
  

 

 

Tilburg University

Learning in consumer choice

Woertman, W.H.

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Woertman, W. H. (2008). Learning in consumer choice. [Doctoral Thesis, Tilburg University]. CentER, Center for
Economic Research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 26. Sep. 2023

https://research.tilburguniversity.edu/en/publications/c467376b-ae4e-49ad-a336-7276a10c6e55


Learning in Consumer Choice

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Universiteit van Tilburg, op gezag van de
rector magni�cus, prof. dr. F.A. van der Duyn Schouten, in het openbaar te verdedigen
ten overstaan van een door het college voor promoties aangewezen commissie in de aula
van de Universiteit op woensdag 16 januari 2008 om 14.15 uur door

WILLEM HENDRIKWOERTMAN,

geboren op 18 juli 1976 te Gorssel.



PROMOTOR: Prof. Dr. J.J.M. Potters

COPROMOTOR: Dr. M.H. ten Raa



"The way that can be followed
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Preface
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1 Introduction

This dissertation is a mainly theoretical work. The questions that are raised in this
work are fundamental questions about economic theorizing and modelling. Rather
than focusing on the models that are erected from the building blocks that are used in
economic theory (or on these models�predictions), this dissertation will focus on some
of these building blocks themselves.
This dissertation will consider two fundamental parts of standard economic theory,

i.e. two of the main building blocks that are used in economic modelling. This thesis will
critically evaluate these standard building blocks and draw attention to some of their
drawbacks. For this critical evaluation, we will again take a mainly conceptual point
of view, rather than an empirical point of view. Then, this dissertation will attempt to
provide an alternative building block that could again be used to build models from,
and that does not (or not so much) su¤er from these conceptual di¢ culties. Finally, this
work will investigate the precise theoretical relations that exist between the standard
and the alternative building blocks.

The two fundamental parts of standard economic theory, or the building blocks of
economic modelling that were referred to, concern the models of consumer choice as
used in neoclassical microeconomics, and the models of consumption/savings as used
in macroeconomics.
The neoclassical model of consumer choice will be familiar to almost any economist,

as it typically plays a very prominent role in microeconomics courses and in micro-
economics textbooks (see e.g. Luenberger [28], Mas-Colell, Whinston and Green [30]).
The second building block, the class of consumption/savings models, is actually a more
speci�c case of the �rst. Still, in macroeconomics this more speci�c class of models
has a special standing of its own, as it is one of the fundamental building blocks for
macroeconomic modelling (see e.g. Romer [37]). This is why the two are mentioned
separately here. Throughout this work we will present (sub)sections dedicated to con-
sumption/savings models, that may be seen to function as more speci�c examples of
the ideas that are developed in the main text that is set in the more general context of
models of consumer choice.
Both models of consumer choice and models of consumption/savings decisions de-

scribe the choice problem for a consumer who has to make a decision as to how to
spend his available resources (i.e. income) over all of the consumption opportunities
that he will be confronted with presently and in the future. Both of these classes of
models are based on viewing an economic decision-maker (or a consumer) as being ra-
tional, or as what is sometimes called a �homo economicus�; standard economic theory
assumes that a decision-maker, when confronted with a decision problem, will exten-
sively consider all the options he can choose from (a¤ordable consumption patterns or
consumption plans), and all the possible consequences that may result from each of
these options, and that he will �nally choose that option that he thinks will give him

1
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his most preferred consequences. Thus, in this standard approach the objects of choice
that a consumer is assumed to consider and choose from, are complete speci�cations of
lifetime consumption.

The alternative building block that will be introduced in this dissertation attempts
to provide a learning framework for consumer choice (and with it also for models of
consumption/savings decisions). Now, why would we want to set up such a new learning
framework? There are a number of reasons why this might be interesting.
Firstly, such a new framework might be interesting for its own sake, as this alterna-

tive approach may provide a new building block, that could be included in a modeller�s
toolbox, and from which (in principle) new types of models could again be constructed.
While learning models have found their way into numerous areas of economics, such
as game theory and macroeconomic dynamics, the same can hardly be said for the
areas of consumer choice and consumption/savings models.1 One reason for this may
be that it is not at all straightforward how such a learning model of consumer choice
should be set up, as some conceptual di¢ culties arise. Learning is usually modelled in
settings where the same economic problem or situation is encountered repeatedly. For
instance, in learning models in game theory it is typically assumed that the same game
is repeatedly played. Then after every stage, the corresponding game is over, and the
stage�s payo¤s are fully known. In principle, the same could be done in the context
of consumer choice. We could assume that a consumer would go through a sequence
of lifetimes, where in each of these lifetimes consumption decisions would have to be
made, and where a consumer could learn from his experiences in previous lives. Of
course, although such an approach may formally not be inconsistent, a model like that
would probably not seem very convincing, as we only seem to live once.2 Therefore, for
learning consumption, what would really be needed is a framework in which learning
takes place within a single decision problem or a lifetime. The di¢ culty then, is that
choices in any period do a¤ect the situation in all subsequent periods (how much is
spent now will in�uence what will be a¤ordable in all later periods), so that all the
e¤ects of a certain decision in a certain period will not become fully known until the
very end of the lifetime. Our learning model should deal with this in one way or an-
other. Thus, there are a few tough nuts to crack here, and from a conceptual point
of view the problem of how to construct a learning model of consumer choice may by
itself already prove to be quite interesting and rich. And although the idea of trying
to model learning in consumer choice settings is not completely new3, the approach
towards learning consumption (and towards dealing with the above conceptual di¢ cul-
ties) that will be presented here is very di¤erent from other approaches and, to the best
of our knowledge, it is new.
Secondly, in later chapters we will draw attention to some drawbacks associated

1A survey of related work is given in chapter 3.
2Even if reincarnation does exist, this type of learning would only work if consumers would remember

the consumption decisions and their consequences from previous lives.
3We will review existing theoretical work on learning in consumption/savings models in section 3.6.
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1. INTRODUCTION

with the standard approach to consumer choice. There we will mainly focus on the very
stringent conditions that these models pose on the cognitive abilities that a decision-
maker should have in order to behave as these models suggest. Most notably, these
cognitive abilities include being able to imagine everything that can happen in the
(economic) future, and being able to deal with all this information about the future
such as to arrive at an optimal choice. In any realistic description of a decision regarding
an individual�s (let alone a more complex household�s) lifetime consumption pattern,
the complexity of the choice problem faced is huge, both in terms of all the information
that would be relevant for making such a decision, and in terms of the computational
aspects of dealing with all this information. Thus there may be some tension between
what economic models assume people to do, and what seems reasonable to expect them
to be able to do.
Our new framework does not (as much) su¤er from these drawbacks. In a learning

model, a decision-maker does not consider and decide on complete lifetime consumption
plans at once. In fact, learning seems to imply that there are multiple points in time in
which choices will have to be made. Therefore, in each of these periods such a learning
individual would only have to make consumption decisions regarding a limited time
interval. This would require less ability to perform extensive surveys of what is yet to
come, and correspondingly, a smaller computational burden.
A third reason, which is related to the second, is that we may wonder what links

would exist between a learning framework and the standard framework. For instance,
we could wonder whether making optimal consumption choices (as in the standard
framework) could be learned. Milton Friedman [15] defended the assumptions of opti-
mality in the context of consumption decisions (and thus here the standard framework)
by arguing that agents could learn roughly optimal behaviour by a process of trial and
error. Apparently Friedman felt that the standard framework needed some defending,
quite possibly (partly) because of the aforementioned conceptual di¢ culties. More gen-
erally, many theorists feel that theoretical constructs such as economic equilibria (such
as Nash equilibria), and similarly predicted behaviour resulting from optimization mod-
els, should be regarded as steady states of some dynamic system, rather than as being
likely to come by in a one-shot situation. Thus, these constructs are judged to be more
plausible when viewed as resulting outcomes in a dynamic setting (in which some form
of learning may occur), rather than in a static one-shot setting (see e.g. Lucas [27]). In
this dissertation we will formally provide such a dynamic setting where learning does
occur, and we will extensively investigate whether, and if so when, we can establish
that Friedman�s claim, that roughly optimal consumption behaviour could be learned,
will hold.

The alternative learning framework that will be presented here will also be called the
�ad hoc framework�. Obviously, as this new ad hoc framework tries to model learning
about consumption, it starts from the idea that a decision-maker would cut up an all-
encompassing decision of lifetime consumption into a series of subdecisions. That is,
here we will model a consumer who would cut up his one lifetime into a number of

3
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periods, and who would try to learn from what he did in previous periods. Whereas in
the standard model complete consumption horizons are decided upon at once, here it
is assumed that in any such subproblem only a decision on present consumption and
present savings is required. Then, in any such subproblem, decisions are supposed to
be made much in the same vein as the standard microeconomic framework supposes the
whole problem is dealt with: by means of (ad hoc) preference relations or (ad hoc) utility
functions. However, now these ad hoc preference relations and ad hoc utility functions
will not be de�ned on complete consumption horizons, but rather on combinations of
present consumption and present savings. In any such subproblem decision-making is
modelled as allocating the budget that is available in that particular subproblem over
present consumption and present savings, such as to maximize ad hoc preferences.
However, these ad hoc preferences would have a somewhat di¤erent status than

preferences in the standard framework. In the standard framework preferences are ab-
solute, they are given and can never be wrong. In the ad hoc framework, preferences,
and especially the implicit valuations for savings relative to present consumption, are
not absolute and they can be viewed as guesses or as estimates. Then, some esti-
mates may be better than others, and here the idea is that learning may improve these
estimates over time. Thus, in the ad hoc framework we assume that essentially the
valuations for money are learned over time.
The idea behind how this learning would take place is that if at a certain point

in time a consumer would regret having spent too much in the recent past, he would
adjust his valuations for money such as to value money more. And conversely, if at a
certain point in time the consumer thinks that he could have spent more in the recent
past, then adjusting would lead to lower valuations for money. A di¢ culty that arises
here is how such retrospective evaluations of past expenditures should be established.

In a sense the present work is still somewhat sketchy. We do not want to present the
new alternative framework as having a very de�nitive quality. Rather, this work should
be seen as a theoretical exploration into largely uncharted territory. In setting up the
new framework, many modelling choices have to be made, each of which may have
considerable impact on the resulting framework and its implications. And although in
instances where such modelling choices are needed we will try to justify or motivate the
choices that we do end up making, there might of course be other ways to proceed that
could also be fruitful. In the �nal chapter we will review some instances where certain
modelling choices were made, and where certain alternative modelling choices could
also have been made, and we will comment on how the framework and its�implications
may change as a result of these alternative choices. Consequently, at this point we
should probably still be careful to draw very �rm conclusions about economic reality
from this research.

Here we will present some notational conventions that will be used throughout this
work. The set of strictly positive integers f1; 2; 3; :::g is denoted by N, the set of non-
negative integers f0; 1; 2; 3; :::g is denoted by N0, and R denotes the set of rational

4



1. INTRODUCTION

numbers. The set R [ f1g is here called the extended real numbers, and denoted
by R, and similarly N = N [ f1g, and N0 = N0 [ f1g. For any n 2 N, we denote
the n-dimensional Euclidian space by Rn. For each x 2 Rn and each 1 � i � n (or
1 � i < n if n = 1), we will write xi 2 R to denote the i�th component of bundle
x. The relation ���is de�ned on the set Rn to mean that for all x; y 2 Rn it holds
that x � y if in all dimensions i it holds that the corresponding components satisfy
xi � yi. The relation > is de�ned similarly on Rn. By Rn+ we denote the non-negative
Euclidian n-space fx 2 Rn : x � 0g, and by R++ we denote the strictly positive
Euclidian n-space fx 2 Rn : x > 0g, where 0 simply denotes an n-dimensional vector
of zeros. Consequently, R+ denotes the non-negative real numbers, R++ denotes the
strictly positive real numbers, and R+ = R+ [ f1g.
Throughout this work we will refer to a consumer as a �he�, and similarly we will

refer to �his�preferences or �his�choices. Of course the use of �he�and �his�could equally
well be replaced by �she�or �her�.

This thesis consists of 10 chapters. Chapter 2 will present the preliminaries. This
chapter will present the standard building blocks of the frameworks for consumer choice
and for consumption/savings models. Also, this chapter will explicitly model time
within the standard framework for consumer choice, and it will specify Expected Utility
Theory, both in a general form and more speci�cally in the settings of consumer choice
and consumption/savings. Also, this chapter will lay the formal groundwork that will be
drawn from in later chapters. In chapter 3 the standard framework will be discussed and
criticized, and the new, alternative approach towards modelling consumption behaviour
that is chosen here, will be motivated. In chapter 4 a �rst component of the new ad
hoc framework is introduced. This chapter will consider a single period in isolation,
where it is modelled how in any such period choices would be made, namely by means
of ad hoc preference relations and ad hoc utility functions. Chapter 5 investigates
the links that exist between the concepts of ad hoc preference relations (and utility
functions) as de�ned in the ad hoc framework, and total preference relations (and utility
functions) as de�ned on complete consumption horizons in the standard framework.
This chapter shows that the standard framework is in fact a special case of the ad hoc
framework, by de�ning a speci�c way in which ad hoc preferences could be derived
from total preferences, namely as summarizing total preferences consistently. Chapter
6 completes the ad hoc framework. First it provides a second component of the new
ad hoc framework. It considers two subsequent periods, and it models how the ad
hoc preferences in two such subsequent periods would be related, namely by means of a
learning procedure by which valuations for savings from the previous period are adjusted
into new valuations. These adjustments would depend on retrospective evaluations
of past expenditures. Finally, this chapter completes the ad hoc framework, putting
together all the modelling components, by considering lifetimes and formally modelling
a learning algorithm. Chapters 7, 8 and 9 investigate Friedman�s assertion that optimal
behaviour could be learned. Chapter 7 considers convergence of sequences of ad hoc
preferences, and it considers convergence towards optimality. This chapter shows that,
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given the speci�c adjustment procedure, ad hoc preferences will always converge, and it
identi�es conditions under which convergence towards optimality will occur. Chapters
8 and 9 are completely set in a consumption/savings setting, and these chapters show
that under some (rather speci�c) conditions convergence towards optimality will occur
in these settings. Chapter 8 deals with consumption/savings models under certainty,
chapter 9 deals with expected utility models of consumption/savings decisions. The
concluding chapter 10 looks back at previous chapters, and forward towards possible
extensions and new research.
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2 The standard framework for consumer choice

This chapter lays the formal groundwork for this thesis. The standard framework for
consumer choice from microeconomics, and the standard framework for modelling con-
sumption/savings decisions from macroeconomics are presented. There are a number
of reasons why these standard frameworks are presented here. Firstly, the framework of
learning consumer behaviour that is introduced in this dissertation will be contrasted
with these standard static frameworks. Secondly, the standard frameworks will serve
as a useful benchmark. And thirdly, many of the concepts and methods used in the
standard framework will also be employed in the new, learning framework (although
often in somewhat di¤erent ways).
In the �rst three sections the standard framework for consumer choice from micro-

economics is presented. We consecutively present the objects from which this framework
is constructed: preference relations, utility functions and basic consumer problems.
In the �fth section we will consider the standard framework for modelling consump-

tion/savings decisions frommacroeconomics, and the methods of dynamic programming
that are very convenient for solving models in this speci�c class of models. The fourth
section, then, tries to bridge the gap between the two frameworks, and establishes that,
and in exactly what way, the second is actually a more speci�c case of the �rst.
Finally, in the sixth section choice under uncertainty is introduced. First the objects

with which uncertainty is de�ned are presented in a very general and abstract way, after
which they will be speci�cally interpreted in both standard frameworks.

2.1 Preference relations
The starting point in the formal models that accompany these analyses of consumer
choice, are the elements of choice for the consumer. These objects of choice are called
commodity bundles.

De�nition 2.1.1 A commodity bundle is an element of Rn+, for n 2 N.

Such a commodity bundle is an n-dimensional vector of non-negative amounts, with
n 2 N, and will typically be denoted by x 2 Rn+. Here n is the total number of
commodities that are (or will become) available, a commodity bundle can be thought
of as a speci�cation of the amounts of all available goods that a consumer owns or
consumes. The set of all possible commodity bundles is called the commodity space.

De�nition 2.1.2 A commodity space is a set that consists of all commodity bundles.

Typically, a commodity space will be denoted by X = Rn+.
The consumer can choose between elements from the set X. The set of all com-

modities may also be interpreted to include commodities that will become available at
di¤erent points in time, and an identical good, but available at di¤erent points in time,
may be seen as di¤erent commodities.

7
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In order to model how our consumer will choose, he is assumed to have clear, stable
preferences over elements in X. That is, he can compare pairs of elements from the
commodity space and judge which element (commodity bundle) he prefers to own or
consume. Formally, these assumptions are represented by the existence of a preference
relation.

De�nition 2.1.3 A preference relation on a set X is a binary relation on X, that
satis�es completeness and transitivity.

Such a preference relation will typically be denoted by %. Before the properties
of completeness and transitivity are stated, we �rst take a look at the meaning of the
concept of a binary relation.
A binary relation % is a relation between ordered pairs of elements (x; x0), with

x; x0 2 X (ordered means that (x; x0) is not the same as (x0; x)). This means that if
the elements in such a pair satisfy the binary relation %, then they are related in some
way, and we write x % x0. Thus, each pair of elements may or may not satisfy this
relation. The interpretation of such a relation % is as follows: if indeed the ordered pair
(x; x0), with x; x0 2 X, satis�es the relation x % x0, then we will say that x is preferred
to x0, hence the name preference relation. Note, however, that such preferences should
be interpreted in the weak sense of "at least as good as" (x % x0 and x0 % x is not
impossible).
It is usual to extend the notation somewhat. We also write x0 - x to mean x % x0,

and both notations may be interchanged. Furthermore, we write x � x0 and say that
x is strictly preferred to x0 if x % x0 holds, and if x0 % x does not hold. Similarly, we
write x � x0, and say that x and x0 are considered equivalent, or that the consumer is
indi¤erent between x and x0, if both x % x0 and x0 % x hold.
As we see in the de�nition, in order to qualify as a preference relation in the usual,

microeconomic sense, the binary relation % must be assumed to satisfy the following
properties.

De�nition 2.1.4 A binary relation % on a set X is called complete if for all pairs of
elements x; x0 2 X we have x % x0 or x0 % x (or both).

De�nition 2.1.5 A binary relation % on a setX is called transitive if for all x; x0; x00 2
X we have that x % x0 and x0 % x00 also implies that x % x00.

The consumer was already assumed to be able to state a preference between some
pairs of elements, and the completeness axiom now ensures that he can in fact do this
for all pairs of elements. Thus it is assumed that for each pair of elements he can express
whether he prefers the one or the other, or both (then he is indi¤erent, he �nds them
equally agreeable), and it cannot happen that the consumer is unable to compare the
two.
The property of transitivity is related to the consistency and stability of preferences,

it says that a combination of di¤erent preference statements always yields an ordering

8
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on the underlying set that is consistent. So the transitivity property makes sure that
preference relations do not yield �cycles�of preferences, where we would have elements
x; x0; x00 2 X, with x � x0, x0 � x00, and x00 � x.
Another important assumption that a preference relation may satisfy is listed below.

De�nition 2.1.6 A preference relation % on a set X4 is called continuous if for all
x0 2 X the sets fx 2 X : x % x0g and fx 2 X : x0 % xg are closed in X.

In what follows, preference relations will usually be de�ned on some space X = Rn+,
and we will simply assume that the Euclidian topology on Rn+ is used. In the instances
where we have preference relations that are not de�ned on some multi-dimensional
Euclidian space, we will come back to what topology is used.
The property of continuity essentially says that if a �rst element is strictly preferred

to a second one, and we have a third element that is su¢ ciently close to the �rst, then
the third will also be strictly preferred to the second. This axiom is a more technical
assumption that enables us to use a much more convenient type of mathematics.
Other properties that a preference relation may or may not have are de�ned next.

De�nition 2.1.7 For a preference relation % on the space X = Rn+ (with n 2 N), the
commodity j 2 N, j � n is called weakly good if for every x 2 X, and for every
� 2 R+, it holds that x + �1j % x. Here 1j 2 X denotes the vector with the j�th
component equal to one, and all other components equal to zero.

De�nition 2.1.8 A preference relation % on the space X = Rn+ (with n 2 N), is such
that the commodity j 2 N, j � n is called strongly good if for every x 2 X, and for
every � 2 R+, it holds that x+ �1j � x.

This property says that if, for % on the set X = Rn+, j is a good commodity if more
of this commodity is always preferred to less.

2.2 Utility functions
Instead of using preference relations in economic analyses, for mathematical convenience
these preferences are usually represented by means of utility functions.

De�nition 2.2.1 A utility function u (:) is a function mapping a set X into the real
numbers R. Moreover, given a preference relation % on X, we say that the utility
function u (:) represents the preference relation %, if for all x; x0 2 X it holds that
u(x) � u(x0) if and only if x % x0.

Such a utility function is typically denoted by u : X ! R, and by u(X) :=
f�u 2 Rj9x 2 X : u(x) = �ug we will denote the range of u(x) as x varies over X.
A utility function expresses preferences in the sense that it gives for each element

x 2 X a real number u(x) that represents the utility that the consumer derives (or

4That is endowed with some topology.
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thinks he will derive) from the element. So the consumer prefers one element to another
if the one element will give a higher utility than the other.
The following theorem speci�es when it is formally justi�ed to use utility functions

instead of preference relations.

Theorem 2.2.1 If a preference relation % on the set X5 is continuous, then it can be
represented by a continuous utility function u : X ! R.

For a proof, see Rader [36].6

One feature of utility functions that follows immediately is that if the utility function
u(:) represents a consumer�s preferences, and if f : u(X) ! R is a strictly increasing
function, then we can see that f(u(:)) is also a utility function that represents the
consumer�s preferences. This implies that there is no cardinal meaning to the numbers
u(x) and u(x0), only an ordinal meaning. That is, only statements of the form u(x) >
u(x0), u(x) = u(x0), or u(x) < u(x0) are really meaningful, and essentially only the
sign of u(x)� u(x0) is informative, and not its magnitude. Some properties that utility
functions may or may not satisfy are now listed.

De�nition 2.2.2 A utility function u(:) on some space X = Rn+ (with n 2 N) is
called strongly monotonic if for all x; x0 2 X with x0 � x and x0 6= x implies that
u(x0) > u(x).

De�nition 2.2.3 A utility function u(:) on some space X = Rn+ (with n 2 N) is called
quasi-concave if for all �u 2 R and all x; x0 2 X, with u(x) � �u and u(x0) � �u it holds
that u(�x+ (1� �)x0) � �u, for all 0 < � < 1.

De�nition 2.2.4 A utility function u(:) on some space X = Rn+ (with n 2 N) is called
strongly quasi-concave if for all �u 2 R and all x; x0 2 X, that satisfy x 6= x0, u(x) � x
and u(x0) � x, it holds that u(�x+ (1� �)x0) > x, for all 0 < � < 1.

The strong monotonicity assumption says that no matter what someone owns, get-
ting an additional amount of some of the commodities is always strictly preferred, so
more is better. The two quasi-concavity assumptions essentially say that mixing com-
modities is never bad, or even good. That is, quasi-concavity says that mixtures of
di¤erent goods are never worse than extreme outcomes where you get much of some
goods and little of other goods, and strong quasi-concavity means that mixtures are
always strictly preferred to extreme outcomes.

5That is endowed with some topology that has a countable base.
6This paper also shows that for every commodity space X = Rn+ (for n 2 N) there exists a topology

that has a countable base.
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2.3 The basic consumer problem
The model of consumer choice is completed by the assumption that our consumer be-
haves as if he is perfectly rational: if he is faced with a certain set of possible consump-
tion bundles that he can choose from, he will always choose a bundle that maximizes his
preferences. That is, the consumption bundle he will end up choosing will always be a
maximal element (if such a maximal element exists), i.e. an element that is preferred to
every other consumption bundle he could have alternatively chosen. In terms of utility
functions this assumption says that our consumer always chooses an element that max-
imizes utility over his choice set. So in maximizing utility the consumer is assumed to
incorporate di¤erences in all goods simultaneously (including all future commodities).
Because of these assumptions we call our consumer a rational utility maximizer.
Whereas preference statements were only needed for pairs of commodity bundles,

now we also implicitly assume the consumer to be able to make his preference judge-
ments over all commodity bundles at once.
In the context of consumer choice, such a set of alternatives that can be chosen from

would be a budget set.

De�nition 2.3.1 Given a commodity space X = Rn+, a price vector p is an element
of Rn+ n f0g, and a budget is a non-negative real number m 2 R+. A budget set is a
set of all commodity bundles x 2 X that are a¤ordable, given prices and income(s).

If for every available commodity our consumer knows the price that one unit of it
will cost, then the price vector is an n-dimensional vector of non-negative numbers,
where, for each 1 � i � n (or 1 � i < n if n =1), pi is the price for one unit of the i�th
commodity (note that we allow some but not all prices to equal zero). Given this price
vector the monetary value of a commodity bundle x 2 X is given by p � x =

P
i p
ixi.

Hence, if the consumer has a budget of m � 0 monetary units to spend, then the
corresponding budget set B of all of the commodity bundles that are a¤ordable given
prices p and income m can be denoted fx 2 X : p � x � mg.
Now we are ready to describe the basic consumer problem as maximizing utility

over the budget set.

De�nition 2.3.2 Given a utility function u : X ! R, and given a budget set B � X,
the basic consumer problem is given by:

max
x2B

u(x)

In addition to the aforementioned assumptions about consumers�knowledge of all
di¤erent commodities and about continuous preference relations, in using the above for-
mulation to model consumer choice, two more implicit assumptions are that consumers
know prices for all products (including all future commodities) and that they know the
(lifetime) income they will be able to spend.
Now, for a consumer with utility u(:) de�ned on the commodity space X, the so-

lution to this basic consumer problem gives rise to the following functions, for every
combination of prices p and budget m.

11
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De�nition 2.3.3 Given a utility function u : X ! R, prices p 2 Rn+nf0g and a budget
m � 0, the demand function x(p;m) is de�ned as:

x(p;m) := arg max
x2fx2X:p�x�mg

u(x)

if this is well-de�ned.

The demand function x(:; :) gives the commodity bundle that will solve the basic
consumer problem corresponding to prices p and income m.

De�nition 2.3.4 Given a utility function u : X ! R, prices p 2 Rn+nf0g and a budget
m � 0, the indirect utility function v(p;m) is de�ned as:

v(p;m) = sup
x2fx2X:p�x�mg

u(x)

The function v(:; :) gives the maximal level of utility attainable given prices p and
income m.
Note that if indeed x(:; :) is well-de�ned for p and m, that is if the function u does

assume a maximum on the set fx 2 X : p �x � mg, then we have v(p;m) = u(x(p;m)).

Now, if u(:) is a di¤erentiable function, and if x(p;m) 2 X is an internal solution to
this constrained maximization problem, then by the Lagrange method there will be a
Lagrange multiplier � � 0 such that x(p;m) is also an internal solution to the following
unconstrained maximization problem: maxx2X u(x) � �(p � x � m). The �rst order
conditions for this last maximization problem are: @u

@xi
= �pi;8i, and p � x � m = 0,

and consequently these conditions also de�ne the solution to our original problem. So
in this setting, we see that the quantities of the commodities that the consumer will
choose will be such that all marginal utilities are proportional to the corresponding
prices. This implies that for every commodity i the Lagrange multiplier will be equal
to the quotient of the marginal utility for this commodity and its price: � = @u

@xi
1
pi
for

all i 2 f1; 2; :::; ng. Therefore in an internal solution to the basic consumer problem
it holds that MRSij =

@u=@xi

@u=@xj
= pi

pj
for all i and j 2 f1; 2; :::; ng. So for any pair of

commodities, the marginal rate of substitution between these goods is equal to the
ratio of their prices. In a two dimensional case (n = 2) this equality of marginal rate of
substitution and price ratio re�ects the fact that the indi¤erence curve that the solution
point lies on fx 2 X : u(x) = v(p;m)g touches the budget line fx 2 X : p � x = mg
exactly in this solution point.
The above expressions also re�ect simultaneity in the maximization process. In

this situation, in determining how much of a good to buy, its bene�ts and costs are
compared to the bene�ts and costs of all other goods simultaneously.
From the above equations we also see that the Lagrange multiplier � plays a central

role in determining the optimal values for all the xi�s. Now using the envelope theorem
also gives us that @v

@m
(p;m) = �, that is, the Lagrange multiplier � equals the derivative
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of the indirect utility function with respect to m at the optimum. So apparently the
Lagrange multiplier equals the marginal utility of budget or money, and � = @u

@xi
1
pi
thus

shows us that the quotient of the marginal utility with respect to a commodity and its
price, must in an optimum be equal to the marginal utility of the budget m.

2.4 Modelling time
Thus far we have considered the standard framework for consumer choice from mi-
croeconomics. Later in this chapter we will consider the standard framework for con-
sumption/savings decisions as used in macroeconomics. We will also see that indeed
the second framework is a more speci�c example of the �rst, as stated in the introduc-
tory chapter. This section, then, tries to bridge the gap between the two frameworks,
thereby establishing precisely in what way the second framework is a special case of the
�rst.
While the generality of the above microeconomic framework is certainly one of its

strengths, it also seems clear that this framework is so general that it does not permit
many investigations apart from strictly theoretical ones. For empirical investigations
into consumer spending behaviour the above framework with an appropriately chosen
utility function could probably explain almost anything and therefore essentially not
much. Thus, to be used in empirical applications the framework will necessarily have
to be made much more speci�c. Therefore in order to bring consumer choice theory to
the data a lot more structure will have to be imposed. Also, from a theoretical point
of view, adding some structure to the model may greatly enhance tractability.
To motivate one of the directions in which the framework can be made more speci�c,

�rst it is worth noting that in the microeconomic framework as presented above, time
does not actually play any role. Although the commodities may not become available at
the same points in time, in that framework this is irrelevant because at the �rst moment
in time that a decision is required with respect to some of the commodities, all other
commodities that will become available later are supposed to be known. Therefore,
stating preferences regarding the �rst group of commodities should also be dependent
on considerations regarding the other commodities that will become available later.
Thus, a �rst way to impose more structure on the framework could be to explicitly

model time. In the context of consumer choice, adding a time structure may seem
quite natural, since consumption behaviour is stretched out over a lifetime, and time
considerations may seem important.
Therefore, to become more formal, here we introduce a discrete way to model time:

a discrete time variable t is introduced, that progresses through one of the two sets
f0; 1; 2; 3; :::; Tg, if we want to model a situation with a �nite number of periods, or
f0; 1; 2; 3; :::g, if we want to model an in�nite number of periods. Thus there is a �nite
or countably in�nite number of periods.
Thus far preferences were de�ned on the total commodity space X = Rn+, where

n 2 N denoted the total number of commodities that were assumed to become available
for purchasing at some point in time. Here we may also assume that the consumption
opportunities do not present themselves simultaneously, but rather according to the
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above discretization of time t. That is, at every stage t, by Xt = Rnt+ we denote the
space of all combinations of amounts of the commodities available at time t, where
nt 2 N denotes this total number of commodities available at stage t. So corresponding
to the subdivision of time, the total commodity space X is subdivided into T +1, or an
in�nite amount of distinct period-t commodity spaces Xt. And thus we would get that
the total commodity space X is now a Cartesian product of all period-t commodity
spaces

X = �tXt = Rn+;

with
P

t nt = n.
Similarly, commodity bundles are decomposed into period-t commodity bundles:

any x 2 X can be written as x = (x0; x1;x2;:::; xT ), or x = (x0; x1;x2;:::), where for any
t the period-t consumption bundle is denoted xt 2 Xt.

2.4.1 Independence of preference relations

Of course, preference relations are still only de�ned on the total commodity space
X. And although we will keep assuming this, we can now, along with the above
decompositions over time, add more structure to such preference relations. In order
to formally do this, some properties that a preference relation may satisfy, which are
related to the subdivision of the total commodity space into smaller sets, are introduced
in this subsection.
An important feature that a preference relation may or may not satisfy is that of

independence. To be able to de�ne this, �rst suppose we would for some reason like to
partition the set of all available commodities into two disjoint subsets of commodities.
Then, along with this partition of the set of available commodities, we can write the
overall commodity spaceX as the Cartesian product of the respective commodity spaces
X1 and X2 that correspond to the two subsets of commodities. Note that this situation
would simply correspond to a model as in the preceding subsection, with only two
periods.
And suppose that the preference relation % is de�ned on X = X1 � X2. Then

from the preference relation on X, a new preference relation on X1 can be derived,
by conditioning on a certain choice of an element x2 2 X2 (or vice versa a preference
relation on X2 can be derived, by conditioning on an element x1 2 X1).

De�nition 2.4.1 Given a preference relation % on X = X1�X2, and given an element
x2 2 X2, the conditional preference relation %x2 on X1 is determined by: x1 %x2 x01
if and only if (x1; x2) % (x01; x2), for all x1; x01 2 X1.

The new preference relation %x2 is obtained from the original preference relation %
by holding a certain element x2 2 X2 �xed. Given that this element x2 is �xed, %x2
can now be seen as a relation that gives preference statements for all elements in X1.
It is easy to see that %x2 is indeed a preference relation on X1 (that is, %x2 satis�es

completeness and transitivity) because % is also a preference relation (and therefore
satis�es completeness and transitivity). Hence for every x2 2 X2 we see that % on X
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also de�nes a preference relation %x2on X1. In general, the precise speci�cation of %x2
will depend on the particular element x2 2 X2. In some cases, however, %x2 will be the
same for any element x2 2 X2.

De�nition 2.4.2 For a preference relation % on X = X1 � X2, we say that x1 is
independent of x2 in %, if the conditional preference relations %x2 are identical for
all conditioning choices of x2 2 X2.

Hence independence means that the particular choice of x2 that would be made
from X2, would not a¤ect relative preferences for the goods in X1.
Similarly, as in the previous subsection, the set of all available commodities can

be partitioned into T 2 N or a countably in�nite number of subsets, or categories, of
commodities. And along with such a partition of the set of available commodities, we
can write the overall commodity space X as the Cartesian product of the respective
commodity spacesXt that correspond to the subsets of commodities. Again, we suppose
that the preference relation % is de�ned on X = �tXt.
Now suppose that S is some proper subset of the set of categories of commodities

f1; 2; :::; Tg, or f1; 2; :::g and let Sc denote its complement. Also, let XS and XSc denote
the Cartesian products of all the distinct commodity spaces corresponding to all the
elements in S, and to Sc, respectively. Then for every xS 2 XS we can de�ne the relation
%xSon XSc, by xSc %xS x0Sc if and only if (xS; xSc) % (xS; x0Sc), for all xSc ; x0Sc 2 XSc .
The new preference relation %xS is again obtained from the original preference relation
% by holding a certain element xS 2 XS �xed. And again, %xS is indeed a preference
relation on XSc. This allows us to impose more structure on preference relations, which
will prove very useful later on.

De�nition 2.4.3 A preference relation % on X = �tXt is called strongly indepen-
dent with respect to the corresponding partition of commodities if, for any proper subset
S of the set of partition indices t the variable xS is independent of xSc in %.
2.4.2 Separability of utility functions

Utility functions, like preference relations, are de�ned on the total commodity space X.
And, similar to preference relations, we can now use the extra structure we imposed on
X, to add more structure to utility functions.
As in the previous subsection, we �rst suppose here that the set of all available

commodities is partitioned into two disjoint subsets of commodities, and that, along
with this partition, we can write the overall commodity space X as the Cartesian
product of the respective commodity spaces X1 and X2 that correspond to the two
subsets of commodities. We can again use this extra structure such as to impose more
structure on utility functions that are de�ned on the overall set X.

De�nition 2.4.4 The utility function u (:; :) de�ned on X = X1 �X2, is called sepa-
rable in x1 if u(x1; x2) can be written as u(x1; x2) = U(v(x1); x2), for certain functions
v : X1 ! R and U : v(X1)�X2 ! R,7 such that U(v; x2) is strictly increasing in v.

7v(X1) = f�v 2 Rj9x1 2 X1 : v(x1) = �vg is the range of v.
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Separability says that there is a separate function measuring the (sub)utility from
the separable commodities, such that overall utility is then only determined from the
amounts of the other commodities, and the level of subutility obtained from the sepa-
rable commodities. Notice that this subutility function for the separable commodities
is independent of all of the other commodities.
The set of all available commodities can also be partitioned into T 2 N or a count-

ably in�nite number of subsets of commodities, so that the overall commodity space X
can be written as the Cartesian product of the respective commodity spaces Xt. This
allows for adding more structure to utility functions u(:) that are de�ned on X = �tXt.

De�nition 2.4.5 The utility function u (:) de�ned on some set X = �tXt, is called
additively separable with respect to the corresponding partition of commodities, if
u(x) can be written as u(x) =

P
t ut(xt), for certain functions ut : Xt ! R.

Additive separability is strong property that says that utility is separable in every
xt (in the usual sense), so for every t there exists a period-t utility function ut(xt),
that only depends on period-t consumption, and not on consumption in other periods.
Moreover, the overall utility function (that weights all of these subutilities ut) is additive
in all the ut�s.
The following proposition links the properties of separability of utility functions

with the properties of independence of preference relations.

Theorem 2.4.1 (A)Let % be a preference relation on X = X1 �X2, such that x1 is
independent of x2 in %, and let u : X ! R be a utility function representing %. Then
u will be separable in x1.
(B) Suppose that % is a preference relation on X = Rn+ (for n < 1) that is

continuous and strongly monotonic. Then % is strongly independent with respect to the
partition of commodities corresponding to X = X1 �X2 � :::�XT if and only if every
utility function u : X ! R that represents % is additively separable (with respect to the
same partition).

For proofs see Luenberger [28].

The �rst part of the theorem indicates that the separate (sub)utility function v (:)
represents the separate conditional preferences %x2 on X1.

2.4.3 The basic consumer problem

If the total commodity space X = Rn+ (with n 2 N) can be written as the Cartesian
product of all the per period commodity spaces X = �tXt, and commodity bundles
can be decomposed into period-t commodity bundles x = (x0; x1;x2;:::; xT ), or x =
(x0; x1;x2;:::), then accordingly price vectors p 2 Rn+nf0g for all goods in X can be
decomposed into period-t prices pt 2 Rnt+ nf0g, that denote the corresponding prices for
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the goods in Xt, so p = (p0; p1; :::; pT ), or p = (p0; p1; :::).8 Then, the budget constraint
p � x � m would in this more speci�c case read

P
t pt � xt � m.

However, now that we have modelled time explicitly, this also allows for a situation
where income is not yet completely owned in period 0, but to be received as an income
stream. We could model this as a situation where m0 � 0 is the initial endowment
owned in period 0, but where in every subsequent period an additional income It � 0
will be earned. Because we are still assuming certainty here, this model with an income
stream, can also be captured by the former model without income streams, as long as
total income is �nite and if it is assumed that there is a perfect capital market. That
is, if our consumer is able to borrow and save at a (constant) interest rate r � 0, then
by certainty, this model can be captured by a model without income streams It = 0,
but with initial endowment m0

0 = m0 +
P

tR
�tIt, where R = 1 + r. If there is no

perfect capital market in place, then this equivalence will not hold. For instance, if we
consider a situation with an income stream, where it is possible to save at the constant
interest rate r, but where it is impossible to borrow, then the situation becomes more
complicated because the budget set is no longer de�ned by just one budget constraint,
but now by T +1 or an in�nite number of budget constraints. These budget constraints
would read p0 �x0 � m0, and pt �xt � mt, for all t, wheremt would be an implicit period-t
budget, given the actual choices made in previous periods xi for all i < t, as de�ned by:

mt := R
tm0 +

tX
i=1

Rt�iIi �
t�1X
i=0

Rt�i(pi � xi) (z)

with R = 1 + r. In period t, the e¤ective period-t budget constraint would read
pt � xt � mt, which could also be rewritten as

tX
i=0

Rt�i(pi � xi) � Rtm0 +
tX
i=1

Rt�iIi:

Then, with additively separable utility and an income stream, the basic consumer
problem would amount to

max
x

X
t

ut(xt) sub to pt � xt � mt, for all t;

where mt is the implicit budget as de�ned by formula (z).

Note that this speci�cation also still incorporates the possibility of only one budget
constraint, by setting It = 0, for all t > 0, so that all di¤erent budget constraint are
captured by:

P
tR

t(pt � xt) � m0.

8Note that the condition that the overall price vector satis�es p 2 Rn+ n f0g is not completely
equivalent to pt 2 Rnt+ n f0g, for all t, therefore we have to slightly restrict the overall price space here.
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2.4.4 Consumption levels

The above formulation immediately brings to light that under additively separable util-
ity, the basic ad hoc consumer problem can be subdivided into distinct subproblems:
�rstly, the subdecision of choosing the levels of period-t consumption ct 2 R+ that
determines how much can be spent in all periods t, and secondly, the subsequent sub-
decisions of allocating each of these ct�s over all of the commodities available in the
corresponding period. If our consumer is indeed a rational utility maximizer, then
in the second stage of the problem he will choose to allocate the period-t budgets ct
amongst the period-t commodities in an optimal manner. That is, given prices pt and
the period-t budget ct, the period-t bundle xt(pt; ct) that he will end up choosing will
be a solution to the subproblem of maximizing period-t utility over the period-t budget
set:

xt(pt; ct) 2 argmax
xt
ut(xt) sub to xt 2 Xt; pt � xt � ct:

And thus, under the assumption that the decision-maker would behave optimally in
the second type of subproblems, we see that this optimal second stage utility would be
given by: ut(xt(pt; ct)) = vt(pt; ct). Here vt(pt; ct) denotes the indirect utility function
as derived from ut, given prices pt and the period-t budget ct. Now, given that saving
is possible at interest rate r and borrowing is not possible, if we write the pro�le of
consumption levels as c = (c0; c1; :::; cT ) or c = (c0; c1; :::), then using this notation we
can represent the �rst subdecision as

max
c

X
t

vt(pt; ct) sub to ct � mt;8t:

Here mt again denotes the implicit period-t budget from formula (z). And under
certainty we may regard all prices pt as exogenous, therefore if, for every t, we de�ne
the function ~ut(ct) := vt(pt; ct), then we can let the �rst subdecision be represented by

max
c

X
t

~ut(ct) sub to ct � mt;8t;

with mt as in formula (z).

It is exactly this �rst type of subdecisions that has been studied extensively in
macroeconomics, both theoretically and empirically, where it is quite common to forget
about the second type of subproblems and just focus on the �rst type of subdecisions.
This is one of the reasons why in macroeconomics problems like these are typically just
presented in their own right, without referring back to the �original�problem that starts
from commodity spaces. That is, in typical consumption/savings models from macro-
economics, preferences are typically expressed as u(c) =

P
t ut(ct), where ut : R+ ! R

is simply a function that directly gives utility from a level of period-t consumption ct,
rather than an indirect utility function that is derived from a more primitive utility
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function de�ned on some underlying commodity space. Here we will also follow this
example in the subsections dealing with consumption/savings models.
Note that this type of situations, where utility is derived directly from consumption

levels, can also be accounted for within the general microeconomic framework by simply
assuming that all the period-t commodity spaces Xt = R+ are one-dimensional to begin
with, so X = RT+ (or X = R1+ , in the in�nite case). Then, if all the ut(xt)�s are strongly
monotonic functions, and all prices are set to unity pt = 1, for all t, then we get that
the distinction between direct utility and indirect utility is no longer necessary, so v
may be replaced by u. Indeed, then we get

~ut(ct) = vt(pt; ct) = max
xt:ptxt�ct

ut(xt) = ut(ct=pt) = ut(ct):

So in this case there would be no need for making reference to or worrying about
underlying commodity spaces.

2.4.5 Exponential discounting

With this speci�cation of utility we are getting closer to the type of models used in
macroeconomics to study consumption/savings decisions. However, a setting like this
is still too general to be of much use in empirical investigations. If we do not have a
way in which the di¤erent functions ut : R+ ! R can precisely be related, then just
about anything can be explained from the above model by choosing the appropriate (or
actually inappropriate) ut functions.
So assumptions are needed on how the di¤erent period-t utility functions are related.

