relatively easy for several reasons. There are
only two classes to classify into (compared to four in the other task). Also, we
expect that the difference between Asian and European folksongs will be quite
pronounced. However, the musical pieces to be classified are relatively short,
which might make identifying and matching patterns, and hence classification,
more difficult.

Secondly, we have have extracted the musedata selection from the **kern
scores website, which contains pieces by four composers: J.S. Bach, A. Corelli,
J. Haydn, and W.A. Mozart. We call this data set composer and numerical
information on the data set is shown in Table 2.

In the composer classification task, the system should identify which com-
poser, out of the four composers, composed a given musical piece. The system
selects one out of four classes (Bach, Corelli, Haydn, and Mozart). Note that the
composers come from different, but overlapping periods.

One has to keep in mind that the composer classification task is actually
quite difficult. For instance, when people are asked to distinguish between mu-
sical pieces from these composers (see e.g. the “Haydn/Mozart String Quartet

Table 2. Overview of the composer data set

Class Description # of pieces

Bach chorales and various 246
Corelli trio sonatas 247
Haydn quartets 212
Mozart quartets 82

Total 787

Quiz”2), the identification accuracies are only 55% and 57% for Mozart and
Haydn respectively. Given these results, we expect this task to be hard for au-
tomatic classification as well.

3.2 Data Representation or Features and Patterns

We start with the collections of musical pieces in the humdrum **kern format
[11]. This format is a symbolic representation of sheet music. Because we want to
identify patterns in the musical pieces, we need to define exactly which aspects
of the musical representations are going to be used to define the patterns. We
convert the music from the **kern humdrum format to a simpler format describ-
ing melody (pitch) and rhythm (duration) only. This information is extracted
directly from the humdrum **kern format and converted into a new symbolic
representation.

For both pitch and duration, we chose one way of rendering, namely using
what is typically called absolute representations. Absolute pitch refers to the ab-
solute value (in semitones) of the melody with c = 0 (e.g. d = 2, e = 4, etc.).
Similarly, absolute duration gives the absolute duration of a given note (e.g.
2, 16). This absolute representation allows for a one-to-one mapping from the
**kern humdrum representation of sheet music to a simple symbolic representa-
tion that can be used to learn.

We know that alternative representations of symbolic music are possible [12,
13] and will perhaps even lead to better results. However, here we have selected
a fairly simple representation, which allows us to demonstrate the feasibility of
the new language learning approach.

To make the meaning of the n-gram patterns explicit: the patterns with n = 1
correspond to patterns of a single note in a piece of music. When n = 2, the
patterns describes two consecutive notes, etc. Other representations of the music
may lead to patterns that describe more complex aspects of music (potentially
non-consecutive notes or more abstract descriptions of the music).

Each piece of music is converted to a sequence of symbols, where each symbol
is a combination of the pitch and duration of a single note. This means that
each symbol in the representation that is used to find patterns consists of two

2 http://qq.themefinder.org/

components (pitch and duration) that are “glued” together, leading to a single
symbol.

Starting from the converted sequences of symbols for each of the musical
pieces, we combined them into classes. Each class contains all the sequences (i.e.
musical pieces) of a single composer or geographical area. These collections of
sequences are used as input from which we build various patterns of n-grams as
outlined in Section 2.

We assume that each composer or geographical area has its own “language”
which was used to generate musical pieces. The task is then to learn the bound-
aries between the languages, which allows us to classify new, unseen musical
pieces into the corresponding classes. (Unfortunately, this approach does not ex-
plicitly allow us to generate new music that is similar to existing musical pieces
of a particular language or class.)

With respect to the shape of the patterns, we tried n-grams of size n =
1, . . . , 7 and also tried combinations of n-grams of length 1− 2, . . . , 1 − 7. The
experiments based on the combinations of n-grams use patterns of n-grams of
all the specified lengths combined. Remember that the tf*idf score is multiplied
by the length of the n-gram, which means that longer patterns will have more
impact in the final score.

