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a b s t r a c t

Imbens and Angrist (1994) were the first to exploit a monotonicity condition in order to identify a local
average treatment effect parameter using instrumental variables. More recently, Heckman and Vytlacil
(1999) suggested the estimation of a variety of treatment effect parameters using a local version of
their approach. We investigate the sensitivity of the respective estimates to random departures from
monotonicity. Approximations to the respective bias terms are derived. In an empirical application
the bias is calculated and bias corrected estimates are obtained. The accuracy of the approximation is
investigated in a Monte Carlo study.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Monotonicity

A fundamental identification problem in program evaluation
arises if, conditional on observables, the treatment decision de-
pends on the idiosyncratic gain from participation. This selection
into treatments on unobservables precludes the use of the usual
econometric tools such as matching type estimators, conventional
instrumental variables analysis, and standard simultaneous equa-
tion models because their respective estimates of treatment effect
parameters are generally biased.
Imbens andAngrist (1994) suggested exploiting themonotonic-

ity of the treatment decision in instrumental variables in order
to identify a local average treatment effect parameter. The instru-
mental variables are assumed to be independent of the pair of po-
tential outcomes conditional on covariates. They have identifying
power if, conditional on these covariates, they have an impact on
the treatment probability. The monotonicity assumption is that a
hypothetical change in the instruments either has no impact on an
individual’s treatment status, or changes it in the same direction as
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it does for all other individuals for which it has an impact. Under
monotonicity, the observed exogenous variation in instrumental
variables identifies the average treatment effect for the subset of
individuals who are affected by such a change.
More recently, Heckman and Vytlacil (1999) proposed to

estimate a variety of treatment effect parameters using a local
version of this approach. Both approaches are in principle able to
cope with selection on unobservables. They are intuitive, elegant,
and easy to implement. Their generality consists of the fact that a
parametric specification of the joint distribution of unobservables
and observables is not needed. However, identification hinges
on monotonicity, and in general, estimates of treatment effect
parameters will be biased if it does not hold. Therefore, assessing
the sensitivity of monotonicity based estimates lends credibility
to an empirical study if monotonicity cannot safely be assumed.
In this paper, we assume that violations of monotonicity occur at
random and derive results that can be used for such an assessment.
There are situations inwhichmonotonicity holds naturally. Bat-

tistin and Rettore (2008) discuss the case in which eligibility for
participation in a program is not related to the pair of potential
outcomes conditional on covariates. Then, if we make the thought
experiment of letting an individual become eligible for a treatment,
this can either have no effect or it can change the treatment status
from not being treated to being treated. Therefore, monotonicity
holds by construction. This is a special case of the regression dis-
continuity design where discontinuous changes in the treatment
probability are exploited (for a discussion see Hahn et al., 2001).

http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
mailto:T.J.Klein@uvt.nl
http://dx.doi.org/10.1016/j.jeconom.2009.08.006
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While monotonicity holds naturally in some situations it can
easily be violated in others. Such a violation is discussed in Exam-
ple 2 of Imbens and Angrist (1994). There are two officials, A and
B, who screen applicants for a social program. Suppose that the ap-
plicants are randomly assigned to the officials. Then, it is unlikely
that the identity of the official affects the outcome of participation
or nonparticipation in the program. Suppose that at the same time
the officials have some discretion when making the treatment de-
cision. Then, it could be that the admission rate for B is higher than
for A. Under these conditions the identity qualifies as an instru-
ment because it is related to the treatment decision but unrelated
to the potential outcomes. In this example, monotonicity holds
whenever any applicant who would have been accepted by offi-
cial A is accepted by official B. It is violated if official A sometimes
accepts individuals who would not have been accepted by official
B. This could be because A, unlike B, values an unobserved charac-
teristic of the applicant that is in fact unrelated to the outcome.
An example of such a characteristic could be companionable-
ness for a blue collar worker. Another reason why monotonicity
could fail is because A makes a mistake and erroneously accepts
the applicant. In both cases, from the point of view of the econo-
metrician, additional randomness causes monotonicity to fail (both
the characteristic and the errors are unobserved). In this paper we
will assume that this additional randomness is not related to the
potential outcomes.1 However, we still allow for a dependence be-
tween the treatment decision and the potential outcomes.
Typically, only the treatment decision that has actually been

made is observed, and therefore violations of monotonicity are not
directly observable. Korn and Baumrind (1998) study recommen-
dations of orthodontists to extract a tooth. Interestingly, they asked
two orthodontists about their assessments and are thus able to
provide direct evidence for a failure of monotonicity.2 As before,
we can think of two orthodontists, say A and B. B has a higher ex-
traction rate. Monotonicity holds if the set of patients for which A
recommends extraction is a subset of the set of patients for which
B recommends extraction, or equivalently if the set of observed
and unobserved characteristics of the applicants for which A rec-
ommends extraction is a subset of the set of characteristics of the
applicants for which B recommends extraction. Again, monotonic-
ity could fail if an unobserved patient characteristic affects the
decision of one orthodontist but not of the other. For example, B
might not recommend extracting a tooth because a patient is very
sensitive to pain, while A does not base his decision on this, and
therefore recommends extraction.3 Monotonicity fails in that case
because on average B recommends extraction more often than A.
Another reason for a violation of monotonicity could be that clin-
icians are not always consistent when making recommendations.
Korn et al. (2001, Table 3) provide evidence for this. In particular,
they find that the stated treatment preference of a clinician is not
stable, meaning that the same clinician’s treatment recommenda-
tion at a later point in time does not agree with his earlier one.
Monotonicity is violated if for that reason on one day only clinician
A recommends the treatment for a given patient and on another
day only clinician B recommends the treatment for a patient with
the exact sameobserved andunobserved characteristics. Again, the
assumption in this paper will be that the additional randomness

1 There is a parallel to the literature on measurement error. The model here
corresponds to a model with classical measurement error. It would be interesting
to relax this assumption, as it is to study non-classical measurement error, but this
is beyond the scope of the paper.
2 This is the leading example in Small and Tan (2007). They show that under a
weaker stochastic monotonicity assumption the sign of the instrumental variables
estimator is equal to the sign of the treatment effect if this sign is the same for all
individuals.
3 I am grateful to a referee for coming up with this example.
that causes monotonicity to fail, which arises because B takes sen-
sitivity to pain into account or because of self-disagreement, is un-
related to the success of the treatment.
In this paper, the sensitivity of monotonicity based estimates

of treatment effect parameters to departures frommonotonicity is
investigated. Themain assumption is that violations ofmonotonic-
ity occur at random. Approximations to bias terms that depend on
estimable quantities are derived. The practical relevance of the re-
sults is illustrated in an empirical application and the accuracy of
the approximations is investigated in a Monte Carlo study.

1.2. Selection models

Let D be a binary treatment indicator, Z be a vector of instru-
ments, and V be a an unobservable random variable.4 Then, selec-
tion models of the form

D = 1{P(Z)− V ≥ 0},

where 1{·} is the indicator function and P(Z) is a nonparametric
function, imply monotonicity of D in Z . This is because changing Z
fromw to z affectsD only through P(Z) and hence changesD in the
same direction for all individuals for whom it has an effect. Here,
the index P(Z)− V is additively separable in a component that de-
pends only on observables Z and a component that is given by the
unobservable V . Monotonicity is implied by all models which are
of this form. Conversely, Vytlacil (2002, 2006) shows that we can
always represent monotonicity in terms of such a selection model
and that this does not impose any additional restrictions on the
data generating process.
In this paper we study the impact of local departures from

monotonicity on monotonicity based estimates of the marginal,
average and local average treatment effect. These local departures
are expressed in terms of the generalized selection model

D = 1{Q (P(Z), σU)− V ≥ 0}.

Z , U and V are assumed to be mutually independently distributed.
σ ≥ 0 is a parameter. The index in this model is nonseparable in
P(Z) and the unobservable U if σ > 0. The model is still additively
separable in V and also the assumption that the instruments affect
the treatment decision only though P(Z) is maintained. Therefore,
setting σ = 0 implies monotonicity in P(Z).
It is meaningful to think of a change from σ = 0 to a small

σ > 0 as a local departure from monotonicity because there is a
model with σ = 0 if, and only if, monotonicity holds. This is dis-
cussed in more detail in Appendix B. Studying the effect of local
departures from a structure is in the tradition of local specification
error analysis that was proposed by Kiefer and Skoog (1984).5 The
virtue of this approach is that it allows us to keep in touchwith the
original structure.
We can think of the generalized selection model as a reduced

form. The underlying structure could be, for example, a random co-
efficientmodel that satisfies certain assumptions.6 In such amodel,
monotonicity can fail because on average a change in Z might in-
crease the probability to observe D = 1 given Z while at the same
time the additional randomness in the random coefficients may

4 For any random variable A and any vector of random variables B we denote
realizations thereof by lowercase letters, the c.d.f. of A evaluated at A = a by FA(a),
the conditional c.d.f. of A given B = b evaluated at A = a by FA|B=b(a), and the
respective p.d.f.’s by fA(a) and fA|B=b(a).
5 It has also been applied by Chesher (1991), Chesher and Schluter (2002) and
Battistin and Chesher (2004) in the context of measurement error. Chesher and
Santos Silva (2002) study the impact of uncontrolled taste variation in discrete
choice models by modeling local departures from a multinomial Logit model.
6 See Appendices B and C for details.
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induce some individuals to change D from 1 to 0 (Heckman and
Vytlacil, 2005; Heckman et al., 2006). In the application in Sec-
tion 4, we postulate that the underlying structure is a random co-
efficient Logit model and use this model to estimate the variance
of Q (P(Z), σU) given P(Z). This allows us to estimate the bias of
monotonicity based estimates (up to an approximation error) us-
ing the results that are developed in this paper because then the
bias only depends on quantities that can be estimated.