Recall that each of the period-t utility functions ut(ct) are de�ned on the same set R+.
Moreover, these variables ct have the same interpretation of levels of consumption in
the concerning periods, which will simply be expressed in monetary terms. That is,
each of the variables ct can be measured identically.
A quite straightforward and popular way to relate these di¤erent period-t utility

functions, is by introducing a discounting function d(:), and basically assuming that
the utility functions are the same for all periods, except for some discount factors
d(t), so that ut(c) = d(t) � u0(c). These discount factors can be said to represent time
preference, which measures the di¤erence in valuations of consumption in di¤erent
periods. Typically we would expect that individuals would prefer consumption now
over (the same amount of) consumption in the future. The most standard choice of
these discount factors is that of exponential discounting.

De�nition 2.4.6 An additively separable utility function u(c) =
P

t ut(ct), satis�es
exponential discounting if ut(c) = �t � u0(c), for all t, and all c 2 R+, and some dis-
count factor 0 < � < 1. The period-0 utility function u0(:) is called an instantaneous
utility function.

Hence, if such an additively separable utility function u(c) =
P

t ut(ct) satis�es
exponential discounting, then we see that

ut+1(c) = �
t+1 � u0(c) = � � �t � u0(c) = � � ut(c):
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Thus, the discount function d(t) is a function that decreases exponentially in t:
d(t) = �t, where � is a constant per-period discount factor. Essentially, exponential
discounting assumes that money can buy the same levels of utility in every period
(except for the decreasing desirability of consumption over time, which is only due to
time discounting). And a consequence of exponential discounting, is that discounting
between any two dates that are equally far apart is the same.
Under exponential discounting, a typical utility function will take the form:

u(c) =
P

t �
tu0(ct).

2.5 Consumption/savings models and Dynamic programming
Thus far in this chapter we have considered the standard framework for consumer choice
frommicroeconomic theory, as mentioned in the introductory chapter, and some ways to
make this general framework more speci�c. The most important of these speci�cations
are explicitly modelling time, assuming additive separability of utility functions with
respect to time, and exponential discounting. And with these speci�cations, we have
arrived at a basic consumer problem that can mathematically be expressed as

max
c

X
t

�tu0(ct) sub to ct � mt;8t:

Here mt denotes the implicit period-t budget as in formula (z).
And with this class of models, we have arrived at the second fundamental part

of economic theory we wanted to consider: the macroeconomic models of consump-
tion/savings decisions. These consumption/savings models typically take the above
form, or something similar. Thus, the preceding section has shown that (and in what
way) the macroeconomic framework of consumption/savings is indeed a more speci�c
case of the microeconomic framework of consumer choice, as also stated in the intro-
duction.

But before we will take a look at the methods of dynamic programming that are
used to solve consumption/savings models, we will still make a number of additional
assumptions.
Firstly, from now on we will assume that the number of periods is (countably)

in�nite: T = 1. This implies that preferences are represented by an in�nite sum
of discounted utilities: u(c0; c1; :::) =

P1
t=0 �

tu0(ct). We make this assumption for
two reasons, the �rst of which being mathematical convenience. The second reason
is that in this work we are trying to set up a learning model of consumer choice, and
investigate the convergence properties of such a model. And in order to be able to study
convergence we will generally need an in�nite number of periods (we will come back to
these issues later). And although this assumption may not seem completely realistic,
note that if the discount rate 0 < � � 1 that re�ects pure time preference is given,
we could additionally also assume that after every period it is only with probability
0 < � < 1 that there will be a next period (so after any period with probability (1� �)
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this period may turn out to have been the last). We will see later that if our decision-
maker is an expected utility maximizer, then his preferences may be represented by

E[u(c0; c1; :::)] =

1X
t=0

(��)tu0(ct);

so then the combined factor �� may also be used as a new discount factor to model this
situation.
Secondly, we will assume that models are stationary. We want to model an in�nite

number of periods, in which case stationary problems are much more easy deal with
(analytically). In the framework we are considering here, stationarity would mean
that when income is not yet completely owned in period 0, but to be received as an
income stream, then this income stream should be constant. That is, we need to have
a situation with an initial endowment m0 � 0, and where in every subsequent period
the additional income It that will be earned, will have to be constant: It = I � 0, for
all t > 0.
Thirdly, for notational simplicity, we will from now on assume that no interest is

obtained from saving: r = 0, so R = 1. The analysis in this work can also be extended
to allow for (constant) non-zero interest rates. However, conceptually the analysis
would remain the same, and as it would make notation more complicated, we opt for a
zero interest rate. Under this assumption, the mathematical expression of the consumer
problem simpli�es to

max
c

X
t

�tu0(ct) sub to
tX
i=0

ci � m0 + tI;8t:

2.5.1 Dynamic Programming

We saw that in macroeconomics consumption/savings models are usually represented
by the maximization of a utility function that is additively separable over time and that
satis�es exponential discounting. In this subsection we deal with how these problems
can be solved. So in a sense, this subsection is more about mathematics than it is about
economics. Still, the ideas and methods found here are also relevant for subsequent
chapters.

Sequence problems In mathematics, the problem of maximizing an additively sep-
arable utility function that satis�es exponential discounting has a name of its own, and
will be contrasted to another method later.

De�nition 2.5.1 Given instantaneous utility u0, a discount factor 0 < � < 1, and an
income stream (m0; I; I; :::), the problem of solving

max
(c0;c1;:::)

1X
t=0

�tu0(ct) sub to
tX
i=0

ci � m0 + tI, for all t � 0;

is called a sequence problem.
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Functional equations In principle we could attempt to solve a sequence problem
directly by means of the Lagrange method as in section 2.3. However, in section 2.3
a single budget constraint was faced, so that only one Lagrange multiplier needed to
be considered. Here we see that with I > 0 an in�nite number of budget constraints
are faced, so that an in�nite number of Lagrange multipliers are needed. Therefore in
general the Lagrange method is not very practical, and something else will have to be
attempted.
The way to proceed would typically involve taking a recursive approach and using

the fact that by stationarity, the problem faced in period 1 can be seen to be a copy of
the one faced in period 0. In the above sequence problem our consumer is supposed to
choose an in�nite sequence of consumption levels c = (c0; c1; c2; ::::) in (or before) period
0. In contrast to this approach, we can also think of the problem that a decision-maker
faces at period 0, as one of simply dividing his resources m0 between consumption c0
and savings s0 = m0 � c0 which, since here there is no budgetary uncertainty, would
completely determine next period�s budget m1 = s0 + I = m0 � c0 + I. Then, the
decision of how to allocate m1 could wait until period 1.
Given m1, the maximal lifetime utility that could be obtained in all periods after

time 0, would be given by max(c1;c2;c3;::::)
P1

t=1 �
t�1u0(ct) s.t.

Pt
i=0 ci � m1 + (t � 1)I,

for all t � 1. Now suppose that the value function V � : R+ ! R, would return for
every budget level m1 exactly the above maximum utility value that could be attained
from budget m1 from period 1 onwards, discounted to period-1 terms:

V �(m1) := max
(c1;c2;c3;:::)

1X
t=1

�t�1u0(ct) s.t.
tX
i=1

ci � m1 + (t� 1)I, for all t � 1:

Then the problem faced at stage 0 could alternatively be represented as

max
(c0;s0)

[u0(c0) + �V
�(s0 + I)] s.t. c0 + s0 � m0:

Since this is a maximization problem in only two variables, this looks a lot easier. Of
course the question remains how to �nd such a value function V �.
Now, by stationarity (It = I) the consumer�s problems at dates 0 and 1 can be

seen to be copies. That is, a change of variables shows that the value function V �

evaluated at m0 can also be expected to give the maximum level of total lifetime utility
attainable from this initial budget, that is: V �(m0) = max(c0;c1;c2;:::)

P1
t=0 �

tu0(ct) sub
to
Pt

i=0 ci � m0 + tI, for all t � 0. Thus we would expect that the maximal utility
levels would be the same in the two maximization problems, i.e. that: V �(m0) =
max(c0;s0)[u0(c0) + �V

�(s0+ I)] sub to c0+ s0 � m0: Indeed, mathematically this would
be due to the fact that maximizing over all variables simultaneously would have to
give the same result as �rst, for any given choice of c0, determining the maximum over
(c1; c2; ::::) while holding c0 �xed, and then maximizing this conditional maximum over
c0. Again using the fact that the problem faced is identical in all di¤erent periods we
search for a value function V � that will solve V �(m) = max[u0(c) + �V �(s+ I)] sub to
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c+ s � m. This equation is also called a Bellman equation, and it is said to re�ect the
principle of optimality

De�nition 2.5.2 Given instantaneous utility u0, a discount factor 0 < � < 1, and an
income stream (m0; I; I; :::), an equation such as

V �(m) = max
(c;s)

[u0(c) + �V
�(s+ I)] sub to c+ s � m;

that is to be solved in the unknown function V � is called a functional equation.

The method of using and solving a functional equation can be contrasted with that
of the sequence problem, as mentioned earlier in this section. The relations between
sequence problems and functional equations, and how such these functional equations
can be solved, is exactly what dynamic programming is concerned with.

For any instantaneous utility function u0(:), we de�ne a value function by the opti-
mal value of the sequence problem

V �(m0) := max
(c0;c1;c2;:::)

1X
t=0

�tu0(ct) sub to
tX
i=0

ci � m0 + tI:

Now, it can be shown that if u0 is an increasing function, then for any � < 1, the value
function V � indeed solves the functional equation

V �(m0) = max
(c;s)

[u0(c) + �V
�(s+ I)] sub to c+ s � m0;

for any m0 � 0. Moreover, any function that solves the functional equation must equal
the value function that maximizes the sequence problem.
Similarly, any in�nite sequence of consumption levels (c�0; c

�
1; c

�
2; ::::) that solves the

�rst period-0 sequence problem, will also be such that for each t 2 N0 the pair (c�t ; s�t ),
with s�t = mt � c�t , will maximize max(ct;st)[u0(ct) + �V �(st + I)] s.t. ct + st � m�

t =

m0 + tI �
Pt�1

i=0 c
�
i . And conversely, for any in�nite sequence of pairs f(~ct; ~st)g1t=0 each

of which solve the corresponding maximization problem max(ct;st)[u0(ct) + �V
�(st + I)]

s.t. ct+ st � ~mt = m0+ tI�
Pt�1

i=0 ~ci, the sequence (~c0; ~c1; ~c2; ::::) will also solve the �rst
period-0 sequence problem max(c0;c1;c2;:::)

P1
t=0 �

tu0(ct) s.t.
Pt

i=0 ci � m0+ tI. (See e.g.
Stokey and Lucas [43].)
Thus if the value function V � is known, then the whole optimal pro�le of consump-

tion levels (c�0; c
�
1; c

�
2; ::::) can be determined from V � and m0. Of course, such a value

function V � would still have to be found. Often it is easier to solve a functional equation
than the corresponding sequence problem.

Also note that although we have included some intertemporal considerations in our
framework, the �nal maximization problem that our consumer is facing is still basically
a static problem. It still boils down to a one shot decision, where the di¤erent parts of
this single decision will be implemented at di¤erent times. Therefore the actual decision
is made at time t = 0, after which all that remains to be done for the consumer is to
implement the chosen consumption plan.
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2.6 Uncertainty
Thus far we have seen models that describe consumer choice as choosing a bundle of
commodities from a budget set of a¤ordable commodity bundles, such as to maximize
the utility that will be obtained from consuming such a commodity bundle. Underlying
all this are assumptions of perfect knowledge or of complete certainty about the elements
in the model, or the di¤erent components of the (future) economic environment. It is
assumed that the consumer knows the number of commodities that can possibly be
purchased, he knows each of these commodities (including all future ones), he knows
all prices and he knows his income (stream). These assumptions do not seem to agree
with everyday life very well, because obviously in real life always some uncertainty is
faced.
Whereas we can assume that this consumer does in fact know all the (relevant)

goods that are available to him now, it does not seem very realistic to assume that a
consumer knows all the goods that will be available at all future dates. Thus in reality,
people seem to face uncertainty about the composition of the choice set, and also about
the number of commodities in this choice set. In the more speci�c consumption/savings
models, there is no need to know the composition of the commodity space, as utility
is supposed to be derived from consumption levels instead of commodity bundles. But
of course, the exact composition of the future commodity space is by no means the
only source of uncertainty faced by someone who wants to plan his consumption. For
instance, the assumption that a decision-maker would know his entire (lifetime) budget
with certainty, seems to be very strong.
Similarly, we may wonder whether, when a consumer makes a choice that involves all

levels of future consumption, he really has exact knowledge of all his own future utilities,
as the standard model assumes. In some cases we can imagine that future preferences
might change, or be in�uenced by the mood you will be in at that particular moment
of consumption.

These obvious problems of the models of choice dealt with so far have made it
necessary to extend these models and to develop ways to incorporate uncertainty into
them. In order to properly describe what choice under uncertainty is, we need a few
de�nitions.

De�nition 2.6.1 An act is a complete description of a particular course of action that
a decision-maker can take in a certain choice problem.

De�nition 2.6.2 An outcome is a complete description of the result that a decision-
maker may obtain in a certain choice problem.

A typical act is denoted a and the set of all possible acts for a certain choice problem
is denoted A. Similarly, a typical outcome will be denoted o, and the set of all possible
acts is denoted O. Note that the notion of an outcome refers to what a decision-maker
will end up with, the precise result of a decision, and therefore describes the situation
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after the resolution of uncertainty. The notion of an act refers to everything that a
decision-maker can do to in�uence what outcome will come about before the resolution
of uncertainty.

De�nition 2.6.3 Choice under certainty refers to all models of decision-making
where every act can lead to only one outcome.

De�nition 2.6.4 Choice under uncertainty refers to all models of decision-making
where there are acts that can lead to several outcomes.

In models of choice under certainty, any act will lead to only one outcome, so it
is usually not even necessary to distinguish acts from outcomes, they can simply be
thought of as the same objects. However, in decision-theoretic terms choice under
uncertainty means that there will be acts with which more than one possible outcome
can be associated, and the distinction between acts and outcomes becomes crucial. Of
course, only one outcome will �nally occur after any particular act is chosen but at the
moment the choice is made it remains unclear which one. Hence, with choice under
uncertainty, outcomes are not completely determined by acts, but also in�uenced by
forces beyond the decision-maker�s control.
Thus, the setting is that of a decision maker who is faced with a choice problem for

which there is missing information between acts and outcomes that prevents him from
being able to view the problem in the prospective utility maximizing manner from the
standard static framework.
Indeed, mathematically the correspondence that associates with any act the set of

outcomes that may result from it, will under certainty only return sets containing a
single element. Therefore mathematically under certainty this correspondence satis�es
the criteria of being a function f : A ! O, with f(a) 2 O. Under uncertainty, the
correspondence that associates with any act the set of outcomes it may yield, will now
also return sets with more than one element, and can therefore no longer be called a
function, but should mathematically indeed be called a correspondence g : A � O,
with g(a) � O.
So such an acts-outcomes-correspondence, attaches to every act the set of outcomes

that may result from this act. More structure can be added to the extent of uncertainty,
and the properties of the acts-outcomes-correspondence, by introducing states of the
world, that will help re�ne the above correspondences into functions.

De�nition 2.6.5 A state of the world is a complete description of all factors that
are beyond the control of the decision-maker and that, together with the chosen act,
uniquely determine the outcome that will occur.

A typical state of the world will be denoted !, and the set of all states of the world,
that will also be called the state space, will be denoted 
. States of the world are
designed in such a way that any combination of an act and a state of nature will lead
to one and only one outcome. Mathematically this could be represented by a function
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f : A� 
 ! O, so f(a; !) 2 O. Then, the above acts-outcomes-correspondence g can
be linked to the acts-states-outcomes-function f by: g(a) = ff(a; !) : ! 2 
g.
Since the set of outcomes O is known, everything that can happen is known. But of

course, we generally do not know which element of O will result from any act, and this
is where the states of the world or simply �states�come in. We are now supposed to
have a set of states 
, one of which is going to materialize, so that the state ! 2 
 that
does materialize, together with the act that was taken, completely determines what
outcome will result. Thus all remaining uncertainty is now embodied in uncertainty
about which of the states in 
 will occur.
It is important to note here that within this general de�nition of choice under uncer-

tainty, it has not yet been speci�ed what properties the acts-outcomes-correspondence,
or the acts-states-outcomes-function may have. It has also not been speci�ed yet how
much about this acts-outcomes-correspondence, or this acts-states-outcomes-function is
known by the decision-maker, apart from the fact that acts may not necessarily lead to
single outcomes. The modeller can choose models with di¤erent amounts of uncertainty,
depending on how much the modellee within the model, and the modeller outside the
model, know. Models can be devised in which a decision-maker has full knowledge of
this acts-states-outcomes-function, or in which the modeller does have this informa-
tion but the modellee does not. It is even possible to devise models in which even the
modeller does not know the full acts-states-outcomes-function.

2.6.1 Expected utility

Of course, the above decision-theoretic view on how to specify uncertainty, does by
itself not say anything about how decision-makers would deal with it, and make choices
under uncertainty. As usual, there is not really one undisputed way to resolve these
matters. Indeed, there is a long history of work on decision under uncertainty. However,
the approach towards uncertainty that is by far the most used in economics nowadays
is Expected Utility Theory.
From the de�nition of the acts-states-outcomes-function we see that any pair of an

act and a state of the world will always lead to a single, unique outcome. Therefore, we
can now also specify acts as functions from states of the world to outcomes. That is, an
act can be viewed as a rule that speci�es for each possible state of the world the outcome
that will result from this act. Thus, mathematically we can now express an act here as
a function a(:), with a : 
! O. Thus, the set of acts A is a set containing a number of
functions. For any act a : 
 ! O, the acts-outcomes-correspondence g would then be
given by g(a) = fo 2 O : 9! 2 
 s.t. a(!) = og, and the acts-states-outcomes-function
f would be given by f(a; !) = a(!), for all ! 2 
.
Now, at the moment that a decision is required, our decision-maker does not know

which state of the world will occur. However, in Expected Utility Theory it is assumed
that our decision-maker knows the probabilities that each of the states of the world
will occur. That is, a probability distribution �(:) on the state space 
 is known,
with � (!) � 0, for all ! 2 
, and

P
!2
 � (!) = 1 (if 
 is a countable set), orR

!2
 1 � d� (!) = 1 (if 
 is not countable). The set of all probability distributions on a
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given state space is denoted by �.
Then, in Expected Utility Theory pairs (a; �), that consist of an act a : 
! O, and

a probability distribution � : 
 ! [0; 1], are seen as the objects of choice, and called
lotteries (or simple lotteries).

De�nition 2.6.6 A lottery l is a pair (a; �) that consists of an act a(:) that maps the
state space 
 into the set of outcomes O, and a probability distribution � : 
! [0; 1].

Such a lottery (a; �) thus basically consists of a list of all outcomes o 2 O that may
happen, and their associated probabilities of occurring ~�a(o) =

P
!2
:a(!)=o �(!) for a

countable state space, or ~�a(o) =
R
f!2
:a(!)=og 1 � d� (!), in the uncountable case. For

notational brevity, we will also let such a lottery (a; �) be denoted by l, and the set of
all such lotteries is denoted by L = A� �.
If two lotteries l = (a; �) 2 L and l0 = (a0; �0) 2 L and a number � 2 [0; 1] are given,

then we can de�ne the compound lottery �l � (1 � �)l0 to be the lottery that will
result in lottery l with probability �, and that will result in lottery l0 with probability
(1 � �). Now it is assumed that the compound lottery �l �(1 � �)l0 is identical to
the simple lottery that will result in each of the outcomes o 2 O with the probabilities
�~�a(o) + (1� �)~�0a0(o).

E¤ectively when choosing between acts, a decision-maker chooses between lists of
outcomes that will occur with certain probabilities. So these lotteries are now the
objects of choice, and similarly to the deterministic case, we assume that underlying
the choices from any set of lotteries is a preference relation % on L.
Then if we would de�ne a topology on the set of lotteries L, and assume a preference

relation % on L to be continuous with respect to this topology, then by 2.2.1 preferences
% could be represented by some utility function U : L ! R. However, in Expected
Utility Theory we want such utility functions to have an expected utility structure: there
should be a function u : O ! R such that U(l) = E�(!)[u(a(!))], for all l = (a; �) 2 L.
In order to arrive at utility functions representing such preference relations that have
an expected utility form two more requirements are needed.

De�nition 2.6.7 A preference relation % on the set of lotteries L is called continuous
if for any l; l0; l00 2 L, the sets f� 2 [0; 1] : �l � (1 � �)l0 % l00g, and f� 2 [0; 1] : l00 %
�l � (1� �)l0g are closed (in R).

De�nition 2.6.8 A preference relation % on the set of lotteries L satis�es inde-
pendence if for any l; l0; l00 2 L, and any � 2 [0; 1], we have l % l0 if and only if
�l � (1� �)l00 % �l0 � (1� �)l00.

Now, for any given act, the probability distribution on the state space can be said to
yield a probability distribution on the outcome set, where this probability distribution
would specify the probabilities each of the outcomes will occur with. And, if u : O ! R
is a function that gives the �nal utility as it would be derived from getting certain
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outcomes, then given an act, the probability distribution on the state space can also be
said to yield a probability distribution of �nal utility. And in Expected Utility Theory
it is the mathematical expectation of this probability distribution of �nal utility that
is ultimately maximized. Presented next is the traditional view of Expected Utility
Theory, also sometimes termed objective Expected Utility Theory.

Theorem 2.6.1 Suppose that the preference relation % on the set of lotteries L satis�es
continuity and independence. Then there exists a utility function U : L ! R that
represents %, and has an expected utility form: there is a (Bernoulli) utility function
u : O ! R such that U(l) = E�(!)[u(a(!))], for all l = (a; �) 2 L.

For a proof, see von Neuman and Morgenstern [33].

So (objective) Expected Utility Theory says that if a preference relation on the set
of lotteries satis�es continuity and independence, then this preference relation can be
represented by a utility function that has the expected utility form (or von Neumann-
Morgenstern form): i.e. there is a Bernoulli utility function u(:) de�ned on the set of
outcomes O so that, if the state space 
 is �nite or countably in�nite,

U(l) = E![u(a(!))] =
P

!2
 �(!)u(a(!));

or if the state space 
 is not countable,

U(l) = E![u(a(!))] =

Z
f!2
g

u(a(!))d�(!):

Underlying this speci�cation of objective Expected Utility Theory are assumptions
that whereas a decision-maker doesn�t know what will happen, he does somehow know
or can imagine everything that can happen, and that he knows all probabilities with
which everything that can happen will happen. That is, it is assumed that when our
decision maker has to decide, this probability distribution that gives a complete de-
scription of the uncertainty that is faced, is objectively given to him. This really seems
a strong assumption, since when we are dealing with uncertainty in real life we are
usually not equipped with such knowledge. Here if we don�t want to assume that our
consumer actually knows the probability distribution of the states of the world, then we
could still assume that somehow our consumer acts as if he does have such a probabil-
ity distribution at his disposal. That is, the assumption of objective knowledge of each
state�s probability of occurring can be dispensed with. Then instead of starting from a
preference relation de�ned on the space of lists of outcomes that will occur with known
probabilities, a preference relation can alternatively be de�ned on the space of lists of
outcomes directly, without the additional interpretation of known probabilities of occur-
rence. Again, it can be shown (see, e.g. Savage [38]) that if this new preference relation
satis�es a number of axioms, then this preference relation can still be represented by
a utility function that has the above expected utility form: U(l) = E![u(a(!))]. Not

28



2. THE STANDARD FRAMEWORK FOR CONSUMER CHOICE

surprisingly though, since the objects of choice that would underlie this new type of
preference relations are more general than lotteries, the axioms that such a subjective
type of preference relation would have to satisfy should then be strengthened. This kind
of expected utility that does not assume objectively known probabilities of occurrence is
called subjective expected utility. In contrast with the above objective expected utility
where the objective probabilities �(!) of certain states occurring are exogenously given
to the decision-maker, with subjective expected utility the subjective probabilities �(!)
of states occurring can endogenously be derived from the preference relation.

In the next subsections we will �rst apply uncertainty in the standard (static) mi-
croeconomic framework for consumer choice, then we will extend our explicit way to
model time to include uncertainty, after which we will apply uncertainty in the standard
macroeconomic framework for consumption/savings decisions.

2.6.2 Expected utility in consumer choice

The above framework for choice under uncertainty is very abstract and general indeed.
Therefore more speci�cation is required in order to apply it in some more concrete
setting. How exactly the components of this framework (the acts, states and outcomes)
should be interpreted in a speci�c economic problem is not always straightforward, and
sometimes subject to the modeller�s choice. Thus the question arises of how the above
elements of the framework of choice under uncertainty should be interpreted within the
case of consumer choice that we were considering.
The interpretation of an outcome is probably most straightforward here. An out-

come should simply be a complete description of all consumption that a consumer would
be able to attain, thus an outcome should be a commodity bundle x 2 ~X, in the set of
all commodity bundles that may result from all combinations of acts and states that
can possibly occur.
Next, the states of the world are to be thought of as everything that is beyond the

control of the decision-maker, but that does in�uence what outcome x will �nally occur.
One speci�cation of these states of the world, and one that is particularly convenient,
is a speci�cation where the uncertainty about the future economic environment can
simply be reduced to uncertainty about each of the components that this economic
environment consists of. Thus we assume that the economic environment consists of
a number of distinct components (such as available consumption opportunities, prices
and income) that are uncertain, and we may de�ne the states of the world to specify
realizations of all the uncertain components of the consumer choice model. Thus a state
of the world would consist of a realization of the commodity space, a realization of the
price vector, and a realization of the consumer�s budget, and we write ! = (X; p;m).
Such a realization of the commodity space is denoted by X, and such a space would

be some Euclidian space: X = Rn+, where its dimension n 2 N does not have to be the
same for all di¤erent realizations of the commodity space. Also note that for any two
realizations X and X 0, even if their dimensions are equal, these spaces may very well
represent di¤erent sets of commodities, so the interpretations of each of their dimensions
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may di¤er. In any case, each of these realizations is a full-blown commodity space. To
be consistent with the interpretation of ~X, we should have that the set ~X equals the
union of all the possible realizations for X.
A realization of the price vector p of a state of nature ! = (X; p;m) should give the

prices for all the commodities in the accompanying realization of the commodity space
X, and should therefore be given by a vector p 2 Rn+nf0g, where its dimension n 2 N
equals the dimension of the accompanying realization of the commodity space.
And a realization of the consumer�s budget from a state of nature ! = (X; p;m)

should simply be a non-negative real number m 2 R+. Thus indeed, a state ! could be
denoted by a triple (X; p;m).
Then, for these speci�cations of outcomes and states of the world, we can now

specify acts. Since a pair of an act and a state of the world will always lead to a
single, unique outcome, we can also de�ne acts as functions from states of the world
to outcomes. That is, an act would have to be some rule that speci�es a commodity
bundle for each possible state of the world. Of course, given the interpretations of the
components of states of the world, we should additionally require that such a chosen
commodity bundle should be feasible. Here feasibility would mean that given the state
of the world ! = (X; p;m), the commodity bundle x that would be chosen has to satisfy
x 2 X and p � x � m. Thus, a feasible act is some rule that speci�es for each possible
state of the world some course of action that will lead to a feasible outcome. And we
can formally de�ne an act here as a function a(:), with a : 
 ! ~X, and such that for
any ! = (X; p;m), we have a(!) 2 X, with p � a(!) � m.
Now, when a Bernoulli utility function u : X ! R is given on the set of outcomes

(commodity bundles), and if indeed a probability distribution � is given on 
, then the
expected utility of any act a can be expressed as U(a) = E![u(a(!))].

Note that in the above framework for dealing with uncertainty, it seems that the
consumer does not face any uncertainty about his future preferences or tastes, so that
utility is deterministic. However, this framework for dealing with uncertainty does also
allow for uncertainty of future preferences by choosing a di¤erent interpretation of what
outcomes should be. The description of an outcome does not have to be con�ned to
the physical properties of a given situation, but could also be enriched to include the
psychological reactions to this situation. Thus the consumer could deal with this extra
bit of uncertainty in the same way as he did with the other uncertain factors.

2.6.3 Modelling time

However, the above way to specify uncertainty may also not seem completely natural or
helpful. In the above account, the decision problem under uncertainty is essentially only
a series of decision problems under certainty. That is, an act would be a function from
states of the world to outcomes, thus essentially here decision-making under uncertainty
would boil down to, for every state that may occur, making a single choice as under
certainty.
And here we encounter another reason for explicitly modelling time: it will prove
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helpful in extending the present framework to include uncertainty in a more natural way.
Of course time plays a crucial role in considerations about uncertainty. Specifying the
unveiling of uncertain information requires being able to specify what happens when.
Therefore, it is probably more appropriate to further specify the extent of uncertainty,
so that the uncertain elements are not unveiled at once, but instead little by little as
time progresses.
To model this, we use the same discrete way to model time, as presented before.

Thus, we have a time variable t, that progresses through one of the sets f0; 1; 2; :::; Tg,
in case of a �nite number of periods, or f0; 1; 2; :::g, in case of a (countably) in�nite
number of periods. Now, above we saw that this time variable was used to break up the
commodity space into period-t commodity spaces Xt, such that the overall commodity
space X would equal the Cartesian product of all the Xt�s: X = �tXt. Similarly,
overall price vectors p were broken up into sequences (p0; p1; :::; pT ) or (p0; p1; p2; :::).
Accordingly, a state of the world ! is a triple (X; p;m), and can now also be written

as
! = ((X0; X1; :::; XT ); (p0; p1; :::; pT );m);

or
! = ((X0; X1; X2; :::); (p0; p1; p2; :::);m):

However, recall that explicitly modelling a time structure also allows for the possibility
of an income stream (m0; I1; :::; IT ), or (m0; I1; I2; :::). In this case a state of the world
could thus be written as

! = ((X0; X1; :::; XT ); (p0; p1; :::; pT ); (m0; I1; :::; IT ));

or
! = ((X0; X1; X2; :::); (p0; p1; p2; :::); (m0; I1; I2; :::)):

Now we could also break up states of the world ! into sequences of time-t states !t,
so that ! = (!0; !1; :::; !T ), or ! = (!0; !1; !2; :::). Then by !t = (Xt; pt; It) we would
denote the prevailing period-t part of the state of the world, consisting of a period-t
commodity space, a period-t price vector, and a period-t income (we de�ne I0 := m0).
Recall that for such period-t commodity spaces Xt = Rnt+ , the dimension nt 2 N

may vary across realizations. A realization of the period-t price vector pt 2 Rnt+ nf0g
should be of the same dimension as the accompanying realized commodity space. A
realization of the additional income in period t should again be some It 2 R+.
As noted above, we also wanted to explicitly model time in order to allow for the

possibility of a gradual unveiling of uncertainty. That is, since we can now write a state
of the world ! as a sequence ! = (!0; !1; :::; !T ), or ! = (!0; !1; :::), di¤erent parts !t
may be learned at di¤erent points in time. Indeed, here we will rather straightforwardly
assume that the period-t part of the state of the world is in fact learned at (and never
before) time t. Therefore, at time t, the subsequence (!0; !1; :::; !t), which we also
denote here by !t0, is already known. The future part of the state of the world !

T
t+1,

or !1t+1, is not known at time t. Thus for t < T , such a sequence !
t
0 = (!0; !1; :::; !t)
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corresponds to several di¤erent states of the world ! that may �nally occur. Here we
denote the set of all �nal states of the world ! that can occur, given !t0, by f!t0g�
Tt+1,
or f!t0g � 
1t+1.

Given this new decomposition of states of nature, recall that an act is still a function
a(:) from states of the world into outcomes such that for any ! = (X; p;m), we have
a(!) 2 X, with p�a(!) � m. But sinceX = �tXt, all elements of the overall commodity
space X can be broken down into sequences (x0; x1; :::; xT ) or (x0; x1; x2; :::), and the
same can be done with acts. We can now write acts a(!) as sequences of functions:
a(!) = (a0(!); a1(!); :::; aT (!)), or a(!) = (a0(!); a1(!); a2(!); :::).
Now, we assume that an action taken at a certain point in time can only depend

on the information available at that point in time. Mathematically, for any t < T ,
and all !; !0 2 f!t0g � 
Tt+1, or !; !0 2 ! 2 f!t0g � 
1t+1, it should always hold that
ai(!) = ai(!

0), for all i � t. Therefore, the period-t action at(:) can only depend on !t0,
so we should write at(!t0).
Thus we would get that

a(!) = (a0(!0); a1(!
1
0); :::; aT (!

T
0 ));

or
a(!) = (a0(!0); a1(!

1
0); a2(!

2
0); :::):

In this case the expected utility of any act a is still given by U(a) = E![u(a(!))],
and this can now be written as

U(a) = E![u(a(!))] = E!0E!1 :::E!T [u(a(!))] =

E!0E!1 :::E!T [u(a0(!0); a1(!
1
0); :::; aT (!

T
0 ))]:

Or, in the in�nite case,

U(a) = E!0E!1E!2 :::[u(a0(!0); a1(!
1
0); a2(!

2
0); :::)]:

2.6.4 Expected utility in consumption/savings models

Remember that in consumption/savings models, we set T = 1 and R = 1. And
rather than commodity bundles, we considered the objects of choice to be consumption
patterns c = (c0; c1; :::), that specify sequences of levels of period-t consumption ct.
And in these models we made the assumptions of additive separability over time and
of exponential discounting so the utility function reads u(c) =

P1
t=0 �

tu0(ct). We have
a situation with an initial budget m0 and a stream of additional incomes (I1; I2; :::),
with It � 0, for all t, where no borrowing is possible, but saving is possible (at a zero
interest rate). Therefore this utility function is then supposed to be maximized over all
consumption patterns that satisfy the budget constraints:

ct � mt = m0 +
tX
i=1

Ii �
t�1X
i=0

ci, for all t:
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Next we consider consumption/savings models under uncertainty. These models
then naturally �t the mould as introduced in the previous subsection. States of the
world are decomposed into sequences over time ! = (!0; !1; :::), with !t = (Xt; pt; It),
for all t (here I0 = m0). Every !t is learned at time t, and acts a : 
 ! X can be
decomposed in to sequences a(!) = (a0(!0); a1(!10); a2(!

2
0); :::).

But now, within this class of consumption/savings models we see that the role
of uncertainty is limited by the fact that, for every !t = (Xt; pt; It), the commodity
spaces Xt are all one-dimensional and basically representing the same variable �level
of consumption�, which will be valued equally across periods, except for the discount
factor �. Thus, all Xt�s are basically known.
Also, since all ct�s denote levels of consumption, and since for simplicity we assumed

no interest R = 1, in this setting the price for each period�s level of consumption is
equal to pt = 1, so the pt�s are also certain.
Therefore, there may now only be uncertainty regarding the available budgets. In

this setting, period-t states of the world !t can thus be equated with additional incomes
It. These states of the world, and thus the It�s would not be known in advance, but
they would be gradually learned. It is this speci�cation of budgetary uncertainty that
we will consider extensively here in consumption/savings models.

In this case the expected utility of any act a is still given by U(a) = E![u(a(!))],
but can now be further speci�ed to

U(a) = E![u(a(!))] = E!0E!1E!2 ::::[u(a0(!0); a1(!0; !1); a2(!0; !1; !2); :::)] =

Em0EI1EI2 ::::[
1X
t=0

�tu0(ct(m0; I1; :::; It))] = EI1EI2EI2 ::::[
1X
t=0

�tu0(ct(m0; I1; :::; It))]:

Here the acts a(!) = (a0(!0); a1(!0; !1); a2(!0; !1; !2); :::) are given by the se-
quences of functions (c0(m0); c1(m0; I1); c2(m0; I1; I2); :::). Each of the decision functions
ct(m0; I1; :::; It) within such a sequence should satisfy the budget constraint
ct(m0; I1; :::; It) � mt. And like in formula (z), the implicit budgets mt are speci-
�ed according to mt = m0 +

Pt
i=1 Ii �

Pt�1
i=0 ci, which can now be rewritten as

mt = m0 +
tX
i=1

Ii �
t�1X
i=0

ci(m0; I1; :::; Ii):

Thus the resulting basic consumer problem reads:

maxEI1EI2EI3 :::[

1X
t=0

�tu0(ct(m0; I1; :::; It))]

sub to

ct(m0; I1; :::; It) � m+
tX
i=1

Ii �
t�1X
i=0

ci(m0; I1; :::; Ii); for all t
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2.6.5 Dynamic programming in consumption/savings models with uncer-
tainty.

A maximization problem as obtained in the previous subsection may look quite com-
plicated, but fortunately we can extend the procedures from dynamic programming
to include uncertainty. In fact, the procedures of dynamic programming become even
more appropriate and convenient under uncertainty.
Then, the maximization problem that we ended up with in the previous subsection,

is one of the following type.

De�nition 2.6.9 Given instantaneous utility u0, a discount factor 0 < � < 1, an
initial income m0, and probability distributions for additional incomes It, for t � 1, the
problem of solving

max
(c0;c1;c2;:::)

EI1EI2 :::[

1X
t=0

�tu0(ct(m0; I1; :::; It))]

over sequences of functions ct(m0; I1; :::; It) that satisfy the budget constraints

tX
i=0

ci(m0; I1; :::; Ii) � m0 +
tX
i=1

Ii;

for all t � 0, is called a sequence problem.

If we would take a degenerate probability with only one state that can possibly occur
(
 = f!g), we would have the old de�nition of a sequence problem under certainty
back. Thus this de�nition is really a more general one than the de�nition of a sequence
problem under certainty, which would justify using the same name twice.
However, instead of trying to solve such a sequence problem directly (by solving for

all variables simultaneously), dynamic programming again considers functional equa-
tions.

De�nition 2.6.10 Given instantaneous utility u0, a discount factor 0 < � < 1, an
initial income m0, and probability distributions for additional incomes It, for t � 1, an
equation such as

V �(m) = max
(c;s):c+s�m

fu0(c) + �EI [V �(s+ I)]g;

that is to be solved in the unknown function V � is called a functional equation.

Under certainty we saw that functional equations were of the form V �(m) =
maxc+s�mfu0(c) + �V �(s + I)g. Under uncertainty, next period�s additional income
is uncertain, which is why the term �EI [V

�(s+ I)] appears.

In the case we are considering here, the relations between sequence problems and
the corresponding functional equations that existed under certainty, also hold under
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uncertainty (see e.g. Stokey and Lucas [43]). In the current setting, it can be shown
that the value function V � that is de�ned to maximize a sequence problem indeed
solves the corresponding functional equation. Moreover, any function that solves the
functional equation must equal the value function that maximizes the corresponding
sequence problem (Stokey and Lucas [43]).

In this chapter we have introduced two fundamental economic building blocks: the
standard microeconomic framework for consumer choice, and the models of consump-
tion/savings decisions from macroeconomics. We have established that, and in exactly
what way, the second is a special case of the �rst. And in presenting these building
blocks we have laid a formal groundwork that will be drawn from in the rest of this
work.
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3 Problems and motivations

In the present chapter we will discuss and evaluate the standard frameworks of consumer
choice and consumption/savings, and we will draw attention to some drawbacks of these
standard frameworks. We will brie�y go over some empirical problems, and then present
some conceptual problems. These conceptual problems of the standard approach to
modelling consumption behaviour will also motivate the new approach that is taken in
the remainder of this work.
The choice problem that is faced in actual real-life consumption problems is ex-

tremely complex, as it seems to be in�uenced by thousands of di¤erent variables. As
a result, modelling the process of deciding on actual real-life consumption behaviour
could be in�uenced by thousands of di¤erent considerations. If we want to try to cap-
ture this complex consumption behaviour in an economic model (and especially if we
prefer such a model to be relatively simple), then somewhere down the line assumptions
will have to be made that may seem quite strong and not entirely realistic, or even very
strong and plainly unrealistic. However, the fact that some assumptions that are made
do not always agree with every day life does not necessarily have to be insuperable,
because our models (hopefully) do not claim to fully capture all of the economic real-
ity. Instead, the best we seem to be able to do is to very much simplify or stylize the
relevant problem, while somehow capturing some features of the economic reality that
seem particularly important or even essential to us. Of course, which features of the
economic reality we judge as being important or essential may depend on, for instance,
the kind of questions about the economic reality that we are trying to answer from the
models we use. So the fact alone that an assumption underlying a theoretical model
seems not (completely) realistic does not have to be a reason for dismissing the model
altogether, as long as we feel that there are essential features of the economic reality
that remain more or less intact, and that are somehow illuminated by the model.
Still, in this chapter we will argue that the standard approach to modelling consump-

tion behaviour has some serious drawbacks, and that an alternative approach might not
su¤er as much from all of these drawbacks.

This chapter consists of six sections. The �rst section recaptures the assumptions
underlying the standard way to model consumption behaviour, and some possible jus-
ti�cations for these assumptions. The second section brie�y goes over some empirical
problems of the standard framework, from both econometric and experimental work.
The third section will present some conceptual problems of the standard approach.
The fourth section will provide categorizations of types of economic models and of
types of rationality, that will help place the alternative framework, and that will help
to distinguish it from the standard framework. The �fth section will brie�y sketch the
alternative approach towards consumer choice that will be taken here, and it will look
back at preceding sections to motivate this new approach. The �nal section will review
some related literature.
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3.1 The standard framework
In most microeconomics textbooks we �nd more or less the same (neoclassical) analysis
of consumer choice, which was reproduced in the �rst three sections of the previous
chapter. This analysis models a consumer who has a certain number of commodities he
can choose from, that may also include commodities that will become available in the
future. Given this total number of commodities, commodity bundles are speci�ed as
possible combinations of amounts of each of the available commodities that a consumer
might conceivably own or be able to consume in a certain situation.
In order to make choices our consumer is assumed to be able to compare all of

these bundles of commodities, and to state preferences over these bundles. Thus, our
consumer is assumed to be able to make comparisons between bundles for all goods
simultaneously (including all future commodities).
The model of consumer choice is completed by assuming that a consumer, when

faced with a certain set of possible consumption bundles that he can choose from, will
always choose a consumption bundle that maximizes his preferences. That is, he always
chooses a consumption bundle that he prefers to every other consumption bundle he
could otherwise have chosen.

This neoclassical theory of consumer choice is typically set under certainty (or per-
fect information), in its standard speci�cation there is no uncertainty about any of
the aspects relevant to the problem at hand: all commodities that will be available,
all prices and budgets are supposed to be known. However, it seems apparent that
in real-life consumption choice problems uncertainty is present. Of all the information
about the future (economic) environment that is relevant to deciding an expenditure
level now, only very little is in fact certain. And especially for information about the
more distant future we might argue that hardly anything is really certain. Hence for
more descriptive realism the setting of consumer choice should be extended to include
uncertainty.
Then, in the face of uncertainty the assumption that a consumer knows everything

that will happen is replaced by new assumptions. These new assumptions are that the
consumer does know everything that can happen, and the probabilities that all these
possibilities will happen with. This probabilistic information would enable a consumer
to still view his problem in a fully prospective way.
Given the information that will allow for this prospective view, Expected Utility

Theory seems to be the standard choice for incorporating uncertainty into economic
models. Given the probability distributions that link actions to outcomes, and given a
utility function on these outcomes, in Expected Utility Theory a consumer is supposed
to choose that action that will maximize the expectation of his �nal utility. Expected
Utility Theory was presented in section 2.6, both in its general form and in a more
speci�c form applied to consumer choice.

However, it seems questionable that the thought processes that people actually go
through in making consumption decisions, would resemble the procedures as described
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in the standard model of consumer choice. A consumer would have to be assumed to
have (or have constructed) probability distributions for all variables for which the values
are not entirely certain, and moreover, the consumer would have to be assumed to be
able to deal with all this information in a way that corresponds to the maximization of
expected utility.

From our own lives we know that we are not just given credible descriptions of our
future environments from a source outside us. And from the simple thought experiment
of trying to mentally construct such a complete description of our future economic
environments, and consequently trying to make sense of all this information such as
to choose an optimal consumption plan, it seems that such a task does not altogether
come natural to us, and that our minds do not seem used to doing this. Thus it seems
that the prospective description of the choice process is not very close to the way in
which we mentally do consider these problems.