The main disadvantage of the current music representation is that only local
patterns can be found. For instance, languages that require global information
in a pattern (such as the number of symbols in the sequence) simply cannot be
identified with the current system using n-grams. This problem might be solved
if a more complex representation of the data or a completely different shape of
patterns is used. The solution to this problem should, however, be seen as future
work.

3.3 Quantitative Results

Table 3 contains the results of applying the tf*idf grammatical inference pattern
finding system to the two data sets. The figures describe accuracy (% of correctly
classified musical pieces divided by the total number of classified pieces), com-
bined with the standard deviation (in brackets). All experiments are performed
using ten fold cross-validation.

The results clearly show that using tf*idf to identify useful patterns works
well for both discriminating between two classes (or languages) and multiple
classes (four in our case).

The first figures in the table are majority class baselines. The class occurring
most often in the training data is selected and used to classify all test sequences.
In the country classification, the Asian class clearly has more pieces (the ac-
curacy is higher than the 50% that is expected with a perfectly balanced data
set), whereas in the composer task, the number of instances is more balanced
(expected baseline with a perfectly balanced data set would be 25%).

Looking at the results of the single size n-grams (the first seven entries fol-
lowing the baseline), we see that the results peak around n = 3 or n = 4.
This illustrates that, on the one hand, small patterns, even though occurring

Table 3. Classification results in % correct (and standard deviation) for the country
and composer classification tasks.

n-gram size Country classification Composer classification

Baseline 73.49 (±1.64) 27.96 (±4.01)

1 62.05 (±1.52) 64.19 (±6.79)
2 87.90 (±2.08) 78.65 (±2.25)
3 95.52 (±1.06) 81.95 (±2.85)
4 95.54 (±1.72) 79.79 (±4.31)
5 94.12 (±2.65) 78.01 (±4.01)
6 91.97 (±2.96) 74.58 (±4.84)
7 90.65 (±2.75) 71.91 (±4.57)

1− 2 79.82 (±3.02) 76.75 (±3.93)
1− 3 89.33 (±2.84) 81.06 (±3.31)
1− 4 92.27 (±1.94) 81.82 (±3.56)
1− 5 93.00 (±1.54) 82.07 (±4.25)
1− 6 93.13 (±1.48) 81.56 (±3.91)
1− 7 93.16 (±1.44) 81.06 (±3.77)

frequently, have less discriminative power to classify sequences in classes com-
pared to larger n-gram patterns. On the other hand, large n-gram patterns have
high discriminative power, but do not occur enough (and hence are less usable).
Hence, the optimum size of the patterns is around length three or four.

The story is different when a collection of patterns of varying length is col-
lected and used for classification. The results on the country task are still in-
creasing after n = 1 − 7, but so far the results are worse than the best single
n-gram pattern (n = 4). On the composer task, the results of the combination
of n-gram patterns peaks at n = 1− 5. It results in the best score for that task.
However, the difference in results comparing n = 1 − 5 against n = 3 is not
statistically significant.

Overall, the results show that the tf*idf pattern finding system significantly
outperforms the majority class baseline. The experiments also show that there
seems to be an optimum pattern length regardless of the experiment. This can
be explained by considering how the tf*idf metric works.

4 Conclusion

Empirical grammatical inference is typically defined as the task of finding a
compact representation (in the shape of a grammar) of a language, given a
set of example sequences. Typically, the learned grammar is a full description
of the language, often allowing for the generation of additional sequences in
the language. The underlying grammar from which the example sequences are
generated is often unknown, which means that evaluation of the effectiveness of
the empirical grammatical inference system needs to be performed according to
the classification of unseen sequences.

Here, we modified the task slightly. Instead of finding an explicit grammar for
the language, we aim to find a representation of the boundary of the language.
Once this boundary is known, it can be used to indicate which sequences should
be considered as a member of the language or not. Generation of additional
sequences is not directly supported by this representation.

The advantage of this view on empirical grammatical inference is that the
system can be used to distinguish between one or more languages at the same
time. Effectively, the task of grammatical inference is treated as a discrimina-
tion task. The situation that is normally seen as the grammatical inference task
(learning a representation of one language) can be seen as a one-class discrimi-
nation task. However, the view that is proposed in this paper also allows for the
learning of multiple languages simultaneously.