1.3. Related results

The relationship between additive separability of the index and
monotonicity has been discussed in several papers. Vytlacil (2002)
shows that the original set of assumptions by Imbens and An-
grist (1994) can equivalently be expressed in terms of a selection
model with an additively separable index. Vytlacil (2006) charac-
terizes a class of nonseparable latent index functions which have
equivalent representations as additively separable index functions.
Monotonicity holds for all elements of this class. Central to this rep-
resentation result is that the impact of instrumental variables on
the treatment decision can be separated from the impact of unob-
servables.
Consequences of violations of monotonicity have been dis-

cussed before, but no results that are directly useful for applied
work have been derived. Angrist et al. (1996) relate the bias of es-
timates of the local average treatment effect to the proportion of
individuals for whom monotonicity does not hold and the differ-
ence in local average treatment effects between those individuals
and the ones for which monotonicity holds.7 Both quantities are
unknown. Heckman and Vytlacil (2001, 2005) notice that, with-
out monotonicity, instrumental variables still identify a weighted
average of marginal treatment effects. Their argument is briefly
reviewed in Section 2.3.

1.4. Plan of the paper

Section 2 lays out the formal framework, reviews the iden-
tification results under monotonicity, and discusses why mono-
tonicity based estimates could be biased if monotonicity does not
hold. Section 3 contains the main theoretical results. Their practi-
cal relevance is illustrated in an application in Section 4. Finally, in
Section 5 the accuracy of the approximation to the bias term is as-
sessed in a Monte Carlo study. Section 6 concludes. Appendix A
contains the proofs. The generalized selection model is studied in
more detail in Appendix B. Appendix C contains further technical
details that are related to the application and the random coeffi-
cient Logit model that is used there.

2. Formal framework

We adopt the usual convention in program evaluation and say
that, if an individual is not treated,we observe an indicator variable
D being equal to zero and a realization of Y0, and if it is treated, we
observeD being equal to one and a realization of Y1. Usually, Y0 and
Y1 are referred to as potential outcomes. They are real valued scalar
random variables. We write

Y ≡ (1− D)Y0 + DY1.

Our analysis can be thought of as being conditional on exogenous
covariates as, for example, in Vytlacil (2002).

7 The local average treatment effect is defined in Section 2.1.
We focus on the class of models in which identifying power is
derived from exogenous variation in instrumental variables Z . The
generalized reduced form of the selection model is given by
D = 1{Q (P(Z), σU) ≥ V }. (1)
Q is a function of the nonparametric index P(Z), σ ≥ 0 is a scalar,
and U and V are both scalar random variables. Here we impose
that the instruments affect the treatment decision only through
their impact on P(Z), and not individually.8 Appendix B contains
a discussion of the properties of the model and a representation
result.
We make the following assumptions.

Assumption 1 (Existence of Instruments). Z is independent of (Y0,
Y1, V ).

Assumption 2 (Regularity Conditions). (i) Y0 and Y1 have finite first
moments and (ii) the distribution of V is absolutely continuous
with respect to Lebesgue measure.

Assumption 3 (Random Noise). U is independent of Z and (Y0,
Y1, V ).

Assumptions 1 and 2 are standard; see Heckman and Vytlacil
(1999, 2000, 2001, 2005) for details and a discussion. Assumption 3
imposes that failures of monotonicity occur at random. In the two
examples that were given in Section 1 this is plausible, but this
need not be the case in general.9 For instance, Assumption 3would
be violated if in the examplewith the two officials companionable-
ness was related to ability and only one of the officials would take
ability into account.10 Importantly, Assumption 3 still allows for a
dependence between the potential outcomes and V .11
It will be convenient to impose the following normalizations.

Normalization 1. Normalize V to be uniformly distributed with
support [0, 1], U so that E[U] = 0, E[U2] = 1, and P(Z) and
Q (P(Z), σU) such that E[Q (P(Z), σU)] = P(Z).

They resemble the ones inHeckmanandVytlacil (1999, 2000, 2001,
2005) and Vytlacil (2002). Under these assumptions and normal-
izations, P(Z) is equal to Pr(D = 1|Z), the so-called propensity
score.12 For ease of exposition, from now on we usually write P

8 This is innocuous undermonotonicity but restrictive ifmonotonicity is violated.
However,we could think of P(Z) as being one of the instruments, and the analysis as
being conditional on all other instruments. Local instrumental variables estimation
would then exploit variation in P , holding the other instruments fixed. This would
resemble the exposition in Appendix D in Heckman and Vytlacil (2005). This
appendix discusses local instrumental variables estimation when the selection
model is a random coefficient model.
9 It would be interesting to relax this assumption, but this is beyond the scope
of this paper because it would complicate the analysis considerably. Besides, in
the general case in which U and V are allowed to be related there are conceptual
difficulties to define the parameters of interest. See also footnote 16.
10 If both were to take it into account in the same way then we could think of it as
entering V .
11 (1) and Assumption 1 imply that those individuals with low values of V are a
priorimore likely to be treated. V is allowed to be related to the potential outcomes.
Among all individuals with treatment probability P = p and V = v some will be
treated and some will not. For example, if there are two individuals and only the
first one is treated, then we have Q (p, σu1) > v > Q (p, σu2), where u1 is the
value of U for the first individual and u2 is the value of U for the second individual.
The assumption is thatU is independent of V . That is, what determineswhich of the
two is treated, if only one of the two is treated, is unrelated to V .
12 We have

Pr(D = 1|Z) = Pr(V ≤ Q (P(Z), σU)|Z) = Pr(V ≤ Q (P(Z), σU))

= E[Q (P(Z), σU)],

where the first equality follows from (1), the second equality follows from
Assumptions 1 and 3, and the third equality holds because by Normalization 1 V
is uniformly distributed and because by Assumption 3 V is independent of U .
Normalization 1 implies that the right-hand side of this equation is equal to P(Z).
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for P(Z). We can think of P as being a single scalar instrument that
can be constructed from Z . Given the structure of the model and
the assumptions, this is innocuous for our purposes.13
Q (P, σU) is the probability of choosing D = 1 given Z and

σU . This is because, by Assumption 1, V is independent of P , by
Assumption 3, V is independent of U , and by Normalization 1, the
marginal distribution of V is the uniform distribution. Moreover, if
σ = 0, we have that, for any value p of P ,

E[Q (p, 0)] = Q (p, 0) = p, (2)

so we get the trivial result that Q is (locally) identified at P = p
and σU = 0.
Proposition 5 in Appendix B is a slight extension of Vytlacil

(2006). It says that there is a function Q (P, σU)with σ = 0 if, and
only if, monotonicity holds. Therefore, it is meaningful to think of
a change from σ = 0 to a small σ > 0 as a local departure from
monotonicity.

2.1. Parameters of interest

A variety of structural parameters of interest can be expressed
in terms of the marginal treatment effect14

m(v) ≡ E[Y1 − Y0|V = v]. (3)

In many applications, the marginal treatment effect itself is of
interest.15 In this paper, we focus on the bias of estimates of the
marginal treatment effect, the population average treatment effect,

E[Y1 − Y0] =
∫ 1

0
m(v)dv, (4)

and the local average treatment effect,

E[Y1 − Y0|vl ≤ V ≤ vh] =
1

vh − vl

∫ vh

vl

m(v)dv, (5)

where vl < vh. Our results extend to all other treatment effect
parameters if they can be expressed as functions of the marginal
treatment effect; see Heckman and Vytlacil (1999, 2000) for
details.
By Assumption 2(i), all parameters that are considered here

exist.Moreover, they arewell defined irrespective of any violations
ofmonotonicity since the index in the generalized reduced form (1)
still depends additively on V .16

2.2. Identification of structural parameters under monotonicity

Next, we briefly review the respective identification result by
Heckman and Vytlacil (1999) and Imbens and Angrist (1994). We
first turn to the former, which is based on derivatives of the
expected value of the outcome conditional on P = p with respect
to p. We then present the latter, which is based on the difference
in this conditional expectation between two different values of P .

13 See also footnote 8 and the discussion in Heckman et al. (2006).
14 See Heckman and Vytlacil (1999, 2000, 2001, 2005) as well as Heckman et al.
(2006) for a detailed discussion. Angrist et al. (2000) derive the marginal treatment
effect as the limit form of the local average treatment effect and show that,
conversely, the local average treatment effect is an average of marginal treatment
effects, though not the population average.
15 For empirical studies of the returns to college education see Björklund and
Moffitt (1987), Carneiro and Lee (2009), and Klein (2009). In this context, V has the
interpretation of being ameasure of unobserved ability which is related to both the
decision to attend college and thewage return to college education. Thedependence
of this return on unobserved ability is of central interest to policy makers.
16 Heckman and Vytlacil (2001, 2005) discuss the conceptual difficulties that arise
if the index is also nonseparable in V . This case is not considered here.
2.2.1. Derivative based approach
We show that for σ = 0 the marginal treatment effect is

identified at values of V which are limit points of the support of P .

Definition 1. For any random variable A, we call ã a limit point of
the support of A if A has a continuous density in a neighborhood
around ãwhich is bounded away from zero.

Note that at A = ã, if they exist, derivatives of expectations
conditional on A are identified.
Let p be a limit point of the support of P . Under Assumption 1

and Normalization 1, (2) implies that p is also a limit point of the
support of Q (P, 0). To see that under this condition the marginal
treatment effect is identified, write

E[Y |Q (P, 0) = p] = E[Y0] +
∫ p

0
m(v)dv, (6)

where the integral is equal to

p · E[Y1 − Y0|D = 1,Q (P, 0) = p] = p · E[Y1 − Y0|V ≤ p]

= p ·
∫ p

0
(m(v)/p)dv.

The first equality follows from (1) and Assumption 1. For the
second equality, we use that the density of V conditional on V ≤ p
is 1/p.

E[Y |Q (P, 0) = p] is differentiable with respect to p since, by
Assumption 2(i), m is integrable with respect to V . Differentiating
both sides of (6) with respect to p yields

∂E[Y |Q (P, 0) = p]
∂p

= m(p) (7)

by Leibnitz’ rule. By (2), the left-hand side is equal to ∂E[Y |P =
p]/∂p and is identified at the limit point p of P , som(p) is identified.
∂E[Y |P = p]/∂p is called the local instrumental variables (LIV)
estimator of m(p). It is local because we only consider values of P
in a neighborhood around p.
If all p in the open interval (0, 1) are limit points of the support

of P , the average treatment effect is identified via (4) because it is
given by the integral over marginal treatment effects, noting that
the probability of V being either 0 or 1 is equal to zero and first
moments are finite. This result is useful if at least one continuously
distributed instrument that shifts the treatment probability from 0
to 1 is available. Similarly, by (5), the local average treatment effect
between pl and ph is identified if all p in the open interval (pl, ph)
are limit points of the support of P .