Even if there were no uncertainty whatsoever, then it would still not seem completely
plausible that people would actually have such utility functions in mind when making
choices. Therefore the question to what extent these utility functions actually exist
seems a legitimate one. The answer that standard economic theory would give would
be that these utility functions do not really have to exist in people�s minds, because it
is enough to assume that people make choices as if they use these functions. It doesn�t
matter if the concepts we employ are cognitively real, as long as people�s behaviour is in
line with our models�predictions. A justi�cation for this view can be found by linking
the unobservable concepts we use (utility functions) to certain regularities in people�s
observable behaviour (completeness, transitivity, continuity of preferences). One exam-
ple of an axiomatization that expresses the possibility for a preference relation to be
represented by a utility function in terms of the (in principle) observable characteristics
of the underlying preference relation, is theorem 2.2.1 which applies under certainty.
Theorem 2.6.1 shows a similar result for objective Expected Utility Theory, where the
probabilities for all possible realizations are assumed to be given exogenously. As for
subjective Expected Utility Theory, where probability distributions are not objectively
given, axiomatizations like that of Savage [38] show that if the preference relations on
lotteries that we assume to underlie the choices, satisfy certain axioms then these pref-
erence relations can be represented by utility functions that have an expected utility
structure, and by subjective probability distributions.

Thus, when we model a consumer�s consumption behaviour in the standard way, we
don�t have to claim that our consumer actually mentally constructs the complete model,
including all probability distributions, and solves the problem by actually calculating
the optimal solution. Instead, we may assume that our consumer makes choices as if he
has such a complete structure of the problem at his disposal and as if he subsequently
chooses such as to maximize (expected) utility.

However, there still remain problems with the standard way to model consumption
behaviour, �rst we will present some empirical problems, and then we will focus on
some conceptual problems.
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3.2 Empirical Drawbacks
In section 2.4 we mentioned that the standard microeconomic framework for consumer
choice is too general to be tested empirically. This standard framework does not yield
enough clear-cut behavioural predictions that can be tested, as this framework could
predict almost anything, from appropriately chosen utility functions.

3.2.1 Expected Utility Theory

However, some of the assumptions that are made in modelling consumer choice as in
the previous chapter can be tested separately. For instance, Expected Utility Theory
can be tested as a theory of choice under uncertainty. It would typically not be tested
in choice situations as complicated as those that are modelled in the previous chapter,
but in much more simple, highly stylized settings in laboratory experiments. Since
Allais [1] a lot of experimental studies have been done to test the predictions made by
Expected Utility Theory, and these studies have shown a number of biases in which
most people systematically deviate from these predictions, see for instance Kahneman
and Tversky [21].
Thus people do not always behave according to Expected Utility Theory and, to be

more in line with these experimental �ndings, a whole line of di¤erent alternative the-
ories of choice under uncertainty have been developed, that are appropriately grouped
under the header non-expected utility theory. Probably the most well known of these
is Kahneman and Tversky�s Prospect Theory [21].
However, the experimental studies that proved Expected Utility Theory wrong (or

not entirely right) usually stay within an Expected Utility Theory setting: before mak-
ing a decision a subject is typically given an extensive list of all outcomes that can
occur, and the probabilities each of them will occur with. As a result, most alterna-
tive theories of choice under uncertainty are still speci�ed in this same setting where
decisions are made based on probability distributions specifying the uncertainty that
is faced. Therefore like with Expected Utility Theory, there are also some conceptual
problems associated with using these alternative theories (in the context of consumer
choice). Some of these conceptual problems will be discussed in the next section.

3.2.2 Consumption/savings models

As mentioned in section 2.4, and as stated above, the standard microeconomic frame-
work for consumer choice cannot really be tested empirically in its completely general
form. Therefore in section 2.4 a lot more structure was imposed. Time was explicitly
modelled, and in all periods only spending levels were considered, so that in any pe-
riod the commodity space would e¤ectively be one-dimensional. Utility was assumed
to be additively separable (with respect to time) and to satisfy exponential discount-
ing. Thus the framework was very much narrowed down, and we ended up with the
consumption/savings setting as used in macroeconomics.
Like with Expected Utility Theory, some of the assumptions that are made in mod-

elling consumption behaviour as in consumption/savings models (such as exponential
discounting) can be tested separately, see for instance Loewenstein and Thaler [26] or
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Laibson [23]. However, the implications of consumption/savings models can also be
tested empirically as a whole. In fact, these implications have been tested extensively,
mainly in econometric work, and some empirical deviations from the predictions of
these models have been documented.

Econometric work Before we can consider any deviations from theoretical predic-
tions, we should �rst say something about the predictions that arise from consump-
tion/savings models. And although the speci�c predictions will depend on the exact
forms of the speci�c consumption/savings models, here we can identify two features at
a more general level that would be predicted by these models in some form or another.
These two features that are implied by consumption/savings models, are that consump-
tion smoothing will occur, and that the growth or decline in consumption should be
determined by preferences, and not by the particular pattern that the income stream
takes.

The prediction that consumption growth or decline is determined by preferences
(and maybe the interest rate), and not by the particular pattern of the income stream,
will always hold in consumption/savings models if there is a perfect capital market, i.e.
if saving and borrowing is possible at the same interest rate. If this last assumption
holds, then for any income stream the corresponding budget set is determined by only
a single constraint, namely that total (discounted) lifetime spending should not exceed
total (discounted) lifetime income. Then, it is a simple mathematical fact that any
two income patterns that (given the interest rate) yield the same total lifetime income,
will also yield the same budget set and thus the same maximizing choice from this
budget set. Thus, consumption growth or decline should not be related to the growth
or decline in income. Of course, in the presence of liquidity constraints, where saving
and borrowing is not possible at the same interest rate (for instance because of income
uncertainty) this principle need not fully apply anymore.

As the term seems to suggest, the idea of consumption smoothing is that it is best
to follow a smooth consumption pattern, rather than a pattern with large spending
di¤erences between periods (that are not too far apart). This property will typically
hold in consumption/savings models in some form, the permanent income hypothesis
(Friedman [16]) and the life-cycle hypothesis (Modigliani and Brumberg [31]) are two
speci�c forms that consumption smoothing can take. Mathematically consumption
smoothing is a result of the very common assumption of concavity of utility functions.
Recall from section 2.2 that in the general consumer choice setting, (quasi-)concavity
meant that mixing was good. This already suggests that situations in which nothing
can be consumed in some period(s) will never be preferred and will thus, if possible,
be avoided. A fortiori, in a setting of consumption/savings models, where utility is
of the form

P
t �
tu0(ct), the per-period utilities are all very comparable. Therefore

under certainty and if instantaneous utility is strictly concave, we get that any chosen
consumption pattern (in an internal solution) will be very smooth over time. Under
expected utility the same principle of consumption smoothing applies, although to a
lesser extent, since in that case it is expected consumption that will typically follow a
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smooth pattern. Of course, under expected utility, consumption choices also depend on
the realizations of the uncertain additional incomes. Still, a single favourable additional
income realization in some period would simply raise the total expected lifetime income
a bit, which would typically be spread out more or less evenly across all future periods,
so this will not lead to dramatic changes in consumption.

These theoretical predictions are not always observed (to the extent that they are
predicted) in empirical studies. The feature of excess sensitivity of consumption to
transitory income entails that consumption patterns are not as smooth as theory would
suggest. Excess sensitivity of consumption to transitory income is a well-known em-
pirical phenomenon, see for instance Flavin [14], Zeldes [48] or Browning and Lusardi
[5].
Also, the theoretical prediction that consumption growth or decline should not be

related to income growth or decline does not always agree with empirical �ndings.
Carroll and Summers [7] �nd that high income growth is typically associated with high
consumption growth, both across countries and across occupational groups.
And more generally, most households hold rather small amounts of savings (see e.g.

Wol¤ [46]), so that consumption approximately tracks income. In the terminology of
Deaton (1991)), most households exhibit bu¤er-stock saving.

Zeldes [49] and a number of more recent, similar publications have shown that
the above empirical observations are not necessarily incompatible with using optimal
policies in consumption/savings models. Thus, there are at least some speci�cations of
consumption/savings models under which bu¤er-stock saving behaviour is an optimal
policy.
The idea of learning consumption could point in the same direction, and perhaps

provide an alternative explanation. We will return to these questions in chapter 10.

Experimental work There have also been some, although relatively few, experi-
mental studies investigating consumption/savings models. These studies show that in
laboratory settings subjects� behaviour diverges from the theoretical predictions, in
some way or another (see e.g. Hey and Dardanoni [19], Noussair and Matheny [34],
Fehr and Zych [13].
Ballinger, Palumbo and Wilcox [3] experimentally study social learning in con-

sumption/savings models. They group subjects into "families" of three, that choose
consumption patterns sequentially, where later generations can observe choices and
outcomes of earlier generations. The authors observe a strong tendency to save too
little early on, so that not enough consumption smoothing can occur. However, later
generations perform signi�cantly better than earlier generations.
Chua and Camerer [8] study learning (both individual and social) in an intertem-

poral consumption setting. They consider a consumption/savings model of 30-period
lifetimes with induced constant relative risk aversion utility, where subjects face income
uncertainty and habit formation. Subjects are asked to choose consumption patterns
for a sequence of lifetimes, in treatments with and without social learning. Subjects
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have the possibility to learn from previous lifetimes, so this setting gives rise to �reincar-
nation learning�, and is not chosen to closely mimic reality. The authors argue that if
convergence towards optimality is slow (even in a relatively simple setting), this would
justify skepticism about people being able to learn within a single lifetime. Chua and
Camerer �nd that in �rst lifetimes, choices are far from optimal but that subjects do
learn to approach optimality rather quickly (within about four lifetimes), even more so
in the presence of social learning.
Johnson, Kotliko¤and Samuelson [20] present the results of an experimental study of

a life-cycle model under certainty. Subjects are �rst asked to determine a consumption
pattern for a 40-year lifetime, where an income stream and a 4% interest rate are given
with certainty. Subsequently they are asked how much they would like to consume in
some selected periods, given some particular combinations of current assets and future
incomes. They �nd that "errors in consumption decision-making appear to be very
substantial and, in many cases, systematic". For instance, this paper reports that
subjects displayed signi�cant inconsistencies in their consumption decisions. Many
subjects chose consumption values that di¤ered by at least twenty percent in pairs of
economically equivalent, or even identical situations. This result contradicts standard
economic theory, and it could point in the direction of learning. If we would not want
to dismiss these errors altogether as signs of irrationality, then they would indicate
that some valuations or framings would have changed (or have been learned) over the
process of making these decisions.
Moreover, Johnson et al. �nd that most subjects seem to oversave, possibly because

they underestimated the power of compound interest. As subjects approach the end of
their lifetimes, they appear to realize that they have saved too much, and start spending
much more. The authors call this "adaptive" consumption behaviour.

3.3 Conceptual Drawbacks
Besides the empirical drawbacks, there are also some conceptual problems associated
with modelling consumption behaviour in the standard way as presented in the previous
chapter. Here we will argue that the complexity of real-life consumption choice problems
is simply overwhelming, that these problems seem to involve a more profound, more
fundamental kind of uncertainty than is modelled in Expected Utility Theory, and that
introspection may show us that the standard setting that is used to model consumer
choice problems in, does not seem to resemble how people think about such consumption
problems.

A choice problem that is faced in actual real-life consumption problems is extremely
complex; we can argue that it is in�uenced by thousands of di¤erent variables. As
a result, trying to �nd an optimal solution (as in the standard framework) in such
choice problems would be extremely demanding. This di¢ culty is not only experienced
by consumers, but also by economists who try to model consumer behaviour. Even
in the rather stylized setting of consumption/savings models (that already assumes
very stringent conditions on utility functions), under somewhat plausible assumptions
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about instantaneous utility and about income uncertainty, these models typically do
not permit analytical solutions (see [7]). Therefore, �nding solutions requires numerical
approximation by computers. But, as Allen and Carroll [7]9 note: "One fact that is
known by any economist who has attempted numerical solution of consumption models
is that �nding optimal behavior in these models is an extraordinarily computation-
intensive task." These consumption/savings models are often too complicated for even
our most powerful computers to solve; as computers become more powerful, this enables
economists to make their models a bit more realistic, and still get a solution.
If �nding (approximate) solutions in these models seems to require using a super-

computer, assuming that consumers simply behave in accordance with these solutions
may seem troublesome. Therefore, we can wonder whether the way in which consump-
tion choice problems are speci�ed in standard economics is very representative of the
way in which people perceive of and think about these problems.

3.3.1 Risk, uncertainty and structural ignorance

Also, real-life consumption problems seem to involve a more profound, more funda-
mental kind of uncertainty than is modelled in Expected Utility Theory. Recall that in
section 2.6, choice under uncertainty was de�ned alongside the notions of acts, outcomes
and states. Also recall that the Expected Utility Theory approach towards dealing with
uncertainty required that a decision-maker would know all these acts, outcomes and
states. However, it seems that in many real-life choice situations we don�t have clear
descriptions of the states of the world that might occur, or of the resulting outcomes,
and we could wonder how appropriate Expected Utility Theory is in these situations.
As Gilboa and Schmeidler [18] argue:

"Yet it seems that in many situations of choice under uncertainty, the very
language of expected utility models is inappropriate. For instance, states of
the world are neither naturally given, nor can they be simply formulated.
Furthermore, sometimes even a comprehensive list of all possible outcomes is
not readily available or easily imagined."

The kind of situations that Gilboa and Schmeidler refer to here does not correspond
to either of the categories of risk and uncertainty, as distinguished by Knight [22]. Under
risk, a decision maker does not know what will happen, but he does know everything
that possibly could happen, and he knows the probabilities with which each of those
possibilities will occur. In models of uncertainty, a decision maker also does not
know what will happen, he also knows anything that could possibly happen, but he
doesn�t know the probabilities with which each of those possibilities will occur. In the
situations that Gilboa and Schmeidler have in mind, the decision maker does not even
know everything that could possibly happen. Thus Gilboa and Schmeidler add a third
category, which they call structural ignorance:

9Also see section 3.6.
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" "risk" refers to situations where probabilities are given; "uncertainty" -
to situations in which states are naturally de�ned, or can be simply con-
structed, but probabilities are not. Finally, decision under "structural igno-
rance" refers to decision problems for which states are neither (i) naturally
given in the problem; nor (ii) can they be easily constructed by the decision
maker."10

It seems that the context of consumer choice that we are considering in this work,
should be categorized as one of structural ignorance, as there is much fundamental un-
certainty about future consumption opportunities. A comprehensive list of all possible
outcomes does not seem readily available or easily imagined. These outcomes would
in the present case be commodity bundles that can be consumed. Thus knowing all
outcomes would mean knowing all di¤erent commodities available at each future date.
But people don�t seem to have this knowledge, technological progress and fashion are
obvious sources for commodities that will be available in the future, but which we
cannot even imagine now.
Moreover, in the context of consumer choice, states don�t seem to be naturally

given, nor can they be easily constructed. For instance, �nancial markets, political
constellations (both domestic and internationally), climatological conditions and our
medical situations (or that of close relatives) may change in ways we cannot even
conceive of now. And what is more, these changes could be quite dramatic and have
great implications for our personal consumption.

3.3.2 Case-Based Decision Theory

Gilboa and Schmeidler argue that in situations of risk Expected Utility Theory is ap-
propriate, and also in the face of uncertainty Expected Utility Theory or one of its
generalizations may still be used. However, Expected Utility Theory is not very appro-
priate in cases of structural ignorance:

" Expected utility theory does not describe the way people actually think
about such problems. Correspondingly, it is doubtful that expected utility
theory is the most useful tool for predicting behavior in decision problems
of this nature. A theory that will provide a more faithful description of how
people think would have a better chance of predicting what they will do."

But then what else is there that we can do? How else can we perform a mi-
croeconomic analysis then by assuming thorough, prospective thinking? Gilboa and

10This new category of structural ignorance is not the same as the category of "unawareness" (see
e.g. Dekel et al [11]). Unawareness refers to situations where there are things that one does not know,
that one does not know that one does not know, and so on. Under unawareness, one thinks that one
has a good understanding of the situation, where one really doesn�t, so this is clearly di¤erent from
the concept of structural ignorance. Structural ignorance does seem to be identical, or at least very
similar, to the notion of "radical uncertainty", a term that can (for instance) be found in the literature
on Austrian Economics (e.g. Vaughn [45]).

44



3. PROBLEMS AND MOTIVATIONS

Schmeidler [18] develop an entirely new paradigm for modelling decision-making under
uncertainty, and call it Case-Based Decision Theory. This new paradigm suggests that
people may use the past in making choices concerning the future, and thus assumes
that decision makers come to their choices in a predominantly retrospective way.

"Case-based decision theory suggests that people make decisions by analo-
gies to past cases: they tend to choose acts that performed well in the past
in similar situations, and to avoid acts that performed poorly."

Unlike the usual prospective way of trying to solve decision problems, where what-
ever happened in the past may basically only be used for determining probabilities,
Case-Based Decision Theory is mainly based on retrospective viewing. Case-Based
Decision Theory asserts that decisions are made by drawing on similarities that exist
between the problem at hand and previous choice problems, and this approach has the
advantage that the information that decisions are based on are known and certain.

As argued above, it seems that the context of consumer choice that we are consid-
ering here, should be categorized as one of structural ignorance, as there seems to be a
more fundamental kind of uncertainty about future consumption opportunities than is
modelled in Expected Utility Theory. But although the new paradigm that Gilboa and
Schmeidler introduce is set in a relatively general type of choice situation, it does not
seem very appropriate for the application we have in mind here. This is because Case-
Based Decision Theory models a series of basically unrelated choice problems. That is,
choices and outcomes from previous cases seem to be independent of the outcomes in
present and future choice problems, these past cases are only used as indications of how
favourable or unfavourable the outcomes of certain actions might turn out to be in the
problem at hand. In the context of consumer choice, however, all di¤erent (sub)choices
are strongly linked, consumer choice is actually one big problem that is divided into
di¤erent subproblems. Thus Case-Based Decision Theory as such does not seem to be
very appropriate to be applied in the consumption choice problems we have in mind
here.11 Still, the approach we will apply here to consumer choice does have something
of a similar �avour.

3.4 Rationality and models

This section will provide a categorization of types of economic models and a catego-
rization of types of rationality that will help place the new alternative framework, and
that will help to distinguish it from the standard framework.

11Case-Based Decision Theory is also extended to explicitly model dynamic settings. Gilboa and
Schmeidler [17] introduce a dynamic theory of consumer choices, but this theory is restricted to the case
of repeated small decisions. And Gilboa and Schmeidler [18] model a theory of case-based planning,
but this theory does not seem very appropriate here either, because of its rather speci�c nature.
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3.4.1 Types of rationality

Corresponding to a di¤erence in the notions of rationality as they are employed in
economics and in psychology, Simon [42] distinguishes two types of rationality, called
�substantive rationality�and �procedural rationality�. Substantive rationality cor-
responds to what is in economics usually called rationality proper. By this de�nition,
an act or choice is called (substantively) rational if it is the result of selecting a course
of action that will be most appropriate to the achievement of given goals within the
limits imposed by given conditions and constraints. In contrast, a choice is said to be
procedurally rational simply if it is based on reasoning, rather than on emotional or
a¤ective responses. Substantive rationality focuses on the outcome of the choice pro-
cedure or on what decisions are made, whereas procedural rationality focuses on the
choice procedure itself or on how decisions are made.
We may recognize the de�nition of substantive rationality in the descriptions of the

standard framework as presented in the previous chapter. Case-Based Decision Theory
is a theory of procedurally rational behaviour. The behaviour that will be modelled in
the learning framework that is presented here will also fall in the category of procedural
rationality.
When in later chapters we refer to rationality, we use this term in the way in which

it is usually used in economics, to mean substantive rationality.

3.4.2 Types of models

Simon [41] also distinguishes two types of models: �models of optimization�and �models
of adaptive behaviour�. The �rst type, the models of optimization

"are those that employ as their central concepts the notions of: (1) a set of
alternative courses of action presented to the individual�s choice; (2) knowl-
edge and information that permit the individual to predict the consequences
of choosing any alternative; and (3) a criterion for determining which set of
consequences he prefers."

Thus, it can be seen that models of optimization will yield substantively rational
behaviour. Obviously, the standard framework for modelling consumer choice �ts neatly
into this category of models. As argued above, and as seen under (2) in the de�nition,
models of optimization require detailed and extensive information about the alternatives
and about their consequences, and possibly a considerable amount of analytic ability
enabling the consumer to actually determine a preferred alternative.
The models of adaptive behaviour are those that are based

"on the ability of the individual to distinguish "better" (or "preferred")
from "worse" directions of change in his behavior and to adjust continually
in the direction of the "better".

Learning behaviour as in models of adaptive behaviour is also sometimes called
�hill climbing�or �gradient descent� learning, by analogy to the problem of trying to
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�nd the peak of a mountain (or the lowest point of a valley) while being blindfolded,
by simply continuing to move in the direction with the steepest slope. Models of
adaptive behaviour require much less information about the environment, and analytic
ability of the decision maker. Whereas in models of optimization the considerations
and evaluations are of a global type, in adaptive models only local considerations and
evaluations are needed.
The behaviour in models of adaptive behaviour seems to fall outside the scope of

substantive rationality and should be categorized as procedurally rational. The above
categorization of models is not exhaustive, not all learning models fall in one of the
above two categories, in section 3.6 we will encounter two learning models that are not
really models of adaptive behaviour. The ad hoc framework that will be presented here,
does more or less fall into this last category.
Also note that these models of adaptive behaviour do allow for learning within an

episode, rather than between episodes. The term �directions of change in behavior�
can also be interpreted to mean changes during an ongoing e¤ort. Moreover, the hill
climbing analogy gives an example where learning would take place within one trip to
a mountaintop.

In many circumstances it seems quite natural to link the two types of models.
For a given system, a model of optimization could specify some optimal solution or
equilibrium, and an adaptive model could specify behaviour out of equilibrium, where
this behaviour may or may not lead towards equilibrium. For instance, consider a
system that at any point in time will �nd itself in a certain situation or state �, where
there is a criterion �c, or an optimal state that the system is directed towards. In
a model of optimization that we might construct corresponding to this situation, the
solution or outcome would simply be that �c will be the prevailing state. We could also
construct an adaptive model for this situation. For instance, a very simple adaptation
rule would be that if (�c � �) is the system�s error (or departure from its goal), the
system would adapt its state in the direction of the system�s error, according to the
error-correction term @�

@t
= k(�c��). Models where adaptations are made in this way

are also called error-correction models. If the adjustment coe¢ cient k > 0 is chosen
appropriately, we would expect the system to move towards its goal or equilibrium, if
no further shocks occur.
Linking the two types of models in such a way, does presuppose the global kind of

information needed in the static model, which we may not assume to be available in
the dynamic model, so as modellers we would then place ourselves on a higher level
of information than the adapting decision maker. The above learning procedure does
depend on �c, which may be problematic, as this optimal state may not be known by
the adaptive decision-maker.

Arti�cial intelligence is one scienti�c area where these models of adaptive behaviour
are very prominent. Still, early in the development of Arti�cial intelligence as a scien-
ti�c discipline, models of optimization were often used (see e.g. Crevier [10]). Early
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arti�cially intelligent systems (robots) were designed to perform certain tasks, by being
equipped with complete inner representations of the outside world (exact information
about, or a �map�of the relevant environment) and enough calculation power to be
able to solve the problem of �nding an optimal way to complete a task. Many �rst
generation Arti�cial Intelligence models worked according to this �brute force�method.
One important criticism directed towards these models was that they were not judged
to be biologically very realistic, for instance because of the assumptions of complete
inner representations of the outside world. In reality, many tasks are performed by
actual intelligent beings through interacting with the outside world, so that informa-
tion gathering and action are interrelated, rather than isolated elements of the process
of completing a task. When faced with the task of walking to the refrigerator, we do
not plan ahead the number of steps in the exact directions that are needed to reach
it, before executing the plan. We simply start moving in what seems to be the right
direction, when there is furniture or other obstacles on the way to the fridge we deter-
mine the exact behavioural changes that are needed to avoid them only when we come
close to them, and when we approach the refrigerator we see that a behavioural change
is called for and we stop walking. Thus the task performance of a real-life intelligent
being does not seem to be based on complete inner representations (an exact inner
map of your house specifying all distances). Another problem for these �rst generation
models is that in a lot of situations (such as chess) things become so complex that a
computer�s calculating power is insu¢ cient for running down all di¤erent possibilities
in a reasonable amount of time, and the system ends up being paralyzed. Later devel-
opments in Arti�cial Intelligence showed that in a lot of situations it is not necessary
to endow the system with complete inner representations of the outside world and with
gigantic calculating power to be able to achieve a (near-)optimal performance. Most
second and third generation Arti�cial Intelligence models are in fact adaptive models
that use some learning algorithm similar to gradient descent learning (see Crevier [10]).
The similarities between the criticisms to the �rst generation Arti�cial Intelligence

models and some criticisms raised to the standard models of optimization in economics
are worth noting (for instance about the assumptions of the very detailed information
about the outside world). Maybe some �avour of the alternatives to these criticized
models employed in Arti�cial Intelligence may also prove useful in economics.

3.5 The ad hoc framework
To get an idea for the new approach towards consumer choice that will be presented
here, imagine you need new shoes and in a shoe store you see a pair of shoes (that you
haven�t seen before) that you like but that is a bit expensive so you hesitate whether you
should buy the pair. As we saw standard economic theory says that people�s choices are
based on preferences over all possible plans of present and future consumption that are
a¤ordable. You had not seen this particular pair of shoes before, so obviously it wasn�t
included in previous speci�cations (or possible realizations) of the commodity space, and
you cannot decide whether or not to buy the shoes by simply implementing a previously
chosen consumption plan. Therefore to at least stay in line with standard economic
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theory, after the information update of seeing these new shoes a new consumption plan
would have to be chosen. Once again, you should consider your preferences over all
possible plans of present and future consumption that will be a¤ordable, and from this
determine your choice. Now the problem is updated with respect to the last choice
problem by enlarging the commodity space to include the new shoes (and possibly by
adjusting for other changed circumstances). So when faced with the new shoes you will
have to choose a whole new consumption horizon, including the subdecision to buy the
shoes or not, but also including speci�cations of your total consumption future. This
new consumption plan is totally based on what you know (or think) will be available,
and is therefore also based on the knowledge you have about all other pairs of shoes
you could alternatively buy. However, in reality when deciding whether or not to buy
the shoes it is likely (or at least plausible) that you will not only use the information
that you do have about other shoes, but that you would also take into account the fact
that if you would continue your search you would probably also encounter shoes that
you had never seen before, and didn�t know existed. That is, you do need new shoes,
so if you would decide not to buy the shoes, then this decision is probably not only
based on what you know or imagine to be available, but it will also take into account
the fact that there is an unknown and unknowable stream of information that you
will receive when continuing your search. And especially when dealing with product
categories where information regarding what will be available at what price at certain
points in time is limited (for example in markets where supply changes quickly because
of fashion) actual choices are probably not determined solely by what you know to be
(or become) available.
Of course, a situation where a consumer realizes that when he does not buy, he

will probably obtain new information about his future economic environment that he
cannot even conceive of now, cannot be accounted for within the standard model. Hence
maybe the sort of decision process that someone might go through in choice problems
like these is much closer to a sort of satis�cing procedure (see e.g. Simon (1955)) than
to the standard prospective way to look at it.
And, like Gilboa and Schmeidler argued, if the way in which we view these choice

problems does not resemble the prospective view that would underlie the standard
account of consumer choice, then maybe we could come up with an alternative theory
of consumer choice that is closer to the sort of thought processes and trade-o¤s that
people do actually make in their minds.

In what follows, we choose a di¤erent approach to consumer choice that seems closer
to the type of reasoning from the above shoe example, and that starts from a di¤erent
type of choice sets.
In fact, every time we make a choice whether or not to purchase a certain item, we

are (at least implicitly) making a trade-o¤ between the utility gain that is associated
with the consumption of the item and the fall in utility due to being able to spend a
bit less in the future. And while we may imagine that people translate this spending
potential immediately into the consumption plans that can be bought from it, we might
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say that this is somewhat hypothetical. What we do know is that people just do make
choices between goods and money on a daily basis.
Therefore, here we assume that total consumption horizons are not really our choice

variables, but that instead bundles of present consumption (until the next moment
where some relevant uncertainty is faced) and present monetary resources are really
what we choose from. Then we proceed in a similar way as in the standard framework.
We suppose that in making these choices a consumer behaves su¢ ciently rational, so
that these choices can be derived from a preference relation (or a utility function). Of
course, now these preferences would not be de�ned on complete consumption horizons,
but on bundles of present consumption and savings.

The idea of treating money as part of choice variables, and letting money enter
into utility functions, is quite unusual in economics. As in the previous chapter, in the
standard view money is not valued in itself, it is only valued as a means of reaching
consumption. In the indirect utility function, the value for money is not a direct given,
but rather indirectly derived from direct valuations of consumption.
There is some support from neuroeconomics for the alternative approach of letting

money enter into utility functions. Camerer, Loewenstein and Prelec [6] review some
�ndings from neuroeconomics, and they �nd that this research suggests that money
provides direct reinforcement. That is, they �nd that money becomes what psycholo-
gists call a "primary reinforcer", which would indicate that people value money without
carefully computing what they plan to buy with it. They state that

"brain-scans conducted while people won or lost money, suggest that money
activates similar reward areas as other "primary reinforcers" like food and
drugs do, which implies that money confers direct utility, rather than simply
being valued only for what it can buy."

Thus, our alternative approach starts from preferences or utility on bundles of
present consumption and present monetary resources, rather than on complete con-
sumption horizons. However, these two types of preferences do not have the same sta-
tus. The preferences on complete consumption horizons from the standard framework
are absolute, in the sense that they are given and can never be wrong. By de�nition,
maximizing these preferences will always yield optimality and (substantive) rationality.
Instead, the new type of preferences that are de�ned on bundles of present con-

sumption and money, are not absolute. In a sense these new preferences are guesses
or estimates. More speci�cally, especially the implicit valuations for money, relative to
present consumption, are guesses or estimates. As the money variable still does repre-
sent future consumption, and as this future is unknown, valuations for money do not
at all have to agree with optimality or rationality. In fact, these notions of optimality
and rationality may not even be well-de�ned. And since these valuations for money
are in fact estimates, some estimates may be better than others, and here the idea is
that over time these estimates may be improved by a learning procedure. Thus, in the
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new framework that we will present here, we assume that the valuations for money are
learned over time.
The idea behind how such valuations for money could be learned, would be that

if at a certain point in time a consumer would regret having spent too much in the
recent past, then he would adjust his valuation for money such as to value money more.
And conversely, if at a certain point in time the consumer thinks that he could have
spent more in the recent past, then the adjustment should lead to a lower valuation for
money.
The resulting learning model does more or less �t the structure of an error-correction

model (see the previous section). Here the valuations for money would be the states,
and regret about past spending would indicate an error. Adjusting the valuations for
money in the above way such as to deal with regret can be seen as error-correction.

Some casual observations about how people speak about their expenditure patterns
may be seen as supporting the view that consumer choice is not determined by isolated
decisions that are unrelated to past decisions. When confronted with disappointing news
about their economic futures, people tend to use terms as �cutting down on expenses�
or �making cutbacks�and �tightening your belt�. Using these terms already seems to
imply the existence of some previous expenditure pattern relative to which adjustments
have to be made. Maybe this use of language can be seen as an indication that in fact
consumers do not look at consumption decisions as a series of isolated single decisions
that try to achieve an optimal use of endowments to make the future and the present
as good as possible independently from the past. Instead, maybe people approach
consumer choice much more like a continuous e¤ort that reacts to changes by making
adjustments to previously chosen strategies.

Learning in consumption models could alternatively also be modelled by means of
more basic rules of thumb, each of which would simply specify a course of action that
would be taken in any situation that might arise, where more e¢ cient rules could be
learned over time. Instead of courses of action that are learned over time, the ad hoc
framework models a setting where preferences are (to some extent) learned over time.
This ad hoc framework could be called a �hybrid�framework, where in the short term a
decision-maker would behave exactly as standard economic theory says he would, but
where in the long term he doesn�t. Although the behaviour that is modelled in this ad
hoc framework is boundedly rational, this type of behaviour may require some more
rationality than rule of thumb learning models. In the ad hoc framework consumers
would in a sense be locally rational, but not globally.

3.6 Related literature
Asmentioned in the previous section, the new framework that is presented here will start
from preferences or utility functions that are de�ned on bundles of present consumption
and present monetary resources. It is not an entirely new approach to consider money
as part of the objects of choice that a decision-maker�s preferences are de�ned on, see for
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instance Morishima [32] or Patinkin [35]. There, however, the motivations for doing so,
and the models that follow from these motivations, are very di¤erent from what we have
in mind here. In that literature, the motivation for including money in the arguments
of utility functions has nothing to do with bounded rationality. There the motivation
is to generalize the standard neoclassical, non-monetary models of equilibrium theory
into models with monetary equilibria, such as to generalize non-monetary economies
into monetary economies.
In the equilibrium theory literature it is standard practice to model an economy with

a number of consumers who can choose from several commodities such as to maximize
their preferences over their budget sets, when prices are given. In equilibrium theory
the focus then is on economic equilibrium, where at certain equilibrium prices the total
demand for any of the goods (as aggregated over all individuals in the economy) should
equal the total (aggregated) supply for this good. A well-known property of these
equilibrium theory models is that if all equilibrium prices are multiplied by the same
constant, this will not change the prevailing equilibrium. In that sense, the economy is
non-monetary.
The models of Morishima and Patinkin, try to generalize these equilibrium theory

models by considering money more explicitly. They do so by introducing di¤erent
periods, so that consumers may have to save or borrow. In any period a consumer�s
demand for money simply equals his budget minus the monetary value of his demand
for consumption goods. In this literature the equilibrium concept is expanded so that
not only all (physical) commodities should be in equilibrium, but so that also the money
variable should be in equilibrium (that is, the total demand for money should equal
the total supply). In these models we no longer get that equilibrium is una¤ected
by a multiplication of all equilibrium prices by the same constant. In that sense, the
economy has become a monetary economy.
Obviously, in the present work the motivation for letting money enter into utility

functions is very di¤erent, and focussed more on an individual or micro level, rather
than an aggregate or macro level. In this work no equilibrium concept is de�ned,
although it would not be impossible to do so.

The standard way to model consumption behaviour in which consumers act ratio-
nally, as in the previous chapter, is by no means the only approach that can be and
has been taken. For instance, models have been devised in which consumers use sim-
ple rules of thumb in choosing their consumption (see e.g. Shefrin and Thaler [39] or
Cochrane [9]). These rules of thumb would usually consist of simply spending a �xed
proportion of current income, or of cash-on-hand, in all periods. It is possible that such
rules would do a reasonable job, but only for certain parameter values or proportions.
In these models the rules of thumb would typically be somehow exogenously given, so
the question of how such rules of thumb would arise remains unanswered.12

Of course, the use of learning models, or models of adaptive behaviour, is not new

12Lettau and Uhlig [25] do provide a model where rules of thumb are learned.
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in economics. In the last decades a lot of research has incorporated learning into
economic models, for instance in the areas of game theory (see e.g. Young [47]), �nance
(e.g. Lettau [24] or Timmermann [44]), and also in macroeconomics (e.g. Evans and
Honkapohja [12]).
However, there have only been a few theoretical papers trying to incorporate learning

into consumption/savings models. Hence Friedman�s assertion, that (roughly) optimal
behaviour could be learned, has hardly been substantiated by theoretical research in-
vestigating whether it is likely, or even possible, to hold. Here we list the papers that
do model learning in consumption/savings settings.
Marcet and Sargent [29] model learning in an investment problem, but they assume

that consumers do behave according to dynamic programming theory, and are learning
only about the distribution of shocks.

Lettau and Uhlig [25] construct a model where decision-makers learn their be-
haviour in a context of dynamic decision problems, which they also apply in a con-
sumption/savings setting. In their setting decision-makers face income uncertainty: in
each period an additional income realization occurs. These realizations are also called
"states": if in a certain period a particular additional income realization occurs, the
consumer is said to �nd himself in the corresponding state in that period. The paper
considers a boundedly rational decision-maker who in every period can choose to use
one out of a set of exogenously given rules of thumb, or courses of action. Such rules of
thumb directly determine how much to consume in the relevant period as a function of
the last period�s savings and of the current period�s additional income (state). These
rules of thumb may also include a rule that prescribes to consume according to the op-
timal consumption function (and thus to behave in accordance with standard theory),
and not all of these rules of thumb need to be applicable in all states (i.e. in periods in
which some particular additional income realization occurs).
In any state in which more than one rules are applicable, the consumer can choose

which rule to use, and he is assumed to choose that rule that gave him the best average
past experience. In any period in which a certain rule is used, the consumer�s experience
of that rule in that period is re�ected by the instantaneous utility experienced in that
period plus a term that re�ects the discounted value of the resulting situation that
is faced in the following period. Thus, choices are made according to average past
experiences, which are updated in every period, and this will thus give rise to a learning
model.
Lettau and Uhlig �nd that in situations where the optimal decision rule is included

in the set of rules, and where this optimal rule is applicable in all states, it may still
happen that in some favourable state(s) (in which a high realization occurs) the decision-
maker likes another, suboptimal rule (or more than one) better than the optimal rule,
so that in such a state the optimal rule is consistently not chosen. This result is due
to the fact that the consumer fails to recognize that the favourable outcomes that are
experienced in periods in which the suboptimal rule(s) is used should be attributed to
being in a good state, rather than to the rule that is used. The consumer thus fails
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to distinguish between luck and smart behaviour, and Lettau and Uhlig call this the
"good state bias", and present this as a candidate explanation of the empirical �nding
of excess sensitivity of consumption to transitory income.
Obviously, this model is very di¤erent from the idea we have in mind here. Lettau

and Uhlig consider learning of rules of thumb, and they start from an exogenously given
set of rules of thumb, without the possibility of generating new rules. Learning would
mean learning which of these given rules of thumb is best. Moreover, as the optimal
consumption rule would somehow be exogenously given to the consumer, this model
essentially does not allow for investigating Friedman�s claim that optimal behaviour
could be learned.

In the paper "Individual learning about consumption", Allen and Carroll [2] set up
a learning model of consumption, and they do theoretically try to investigate whether
(near-) optimal behaviour could be learned. However, their approach is still quite
di¤erent from the approach that we have in mind here. We will list four important
di¤erences.
Firstly, the setting in which Allen and Carroll specify their learning model is much

more speci�c. They consider one particular consumption/savings model, with one par-
ticular instantaneous utility function, where all parameters are calibrated to what they
argue to be realistic values. They consider an instantaneous utility function u0 that
is of a constant relative risk aversion type: u0(c) = c1��=(1 � �), where the coe¢ cient
of relative risk aversion � is calibrated to � = 3. Furthermore, they assume that in
all periods the uncertain additional income can take three values (0:7; 1; 1:3) with the
probabilities (0:2; 0:6; 0:2). The discount rate � is set to equal 0:95.
Secondly, their learning model involves learning of rules of thumb, or consumption

functions, that directly specify how much to consume as a function of cash-on-hand.
All the rules of thumb that they consider have the following two-part linear structure

c
;�(m) =

�
1 + 
(m� �) if c � (1� 
�)=(1� 
)
m if c < (1� 
�)=(1� 
)

for two positive constants 
 and �. There are di¤erent rules of thumb that di¤er only in
the constants 
 and �. For the above calibrations Allen and Carroll specify (a numerical
approximation of) the optimal consumption function c�(m), and they show that this
optimal consumption function can be closely approximated (in utility terms) by a two-
part linear function c
�;��(m) of the above type, for certain speci�c constants 
� and ��.
Then they argue that since this approximation to the optimal consumption function
has a simple structure, these parameter values 
� and �� could perhaps be learned.
Thirdly, their learning procedure employs a grid search. For each of these two

constants 
 and �, intervals which would reasonably contain the optimal values 
�

and �� are identi�ed, and subdivided into 20 points. Thus they end up with a grid
consisting of 400 points, each of which represents a speci�c combination of values of
the two constants.
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Fourthly, each of these grid points is evaluated by means of the utility that is
obtained while living with the corresponding rule for n 2 N periods. That is, any point
(
; �) is evaluated according to the summed discounted utilities

Pt+n
i=t+1 �

i�tu0(c
;�(mi))
that are obtained in the n periods in which this rule is used, thereby not taking account
of the situation that the process is left in after the n periods. This evaluation does not
take into account what happens after the n periods, so it does not value savings in
period t+n. Finally, after the 400 times n learning periods, the grid point that yielded
the highest utility in the periods that it was used in, will be chosen.

Due to time discounting, the distortion of not valuing savings in period t + n will
be relatively small for n relatively large. However, Allen and Carroll �nd that the best
(or a good) grid point will generally not be reached, not even for large n, as each of
the obtained utilities from a certain rule is heavily in�uenced by the additional income
realizations that will occur early on in the n periods. If instead each of the rules is
lived with during m separate time intervals of n periods, then as m and n get large,
the process can be expected to �nd the best (or a good) rule in the grid with a high
probability.

However, in this paper Allen and Carroll also focus on how long learning roughly
optimal behaviour would take. They interpret periods as years (which they argue is in
line with setting � = 0:95), and they conclude that it would take this learning process
more than a million periods before it could identify a good grid point with a high
probability.

This chapter has provided a discussion of the standard approach to modelling con-
sumption behaviour. We have seen some empirical and conceptual problems associated
with the standard approach. Also, this chapter has provided a �rst sketch of the new
alternative framework, and some motivations for the choices made in this particular
approach. Finally, this chapter has reviewed some related literature.
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In the present chapter the �rst part of the alternative framework for consumer choice
is introduced. Here an all-encompassing decision of lifetime consumption is cut up
into a series of subdecisions, and it is modelled how a consumer would solve any such
subdecision within this framework. In the �rst section subproblems are considered as
an alternative to the all-encompassing decisions of lifetime consumption patterns from
the standard microeconomic framework. In the subsequent sections we model how a
consumer would deal with any of these subdecisions within this framework, much in
the same vein as the standard microeconomic framework supposes the whole problem
is dealt with. Paragraph 2 de�nes ad hoc preference relations for any such subdecision,
section 3 de�nes ad hoc utility functions, which may represent these ad hoc preferences,
and section 4 puts the elements together to form a basic ad hoc consumer problem that
models which choices are made in any such subproblem. Thus in this chapter any
such subdecision is treated in isolation. In chapter 6 we will continue the set-up of
the new, alternative framework by specifying how the di¤erent subproblems, and the
decision-making that is used to solve them, would be related.

4.1 Considering subproblems

In this work we want to construct a learning model in the context of consumer choice.
A �rst thing to note is that in order to do this, it seems inevitable to distinguish
di¤erent subproblems and di¤erent subdecisions taken at them. We cannot set up a
learning model without modelling time explicitly, and viewing consumption as a series
of subdecisions, rather than as one big all-encompassing decision. This is in contrast
with the standard framework, where all choices are made simultaneously, so where
essentially only one all-encompassing consumption choice is made.
As we also want to be able to study the convergence properties of such a learning

model, we will need an in�nite (though countably in�nite) amount of such subproblems,
as convergence in �nite time is quite unlikely to occur in any model.

Therefore, we use the same discrete way to model time as in chapter 2: a time
variable t progresses through the set N0 = f0; 1; 2; 3; :::g. So, where in chapter 2 we
assumed this discrete time set to be either �nite or countably in�nite, here we only
model situations of the last type, where T =1. In chapter 2 the time variable was used
to be able to distinguish between periods and arrive at models of consumption/savings,
and to be able to specify a gradual way in which uncertainty unfolds. Here we will use
the same time structure, and the same decompositions of commodity spaces, commodity
bundles, prices, and budgets to set up a model of consumer learning.
In this chapter we will focus on only a single, isolated subdecision, say at time t, in

which there is a subset of commodities that have to be decided upon at that time, and
where there remains a set of other commodities that will have to be decided upon later.
These other commodities would probably in turn be subdivided and decided upon at
di¤erent points in time, as the above way to model time seems to suggest, but for now
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we can proceed by considering what happens at time t without making speci�c what
will happen afterwards.
To become more formal, recall that in the standard model under certainty, prefer-

ences were de�ned on the total commodity space X = Rn+, where n 2 N denoted the
total number of commodities that were assumed to be available for purchasing at some
point in time. The elements that such a commodity space consists of are commodity
bundles that specify amounts of all commodities, including all future commodities.
However, here we assume that the consumption opportunities do not present them-

selves simultaneously, but rather according to the above discrete model of time t. That
is at every stage t 2 N0, by Xt = Rnt+ we denote the space of all combinations of
amounts of commodities available at time t, where nt 2 N denotes this total number
of commodities available at stage t. And thus we get that X = �1t=0Xt. Since here we
assumed the overall problem to consist of a countably in�nite number of periods, here
we should have that indeed n =1, so X = R1+ .