The patterns that are learned using this approach used together describe the
boundary between languages. Each pattern only describes a small part of the
completely boundary. Often, when classifying, only a limited amount of patterns
is used to decide which language the sequence belongs to.

In addition to the new approach to grammatical inference, we have also
proposed a practical system that finds patterns in example sequences. These
patterns allow for the classification of new and unseen sequences into languages.
Using an extension of the tf*idf metric, the system identifies patterns that both
occur often and are helpful in discriminating the sequences. Another advantage
of the presented system is that if noise occurs in the data, these sequences are
automatically ignored in the pattern identification phase. This allows for a very
robust system.

Applying the system to real world data sets yields good results. Two classi-
fication tasks (dividing musical data based on geography or era) have been used
as experimental cases. Alternative representations of the music may still lead
to improvements over the results discussed here, but these experimental results
already show that this approach is practically viable.

To fully appreciate the effectiveness of the proposed approach, more experi-
ments need to be performed. Not only should the effectiveness of different repre-
sentations of the data be investigated, but completely different data sets taken
from other domains should be used as well. Furthermore, to get a better idea
about the state-of-the-art, the approach should be compared against other gram-
matical inference systems.

The main disadvantage of the current system is that only local patterns can
be found. As such, languages for which global information of a sequence (such as
the number of symbols in the sequence) is required, cannot be learned with the
current system. This problem might be solved using a different, more complex
representation of the data or, alternatively, using a completely different type of
patterns. This different representation of patterns should then extend the current
n-gram patterns and allow for the description of more global information. We
consider this problem as future work.

References

1. Adriaans, P.W., van Zaanen, M.M.: Computational grammatical inference. In
Holmes, D.E., Jain, L.C., eds.: Innovations in Machine Learning. Volume 194 of
Studies in Fuzziness and Soft Computing. Springer-Verlag, Berlin Heidelberg,
Germany (2006) To be published. ISBN: 3-540-30609-9.

2. Gold, E.M.: Language identification in the limit. Information and Control 10

(1967) 447–474
3. de la Higuera, C.: Grammatical inference: learning automata and grammars. Cam-

bridge University Press, Cambridge, UK (2010)
4. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and

other kernel-based learning methods. Cambridge University Press, Cambridge, UK
(2000)

5. Daelemans, W., van den Bosch, A.: Memory-Based Language Processing. Cam-
bridge University Press, Cambridge, UK (2005)

6. Garcia, P., Vidal, E.: Inference of k-testable languages in the strict sense and ap-
plication to syntactic pattern recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence 12 (1990) 920–925

7. Garcia, P., Vidal, E., Oncina, J.: Learning locally testable languages in the strict
sense. In: Proceedings of the Workshop on Algorithmic Learning Theory, Japanese
Society for Artificial Intelligence (1990) 325–338

8. van Rijsbergen, C.J.: Information Retrieval. 2nd edn. University of Glasgow,
Glasgow, UK (1979) Printout.

9. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley
Publishing Company, Reading:MA, USA (1999)

10. Sapp, C.S.: Online database of scores in the humdrum file format. In: Proceedings
of the sixth International Conference on Music Information Retrieval (ISMIR);
London, United Kingdom. (September 2005) 664–665

11. Huron, D.: Humdrum and kern: selective feature encoding. In Selfridge-Field, E.,
ed.: Beyond MIDI: The handbook of musical codes. Massachusetts Institute of
Technology Press, Cambridge:MA, USA and London, UK (1997) 375–401

12. Conklin, D., Anagnostopoulou, C.: Representation and discovery of multiple view-
point patterns. In: Proceedings of the 2001 International Computer Music Confer-
ence, International Computer Music Association (2001) 479–485

13. Geertzen, J., van Zaanen, M.: Composer classification using grammatical inference.
In: Proceedings of the MML 2008 International Workshop on Machine Learning
and Music held in conjunction with ICML/COLT/UAI 2008, Helsinki, Finland.
(2008) 17–18