2.2.2. Level based approach
The local average treatment effect is also identified under

weaker support conditions. Specifically, let pl and ph be two points
of support of P with pl < ph. Imbens and Angrist (1994) show that
under Assumptions 1 and 2(i), if σ = 0,

E[Y |Q (P, 0) = ph] − E[Y |Q (P, 0) = pl]
ph − pl

= E[Y1 − Y0|pl ≤ V ≤ ph]. (8)

Taking limits for pl → ph yields (7). Conversely, (8) can be obtained
from (5) and (7), with the limits of integration being given by pl
and ph. By (2) the left-hand side is identified, so the local average
treatment effect is identified as well.
Finally, observe that for the average treatment effect, which is

the local average treatment effect for pl = 0 and ph = 1, to be
identified from levels we need that 0 and 1 are in the support of P .
Thismight be a reasonable assumption in the presence of eligibility
rules and mandatory participation (Battistin and Rettore, 2008),
but does in general not hold.
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2.3. Failure of the LIV estimator under non-monotonicity

Instrumental variables do not identify the marginal treatment
effect if the index of the selection model is nonseparable in
unobservables.17 To see this, we can derive an expression similar
to (6) involving Q (P, σU) instead of Q (P, 0). We have

E[Y |Q (P, σU)] = E[Y0] +
∫ Q (P,σU)

0
m(v)dv. (9)

The LIV estimator ofm(p) is given by

∂E[Y |P = p]
∂p

=

∂E
[

E[Y |Q (P, σU)]| P = p
]

∂p

=

∂E
[∫ Q (P,σU)
0 m(v)dv

∣∣∣ P = p]
∂p

.

This can be written as

∂E[Y |P = p]
∂p

=

∫
m(Q (p, σu))

∂Q (p, σu)
∂p

fU(u)du (10)

and is in general not equal to the marginal treatment effect
evaluated at V = p,m(p).
Angrist et al. (1996) provide a similar expression for the level

based estimator. They distinguish between the group of individuals
whose treatment decision changes, in reaction to a positive change
in P , from 0 to 1 and term them ‘‘compliers’’, and the group of
individuals whose treatment decision changes from 1 to 0, and
call them ‘‘defiers.’’ In (10) defiers have ∂Q (p, σu)/∂p < 0 and
compliers have ∂Q (p, σu)/∂p > 0.
The LIV estimand is the right-hand side of (10). The marginal

treatment effect evaluated at Q (p, σu), m(Q (p, σu)), is the same
for compliers and defiers. The LIV estimator puts a negative weight
on the marginal treatment effect for defiers and a positive weight
on the marginal treatment effect for compliers (Heckman and
Vytlacil, 2001, 2005). However, this by itself does not yield to a
bias.18 The bias arises because we average over different marginal
treatment effects.
The result in (10) is not directly useful because recoveringm(p)

is a nonlinear inverse problem, and, even if a unique solution exists,
estimating m(p) is a nontrivial task because the solution may not
be a continuous function in ∂E[Y |P = p]/∂p. So far, no results have
been developed for this particular case.
In the next section, instead of solving this inverse problem,

an approximation to the difference between the quantity that is
estimated by the LIV estimator andm(p) is derived. This difference
depends on the variance of Q (P, σU) conditional on P = p and is
zero if σ = 0. The obtained result can be used to calculate a bias
corrected (up to the approximation error) estimate of themarginal
treatment effect if this variance can be estimated. We also provide
results for the level based estimates.

17 In Appendix B we discuss that under monotonicity we can always find a
selection model that is separable in unobservables (Proposition 5). We also discuss
that irrespective of whether monotonicity holds it depends on the choice of Q
whether estimates are biased.
18 For example, the marginal treatment effect could be the same for everybody,
i.e.m(v) = m̄. Then,∫
m(Q (p, σu))

∂Q (p, σu)
∂p

fU (u)du = m̄
∫
∂Q (p, σu)

∂p
fU (u)du = m̄,

where we use that p =
∫
Q (p, σu) fU (u)du gives

∫
∂Q (p,σu)

∂p fU (u)du = 1 when we
differentiate both sides with respect to p.
3. The impact of deviations from σ = 0

In this section we study the impact of local departures from
σ = 0 on derivative and level based estimates of structural pa-
rameters. For this, second-order approximations in σ about σ = 0
are performed. The approximations will be derived under the fol-
lowing differentiability conditions.

Assumption 4 (Differentiability). (i) Q (p, σu) is continuously dif-
ferentiable in p around σu = 0, (ii) Q (p, σu) and ∂Q (p, σu)/∂p
are twice continuously differentiable in σu around σu = 0, and
(iii)m(v) is three times continuously differentiable.

In the first part of Appendix A, we establish that

var(Q (P, σU)|P = p) = σ 2 ·
(
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

)2
+ o(σ 2). (11)

Here, and later, the remainder term is denoted by o(σ 2) andhas the
property that o(σ 2)/σ 2 goes to zero as σ 2 goes to zero. For ease of
exposition we denote the approximation to the left-hand side by

σ 2p ≡ σ
2
·

(
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

)2
. (12)

3.1. Bias of derivative based estimates

The main analytic result of this paper is an approximation to
the bias of LIV estimates of the marginal treatment effect, i.e. an
approximation to

∂E[Y |P = p]
∂p

−m(p).

Proposition 1. Let the selection model be given by (1) and let p be
a limit point of the support of P. Then, under Assumptions 1–4 and
Normalization 1, the bias of the derivative based estimate of m(p),
∂E[Y |P = p]/∂p, is given by

BMTE∗(p) =
1
2
· σ 2p ·

∂2m(p)
∂p2

+
1
2
·
∂σ 2p

∂p
·
∂m(p)
∂p
+ o(σ 2). (13)

Proof. See Appendix A. �

The approximation to the bias consists of two parts. The first
part is 1/2 times the product of the variance of Q (P, σU) condi-
tional on P = p and the second derivative of the marginal treat-
ment effect evaluated at V = p. This shows that instead of m(p)
a weighted average of marginal treatment effects is estimated. If
m(p) is (locally) convex then estimates tend to be upward biased,
whereas ifm(p) is (locally) concave then they tend to be downward
biased. The second part of the bias term is 1/2 times the product
of the derivative of the variance of Q (P, σU) conditional on P = p
with respect to p and the derivative of the marginal treatment ef-
fect evaluated at V = p. This shows that the bias is related to the
dependence of the variance of Q (P, σU) conditional on P = p on
p. For example, if this variance decreases in p, which is usually the
case if p is high, and if the marginal treatment effect is negatively
sloped, then estimates tend to be upward biased.
From the formula in Proposition 1, an approximation to the

bias of derivative based estimates of the average and local average
treatment effect can be obtained by integrating over values of p, as
suggested by (4) and (5).



104 T.J. Klein / Journal of Econometrics 155 (2010) 99–116
Corollary 1.1. Let the selection model be given by (1) and let all
p ∈ (pl, ph) be limit points of the support of P. Then, under Assump-
tions 1–4 and Normalization 1, the bias of the derivative based esti-
mate of the local average treatment effect between pl and ph is given
by

BLATE∗(pl, ph) =
1
2
·

1
ph − pl

·

(
σ 2ph ·

∂m(ph)
∂ph

− σ 2pl ·
∂m(pl)
∂pl

)
+ o(σ 2). (14)

If pl = 0 and ph = 1 this is the bias of the derivative based estimate
of the average treatment effect.

Proof. See Appendix A. �

3.2. Bias of level based estimates

As discussed before, derivative and level based estimates of
the average and local average treatment effect are closely related.
We can prove that approximations to the respective biases of
level based estimates of the average and local average treatment
effect are equal to approximations to biases of the corresponding
derivative based estimates.

Proposition 2. Let the selection model be given by (1) and let pl
and ph be in the support P. Then, under Assumptions 1–4 and
Normalization 1, the bias of the level based estimate of the local
average treatment effect between pl and ph,

E[Y |P = ph] − E[Y |P = pl]
ph − pl

,

is equal to the bias of the derivative based estimate as given in (14).
If pl = 0 and ph = 1 this is the bias of level based estimates of the
average treatment effect.

Proof. See Appendix A. �

3.3. Practical relevance

The bias terms that were derived above depend on unknown
quantities. Nevertheless, the results have practical relevance be-
cause in (13) and (14)we can replace the first and secondderivative
of the marginal treatment effect by their biased estimates with-
out changing the order of the approximation error. It follows from
(7) that these biased estimates are given by the second and third
derivative of E[Y |P = p] with respect to p, respectively. These
derivatives can be estimated nonparametrically but estimates of
derivatives are generally less precise than estimates of the func-
tion itself (see, e.g., Pagan and Ullah, 1999). The order of the ap-
proximation error in (13) and (14) remains unchanged because the
second-order approximations (in σ about σ = 0) to the respective
biases of those estimates are multiples of σ 2 and therefore enter
the remainder term in (13) and (14) because the approximation to
the bias that uses unknown quantities is already amultiple of σ 2.19
Hence, we have

BMTE(p) =
1
2
· σ 2p ·

∂3E[Y |P = p]
∂p3

+
1
2
·
∂σ 2p

∂p
·
∂2E[Y |P = p]

∂p2
+ o(σ 2) (15)

19 See also the references in footnote 5. Notice that, by (12), σ 2p is a multiple of σ
2 .
and

BLATE(pl, ph) =
1
2
·

1
ph − pl

·

(
σ 2ph ·

∂2E[Y |P = ph]
∂p2h

− σ 2pl ·
∂2E[Y |P = pl]

∂p2l

)
+ o(σ 2). (16)

A sensitivity analysis can be undertaken by calculating the
respective approximation to the bias term for different values
of σ 2p and ∂σ

2
p /∂p. Furthermore, under appropriate additional

conditions, the variance of Q (P, σU) conditional on P can be esti-
mated.20 Then, a bias correction procedure (up to the approxima-
tion error) is feasible. In the empirical application that is presented
in Section 4, a random coefficient Logit model is used to esti-
mate σ 2p .