Axiom 4.1.1 The total number of available commodities n is (countably) in�nite.
Moreover, there is a countably in�nite number of periods, and for any period t the
total number of commodities available in that period is denoted nt 2 N. Accordingly,
Xt = Rnt+ denotes the commodity space that corresponds to all commodities available at
time t, and the (total) commodity space can be written as X = �1t=0Xt.

The above decomposition of the total commodity space also allows for the following,
alternative approach of cutting up the overall problem into distinct, smaller subprob-
lems. Instead of making one big decision involving all stages at once, here we suppose
that a consumer would make an in�nite number of smaller decisions, one for each pe-
riod t. Therefore when at stage t of the process, t periods have already passed, and
t subdecisions have already been made. Then at stage t, another one of these smaller
decisions will have to be made. Now, at stage t, the consumer is confronted with the
period-t commodity space Xt of which one element xt will have to be picked. Thus such
a smaller problem involves determining what to choose from only the set Xt = Rnt+ . To
extend the model, a few de�nitions are presented.

De�nition 4.1.1 At time t, a present commodity space is a space Rnt+ , where nt
is the number of commodities available at stage t. A present commodity bundle in
some period is an element of the corresponding present commodity space.

De�nition 4.1.2 At time t, a past commodity space is the Cartesian product of all
the present commodity spaces of periods preceding time t. A past commodity bundle
in some period is an element of the corresponding past commodity space.

De�nition 4.1.3 At time t, a future commodity space is the Cartesian product of
all the present commodity spaces of periods after time t. A future commodity bundle
in some period is an element of the corresponding future commodity space.
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A typical present commodity space at time t is denoted by Xt = Rnt+ , a typical
present commodity bundle is denoted by xt. A past commodity space at time t will
typically be denoted by Wt�1 := �t�1i=0Xi = Rkt�1+ , where kt�1 =

Pt�1
i=0 ni < 1 is the

number of commodities that have been available to the consumer before stage t, a
typical past commodity bundle is denoted by wt�1. A future commodity space at time
t is typically denoted by Yt+1 := �1i=t+1Xi = R1+ (the number of commodities that
will become available to the consumer after stage t is in�nite), and a typical future
commodity bundle is denoted by yt+1.
Our notation and interpretation of the formal objects introduced here will remain

in line with that of chapter 2. For each xt 2 Rnt+ and each 1 � i � nt, we will interpret
the i�th component xit 2 R+ to represent the amount of commodity i in bundle xt, and
similarly for past and future commodity bundles.

Now, in accordance with the sequential unveiling of the commodity space as in
chapter 2, we assume that there is never any uncertainty about what is presently (and
was previously) available. Thus a consumer has full knowledge of what the sets Wt�1
and Xt look like, and we do not yet make any assumptions here about what knowledge
our consumer has with respect to Yt+1 (we will come back to this later). Since the sets
Wt�1 = Rkt�1+ and Xt = Rnt+ are known, their respective dimensions kt�1 and nt are also
known at time t. However, the sets X� = Rn�+ and also the dimensions n� for � > t may
not be known at time t. Still, since there is an in�nite number of periods, and in each
of these periods the number of commodities available will be a natural number, we see
that the dimensions of the sets X and Yt+1 must be countably in�nite, and therefore
are basically known.
We are now considering a situation at time t where a previously chosen past com-

modity bundle wt�1 is given, and where a consumer has a certain period-t budget. We
can now view the resulting choice problem as one of choosing an element in Xt and
determining how much money to save for later consumption from the remaining com-
modities in Yt+1. We propose that our consumer simply chooses how much to consume,
and how much to save for the future. Thus here we do not take the ad hoc commodity
bundles in Xt alone to be the elements of choice, but rather we attach to every such
element xt an amount of money that is saved for consumption from Yt+1, so we add a
dimension to Xt that represents a new money good.

De�nition 4.1.4 At time t, an extended present commodity space or alterna-
tively, an ad hoc choice set, is a Cartesian product Xt �R+ of a present commodity
space Xt and the non-negative real numbers. Any element (xt; st) of such an ad hoc
choice set is called an ad hoc choice pair.

De�nition 4.1.5 At time t, an ad hoc commodity space is a Cartesian product
Wt�1 � Xt � R+ of a past commodity space Wt�1, a present commodity space Xt and
the non-negative real numbers. Any element (wt�1; xt; st) of such an ad hoc commodity
space is called an ad hoc commodity bundle.
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As can be seen in the de�nitions, a typical ad hoc choice set is denoted Xt � R+,
a typical element of such an ad hoc choice set is denoted (xt; st). A typical ad hoc
commodity space is denoted Wt�1 �Xt �R+, and a typical element of such an ad hoc
commodity space is denoted (wt�1; xt; st). Here wt�1 is a past commodity bundle, xt
is simply a present commodity bundle from Xt, and st is a non-negative real number,
that can be seen as a new auxiliary commodity, and that we will throughout interpret
as an amount of money that is saved for consumption in the remaining periods. The
lower bound of zero on the amounts of savings that are allowed re�ects the fact that
saving is possible but borrowing is not.
It is important to bear in mind that the amount st that is saved, does not have to

be equal to the budget mt+1 with which the next period t + 1 will be entered. After
all, this depends on the speci�cations of how the mt�s are related, and thus ultimately
on additional incomes (and interest rates). We may recall that there were several ways
to do this. However, in this chapter we will treat only one period in isolation; the links
between subsequent are dealt with in a later chapter. Therefore here we do not need to
specify the links between budgets across periods. Still, it is important to distinguish st
from mt+1, and to remember that the extra dimension in ad hoc choice sets or ad hoc
commodity spaces represents amounts of savings, and not next period budgets.
Hence in the elements of choice that are primitive to the model, the complete de-

scriptions of all (future) consumption from Yt+1 from the standard framework are here
replaced by amounts of money, that represent savings for consumption from Yt+1.

4.1.1 Subproblems in dynamic programming

At this point it is worth noting a similarity between the ideas presented here of consid-
ering subproblems, and the dynamic programming approach towards solving consump-
tion/savings models. Remember that the sequence problem approach to solving such a
model involves solving for an optimal in�nite sequence of consumption levels at once.
In stead, in the dynamic programming approach to solving such a model, the maxi-
mization problem inside a functional equation considers a single subproblem, in which
a decision-maker only has to decide how to divide his resources mt between consump-
tion ct and savings st = mt � ct. To make this view consistent, a recursive approach
was taken, thereby determining a value function that actually solves such a functional
equation. In what follows, we will see that these similarities can be further extended.

4.2 Ad hoc preferences
Here we assume that when deciding upon which ad hoc choice pair to choose, given a
past commodity bundle and a budget, our decision-maker would just make trade-o¤s
between the bene�ts obtained from consuming the corresponding present commodity
bundles and the costs of paying for them. Here we proceed in a way similar to that of the
standard microeconomic framework, by assuming that a consumer can state preferences
between any pair of elements from the ad hoc commodity space. In order to be sure
to end up with stable and consistent preferences, we will assume that underlying the
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choices from such a set is a binary relation on this set that satis�es completeness and
transitivity. Given a past commodity bundle that was chosen previously, and given the
new ad hoc choice set Xt � R+, we assume that any consumer�s preferences can be
represented by a preference relation on this choice set.
Here we also want to allow for the possibility that such preferences on the ad hoc

choice set depend on the previously chosen past commodity bundle. Therefore here
we will not just de�ne preferences on the ad hoc choice set, but rather on the ad hoc
commodity space. Note, however, that at period t where these new preferences be-
come relevant, one speci�c past commodity bundle was already chosen, while a present
commodity bundle is not. Therefore we could also simply view the particular past
commodity bundle that is given, as a parameter that may in�uence preferences on the
ad hoc choice set. And whereas in principle it would su¢ ce to have preferences for only
one given past commodity bundle, here we want to be able to track how these past
choices may in�uence present preferences on the ad hoc choice set. Therefore we do not
de�ne ad hoc preferences on the Cartesian product of the present commodity space,
the non-negative real numbers, and a set containing only a single past commodity bun-
dle. Rather, here we de�ne ad hoc preferences on the Cartesian product of the present
commodity space, the non-negative real numbers, and the past commodity space. Note
that this is not an extra requirement of the model. This assumption actually makes the
model more general, not more speci�c. It also makes it possible to allow for things like
habit formation, or more generally complementarities and substitutabilities over time.

De�nition 4.2.1 An ad hoc preference relation is a preference relation de�ned on
an ad hoc commodity space.

At time t, given the ad hoc commodity space Wt�1 � Xt � R+, a typical ad hoc
preference relation is denoted by %(t).
Note that if in the standard microeconomic framework for consumer choice a situ-

ation would arise in which a decision is needed regarding what to choose from Xt, and
how much money to keep for later consumption from Yt+1, then a decision maker can
only make such a decision by somehow imagining what Yt+1 will look like, because by
assumption his decisions are derived from preferences over complete consumption bun-
dles in X. So even if he does not in fact know yet which commodities will be available
later in Yt+1, he can only arrive at a solution to the problem at hand by imagining what
Yt+1 might look like, since preferences onX are all that he has to reach a decision. Then
he would arrive at a decision of which element of Xt � R+ to choose, by translating
money back into complete speci�cations of a¤ordable future consumption.
In this chapter we just start from the fact that if a consumer is faced with the

problem of what to choose from the set Xt � R+, he will somehow have to make a
choice, and from the assumptions that he can state preferences over the elements, and
that these preferences can be represented by a preference ordering. Here we do not
yet worry about whether these ad hoc preferences are in fact (or can be) derived from
preferences on the whole commodity space X: Later we will come back to this question
of where these new ad hoc preferences do come from.

60



4. AD HOC PREFERENCES

Note that in the standard framework, if the commodity space is given then prefer-
ences (and utility) can be regarded as exogenous, there we do not have to worry where
such preferences come from. In the context that we are considering here it does not
su¢ ce to treat ad hoc preferences as being completely exogenous, at least to some ex-
tent these preferences will have to be "explained". After all, it seems inevitable that
preferences for money should somehow be related to future purchasing power, but in
what way? Also note that while in the standard framework there is only one prefer-
ence relation de�ned over all commodities at once, in the ad hoc framework a di¤erent
preference relation is needed for every single period. Then we also need to answer
the question of how these ad hoc preferences would (or should) be related to ad hoc
preferences in di¤erent periods. We will come back to these questions later, but in the
present chapter, we will only consider what happens in an isolated period, and we will
treat ad hoc preferences as being exogenous.

4.3 Ad hoc utility
Again, for mathematical convenience ad hoc preferences will usually be represented by
means of (ad hoc) utility functions.

De�nition 4.3.1 An ad hoc utility function is a utility function de�ned on an ad
hoc commodity space.

Such an ad hoc utility function (that is de�ned on an ad hoc commodity space
corresponding to period t) is typically denoted by u(t) : Wt�1 �Xt � R+ ! R.
Then, as in section 2.2, the question of whether such an ad hoc preference relation

can always be represented by an ad hoc utility function can be posed. Now, note that
although the remaining budget st 2 R+ in this model has a new meaning, mathemati-
cally we still have a choice set in Rkt+1 and the whole mathematical analysis from the
standard framework is still valid. So if we also assume an (ad hoc) preference relation
%(t) to be continuous13 on Wt�1 �Xt � R+, then theorem 2.2.1 tells us that it can be
represented by a continuous ad hoc utility function u(t) : Wt�1 �Xt � R+ ! R.

4.4 The basic ad hoc consumer problem
Similar to consumption bundles, price vectors p are broken up into sequences
p = (p0; p1; p2; :::), where for every t the vector pt 2 Rnt+ nf0g denotes the vector of prices
for the commodities in the corresponding present commodity space Xt. And similarly
to the de�nitions of wt�1 and yt+1, a past price vector will be denoted by ot�1 :=
(p0; p1; :::; pt�1), and a future price vector is denoted qt+1 := (pt+1; pt+2; pt+3; :::).
At time t, our consumer is faced with prices pt 2 Rnt+ nf0g for the goods in Xt, and

if he has an available budget of mt � 0 monetary units, this determines what is feasible
in that period. Here it seems natural to take (pt; 1) as a price vector for bundles in
Xt � R+, so that the monetary value of the bundle (xt; st) in Xt � R+ is given by
13With respect to the usual Euclidian topology.
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p �xt+ st. Thus, the consumer�s choice of elements from the ad hoc choice set will have
to satisfy the budget constraint p � xt + st � mt.

De�nition 4.4.1 At time t, given an ad hoc choice set Xt �R+, prices pt for present
consumption and a budget mt, an ad hoc budget set is a set of all ad hoc choice pairs
(xt; st) that satisfy pt � xt + st � mt.

In the framework as developed in the previous sections we arrived at ad hoc utility
functions from ad hoc preference relations. These ad hoc preference relations were
de�ned on ad hoc commodity spaces that consist of ad hoc commodity bundles. Now
at time t, a past commodity bundle is given and �xed, therefore the decision problem
that a consumer would face should not consist of maximizing ad hoc utility over all ad
hoc commodity bundles that are feasible. Rather, the most straightforward way to put
the elements of the framework together in order to describe the basic (ad hoc) consumer
problem would be as the problem of maximizing ad hoc utility over the elements of the
ad hoc choice set that satisfy a feasibility condition, given the �xed past commodity
bundle.

De�nition 4.4.2 Given a past commodity bundle wt�1 2 Wt�1, an ad hoc utility func-
tion u(t) : Wt�1 � Xt � R+ ! R, a present price vector pt 2 Rnt+ nf0g and a budget
mt � 0, the basic ad hoc consumer problem is given by:

max
(xt;st)

u(t)(wt�1; xt; st) sub to (xt; st) 2 Xt � R+; pt � xt + st � mt:

If the function u(t)(wt�1; :; :) is di¤erentiable in the second and third argument, then
again such an ad hoc consumer problem can be solved by the Lagrange method. If
(x�t ; s

�
t ) 2 Xt � R+ is an internal solution to this maximization problem, then it will

hold that there is a Lagrange multiplier � � 0 such that @u(t)
@xit

= �pi, 8 i 2 f1; 2; :::; ntg,
and such that @u

(t)

@st
= �. Therefore we see that @u

(t)

@xit

1
pi
= @u(t)

@xjt

1
pj
= � = @u(t)

@st
, for all i and

j 2 f1; 2; :::; ntg. So in an internal solution, the quantities of each of the commodities
in Xt will be such that the marginal utility with respect to such a commodity, divided
by its price, is the same for each of these commodities, and is equal to the marginal
utility of money. Within this framework it also still holds that � = @v(t)

@mt
(p;mt), where

v(t)(p;mt) is the indirect utility function associated with u(t). Hence we see that because
we set the price of st to be 1, it holds that at the optimum the marginal utility of money
@u(t)

@st
is equal to the marginal value of budget @v

(t)

@mt
. So here the marginal utility of money

@u(t)

@st
plays the same role as the marginal utility of budget did in the standard framework.
We also see that

MRSij =
@u(t)=@xit
@u(t)=@xjt

=
pi

pj

for all i and j 2 f1; 2; :::; ntg, and that

MRSir =
@u(t)=@xit
@u(t)=@st

= pi
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for all i 2 f1; 2; :::; ntg. So for any pair of commodities in Xt, the marginal rate of
substitution between these goods is equal to the ratio of their prices. The marginal
rate of substitution between any of the Xt-goods and money st is equal to the price of
this good.
Remember that while in the standard framework this equality of marginal rates of

substitution and price ratios holds for all pairs of commodities (in X), here this doesn�t
have to be true. Here it holds only for all pairs of goods in Xt, and doesn�t have to
hold for other goods outside of Xt. And while this quotient of marginal utility and
price will be constant again within other sets of commodities that are decided upon
simultaneously, within this new framework it is possible that this quotient may di¤er
between these di¤erent sets.
So from this analysis we also see that money can be seen as sort of an auxiliary good

that helps to distribute consumption or utility e¢ ciently over the di¤erent periods. We
also see that here utility might not be distributed in such a completely e¢ cient way as
in the standard framework.
All the assumptions that are made thus far in this chapter are summarized into the

following axiom.

Axiom 4.4.1 In every period, a consumer is assumed to be endowed with a continuous
ad hoc preference relation that can be represented by a continuous utility function, and
to choose an element from the corresponding ad hoc choice set, that solves the relevant
basic ad hoc consumer problem.

4.4.1 Ad hoc utility and basic ad hoc consumer problems in dynamic pro-
gramming

In the above subsection dealing with dynamic programming, it was already noted that
the ad hoc framework presented here, and the approach towards solving consump-
tion/savings models using dynamic programming, are somewhat similar in the sense
that they both start from considering subproblems, rather than taking all variables
into account at once. Now, the similarity between the ideas presented here and the
ideas behind dynamic programming can be further extended to the notions of ad hoc
utility (and ad hoc preferences) and of the basic ad hoc consumer problem.
Dynamic programming starts from problems such as

max
(ct;st)

[u0(ct) + �V (st + I)] sub to ct + st � mt: (1)

(Remember that to make these models stationary we set It = I, for all t.) This
maximization problem looks like a basic ad hoc consumer problem, as the space R+�R+
over which the maximization is done, can be seen as an ad hoc choice set. The set of
all elements of this space that satisfy the constraint ct + st � mt can be seen as an
ad hoc budget set. And the function u0(ct) + �V (st + I) that is being maximized in
this problem looks like an ad hoc utility function. Of course, in our account at period
t an ad hoc utility function u(t) would have to be de�ned on the ad hoc commodity

63



LEARNING IN CONSUMER CHOICE

space Wt�1�R+�R+ and should therefore also include past consumption. The above
function u0(ct) + �V (st + I) is only de�ned on the set R+ � R+.
Still, recall that the methods of dynamic programming are only used in models

with additively separable total utility
P1

t=0 �
tu0(ct). Therefore the utility of future

consumption after period t also enters this total utility function additively. And since
the function V is devised exactly to collapse the desirability of the whole consumption
future after period t into the single variable of period-t savings, it seems that the
function u(t) : Wt�1 � R+ � R+ ! R, as de�ned by

u(t)(wt�1; ct; st) = u
(t)(c0; c1; :::; ct; st) =

tX
i=0

�iu0(ci) + �
t+1V (st + I); (2)

would be a good candidate to specify an ad hoc utility function.
Then, for a past commodity bundle wt�1 = (c0; c1; :::; ct�1) 2 Wt�1 and a period-

t budget mt 2 R+ given, the corresponding basic ad hoc consumer problem could
be represented as a maximization of the ad hoc utility function in (2) over the set
f(ct; st) 2 R+ �R+ : ct + st � mtg. And as the past commodity bundle wt�1 2 Wt�1 is
�xed, this basic ad hoc consumer problem is indeed very similar to the problem in (1).
In fact, for a �xed wt�1 the function in (2) equals the function in (1) plus a constant,
so it is clear that the pair (c�t ; s

�
t ) will solve the problem of maximizing u(t) in (2) (for

wt�1 2 Wt�1 given) over the ad hoc choice set ct + st � mt, if and only if it will solve
the maximization problem from the functional equation in (1). Thus, the maximization
problems inside functional equations are indeed very similar to basic ad hoc consumer
problems.
However, the methods of dynamic programming are made consistent by �nding not

just any, but one particularly appropriate choice for the value function V , namely the
value function V � that solves the functional equation

V �(mt) = max
(ct;st):ct+st�mt

[u0(ct) + �V
�(st + I)];

and that consequently also gives the maximally attainable additional future utility.
Therefore as we will see more clearly in the next chapter, a decision-maker who

chooses in basic ad hoc consumer problems by means of ad hoc preferences as in (2),
using an optimal value function that solves the corresponding functional equation, is no
less rational than a decision-maker solving the problem at once in a sequence problem.
This solution to a functional equation is equally well based on perfect foresight and
perfect rationality; it is simply a more convenient way to �nd a solution to the same
problem. Still, as the problem that is being solved inside a functional equation can be
seen as a basic ad hoc consumer problem, the ideas behind the ad hoc framework are
somewhat similar to the ideas behind dynamic programming.

The ad hoc framework in consumption/savings models Aside from the similar-
ities that exist between the ad hoc framework and the dynamic programming approach
to solving consumption/savings models, of course the ad hoc framework can also just
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be modelled in consumption/savings models. Solving a dynamic program can really
be quite a complicated task, which is the reason why �nding ways to solve them is a
science by itself. Therefore in such settings we may also want to consider the possibility
of boundedly rational behaviour, as postulated in the above axiom.
We would again start from a decision-maker who subdivides the problem of what to

decide in a consumption/savings problem into di¤erent subproblems, or ad hoc prob-
lems. Any of these subproblems that our boundedly rational consumer would face, say
at time t, would in fact consist of dividing resources into period-t consumption ct and
period-t savings st. And each of these trade-o¤s are supposed to be made by using ad
hoc preferences u(t)(wt�1; ct; st).
Total utility, which our consumer would apparently �nd too complicated to maxi-

mize at once, would still be of the additive form
P1

t=0 �
tu0(ct), and would therefore also

be additive in future utility. And, because of this additive separability of the function
he should optimally be trying to solve, it seems rather straightforward to keep using this
additive separability assumption for his ad hoc preferences. That is, we may assume
here that the ad hoc preferences will take the form:

u(t)(wt�1; ct; st) = u
(t)(c0; c1; :::; ct; st) =

tX
i=0

�iu0(ci) + eV (st)
for some value function eV : R+ ! R. In order to stay closer to the notation and
interpretation of the value function as in dynamic programming, here we choose the
more speci�c form �t+1V (st + I) for eV (st):

u(t)(wt�1; ct; st) =
tX
i=0

�iu0(ci) + �
t+1V (st + I):

Trying to maximize this function over some budget constraint ct + st � mt, given
past choices wt�1, indeed does look simpler. However, the problem of what value
function V to use, still remains. As we saw, the value function V � that solves the
corresponding functional equation would be the best choice, as it simply collapses the
whole consumption future into one single monetary variable in an optimal way.
Here we do not yet try to answer the question of which value function is used and

simply treat such a value function as given. In later chapters we will come back to the
questions of which value function will (or could) be used. �

In this chapter we started the formal set-up for a new, alternative framework. We
postulated that series of subproblems and subdecisions are considered, and that each
of these subproblems consists of choosing how much to consume and how much to save
in that period. These choices are supposed to be arrived at, from maximizing (ad hoc)
preferences over all a¤ordable combinations of present consumption and savings.
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In the previous chapter a �rst component of the alternative ad hoc framework was
introduced. In that chapter we distinguished sequences of consumption subdecisions,
and modelled how choices would be made in any period (subdecision) in isolation. The
previous chapter did not yet specify how the individual periods would be linked; these
speci�cations will follow in chapter 6.
But before we close the model, this chapter investigates the links and relations that

exist between the alternative ad hoc framework as presented so far, and the standard
framework. That is, this chapter focuses on the links between the alternative view of ad
hoc preference relations and ad hoc maximization problems on the one hand, and the
standard view of total preference relations and corresponding maximization problems
on the other hand. We will see that the alternative view is not incompatible with the
standard view. More speci�cally, we will see that the standard framework can be seen
as a special case of the alternative ad hoc framework, or equivalently, that the ad hoc
framework introduced here can be seen as an extension of the standard framework.
In order to demonstrate this, we will show that it is always possible to consistently

model ad hoc preferences within the standard framework, and by showing that is not
always possible to consistently model a standard framework �around�a system of ad hoc
preferences. That is, we will see that total preferences within the standard framework
can always be summarized consistently into ad hoc preferences. And we will also see
that for a single given ad hoc preference relation there usually exists total preferences
such that the ad hoc preferences summarize these total preferences consistently, but
that for multiple given ad hoc preference relations there generally does not exist total
preferences that can consistently be summarized into each of the ad hoc preference
relations. Only if these di¤erent ad hoc preferences are related in some speci�c way,
then there will be total preferences that can be consistently summarized into each of
the ad hoc preference relations.
The exact way in which the di¤erent ad hoc preferences should be related in order

to be consistent with the standard framework also gives a �rst answer as to how the
di¤erent periods could be linked within the alternative ad hoc framework. That is,
the extra assumptions needed to make the ad hoc framework agree exactly with the
standard framework, provide a way in which the links across periods can be speci�ed.
In fact, this speci�cation of the links between periods will serve as a benchmark in later
chapters.

This chapter consists of four sections. The �rst section will specify what is meant by
the aforementioned property that total preferences would be consistently summarized
into ad hoc preferences, by providing formal de�nitions for consistency between ad hoc
preferences (or utility) and total preferences (or utility).
The second section shows that from total preferences as speci�ed in the standard

microeconomic framework, we can always derive ad hoc preferences in a consistent way.
Essentially this result says that the global problem from the standard framework can
be correctly summarized into local problems in the ad hoc framework.
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The third section investigates the converse direction: are the speci�cations of the ad
hoc framework non-contradictory with the speci�cations of the standard framework? In
case only a single period�s ad hoc preferences would be given, the answer will turn out
to be a¢ rmative: we can generally �nd total preferences within the standard framework
with which the given ad hoc preferences are consistent. In case multiple periods�ad hoc
preferences would be given, the answer is less clear-cut: there will exist total preferences
within the standard framework with which all of the given ad hoc preferences are
consistent, only if these di¤erent ad hoc preference relations are related in a certain
way.
The fourth section investigates whether properties of functional separability would

be carried over from total utility functions to consistent ad hoc utility functions.

5.1 Consistency
In this chapter we investigate how the ad hoc framework, or the notion of ad hoc
preferences, is related to the standard framework, or the notion of total preferences. We
investigate whether from a given total preference ordering on a total commodity space,
we can always derive an ad hoc preference ordering on some smaller ad hoc commodity
space, such that these ad hoc preferences basically re�ect the same preferences as the
original total preference ordering. And conversely, we investigate whether for a given ad
hoc preference ordering on some ad hoc commodity space, there exists a total preference
ordering on some larger total commodity space, such that the ad hoc preferences re�ect
the same preferences as the total preference ordering. In order to be able to make
these investigations precise, we will �rst need to specify what is exactly meant by this
property that total preferences can be consistently summarized into ad hoc preferences,
so that ad hoc preferences would re�ect the same preferences as total preferences.

A precise de�nition of this property can only be given within a setting where total
preferences are well-de�ned: in the standard static framework, either under certainty
or under uncertainty. First we will de�ne the property of consistency in models of
certainty, and later in this section we will do the same in expected utility models.
Hence, the present section is set within the standard microeconomic framework

under certainty, and we assume that a commodity space X = R1+ is known and given.
Also given is a discrete time variable t that progresses through the set f0; 1; 2; :::g.
Accordingly, the commodity space X is written as a Cartesian product X = �1t=0Xt,
where Xt = Rnt+ and nt 2 N. Similarly, the prevailing price vector p is known, and
broken down into a sequence p = (p0; p1; p2; :::) with pt 2 Rnt+ nf0g, and an income
stream fm0; I1; I2; :::g is given. Also given is a continuous preference relation % on X,
that can be represented by a continuous utility function u : X ! R.
Now, within this setting we consider the situation at time t. Not all commodities

are to be purchased at the same time, and here we suppose that particular interest is
in just the subset of all goods that can be purchased in period t. At time t, �wt�1 :=
(�x0; �x1; :::; �xt�1) was already chosen from the set Wt�1 := X0 � X1 � ::: � Xt�1, and
a decision is required with respect to how much of each of the nt goods to purchase,
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and how much of the budget mt should be saved for later. Thus, Xt � R+ denotes
the ad hoc choice set at time t, where the last dimension of this set denotes savings
for consumption from Yt+1 = �1i=t+1Xi. In subsequent periods decisions will have to
be made as to how to spend the remaining budget on the goods in Yt+1. All of these
decisions are, however, still based on u : X ! R, so preferences are stated for all goods
simultaneously.

The problem of translating money (savings) into optimally chosen future consump-
tion bundles (and with it the idea of consistency) was already touched on in those
(sub)sections of the previous chapter dealing with dynamic programming. Here we will
further specify these ideas in a dynamic programming setting, to motivate the formal
de�nition of consistency in more general settings.

5.1.1 Dynamic programming

Recall that in consumption/savings models total preferences are additively separable
and satisfy exponential discounting, so that they can be represented by

P1
t=0 �

tu0(ct).
Such a utility function would then have to be maximized over a budget set. If the model
were stationary (i.e. It = I, 8t), then a convenient way to solve such a maximization
problem would be by using the methods of dynamic programming, more speci�cally by
a functional equation

V �(mt) = max
ct+st�mt

fu0(ct) + �V �(st + I)g:

As seen in the previous chapter, the function that is maximized inside the functional
equation u0(ct) + �V �(st + I) is like an ad hoc utility function, and the maximization
problem inside the functional equation is like a basic ad hoc consumer problem.
More precisely, in the previous chapter we saw that the only di¤erence with a basic

ad hoc consumer problem is the function u0(ct) + �V �(st + I) that is being maximized
inside the functional equation. That is, given a value function V �(:) that gives the
maximally attainable discounted future utility, at time t a full-blown ad hoc utility
function u(t) : Wt�1 � R+ � R+ ! R would optimally be of the form

u(t)(wt�1; ct; st) = u
(t)(c0; c1; :::; ct; st) =

tX
i=0

�iu0(ci) + �
t+1V �(st + I):

Past consumption does enter this optimal ad hoc utility function, but it does not enter
the function that is being maximized inside the functional equation. However, the
past also enters the above optimal ad hoc utility function in an additive way. And at
time t the past commodity bundle wt�1 = (c0; c1; :::; ct�1) is �xed, so that this ad hoc
utility function is to be maximized over ct and st only. Therefore in maximization,
past utility

Pt�1
i=0 �

iu0(ci) will drop out. Hence the di¤erence between the maximization
problem from the above functional equation and the basic ad hoc consumer problem is
inconsequential as both yield the same choices.
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And in the second chapter we saw that in general, a decision-maker who would
solve the appropriate functional equations with the optimal value function V � to make
choices, will end up making exactly the same decisions as a decision-maker solving the
sequence problem in (c0; c1; c2; :::) directly. This equivalence is due to the fact that
this V � that solves the above functional equation, also gives the maximal value for the
sequence problem in which the utility function

P1
t=0 �

tu(ct) is directly maximized over
the appropriate budget set, and the fact that by stationarity the period-t problem is an
exact copy of the period-0 problem. Therefore implicit in using the ad hoc preferences
u(t)(ct; st) =

Pt
i=0 �

iu(ci) + �
t+1V �(st + I) is the property that any budget that will be

saved into period t will also be spent optimally afterwards.
So in a sense, in the present case we see that the analysis on the total commodity

space X can be correctly �summarized�to an analysis on the ad hoc choice set R+�R+.
From total preferences, ad hoc preferences can be found that basically represent the
same preferences (and that yield the same choices), so that these ad hoc preferences
can be called consistent with the original total preferences. �

Thus, the notion of consistency is related to the property that money saved will
always be spent optimally afterwards. Therefore in order to de�ne consistency it needs
to be speci�ed what future consumption would be feasible in a certain situation with
savings, a future commodity space, future income and future prices given. Recall that
in period t a future price vector is given by a vector qt := (pt; pt+1; pt+2; :::), with
p� 2 Rn�+ n f0g for all � � t, that speci�es all prices as of period t. Similarly, we can
de�ne a future income stream as a vector Jt := (It; It+1; It+2; :::), with I� 2 R+
for all � � t that speci�es all additional incomes that will be obtained from period
t onwards. For t = 0, a future income stream is simply equal to an income stream
J0 := (m0; I1; I2; :::).

De�nition 5.1.1 Given a future price vector qt, an amount of savings st�1 2 R+, and
a future income stream Jt, a future budget set as of period t is a set

Bt(qt; st�1; Jt) = f(xt; xt+1; :::) 2 Yt :
�X
i=t

pi � xi � st�1 +
�X
i=t

Ii;8� � tg,

and a strict future budget set is a set

�Bt(qt; st�1; Jt) = f(xt; xt; :::) 2 Yt :
�X
i=t

pi � xi < st�1 +
�X
i=t

Ii;8� � tg.

For period 0, there is no previous period so there will also be no savings brought into
this period, and a future budget set for this �rst period can be denoted by B0(p; 0; J0),
or by B0(q0; 0; J0).
Thus, a future budget set speci�es all the future commodity bundles that will be

a¤ordable after period t � 1, given a future price vector qt, an amount of savings
st�1 2 R+ that is brought over from the previous period, and a future income stream
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Jt. And similarly for the strict future budget set, where the only di¤erence is that all
budget constraints will have to hold strictly.
The following de�nitions specify the property of consistency, both in terms of pref-

erence relations and in terms of utility functions, in the general setting under certainty.
In the next subsection consistency will also be formally de�ned under uncertainty.

De�nition 5.1.2 An ad hoc preference relation %(t)on the ad hoc commodity space
Wt�1 �Xt � R+ is called consistent with a (total) preference relation % on the com-
modity space X = Wt�1 � Xt � Yt+1, given some future price vector qt+1 and some
future income stream Jt+1, if for all (wt�1; xt; st); (w0t�1; x

0
t; s

0
t) 2 Wt�1 � Xt � R+ it

holds that (wt�1; xt; st) %(t) (w0t�1; x0t; s0t) if for every y0t+1 2 �Bt+1(qt+1; s0t; Jt+1) there is
a yt+1 2 �Bt+1(qt+1; st; Jt+1) such that (wt�1; xt; yt+1) % (w0t�1; x0t; y0t+1).

De�nition 5.1.3 An ad hoc utility function u(t) : Wt�1 � Xt � R+ ! R is called
consistent with a total utility function u : X ! R, given a future price vector qt+1 and
a future income stream Jt+1, if there is some strictly increasing function f : R ! R
such that

u(t)(wt�1; xt; st) = f( sup
yt+12Bt+1(qt+1;st;Jt+1)

u(wt�1; xt; yt+1));

for all (wt�1; xt; st) 2 Wt�1 �Xt � R+.

These de�nitions may need some explaining.
Firstly, notice that in the second de�nition we have f : R! R (recall that R denotes

the extended real numbers R [ f1g), rather than (for instance) f : R ! R. At this
point it may not be clear why we would allow the +1 to be both in the domain and
in the range of the strictly increasing functions f .
A �rst thing to note here is that the speci�c form of such a function f will depend

on the given functions u and u(t). Therefore such a function f need not in all cases take
the value +1. Still, we do want to allow for it.
As for why R is the domain of f , since the future commodity space Yt+1 has in�nite

dimension, it would get quite complicated to ensure that the suprema
supyt+1 u(wt�1; xt; yt+1) would always be �nite-valued. This problem can be avoided
by allowing for f(1) to be well-de�ned.
The fact that we also allowed for the possibility to include the +1 into the range of

f may seem even more puzzling. After all, since u(t) is de�ned into the real numbers R,
we see that f(supyt+1 u(wt�1; xt; yt+1)) = 1 can never occur. The reason for de�ning
f into R has to do with the fact that we also want to allow for such a function f to be
unbounded on R. By strict increasingness of f , it must hold that f(c) < f(1) � 1,
for all c 2 R. Therefore f : R ! R would give that f(1) 2 R, and thus that f
would be bounded from above. And while this may not be problematic or undesirable
in some cases, it would for instance exclude the possibility to have the identity function
f(c) = c, even in cases where the suprema supyt+1 u(wt�1; xt; yt+1) would always be
�nite-valued. This limitation can be avoided by allowing for f(1) =1.
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Thus in cases where all suprema supyt+1 u(wt�1; xt; yt+1) would be �nite-valued, it
would be inconsequential what value we would assign to f(1), in the sense that this
value will never be attained by u(t) anyway. If f would be bounded from above on R,
then f(1) may either be �nite (but larger that the upper bound) or in�nite. If f would
not be bounded from above on R, then f(1) must be in�nite.
In cases where not all suprema supyt+1 u(wt�1; xt; yt+1) would be �nite-valued, f(1)

must be �nite, as f(supyt+1 u(wt�1; xt; yt+1)) must always be �nite.
Secondly, also notice that whereas in the �rst de�nition sets such as

�Bt+1(qt+1; st; Jt+1) (with strict budget constraints) are used, in the second de�nition
suprema are taken over the budget sets Bt+1(qt+1; st; Jt+1) that are closed. Also note
that for continuous utility functions we could also have used the �rst type of sets in
the second de�nition, as a supremum of a continuous function over any set will always
be the same as the supremum of the same function over the closure of this �rst set.
Still, it might be a bit counter-intuitive to see the �rst type of sets �Bt+1(qt+1; st; Jt+1)
appear in any of the de�nitions. The reason why strict budget sets are used in the �rst
de�nition is that, if we had used the closed budget sets in both de�nitions, then these
de�nitions would not permit links as in the next proposition, because of problems with
suprema being attained or not.

From the de�nition of u(t) being consistent with u, it also follows immediately that
such a consistent u(t)(wt�1; xt; st) will be non-decreasing in st. After all, for st > s0t we
know that Bt+1(qt+1; s0t; Jt+1) is a subset of Bt+1(qt+1; st; Jt+1). And a supremum of a
function over a set is never larger than the supremum of the same function over a larger
set. Thus indeed the consistent u(t)(wt�1; xt; st) is non-decreasing in st.
Similarly, if %(t) is consistent with %, then st is weakly good in %(t). To see

this, for st > s0t we also get that �Bt+1(qt+1; s
0
t; Jt+1) � �Bt+1(qt+1; st; Jt+1), so y0t+1 2

�Bt+1(qt+1; s
0
t; Jt+1) implies that y

0
t+1 2 �Bt+1(qt+1; st; Jt+1). Therefore for all (wt�1; xt) 2

Wt�1 � Xt we see that for every y0t+1 2 �Bt+1(qt+1; s
0
t; Jt+1) there esists a

y0t+1 2 �Bt+1(qt+1; st; Jt+1) such that (wt�1; xt; y0t+1) % (wt�1; xt; y0t+1). This implies that
(wt�1; xt; st) % (wt�1; xt; s0t), and thus st is weakly good in %(t).
The next proposition justi�es why the term consistency is used for both preference

relations and utility functions.

Proposition 5.1.1 Assume given for some time t 2 N0 an ad hoc preference relation
%(t) on the ad hoc commodity space Wt�1 �Xt � R+ for which the last argument st is
strongly good in %(t), and a continuous ad hoc utility function u(t) that represents %(t).
Also assume given a preference relation % on the commodity space X = Wt�1�Xt�Yt+1
for which at least one of the commodities in Yt+1 is strongly good in %, a continuous
utility function u that represents %, a future price vector qt+1, and a future income
stream Jt+1. Then %(t) is consistent with %, given qt+1 and Jt+1, if and only if u(t) is
consistent with u, given qt+1 and Jt+1.

Proof. N First we prove the �if�part. Suppose that u(t) : Wt�1 � Xt � R+ ! R is
consistent with u : X ! R, given qt+1 = (pt+1; pt+2; :::) (with p� 2 Rn�+ n f0g, n� 2 N,
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for all � � t + 1) and Jt+1 := (It+1; It+2; :::) (with I� 2 R+ for all � � t + 1). Then
there exists some strictly increasing function f : R! R such that for all (wt�1; xt; st) 2
Wt�1 �Xt � R+, it holds that

u(t)(wt�1; xt; st) = f( sup
yt+12Bt+1(qt+1;st;Jt+1)

u(wt�1; xt; yt+1)):

Since both the future price vector qt+1 and the future income stream Jt+1 are �xed,
throughout this proof we will use the notation Bt+1(st) rather than Bt+1(qt+1; st; Jt+1).
(Similarly we write �Bt+1(st) in stead of �Bt+1(qt+1; st; Jt+1).)
We now want to show that indeed %(t) is consistent with %, given qt+1 and Jt+1.

Let (wt�1; xt; st); (w0t�1; x
0
t; s

0
t) 2 Xt � R+ be such that (wt�1; xt; st) %(t) (w0t�1; x0t; s0t).

We then have that

(wt�1; xt; st) %(t) (w0t�1; x0t; s0t), u(t)(wt�1; xt; st) � u(t)(w0t�1; x0t; s0t),

f( sup
yt+12Bt+1(st)

u(wt�1; xt; yt+1)) � f( sup
yt+12Bt+1(s0t)

u(w0t�1; x
0
t; yt+1)),

sup
yt+12Bt+1(st)

u(wt�1; xt; yt+1) � sup
yt+12Bt+1(s0t)

u(w0t�1; x
0
t; yt+1),

8y0t+1 2 �Bt+1(s0t);9yt+1 2 �Bt+1(st) such that u(wt�1; xt; yt+1) � u(w0t�1; x0t; y0t+1)

, 8y0t+1 2 �Bt+1(s0t);9yt+1 2 �Bt+1(st) such that (wt�1; xt; yt+1) % (w0t�1; x0t; y0t+1):
Note that if the above equivalences are correct, the �rst statement holds if and only if
the last statement holds, which exactly speci�es the de�nition of %(t) being consistent
with %, given qt+1 and Jt+1. The third of the above equivalences follows by strict
increasingness of f . The next to last �,�may need a bit of explanation.
For the �)�, suppose that

sup
yt+12Bt+1(st)

u(wt�1; xt; yt+1) � sup
yt+12Bt+1(s0t)

u(w0t�1; x
0
t; yt+1)

is given. The preference relation % is such that at least one of the commodities in Yt+1
is strongly good in %, and the function u must be strictly increasing in this commodity.
Therefore since the set �Bt+1 is de�ned by means of strict budget inequalities, it must
hold that

sup
yt+12Bt+1(s0t)

u(w0t�1; x
0
t; yt+1) > u(w

0
t�1; x

0
t; y

0
t+1);8y0t+1 2 �Bt+1(s0t):

This also implies that

sup
yt+12Bt+1(st)

u(wt�1; xt; yt+1) > u(w
0
t�1; x

0
t; y

0
t+1);8y0t+1 2 �Bt+1(s0t):

Then by continuity of u we get that for all y0t+1 2 �Bt+1(s0t), there must exist a yt+1 2
�Bt+1(st), such that u(wt�1; xt; yt+1) � u(w0t�1; x0t; y0t+1), which proves �)�.
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Now, suppose that the other direction �(�does not hold. That is, suppose that the
last statement holds: for all y0t+1 2 �Bt+1(s0t), there exists a yt+1 2 �Bt+1(st), such that
u(wt�1; xt; yt+1) � u(w0t�1; x0t; y0t+1). And, contradictory to �(�, suppose that

sup
yt+12Bt+1(st)

u(wt�1; xt; yt+1) < sup
yt+12Bt+1(s0t)

u(w0t�1; x
0
t; yt+1):

Then by continuity there must be some y0t+1 2 �Bt+1(s0t), such that

sup
yt+12Bt+1(st)

u(wt�1; xt; yt+1) < u(w
0
t�1; x

0
t; y

0
t+1):

But now, from the statement we started with, we know that for this y0t+1 2 �Bt+1(s
0
t)

there must also be a yt+1 2 �Bt+1(st) such that

u(wt�1; xt; yt+1) � u(w0t�1; x0t; y0t+1) > sup
yt+12Bt+1(st)

u(wt�1; xt; yt+1):

This is obviously impossible.
Thus indeed, �,�holds, and we see that %(t) is consistent with %, given qt+1 and

Jt+1.
N For the �only if�part, suppose that %(t) on Wt�1 �Xt � R+ is consistent with %

on X, given qt+1 and Jt+1. And suppose given some utility function u that represents
%, and some ad hoc utility function u(t) : Wt�1 � Xt � R+ ! R that represents %(t).
We now want to prove that u(t) is also consistent with u, given qt+1 and Jt+1, i.e. that
u(t) can be written as:

u(t)(wt�1; xt; st) = f( sup
yt+12Bt+1(st)

u(wt�1; xt; yt+1));

for some strictly increasing function f : R! R.
It is given that for all (wt�1; xt; st) and (w0t�1; x

0
t; s

0
t) 2 Wt�1�Xt�R+ it holds that

(wt�1; xt; st) %(t) (w0t�1; x0t; s0t),

8y0t+1 2 �Bt+1(s0t);9yt+1 2 �Bt+1(st) such that (wt�1; xt; yt+1) % (w0t�1; x0t; y0t+1),

8y0t+1 2 �Bt+1(s0t);9yt+1 2 �Bt+1(st) such that u(wt�1; xt; yt+1) � u(w0t�1; x0t; y0t+1)
, sup

yt+12Bt+1(st)
u(wt�1; xt; yt+1) � sup

yt+12Bt+1(s0t)
u(w0t�1; x

0
t; yt+1):

Here the �rst equivalence holds by de�nition of consistency of %(t) with %. The last
equivalence is the same as the next to last equivalence needed in the �if�part of this
proof, which was already established to hold above. Now we see that for all (wt�1; xt; st)
and (w0t�1; x

0
t; s

0
t) 2 Wt�1 �Xt � R+ we have

u(t)(wt�1; xt; st) � u(t)(w0t�1; x0t; s0t), (wt�1; xt; st) %(t) (w0t�1; x0t; s0t),
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sup
yt+12Bt+1(st)

u(wt�1; xt; yt+1) � sup
yt+12Bt+1(s0t)

u(w0t�1; x
0
t; yt+1):

Then it is possible to construct a function f : R! R such that

u(t)(wt�1; xt; st) = f( sup
yt+12Bt+1(st)

u(wt�1; xt; yt+1)),

and this function will necessarily have to be strictly increasing. Hence indeed, u(t) is
consistent with u, given qt+1 and Jt+1.

5.1.2 Expected utility

Next, we will de�ne consistency of ad hoc utility functions with total (Bernouilli) utility
functions in expected utility models.
Recall from chapter 2 that in models of expected utility a state space 
, and an

accompanying probability distribution � : 
! [0; 1] would be given. In a setting where
time is explicitly modelled, the states ! 2 
 would be broken up into sequences of !t�s,
so that ! = (!0; !1; !2; :::). Then by !t = (Xt; pt; It) we would denote the prevailing
period-t part of the state of the world, consisting of a period-t commodity space, a
period-t price vector, and a period-t additional income (I0 = m0). These period-t
states of the world !t were supposed not to become known until time t.
For two periods t < � , by !�t we denote the vector of all period-i states of the world,

where i ranges from period t up to period � : !�t = (!t; !t+1; :::; !� ). By !
1
t we denote

a complete future state of the world (!t; !t+1; :::).
Then, between periods t and t + 1 (for any t), the vector of past states !t0 =

(!0; !1; :::; !t) are known, and the vector of future states !1t+1 that is yet to occur, is
not. We denote the set of all �nal states of the world ! that can occur, given !t0, by
f!t0g � 
1t+1. Such a future state space 
1t+1 would also give rise to a set ~Yt+1 that
denotes the union of all the future commodity spaces Yt+1 = �1i=t+1Xi that may occur
as part of some future state of the world !1t+1.
In subsection 2.6.3 we also wrote acts as sequences:

a(!) = (a0(!0); a1(!
1
0); a2(!

2
0); :::):

Between periods t and t + 1, the vector of past states !t0 is given, and the actions
wt = (a0; a1; :::; at) were already taken. Hence between periods t and t + 1, !t0 and
wt (and an amount of savings st) are given, and a choice bt+1 = (at+1; at+2; :::) 2 ~Yt+1
of what to purchase from period t + 1 onwards will still have to be made. What can
possibly be chosen here, depends on the prevailing state of the world ! = (!t0; !

1
t+1).

Thus such an act can now be denoted by a function bt+1 : f!t0g�
1t+1 ! ~Yt+1. However,
the way in which this choice bt+1 may depend on !, should satisfy a few conditions.
Firstly, for � � t + 1 the period-� state !� does not become known until period � ,

so as in chapter 2 the period-� act a� may only depend on !�0. Thus

bt+1(!) = (at+1(!
t+1
0 ); at+2(!

t+2
0 ); :::):
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Secondly, if ! would be such that the period-� commodity space X� would be part
of !� , then obviously a� (!�0) 2 X� . That is, if the future commodity space Yt+1 is part
of the future state !1t+1, then obviously bt+1(!) 2 Yt+1 should hold.
Thirdly, the choice bt+1(!) = (at+1(!

t+1
0 ); at+2(!

t+2
0 ); :::) should also be feasible.

That is, for any vector of realizations !�t+1 of the states of the world in periods t + 1
through � , the prices (pt+1(!t+1); :::; p� (!� )) of consumption from the corresponding
space Xt+1 � ::: � X� , and the additional incomes (It+1(!t+1); :::; I� (!� )) obtained in
the periods between t+1 and � , help determine what is a¤ordable in period � � t+1. As
before, for an amount of savings st, and the previous choices (at+1(!t+10 ); :::; a��1(!

��1
0 ))

given, any choice a� (!�0) should be such that what is spent p� (!� ) � a� (!�0) in period �
should never exceed the budget

m� := st +

�X
i=t+1

Ii(!i)�
��1X
i=t+1

pi(!i) � ai(!i0) (z)

that is available in period � .
All these requirements on which choices bt+1(!) can be made in later periods are

summarized in the speci�cation of the future budget set.

De�nition 5.1.4 Given an amount of savings st 2 R+, a past state of the world !t0,
a future state space 
1t+1 and a set of future consumption possibilities ~Yt+1, a future
budget set as of period t+ 1 is a set

Bt+1(st) =

8<:
bt+1(!) = (at+1(!

t+1
0 ); at+2(!

t+2
0 ); :::);

bt+1 : f!t0g � 
1t+1 ! ~Yt+1 :8� � t+ 1 : a� (!�0) 2 X� if !� = (X� ; p� ; I� );
8� � t+ 1 : p� (!� ) � a� (!�0) � m� :

9=;
Here m� is as in (z).

With this de�nition we can now also de�ne consistency of ad hoc utility functions
in expected utility models. Analogously to the corresponding de�nition in models
under certainty, consistency would mean that money is optimally translated into future
consumption.

De�nition 5.1.5 Given a past state of the world !t0, a future state space 

1
t+1 and a

probability distribution � : 
! [0; 1], an ad hoc utility function u(t) : Wt�1�Xt�R+ !
R is called consistent with a (total) Bernouilli utility function u : ~X ! R, if there
exists some strictly increasing function f : R! R such that

u(t)(wt�1; xt; st) = f( sup
bt+12Bt+1(st)

E�(!j!t0)u(wt�1; xt; bt+1(!));

for all (wt�1; xt; st) 2 Wt�1 �Xt � R+.

The remainder of this chapter is completely set under certainty. This de�nition of
consistency in expected utility models is presented here because we will need a formal
de�nition in later chapters.
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5.2 From total to ad hoc preferences
In this section we investigate whether in general within the standard microeconomic
framework under certainty, for a given preference structure on a total commodity space
X there exists an ad hoc preference structure on some ad hoc commodity spaceWt�1�
Xt � R+, that is consistent with the original total preference structure.
In the above dynamic programming example we argued that the answer was a¢ rma-

tive. This section shows that in a more general setting the answer is a¢ rmative as well:
for future prices and a future income stream as of next period given, total preferences
on X can also be seen to de�ne consistent ad hoc preferences on Wt�1 �Xt � R+.

Proposition 5.2.1 Suppose a (total) utility function u : X ! R is given. Then, for
any time t 2 N0, any future price vector qt+1 and any future income stream Jt+1 given,
there exists an ad hoc utility function u(t) : Wt�1�Xt�R+ ! R that is consistent with
u, given qt+1 and Jt+1.

Proof. The function u (:) is a (total) utility function on the (total) commodity space
X. For a given time t 2 N0, some system of future prices qt+1 = (pt+1; pt+2; :::) (with
p� 2 Rn�+ nf0g, n� 2 N, for all � � t+1) and a future income stream Jt+1 = (It+1; It+2; :::)
(with I� 2 R+ for all � � t + 1) are given. Given t, we can also write X =
Wt�1 �Xt � Yt+1.
Then the new function g : Wt�1 �Xt � R+ ! R, given by

g(wt�1; xt; st) := sup
yt+12Bt+1(qt+1;st;Jt+1)

u(wt�1; xt; yt+1),

for all (wt�1; xt; st) 2 Wt�1�Xt�R+, can be derived from u. The set Bt+1(qt+1; st; Jt+1)
is never empty as it always contains the zero-vector in Yt+1, so that g is a well-de�ned
function mapping Wt�1 � Xt � R+ into the extended real numbers R. Thus, for any
strictly increasing function f : R! R, we see that the function u(t) : Wt�1�Xt�R+ !
R, as de�ned by u(t)(wt�1; xt; st) := f(g(wt�1; xt; st)) is a well-de�ned ad hoc utility
function. Moreover, by de�nition u(t) satis�es the criteria for being consistent with u,
given qt+1 and Jt+1, which concludes the proof.

Thus within the standard framework, from given total preferences on total commod-
ity bundles we can derive consistent ad hoc preferences on ad hoc commodity bundles.
Moreover, this property holds for all periods. However, as mentioned before, in this
setting comparisons are still essentially made for all goods simultaneously; the actual
introspective process of determining what you like is still done all goods at once.
The next proposition shows that a pro�le of choices (x�0; x

�
1; :::) 2 X solves the basic

consumer problem corresponding to certain total preferences if and only if for every pe-
riod t the corresponding pair (x�t ; s

�
t ), with s

�
t = m0+

Pt
i=1 Ii�

Pt
i=0 pi�x�i , solves the cor-

responding basic ad hoc consumer problem for any ad hoc preferences that are consistent
with the total preferences.
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Proposition 5.2.2 Suppose given a total utility function u : X ! R on the com-
modity space X = �tXt, a price vector p = (p0; p1; :::) and an income stream J0 =
(m0; I1; I2; :::).
(A) Suppose that the function u is such that for all t it is strictly increasing in at

least one commodity from Yt+1, and that the pro�le (x�0; x
�
1; :::) 2 X solves the basic

consumer problem corresponding to u, p and J0. Then, for any t 2 N0, and any ad
hoc utility function u(t) : Wt�1 �Xt � R+ ! R that is consistent with u, given qt+1 =
(pt+1; pt+2; :::) and Jt+1 = (It+1; It+2; :::), the pair (x�t ;m

�
t �pt �x�t ) will solve the basic ad

hoc consumer problem corresponding to u(t), (pt; 1) and m�
t = m0+

Pt
i=1 Ii�

Pt�1
i=0 pi �x�i ,

given w�t�1 = (x
�
0; x

�
1; :::; x

�
t�1).

(B) Suppose that the pro�le (x�0; x�1; :::) 2 X is such that for every t 2 N0 and
for any ad hoc utility function u(t) : Wt�1 � Xt � R+ ! R that is consistent with u,
given qt+1 and Jt+1, the pair (x�t ;m

�
t � pt �x�t ) solves the basic ad hoc consumer problem

corresponding to u(t), (pt; 1) and m�
t = m0 +

Pt
i=1 Ii �

Pt�1
i=0 pi � x�i , given w�t�1. Then

(x�0; x
�
1; :::) will also solve the basic consumer problem corresponding to u, p and J0.

Proof. Given are a utility function u : X ! R on the commodity space X, a price
vector p = (p0; p1; :::) (with pt 2 Rnt+ n f0g, nt 2 N, for all t), and an income stream
J0 = (m0; I1; I2; :::) (with m0 2 R+ and It 2 R+ for all t > 0).
(A) For the �rst part of this proposition, suppose that the pro�le x� = (x�0; x

�
1; x

�
2; :::)

2 X solves the basic consumer problem corresponding to u, p and J0. That is, x� is
such that u(x�) = maxu(x) sub to x 2 B0(p; 0; J0).
Then, for some speci�c t 2 N0, let u(t) : Wt�1�Xt�R+ ! R be some ad hoc utility

function that is consistent with u, given qt+1 = (pt+1; pt+2; :::) and Jt+1 = (It+1; It+2; :::).
That is, u(t) is a function that can be written as

u(t)(wt�1; xt; st) = ft( sup
yt+12Bt+1(qt+1;st;Jt+1)

u(wt�1; xt; yt+1));

for all (wt�1; xt; st) 2 Xt � R+, and for some strictly increasing function ft : R ! R.
We now want to show that the pair (x�t ;m

�
t � pt � x�t ) solves the basic ad hoc consumer

problem corresponding to u(t), (pt; 1) and m�
t = m0 +

Pt
i=1 Ii �

Pt�1
i=0 pi � x�i , given the

previous choices w�t�1 = (x
�
0; x

�
1; :::; x

�
t�1).

In period t this basic ad hoc choice problem corresponding to u(t), (pt; 1) and m�,
for w�t�1 given, reads

max
(xt;st):pt�xt+st�m�

t

u(t)(w�t�1; xt; st) (1)

This can now be expanded to:

max
pt�xt+st�m�

t

ft( sup
yt+12Bt+1(qt+1;st;Jt+1)

u(w�t�1; xt; yt+1)) =

sup
pt�xt+st�m�

t

ft( sup
yt+12Bt+1(qt+1;st;Jt+1)

u(w�t�1; xt; yt+1)) =

ft( sup
pt�xt+st�m�

t

[ sup
yt+12Bt+1(qt+1;st;Jt+1)

u(w�t�1; xt; yt+1)]) =
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ft( sup
yt2Bt(qt;m�

t�It;Jt)
u(w�t�1; yt)): (2)

These equalities may need a bit of explaining. The �rst equality of replacing a
maximum by a supremum can be justi�ed if indeed this supremum is attained, which
we will shortly see is the case here. The second equality follows from strict increasingness
of ft.
The last equality should hold if we have speci�ed the budget sets correctly. To see

that this is so, note that with the identity m�
t = s

�
t�1+It, the constraint pt �xt+st � m�

t

under which the outer supremum is taken, can be broken down into pt � xt � s�t�1 + It
and into st � s�t�1 + It � pt � xt. The inner supremum is taken over the future budget
set

Bt+1(qt+1; st; Jt+1) = f(xt+1; xt+2; :::) 2 Yt+1 :
�X

i=t+1

pi � xi � st +
�X

i=t+1

Ii;8� � t+ 1g.

Together, the constraint st � s�t�1 + It � pt � xt and the budget constraints from
Bt+1(qt+1; st; Jt+1) imply that

P�
i=t pi � xi � s�t�1 +

P�
i=t Ii must hold for all � � t + 1.

Therefore, any feasible bundle yt = (xt; yt+1) must satisfy the latter system of budget
constraints and the constraint pt � xt � s�t�1 + It. Thus, any feasible bundle yt must
belong to the following set:

f(xt; xt+1; :::) 2 Yt :
�X
i=t

pi � xi � s�t�1 +
�X
i=t

Ii;8� � tg.

In this set we recognize the future budget set as of period t, for the level of savings
s�t�1 = m�

t � It given: Bt(qt;m�
t � It; Jt). It is exactly this last set over which the

supremum in (2) is taken. Hence the last of the above equalities holds.
We now want to show that y�t = (x

�
t ; x

�
t+1; :::) attains the maximum in (2). In (2) it is

given that the tuple w�t�1 = (x
�
0; x

�
1; :::; x

�
t�1) was chosen in the periods before t, and the

supremum is taken over the budget set Bt(qt;m�
t � It; Jt). By strict increasingness, no

budget is ever wasted, and the choices w�t�1 resulted in the period-(t�1) level of savings
s�t�1 = m0+

Pt�1
i=1 Ii�

Pt�1
i=0 pi � x�i (which equals m�

t � It). Therefore the set of bundles
(xt; xt+1; :::) that are feasible from period t onwards, given w�t�1, is indeed exactly given
by the budget set Bt(qt;m�

t � It; Jt). Since we know that u(x�0; x�1; :::) = maxu(x) sub
to x 2 B0(p; 0; J0), the truncated pro�le y�t = (x�t ; x

�
t+1; :::) must now also attain the

supremum in supyt2Bt(qt;m�
t�It;Jt) u(w

�
t�1; yt).

And since y�t = (x
�
t ; x

�
t+1; :::)maximizes (2), by strict increasingness the pair (x

�
t ;m

�
t�

pt � x�t ) must maximize (1). And indeed (x�t ;m�
t � pt � x�t ) will solve the basic ad hoc

choice problem corresponding to u(t), (pt; 1) and m�
t , for w

�
t�1 given.

(B) The pro�le (x�0; x
�
1; :::) 2 X is such that for every t 2 N0 and for any ad hoc

utility function u(t) : Wt�1 � Xt � R+ ! R that is consistent with u, given qt+1 =
(pt+1; pt+2; :::) and Jt+1 = (It+1; It+2; :::), the pair (x�t ;m

�
t � pt � x�t ) solves the basic ad

hoc choice problem corresponding to u(t), (pt; 1) and m�
t = m0 +

Pt
i=1 Ii �

Pt�1
i=0 pi � x�i ,

given w�t�1 = (x
�
0; x

�
1; :::; x

�
t�1).
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Such an ad hoc utility function u(t) : Wt�1 � Xt � R+ ! R is consistent with u,
given qt+1 and Jt+1, so it can be written as

u(t)(wt�1; xt; st) = ft( sup
yt+12Bt+1(qt+1;st;Jt+1)

u(wt�1; xt; yt+1));

for all (wt�1; xt; st) 2 Xt � R+, and for some strictly increasing function ft : R! R.
Now, we want to show that the pro�le x� = (x�0; x

�
1; :::) also solves the basic consumer

problem corresponding to u, p and J0, i.e. that u(x�) = supx2B0(p;0;J0) u(x). (Note that
it also still remains to be shown that the last supremum is indeed attained.) For
every t the truncated pro�le (x�0; x

�
1; :::; x

�
t ) will satisfy

Pt
i=0 pi � xi � m0 +

Pt
i=1 Ii, so

that it must be the case that (x�0; x
�
1; :::) 2 B0(p; 0; J0). Then obviously we get that

u(x�) � supx2B0(p;0;J0) u(x).
Suppose that u(x�) < supx2B0(p;0;J0) u(x). Then there must be some (earliest) period

� 2 N at which x�� is suboptimal. That is, there must be some time � in which

sup
y�+12B�+1(q�+1;m�

��p� �x�� ;J�+1)
u(w���1; x

�
� ; y�+1) < sup

x2B0(p;0;J0)
u(x):

However, we know that for t = 0 it holds that (x�0;m0 � p0 � x�0) attains
maxp0�x0+s0�m0 u

(0)(x0; s0) for any consistent u(0). So for s�0 = m0 � p0 � x�0, we have
that

u(0)(x�0; s
�
0) = sup

p0�x0+s0�m0

u(0)(x0; s0) = sup
p0�x0+s0�m0

ft( sup
y12B1(q1;s0;J1)

u(x0; y1)) =

ft( sup
p0�x0+s0�m0

[ sup
y12B1(q1;s0;J1)

u(x0; y1)]) = ft( sup
x2B0(p;0;J0)

u(x)):

Again, the third equality follows from ft being strictly increasing. The last equality
was already justi�ed in the �rst part of this proof, where we saw that
suppt�xt+st�m�

t
supyt+12Bt+1(qt+1;st;Jt+1) can alternatively be written as supyt2Bt(qt;m�

t�It;Jt).
Moreover, by consistency it holds that

u(0)(x�0; s
�
0) = ft( sup

y12B1(q1;s�0;J1)
u(x�0; y1)):

Hence we see that supy12B1(q1;s�0;J1) u(x
�
0; y1) = supx2B0(p;0;J0) u(x), and thus that � > 0.

Similarly, for any t 2 N it holds that (x�t ; s
�
t ), with s

�
t = m�

t � pt � x�t , attains
maxpt�xt+st�m�

t
u(t)(w�t�1; xt; st) for any consistent u

(t), so that

u(t)(w�t�1; x
�
t ; s

�
t ) = sup

(xt;st):pt�xt+st�m�
t

u(t)(w�t�1; xt; st) =

sup
pt�xt+st�m�

t

ft( sup
yt+12Bt+1(qt+1;st;Jt+1)

u(w�t�1; xt; yt+1)) =

ft( sup
pt�xt+st�m�

t

[ sup
yt+12Bt+1(qt+1;st;Jt+1)

u(w�t�1; xt; yt+1)]) = ft( sup
yt2Bt(qt;m�

t�It;Jt)
u(w�t�1; yt)):
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And again by consistency it holds that

u(t)(w�t�1; x
�
t ; s

�
t ) = ft( sup

yt+12Bt+1(qt+1;s�t ;Jt+1)
u(w�t�1; x

�
t ; yt+1))

and with s�t�1 = m
�
t � It we thus see that

sup
yt+12Bt+1(qt+1;s�t ;Jt+1)

u(w�t�1; x
�
t ; yt+1) = sup

yt2Bt(qt;s�t�1;Jt)
u(w�t�1; yt):

This same principle applies for every period before t, so by induction we �nd that for
every t it holds that

sup
yt+12Bt+1(qt+1;s�t ;Jt+1)

u(w�t�1; x
�
t ; yt+1) = sup

x2B0(p;0;J0)
u(x):

This contradicts the existence of � , and indeed we �nd that u(x�) = maxx2B0(p;0;J0) u(x).

The above proposition is based on the simple mathematical fact that

max
xt;yt+1

u(wt�1; xt; yt+1) = max
xt
(max
yt+1

u(wt�1; xt; yt+1)):

Because of this Bellman-like equation we see that it doesn�t matter when choices for
the future commodities are made. A choice between goods in Xt and remaining budget
is based on the fact that this remaining budget is indeed afterwards spent optimally,
so the order in which purchases are made is irrelevant.

Next we provide a few cases where we can explicitly specify consistent ad hoc utility
functions for some standard examples of utility functions that are typically found in
microeconomic texts. Moreover, we show that in some cases consistent ad hoc utility
inherits its functional structure from the functional structure of the underlying total
utility.

Example 5.2.1 Additively separable utility
Like in de�nition 2.4.5, a total utility function u on X = �1t=0Xt is additively

separable (with respect to the partition of X corresponding to �1t=0Xt, with Xt = Rnt+
for some nt 2 N and all t) if there are functions ut : Xt ! R, such that u(x0; x1; :::) =P1

t=0 ut(xt).
Suppose that for some speci�c time t 2 N0 a future price vector qt+1 = (pt+1; pt+2; :::)

and a future income stream Jt+1 = (It+1; It+2; :::) are given. Then we can de�ne the
function u(t) on Wt�1 �Xt � R+ by

u(t)(wt�1; xt; st) = sup
yt+12Bt+1(qt+1;st;Jt+1)

u(wt�1; xt; yt+1)
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Thus u(t)(wt�1; xt; st) equals

sup
yt+12Bt+1(qt+1;st;Jt+1)

1X
i=0

ui(xi) =

tX
i=0

ui(xi) + sup
yt+12Bt+1(qt+1;st;Jt+1)

1X
i=t+1

ui(xi) =
tX
i=0

ui(xi) + vt+1(st):

Here vt+1(st) denotes the function supyt+12Bt+1(qt+1;st;Jt+1)
P1

i=t+1 ui(xi). If this function
vt+1(:) is �nite-valued, we see that u(t) is a well-de�ned ad hoc utility function, and by
de�nition it is consistent with u. Moreover, the consistent ad hoc utility function u(t)

is also additively separable.

Example 5.2.2 Linear utility
A more speci�c example of additively separable utility is that of linear utility. For

all t it holds that Xt = Rnt+ for some nt 2 N. Then, a (total) utility function u on
X = �1t=0Xt, is called linear if there are vectors �t 2 Rnt+ such that u(x) =

P1
t=0 �t �xt.

This would mean that all goods are perfect substitutes.
Then for some speci�c time t 2 N0, suppose that a strictly positive future price vector

qt+1 = (pt+1; pt+2; :::) 2 R1++ is given, and that no additional income will be obtained
after period t: Jt+1 = ~0 = (0; 0; :::). In this case, the budget set can be written as

Bt+1(qt+1; st;~0) = f(xt+1; xt+2; :::) 2 Yt+1 :
�X

i=t+1

pi � xi � st;8� � t+ 1g =

f(xt+1; xt+2; :::) 2 Yt+1 :
1X

i=t+1

pi � xi � stg = fyt+1 2 Yt+1 : qt+1 � yt+1 � stg:

Then we can de�ne the function u(t) on Wt�1 �Xt � R+ by

u(t)(wt�1; xt; st) = sup
qt+1�yt+1�st

u(wt�1; xt; yt+1) = sup
qt+1�yt+1�st

1X
i=0

�i � xi =

tX
i=0

�i � xi + sup
qt+1�yt+1�st

1X
i=t+1

�i � xi =
tX
i=0

�i � xi + �t+1st:

Here �t+1 := supi�t+1max0�j�nif
�ji
pji
g denotes the maximal quotient of �-coe¢ cients and

prices, across all commodities from Yt+1. The last equality is due to the fact that all
commodities are perfect substitutes, so that savings can most e¢ ciently be spent on that
commodity with the largest quotient of �-coe¢ cients and prices. Then if �t+1 < 1,
the function u(t) is a well-de�ned ad hoc utility function, that is by de�nition consistent
with u. Moreover, this ad hoc utility function also has a linear form.
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In the more general case where Jt+1 6= ~0, the shape of the budget set will be more
complicated. However, st will still be spent on that commodity from Yt+1 with the largest
quotient of �-coe¢ cients and prices, across all commodities from Yt+1. Similarly, for
any period � � t+1, the additional income I� will be spent on that commodity from Y�
with the largest quotient of �-coe¢ cients and prices. Therefore, if Jt+1 6= ~0 then

u(t)(wt�1; xt; st) = sup
yt+12Bt+1(qt+1;st;Jt+1)

u(wt�1; xt; yt+1) =

tX
i=0

�i � xi + �t+1st +
1X

�=t+1

��I� ;

so that u(t) is still (more or less) linear.

Example 5.2.3 Cobb-Douglas utility
For all t it holds that Xt = Rnt+ for some nt 2 N, and for notational simplicity we

�rst suppose that nt = 1 for all t. Then a (total) utility function u on X = �1t=0Xt is
of Cobb-Douglas form if there are constants 
 > 0 and �t > 0, with � :=

P1
t=0 �t <1,

such that
u(x) = u(x0; x1; x2; :::) = 
 �

Q1
t=0 xt

�t :

For some speci�c time t, suppose that no additional income will be obtained after period
t so that Jt+1 = ~0 = (0; 0; :::), and that all prices are strictly positive qt+1 2 R1++.
As seen in the linear utility example, the budget set Bt+1(qt+1; st;~0) reduces to fyt+1 2
Yt+1 : qt+1 � yt+1 � stg. Again, we de�ne the function u(t) on Wt�1 �Xt � R+ by

u(t)(wt�1; xt; st) = sup
qt+1�yt+1�st

u(wt�1; x; yt+1) =

sup
qt+1�yt+1�st


 �
Q1
i=0 x

�i
i = 
 �

Qt
i=0 x

�i
i � sup

qt+1�yt+1�st

Q1
i=t+1 x

�i
i :

It is a well-known fact that under Cobb-Douglas utility the last supremum is attained
by spending a (�i=�t+1)-proportion of the available budget st in any period i � t + 1,
for �t+1 :=

P1
i=t+1 �i. That is, the optimal time-i choices are given by x

�
i = (

�ist
�t+1pi

),
for all i � t+ 1. Thus we get that

u(t)(wt�1; xt; st) = 
 �
Qt
i=0 x

�i
i �
Q1
i=t+1(

�ist
�t+1pi

)�i =


 �
Qt
i=0 x

�i
i � (

st
�t+1

)�t+1
Q1
i=t+1(

�i
pi
)�i = � �

Qt
i=0 x

�i
i � s

�t+1
t ;

where � := 
 � ( 1
�t+1

)�t+1 �
Q1
i=t+1(

�i
pi
)�i. Then if � < 1 the function u(t) is a well-

de�ned ad hoc utility function is, and by de�nition it is consistent with u. Moreover,
the resulting consistent ad hoc utility function is also of a Cobb-Douglas form.
The same principle applies in the case where nt � 1 for all t. Then if we denote

xjt to be the j�th component of xt, and given coe¢ cients �
j
t > 0 for all components,
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the (total) utility would be given by 
 �
Q1
t=0

Qnt
j=0(x

j
t)
�jt . Then the same reasoning will

show that the similarly de�ned consistent ad hoc utility function u(t) will still be of a
Cobb-Douglas form.
However, the assumption that no additional income is obtained after period t, is

necessary to obtain this result. If Jt+1 6= ~0, the shape of the budget set will be more
complicated, and the rule that x�i = (

�ist
�t+1pi

) no longer applies.

Example 5.2.4 Leontief utility
For all t it holds that Xt = Rnt+ for some nt 2 N, here we �rst assume that nt = 1 for

all t. A (total) utility function u on X = �1t=0Xt is of a Leontief (or �xed-proportions)
form if there are scalars �t > 0 for all t, such that u(x) = inff x0

�0
; x1
�1
; x2
�2
; :::g. This

means that all goods are perfect complements.
We suppose that after time t no additional income will be obtained so that Jt+1 =

~0 = (0; 0; :::). Then for any future price vector qt+1 = (pt+1; pt+2; :::), again the budget
set Bt+1(qt+1; st;~0) reduces to fyt+1 2 Yt+1 : qt+1 � yt+1 � stg. Now, a consistent ad hoc
utility function is given by

u(t)(wt�1; xt; st) = sup
qt+1�yt+1�st

u(wt�1; xt; yt+1)

= sup
qt+1�yt+1�st

inffx1
�1
;
x2
�2
; :::;

xt
�t
;
xt+1
�t+1

;
xt+2
�t+2

; :::g:

Given wt�1 and xt, the objective would be to have xi
�i
� � = min0�j�t xj�j , for all periods

i � t + 1. This is a¤ordable if
P1

i=t+1 pi�i� � st. If this is not a¤ordable, then the
best that can be done is to set xi

�i
= �, for all periods i � t + 1, with � such thatP1

i=t+1 pi�i� = st. In that case, infi
xi
�i
would equal � = st(

P1
i=t+1 pi�i)

�1 = st
�t+1

, for

�t+1 =
P1

i=t+1 pi�i. Thus,

u(t)(wt�1; xt; st) =

�
� if ��t+1 � st
st
�t+1

if ��t+1 > st

= minf�; st
�t+1

g = minfx1
�1
;
x2
�2
; :::;

xt
�t
;
st
�t+1

g;

and the consistent ad hoc utility function also has a Leontief form.
The same principle applies in the case where nt � 1 for all t. Then if xjt is the

j�th component of xt, and given coe¢ cients �
j
t > 0 for all components, total utility

would be given by u(x) = inftmin1�j�nt
xjt
�jt
. Then the same reasoning will show that the

consistent ad hoc utility function will still be of a Leontief form.
Again, the assumption that Jt+1 = ~0, is necessary to obtain this result. If Jt+1 6= ~0,

the shape of the budget set and consequently the shape of the consistent ad hoc utility
function, will be more complicated.
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5.3 From ad hoc to total preferences
In the previous section we found that, given total preferences on some given total
commodity space, we could always �nd consistent ad hoc preferences de�ned on the
ad hoc commodity space that corresponds to a certain period. In this section we try
the opposite direction: we alternatively start from a consumer, who has for every (or
for some) period t, ad hoc preferences de�ned on the corresponding ad hoc commodity
spaces. Then for the total commodity space that would be constructed as the Cartesian
product of all the present commodity spaces, we investigate if it is possible to �nd total
preferences with which (all of) these ad hoc preferences would be consistent. In other
words: we investigate whether such given ad hoc preferences could be obtained from
the total preferences of a rational utility maximizer who would be able to consistently
summarize total preferences into ad hoc preferences, and thus whether the notion of
ad hoc preferences can always be made compatible with the notion of maximizing total
preferences. We �nd that for a single period�s ad hoc preferences we can generally
�nd total preferences with which the ad hoc preferences are consistent. However, this
same result does generally not hold for several periods� ad hoc preferences, only if
these di¤erent ad hoc preferences are related in some speci�c way (that resembles
consistency), then there will be total preferences, each of the ad hoc preferences will be
consistent with.

Here we �rst start with one single period t for which ad hoc preferences are given,
and investigate the converse of proposition 5.2.1. For some period t 2 N0 an ad hoc
utility function u(t)(wt�1; xt; st) is de�ned on the corresponding ad hoc commodity space
Wt�1 �Xt �R+ (with Wt�1 = Rkt�1+ (kt�1 2 N) and Xt = Rnt+ (nt 2 N)). Then for any
future commodity space Yt+1 = R1+ for the remaining periods, the corresponding total
commodity space would be X = Wt�1 � Xt � Yt+1. And for any future price vector
qt+1 and any future income stream Jt+1 given, the question is can we always �nd total
preferences on X represented by some u(x), such that the ad hoc utility function u(t)

is consistent with u, given qt+1 and Jt+1?
Of course it is possible that there are several di¤erent total utility functions that give

rise to the same consistent ad hoc utility function, so �nding one total utility function
that does this already proves that the ad hoc utility function is not incompatible with
the assumptions from the standard framework.

Proposition 5.3.1 Suppose given for some t 2 N0 an ad hoc commodity space Wt�1�
Xt � R+ and an ad hoc utility function u(t) : Wt�1 � Xt � R+ ! R, which is such
that u(t)(wt�1; xt; st) is non-decreasing in st. Then for any future commodity space
Yt+1 = R1+ , any strictly positive future price vector qt+1 2 R1++, and any future income
stream Jt+1 = (It+1; It+2; :::) with

P1
i=t+1 Ii <1, there exists some total utility function

u : Wt�1�Xt�Yt+1 ! R, such that u(t) is consistent with u, given qt+1 and Jt+1.

Proof. Given are an ad hoc commodity space Wt�1 � Xt � R+ (with Wt�1 = Rkt�1+ ,
kt�1 2 N, and Xt = Rnt+ , nt 2 N), and an ad hoc utility function u(t) : Wt�1�Xt�R+ !
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R. Also suppose given some future commodity space Yt+1 = R1+ , some strictly positive
future price vector qt+1 = (pt+1; pt+2; :::) 2 R1++ and some future income stream Jt+1 =
(It+1; It+2; :::) 2 R1+ that satis�es � :=

P1
i=t+1 Ii <1. We now want to show that there

exists some total utility function u on the commodity space X = Wt�1 � Xt � Yt+1,
such that u(t) is consistent with u, given qt+1 and Jt+1. That is, we want to show that
there exists some function u : X ! R, such that

u(t)(wt�1; xt; st) = f( sup
yt+12Bt+1(qt+1;st;Jt+1)

u(wt�1; xt; yt+1));

for all (wt�1; xt; st) 2 Wt�1�Xt�R+, and some strictly increasing function f : R! R.
To prove this proposition, it su¢ ces to explicitly provide one total utility function

that satis�es the above relation. This is exactly what we will do here, and we start
from a ((quasi-)linear) function � : Yt+1 ! R, as de�ned by

�(yt+1) =
1X

i=t+1

�i � xi � �;

where for all i � t + 1 the vector �i = Rni+ (with ni 2 N) is such that the coe¢ cients
for all commodities in Xi are the same: �

j
i = �i := min1�k�nifpki g, for all 1 � j � ni.

This function � : Yt+1 ! R can be interpreted as a separate (sub)utility function that
represents preferences for the commodities in Yt+1, independent of whatever choices
(wt�1; xt) have or will be made from the past and present commodity spaces. The
above speci�cation of � means that all commodities in Yt+1 are perfect substitutes.
Now we are ready to de�ne the function u : X ! R by

u(wt�1; xt; yt+1) := u
(t)(wt�1; xt; �(yt+1)):

This new function u has the property that, for the future price vector qt+1 and the
future income stream Jt+1 given, it holds that

sup
yt+12Bt+1(qt+1;st;Jt+1)

u(wt�1; xt; yt+1) = u
(t)(wt�1; xt; st); (1)

for all (xt; st) 2 Xt � R+.
To prove this claim, we �rst take a look at the left-hand side, which can be expanded

to
sup

yt+12Bt+1(qt+1;st;Jt+1)
u(t)(wt�1; xt; �(yt+1)):

The function u(t)(wt�1; xt; st) is non-decreasing in st, so that the supremum can be
brought inside to get

u(t)(wt�1; xt; sup
yt+12Bt+1(qt+1;st;Jt+1)

�(yt+1)):
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Now, the innermost term reads

sup
yt+12Bt+1(qt+1;st;Jt+1)

�(yt+1) = sup
yt+12Bt+1(qt+1;st;Jt+1)

1X
i=t+1

�i � xi � �.

For any period i � t+1 the coe¢ cients for all goods 1 � j � ni available in this period
are equal: �ji = �i. Therefore by perfect substitutability, within each period there may
only be consumption from that commodity that has the lowest price. And since for
any period i the coe¢ cients �ji for all period-i commodities equal the smallest price in
this period (�ji = min1�k�nifpki g), again by perfect substitutability consumption will
be equally desirable in all periods (when of course this means consumption from the
best priced commodity in any period). Then, like in the linear utility example from the
previous section, we get that

sup
yt+12Bt+1(qt+1;st;Jt+1)

1X
i=t+1

�i � xi � � = sup
yt+12Bt+1(qt+1;st+�;~0)

1X
i=t+1

�i � xi � � =

sup
yt+12Bt+1(qt+1;st+�;~0)

�t+1 � xt+1 � � = �t+1((st + �)=�t+1)� � = st + �� � = st:

Here the �rst two equalities follow by perfect substitutability. The third equality follows
from the optimal policy of spending the total budget st + � on that period-(t + 1)
commodity j0 2 f1; 2; :::; nt+1g that satis�es pj

0

t+1 = �t+1 = min1�k�nt+1fpkt+1g.
Hence, the above equalities prove our claim that (1) holds, and (with the function

f : R ! R de�ned by f(x) = x, for all x 2 R) indeed we have established that there
exists a total utility function u such that u(t) is consistent with u, given qt+1 and Jt+1.

The above proof uses one speci�c (and especially convenient) example for the subu-
tility function �. And while this particular example su¢ ces to prove the proposition,
here we point out that the same procedure can be followed with other subutility func-
tions. More generally, given some qt+1 2 R1++ and some Jt+1, we could for any function
� : Yt+1 ! R de�ne the corresponding indirect utility function � by

�(qt+1;m; Jt+1) = sup
yt+12Bt+1(qt+1;m;Jt+1)

�(yt+1):

And we can de�ne, for qt+1 and Jt+1 �xed, the function g : R+ ! R, by g(m) =
�(qt+1;m; Jt+1) for all m 2 R+. Now, if we can show that g is a strictly increasing, real
valued function, then there exists an inverse function g�1 : R! R+, which will also be
strictly increasing. In that case, as in the above proof, it can be shown that the function
u(wt�1; xt; yt+1) := u

(t)(wt�1; xt; g
�1(�(yt+1))) would be consistent with u(t), given qt+1

and Jt+1.
However, in general here the hard part is to indeed demonstrate that the function g is

real valued (and thus �nite valued), and strictly increasing. Since the domain for g is an
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in�nite-dimensional space, this can get tricky. The choice of �(yt+1) =
P1

i=t+1 �i �xi��,
used in the proof, is especially convenient as

g(st) = sup
yt+12Bt+1(qt+1;st;Jt+1)

1X
i=t+1

�i � xi � � = st:

In this proposition we see that ad hoc utility being non-decreasing in savings is
su¢ cient for the existence of a total utility function on any total commodity space, with
which u(t) is consistent. Recall from the discussion after the de�nition of consistency
that ad hoc utility being non-decreasing in savings was also a necessary condition for
being consistent with some total utility function.

If we would be given ad hoc preferences for several periods we could ask the same
question. Under what circumstances can we �nd a total preference relation such that
each of the given ad hoc preference relations is consistent with the (same) total prefer-
ence relation?
To answer this question, here we look at two di¤erent periods t; t0 2 N0, with t < t0,

for which we suppose given an ad hoc utility function u(t) on the ad hoc commodity
space Wt�1 � Xt � R+, and an ad hoc utility function u(t

0) on the ad hoc commodity
space Wt0�1 � Xt0 � R+. Here Wt�1 = Rkt�1+ (with kt�1 2 N) and Wt0�1 = Rkt0�1+

(kt0�1 2 N) are the respective past commodity spaces, Xt = Rnt+ (with nt 2 N) and
Xt0 = R

nt0
+ (with nt0 2 N) are the respective present commodity spaces.

Now, we denote the set Z to represent consumption opportunities in all periods
after t, but not after t0. That is, Z := �t0i=t+1Xi = Rl+, for l :=

Pt0

i=t+1 ni, so that we
can writeWt�1�Xt�Z = Wt0�1�Xt0, and we must have that kt0�1+nt0 = kt�1+nt+ l.
Then, for any given future commodity space Yt0+1, the period-t future commodity

space is given by Yt+1 = Z � Yt0+1. As usual we write the total commodity space X
as Wt0�1 � Xt0 � Yt0+1 or as Wt�1 � Xt � Yt+1. For the earlier period t, we suppose
given a future price vector qt+1 = (pt+1; pt+2; :::), with pi 2 Rni+ nf0g for all i � t + 1,
and a future income stream Jt+1 = (It+1; It+2; :::), with Ii � 0 for all i � t+ 1. For the
later period we denote the future price vector qt0+1 = (pt0+1; pt0+2; :::), and the future
income stream Jt0+1 = (It0+1; It0+2; :::), to be the truncated versions of qt+1 and Jt+1,
respectively. Similarly, the price vector pz = (pt+1; pt+2; :::; pt0) and the income stream
Iz = (It+1; It+2; :::; It0) are truncated versions of qt+1 and Jt+1, so that we can also write
qt+1 = (pz; qt0+1), and Jt+1 = (Iz; Jt0+1).
Then given the future price vectors qt+1 and qt0+1, and the future income streams

Jt+1 and Jt0+1, we investigate whether (or when) we can �nd a total utility function
u : X ! R such that u(t) is consistent with u, given qt+1 and Jt+1, and such that u(t

0)

is consistent with u, given qt0+1 and Jt0+1.
To answer this question we de�ne a budget set for commodity bundles in Z and

period-t0 savings by

Cz(pz; st; Iz) :=

�
(z; st0) 2 Z � R+ :

P�
i=t+1 pi � xi � st +

P�
i=t+1 Ii;8t+ 1 � � � t0;

st0 = st +
Pt0

i=t+1 Ii �
Pt0

i=t+1 pi � xi

�
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With this set Cz(pz; st; Iz) we can now specify that, if u(t
0) is consistent with a

utility function u, u(t) will also be consistent with u if and only if u(t) and u(t
0) are

related according to the equation

u(t)(wt�1; xt; st) = g( sup
(z;st0 )2Cz(pz ;st;Iz)

u(t
0)(wt�1; xt; z; st0));

for some strictly increasing function g : R! R. Note the similarity with the de�nition
of consistency of an ad hoc utility function.

Proposition 5.3.2 Suppose that for some periods t; t0 2 N0, with t < t0, we are given
past commodity spaces Wt�1 = Rkt�1+ , Wt0�1 = R

kt0�1
+ (with kt�1; kt0�1 2 N, l = kt0�1 �

kt�1 2 N), and present commodity spaces Xt = Rnt+ , Xt0 = Rnt0+ (with nt; nt0 2 N).
Also suppose we are given ad hoc utility functions u(t) : Wt�1 � Xt � R+ ! R, and
u(t

0) : Wt0�1 � Xt0 � R+ ! R, such that u(t0) is consistent with a total utility function
u : X ! R, given a future price vector qt0+1 and a future income stream Jt0+1. We
de�ne the set Z as �t0i=t+1Xi (= Rl+). Then, for a price vector pz 2 Rl+ and an income
vector Iz 2 Rt

0�t
+ given, it holds that u(t) is also consistent with u, given qt+1 = (pz; qt0+1)

and Jt+1 = (Iz; Jt0+1), if and only if

u(t)(wt�1; xt; st) = g( sup
(z;st0 )2Cz(pz ;st;Iz)

u(t
0)(wt�1; xt; z; st0)); (1)

for some strictly increasing function g : R! R.