3.4. Identification without monotonicity

The results obtained show that the curvature of the marginal
treatment effect is a key determinant of the magnitude of the
bias of monotonicity based estimates if σ differs from 0. In the
following proposition it is established that under the condition
that the marginal treatment effect is linear in v all treatment
effect parameters considered above are identified if we have
prior knowledge on σ 2p . Evaluating (9) for Q (P, σU) = q and
differentiating with respect to q shows that this is equivalent to
requiring that E[Y |Q (P, σU) = q] is quadratic in q. Importantly,
monotonicity or the absence of selection on unoberservables needs
not to be assumed here.

Proposition 3. Let themarginal treatment effect be linear in v so that

E[Y |Q (P, σU) = q] = α + βq+ γ q2 (17)

for some constants α, β, γ . Moreover, let Assumptions 1–3 and
Normalization 1 hold and let the variance of Q (P, σU) conditional
on P = p be equal to σ 2p . Let there be a subset P of the support of
P that contains at least three points and assume that either (i) σ 2p is
constant for all p ∈ P or (ii) σ 2p is known for all p ∈ P and σ 2p + p

2

varies with p but is not linear in it. Then, the marginal, average, and
local average treatment effect are identified.

Proof. By (17), Assumption 1, Assumption 3, and Normalization 1

E[Y |P = p] = α + β · E[Q (P, σU)|P = p]
+ γ · E[Q (P, σU)2|P = p]

= α + βp+ γ · E[((Q (p, σU)− p)+ p)2]
= α + βp+ γ ·

(
σ 2p + p

2) .
Hence, if σ 2p is known and σ

2
p + p

2 varies with p but is not linear in
it, the parameters α, β and γ are identified. They can be estimated
using a linear regression of the outcome on p and (σ 2p + p

2). If σ 2p
is unknown but constant for all p ∈ P , we can write

E[Y |P = p] = α̃ + βp+ γ p2,

20 Mixing models can be used to estimate σ 2p . Matzkin (2007) surveys this
literature. Fox and Gandhi (2008) provide a framework that is useful to assess
whether amodel is identified andprovide identification results for the binary choice
model. Briesch et al. (2007) show identification when there is a Lewbel (2000) type
special regressor and propose a nonparametric estimator. Ichimura and Thompson
(1998) contains an early identification result for the random coefficient model
which heavily relies on linearity of the index. Gautier and Kitamura (2008) propose
a new estimator for the density of the random coefficients in such a model. Those
papers also contain numerous further references. See also Appendix B for further
details.
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where α̃ = α + γ σ 2p , which shows that also under this condition
β and γ are identified. They can be estimated using a linear
regression of the observed outcome on a constant term, p and p2.
The marginal treatment effect is given by the derivative of (17)
with respect to q,

m(q) = β + 2γ q,

and is identified since it is a function of β and γ that can be eval-
uated at arbitrary values q. Finally, the average and local average
treatment effect are identified by the relationships (4) and (5). �

This result can be regarded as an extension of the results by
Wooldridge (1997, 2003) and Heckman and Vytlacil (1998) who
propose estimating the average treatment effect in a linear model
using standard instrumental variables techniques. However, for bi-
nary treatments their assumptions imply that the marginal treat-
ment effect is constant across different values of v. This is not as-
sumed here.
The homoskedasticity condition (i) that is used here is unlikely

to hold globally. To see this, let the support be given by the set
{0, 0.5, 1}. By construction, the variance of Q (P, σU) is zero for
P = 0 and P = 1, but could be positive for P = 0.5. However,
this condition could hold locally, for example, if the estimation
procedure is based onP = {0.45, 0.5, 0.55}.
A specification test can be constructed under condition (i)

provided that there are two subsets P1 and P2 for which this
condition holds. Then, two sets of estimates of β and γ can be
obtained. Both are consistent under the null hypothesis of no
misspecification and a specification test is given by the test for
equality of the respective estimates of β and γ . For a specification
test under condition (ii), σ 2p could be included as an additional
regressor. The test is then a test for the equality of the coefficients
on p2 and σ 2p .

4. An empirical application

In this section, parts of the Angrist and Krueger (1991) data
are used to illustrate the practical relevance of the results that
were obtained above.21 The data are from the 1980 census and
contain information for individuals born between 1930 and 1939.
The original paper contains a detailed description of the data and
detailed summary statistics.
Angrist and Krueger (1991) aim at estimating the effect of

compulsory schooling on wages. They argue that an individual’s
quarter of birth can be excluded from thewage equation (exclusion
restriction) and show empirically that actual schooling is related
to the quarter of birth (rank condition). This is due to compulsory
schooling requirements, in particular entry regulations. On these
grounds the quarter of birth is used as an instrument for schooling
in a regression of log weekly earnings on completed years of
schooling. The exclusion restriction corresponds to Assumption 1
in this paper and has been questioned by Bound and Jaeger (2000).
It will, however, be maintained here.
In our application, we investigate the effect of completingmore

than 9 years of schooling on wages. This is reasonable because
the most common age at school entry is about 6 years (Table B.1.
in Angrist and Krueger, 1992) and the most common compulsory
schooling attendance age is 16 years (Appendix 2 in Angrist and
Krueger, 1991). If students are born early in the year and enter
school at the age of 6, then they will be in 10th grade when they
turn 16 because the school year typically starts in September and
ends in July. They thus have 9 years of completed education if they

21 The data set can be downloaded at http://econ-www.mit.edu/files/397.
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Fig. 1. Effect of being born in the fourth instead of the first quarter.

drop out as soon as possible. Conversely, if they are born in the
fourth quarter and enter school in the year they turn 6 they will
have 10 years of completed educationwhen they turn 16. A sizable
fraction of those who are born in the fourth quarter are held back
for one year (Barua and Lang, 2008). They enter school at the age of
almost 7 years and will have completed 9 years of education when
they turn 16.
Fig. 1 shows that the effect of being born in the fourth instead

of the first quarter on the state specific probability to obtain more
than 9 years of schooling is positive in most states. This effect
is significant primarily in the states in which this probability is
low. Arguably, these are states in which compulsory schooling
requirements are binding for a sizable part of the population.22
Variation in the quarter of birth provides a natural experiment

(provided that it is unrelated to ability) because it generates vari-
ation in the age at school entry, which then yields to variation in
the years of schooling. This is because individuals can drop out of
school on the day they reach the legal dropout age. Individualswho
were born earlier in the year are older on average when they enter
school (Table 2 in Angrist and Krueger, 1992). Therefore, they reach
the legal dropout age after less schooling. From this it follows that
monotonicity holds if for each individual the decision to havemore
than 9 years of completed schooling is monotonically increasing in
the quarter of birth. This assumption is implausible for at least two
reasons.
First, the relationship between age at school entry and quarter

of birth could be affected by unobserved differences in start age
policies across schools (footnote 4 in Angrist and Krueger, 1991).

22 The compulsory schooling age does not vary within states, but the exact school
entry regulations an individual faces do. Regulations differ across states. However,
Barua and Lang (2008) show that state level regulations have not been strictly
enforced. For example, in third-quarter cutoff states children may enter school in
the year in which they reach the entry age provided that they do so in the first
three quarters. In those states many children that were born in the fourth quarter
still entered school in the year in which they turned 6. Also, regression results show
that the coefficient estimates on interaction terms between the quarter of birth and
the type of state regulation are generally not significant. Therefore, we do not focus
on differences in regulations across states in this application.

http://econ-www.mit.edu/files/397
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In particular, schools are not obliged to admit individuals as soon
as they turn 6 before the state-wide cutoff date.23 In fourth-
quarter cutoff states, for example, some school districts can choose
not to accept children that turn 6 in the fourth quarter (because
they are considered too young to enter school or because the
number of applicants exceeds school capacity) and thus delay their
admission until the following year.24 Children who cannot enter in
the year they turn 6 will be in the oldest who enter school in the
subsequent year, and not the youngest. They will just have started
10th grade when they turn 16 and might therefore decide to drop
out immediately, with 9 years of completed schooling. At the same
time, childrenwho are born in the first quarterwill be in themiddle
of 10th grade when they turn 16 and might therefore decide to
complete this grade and thus havemore than 9 years of completed
education. This is just an example that shows thatwhile on average
those born in the last quarter are more likely to complete more
than 9 years of education it could be that a hypothetical change
from the first to the fourth quarter induces some individuals not to
complete more than 9 years of education. In this example, this is
due to unobserved differences in school policies. From the point
of view of the econometrician these unobserved differences give
rise to additional randomness which causes monotonicity to fail.25
In the generalized selection model this additional randomness is
part of U . Assumption 3 in this context is that the child’s ability
is not related to this additional randomness. The distribution of
ability conditional on entering school is still allowed to differ across
quarters of birth; see footnote 11.
Second, childrenmay be held back by their parents (Angrist and

Krueger, 1992). From the point of view of the econometrician this
has the same effect as an unobserved entry regulation that does not
allow a child to enter school in the year inwhich it turns 6.26 For an
example, suppose that there are some parents, say of type A, who
prefer that their child enters school at an early age because this is
the simplest way of having the child taken care off during the day,
while other parents, say of type B, think that entering school too
early may be detrimental to their children.27 Whether parents are
of type A or B matters for children that are born later in the year
and may cause monotonicity to fail. Assumption 3 in this context
is that the parent type is independent of the child’s ability. It is not
that entry age is independent of ability. Assumption 3 is violated if
children of parents who would like to send their child to school as
early as possible are systematically of higher (or lower) ability.
We proceed as follows. First, the probability to stay in school

for more than 9 years, P , is estimated using a random coefficient
Logit model. In a second step, potentially biased derivative based
estimates of the marginal treatment effect as well as level based
estimates of the local average treatment effect are obtained. Then,
the results that were derived in this paper, in particular (15) and
(16), are used to calculate an approximation to the respective bias.