Proof. Given is that the ad hoc utility function u(t0) is consistent with a total utility
function u : X ! R (on some commodity space X = Wt�1 �Xt � Z � Yt0+1), given a
future price vector qt0+1 = (pt0+1; pt0+2; :::) (with p� 2 Rn�+ n f0g, n� 2 N, for all � > t0),
and a future income stream Jt0+1 = (It0+1; It0+2; :::) (with I� 2 R+ for all � > t0).
N Then, for the �if�part of the proposition, suppose that (1) holds for some strictly

increasing function g : R ! R. We then want to show that u(t) is consistent with u,
given qt+1 = (pz; qt0+1) and Jt+1 = (Iz; Jt0+1).
It was given that u(t

0) is consistent with u, given qt0+1 and Jt0+1, so that there exists
a strictly increasing function f : R! R such that

u(t
0)(wt0�1; xt0 ; st0) = f( sup

yt0+12Bt0+1(qt0+1;st0 ;Jt0+1)
u(wt0�1; xt0 ; yt0+1)). (2)

Now, we can enter this into (1) to obtain

u(t)(wt�1; xt; st) = g( sup
(z;st0 )2Cz(pz ;st;Iz)

u(t
0)(wt�1; xt; z; st0)) =

g( sup
(z;st0 )2Cz(pz ;st;Iz)

f( sup
yt0+12Bt0+1(qt0+1;st0 ;Jt0+1)

u(wt�1; xt; z; yt0+1))) =

g(f( sup
(z;st0 )2Cz(pz ;st;Iz)

[ sup
yt0+12Bt0+1(qt0+1;st0 ;Jt0+1)

u(wt�1; xt; z; yt0+1)])) =
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g(f( sup
yt+12Bt+1(qt+1;st;Jt+1)

u(wt�1; xt; yt+1))). (3)

The third equality follows by strict increasingness of f . The last equality results from
joining the two suprema sup(z;st0 )2Cz(pz ;st;Iz) and supyt0+12Bt0+1(qt0+1;st0 ;Jt0+1) into a single
supremum supyt+12Bt+1(qt+1;st;Jt+1), like in the proof of proposition 5.2.2.

To see that this is allowed, we can use the equality st0 = st+
Pt0

i=t+1 Ii�
Pt0

i=t+1 pi �xi
from the set Cz, to rewrite

Bt0+1(qt0+1; st0 ; Jt0+1) = fyt0+1 2 Yt0+1 :
�X

i=t0+1

pi � xi � st0 +
�X

i=t0+1

Ii;8� � t0 + 1g

as

fyt0+1 2 Yt0+1 :
�X

i=t0+1

pi � xi � st +
t0X

i=t+1

Ii �
t0X

i=t+1

pi � xi +
�X

i=t0+1

Ii;8� � t0 + 1g

= fyt0+1 2 Yt0+1 :
�X

i=t+1

pi � xi � st +
�X

i=t+1

Ii;8� � t0 + 1g

The remaining constraints from the set Cz read
P�

i=t+1 pi � xi � st +
P�

i=t+1 Ii, for all
t+ 1 � � � t0.
Therefore, since the vectors (z; yt0+1) = (xt+1; xt+2; :::) 2 Yt+1 over which total utility

is maximized in (3) should satisfy all the constraints from the sets Cz and Bt0+1, we get
that these vectors should satisfy

�X
i=t+1

pi � xi � st +
�X

i=t+1

Ii, for all � � t+ 1:

In this description of the set of all feasible vectors yt+1 2 Yt+1 we may recognize the
budget set Bt+1(qt+1; st; Jt+1), which indeed justi�es joining the two suprema.
Thus, if we denote the function h : R ! R by h(x) = g(f(x)), then by the above

equalities from (1) and (2) we obtain

u(t)(wt�1; xt; st) = h( sup
yt+12Bt+1(qt+1;st;Jt+1)

u(wt�1; xt; yt+1)); (4)

for all (wt�1; xt; st) 2 Wt�1 �Xt � R+. And since both f and g are strictly increasing
functions, so is their composition h, and we see that indeed u(t) is consistent with u,
given qt+1 and Jt+1.
N For the �only if�part, suppose that u(t) is consistent with u, given future prices

qt+1 = (pz; qt0+1) and the future income stream Jt+1 = (Iz; Jt0+1). That is, (4) holds for
all (wt�1; xt; st) 2 Wt�1�Xt�R+, and for some strictly increasing function h : R! R.
And it was already given that u(t

0) is consistent with u, given qt0+1 and Jt0+1, so that
(2) holds for some strictly increasing function f : R ! R. We now want to show that
there is some strictly increasing function g : R! R for which (1) holds.
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We can now relate the consistent ad hoc utility from the later stage u(t
0)(wt0�1; xt0 ; st0),

to the consistent ad hoc utility from the earlier stage u(t)(wt�1; xt; st). That is, for
qt+1 = (pz; qt0+1) and Jt+1 = (Iz; Jt0+1) given, we see that

u(t)(wt�1; xt; st) = h( sup
yt+12Bt+1(qt+1;st;Jt+1g

u(wt�1; xt; yt+1)) =

h( sup
(z;st0 )2Cz(pz ;st;Iz)

[ sup
yt0+12Bt0+1(qt0+1;st0 ;Jt0+1)

u(wt�1; xt; z; yt0+1)]) =

h( sup
(z;st0 )2Cz(pz ;st;Iz)

f�1(u(t
0)(wt�1; xt; z; st0))) =

h(f�1( sup
(z;st0 )2Cz(pz ;st;Iz)

u(t
0)(wt�1; xt; z; st0))):

Here the last three equalities may need to be explained. The second equality follows
from splitting up the supremum supyt+12Bt+1(qt+1;st;Jt+1g into sup(z;st0 )2Cz(pz ;st;Iz) and into
supyt0+12Bt0+1(qt0+1;st0 ;Jt0+1), which was already shown to be equivalent in the �if�part. As

for the third equality, f�1 denotes the inverse of the function f : R ! R, which can
indeed be inverted by strict increasingness. This third equality uses the equivalence

u(t
0)(wt0�1; xt0 ; st0) = f( sup

yt0+12Bt0+1(qt0+1;st0 ;Jt0+1)
u(wt0�1; xt0 ; yt0+1))()

f�1(u(t
0)(wt0�1; xt0 ; st0)) = sup

yt0+12Bt0+1(qt0+1;st0 ;Jt0+1)
u(wt0�1; xt0 ; yt0+1):

The last equality follows from strict increasingness of f�1, which in turn follows from
strict increasingness of f .
Thus if we de�ne the function g : R! R as the composition g(x) = h(f�1(x)), then

from the above equalities we see that (1) holds, for all (wt�1; xt; st) 2 Wt�1 �Xt �R+.
And since both h and f�1 are strictly increasing functions, so is g, which concludes the
proof.

The interpretation of the above proposition is quite intuitive, it says that both ad
hoc utility functions u(t) and u(t

0) are consistent with the same total utility function if
and only if the ad hoc utility at stage t for a given choice of (wt�1; xt; st), is equal to
the maximum of stage t0 ad hoc utility over all bundles (from Cz) that are feasible in
the stages between the periods t and t0, given this stage t choice of (wt�1; xt; st). This
is a consequence of the fact that by de�nition consistent time-t (and time-t0) ad hoc
utility is derived from �nal utility by assuming optimal choices in stage t and beyond
(in stage t0 and beyond), or of the fact that

max
z;yt0+1

u(wt�1; xt; z; yt0+1) = max
z
(max
yt0+1

u(wt�1; xt; z; yt0+1)):

So this says that the number u(t)(wt�1; xt; st) does not only correspond to an optimal
�nal utility level that may ultimately be obtained after choosing to consume xt from Xt

90



5. TOTAL AND AD HOC PREFERENCES

and keeping st for later consumption. But it also says that u(t)(wt�1; xt; st) corresponds
to a maximal level of ad hoc utility that may be reached in a next stage after choosing
xt and keeping st.

Remember that we were trying to set up a learning model of consumer behaviour,
and that we were interested in investigating the convergence properties of the learning
model with respect to the standard model. The de�nition of consistency relates ad hoc
utility to total utility in a speci�c way in the benchmark case of the standard framework.
And although we argued that the usual prospective view on consumer choice might
descriptively not be very appropriate, this ideal situation may still somehow serve as
a reference point. In the next chapters we will deviate from the assumptions of the
standard framework, so that ad hoc preferences can no longer be explicitly calculated
from �nal utility of optimal commodity bundles (or so that there are no total preferences
given from which anything can be derived in the �rst place). Still, throughout we will
keep using the standard framework and its relations between total preferences and
consistent ad hoc preferences as a normative benchmark. We may even suggest that
while people are not able to perform the sort of analysis that the standard framework
predicts they do, they still try to sort of mimic the corresponding behaviour.

5.4 Separability
The present section investigates whether separability properties are carried over from
total utility functions and to consistent ad hoc utility functions. These separability
properties will play an important role in the following chapters. The following propo-
sition shows that some type of (quasi-)separability carries over from total utility to
consistent ad hoc utility.

Proposition 5.4.1 Suppose given a commodity space X, that can for some t 2 N be
written as X = Wt�1�Xt�Yt+1, and a utility function u : X ! R, that can be written as
u(x) = u(wt�1; xt; yt+1) = Ut(vt(wt�1; xt); yt+1), for some functions vt : Wt�1 �Xt ! R
and Ut : R�Yt+1 ! R. Then for any ad hoc utility function u(t) : Wt�1�Xt�R+ ! R
that is consistent with u, given some future price vector qt+1 and some future income
stream Jt+1, there exists a function U (t) : R� R+ ! R such that u(t) can be written as
u(t)(wt�1; xt; st) = U

(t)(vt(wt�1; xt); st).

Proof. Given is a utility function u on the set X = Wt�1 � Xt � Yt+1, which can be
written as u(wt�1; xt; yt+1) = Ut(vt(wt�1; xt); yt+1), for all (wt�1; xt; yt+1) 2 Wt�1�Xt�
Yt+1, and for some functions vt : Wt�1 �Xt ! R and Ut : R� Yt+1 ! R. Also suppose
given some period-t ad hoc utility function u(t) : Wt�1 �Xt � R+ ! R on the ad hoc
commodity spaceWt�1�Xt�R+ that is consistent with u, given some system of future
price vectors qt+1 = (pt+1; pt+2; :::) (with p� 2 Rn�+ nf0g, n� 2 N, for all � > t) and some
future income stream Jt+1 = (It+1; It+2; :::) (with I� 2 R+ for all � > t). That is, u(t)
can be written as

u(t)(wt�1; xt; st) = f( sup
yt+12Bt+1(qt+1;st;Jt+1)

u(wt�1; xt; yt+1));
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for all (wt�1; xt; st) 2 Wt�1�Xt�R+, and some strictly increasing function f : R! R.
What needs to be shown now, is that for the given ad hoc utility function u(t) :

Wt�1 � Xt � R+ ! R, and the given function vt : Wt�1 � Xt ! R, there exists some
function U (t) : R� R+ ! R, such that

u(t)(wt�1; xt; st) = U
(t)(vt(wt�1; xt); st);

for all (wt�1; xt; st) 2 Wt�1 �Xt � R+.
The function u(t) can also be written as

u(t)(wt�1; xt; st) = f( sup
yt+12Bt+1(qt+1;st;Jt+1)

Ut(vt(wt�1; xt); yt+1)):

Now, given qt+1 and Jt+1, we can de�ne the function g : R� R+ ! R by

g(vt; st) := f( sup
yt+12Bt+1(qt+1;st;Jt+1)

Ut(vt; yt+1));

for all (vt; st) 2 R � R+. For any qt+1, any st and any Jt+1, the set Bt+1(qt+1; st; Jt+1)
at least contains the zero vector in Yt+1, so that Bt+1(qt+1; st; Jt+1) is never empty, and
the supremum supyt+12Bt+1(qt+1;st;Jt+1) Ut(vt; yt+1) is a well-de�ned element of R. Thus
we see that g is a well-de�ned function mapping R � R+ into R. The function g so
de�ned has the property that

u(t)(wt�1; xt; st) = g(vt(wt�1; xt); st); 8(wt�1; xt; st) (1)

Thus, g would be a good candidate for the function U (t) that we are looking for, except
that g is de�ned into R, rather than into R. That is, it may happen that g(vt; st) =1
for some (vt; st) 2 R � R+. Still, because of (1) and the fact that u(t) is a real-valued
function onWt�1�Xt�R+, we see that it must be the case that g(vt(wt�1; xt); st) <1
for all (wt�1; xt; st) 2 Wt�1�Xt�R+. Thus, we can de�ne a new function eg : R�R+ !
R, so that eg(�; st) := g(�; st) for all � in the range of the function vt (i.e. for all
� 2 vt(Wt�1 � Xt) � R+), and so that eg(�; st) is somehow �nite otherwise (for all
� =2 vt(Wt�1 � Xt) � R+). This new function eg would indeed be real-valued, and like
g it would satisfy the property described in (1). Therefore the function eg satis�es all
properties that were needed for the function U (t) : R � R+ ! R, which completes the
proof.

The following corollary applies the above proposition in a setting with some recursive
type of (quasi-)separability. It establishes that this property carries over from total
utility functions to consistent ad hoc utility functions.

Corollary 5.4.1 Suppose given a commodity space X, that can for some t 2 N0 be
written as X = X0 � ::: � Xt � Yt+1, and a utility function u : X ! R, that can be
written as u(x) =

u(x0; x1; :::; xt; yt+1) = Ut(vt(vt�1(:::v1(v0(x0); x1):::; xt�1); xt); yt+1);

92



5. TOTAL AND AD HOC PREFERENCES

for some functions v0 : X0 ! R, v� : R � X� ! R, 8 0 < � < t, and Ut : R �
Yt+1 ! R. Then, for any 0 � � � t, and any ad hoc preference relation u(�) on
the ad hoc commodity space W��1 � X� � R+, that is consistent with u, given some
J�+1 = (I�+1; I�+2; :::) and some q�+1 = (p�+1; p�+2; :::), there exists a function U (�) :
R� R+ ! R, such that

u(�)(x0; :::; x� ; s� ) = U
(�)(v� (v��1(:::v1(v0(x0); x1):::; x��1); x� ); s� ):

The functional structures that the functions in the above proposition and corollary
satisfy were referred to as quasi-separability. Note that for separability proper it was
also required that the functions Ut(v; yt+1) and U (t)(v; st) (and similarly v1 through vt)
would be strictly increasing in the �rst argument v. We could of course simply assume
that the function Ut(v; yt+1) would indeed be strictly increasing in v. However, this
would not imply that in the above proposition there would exist a strictly increasing
function U (t) such that the consistent ad hoc utility function could be separated into
u(t)(wt�1; xt; st) = U (t)(vt(wt�1; xt); st). Here the problem would be that the function
U (t) should satisfy

U (t)(vt; st) = f( sup
yt+12Bt+1(qt+1;st;Jt+1)

Ut(vt; yt+1));

and that the right-hand side need not be strictly increasing in vt. To see this, if
(v0t; st) 2 R�R+ is such that supyt+12Bt+1 Ut(vt; yt+1) is in�nite (which is not impossible),
then we will get that

f( sup
yt+12Bt+1

Ut(v
00
t ; yt+1)) = f( sup

yt+12Bt+1
Ut(v

0
t; yt+1))

for all v00t > v
0
t.

In this chapter we have modelled ad hoc preferences in the standard framework, in
which total preferences are also de�ned. This chapter has shown that, and exactly in
what way, the standard framework is a special case of the alternative ad hoc framework.
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6 Preference adjustment and the learning algorithm

In the previous chapters we considered situations where consumption opportunities are
not encountered simultaneously, but rather sequentially. Moreover, we assumed that
consumption choices are made sequentially, rather than simultaneously. In such situa-
tions each of these consumption choices would consist of choosing present consumption,
and deciding how much of the available budget to save for the possibly uncertain (or
even unknowable) future consumption opportunities. In every period a preference re-
lation is assumed to underlie these choices. Thus, in order to model decision-making in
an isolated period, ad hoc preferences were introduced.
In the previous chapters these ad hoc preferences were just supposed to exist, they

were introduced without worrying about where they would come from. In the previous
chapters ad hoc preferences were essentially treated as being exogenous. But as noted
before, ultimately it does not su¢ ce to treat ad hoc preferences as being completely
exogenous; at least to some extent these ad hoc preferences will have to be "explained",
because it seems inevitable that preferences for money should somehow be related to
future purchasing power.
Also, in the previous chapters we only considered such subdecisions (and the un-

derlying preferences) in isolation. No general answer was yet given as to how these ad
hoc preferences would (or should) be related across periods.
You could say that up to now we have dodged the bullet, in just assuming that

these ad hoc preferences exist without worrying about where they come from or how
they are determined or related. In this chapter we propose to answer these questions,
of how ad hoc preferences come about and how they are related across periods, at the
same time. We will do this in such a general way that it may be applicable in models
of choice under certainty, under uncertainty, or even under structural ignorance.

Of course, as can be seen in the previous chapter, the standard microeconomic
framework for consumer choice would give a rather straightforward answer to the above
questions of how ad hoc preferences come about and how they are related across periods:
since money that is not spent yet is saved for future consumption, savings will simply
be translated into optimally chosen future consumption bundles, and (ad hoc) utility
for savings will be derived from (total) utility of optimally chosen future consumption
bundles. In this standard microeconomic approach, judgments regarding the value of
money are still based on prospective viewing and on full rationality.
Here, however, we assume bounded rationality, so that a consumer would lack the

foresight and/or the rationality to tackle the lifetime consumption problem as standard
microeconomic theory suggests. Thus, in all periods decisions are based on ad hoc pref-
erences, and we proceed by assuming that the ad hoc preferences in the very �rst period
are exogenous, and that in all later periods the ad hoc preferences are endogenously
determined by updating the ad hoc preferences from the period before that. Thus, ad
hoc preferences in the �rst period are somehow obtained or invented by the consumer,
they re�ect some initial guess at what might be reasonable, and they are assumed to be
exogenous. In later stages, ad hoc preferences are assumed to be endogenously deter-
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mined from ad hoc preferences in the period before that, where adjustments are made
to account for the changing perspective or the additional information that is obtained
since this previous period. Ad hoc preferences from the previous period serve as a basis
for new ad hoc preferences, and old ad hoc preferences are adjusted according to a
retrospective evaluation of the actual choices that were arrived at from these old pref-
erences. Thus, these assumptions specify a learning model of consumer choice, where
ad hoc preferences are learned over time. Ad hoc preferences in the �rst period are
given, and if the process of adjusting ad hoc preferences is in some way e¢ cient, then
this process may �improve�subsequent ad hoc preferences, and their derived choices.
We will return to these questions of e¢ ciency and improvements in later chapters.

In chapter 4 a �rst component of the ad hoc framework that this dissertation
presents, was introduced by considering single periods in isolation. The present chapter
will provide a second component that will link (preferences in) any two subsequent pe-
riods, and it will close the model by putting together all components, such as to arrive
at a learning algorithm. Thus, we consider whole lifetimes where within each separate
period a basic ad hoc consumer problem as introduced in chapter 4 is solved, and where
between any pair of subsequent periods preferences are updated in a way that will be
presented in the present chapter.

This chapter consists of six sections. The setting of two subsequent periods is spec-
i�ed in the �rst section. In the second section ad hoc preferences in any period are
broken down into two di¤erent types of (sub)preferences: (1) instantaneous preferences
that specify preferences for consumption in the corresponding period, independently of
savings, and (2) time preferences that specify preferences between instantaneous pref-
erences (or instantaneous consumption as a whole) in the corresponding period, and
savings in this period. We use this distinction to assume that instantaneous preferences
are exogenously given, while time preferences have to be determined endogenously by
the learning procedure. The third section is somewhat technical, it links instantaneous
preferences across two subsequent periods, in order to mathematically justify the ad-
justment procedure introduced in section 4. The fourth section provides an exact way
in which time preferences (and thus ad hoc preferences) can be adjusted from the time
preferences (and the ad hoc preferences) that were used in the preceding period. To
that end, an adjustment function is de�ned that is based on retrospective evaluations
of the choices made in the preceding periods. The �fth section puts all elements of
the ad hoc framework together to form a learning algorithm, and the sixth section dis-
cusses and motivates some assumptions that are made in this chapter, and underlie the
learning algorithm.

6.1 The setting
The formal description of the dynamics of our framework can be said to continue both
logically and chronologically from the descriptions in the previous chapters. We start
from the same story as before by supposing that axiom 4.1.1 holds. There is a dis-
crete time variable t that progresses through the set f0; 1; 2; :::g. In every period t, a
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corresponding present commodity space Xt = Rnt+ (with nt 2 N), a price vector pt 2
Rnt+ nf0g, and an additional income It � 0 (here we also write I0 = m0) will be given.
However, there may be uncertainty. Here the assumptions made about the unveiling

of uncertainty are that Xt, pt and It are known at time t (at the latest). It is important
to note that this may also mean that (some of) this information is known before time
t. In fact, here we want to set up a learning model that can be applied in situations
with certainty, uncertainty or structural ignorance. Under certainty, we would have
that Xt, pt and It are known at time 0 for every period t. Under expected utility, we
would have that all the realizations of Xt, pt and It that might possibly occur (and
the corresponding probabilities) would be known before time t, but that the actual
realizations that do occur are only learned at time t. Under structural ignorance, we
would have that Xt, pt and It are learned at time t, and that nothing about these
realizations is known before time t.
Now, we suppose that the process has reached some period t + 1 2 N, and that in

every period i < t before time t+1, our consumer was faced with a present commodity
spaceXi, a present price vector pi, and an additional income Ii that gave rise to a budget
mi, and we suppose that axiom 4.4.1 holds. From these elements an (ad hoc) budget
set was constructed. Our consumer made choices in every such previous period i based
on an ad hoc preference relation %(i), which is represented here by an ad hoc utility
function u(i), de�ned on the corresponding ad hoc commodity space Wi�1 �Xi � R+.
Furthermore, by (�xi; �si) 2 Xi�R+ we denote the ad hoc choice pair that the consumer
ended up choosing in that previous period i.
Here we continue the story in the next stage, at time t + 1, where our consumer

�nds himself confronted with the next set of consumption opportunities Xt+1, with
prices pt+1 for these goods, and with the additional income It+1 � 0. At that time,
�wt := (�x0; �x1; :::; �xt) was already chosen from the setWt := X0�X1� :::�Xt, and since
we modelled a situation where no borrowing is possible but where saving is possible (at
a zero interest rate), we would have that the implicit budget in period t+1 is given by
mt+1 = m0 +

Pt+1
i=1 Ii �

Pt
i=1 pi � �xi.

Then, at time t + 1 the ad hoc choice set is given by Xt+1 � R+, where the last
dimension of this set denotes savings for future consumption. The relevant ad hoc
budget set consists of all elements that satisfy the budget constraint pt+1 �xt+1+ st+1 �
mt+1, and a decision is required with respect to how much to purchase of each of the
nt+1 goods, and how much of the budget mt+1 should be saved for later. By axiom
4.4.1 a basic ad hoc consumer problem, that consists of the maximization of ad hoc
preferences over the ad hoc budget set, should be solved. So this stage of the model
can only be completed with an ad hoc preference relation or an ad hoc utility function.
And such a new (endogenous) ad hoc utility function u(t+1) : Wt �Xt+1 � R+ ! R is
exactly what is needed here.

6.1.1 The setting in consumption/savings models

Recall that in consumption/savings models we considered pro�les of consumption levels
c = (c0; c1; c2; :::) rather than commodity bundles. Thus in every period t we have that
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nt = 1, and that Xt = R+. The variables ct denote consumption levels, that are
measured in monetary terms, and since saving will yield no interest, we can now set
pt = 1 for every period t. And at time t an additional income It � 0 (here we also write
I0 = m0) is given. Thus, there is no uncertainty about commodity spaces and prices,
but additional incomes may not be certain.
In any period t, given the past choices �wt�1 = (c0; c1; :::; ct�1), our consumer �nds

himself confronted with the implicit budget mt = m0 +
Pt

i=1 Ii �
Pt�1

i=1 �ci. Then our
decision-maker is supposed to make trade-o¤s between consumption and savings such
as to arrive at a decision of how to distribute this relevant budget. These trade-o¤s
are supposed to based on some ad hoc utility function u(t) : Wt�1 � R+ � R+ ! R. In
consumption/savings models we supposed that (total) utility functions are additively
separable and satisfy exponential discounting. Therefore, it may seem reasonable to
assume that ad hoc utility at time t could similarly be written as

u(t)(wt�1; ct; st) = u
(t)(c0; c1; :::; ct; st) =

tX
i=0

�iu0(ci) + �
t+1V (t)(st);

where u0 still denotes the (same) instantaneous utility function, and V (t) denotes some
value function that collapses the whole future into one dimension.
Then, if the process has reached period t+1, a new ad hoc utility function on the ad

hoc commodity spaceWt�R+�R+ is needed. This new ad hoc utility function should
still be of the form in the above formula. And while

Pt+1
i=0 �

iu0(ci) is exogenously given,
the function V (t+1) should be endogenous, so that determining new ad hoc preferences
would boil down to determining a new value function V (t+1).

6.2 Instantaneous preferences and time preference
In the previous section we saw that at time t + 1, given a past commodity bundle
�wt 2 Wt, a decision is required with respect to what element to choose from the period-
(t+ 1) budget set

f(xt+1; st+1) 2 Xt+1 � R+ : pt+1 � xt+1 + st+1 � mt+1g:

In order to make such a decision of how much to purchase of each of the nt+1 goods in
Xt+1, and how much of the budget mt+1 should be saved for later, a new (endogenous)
ad hoc utility function u(t+1) : Wt � Xt+1 � R+ ! R is needed. The question that
remains here is how to form new ad hoc preferences.

As mentioned before, here we assume that ad hoc preferences in the very �rst period
are exogenously given, and that in later periods ad hoc preferences (at least to some
extent) are endogenously determined (i.e. learned) from ad hoc preferences in the stage
before that. Updating these ad hoc preferences would be done by making adjustments
to account for newly gained additional information or a somehow changed perspective.
Thus, ad hoc preferences from the previous period serve as a basis for new ad hoc
preferences.
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So how should preferences be adapted, or how can the new ad hoc preferences, that
the current choice from Xt+1 � R+ will have to be based on, be determined from the
information available at that point in time? Here in trying to answer this question we
distinguish two aspects of these ad hoc preferences in order to add some more structure
to the problem.
We consider relative preferences for ad hoc commodity bundles separately from

the question of what the preferences for money should be. We divide the process of
forming preferences into two distinct types of considerations, and we may also think
of these as being two di¤erent stages of the process. The �rst type of considerations,
which will here also be referred to as instantaneous preferences, would specify relative
preferences on the ad hoc commodity space, without considering preferences for money
or the trade o¤ between instantaneous consumption from this ad hoc commodity space
and savings for remaining periods. The second type of consideration would, given the
�rst type, only make the remaining trade o¤ between instantaneous consumption and
money, or essentially between the present and the future, and can therefore also be
termed time preference. So the instantaneous preferences de�ne preferences over all ad
hoc commodity bundles independent of the money variable. Time preference trades
o¤ instantaneous consumption and money, where now no distinction is made anymore
between ad hoc commodity bundles that were judged to be indi¤erent according to the
instantaneous preferences.

Note that the distinction made above has a ring of independence (or separability)
to it. Indeed, if for some period t ad hoc preferences %(t) are de�ned on the ad hoc
commodity spaceWt�1�Xt�R+, then making the above distinction can mathematically
be justi�ed if (wt�1; xt) is independent of st,14 as de�ned in section 2.4. Remember that
from the preference relation %(t) that is de�ned on Wt�1 �Xt �R+, we can derive the
preference relation %(t)st , that gives preferences for elements in Wt�1 � Xt, given the
�xed element st 2 R+. And (wt�1; xt) was de�ned to be independent of st in %(t) if
the preference relations %(t)st are identical for all st 2 R+. Thus indeed, making this
distinction is mathematically valid if the conditional preference relations %(t)st do not
depend on the particular conditioning choice of st 2 R+.15

De�nition 6.2.1 If the ad hoc preference relation %(t) on Wt�1�Xt�R+ is such that
(wt�1; xt) is independent of st in %(t), then the resulting conditional preference relation
%(t)st on Wt�1 �Xt is called an instantaneous preference relation.

14A typical element of Wt�1 �Xt � R+ is denoted (wt�1; xt; st).
15Similarly, st will be independent of (wt�1; xt) in %(t) if st is strongly good in %(t) (or if the

corresponding utility function u(t) is strictly increasing in st). Then we would have two full-�edged
preference relations %(t)st and %

(t)
(wt�1;xt)

that are independent of each other. And the considerations of

time preference (determining the relative importance of %(t)st and %
(t)
(wt�1;xt)

) could then be seen as a
third preference relation that trades o¤ �levels�of both types of independent preferences, such as to
complete the overall preference relation %(t).
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Such an instantaneous preference relation%(t)st can be seen to partition the setWt�1�
Xt into a number of subsets or indi¤erence classes, in such a way that all elements
contained in any such a subset are judged as equally desirable. The relation %(t)st also
orders all of these di¤erent subsets, or indi¤erence classes, into more and less desirable
ones. That is, it seems natural to say that one indi¤erence class is preferred to a second
indi¤erence class if any element from the �rst indi¤erence class is preferred to any
element from the second indi¤erence class. Note that if we de�ne such an indi¤erence
class as containing all of the elements of Wt�1�Xt that are judged equally desirable as
a certain element of Wt�1 �Xt, it cannot happen that there are two or more of these
indi¤erence classes that are judged as equally desirable. So %(t)st de�nes a partition on
Wt�1 �Xt, and a strict ordering of the elements (indi¤erence classes) of this partition.
Consequently, time preference makes a trade o¤ between the desire to obtain higher or
more desirable indi¤erence classes of instantaneous consumption and the desire to keep
money for next periods.

6.2.1 Instantaneous utility

In the previous subsection we considered ad hoc preference relations that satisfy in-
dependence in order to mathematically justify distinguishing the two types of aspects
or considerations underlying ad hoc preferences. In the present subsection we will use
the equivalence of preference relations satisfying independence, and utility functions
satisfying separability, to further elaborate on the aforementioned distinction. This
equivalence allows us to describe the distinction between the two types of considera-
tions (or stages) underlying ad hoc preferences more conveniently in a mathematically
precise way.
According to theorem 2.4.1, if the ad hoc preference relation%(t) onWt�1�Xt�R+ is

represented by the utility function u(t)(wt�1; xt; st), then independence of the preference
relation holds if and only if the utility function satis�es separability. Hence, if some
ad hoc preference relation %(t) on some ad hoc commodity space Wt�1 � Xt � R+ is
such that (wt�1; xt) is independent of st in %(t), then we know that any utility function
u(t)(wt�1; xt; st) that represents these ad hoc preferences %(t) can be decomposed into
u(t)(wt�1; xt; st) = U

(t)(v(t)(wt�1; xt); st), for certain functions v(t) : Wt�1�Xt ! R and
U (t) : R� R+ ! R, with U (t)(v(t); st) strictly increasing in v(t).

De�nition 6.2.2 For a separable ad hoc utility function u(t) : Wt�1�Xt�R+ ! R, as
given by u(t)(wt; xt; st) = U (t)(v(t)(wt; xt); st), the function v(t) : Wt�1�Xt ! R is called
an instantaneous utility function, and the function U (t) : v(t)(Wt�1�Xt)�R+ ! R
is called a time preference function.

Now, the fact that both the preference relation %(t)st and the utility function v(t)
carry the pre�x �instantaneous�is not a coincidence. In fact, if %(t)st is an instantaneous
preference relation, as derived from the ad hoc preference relation %(t), and if v(t) is
an instantaneous utility function, as derived from the ad hoc utility function u(t), then
if u(t) represents %(t), it will also hold that v(t) represents %(t)st . To see this, for all

99



LEARNING IN CONSUMER CHOICE

(wt�1; xt); (w
0
t�1; x

0
t) 2 Wt�1 �Xt we have that

v(t)(wt�1; xt) � v(t)(w0t�1; x0t),

U (t)(v(t)(wt�1; xt); st) � U (t)(v(t)(w0t�1; x0t); st);8st 2 R+ ,

u(t)(wt�1; xt; st) � u(t)(w0t�1; x0t; st);8st 2 R+ ()

(wt�1; xt; st) %(t) (w0t�1; x0t; st);8st 2 R+ , (wt�1; xt) %(t)st (w
0
t�1; x

0
t):

Here the �rst equality holds by strict increasingness of U (t)(v(t); st) in v(t). Thus we see
that the function v(t) : Wt�1 �Xt ! R is indeed a utility function that represents the
preference relation %(t)st .16

Axiom 6.2.1 For any period t 2 N0 and any ad hoc commodity space Wt�1�Xt�R+,
every ad hoc preference relation %(t) on Wt�1 � Xt � R+ is assumed to be such that
(wt�1; xt) is independent of st in %(t), and every ad hoc utility function u(t) is assumed
to be separable in (wt�1; xt).

Given an instantaneous utility function v(t) : Wt�1 � Xt ! R, we could de�ne a
preference relation on the set v(t)(Wt�1�Xt)�R+17 to represent time preferences. Then,
the composition of the instantaneous preference relation �inside� this second (time)
preference relation would specify an ad hoc preference relation. As the instantaneous
preferences would represent the �rst type of considerations from the above distinction,
this second preference relation would represent the second type of considerations, which
we associated with time preference before. A function U (t) : v(t)(Wt�1�Xt)�R+ ! R
that would weight the relative importance of instantaneous utility and savings, or of the
present and the future, would then essentially be another utility function that represents
the second preference relation over elements (v(t); st).

The above distinction of the process of forming preferences, into two types of consid-
erations or two stages, now allows us to consider the �rst stage to be basically exogenous,
and the second stage to be endogenous. This may seem reasonable since the consid-
erations of the �rst stage are only in�uenced by the forms and shapes of Wt�1 � Xt,
that are known and given at time t, and not by what may happen in the (uncertain)
future, so they don�t have to be related to considerations about money or the future.
The second type of considerations would then obviously have to be endogenous, and
would somehow have to be invented or constructed by the consumer.
Also note here, that an explicit assumption that instantaneous preferences should

be seen as exogenous also implies that instantaneous utility would be exogenous.

16Also note that if we assume u(t) to be strictly increasing in st, then the identity function
i : R+ ! R+ (i(st) = st) can also be seen as a separate utility function that represents %(t)(wt�1;xt).
17The set v(t)(Wt�1 �Xt) denotes the range of v(t).
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Axiom 6.2.2 For any period t 2 N0, any instantaneous preference relation %(t)st on
Wt�1 �Xt is supposed to be exogenous. Similarly, for any t instantaneous utility v(t) :
Wt�1 � Xt ! R is supposed to be exogenous. Except for in period 0, time preference
functions are endogenous.

At a �rst glance the assumption of separability, or independence, that is made
here may seem quite strong, and maybe it is from a micro-economic point of view.
However, this separability assumption may also be seen as a mathematical, or technical
assumption that will improve tractability. The separability and exogeneity assumptions
do add a lot of structure to the problem, and enable us to explain something from
something else. If we would not make these assumptions it would be very hard to
specify a way how the ad hoc preferences could be related across periods.
Next we will see that of the examples of utility functions of speci�c forms that were

presented in the previous chapter, some do satisfy these conditions of independence and
separability, and some don�t.

Example 6.2.1 Additively separable utility
Suppose an ad hoc utility function u(t) : Wt�1 � Xt � R+ ! R is additively sepa-

rable, so that there are functions ui : Xi ! R, for all i � t, and us : R+ ! R such
that u(t)(wt�1; xt; st) =

Pt
i=0 ui(xi) + us(st). In this case it is obvious that the func-

tion u(t)(wt�1; xt; st) can be separated into the functions v(t)(wt�1; xt) :=
Pt

i=0 ui(xi)
and U (t)(v(t); st) := v(t) + us(st), where indeed U (t) is strictly increasing in v(t). If
%(t) is an ad hoc preference relation that is represented by u(t), then by theorem 2.4.1
(wt�1; xt) is independent of st in %(t). It may also be instructive to show directly
that the relative preferences for (wt�1; xt) are independent of st. To see this, for all
(wt�1; xt); (w

0
t�1; x

0
t) 2 Wt�1 �Xt we have

(wt�1; xt) %(t)st (w
0
t�1; x

0
t), (wt�1; xt; st) %(t) (w0t�1; x0t; st),

tX
i=0

ui(xi) + us(st) �
tX
i=0

ui(x
0
i) + us(st),

tX
i=0

ui(xi) �
tX
i=0

ui(x
0
i),

tX
i=0

ui(xi) + us(s
0
t) �

tX
i=0

ui(x
0
i) + us(s

0
t),

(wt�1; xt; s
0
t) %(t) (w0t�1; x0t; s0t), (wt�1; xt) %(t)s0t (w

0
t�1; x

0
t):

This will hold for all s0t 2 R+, so indeed we get independence.

Example 6.2.2 Example: linear utility
An ad hoc utility function u(t) : Wt�1 � Xt � R+ ! R is called linear if there are

vectors �i 2 Rni+ for all periods i � t, and a scalar � � 0, such that u(t)(wt�1; xt; st) =Pt
i=1(�i � xi) + �st. This means that all goods are perfect substitutes. Obviously this ad

hoc utility function satis�es additive separability, so that the reasoning of the preceding
example applies.
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Example 6.2.3 Example: Cobb-Douglas utility
As before, an ad hoc utility function u(t) is de�ned on the set Wt�1�Xt�R+, where

Wt�1 = �t�1i=0Xi, with Xi = Rni+ for some ni 2 N and for all i < t. First suppose that
ni = 1 for all t. Then such an ad hoc utility function is of Cobb-Douglas form if there
are coe¢ cients �i � 0 for all i � t, and � > 0, such that

u(t)(wt�1; xt; st) = 
 �
Qt
i=0 x

�i
i � s

�
t :

We see that the function u(t)(wt�1; xt; st) can (for instance) be separated into the func-
tions v(t)(wt�1; xt) :=

Qt
i=0 x

�i
i and U

(t)(v(t); st) = 
 �v(t) �s�t . However, the function U (t)
is only strictly increasing in v(t) for strictly positive st, as U (t)(v(t); 0) = 0 for all v(t).
This does not depend on the speci�c functional form of ad hoc utility, as any strictly
monotone transformation of u(t) will also have these properties. Hence u(t) would only
really satisfy the separability property if it could be restricted to the set Wt�1�Xt�R++.
Similarly, if %(t) is an ad hoc preference relation that is represented by u(t), we get that
(wt�1; xt) is independent of st in %(t) if it would be restricted to Wt�1 � Xt � R++.
Indeed, we see that for all (wt�1; xt); ( ~wt�1; ~xt) 2 Wt�1 �Xt, the equivalences

(wt�1; xt) �(t)st ( ~wt�1; ~xt), (wt�1; xt; st) �(t) ( ewt�1; ext; st),

 �
Qt
i=0 x

�i
i � s

�
t > 
 �

Qt
i=0 ~x

�i
i � s

�
t , 
 �

Qt
i=0 x

�i
i � ~s

�
t > 
 �

Qt
i=0 ~x

�i
i � ~s

�
t

, (wt�1; xt; est) �(t) ( ewt�1; ext; est), (wt�1; xt) �(t)~st ( ~wt�1; ~xt);

will hold if and only if st and ~st are strictly positive.
With a bit of extra notation, the same result would also hold in case the period-i

commodity spaces are more-dimensional: ni � 1 for all i � t.

Example 6.2.4 Leontief utility
Suppose that an ad hoc utility function u(t) is de�ned on the set Wt�1 � Xt � R+,

with Wt�1 = �t�1i=0Xi, where every Xi is one-dimensional: Xi = R+ (so that ni = 1).
Then ad hoc utility is of a Leontief form if there are coe¢ cients �i > 0 for all i � t,
and � > 0 such that u(t)(wt�1; xt; st) = minf x1�1 ;

x2
�2
; :::; xt

�t
; st
�
g. In this case it seems hard

to �nd a functional separation. In fact, if %(t) is an ad hoc preference relation that
is represented by u(t), then %(t)st certainly does depend on st. To see this, consider an
�e¢ cient�point (ŵt�1; x̂t; ŝt) that satis�es x̂1

�1
= ::: = x̂t

�t
= ŝt

�
. Then for any (w0t�1; x

0
t) 2

Wt�1 � Xt with x0i > x̂i for all i � t, we see that (w0t�1; x
0
t) �

(t)
ŝt
(ŵt�1; x̂t), but that

(w0t�1; x
0
t) �

(t)

s0t
(ŵt�1; x̂t) for any s0t > ŝt. Then indeed by theorem 2.4.1 we �nd that

there will be no functionally separable ad hoc utility function that represents %(t).
Obviously then, in the Leontief case independence and separability properties will

also not hold if present commodity spaces have higher dimensions ni � 1 for all i.
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Consumption/savings In models of consumption/savings, we arrived at ad hoc
utility functions u(t) : Wt�1 � R+ � R+ ! R of the following form:

u(t)(wt�1; ct; st) = u
(t)(c0; c1; :::; ct; st) =

tX
i=0

�iu0(ci) + �
t+1V (t)(st);

where u0 denotes an instantaneous utility function, and where V (t) denotes some value
function measuring the utility for money.
Such an ad hoc utility function is an instance of an additively separable utility

function, as in the above example, so that it is indeed separable. For instance, this ad
hoc utility function can be separated into

v(t)(wt�1; ct) =
tX
i=0

�i�tu0(ci)

and
U (t)(v(t); st) = �

t(v(t) + �V (t)(st)):

Here U (t) is indeed strictly increasing in v(t).
Such an ad hoc utility function could alternatively have been separated intoev(t)(wt�1; ct) = Pt

i=0 �
iu0(ci) and into eU (t)(ev(t); st) = ev(t) + �t+1V (t)(st). Mathemati-

cally, both ways of separating ad hoc utility are �ne. In what follows we will keep using
the �rst way, as it will turn out more convenient for intertemporal comparisons. We
will come back to these issues later. �

The assumptions of separability of ad hoc utility, and of exogeneity of instantaneous
utility are made to be able to further specify how ad hoc preferences from one stage can
be used to determine ad hoc preferences in a next stage. Since instantaneous utility is
supposed to be given exogenously, in order to arrive at a new ad hoc utility function
it su¢ ces to �nd a new time preference function. In our speci�cation instantaneous
utility will be used to help determine time preference functions.
As mentioned before, we assume that ad hoc preferences in the �rst period are given,

and that in any later stage ad hoc preferences are determined from ad hoc preferences
in the preceding stage. Thus, by the above separability and exogeneity assumptions,
this must mean that old time preferences are used to determine new time preferences.
In stead of coming up with entirely new time preferences, here the idea is that old time
preferences may serve as a basis for new time preferences, so that new time preferences
are obtained by improving, or adjusting, old time preferences. Thus time preferences
would be adjusted to account for newly gained additional information, or a changed
perspective.
In period t + 1, an old time preference function U (t)(:; :) and a new instantaneous

utility function v(t+1) : Wt�Xt+1 ! R would be given. And as U (t) will serve as a basis
for the new time preference function U (t+1), the composite function U (t)(v(t+1); st+1)
will implicitly serve as a basis for the new ad hoc utility function u(t+1). Here �serving

103



LEARNING IN CONSUMER CHOICE

as a basis�will mean that adjustments may still be necessary. Thus, the new auxiliary
function U (t)(v(t+1); st+1) may still need updating, and since instantaneous utility v(t+1)

is given exogenously, this means that it is the time preference function U (t) that may
have to be updated.
Therefore adjusting ad hoc preferences over time would basically only boil down to

making adjustments in the valuations for money and instantaneous utility.

6.3 Linking subsequent stages
However, if we want to use the composite function U (t)(v(t+1); st+1) as a basis for the
new ad hoc utility function u(t+1), as stated in the previous section, then a �rst thing
we need to convince ourselves of, is that the composite function U (t)(v(t+1); st+1) is
actually well-de�ned, and that it really makes sense. Are we simply allowed to insert
the new period�s instantaneous utility into the old period�s time preference function?
And how do we know that the instantaneous utility functions from the old and from
the new period are scaled in such ways that comparisons are meaningful, and thus that
interchanging them is allowed? Therefore, the question that arises here, is how the new
instantaneous utility function v(t+1) should be scaled, in order to allow for inserting it
into the old time preferences function.
Moreover, this scaling of v(t+1) should also take into account time discounting. In

comparing instantaneous utility across periods it should not be forgotten that consump-
tion at later dates might be valued less than consumption at earlier dates. Between
any two subsequent periods this time discounting e¤ect may be present. Therefore it
will have to be dealt with in the particular way in which comparisons of instantaneous
utility across periods are established, and thus in the scaling of v(t+1).

First we will clarify why it is needed that the scalings of instantaneous utility in
di¤erent periods are in line with each other, in order to justify using last period�s trade-
o¤s between instantaneous utility and money as a basis for the current period�s trade-
o¤s between instantaneous utility and money. Suppose that instantaneous preferences
%(t)st in period t are represented by the given instantaneous utility function v(t) : Wt�1�
Xt ! R, and suppose that v̂(t+1) : Wt � Xt+1 ! R would be some function that
represents %(t+1)st+1 . Then the question would be how to compare the utility v(t)(wt�1; xt)
of a certain bundle (wt�1; xt) fromWt�1�Xt, with the utility v̂(t+1)(wt; xt+1) of another
bundle (wt; xt+1) in the di¤erent set Wt+1�Xt+1. Of course, the instantaneous utilities
v(t)(wt�1; xt) and v̂(t+1)(wt; xt+1) are simply real numbers, and from any pair of real
numbers the greater one can be determined. However, if v̂(t+1) represents %(t+1)st+1 , then
so does f(v̂(t+1)), for any strictly increasing function f : R ! R. Therefore, as there
is great freedom in choosing the scaling for the new instantaneous utility function, in
general we are not allowed to compare its levels to the levels of the old instantaneous
utility function. Thus we generally can�t extrapolate any meaning of these utility
numbers to outside the domains of each of these instantaneous utility functions.
Recall that, at the more basic level of preference relations, time preference trades o¤

amounts of savings with �levels�of instantaneous preferences. That is, time preference
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from the previous period trades o¤ instantaneous preferences with savings in this pre-
vious period. And we now want to use the time preferences from this previous period
as a basis for making trade-o¤s between instantaneous preferences and savings in the
current period. The savings variables could rather straightforwardly be modelled as
the non-negative real numbers, that simply represent amounts of money that are saved.
Thus it seems that savings can be quite easily compared across periods. Therefore, in
order to be able to use and adapt a previous period�s time preference for the new period,
it has to be the case that a decision-maker can also somehow compare the �levels�of
instantaneous preferences across periods.
The set Wt � Xt+1 = Wt�1 � Xt � Xt+1 that v(t+1) (and %(t+1)st+1 ) would have to be

de�ned on, is a bigger set than the set Wt�1 � Xt that v(t) (and %(t)st ) is de�ned on.
However, note that the set Wt�1 � Xt is not a subset of Wt�1 � Xt � Xt+1, because
elements of Wt�1 � Xt are not elements of the set Wt�1 � Xt � Xt+1. Of course,
with the element (wt�1; xt) 2 Wt�1 �Xt we could (for instance) associate the element
(wt�1; xt; 0) 2 Wt � Xt+1. However, it is important to distinguish between these two
bundles (wt�1; xt) 2 Wt�1 �Xt and (wt�1; xt; 0) 2 Wt �Xt+1 as they are not the same
object.

In sections after the next, we will simply assume that a consumer is able to estab-
lish links between instantaneous preferences across periods, and that new instantaneous
utility would always be scaled in correspondence with the scaling of old instantaneous
utility, whereby taking into account the e¤ects of time discounting. In the following
subsections we will provide a mathematical justi�cation for these assumptions, by sup-
posing that the new instantaneous preferences are actually derived from a preference
relation that is de�ned on the union of both sets Wt�1 � Xt and Wt � Xt+1. Still, in
sections after these, we will continue without explicitly making use of this last new
preference relation. We will simply proceed by supposing that levels of instantaneous
preferences and utility can be directly compared.18

18This could for instance be justi�ed in case we suppose that previous instantaneous preferences
are used to determine new ones. That is, while we do assume new instantaneous preferences to be
exogenous in the sense that these are una¤ected by considerations of time preference, we may still
assume that new instantaneous preferences are being determined by the consumer by reference to old
instantaneous preferences. It might be the case that whenever a consumer is faced with the problem
of determining new instantaneous preferences on Wt�1 �Xt �Xt+1, he would do this by comparing
the commodities in Xt+1 to the commodities that he already knew. The new opportunity set Xt+1
may contain commodities that he already encountered before, so these will probably not be too hard
to categorize or classify in terms of the commodities that were known before the realization of Xt+1.
But Xt+1 may also contain commodities that our consumer did not previously know existed, and
similarly there may be commodities that were included in Wt�1 � Xt but that are not included in
Xt+1. Hence we could assume that he approaches the problem of assessing the new set Xt+1 precisely
by trying to compare the commodities contained in it to the old commodities. For instance, this could
be established by imagining all the complementarities and substitutabilities that may exist between
the commodities that are encountered for the �rst time and the commodities that were encountered
before. Thus, determining new instantaneous preferences by reference to old ones may also make the
ability to compare levels of instantaneous preferences across stages more plausible.

105



LEARNING IN CONSUMER CHOICE

6.3.1 Consumption/savings

In our special case encountered in consumption/savings models, these comparisons
between commodity bundles obtainable in di¤erent periods seem less problematic.
By assumption, in every period a present commodity bundle only consists of a one-
dimensional variable that denotes the amount of consumption in that period, and these
amounts of consumption are simply represented by their monetary values. Moreover,
underlying this class of models is the assumption of exponential discounting, which
says that money can buy the same levels of instantaneous utility in di¤erent periods,
except for the di¤erences due to time discounting. However, this last exception of time
discounting is an important one, as the way in which intertemporal comparisons of
instantaneous utilities are made should also take this into account.
Remember that in the consumption/savings examples we modelled a consumer who

uses ad hoc utility of an additive form

u(t)(wt�1; ct; st) =
tX
i=0

�iu0(ci) + �
t+1V (t)(st):

In the previous subsection on consumption/savings models we separated this ad hoc
utility into exogenous instantaneous utility v(t)(wt�1; ct) =

Pt
i=0 �

i�tu0(ci) and an en-
dogenous time preference function U (t)(v(t); st) = �

t(v(t) + �V (t)(st)).
This way to separate ad hoc utility deals with time discounting in such a way that

it does allow for letting new instantaneous utility v(t+1)(wt; ct+1) =
Pt+1

i=0 �
i�t�1u0(ci)

enter into the old time preference function U (t). To see this, U (t)(v(t+1); st+1) =

�t(
t+1X
i=0

�i�t�1u0(ci) + �V
(t)(st+1)) =

t+1X
i=0

�i�1u0(ci) + �
t+1V (t)(st+1):

Here the exponent t+1 of the discount factor for valuing savings is one higher than the
exponent of the discount factor for instantaneous utility in the relevant period t + 1.
This seems appropriate, as it is the same for ad hoc utility functions.
In the previous subsection on consumption/savings models, we also noted that the

ad hoc utility function could alternatively have been separated into ev(t)(wt�1; ct) =Pt
i=0 �

iu0(ci) and into eU (t)(ev(t); st) = ev(t) + �t+1V (t)(st). This way to separate ad hoc
utility does not deal with time discounting in a convenient way, and letting new instan-
taneous utility enter into the old time preference function becomes problematic. To see
this, eU (t)(ev(t+1); st+1) would equal Pt+1

i=0 �
iu0(ci) + �

t+1V (t)(st+1). In this speci�cation
the exponent t+1 of the discount factor for valuing savings is the same as the exponent
of the discount factor for instantaneous utility in period t+1, which is not in line with
the functional structure of ad hoc utility.19 �
19Still, in principle this last way (and even other ways) to separate ad hoc utility (and compare

instantaneous utility levels) could be used here, but then to end up with an e¢ cient learning procedure,
later on in the framework adjustments would have to be made to account for time discounting.
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In the more general setting, however, commodity sets may be shaped very di¤erently
in di¤erent periods, and comparisons of commodity bundles across periods may not at
all be possible in such a straightforward way. Therefore it needs to be investigated how
comparisons between the levels of the instantaneous preferences across periods could
be established, and how an appropriate scaling for v(t+1) could be constructed.
All functions v̂(t+1) and �v(t+1) that would represent %(t+1)st+1 , would be such that

v̂(t+1)(wt; xt+1) = v̂(t+1)(w0t; x
0
t+1) if and only if �v

(t+1)(wt; xt+1) = �v(t+1)(w0t; x
0
t+1) for

all pairs (wt; xt+1) and (w0t; x
0
t+1) from Wt � Xt+1. Hence all utility functions v̂(t+1)

that represent %(t+1)st+1 will have exactly the same level sets f(wt; xt+1) 2 Wt � Xt+1 :
v̂(t+1)(wt; xt+1) = �g (for some � 2 R). Thus determining a particular scaling for a
function representing %(t+1)st+1 would simply consist of attaching real numbers to all of
these level sets. (It is easy to see that for any utility function that represents a cer-
tain preference relation, the level sets of the utility function exactly correspond to the
indi¤erence classes of the preference relation. Of course the above attaching of num-
bers should be such that higher numbers would correspond to more desirable level sets,
or indi¤erence classes.) The given utility function v(t) also attaches real numbers to
indi¤erence classes on the set Wt�1 �Xt.
By an appropriate scaling for new instantaneous utility v(t+1) we would mean that

the levels of v(t+1) could be compared to the levels of old instantaneous utility v(t). This
would mean that for any bundles (wt�1; xt) 2 Wt�1 � Xt and (wt; xt+1) 2 Wt � Xt+1

statements such as v(t)(wt�1; xt) � v(t+1)(wt; xt+1) or v(t)(wt�1; xt) � v(t+1)(wt; xt+1)
would be meaningful, in the sense that these �bigger than�or �smaller than�relations
would indeed re�ect the relative desirability of the underlying bundles. Thus we see that
�nding an appropriate scaling for v(t+1) would require being able to state preferences
over the union of the sets Wt�1 �Xt and Wt �Xt+1.
If an appropriately chosen scaling of v(t+1) would attach the same number to a

certain level set on Wt � Xt+1 as v(t) attaches to some level set on Wt�1 � Xt, this
would have to mean that the two level sets should be regarded as consisting of equally
desirable bundles. Therefore, an appropriate scaling for v(t+1) would also join level sets
on Wt�1 �Xt with level sets on Wt �Xt+1 into larger level sets, or indi¤erence classes
on Wt�1 �Xt with indi¤erence classes on Wt �Xt+1.
The following subsections will make the above reasoning more precise.

6.3.2 Comparing instantaneous preferences

The two instantaneous preference relations %(t)st on Wt�1 � Xt and %(t+1)st+1 on Wt�1 �
Xt � Xt+1 are given. As noted in section 6.2, the relation %(t)st de�nes a partition on
Wt�1 � Xt into a number of indi¤erence classes, and %(t)st de�nes a strict ordering of
the elements (indi¤erence classes) in this partition. Of course, %(t+1)st+1 does the same on
Wt�1 �Xt �Xt+1.
What would now be needed is a way to compare the instantaneous preferences of

elements fromWt�1�Xt to the instantaneous preferences of elements fromWt�1�Xt�
Xt+1. That is, a consumer would need to be able to associate certain indi¤erence classes
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as de�ned by%(t+1)st+1 onWt�1�Xt�Xt+1, to certain indi¤erence classes as de�ned by%(t)st
on Wt�1 �Xt. Such an association would have the meaning that a certain indi¤erence
class as de�ned by %(t+1)st+1 on Wt�1 �Xt �Xt+1, is judged to be indi¤erent to another
indi¤erence class as de�ned by %(t)st on Wt�1 � Xt. So what is actually needed is an
ordering of all the indi¤erence classes (this time not a strict ordering), both the ones
determined by%(t+1)st+1 onWt�1�Xt�Xt+1, and the ones determined by%(t)st onWt�1�Xt.
Thus what is formally needed is some sort of an ordering or a preference relation on

the set of all indi¤erence classes onWt�1�Xt�Xt+1 and onWt�1�Xt. But since these
indi¤erence classes are in turn de�ned by preference relations on Wt�1�Xt�Xt+1 and
on Wt�1 �Xt, we could also let such an ordering of indi¤erence classes be represented
by one big ordering or preference relation on the set (Wt�1�Xt)[ (Wt�1�Xt�Xt+1)
directly.

De�nition 6.3.1 Given instantaneous preference relations %(t)st onWt�1�Xt for period
t, and %(t+1)st+1 on Wt�1�Xt�Xt+1 for period t+1, an intertemporal instantaneous
preference relation is a preference relation on the set (Wt�1�Xt)[(Wt�1�Xt�Xt+1)

that agrees with %(t)st on Wt�1 �Xt, and with %(t+1)st+1 on Wt�1 �Xt �Xt+1.

Such an intertemporal instantaneous preference relation on the set (Wt�1 � Xt) [
(Wt�1 �Xt �Xt+1) will be denoted by %[.
Before specifying what the extra conditions of %[ agreeing with %(t)st on Wt�1 �

Xt, and with %(t+1)st+1 on Wt�1 � Xt � Xt+1 exactly entail, we will �rst take a look
at what these conditions are needed for. Note that any preference relation on the set
(Wt�1�Xt)[(Wt�1�Xt�Xt+1) also divides this union set into a collection of indi¤erence
classes, and that it provides a strict ordering on this collection of indi¤erence classes.
Now, this new preference relation de�ned on the union set, was needed to join certain
indi¤erence classes as de�ned by %(t+1)st+1 on Wt�1 � Xt � Xt+1, to certain indi¤erence
classes as de�ned by %(t)st on Wt�1 � Xt. Therefore, to ensure that this is what such
an intertemporal instantaneous preference relation actually does, the new preference
relation on the union set should leave the indi¤erence classes as de�ned by %(t+1)st+1 on
Wt�1 �Xt �Xt+1, and by %(t)st on Wt�1 �Xt intact. The following de�nition formally
speci�es this property.

De�nition 6.3.2 Given a preference relation %1 de�ned on the set S1, we say that
the preference relation %2 de�ned on the set S1 [ S2 agrees with %1 on S1 if for all
s1; s

0
1 2 S1 it holds that s1 %1 s01 if and only if s1 %2 s01.

Applying this de�nition, the relation %[ on (Wt�1�Xt)[ (Wt�1�Xt�Xt+1) agrees
with %(t)st on Wt�1 �Xt if for all (wt�1; xt) and (w0t�1; x

0
t) in Wt�1 �Xt we have that

(wt�1; xt) %[ (w0t�1; x0t)() (wt�1; xt) %(t)st (w
0
t�1; x

0
t);

and similarly%[ agrees with%(t+1)st+1 onWt�1�Xt�Xt+1 if for all (wt; xt+1) and (w0t; x
0
t+1)

in Wt�1 �Xt �Xt+1 it holds that
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(wt; xt+1) %[ (w0t; x0t+1)() (wt; xt+1) %(t+1)st+1
(w0t; x

0
t+1):

Thus, since by de�nition %[ agrees with %(t)st and with %(t+1)st+1 , we see that %[ indeed
does not change the partitions of Wt�1 � Xt and Wt�1 � Xt � Xt+1 into indi¤erence
classes, as de�ned by %(t)st and %(t+1)st+1 , respectively. And %[ also does not change the
ordering of all of the indi¤erence classes withinWt�1�Xt (or withinWt�1�Xt�Xt+1).
But since the relation %[ is de�ned on (Wt�1 � Xt) [ (Wt�1 � Xt � Xt+1), this now
also gives the possibility to compare elements (wt�1; xt) 2 Wt�1 � Xt with elements
(w0t�1; x

0
t; x

0
t+1) 2 Wt�1 �Xt �Xt+1, and to join indi¤erence classes as de�ned by %(t)st

with indi¤erence classes as de�ned by %(t+1)st+1 .
Note that although it is not re�ected in the notation %[, intertemporal instanta-

neous preference relation will generally depend on the relevant period t. The instan-
taneous preferences %(t)st and %(t+1)st+1 are independent of st and st+1, respectively, and
as the intertemporal instantaneous preferences %[ agree with %(t)st and %(t+1)st+1 on the
relevant subsets, %[ will similarly be independent of st and st+1.
6.3.3 Comparable scalings for instantaneous utility

At time t the instantaneous utility function v(t) was given, and in time t+1 the relations
%(t+1)st+1 and%[ are exogenously given. It was already given that%(t+1)st+1 can be represented
by some instantaneous utility function(s), and the problem that remained was whether
there exists an instantaneous utility function v(t+1) that has a scaling that is comparable
to that of v(t). Here we will specify what exactly is meant by v(t+1) having a comparable
scaling as v(t), and we will establish when, given v(t), there exists such a function v(t+1)

that has a comparable scaling.
Intertemporal instantaneous preference relations can now be used to specify and

achieve such a comparable scaling for new instantaneous utility v(t+1). Earlier in this
section we noted that the given utility function v(t) attaches real numbers to indi¤er-
ence classes on the set Wt�1 � Xt, and that a scaling for a particular function v(t+1)

representing %(t+1)st+1 , would simply attach real numbers to all of the indi¤erence classes
on Wt � Xt+1. Then, if according to the intertemporal instantaneous preference rela-
tion %[ a certain indi¤erence class on Wt �Xt+1 is equally desirable as an indi¤erence
class on Wt�1 � Xt, it seems that the appropriate scaling for v(t+1) would have to
attach to this indi¤erence class on Wt � Xt+1 exactly the same real number as v(t)

attaches to the indi¤erence class on Wt�1 �Xt. That is, given %[, instantaneous util-
ities v(t) and v(t+1) would indeed be comparable if for all (wt�1; xt) 2 Wt�1 � Xt and
all (wt; xt+1) 2 Wt � Xt+1 it holds that v(t)(wt�1; xt) = v(t+1)(wt; xt+1) if and only if
(wt�1; xt) �[ (wt; xt+1).

The above properties can be formalized in the following de�nition and axiom.

De�nition 6.3.3 Suppose given instantaneous preference relations %(t)st on Wt�1 �Xt

for period t, and %(t+1)st+1 on Wt�1 � Xt � Xt+1 for period t + 1, and an intertemporal
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instantaneous preference relation %[. Also suppose given instantaneous utility functions
v(t) and v(t+1) that represent %(t)st and %(t+1)st+1 . Then the scaling of v(t+1) is comparable
to the scaling of v(t) if the function v[ : (Wt�1�Xt)[ (Wt�1�Xt�Xt+1)! R which is
de�ned so that its restriction to the set Wt�1�Xt equals v(t), and so that its restriction
to the set Wt�1 �Xt �Xt+1 equals v(t+1), represents %[.

We will also call a function v[ as in the above de�nition, that satis�es v[(wt�1; xt) =
v(t)(wt�1; xt) for all (wt�1; xt) 2 Wt�1 � Xt, and v[(wt; xt+1) = v(t+1)(wt; xt+1) for all
(wt; xt+1) 2 Wt � Xt+1, an intertemporal instantaneous utility function. If the
scalings of v(t) and v(t+1) are indeed comparable, then the intertemporal instantaneous
utility function v[, would represent the intertemporal instantaneous preference relation
%[. Thus, for all (wt�1; xt) 2 Wt�1 � Xt and all (wt; xt+1) 2 Wt � Xt+1 that satisfy
(wt�1; xt) �[ (wt; xt+1) it would indeed hold that v[(wt�1; xt) = v[(wt; xt+1), and thus
that v(t)(wt�1; xt) = v(t+1)(wt; xt+1).

But does such an intertemporal instantaneous utility function that represents a
given intertemporal instantaneous preference relation always exist? Or in other words,
for v(t), %(t+1)st+1 and %[given, does there always exist a function v(t+1) that has a com-
parable scaling as v(t)? If the intertemporal instantaneous preference relation %[ is
continuous20, then theorem 2.2.1 can be applied to show that there exist continuous21

functions on (Wt�1 � Xt) [ (Wt�1 � Xt � Xt+1) that represent %[. Now we can also
construct a new instantaneous utility function v(t+1) that will have a comparable scaling
as v(t), using %[ and old instantaneous utility v(t). We de�ne the set 	 as

	 := f(wt; xt+1) 2 Wt �Xt+1 : 9(wt�1; xt) 2 Wt�1 �Xt s.t. (wt�1; xt) �[ (wt; xt+1)g:

Thus for all (wt; xt+1) 2 	, there exists some (wt�1; xt) 2 Wt�1 � Xt for which
(wt�1; xt) �[ (wt; xt+1), and we de�ne v(t+1) on 	 by v(t+1)(wt; xt+1) := v(t)(wt�1; xt).
By continuity of %[ it can be shown that for all (wt; xt+1) 2 	c = (Wt � Xt+1)n
	 it must hold that (wt; xt+1) �[ (wt�1; xt) for all (wt�1; xt) 2 Wt�1 � Xt, or that
(wt; xt+1) �[ (wt�1; xt) for all (wt�1; xt) 2 Wt�1 � Xt.22 Therefore the function v(t+1)

can simply be extended from 	 to the whole of Wt�Xt+1, by choosing some scaling on
	c that simply attaches higher numbers to more desirable indi¤erence classes or level
sets (as de�ned by %(t+1)st+1 , or equivalently by %[).

20With respect to the topology T [ = fSt [ St+1 : St 2 Tt; St+1 2 Tt+1g, where Tt denotes the
Euclidian topology on Wt�1 �Xt, and Tt+1 denotes the Euclidian topology on Wt�1 �Xt �Xt+1.
21With respect to T [. It can be shown that if such a function on (Wt�1 � Xt) [ (Wt � Xt+1) is

continuous with respect to T [, its restriction to Wt�1 �Xt is continuous with respect to Tt, and its
restriction to Wt �Xt+1 is continuous with respect to Tt+1.
22For (wt; xt+1) 2 	c it will hold that the sets f(wt�1; xt) 2 Wt�1 �Xt : (wt�1; xt) %[ (wt; xt+1)g

and f(wt�1; xt) 2 Wt�1 �Xt : (wt�1; xt) -[ (wt; xt+1)g are each others complements. By continuity
both sets should always be closed, which would imply that each of the above sets should either be the
empty set, or Wt�1 �Xt.
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Then, given v(t) and the newly de�ned function v(t+1), the accompanying intertem-
poral instantaneous utility function v[ would indeed represent %[. To see this, we will
distinguish a few cases.
The restriction of v[ to Wt�1 �Xt equals v(t), which represents %(t), which in turn

agrees with %[ on Wt�1 �Xt. Thus for all (wt�1; xt) and all (w0t�1; x
0
t) 2 Wt�1 �Xt it

holds that v[(wt�1; xt) � v[(w0t�1; x0t) if and only if (wt�1; xt) %[ (w0t�1; x0t).
Similarly, the restriction of v[ to Wt � Xt+1 equals v(t+1), and because of the way

that v(t+1) is de�ned on Wt �Xt+1, it is easy to see that for all (wt; xt+1) 2 	c and all
(w0t; x

0
t+1) 2 Wt�Xt+1 we get that v[(wt; xt+1) � v[(w0t; x0t+1) if and only if (wt; xt+1) %[

(w0t; x
0
t+1). Also, for all (wt; xt+1); (w

0
t; x

0
t+1) 2 	 we get that

v[(wt; xt+1) � v[(w0t; x0t+1), v(t+1)(wt; xt+1) � v(t+1)(w0t; x0t+1),

v(t)(wt�1; xt) � v(t)(w0t�1; x0t), (wt�1; xt) %(t) (w0t�1; x0t),
(wt�1; xt) %[ (w0t�1; x0t), (wt; xt+1) %[ (w0t; x0t+1):

Here the bundles (wt�1; xt) and (w0t�1; x
0
t) are such that (wt�1; xt) �[ (wt; xt+1), and

such that (w0t�1; x
0
t) �[ (wt; xt+1), respectively. Thus v[ does represent%[ onWt�Xt+1.

Also, for all (wt�1; xt) 2 Wt�1 �Xt and all (wt; xt+1) 2 	 it will hold that

v[(wt�1; xt) � v[(wt; xt+1), v(t)(wt�1; xt) � v(t+1)(wt; xt+1),

v(t)(wt�1; xt) � v(t)(w0t�1; x0t), (wt�1; xt) %(t) (w0t�1; x0t),
(wt�1; xt) %[ (w0t�1; x0t), (wt�1; xt) %[ (wt; xt+1):

Here the bundle (w0t�1; x
0
t) is such that (w

0
t�1; x

0
t) �[ (wt; xt+1).

And lastly, because of how the function v(t+1) was de�ned on 	c, it can be seen that
for all (wt�1; xt) 2 Wt�1 � Xt and all (wt; xt+1) 2 	c it will hold that v[(wt�1; xt) �
v[(wt; xt+1) if and only if (wt�1; xt) %[ (wt; xt+1).

Axiom 6.3.1 For any time t 2 N0, and any instantaneous preference relations %(t)st
on Wt�1 �Xt, and %(t+1)st+1 on Wt�1 �Xt �Xt+1, there exists a continuous23 intertem-
poral instantaneous preference relation %[. Moreover, given %(t)st , %(t+1)st+1 and %[, the
instantaneous utility functions v(t) and v(t+1) that are used, represent %(t)st and %(t+1)st+1 ,
and have comparable scalings.

Thus, for all t we assume that the scalings of the instantaneous utility functions
v(t) : Wt�1 �Xt ! R and v(t+1) : Wt�1 �Xt �Xt+1 ! R that are used in the ad hoc
framework, are indeed comparable.

One possible way in which such level comparisons of %(t)st and %(t+1)st+1 through %[
could be made speci�c is by assuming that (wt�1; xt) �[ (wt�1; xt; 0), (for 0 2 Xt+1) for
every (wt�1; xt) 2 Wt�1�Xt. This way to compare elements ofWt�1�Xt with elements

23With respect to the topology T [.
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of Wt�1�Xt�Xt+1 was already referred to at the beginning of this section. From this
speci�cation we would obtain, for every bundle (wt�1; xt; xt+1) 2 Wt�1 �Xt �Xt+1 for
which there is a (w0t�1; x

0
t) 2 Wt�1 � Xt such that (wt�1; xt; xt+1) �(t+1)st+1 (w0t�1; x

0
t; 0),

that (wt�1; xt; xt+1) �[ (w0t�1; x0t) must also hold. If for every bundle (wt�1; xt; xt+1) 2
Wt�1 � Xt � Xt+1, there would indeed exist a bundle (w0t�1; x

0
t) 2 Wt�1 � Xt such

that (wt�1; xt; xt+1) �(t+1)st+1 (w0t�1; x
0
t; 0), then %[ would be completely speci�ed by this

relation. In this case we could indeed make explicit how indi¤erence classes fromWt�1�
Xt should be paired with indi¤erence classes fromWt�1�Xt�Xt+1, and can be joined
to obtain indi¤erence classes on (Wt�1 �Xt) [ (Wt�1 �Xt �Xt+1).
In terms of utility functions the above speci�cation of %[ would give rise to a

function v[ : (Wt�1 � Xt) [ (Wt�1 � Xt � Xt+1) ! R, that satis�es v[(wt�1; xt) =
v[(wt�1; xt; 0), for every (wt�1; xt) 2 Wt�1 � Xt. We would also have that
v[(wt�1; xt; xt+1) = v

[(w0t�1; x
0
t), for every bundle (wt�1; xt; xt+1) 2 Wt�1 �Xt �Xt+1,

and every (w0t�1; x
0
t) 2 Wt�1 � Xt such that (wt�1; xt; xt+1) �[ (w0t�1; x

0
t; 0), (or

v[(wt�1; xt; xt+1) = v
[(w0t�1; x

0
t; 0)). This procedure would indeed exactly specify a way

in which numbers (utility levels) can be attached to elements from Wt�1 �Xt �Xt+1,
that are in agreement with the numbers attached by v(t) on Wt�1 �Xt.
And although this particular way of comparing %(t)st with %(t+1)st+1 seems to have some

intuitive appeal, it is by no means the only way in which such a comparison can be
established. In fact, in some circumstances other ways to compare might be more
appropriate. For example, suppose that instantaneous utility would be of a Cobb-
Douglas form. If we would have that ni = 1 for every period i, so that Xi = R+, then
instantaneous utility in period t+ 1 could be written as v(t+1)(wt; xt+1) =

Qt+1
i=0 x

�i
i , for

some �i � 0, for all i � t + 1. Then for any (wt�1; xt) 2 Wt�1 � Xt the speci�cation
v[(wt�1; xt) = v

[(wt�1; xt; 0) would imply that

v(t)(wt�1; xt) = v
[(wt�1; xt) = v

[(wt�1; xt; 0) = v
(t+1)(wt�1; xt; 0) = 0:

Therefore in a Cobb-Douglas case, this way to compare instantaneous utilities only
works in the degenerate case where v(t)(wt�1; xt) = 0, for all (wt�1; xt) 2 Wt�1 �Xt.
More generally, it seems that this particular way of comparing instantaneous util-

ities, with v[(wt�1; xt) = v[(wt�1; xt; 0), would be more appropriate if instantaneous
consumptions are substitutes across periods, such as in the cases of linear and of additive
utility. And it seems less appropriate if instantaneous consumptions are complements
across periods, such as in the cases of Cobb-Douglas and Leontief utility functions.

In what follows, we will no longer explicitly make use of intertemporal instantaneous
preference relations %[ or intertemporal instantaneous utility functions v[. We will
simply use instantaneous preference relations %(t)st and instantaneous utility functions
v(t) to model preferences on the period-t commodity space Wt�1 � Xt, and similarly
we will use %(t+1)st+1 and v(t+1) to model preferences on Wt�1 � Xt � Xt+1. Axiom 6.3.1
would then ensure that these preferences are comparable, and it would justify using last
period�s trade-o¤ between instantaneous utility and money as a basis for the current
period�s trade-o¤ between instantaneous utility and money.
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6.4 Adjusting time preference
Recall that in the new period t + 1 new ad hoc preferences are needed. With instan-
taneous preferences exogenously given, new time preferences are needed to complete
these ad hoc preferences. We assume that the new period�s time preferences would
be obtained by adjusting the old period�s time preferences, and that the new period�s
instantaneous preferences are used in updating time preference.
The previous subsection established a procedure for comparing instantaneous prefer-

ences across periods, which ensures that new instantaneous utility v(t+1) can be entered
into the old time preference function U (t), so that the new function
U (t)(v(t+1)(wt�1; xt; xt+1); st+1) is well-de�ned, and so that it can be used as a basis
for the new period�s ad hoc preferences.
However, U (t) is a time-t guess at what the time preference function should look

like, determining a time-t estimate of how to value saving relative to instantaneous
consumption, which might at time t + 1 have become obsolete. Since some time has
passed between time t when time preference was last established and the present mo-
ment, within this time interval the outlook on the future may have changed, which
may be a reason to evaluate, and possibly adjust, this estimate as represented by time
preference.
Therefore, we proceed by assuming that the process of adjusting time preferences

from old to new, is derived from an evaluation of old time preferences, using the changed
outlook to assess the performance of these old time preferences in retrospect. Thus, our
consumer would assess whether a new perspective necessitates him to adjust his time
preference, and if so, how.

Before providing exact speci�cations of the procedure of updating time preferences,
here we will �rst present the basic idea more informally. The idea with which we will
proceed, is that instead of starting from scratch in determining new time preferences,
our consumer would use old time preferences as a starting point, and adjusts these,
thereby incorporating the new perspective. That is, the structure of the old time
preference function U (t) may be kept more or less intact, while modifying the exact
way in which the variables instantaneous utility and savings are weighted. Such a
modi�cation could be established by shifting one (or both) of the variables of the time
preference function, before making the trade-o¤s. In mathematical terms such a shift
could be realized by an adjustment factor a that is �inserted� into U by multiplying
instantaneous utility with it. Instead of the unadjusted function U (t)(v(t+1); st+1), this
would specify new ad hoc preferences by U (t+1)(v(t+1); st+1) = U (t)(a � v(t+1); st+1), for
some a 2 R++. Thus, such an adjustment factor a would change the relative weights
of instantaneous utility and savings.
Similarly, a scalar b 2 R++ could shift the savings variable: U (t)(v(t+1); b � st+1). As

such an adjustment factor would change the relative weights for both arguments of the
time preference function, the basic idea of this way of making adjustments would be
the same.
More generally, instead of inserting positive real numbers into the time preference
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function, we could alternatively insert a (strictly increasing) function � : R ! R into
it:

U (t+1)(v(t+1); st+1) = U
(t)(�(v(t+1)); st+1):

Or similarly a strictly increasing adjustment function � : R+ ! R+ could shift the
savings variable U (t)(v(t+1); �(st+1)). Or both variables could be shifted simultaneously
by an adjustment function 
 : R�R+ ! R�R+, that would be monotonely increasing
in both arguments, giving U (t)(
(v(t+1); st+1)). Here we proceed with the simplest choice
of multiplicative, uniform adjustment by means of a simple adjustment factor a 2 R++
that shifts the instantaneous utility variable.

6.4.1 Consumption/savings

In a consumption/savings models an ad hoc utility function in period t was supposed
to be of the following form:

u(t)(wt�1; ct; st) =
tX
i=0

�iu0(ci) + �
t+1V (t)(st):

Here u0 denotes the instantaneous utility function, and V (t) denotes a value function
that collapses the whole future into one dimension. Instantaneous preferences could
be represented by v(t)(wt�1; ct) =

Pt
i=0 �

i�tu0(ci), and time preferences could be repre-
sented by the function U (t)(v(t); st) = �

t(v(t) + �V (t)(st)).
If in period t+1 a new ad hoc utility function is needed, given exogenous instanta-

neous utility v(t+1)(wt; ct+1) =
Pt+1

i=0 �
i�t�1u0(ci), then new time preferences are needed,

which would be represented by a function of the form �t+1(v(t+1) + �V (t+1)(st+1)). As
this speci�c form and the discount factor � are given, a new value function V (t+1) is
basically what is needed.
Now, in the above uniform, multiplicative way to make adjustments the time pref-

erence function U (t)(v(t); st) is adjusted into U (t+1)(v(t+1); st+1) = U (t)(a �v(t+1); st+1). In
the present setting, a new time preference function would thus be given by
U (t+1)(v(t+1); st+1) = �

t(a � v(t+1) + �V (t)(st+1)). Without loss of generality we may now
multiply the whole right-hand-side by the scalar �a�1. Thus, without loss of generality
the new time preference function could be written as

U (t+1)(v(t+1); st+1) = �
t+1(v(t+1) + �a�1V (t)(st+1)):

Therefore, the new value function could be written as V (t+1)(st+1) = a�1V (t)(st+1).
Indeed, in this way, the notation would be more in line with the above story of instan-
taneous utility being exogenous, and the value function being endogenous.
If we had instead made adjustments by shifting the savings variable through a scalar

b 2 R++ so that U (t+1)(v(t+1); st+1) = U (t)(v(t+1); b � st+1), then we would alternatively
have gotten that V (t+1)(st+1) = �V (t)(b � st+1). In this case, the adjustment factor b
would enter inside the old value function, rather than outside the old value function as
we have in our chosen speci�cation. Although this would conceptually not make much
of a di¤erence, mathematically it would. �
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Of course, the question that would naturally arise then, is what adjustment factor
a 2 R++ should be used. It seems only natural that the answer to this question
of what adjustment factor seems appropriate would depend on the speci�cs of the
economic environment. That is, it would (or could) depend on what has happened and
on what is known about what may still happen. Thus what would be needed is some
adjustment function that would return a strictly positive real number for every such
possible environment. However, it seems quite plausible (and maybe even desirable)
that such a function would be dependent on only a few selected features from such an
environment. Here we will not let adjustment functions depend on complete descriptions
of the economic environment as a whole, but rather we will let such functions depend
on only one speci�c selected feature of such an economic environment. Two di¤erent
speci�cations for such features will be introduced in the next subsection.

6.4.2 Excess expenditure

Here we will specify two features of an economic environment that an adjustment func-
tion may depend on, namely a feature called �regular excess expenditure�, and a feature
called �expected excess expenditure�. As these names suggest, both features try to mea-
sure excess expenditure. In both cases, the measure of excess expenditure in a period
t is determined in the next period t+ 1, and signi�es the di¤erence between the actual
expenditure from period t, and the expenditure that should have been made in period
t, from a period-(t+ 1) point of view.
Thus, we argue that the changing perspective between periods t and t + 1 may

indicate that the choice made in period t was suboptimal, more speci�cally that in
retrospect too much or too little was spent. Then, the idea behind using excess expen-
diture to update preferences, would be that if excess expenditure in period t turns out
to be positive (negative), then in period t + 1 the adjustment function would have to
give more (less) weight to instantaneous utility in time preferences.

In either of the two measures, excess expenditure is determined as a di¤erence
e�t � e�t . Here the �rst determinant e�t of excess expenditure in period t + 1 is the
actual expenditure from the previous period t. As the choice made in period t and the
prices for the commodities in period t are known in period t+1, clearly this quantity is
unequivocally de�ned, and it will be the same for both measures of excess expenditure.
The second determinant e�t of excess expenditure in period t+1 denotes the expenditure
that should have been done in period t, from a period-(t+1) point of view. However, it
does not seem equally clear how this last quantity e�t should precisely be determined, and
the two excess expenditure measures approach this question in di¤erent ways. In fact,
these two measures of excess expenditure are precisely distinguished by two di¤erent
speci�cations of e�t .
The main di¢ culty in de�ning the last quantity e�t of how much should have been

spent, is that such a retrospective evaluation seems to require being able to make trade-
o¤s between instantaneous utility and savings in the new period t+1. But of course these
trade-o¤s for the new period, were exactly what needed to be explained endogenously
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from excess expenditures (and e�t ) in the �rst place. Now, for both speci�cations of
excess expenditure, our way to deal with this di¢ culty is by assuming that old time
preferences (from the previous period) are used to make these trade-o¤s.
That is, in order to be able to state that the period-t choice x�t was indeed chosen

suboptimally, we need some time-(t + 1) way to compare elements from Wt�1 � Xt �
Xt+1 � R+. Of course, new instantaneous preferences v(t+1) are given, and are de�ned
on the setWt�Xt+1 = Wt�1�Xt�Xt+1, so this gives a way to assess the instantaneous
desirability of x�t . But, in order to be able to judge x

�
t as being too expensive or too

cheap, it is necessary to compare levels of instantaneous utility with levels of money.
That is, time preferences in period t + 1 would be needed, which is exactly what was
needed to make choices in the new period. Thus to avoid a circle reasoning, we will
simply assume that old time preferences as found in U (t) are used to make the trade-o¤s
needed to re-evaluate x�t .
At �rst sight it may seem somewhat strange to again use U (t) to evaluate x�t , since

indeed x�t was determined by U
(t). After all, if according to U (t) the bundle x�t was

thought to be optimal, how can the same bundle x�t now in turn be used to judge
whether U (t) was optimal? Here the new time-(t+1) outlook may shed a di¤erent light
on U (t). The time preference function U (t) was only used to determine an increment x�t
of the total consumption bundle, given the previous composition of the consumption
bundle �wt�1, and the wider perspective of the next period may already make things
look di¤erent, as these time preferences need not necessarily be time-consistent.

Regular excess expenditure The �rst measure of excess expenditure is presented
here. As the pre�x �regular�seems to suggest, in what follows we will treat this measure
of excess expenditure as the most basic one. This is also due to the fact that, in
contrast to the second measure, this �rst measure of excess expenditure can be de�ned
and determined in all models that �t the general ad hoc framework as presented thus
far. We will also sometimes use the abbreviation REE to refer to this regular excess
expenditure measure.

De�nition 6.4.1 At time t + 1, the period-t regular excess expenditure is deter-
mined by Et := pt � x�t � pt � x/t . Here x�t is part of a pair (x�t ; s�t ) that was chosen in
time t, as it solved

max
(xt;st)

U (t)(v(t)( �wt�1; xt); st) s:t: pt � xt + st � mt;

where a pro�le of past choices �wt�1 2 Wt�1, the set Xt, prices pt, the budget mt,
instantaneous utility v(t) : Wt�1 � Xt ! R, and the period-t time preference function
U (t) : R�Xt ! R were all given. And x/t is part of a solution (x/t ; x/t+1; s/t+1) to

max
(xt;xt+1;st+1)

U (t)(v(t+1)( �wt�1; xt; xt+1); st+1);

sub to pt � xt + st � mt and pt+1 � xt+1 + st+1 � st + It+1, where all time-t information
(the set Xt+1, prices pt+1, the budget mt+1 = mt� pt � x�t + It+1) and the instantaneous
utility function v(t+1) : Wt�1 �Xt �Xt+1 ! R are given.
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Here the auxiliary function U (t)(v(t+1)( �wt�1; xt; xt+1); st+1) is used to determine x/t
and therefore to assess x�t . This last maximization problem over xt and xt+1 simultane-
ously (instead of over xt only) is a hypothetical problem, in the sense that at time t+1
when this problem is considered, the choice of x�t is already made, so the solution x

/
t

found in this new problem can not anymore be actually implemented, but it will only
be used to asses x�t , and indirectly the e¢ cacy of time preference.

Expected excess expenditure Expected excess expenditure is distinguished from
regular excess expenditure by the pre�x �expected�. This pre�x re�ects the use of ex-
pected utility to re-evaluate the previous period�s expenditure. Here it is important to
note that whereas regular excess expenditure (REE) can be de�ned and determined in
all models that �t the ad hoc framework, the next measure of expected excess expendi-
ture can only be de�ned and determined in expected utility models. More speci�cally,
information is needed about the realizations that the additional income random vari-
able I can take, and about the probabilities each of these possible realizations will occur
with.
The expected excess expenditure measure is similar to the measure of regular excess

expenditure, it is still the di¤erence of actual expenditure in the previous period and
some measure of how much should have been spent in the previous period, from the
perspective of the new, current period. However, this measure of how much should
have been spent in the previous period is di¤erent from the measure used for REE in
the previous subsection. We will also sometimes use the abbreviation EEE to refer to
the expected excess expenditure measure.

De�nition 6.4.2 At time t + 1, the period-t expected excess expenditure is deter-
mined by Ft := pt �x�t � pt �x�t . Here x�t is part of a pair (x�t ; s�t ) that was chosen in time
t, as it solved

max
(xt;st)

U (t)(v(t)( �wt�1; xt); st) s:t: pt � xt + st � mt:

And x�t is part of a plan that solves

max
(xt;st):pt�xt+st�mt

EIt+1 [ max
(xt+1;st+1):pt+1�xt+1+st+1�st+It+1

U (t)(v(t+1)( �wt�1; xt; xt+1); st+1)];

where all time-t information (the set Xt+1, prices pt+1, the budget mt+1 = mt� pt �x�t +
It+1) and the instantaneous utility function v(t+1) : Wt�1 �Xt �Xt+1 ! R are given.

The bundle x�t is part of a contingency plan that speci�es a bundle x
r
t+1 2 Xt+1

and an amount of savings srt+1 2 R+ for every realization Ir that the additional income
random variable can take. That is, if the number of realizations that I can take equals
R+ 1 2 N, then the last maximization problem from the de�nition is solved by a plan
(x�t ; (x

r
t+1; s

r
t+1)

R
r=0), that satis�es pt � x�t + s�t � mt and pt+1 � xrt+1 + srt+1 � s�t + Ir, for

all realizations r.
While the realization of It+1 is known at time t+1, in the determination of expected

excess expenditure this information is not used. When compared with regular excess
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expenditure, the idea behind expected excess expenditure is basically to disregard the
information known at time t+1 about the realization of the additional income random
variable It+1, and instead use the information known at time t about It+1. This can only
be done if there is some ex ante information available about the values that additional
income can take. And indeed, in an expected utility model this information is given,
and the additional income I can be treated as a random variable.
Besides the additional income realization, the realizations of all other uncertain

variables are not disregarded in determining EEE. Of course, these other uncertain
variables could in principle be treated in the same way as additional income, but for
more (notational) simplicity the above speci�cation is chosen. Moreover, in what follows
we will see that such an alternative speci�cation would not make a di¤erence.
Although at this point it may seem strange to disregard available information in

the process of re-evaluating past choices (and adjusting time preferences), this EEE
measure will later on serve as a useful benchmark, and even prove to be more e¢ cient24

than the REE measure in some instances. We will come back to these questions in
chapter 9.
Note that Ft does not actually specify an expectation of excess expenditure, so

do not be misled by the term �expected excess expenditure�. Rather, Ft gives the
excess expenditure as determined by the actual previous expenditure level minus the
expenditure level that would maximize the ex ante expected utility.
Also note that in models of certainty, the two measures REE and EEE coincide. In

fact, if there is no uncertainty, then additional income can only take one realization, so
the random variable specifying additional income is a degenerate one. Then the expec-
tation drops out of the last formula in the EEE de�nition, and expected utility simpli�es
to regular utility. Thus the last formula in the EEE de�nition that x�t is supposed to
maximize, reduces to the last formula in the REE de�nition that x/t maximizes. �

The speci�c adjustment functions, that will be speci�ed shortly, will deal with the
two measures of excess expenditure E and F in exactly the same way. Therefore to
have notation that deals with both measures of excess expenditure at the same time,
we use E to denote either of the measures of excess expenditure, so E 2 fE;Fg, and
Et 2 fEt; Ftg.
For either of the two measures of excess expenditure that may be used, we suppose

that this measure will be determined in every period. Thus in period t+ 1 the regular
excess expenditures E0; E1; :::; Et are known.25

De�nition 6.4.3 Given a measure E of excess expenditure, at time t + 1, a history
of excess expenditures is a vector �t+1 := (E0; E1; :::; Et) of excess expenditures.