23 I am grateful to a referee for pointing this out.
24 In these states, the law says that children may in general enter school if they
turn 6 before the end of the fourth quarter. First-, second- and third-quarter cutoff
states are defined accordingly.
25 In principle, one could deal with this by exploitingmonotonicity within schools
if the identity of the school was known. However, the identity of the school is
unobserved in our data.
26 See also Barua and Lang (2008) for further discussion of this point. Table 1 in that
paper shows the distribution of entry age into kindergarten for the 1952 and 1953
birth cohort. 80% of the childrenwho are born in the first quarter enter kindergarten
in the year in which they turn 5. In fourth-quarter cutoff states about 45% of the
children born in the fourth quarter still enter kindergarten at the age of 5 and about
50% enter at the age of 6. Children normally stay in kindergarten for one year and
enter school thereafter. These numbers are consistentwith the entry age differences
reported in Table 2 in Angrist and Krueger (1992).
27 I am grateful to a referee for coming up with this example.
Finally, bias corrected estimates of the marginal and local average
treatment effect are calculated.
The model for observed earnings, Y , is given by

Y = D · (Y1 − Y0)+ Xβ, (18)

where X is a vector of exogenous covariates that contains a con-
stant term, the year of birth, and state of birth indicators.28 This
specification allows earnings levels to depend on the year and state
of birth but imposes that the return to obtainingmore than 9 years
of schooling is the same across states and does not depend on the
exact year of birth.29
Let Z be a vector consisting of quarter of birth indicators and X .

The selection model is the random coefficient Logit model

D = 1{Z γ̃ ≥ Ṽ },

where Ṽ follows the logistic distribution and γ̃ is a vector of ran-
dom coefficients for the quarter of birth indicators and the year
of birth. For reasons of tractability (there are 50 states and the
District of Columbia) the coefficients on the state indicators are
assumed to be constants. The random elements are assumed to
be distributed according to a multivariate normal distribution de-
noted by φ(·|γ ,Σ) with mean γ and variance–covariance matrix
Σ . We assume that Z is independent of (Y0, Y1, Ṽ ). This is stronger
than the restrictions in Assumption 1 since now Z includes the vec-
tor X of covariates. The interpretation of this assumption is that the
distribution of Ṽ is the same across states of birth, years of birth,
and quarters of birth.30 Finally, it is assumed that the random co-
efficients are independent of Z and (Y0, Y1, Ṽ ). This corresponds to
Assumption 3 from above. In this model, monotonicity can be vi-
olated even if all coefficients on the quarter of birth indicators are
positive. This is because the effect of being born in the fourth in-
stead of the first quarter, for example, is given by the difference
in the respective random coefficients. The model is estimated us-
ing simulated maximum likelihood. In Appendices B and C, we de-
scribe how Q (P, σU) can be derived from the random coefficient
model and how var(Q (p, σU)) is estimated.
Table 1 contains parameter estimates for a specification with

four quarter of birth indicators and independently distributed
random coefficients.31 Specifications (1) and (2) do not include
state of birth indicators while specifications (3) and (4) do. Except
for the coefficient on being born in the first quarter in specification
(2), the results are very similar across all four specifications.32

28 Linearity in the year of birth is imposed. Figs. I and V in Angrist and Krueger
(1991) suggest that this is a good approximation. To check this a Logit model with
quarter of birth dummies, the year of birth, year of birth dummies, and state of birth
dummieswas estimated to explainwhether individuals completemore than 9 years
of education. The year of birth dummies were not jointly significant (p = 0.31).
Then, the wage was regressed on the same variables and again the year of birth
dummies were not jointly significant (p = 0.64).
29 This follows common practice in first applications of LIV estimation such as
Carneiro and Lee (2009). See Klein (2009) for a generalization in which the return
is allowed to depend on the interaction between covariates and V .
30 Assumption 1 is made conditional on X , which is considerably weaker. Without
strengthening it, we have to perform the analysis separately for each state. This is
beyond the limits of the data set because the support of P in a given state is always
smaller than the unconditional support where we consider all states at the same
time.
31 Notice that the correlation across random coefficients is not identified because
only one quarter of birth indicator takes on the value 1 at a time. Results that were
obtained using a specification in which the index depends linearly on the year and
the quarter of birth, allowing for a correlation across random coefficients, are very
similar. Importantly, we run the risk of obtaining biased estimates as soon as the
variance of two random coefficients differs from zero. This is the case throughout.
32 Marginal effects are very close to one another across specifications. Taking
the fourth quarter as the baseline, being born in the first quarter decreases the
probability to have more than 9 years of schooling by 1.7% to 1.9%, being born in
the second quarter decreases it by 1.4% to 1.5%, and being born in the third quarter
decreases it by 0.5% to 0.6%.
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Table 1
First-stage estimates.

(1) (2) (3) (4)

Year of birth (mean) 0.062* 0.077** 0.067** 0.076**
(0.002) (0.003) (0.002) (0.002)

Year of birth (std.) 0.016** 0.014**
(0.001) (0.002)

Born in 1st quarter (mean) −0.369** 1.669** −1.182** −1.293**
(0.061) (0.300) (0.068) (0.085)

Born in 1st quarter (std.) 3.697** 0.736**
(0.302) (0.084)

Born in 2nd quarter (mean) −0.343** −0.708** −1.163** −1.425**
(0.061) (0.095) (0.068) (0.081)

Born in 2nd quarter (std.) 0.411 0.069
(0.285) (0.257)

Born in 3rd quarter (mean) −0.270** −0.657 −1.085** −1.252**
(0.061) (0.161) (0.068) (0.083)

Born in 3rd quarter (std.) 0.305** 0.552**
(0.084) (0.106)

Born in 4th quarter (mean) −0.224** −0.469** −1.026** −1.144**
(0.061) (0.089) (0.068) (0.086)

Born in 4th quarter (std.) 0.713** 0.667**
(0.104) (0.100)

State of birth indicators No No Yes Yes
329,509 observations. Standard errors in parentheses. Columns (1) and (3) are Logit
estimates. Columns (2) and (4) are Logit estimates with independently normally
distributed random coefficients. Estimates of means and standard deviations of
random coefficients are reported.
* Significant at 5%.
** Significant at 1%.

Table 2
Impact of hypothetical change in quarter of birth.

(2) (4)

First instead of fourth quarter
Mean 2.138 −0.149
Standard deviation 3.765 0.993
Percentage positive 71% 44%

Second instead of fourth quarter
Mean −0.239 −0.281
Standard deviation 0.823 0.671
Percentage positive 39% 34%

Third instead of fourth quarter
Mean −0.188 −0.108
Standard deviation 0.775 0.866
Percentage positive 40% 45%

Mean difference in the coefficient on quarter of birth indicators and sum of
estimated standard deviations of the respective random coefficients are reported.
Obtained from the estimation results reported in columns (2) and (4) of Table 1. The
labeling of the columns has been adopted. The percentage positive is given by one
minus the cumulative normal distribution with the respective mean and standard
deviation evaluated at zero.

Throughout, the impact of the year of birth is positive, and being
born later in the year has a positive impact on staying in school.
Moreover, all estimates of the standard deviation of the random
coefficients are significantly different from zero. In the subsequent
analysis, specification (4) will serve as the basis for the second-
stage estimates.
Table 2 shows the implied mean and variance of the impact of

the quarter of birth on the index Z γ̃ . Column (4) indicates that the
effect of being born early in the year is negative on average but is
positive for a sizable part of the population. Taken at face value, the
results show that being born in the first instead of the fourth quar-
ter has a negative impact on the likelihood to stay in school for 56%
of the individuals and a positive impact for 44% of the individuals.
Monotonicity is violated for the latter 44%.
Fig. 2 shows the distribution of fitted values of the probability

to havemore than 9 years of completed schooling, P . A sizable part
of the population will continue to attend school with a probabil-
ity larger than 85%. We have seen in Fig. 1 that those individuals
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Fig. 3. Individual variance of fitted probability.

mainly live in states in which the quarter of birth has no signifi-
cant impact on P . In those states the instrument has no identifying
power. Therefore, wewill focus on individuals with P below 85% in
the subsequent analysis.
Fig. 3 summarizes individual differences in the variance of the

individual probability to attend more than 9 years of schooling in
the population. To explore how this variance depends on the level
of P , we regressed it on a constant and a set of fourth-order splines
in the estimated P . The knots are equidistant and located at 0.73,
0.78 and 0.83. Thereby, we average over the sample distribution of
values of Z that share the same value of P . This yields estimates of
the population average σ 2p . The first derivative of the estimate is
obtained analytically. The results in Fig. 4 show that the higher P ,
the lower the variance of the individual probability.
These estimates of σ 2p and ∂σ

2
p /∂pwill be used to calculate the

bias of monotonicity based estimates of the marginal and local
average treatment effect. Before doing so, we obtain the ordinary
least squares and the linear instrumental variables estimate of the
return to more than 9 years of schooling. The results are reported
in Table 3. The instrumental variables estimate is higher than the
ordinary least squares estimate. Under monotonicity, this would
reflect that average returns for those for whom the compulsory
schooling requirement is binding are exceptionally high (Imbens
and Angrist, 1994; Harmon andWalker, 1999).We have illustrated
that monotonicity cannot safely be assumed here. Hence, it is
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Fig. 4. Level of individual variance and its derivative plotted against fitted probability.
Table 3
Ordinary least squares and linear instrumental variables estimates.

Effect of more than 9 years of
schooling

Ordinary least squares estimator 0.395*
(0.002)

Linear instrumental variables estimator 0.884**
(0.119)

329,509 observations. Standard errors in parentheses. A full set of state of birth
indicators as well as the year of birth was included as covariates. The linear
instrumental variables estimate was obtained using the efficient two-step GMM
estimator with quarter of birth indicators as instruments. Hanson’s J statistic (test
of overidentifying restrictions): 6.112, p-value: 0.047.
* Significant at 5%.
** Significant at 1%.

useful to obtain bias corrected estimates of the marginal and local
average treatment effect. Towards obtaining those second-stage
estimates, notice that (18) implies that

E[Y |X, P] = κ(P)+ Xβ.
κ(P) and β are estimated using an ordinary least squares
regression of the log weekly wage on the year of birth, state
indicators, as well as fourth-order splines in the estimated P . The
knots were chosen as before. Throughout, confidence intervals do
not account for the first-stage estimation error. In light of the
precision of the first-stage estimates reported in Table 1, we do
not expect this to have severe consequences. In Section 2, we have
established that the LIV estimate of the marginal treatment effect
is given by the first derivative of κ(P)with respect to its argument.
The second and third derivatives are therefore LIV estimates of
the first and second derivatives of the marginal treatment effect
with respect to its argument, respectively. The advantage of using
splines is that these derivatives as well as their standard errors can
be obtained analytically. Fig. 5 shows those estimates.
Figs. 6 and 7 shows potentially biased monotonicity based esti-

mates of the marginal and local average treatment effect, respec-
tively, and bias corrected estimates.33The confidence intervals for

33 It has been argued before that the instrument might not be valid for values of
P above 0.85. Therefore, we will only report estimates of treatment parameters for
values of P that are below 0.85.
the bias corrected estimates are wider than for the original esti-
mate and are not shown here. The dependence of biased and bias
corrected estimates on V is positive. The interpretation of this is
that in terms of wages bad types, who are characterized by high
values of V and for whom compulsory schooling requirements are
binding, profit more from additional education than good types do.
Bias corrected estimates of the marginal and local average treat-
ment effect are lower for low values of V and higher for high values
of V .
In this application the interpretation of both monotonicity

based and bias corrected estimates is qualitatively the same.
However, as has previously been argued, monotonicity cannot
safely be assumed here, so it is important to assess the sensitivity
of estimates to departures from monotonicity. This application
has shown that this is feasible provided that the researcher is
willing to make additional assumptions that allow him to estimate
var(Q (p, σU)).

5. Monte Carlo

The approximation to the bias of the marginal treatment
effect in Proposition 1 depends on the unknown first and second
derivative of m(v). It has been noted that these unknown
quantities can be replaced by biased estimates without altering
the order of the approximation error. The goal of this Monte Carlo
study is to assess the effect of doing so on the accuracy of the
approximation to the bias term. For this reason, realizations of P
and var(Q (p, σU))will be treated as known, andm(v) is specified
to be a quadratic function in v. This implies that the approximation
error comes from replacing the aforementioned derivatives by
their biased estimates. The analysis will be carried out for the
approximation to the bias of LIV estimates ofm(0.5).
The design is the following. There are 10,000 simulated data

sets with 2000 observations. To generate these data we start by
drawing values p of P from a uniform distribution with support
[0.4, 0.6]. Then, values u of U are drawn from a standard normal
distribution, and values q of Q are calculated according to

q = p+ 0.75 · σu− p · σu. (19)

We vary σ between 0 and 0.5. (19) implies that the approximation
in (11) is exact, so

σ 2p = var(Q |P = p) = (0.75− p)
2
· σ 2 (20)
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∂var(Q |P = p)
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= −2 · (0.75− p) · σ 2.
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Fig. 7. Biased and bias corrected estimate of the local average treatment effect.

m(v) is specified to be a second-order polynomial in v, and we
imposem(0.5) = 0 and ∂m(v)/∂v = −1. This implies that

m(v) = 3ρv2 − (3ρ + 1) · v +
3ρ + 2
4

, (21)
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Fig. 8. Marginal treatment effect for different values of ρ.

where ρ is a parameter which is related to the curvature of m(v).
To assess the dependence of the accuracy of the approximation on
this curvature ρ will be varied between 0, for whichm(v) is linear
in v, and 10. The first and second derivative ofm(v) are given by

∂m(v)
∂v

= 6ρv − 3ρ − 1

and
∂2m(v)
∂v2

= 6ρ,

respectively. This shows that m(v) is the more convex the higher
ρ. Fig. 8 shows the dependence ofm(v) on ρ.
This specification for m(v) implies a particular functional form

for E[Y |Q ]. We impose that E[Y |Q = 0] = 0. Then, (9) implies
that

E[Y |Q = q] =
∫ q

0
m(v)dv

=

∫ q

0
3ρv2 − (3ρ + 1) · v +

3ρ + 2
4

dv

= ρq3 −
3ρ + 1
2
· q2 +

3ρ + 2
4
· q.

Realizations y of Y are calculated as y = E[Y |Q = q] + ε, where
ε is drawn from a normal distribution with mean 0 and variance
0.02. Fig. 9 shows one draw of generated data for ρ = 4 and
σ 20.5 = 0.01.

34 On the left-hand side, values of Y are plotted against
values of P and Q . On the right-hand side, values of the marginal
treatment effect evaluated at values ofQ are plotted against values
of P and Q , respectively. Obviously, when we plot values m(q)
against q we get the marginal treatment effect itself. However,
plotting these values against p shows that there is a distribution of
marginal treatment effects evaluated at Q for every value of P . This
relates to the intuition that is developed in Section 2.3. There we
have argued that (10) shows that the LIV estimator may be biased
because it averages over marginal treatment effects.

34 This is the value that was obtained in the empirical application for p ≈ 0.85;
see Fig. 4.
Table 4
Dependence of bias and approximation on σ .

σ σ 20.5 Bias Approximation Difference

0.000 0.000 0.0000 0.0000 0.0000
(0.0002) (0.0000) (0.0002)

0.050 0.000 0.0027 0.0025 −0.0002
(0.0002) (0.0000) (0.0002)

0.100 0.001 0.0104 0.0104 0.0001
(0.0002) (0.0001) (0.0001)

0.150 0.001 0.0227 0.0252 0.0025
(0.0002) (0.0001) (0.0001)

0.200 0.003 0.0399 0.0489 0.0090
(0.0002) (0.0003) (0.0001)

0.250 0.004 0.0628 0.0832 0.0205
(0.0002) (0.0005) (0.0002)

0.300 0.006 0.0901 0.1344 0.0443
(0.0003) (0.0008) (0.0006)

0.350 0.008 0.1220 0.2057 0.0837
(0.0003) (0.0014) (0.0011)

0.400 0.010 0.1599 0.3017 0.1417
(0.0004) (0.0023) (0.0019)

0.450 0.013 0.2024 0.4279 0.2255
(0.0005) (0.0037) (0.0032)

0.500 0.016 0.2502 0.5930 0.3428
(0.0006) (0.0057) (0.0051)

Bias, approximation (15) using biased estimates of first and second derivative of
m(V ) evaluated atV = 0.5, and thedifference between the two. Reported forρ = 4.
σ 20.5 was calculated according to (20). The respective means were calculated from
10,000 simulations. Standard deviations of means are reported in parentheses.

LIV estimates were obtained by regressing realizations of Y on a
third-order polynomial in realizations of P . This is the correct spec-
ification when σ = 0. From the coefficient estimates an estimate
of the first, second and third derivatives of the fitted value, evalu-
ated at P = 0.5, is obtained. These are biased (except for σ = 0)
estimates of m(0.5), its first derivative, and its second derivative,
respectively. The bias of estimates ofm(0.5) is given by the LIV es-
timate because, by construction, the true value is 0 for all ρ. We
calculate the approximation to the bias using (15).
Since the approximations in (11) and (13) are exact, we can di-

rectly assess the approximation error that stems from using (po-
tentially) biased LIV estimates of the first and second derivative of
m(v) instead of the unknown quantities when calculating the ap-
proximation to the bias. In Fig. 10, the bias and the approximation
that uses biased estimates are plotted against ρ. This is done for
σ 20.5 = 0.0056 and σ

2
0.5 = 0.01. Table 4 shows the dependence

between themean bias and themean of the estimated approxima-
tion for ρ = 4. The difference between the two is reported in the
last column. Standard deviations for the respective means are re-
ported in parentheses. Both the figure and the table show that the
approximation error is approximately linear in ρ and is increasing
in ρ and σ 20.5.
Finally, Table 5 reports, for different combinations of ρ and σ 20.5,

the percentage of the bias that is corrected using (15). It shows that
up to about σ 2p = 0.01 the cure is better than the disease in the
sense that the bias corrected estimate is closer to the true value
than the biased estimate. Finally, the sign of the bias is the same as
the sign of the approximation if the number reported in this table is
positive. It is worth noting that, for all combinations of ρ and σ 20.5,
the approximation to the bias is of the same sign as the bias.

6. Concluding remarks

Recently developed instrumental variables estimators of treat-
ment effect parameters hinge on the assumption that, conditional
on exogenous covariates, a hypothetical change in instrumental
variables either has no effect on an individual’s treatment deci-
sion or changes it in the same direction as it does for all other
individuals for which it has an effect. Under this assumption, ex-
ogenous variation in instrumental variables identifies the average
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treatment effect for the subpopulation of individuals who would
be affected by this change. Themonotonicity condition is economi-
cally interpretable but not directly testable. If it cannot safely be as-
sumed it is important to assess howmonotonicity based estimates
are affected by a failure of this assumption.
It is now well understood that under monotonicity, treatment

decisions can be represented using a binary choice model with
an index that is additively separable in observables and unob-
servables. Conversely, a binary choice model with an index that
is additively separable in observables and unobservables implies
monotonicity. In this paper, we have investigated the effect of local
departures from such an additively separable structure on mono-
tonicity based estimates of themarginal, average and local average
treatment effect. Second-order approximations to the respective
bias terms have been derived under the assumption that vio-
lations of monotonicity occur at random. In the application we
have shown that, under additional assumptions that allow the
researcher to estimate a selection model with a nonseparable
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Table 5
Accuracy of the approximation.

σ σ 20.5 ρ

1 2 3 4 5 6 7 8 9 10

0.050 0.000 85 89 92 93 94 95 96 97 97 97
0.100 0.001 93 97 99 101 102 102 103 103 104 104
0.150 0.001 106 109 110 111 112 112 113 113 113 114
0.200 0.003 116 119 121 123 123 124 124 125 125 125
0.250 0.004 119 126 130 133 134 136 137 137 138 138
0.300 0.006 131 141 146 149 151 153 154 155 156 157
0.350 0.008 143 158 164 169 171 174 175 176 177 178
0.400 0.010 159 175 183 189 192 195 197 199 200 201
0.450 0.013 173 193 205 211 216 220 222 224 226 227
0.500 0.016 189 215 228 237 243 247 250 253 255 257

This table shows, for a given ρ and σ , the percentage of the bias that is corrected using the approximation (15) with biased estimates of the first and second derivatives of
m(V ) evaluated at V = 0.5. σ 20.5 was calculated according to (20). The respective means were calculated from 10,000 simulations.
index, a bias correction procedure is feasible. The Monte Carlo
study has demonstrated that, whereas the approximations might
be inaccurate when the departure from a structure that implies
monotonicity is big, they are still accurately predicting the sign of
the bias. Consequently, even if deviations from monotonicity are
substantial, the results are useful to assess whether estimates
that were obtained under the monotonicity assumption consti-
tute a lower or an upper bound for the structural parameter of
interest.
Such sensitivity analyses can be used to show that the major

findings of an empirical study are robust to violations of mono-
tonicity. This also applies to studies inwhich identification is based
on natural experiments. While these experiments often generate
credible exogenous variation, the impact of this variation on indi-
vidual decision making may depend on many factors that are not
recorded. Hence, violations of monotonicity are possible. Carry-
ing out a sensitivity analysis and calculating the bias can therefore
greatly enhance the credibility of the results.
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Appendix A. Proofs

We first derive approximations toQ (p, σu), ∂Q (p, σu)/∂p, and
var(Q (P, σU)|P = p). All approximations are of the second order
in σ and about σ = 0. The remainder term is denoted by o(σ 2) and
has the property that o(σ 2)/σ 2 goes to zero as σ 2 goes to zero. The
necessary differentiability conditions are stated in Assumption 4.
The second-order approximation to Q (p, σu) is given by

Q (p, σu) = Q (p, 0)+ σu ·
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

+ (σu)2/2 ·
∂2Q (p, σu)
∂(σu)2

∣∣∣∣
σ=0
+ o(σ 2). (22)
Next, we derive an approximation to p. Under Normalization 1 and
Assumption 3, we have, using (22),
p = E[Q (P, σU)|P = p]
= E[Q (p, σU)]

=

∫ {
Q (p, 0)+ σu ·

∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

+ (σu)2/2 ·
∂2Q (p, σu)
∂(σu)2

∣∣∣∣
σ=0

}
fU(u)du+ o(σ 2).

Under Normalization 1,
∫
u fU(u)du = 0 and

∫
u2 fU(u)du = 1, so

p = Q (p, 0)+ σ 2/2 ·
∂2Q (p, σu)
∂(σu)2

∣∣∣∣
σ=0
+ o(σ 2). (23)

Combining (22) with (23) yields

Q (p, σu) = p+ σu ·
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

+ σ 2/2 · (u2 − 1) ·
∂2Q (p, σu)
∂(σu)2

∣∣∣∣
σ=0
+ o(σ 2), (24)

and from this it follows that
∂Q (p, σu)

∂p
= 1+ σu ·

∂2Q (p, σu)
∂(σu)∂p

∣∣∣∣
σ=0

+ σ 2/2 · (u2 − 1)
∂3Q (p, σu)
∂(σu)2∂p

∣∣∣∣
σ=0
+ o(σ 2). (25)

Finally,we derive an approximation to the variance ofQ (P, σU)
conditional on P = p. Under Assumption 3,
var(Q (P, σU)|P = p) = var(Q (p, σU))

=

∫
(Q (p, σu)− p)2 fU(u)du.

Using (23) and (24), we get that this is equal to∫ (
σu ·

∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0
+ σ 2/2 · (u2 − 1)

×
∂2Q (p, σu)
∂(σu)2

∣∣∣∣
σ=0

)2
fU(u)du+ o(σ 2).

If we let multiples of σ 3 and σ 4 enter the remainder term, this
simplifies to∫ (

σu ·
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

)2
fU(u)du+ o(σ 2).

Under Normalization 1,
∫
u2 fU(u)du = 1, so

var(Q (P, σU)|P = p) = σ 2 ·
(
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

)2
+ o(σ 2).

The following lemma will be used in the proof of Proposition 1.
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Lemma 1. Under Assumptions 1–4 and Normalization 1,

∂E[Y |P = p]
∂p

= m(Q (p, 0))+ σ 2/2 ·

{
∂2m(Q (p, 0))
∂Q (p, 0)2

×

(
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

)2
+
∂m(Q (p, 0))
∂Q (p, 0)

·
∂2Q (p, σu)
∂(σu)2

∣∣∣∣
σ=0

}

+ σ 2 ·
∂m(Q (p, 0))
∂Q (p, 0)

·
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0
·
∂2Q (p, σu)
∂(σu) ∂p

∣∣∣∣
σ=0

+ o(σ 2).

Proof. Under Assumptions 1–4 and Normalization 1, evaluating
(9) at Q (P, σU) = Q (p, σu) and differentiating with respect to
Q (p, σu) yields, by Leibnitz’ rule,

∂E[Y |Q (P, σU) = Q (p, σu)]
∂Q (p, σu)

= m(Q (p, σu)). (26)

A second-order approximation in σ about σ = 0 gives

∂E[Y |Q (P, σU) = Q (p, σu)]
∂Q (p, σu)

= m(Q (p, 0))+ σu ·
∂m(Q (p, 0))
∂Q (p, 0)

·
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

+ (σu)2/2 ·

{
∂2m(Q (p, 0))
∂Q (p, 0)2

·

(
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

)2

+
∂m(Q (p, 0))
∂Q (p, 0)

·
∂2Q (p, σu)
∂(σu)2

∣∣∣∣
σ=0

}
+ o(σ 2). (27)

This will be used below.
Towards establishing the result, we have

∂E[Y |P = p]
∂p

=
∂E[E[Y |Q (P, σU)]|P = p]

∂p

=
∂E[E[Y |Q (p, σU)]]

∂p

=
∂
∫

E[Y |Q (P, σU) = Q (p, σu)] fU(u)du
∂p

=

∫
∂E[Y |Q (P, σU) = Q (p, σu)]

∂p
fU(u)du

=

∫
∂E[Y |Q (P, σU) = Q (p, σu)]

∂Q (p, σu)
·
∂Q (p, σu)

∂p
fU(u)du,

where the first equality is by iterated expectations, the second fol-
lows fromAssumption 3, the fourth from the integrandbeing finite,
which is implied by Assumption 2, and the fifth applies the chain
rule.
Together with (25) and (27), this yields

∂E[Y |P = p]
∂p

=

∫ {
m(Q (p, 0))+ σu ·

∂m(Q (p, 0))
∂Q (p, 0)

·
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

+ (σu)2/2 ·

{
∂2m(Q (p, 0))
∂Q (p, 0)2

·

(
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

)2
+
∂m(Q (p, 0))
∂Q (p, 0)

·
∂2Q (p, σu)
∂(σu)2

∣∣∣∣
σ=0

}}

×

{
1+ σu ·

∂2Q (p, σu)
∂(σu) ∂p

∣∣∣∣
σ=0
+ σ 2/2 · (u2 − 1)
×
∂3Q (p, σu)
∂(σu)2 ∂p

∣∣∣∣
σ=0

}
fU(u)du+ o(σ 2).

By expanding and including multiples of σ 3 and σ 4 in the remain-
der term, we get that this is equal to∫ {

m(Q (p, 0))+ σu ·
∂m(Q (p, 0))
∂Q (p, 0)

·
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

+ (σu)2/2 ·

{
∂2m(Q (p, 0))
∂Q (p, 0)2

·

(
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

)2
+
∂m(Q (p, 0))
∂Q (p, 0)

·
∂2Q (p, σu)
∂(σu)2

∣∣∣∣
σ=0

}

+ σu ·m(Q (p, 0)) ·
∂2Q (p, σu)
∂(σu) ∂p

∣∣∣∣
σ=0
+ (σu)2 ·

∂m(Q (p, 0))
∂Q (p, 0)

×
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0
·
∂2Q (p, σu)
∂(σu) ∂p

∣∣∣∣
σ=0

+ σ 2/2 · (u2 − 1) ·m(Q (p, 0)) ·
∂3Q (p, σu)
∂(σu)2 ∂p

∣∣∣∣
σ=0

}
× fU(u)du+ o(σ 2).

By Normalization 1,
∫
u fU(u)du = 0 and

∫
u2 fU(u)du = 1, so the

result follows. �

A.1. Proof of Proposition 1

Proof. (23) implies that

m(p) = m
(
Q (p, 0)+ σ 2/2 ·

∂2Q (p, σu)
∂(σu)2

∣∣∣∣
σ=0

)
+ o(σ 2).

Note that on the right-hand side the first derivative of the
argument of m evaluated at σ = 0 is zero. Hence, a second-order
Taylor series expansion in σ about σ = 0 yields

m(p) = m(Q (p, 0))+ σ 2/2 ·
∂m(Q (p, 0))
∂Q (p, 0)

·
∂2Q (p, σu)
∂(σu)2

∣∣∣∣
σ=0

+ o(σ 2). (28)

Moreover, (12) implies that

∂σ 2p

∂p
= 2σ 2 ·

∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0
·
∂2Q (p, σu)
∂(σu) ∂p

∣∣∣∣
σ=0

. (29)

From Lemma 1 and (28), we get

∂E[Y |P = p]
∂p

−m(p)

= σ 2/2 ·
∂2m(Q (p, 0))
∂Q (p, 0)2

·

(
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

)2
+ σ 2 ·

∂m(Q (p, 0))
∂Q (p, 0)

·
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0
·
∂2Q (p, σu)
∂(σu) ∂p

∣∣∣∣
σ=0

+ o(σ 2).

We get the result using (2), (12) and (29). �

A.2. Proof of Corollary 1.1

Proof. By (5) and (13),

BLATE∗D (pl, ph) =
1

ph − pl

∫ ph

pl

1
2
· σ 2p ·

∂2m(p)
∂p2
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+
1
2
·
∂σ 2p

∂p
·
∂m(p)
∂p

dp+ o(σ 2)

=
1

ph − pl

[
1
2
· σ 2p ·

∂m(p)
∂p

]ph
p=pl

.

This yields the result. �

A.3. Proof of Proposition 2

Proof. We have

E[Y |P = p] = E
[

E[Y |Q (P, σU)]| P = p
]

= E
[
E[Y |Q (p, σU)]

]
=

∫
E[Y |Q (P, σU) = Q (p, σu)] fU(u)du,

where the first equality is by iterated expectations and the
second follows from Assumption 3. A second-order Taylor series
expansion in σ about σ = 0, using (26), yields that this is equal to∫ {

E[Y |Q (P, σU) = Q (p, 0)] + σu ·m(Q (p, 0)) ·
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

+ (σu)2/2 ·

{
m(Q (p, 0)) ·

∂2Q (p, σu)
∂(σu)2

∣∣∣∣
σ=0

+
∂m(Q (p, 0))
∂Q (p, 0)

·

(
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

)2}}
fU (u)du+ o(σ 2).

By Normalization 1,
∫
u fU(u)du = 0 and

∫
u2 fU(u)du = 1, so

E[Y |P = p] = E[Y |Q (P, σU) = Q (p, 0)]

+ σ 2/2 ·

{
m(Q (p, 0)) ·

∂2Q (p, σu)
∂(σu)2

∣∣∣∣
σ=0

+
∂m(Q (p, 0))
∂Q (p, 0)

·

(
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

)2}
+ o(σ 2). (30)

This will be used below.
Under Assumption 3 and Normalization 1, we get (23), and

hence

E[Y |Q (p, σU) = p] = E
[
Y |Q (P, σU) = Q (p, 0)

+ σ 2/2 ·
∂2Q (p, σu)
∂(σu)2

∣∣∣∣
σ=0

]
+ o(σ 2).

A second-order Taylor series expansion thereof in σ about σ = 0,
noting that the first derivative of the conditional expectation with
respect to σ evaluated at σ = 0 is equal to zero, yields

E[Y |Q (P, σU) = p] = E[Y |Q (P, σU) = Q (p, 0)]

+ σ 2/2 ·m(Q (p, 0)) ·
∂2Q (p, σu)
∂(σu)2

∣∣∣∣
σ=0
+ o(σ 2). (31)

Using (30) and (31), we get

E[Y |Q (P, σU) = p] − E[Y |P = p]

= σ 2/2 ·
∂m(Q (p, 0))
∂Q (p, 0)

·

(
∂Q (p, σu)
∂(σu)

∣∣∣∣
σ=0

)2
.

Combining this with (2), (8) and (12) yields the result. �
Appendix B. Properties of the generalized selection model

In this appendix we discuss the properties of the selection
model

Q = 1{Q (P, σU) ≥ V }

inmore detail. Importantly, under Assumptions 1 and 3, it imposes
a particular form of index sufficiency:

Pr(Y ∈ A|Z,D) = Pr(Y ∈ A|P(Z),D)

for any A. Index sufficiency means that the instruments affect the
treatment decision and the outcome only though P(Z). It holds
trivially if Z is a scalar and P(Z) is one to one, like in Imbens and
Angrist (1994), where the instrument is binary. Index sufficiency
is in principle testable as soon as var(Q (p, σU)) can be estimated
because then it is possible to test whether

var(Q (P(za), σU)) = var(Q (P(zb), σU))

for any two za and zb such that P(za) = P(zb).
We now show that many selection models that satisfy index

sufficiency, i.e. are of the form D = 1{µD(P,UD) ≥ Ṽ }, with possi-
bly vector valued UD, have a representation D = 1{Q (P, σU) ≥ V }
with a scalar U .

Proposition 4 (Representation). Any selection model that is of the
form D = 1{µD(P,UD) ≥ Ṽ }with a possibly vector valued UD has an
equivalent representation D = 1{Q (P(Z), σU) ≥ V }with a scalar U
provided that (i) Ṽ is continuously distributed, (ii) P is independent
of Ṽ , and (iii) UD is continuously distributed independent of P and Ṽ .
Moreover, Assumptions 1, 2(ii), 3, and Normalization 1 hold for this
equivalent representation.

Proof. By (i), FṼ is strictly increasing, and hence µD(p,UD) ≥ Ṽ is
equivalent to FṼ (µD(p,UD)) ≥ V , where V is uniformly distributed
on [0, 1]. Write µ̃D(p,UD) ≡ FṼ (µD(p,UD)).
Define

Ũ ≡ Fµ̃D(p,UD)(µ̃D(p,UD)).

By (i) and (iii), the distribution of µ̃D(p,UD) is continuous, so
Ũ is uniformly distributed independent of P . Moreover, Fµ̃D(p,UD)
is strictly increasing and hence invertible. Denoting the inverse
function of Fµ̃D(p,UD) by F

−1
µ̃D(p,UD)

, we have

µ̃D(p,UD) = F−1µ̃D(p,UD)(Ũ).

Denote the right-hand side of this equation by Q̃ (p, Ũ). This yields

µ̃D(p,UD) = Q̃ (p, Ũ), (32)

which will be used below. Pick a strictly increasing distribution
function FU . Denoting the inverse function of FU by F−1U , we can
define

U ≡ F−1U (Ũ) = F−1U
(
Fµ̃D(p,UD)(µ̃D(p,UD))

)
.

Notice that, by construction, Ũ = FU(U) and hence, by (32),

µ̃D(p,UD) = Q̃ (p, Ũ) = Q̃ (p, FU(U)).

From this we can see that there exists a function Q , a random
variable U and a scalar σ ≥ 0 such that Normalization 1 holds,

Q̃ (p, FU(U)) = Q (p, σU),

and hence

µ̃D(p,UD) = Q (p, σU).

It follows that the models D = 1{µD(P,UD) ≥ Ṽ } and D =
1{Q (P(Z), σU) ≥ V } are observationally equivalent. �
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A direct implication of Proposition 4 is that, once we have
estimated a selectionmodel that is of the formD = 1{µD(P,UD) ≥
Ṽ } and satisfies index sufficiency, we can construct

var(Q (p, σU)) = var(FṼ (µ̃(p,UD))). (33)

The followingproposition shows inwhich sense it ismeaningful
to think of a deviation from var(Q (p, σU)) = 0 as a deviation from
monotonicity.

Proposition 5 (Monotonicity). Under the assumptions of Proposi-
tion 4, any selection model that is of the form D = 1{µD(P,UD) ≥ Ṽ }
has an equivalent representation D = 1{Q (P(Z), σU) ≥ V } with
σ = 0 and var(Q (p, σU)) = 0 if, and only if, monotonicity holds.

Proof. The ‘‘if’’ part follows from Vytlacil (2006). The ‘‘only
if’’ part holds because monotonicity can only be violated if
var(Q (p, σU)) > 0. A necessary condition for this is σ > 0. �

The proposition does not say that σ > 0 or var(Q (p, σU)) > 0
is sufficient for a violation of monotonicity. It could be that
Q (P, σU) is specified in a way such that monotonicity holds
but var(Q (p, σU)) > 0. Then, the results that are presented
in Section 4 continue to hold. That is, if the selection model is
specified to be

D = 1{Q a(P, σU) ≥ V a},

and var(Q a(p, σU)) > 0 then estimates ofE[Y1−Y0|V a = va] and
the other treatment parameters could be biased. This is becausewe
still have
∂E[Y |P = p]

∂p
6= E[Y1 − Y0|V a = p].

However, Proposition 5 implies that under monotonicity another
representation could be found such that35

D = 1{Q b(P, 0) ≥ V b}

and as shown in Section 2.2.1 we have
∂E[Y |P = p]

∂p
= E[Y1 − Y0|V b = p].

E[Y1 − Y0|V b = p] is a meaningfully redefined parameter of
interest. Such a redefinition is only possible under monotonicity
(Heckman and Vytlacil, 2005, p. 718).

Appendix C. Further details on the application

In Section 4, we use the random coefficient Logit model

D = 1{Z γ̃ ≥ Ṽ } (34)

to estimate var(Q (p, σU)). Ṽ follows the logistic distribution, so

Pr(D = 1|Z, γ̃ ) =
exp(Z γ̃ )
1+ exp(Z γ̃ )

.

This implies

Pr(D = 1|Z; γ ,Σ) =
∫ (

exp(Z γ̃ )
1+ exp(Z γ̃ )

)
φ(γ̃ |γ ,Σ)dγ̃ , (35)

where φ(γ̃ |γ ,Σ) is the joint normal density with mean γ and
variance–covariance matrix Σ evaluated at γ̃ . In the estimation
step, (35) is simulated for a given set of parameters (γ ,Σ) and

35 Under monotonicity we have that ∂Q a(p, σu)/∂p is positive for all u in the
support of U . But then, Q a is invertible in its first argument and we can rewrite
the selection model as D = 1{P(Z) ≥ Q a,−1(V , σU)}, where Q a,−1 is the inverse of
Q a with respect to its first argument.
given the observed values zi of Z , where i indexes individuals. Then
the simulated log likelihood for the sample is maximized over the
choice of those parameters.36
The results in this paper are derived under the assumption of

index sufficiency. Index sufficiency means that the instruments
affect the outcome only through their impact on the treatment
probability. It holds within a state because the probability to com-
plete more than 9 years of education is increasing in the quarter
of birth. Proposition 4 and (33) then show how we can simulate
var(Q (p, σU)). For this we use

µD(p, γ̃ ) =
∫
z∈Zp

exp(zγ̃ )
1+ exp(zγ̃ )

fz(z)dz,

whereUD = γ̃ andZp is the set of values of Z such that P(Z) = p.37
Finally, we provides a testable sufficient condition for index

sufficiency for the more general case when the instrument is not
a scalar and Zp has more than one element.

Proposition 6. Suppose that the selection model is given by (34),
that Z, γ̃ and Ṽ are mutually independent, and that Z and γ̃ are
independent of (Y0, Y1). Then, index sufficiency holds if, for any two
values za and zb of Z such that P(za) = P(zb) = p, we have that the
distribution of zaγ̃ is equal to the distribution of zbγ̃ .

Proof. DefineW a ≡ zaγ̃ andW b ≡ zbγ̃ . By the assumption that
the random coefficients are independent of Y1 and Ṽ we have that
W a and W b are independent of Y1 and Ṽ , respectively. Therefore,
index sufficiency,

Pr(Y0 ∈ A|P = p,D = 0) = Pr(Y0 ∈ A|W a < Ṽ )

= Pr(Y0 ∈ A|W b < Ṽ )

and

Pr(Y1 ∈ A|P = p,D = 1) = Pr(Y1 ∈ A|W a ≥ Ṽ )

= Pr(Y1 ∈ A|W b ≥ Ṽ ),

holds ifW a andW b are equal in distribution. �
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