While a history of excess expenditures �t+1 may represent both measures of excess
expenditure, we also want to have more speci�c notation. At time t+ 1, a history of
24For some measure of e¢ ciency that will be speci�ed in later chapters.
25While excess expenditure will be determined in every period, each of these past excess expenditures

only looks one period back, as in any period i, Ei�1 is determined.
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expected excess expenditures will be denoted by �t+1 := (F0; F1; :::; Ft). At time t+
1, a history of regular excess expenditures will be denoted "t+1 := (E0; E1; :::; Et).
So �t+1 can represent both "t+1 and �t+1. Since for either measure of excess expenditure,
Et is an element of R, a history �t+1 of excess expenditures is an element of Rt+1.
6.4.3 Adjustment functions

As argued in the previous subsections, what adjustment factor seems appropriate would
depend on the economic environment, or rather on some speci�cs of such an economic
environment. Here an adjustment function may depend on histories of excess expen-
ditures: either histories of regular excess expenditures, or histories of expected excess
expenditures. Thus an adjustment function should return positive real numbers for
such histories.

De�nition 6.4.4 An adjustment function is a function from histories �t+1 into the
strictly positive real numbers: a : [1t=0Rt+1 ! R++.

An adjustment function returns for every history �t+1 a strictly positive real number
a(�t+1) 2 R++. For notational convenience we will also let a(�t+1) be denoted as a�t+1 .
The above de�nition of an adjustment function has remained completely general, only
the domain and the range of such a function have been speci�ed. Before providing a
speci�c example of an adjustment function, here we will �rst look at the rationale for
letting an adjustment function depend on some measure of excess expenditure (whether
it be REE or EEE), and explore how an adjustment function should depend on excess
expenditure.
Recall that the last period�s ad hoc utility u(t)( �wt�1; xt; st) must have somehow

represented something of an aggregate estimate of the desirability of all a¤ordable
future consumption opportunities after period t. In the process of maximizing last
period�s ad hoc utility u(t), time preferences gave a cut-o¤ point that determined not
so much the proportions of the various commodities that were purchased from Xt, but
rather how much was spent on the commodities in Xt as a whole.
Next, at time t + 1, the choice x�t from period t is re-evaluated, using new ad hoc

preferences v(t+1) and old time preferences U (t). Then, the wider perspective of an
additional period may put x�t in a di¤erent light, the changing perspective at time t+1
may mean that the choice of (x�t ; s

�
t ) that was based on previous time preferences U

(t)

may now turn out to have been suboptimal.
Time preference basically determines the trade-o¤s between spending and saving.

Therefore if a consumer should think that he has been spending too much in the previous
period (if excess expenditure is positive), this seems to imply that the prevailing time
preference from stage t should be judged as being suboptimal, more speci�cally that
old time preferences weighted instantaneous consumption too heavily. Conversely, if
our consumer should think that he should have spent more in the previous period (if
excess expenditure is negative), this should mean that old time preferences weighted
savings too heavily. Thus, if time preference U (t) is considered suboptimal, so that the
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trade-o¤s between instantaneous consumption and money could be improved upon, this
can be seen as an indication that time preferences might have to be adjusted.
Of course the idea would then be that �nding that the actual choice made in the

previous period turned out to be too expensive, would mean that the previous period�s
time preferences put too much emphasis on instantaneous utility, so that time prefer-
ences will have to be updated such as to give less weight to instantaneous utility, and
more weight to saving. That is, when x�t turns out to have been too expensive (when
Et > 0), then the adjustment factor a should be smaller than one. Conversely, �nding
that more should have been spent in the previous period, would have to mean that
the previous period�s time preferences did not put enough emphasis on instantaneous
utility, so that time preferences will have to be updated such as to give more weight to
instantaneous utility, and less weight to saving. Thus, when it turns out that x�t was
actually too cheap (when Et < 0), then the adjustment factor a should be larger than
one.
And when it would incidentally turn out that x�t was judged to be optimal from

a period-(t + 1) perspective (when Et = 0), then it was judged to be neither too
expensive, nor too cheap. In that case there does not seem to be any reason to
change the weights of instantaneous utility or savings in any direction, so U (t) would
not have to be adjusted and the adjustment factor a would equal one. In that case
U (t)(v(t+1)( �wt�1; xt; xt+1); st+1) would simply su¢ ce to describe the new ad hoc prefer-
ences u(t+1)(( �wt�1; xt; xt+1); st+1).
Next, we provide two di¤erent speci�cations of adjustment functions that achieve

all of the dynamic implications mentioned in this subsection. Both speci�cations of
adjustment functions may depend both on regular excess expenditure histories, and on
expected excess expenditure histories.

Value-based adjustment Although formally adjustment functions were de�ned to
be dependent on histories of excess expenditures, such an adjustment function need not
necessarily use all the information in such a history. The �rst adjustment function that
we specify here only depends on excess expenditure in the most recent period.
In the previous subsection we saw that an adjustment function should be such

that a positive excess expenditure in the previous period would lead to an adjustment
factor that is smaller than one, and thus that the weighting for instantaneous utility
in time preference is decreased. And conversely, negative excess expenditure in the
previous period should lead to an adjustment factor that is larger than one, so that the
weighting for instantaneous utility in time preference would be increased. Any positive-
valued adjustment function av : R! R++ that would depend on, and decrease in, last
period�s excess expenditure Et and satisfy av(0) = 1, would su¢ ce to achieve this. We
will call adjustment functions of this form value-based adjustment functions, as they
will be contrasted with sign-based adjustment functions in the next subsection.
For value-based adjustment functions, it holds that the higher (the value of) excess

expenditure, the smaller the adjustment factor, and the further the weighting for in-
stantaneous utility is decreased. And the smaller excess expenditure, the higher the
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adjustment factor, and the further the weighting for instantaneous utility is increased.
As an example of such a value-based adjustment function, we could de�ne

~av : R! R++ by ~av(Et) = e��Et, for some � > 0, and for all Et 2 R.
In what follows we will not make much use of value-based adjustment functions, the

second type of adjustment functions will be used throughout. The reason for this has
to do with tractability. We will come back to this (and to the di¤erences between value-
based adjustment functions and sign-based adjustment functions) in the last section of
the present chapter, and in the last chapter.

Min-max adjustment Before we will be ready to present the second speci�cation
of an adjustment function, we �rst need some notation such as to summarize what
happened in the past. The speci�cation for the second, min-max adjustment function
will be de�ned recursively. We take a period-(t + 1) perspective, where it is assumed
that in the previous periods 1 � i � t adjustments were already made.
The process started with an initial time preference function U (0) : R � R+ ! R.

And, in period 1, excess expenditure E0 = �1 and an adjustment factor a�1 were de-
termined, and the initial time preferences U (0) : R � R+ ! R were updated according
to U (1)(v; s1) = U (0)(a�1 � v; s1). Similarly, in every period 1 � i � t excess expen-
diture Ei�1, the history �i = (�i�1; Ei�1) and an adjustment factor a�i were deter-
mined, and previous time preferences U (i�1) : R� R+ ! R were updated according to
U (i)(v; si) = U

(i�1)(a�i � v; si). This happened in every period i before t+ 1, so that we
can write the period-t time preference function U (t)(v; s) also as

U (t�1)(a�t � v; s) = U
(t�2)(a�t � a�t�1 � v; s) = ::: = U

(0)(a�t � a�t�1 � ::: � a�1 � v; s):

Note that �t+1 and all of the information about the sequence (a�1 ; a�2 ; :::; a�t) of adjust-
ment factors is known at time t+ 1.

De�nition 6.4.5 Given a history �t+1 at period t + 1, from which information about
all the past adjustment factors a�1 ; a�2 ; :::; a�t can be induced, an adjustment product
�t is de�ned as the product of the adjustment factors of all periods up to period t: �t :=
a�t � a�t�1 � ::: � a�1.

Note that by de�nition we have that �t = a�t ��t�1. By using the adjustment product
�t, we can write the function U (t)(v; s) more conveniently as: U (t)(v; s) = U (0)(�tv; s).
Instead of considering a whole sequence of time preference functions fU (i)(:; :)gti=0, this
same information can also more conveniently be represented by an initial time preference
function U (0)(:; :) and a sequence of adjustment products (�1; �2; :::; �t). Of course, we
could also write �0 := 1, but we do not include it here in the sequence.

Given a history �t+1, the corresponding set of past adjustment products will be
denoted by

�(�t+1) := f�i 2 R++ : 1 � i � t; �i = a�i � a�i�1 � ::: � a�0g:
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Such a set would thus give all the adjustment products �i that were used in periods i
before time t+ 1, to determine period-i time preferences: U (i)(v; s) = U (0)(�iv; s).
For any time t+ 1, the set of adjustment products �(�t+1) can be partitioned into

two subsets �E+(�t+1) and �
E�(�t+1), according to the sign of the excess expenditure

(either regular or expected excess expenditure) in the corresponding period. That is,
we de�ne �E+(�t+1) := f�i 2 �(�t+1) : Ei � 0g to denote the set of all past adjustment
products �i from�(�t+1) that yielded a positive excess expenditure in the corresponding
period i, and we de�ne �E�(�t+1) := f�i 2 �(�t+1) : Ei � 0g to denote the set of all
adjustment products �i from �(�t+1) that yielded a negative excess expenditure in the
corresponding period.
Then, we may de�ne the new variable

�E+min(�t+1) := min
�i2�E+(�t+1)

�i

to denote smallest element of the set�E+(�t+1) of past adjustment products that yielded
a positive excess expenditure, and thus as the smallest element of �E+(�t+1) that (still)
led to over-spending. Similarly, we de�ne

�E�max(�t+1) := max
�i2�E�(�t+1)

�i

to denote the largest past adjustment product that yielded a negative excess expendi-
ture, and thus as the largest element in �E�(�t+1) that (still) led to under-spending.
For any period t + 1, the set �E+(�t+1) only has a �nite number of elements, so if
�E+(�t+1) 6= ;, the variable �E+min(�t+1) is always well-de�ned. Similarly, if �E�(�t+1) 6=
;, the variable �E�max(�t+1) is well-de�ned.
All of this information about adjustment factors and adjustment products of previ-

ous periods, and the signs of the corresponding excess expenditures, is known at time
t+ 1. With this notation we are ready to specify min-max adjustment function.

De�nition 6.4.6 Given a measure E of excess expenditure, themin-max adjustment
function a : [1t=0Rt+1 ! R++ is given by

a(�t+1) =

8<:
� if �E+(�t+1) = ;
� if �E�(�t+1) = ;
(� � �E+min(�t+1) + (1� �) � �E�max(�t+1))=�t otherwise.

for some � > 1, some � < 1, and some � 2 (0; 1), and for all �t+1 2 [1t=0Rt+1.

Again, the excess expenditure variable E can denote both regular excess expenditure
E and expected excess expenditure F , and a history � can denote both an REE history
" and an EEE history �. Whenever we want to express in our notation which speci�c
measure of excess expenditure is used, we will denote the adjustment factors by di¤erent
subscripts that re�ect either REE or EEE adjustment: a(") or a", and a(�) or a�.
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The above de�nition may need some explaining, as the workings and the rationale
for min-max adjustment may not be immediately clear from the de�nition. However,
both the workings and the rationale can better be explained in terms of the implied
evolutionary properties, so in a context where whole lifetimes of repeated min-max ad-
justment are considered, instead of zooming in on only two subsequent periods. For
instance, note that the min-max adjustment function treats all previous periods simi-
larly. The min-max adjustment function deals with information from the recent past
in exactly the same way as with information concerning a more distant past.
Hence we will provide some explanations later in this chapter, after having completed

the framework by specifying a learning algorithm. First we will make some remarks on
the above de�nition, and rewrite it in terms of adjustment products.

First note that for any measure E of excess expenditure, and any period t+ 1 � 1,
the set �(�t+1) is never empty, so that it is impossible that both �

E+(�t+1) = ; and
�E�(�t+1) = ; occur together. Hence the three cases as distinguished in the de�nition
are exhaustive, and the de�nition is well-de�ned.
If in a certain period the prevailing history is such that the �rst case as distin-

guished in the above de�nition holds, where all previous excess expenditures have been
strictly negative, then this min-max adjustment function will return an adjustment fac-
tor a(�t+1) (or a�t+1), that equals a constant strictly larger than one. Similarly, in the
second case as distinguished in the de�nition, where all previous excess expenditures
were strictly positive, this min-max adjustment function will return a constant strictly
smaller than one. In the third case from the above de�nition, the new adjustment prod-
uct �t+1 = a(�t+1) � �t is a convex combination of the smallest past adjustment product
that yielded a positive excess expenditure, and the largest past adjustment product
that yielded a negative excess expenditure. Indeed, the adjustments implied by the
min-max adjustment function can similarly be stated in terms of adjustment products,
rather than adjustment factors. This new formulation may even be more illuminating.
In terms of adjustment products, min-max adjustment would give that

�t+1 = a(�t+1) � �t =

8<:
� � �t if �E+(�t+1) = ;
� � �t if �E�(�t+1) = ;
� � �E+min(�t+1) + (1� �) � �E�max(�t+1) otherwise.

A rather straightforward choice for the scalar � 2 (0; 1) that determines the weights
in the convex combination from the de�nition, would simply be to set � = 1=2. However,
other scalars could also be used, and it seems possible that a decision-maker would, for
instance, be more worried about spending too much than about spending too little, so
he might want to set new time preference cautiously, by choosing a � that is smaller
than one half.

6.5 The learning algorithm
To close the model, we suppose that in every period the consumer solves the corre-
sponding basic ad hoc consumer problem, where ad hoc preferences consist of exoge-
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nous instantaneous preferences and of endogenous time preferences. The initial time
preferences are given, and in all subsequent periods min-max adjustment is applied to
generate new time preferences.
The ideas mentioned informally above, about linking stages can now be summarized

and made precise in a learning algorithm.

Algorithm 6.5.1 Given axioms 4.1.1, 4.4.1, 6.2.1, 6.2.2 and 6.3.1, and given the
min-max adjustment function a : [1t=1Rt ! R+,26 an initial time preference function
U (0) : R� R+ ! R and an initial budget m0, the learning process is speci�ed by:
N Time t = 0. A pair (x�0; s

�
0) is chosen, that solves the basic ad hoc consumer

problem corresponding to the initial time preference function U (0) and m0.
NTime t � 1. A history �t and a budget mt are given. The time preference func-

tion U (t�1) : v(t�1)(Xt�1) � R+ ! R from the previous period is adjusted according
to U (t)(v; st) = U (t�1)(a�tv; st). A pair (x

�
t ; s

�
t ) is chosen, that solves the basic ad hoc

consumer problem corresponding to U (t) and mt.

Here we will �rst expand on the workings of the learning algorithm (using min-max
adjustment), and then we will investigate some implications for the generated system
dynamics.
Suppose that the sequences of adjustment factors (a�1 ; a�2 ; :::) and adjustment prod-

ucts (�1; �2; :::; �t) are generated by the learning algorithm. Note that in period 1, the
history �1 only consists of a single excess expenditure E0, so that the process will typi-
cally (unless E0 = 0) �nd itself in one of the �rst two cases, as distinguished in de�nition
6.4.6. Then, usually the process will eventually be absorbed in the third case.
First suppose that at time 1 the process is in the �rst case of de�nition 6.4.6. That

is, at time 1 it turned out that �0 = 1 yielded a strictly negative excess expenditure:
E0 < 0. In this case, we would have that �E+(�1) = ; and �E�(�1) 6= ;. Then the
adjustment factors �t = �t�0 = �t will increase exponentially (� > 1) as long as the
process remains in this �rst case. Usually, excess expenditure will eventually become
positive in some period, and the third case from the de�nition, where both positive and
negative excess expenditures have occurred in the past, will be entered.
Similarly, if at time 1 the process is in the second case of de�nition 6.4.6, so that

E0 > 0, �E+(�1) 6= ; and �E�(�1) = ;, then the adjustment factors �t = �t will decrease
exponentially as long as the process remains in this second case, and usually we will
get that eventually excess expenditure will become negative, and the third case from
the de�nition will be entered.
Also note that it is never possible to go back from the third case to either the �rst or

the second case, as �E+(�t) 6= ; implies that �E+(�t+� ) 6= ;, for all � � 0, and similarly
for �E�(�t).
Thus, typically the learning process will eventually be absorbed in the third case of

de�nition 6.4.6, and in fact this last case is the most interesting one.

26For any � > 1, � < 1 and � 2 (0; 1).
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From the speci�cations of the learning algorithm and the min-max adjustment func-
tion we can already derive some dynamic implications. But �rst we need a lemma. The
proof of this lemma is quite instructive as to the workings of repeated min-max adjust-
ment.

Lemma 6.5.1 Suppose given a sequence of adjustment products (�0; �1; �2; :::), that is
generated by the learning algorithm. Then for every period t for which both variables
�E�max(�t) and �

E+
min(�t) are well-de�ned (i.e. if �

E+(�t) 6= ; and �E�(�t) 6= ;), it will
hold that �E�max(�t) � �E+min(�t).

Proof. Recall that �E+min(�t) = min�i2�E+(�t) �i denotes the smallest element of the set
�E+(�t) of adjustment products that yielded a positive excess expenditure, and similarly
that �E�max(�t) = max�i2�E�(�t) �i. Here we will prove the statement "�

E�
max(�t) � �E+min(�t)

if both �E�max(�t) and �
E+
min(�t) are well-de�ned" by induction.

For t = 1, the statement clearly holds. If both the variables �E�max(�1) and �
E+
min(�1) are

well-de�ned, then apparently �0 = 1 yielded an excess expenditure equal to zero: E0 = 0,
and we know that �E+(�t) = f�0g = �E�(�t), and that �E�max(�1) = �E+min(�1) = �0.
Then suppose that the statement holds for period t � 1: �E�max(�t) � �E+min(�t) holds

if both variables �E�max(�t) and �
E+
min(�t) are well-de�ned. Then we must prove that the

statement will also hold for t+ 1. We need to consider three cases:
(A) in period t the variable �E�max(�t) was not well-de�ned,
(B) in period t the variable �E+min(�t) was not well-de�ned, and
(C) in period t both variables �E�max(�t) and �

E+
min(�t) were well-de�ned.

In case (A), we assume that at time t + 1 the process has just (for the �rst time)
entered the third case of de�nition 6.4.6 (there is nothing to prove if �E�max(�t+1) still does
not exist). That is, in period t + 1 both sets �E�(�t+1) and �

E+(�t+1) are non-empty,
but we know that �E�(�t) = ;. Then, since t+1 is �nite, both �E�(�t+1) and �E+(�t+1)
have a �nite number of elements, and both �E+min(�t+1) and �

E�
max(�t+1) are well-de�ned.

By �E�(�t) = ; we know that a�t = � < 1 (and a�i = � < 1, for all i � t). Also,
�E�(�t+1) 6= ; so apparently Et � 0, and we see that �E�max(�t+1) = �t = ��t�1. We also
know that �E+min(�t+1) = �t�1 if Et < 0, or �E+min(�t+1) = �t if Et = 0. In any case we see
that �E�max(�t+1) � �E+min(�t+1), and the statement holds.
Similarly, in case (B) both sets �E�(�t+1) and �E+(�t+1) are non-empty, but

�E+(�t) was empty. Then a�t�1 = � > 1, and by �
E+(�t+1) 6= ; we know that Et � 0,

and that �E+min(�t+1) = �t = ��t�1. We also know that �
E�
max(�t+1) = �t�1 if Et > 0, or

�E�max(�t+1) = �t if Et = 0. Thus indeed we see that �E�max(�t+1) � �E+min(�t+1), and the
statement holds.
Finally, in case (C), at time t the process was already in the third case of de�nition

6.4.6, so that all of the sets �E�(�t), �
E+(�t), �

E�(�t+1) and �
E+(�t+1) are non-empty.

Then both variables �E�max(�t) and �
E+
min(�t) were well-de�ned, and by the induction hy-

pothesis they satis�ed �E�max(�t) � �E+min(�t). In period t the new adjustment product
�t was determined as a convex combination of the minimal adjustment product with a
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positive excess expenditure and the maximal adjustment product with a negative excess
expenditure from the past:

�t = a�t�t�1 = � � �
E+
min(�t) + (1� �) � �E�max(�t):

This implies that �E�max(�t) � �t � �E+min(�t). Then in period t + 1, from �t the excess
expenditure Et is determined, and we can distinguish three cases, depending on the sign
of Et.
(I) Excess expenditure is strictly negative: Et < 0, in this case it will hold that

�E�max(�t+1) = �t (since �t � �E�max(�t)) and �
E+
min(�t+1) = �E+min(�t). Then we see that

�E�max(�t+1) = �t � �E+min(�t) = �E+min(�t+1).
(II) Excess expenditure is strictly positive: Et > 0, so that �E+min(�t+1) = �t and

�E�max(�t+1) = �
E�
max(�t), which implies that �

E�
max(�t+1) = �

E�
max(�t) � �t = �E+min(�t+1).

(III) Excess expenditure equals zero: Et = 0, and we �nd that
�E�max(�t+1) = �

E+
min(�t+1) = �t.

Hence indeed, in all cases we �nd that �E�max(�t+1) � �E+min(�t+1) if both �
E�
max(�t+1)

and �E+min(�t+1) are well-de�ned, which proves the lemma.

Making adjustment factors depend on excess expenditure was motivated by the idea
that �nding a positive (negative) excess expenditure in the previous period should be
followed by decreasing (increasing) the adjustment product, thereby giving less (more)
weight to instantaneous utility, and more (less) weight to savings in time preferences.
From the above lemma we can now show that repeated min-max adjustment com-

plies with this idea that �nding a positive (negative) excess expenditure in a certain
period will be followed by giving less (more) weight to instantaneous utility in the next
period. Moreover, with this lemma we can also show that the same impact will be felt
in all subsequent periods: �nding a positive (negative) excess expenditure in a certain
period will lead to smaller (larger) weights for instantaneous utility in all subsequent
periods.
To see this, suppose that the consumer �nds that the excess expenditure in period

t0 turned out to be positive: Et0 � 0. We then want to show that all subsequent
adjustment products will be smaller than the one used in period t0: �t0+� � �t0, for all
� � 0.
We know that Et0 � 0 so the process cannot be in the �rst case of de�nition 6.4.6

in which �E+(�t0+1) = ;.
If the process is in the second case, so that �E�(�t0+1) is empty, then �t0+� = �

��t0
(with � < 1) will hold as long as �E�(�t0+� ) remains empty. Therefore, �t0+� � �t0 will
certainly hold until the third case is entered.
Then, suppose that the process is in the third case of de�nition 6.4.6. Note that

the sets �E+(:) never get smaller over time, so that �E+min(�t0+1) � �E+min(�t0+� ), for all
� � 1. And since the excess expenditure in period t0 was positive Et0 � 0, we know that
�t0 2 �E+(�t0+1), and by de�nition we have the inequality �t0 � �E+min(�t0+1).
Then for every period t0 + � > t0, we see that

�t0+� = � � �E+min(�t0+� ) + (1� �) � �E�max(�t0+� ) �
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� � �E+min(�t0+� ) + (1� �) � �E+min(�t0+� ) = �E+min(�t0+� ) � �E+min(�t0+1) � �t0.
Here the �rst inequality follows from the lemma. Thus indeed we �nd that �t0+� � �t0,
for all � � 0.
Similarly, Et0 � 0 implies that �t0 2 �E�(�t0+1), and that �t0 � �E�max(�t0+1). And with

a similar reasoning as above, �E�max(�t0+1) � �E�max(�t0+� ) will hold for all � � 1. Then for
every period t0 + � > t0, it holds that

�t0+� = � � �E+min(�t0+� ) + (1� �) � �E�max(�t0+� ) �

� � �E�max(�t0+� ) + (1� �) � �E�max(�t0+� ) = �E�max(�t0+� ) � �E�max(�t0+1) � �t0.
Thus if excess expenditure is negative in period t, then in all periods after t adjustment
products will be larger than the one used in period t.
Combining these two results also gives a third implication that if at time t0 the

prevailing adjustment product �t0 yielded an excess expenditure equal to zero Et0 = 0,
then in every later period t0 + � � t0 the adjustment product will equal the time-t0

adjustment product: �t0+� = �t0, as after period t0 essentially no adjustments are made
anymore: a(�t0+� ) = 1.

6.6 Motivations
In this chapter the ad hoc framework was closed. We assumed that all ad hoc util-
ity functions were separable in past and present consumption, and that instantaneous
utility for past and present consumption is exogenous. Time preference functions are
endogenously determined (except for in the �rst period) by adjusting the previous pe-
riod�s time preference function. These adjustments are based on excess expenditure in
the previous periods, and excess expenditure is determined by means of the previous
period�s time preference function. Whereas we tried to motivate the assumptions un-
derlying this learning procedure, these assumptions could still be questioned. It may
not seem completely clear why such a learning procedure would be reasonable, or that
it would work (in the sense that it does lead to improvements over time of the time
preference functions that are being used).
Of course then, the proof is in the pudding. As we are trying to devise a learning

model in which time preferences are improved over time, the reasonability of the in-
termediary steps in devising the learning procedure may ultimately be justi�ed if this
procedure will lead to time preferences being improved (or if at least it can in some
cases). The next chapters study these questions, and they will show that under some
circumstances time preference functions will improve over time, even to the extent that
convergence towards optimal (or consistent) time preferences may occur.

However, the convergence results in the next chapters are based on repeated min-
max adjustment of time preference functions. As promised earlier in this chapter, here
we return to the question of why min-max adjustment is used.
In section 6.4 two types of adjustment functions were speci�ed. The alternative

value-based adjustment functions may seem a bit simpler and more straightforward than
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min-max adjustment, for instance because it would seemmore in line with (a straightfor-
ward interpretation of) error-correction models (see subsection 3.4.2). Whereas value-
based adjustment only depends on excess expenditure in the very last period, min-max
adjustment depends on excess expenditures in all previous periods. Moreover, min-
max adjustment treats all previous periods similarly; it deals with information from
the recent past in exactly the same way as with information concerning a more distant
past. As will become apparent in the next chapter, min-max adjustment is quite ratio-
nal and (under some circumstances) it will prove quite e¢ cient in reaching optimality.
Therefore, using min-max adjustment requires quite a bit of rationality on the part
of decision-makers, which may descriptively seem questionable. So why then have we
chosen to use min-max adjustment in our learning algorithm?

As mentioned in section 6.4, the reasons for choosing min-max adjustment have to
do with tractability. Remember one of the ultimate aims of this research: we wanted
to investigate the possibility that (near-)optimal behaviour (de�ned as behaviour of a
rational utility maximizer) could be learned in the context of consumer choice. There-
fore, we set up a learning model of consumer choice, and we want to investigate the
more normative question of whether it would be possible that over time the behaviour
of such a learning consumer would converge to the benchmark-case of optimality and
rationality. Thus, we want to investigate under what conditions a learning ad hoc util-
ity maximizer�s ad hoc preferences would converge to ad hoc preferences that would be
consistent with total preferences in the standard framework.

And as the next chapter will show, sequential min-max adjustment will yield quite
convenient convergence properties. In contrast, dealing with questions of convergence
is very demanding if value-based adjustment is used. Under value-based adjustment
it is very hard to establish convergence to any limit, let alone convergence to a limit
representing rational behaviour.

Therefore min-max adjustment is just a more convenient choice for studying con-
vergence to optimality. Thus, the reasons for choosing min-max adjustment stem much
more from tractability, than from considerations of behavioural or descriptive plausi-
bility. We will come back to these issues of min-max versus value-based adjustment in
the �nal chapter.
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After having closed the model in the previous chapter by specifying a learning algorithm,
in the present chapter we turn our attention to the evolutionary dynamics that would
result from the learning algorithm. In this chapter (and in the following chapters) we
change the scope of our analysis from the �ne levels of very limited time intervals, to
the more crude levels corresponding to consumers�lifetimes, and we investigate what
types of evolutionary and asymptotic properties would result from the interplay of large
sequences of min-max adjustments of ad hoc preferences.
More speci�cally, some convergence properties of generated sequences of ad hoc

preferences will be investigated in this chapter. Here convergence will mean conver-
gence of a generated sequence of time preferences, or equivalently, convergence of the
generated sequence of adjustment products. And we will speci�cally be looking for
convergence of adjustment products towards an adjustment product as implied by ad
hoc preferences that would be consistent with total preferences. Thus, we will inves-
tigate convergence in the ad hoc framework towards the benchmark of the standard
microeconomic framework for consumer choice.

This chapter is organized as follows. The �rst section will show that under repeated
min-max adjustment, as will be the case in the learning algorithm, convergence will
always occur to some limit. In the second section we will establish when such a limit
would represent rationality or optimality, and we will see that convergence does not
necessarily mean convergence to such a limit, so that convergence towards the stan-
dard benchmark does not always occur. In the third section we will formally de�ne
convergence towards optimality, and identify some conditions needed to establish that
(or when) it will occur.

7.1 Convergence
In this chapter we start investigating convergence of the learning procedure. We will
do these investigations within the general setting of the ad hoc framework that includes
models of certainty, uncertainty and structural ignorance. First we present a formal
account of the evolutionary dynamics, as generated by the learning algorithm, and we
will specify what exactly we mean by convergence in this setting.
The learning algorithm models a procedure for updating time preferences. Thus

each of these generated time preference functions (except for the very �rst) is ob-
tained by adjusting the time preference function from the period before that, and these
adjustments depend on excess expenditure. Any two subsequent time preference func-
tions from any generated sequence of time preference functions are related according
to U (t)(v; s) = U (t�1)(a�t � v; s), where a�t is the adjustment factor that is determined
by the min-max adjustment function. Then, by induction any time preference function
from such a sequence can also be written as

U (t)(v; s) = U (0)(a�t � a�t�1 � ::: � a�1 � v; s) = U
(0)(�t � v; s):
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Here �t denotes the adjustment product. Instead of considering sequences of time pref-
erence functions (U (t))1t=0, essentially the same information can also more conveniently
be represented by the initial time preference function U (0)(:; :) and the sequence of
adjustment products (�t)1t=0.
As the learning algorithm would generate sequences of time preference functions

(U (t))1t=0, convergence of the learning procedure should mean convergence of a learn-
ing ad hoc utility maximizer�s preferences. And when we are studying convergence
of a sequence of time preference functions (U (t))1t=0, we can alternatively and more
conveniently study convergence of the corresponding sequence of adjustment products
(�t)

1
t=0.

De�nition 7.1.1 A sequence of time preference functions (U (t)(v; s))1t=0 that is of the
form (U (0)(�tv; s))

1
t=0 is said to converge

27 if the associated sequence of adjustment
products (�t)1t=0 converges in R+.

A �rst condition needed for convergence was already noted in chapter 4, before the
introduction of the ad hoc framework, and this condition is in fact already implicit in
the learning algorithm and in the above de�nition. This condition is that our models
should be such that the number of periods is (countably) in�nite. In general we cannot
expect to get convergence in a �nite number of steps, and this condition is required for
investigating convergence. If indeed the number of periods is in�nite, we will see that
under repeated min-max adjustment convergence of preferences will naturally occur.
That is, if the number of periods is in�nite and if the learning algorithm with min-max
adjustment is used, then this is already su¢ cient to show that convergence will always
occur to some limit.

Proposition 7.1.1 Any sequence of time preference functions (U (t)(v; s))1t=0 =
(U (0)(�tv; s))

1
t=0 that is generated by the learning algorithm, will converge.

Proof. For this proof we distinguish three cases, depending on whether the adjustment
process will ultimately be absorbed in the �rst, second or third case of de�nition 6.4.6.
In all three cases we will see that convergence to some �1 2 R+ takes place.
N Firstly, suppose that the corresponding sequence of adjustment products

(�0; �1; �2; :::) is such that every �t yields Et < 0, so that �E+(�t+1) = ;, for all t. Then
the process will stay absorbed in the �rst case of de�nition 6.4.6. Thus the sequence
of adjustment products (�0; �1; �2; :::), that is generated by min-max adjustment from
�0 = 1, will be such that �t = ��t�1 = �t�0 = �t, for all t. And since � > 1, we see that
the sequence of adjustment products will indeed converge to �1 = 1. (In this case,
�E+min(�t) = min�i2�E+(�t) �i will never be well-de�ned, and �

E�
max(�t) = max�i2�E�(�t) �i

will converge towards �1 =1.)
N Secondly, suppose that the sequence (�0; �1; �2; :::) is such that every �t yields

Et > 0, so that �E�(�t+1) = ;, for all t. Then a similar reasoning shows that the
27By convergence of a sequence of functions (ft)1t=0 (with ft : S ! R, for all t), here we mean

pointwise convergence: for all s 2 S, the sequence ft(s) converges in R [ f�1;+1g.
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process stays absorbed in the second case, and that the sequence (�0; �1; �2; :::) will be
such that �t = �t for all t. Since � < 1, we see that the sequence of adjustment products
will converge to �1 = 0. (In this case, �

E+
min will converge towards �1 = 0, and �

E�
max(�t)

will never be well-de�ned.)
N Thirdly, we suppose that the sequence (�0; �1; �2; :::) is such that in some period

t, the process enters the third case as distinguished in de�nition 6.4.6. That is, in
period t both sets �E�(�t) and �

E+(�t) are non-empty. Then from the lemma in
section 6.5, we know that �E�max(�t) � �E+min(�t) will hold. Therefore we must have that
�t := �

E+
min(�t)� �E�max(�t) � 0.

In period t the new adjustment product �t is determined as a convex combination of
the minimal adjustment product with a positive excess expenditure and the maximal
adjustment product with a negative excess expenditure from the past:

�t = a�t�t�1 = � � �
E+
min(�t) + (1� �) � �E�max(�t):

This implies that �E�max(�t) � �t � �E+min(�t).
Then, in period t + 1 the excess expenditure Et is determined from �t, and we can

distinguish three cases, depending on the sign of Et.
(I) Excess expenditure is strictly negative: Et < 0, so in this case it will hold that

�E�max(�t+1) = �t (since �t � �E�max(�t)) and �
E+
min(�t+1) = �E+min(�t). This implies that

�t+1 = (1� �)�t.
(II) Excess expenditure is strictly positive: Et > 0, so that �E+min(�t+1) = �t and

�E�max(�t+1) = �
E�
max(�t), which implies that �t+1 = ��t.

(III) Excess expenditure equals zero: Et = 0, and we �nd that �E�max(�t+1) =
�E+min(�t+1) = �t, so that �t+1 = 0.

28

In each of these cases it will hold that 0 � �t+1 = �E+min(�t+1)� �E�max(�t+1) � ~��t, for
~� = maxf�; 1� �g. And we had that �t = �E�max(�t+1), or that �t = �E+min(�t+1) (or both
if and only if Et = 0), so that �E�max(�t+1) � �t � �E+min(�t+1) must hold. Moreover, in
the following stage t + 1 min-max adjustment will again be applied, and �E�max(�t+1) �
�t+1 � �E+min(�t+1) will hold. Therefore we also see that j�t+1 � �tj � �t+1 � ~��t.
The same procedure will be applied in all subsequent periods, and the same reason-

ing will show that

�t+� = �
E+
min(�t+� )� �E�max(�t+� ) � ~��t+��1 � ::: � ~�

�
�t,

and that j�t+� � �t+��1j � ~�
�
�t, for every period t+ � � t. Now, since ~� = maxf�; 1�

�g < 1 and �t 2 R+, we see that ~�
�
�t will converge to 0 as � goes to in�nity. Thus in-

deed, j�t+���t+��1j will also converge to zero, and the sequence of adjustment products
(�0; �1; �2; :::) must converge to some �1 2 R++. (In this case, both �E+min and �E�max(�t)
will converge towards �1.)

28We then get that a(�t+1) = 1, so that �t+1 = a(�t+1) ��t = �t. Subsequently, min-max adjustment
is applied in all periods, and the same procedure applies to yield �E+min(�t0) = �t = �E�max(�t0), and
a(�t0) = 1 for all t

0 � t+ 1. Thus all subsequent adjustment products �t0 will equal �t.
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7.2 Consistency-inducing scalars
In the previous section we saw that under repeated min-max adjustment convergence
will always occur. However, recall that here we were not so much interested in conver-
gence per se, but that we were particularly interested in convergence towards rationality
or optimality, as determined by the benchmark case of (total) utility maximization in
the standard framework of consumer choice. In this and in the following section we
will formalize what exactly we mean by convergence towards optimality, and we will
investigate when it will occur.

In the previous section we found that the learning algorithm always yields con-
vergence of a generated sequence of adjustment products (�1; �2; :::) to some limit �1.
Therefore, convergence towards optimality should mean that such a limit �1 would
correspond to consistency with rationality or optimality. Recall that consistency of
ad hoc preferences with total preferences (representing optimality and rationality) was
formally de�ned in section 5.1. Here we will link the property of convergence towards
optimality to the property of consistency.
The convergence result from the previous section implies that the learning algorithm

will always yield convergence of a generated sequence of adjustment products (�1; �2; :::)
to a single limit scalar �1, and never towards a variable or moving limit pattern.
Thus, convergence towards optimality would require that a single scalar �1 would yield
consistency in all periods. The next de�nition makes this property precise, both in
models of expected utility and in models of certainty. Here rationality is only properly
de�ned in models of certainty or of expected utility, and likewise, consistency can only
be de�ned in those settings. And since models of certainty are special (degenerate) cases
of expected utility models, it would su¢ ce to only de�ne consistency in expected utility
models. For the reader�s convenience we will also present a distinct formal de�nition of
consistency in models of certainty.

De�nition 7.2.1 Given a state space 
, a probability distribution � : 
 ! [0; 1], a
(total) Bernouilli utility function u : ~X ! R, and an initial time preference function
U (0) : R � R+ ! R, the scalar ~� 2 R++ is called a consistency-inducing scalar if
for every period t, for every past state !t0 = (!0; :::; !t) and every future state space

1t+1, it holds that the ad hoc utility function U

(0)(~�v(t)(wt�1; xt); st) is consistent with
u, given !t0, 


1
t+1 and �.

De�nition 7.2.2 Given a price vector q0 = (p0; p1; :::) and an income stream J0 =
(m0; I1; :::), a total utility function u : X ! R and an initial time preference function
U (0) : R � R+ ! R, the scalar ~� 2 R++ is called a consistency-inducing scalar
if for every period t, it holds that the ad hoc utility function U (0)(~�v(t)(wt�1; xt); st) is
consistent with u, given qt+1 = (pt+1; pt+2; :::) and Jt+1 = (It+1; It+2; :::).

In what follows, we will also use the abbreviation CIS to denote a consistency-
inducing scalar. From the above de�nition it may seem clear that, given an initial time
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preference function U (0)(:; :), such a CIS need not generally exist. Staying within the
general ad hoc framework, here we will present some necessary conditions that models
will have to satisfy for a CIS to exist. Convergence towards such an optimal scalar is
yet another question, which will be dealt with in the next section. Here we will �rst
present and explain these necessary conditions that models will have to satisfy in order
for such a CIS ~� to exist (given initial time preferences).

� Firstly, models should be set within the standard framework. The above de�nition
refers back to the notion of consistency, so existence of a consistency-inducing
scalar in a certain model presupposes that consistency is well-de�ned within such
a model. The notion of consistency was de�ned as a relation between ad hoc utility
and total utility; ad hoc utility was de�ned to be consistent with total utility if
ad hoc utility for savings would always correspond to total utility of optimally
chosen future consumption plans, given savings. Hence a total (Bernouilli) utility
function is required for de�ning consistency, and total utility functions are only
speci�ed in the setting of the standard framework.

� Secondly, consistent ad hoc preferences should always be such that present and
past consumption are independent of savings. In the above de�nition we see
that when a consistency-inducing scalar is entered into the initial time preference
function, the resulting ad hoc utility function is consistent with total utility.
Obviously, the consistent ad hoc utility function from this de�nition is separable
in past and present consumption. Hence, by theorem 2.4.1 consistent preferences
should always be such that present and past consumption are independent of
savings, and such that instantaneous preferences and time preferences can be
distinguished.

� Thirdly, there should be a consistent time preference function that is stationary
or time-invariant. In the above de�nition a (single) consistency-inducing scalar
is de�ned to yield consistency in all periods when inserted into the initial time
preference function. Thus, a single time preference function should be consistent
in all periods.

� And fourthly, the initial time preference function should, except for an adjustment
product that is to be inserted into it, already have a functional structure similar
to that of a consistent time preference function. In the above de�nition, what is
entered into the initial time preference function in order to obtain consistency,
is a scalar and not a function. That is, this scalar that should be entered into
the initial time preference function to obtain consistency, will not only have to
be the same across periods, but it will also have to be the same for all di¤erent
combinations of instantaneous utility and savings that are possible. Thus, the
initial time preference function should already be quite similar to some consistent
time preference function.
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These conditions, and probably especially the last two, are very restrictive. As for
the third condition, in principle it would be possible to investigate convergence towards a
moving limit pattern, but obviously, this would greatly complicate our analyses. And as
for the fourth condition, do note that it su¢ ces that the initial time preference function
has, except for an adjustment product, the same functional structure as some consistent
time preference function. In choosing consistent ad hoc utility (and consequently in
choosing consistent time preference functions) there is still some freedom, as consistent
ad hoc utility is unique only up to a strictly increasing transformation. Still, this
last condition seems quite stringent. In the last chapter we will come back to the
restrictiveness of these conditions.
The next two chapters will be set within the more speci�c setting of consump-

tion/savings models. There we will be able to precisely express when a CIS exists
in terms of a model�s primitives, and we will see that (in some cases) the above four
conditions will hold, and that a consistency-inducing scalar will indeed exist.

7.3 Convergence to optimality
Having de�ned convergence and consistency-inducing scalars in the previous sections,
in this section we will de�ne convergence towards optimality. Also, we will specify
three conditions that will help determine when convergence towards optimality will
take place. The �rst of these three conditions is a necessary condition for convergence
towards optimality to occur. The second and third conditions are such that the three
conditions combined are su¢ cient for convergence towards optimality to take place.
But �rst we present the de�nition of convergence towards optimality.

De�nition 7.3.1 A sequence of time preference functions (U (t)(v; s))1t=0 that is of the
form (U (0)(�tv; s))

1
t=0 is said to converge towards optimality if the corresponding

sequence of adjustment products (�t)1t=0 converges towards a consistency-inducing scalar.

From the above de�nition it may be clear that convergence towards optimality need
not always occur. The learning algorithm and the above de�nition are set in the ad
hoc framework in its completely general form, and not in all models that could be set
up within the ad hoc framework convergence towards optimality will necessarily occur.
For instance, from the above de�nition we see that existence of a consistency-inducing
scalar is a necessary condition for convergence towards optimality to occur.

Condition 7.3.1 Given the initial time preference function U (0), a consistency-inducing
scalar e� 2 R++ exists.
As noted in the previous section, a CIS need not always exist in all models that

are set in the general ad hoc framework. The four conditions that were listed in the
previous section are necessary for the existence of a consistency-inducing scalar. And
since the existence of a CIS is necessary for convergence towards optimality to occur,
so are the four conditions from the previous section.

134



7. EVOLUTION AND CONVERGENCE

By the previous proposition we know that convergence will always occur. However,
even if in a certain model we know that a CIS exists, we still cannot be sure that
convergence towards this speci�c scalar will indeed occur. To be able to prove that
convergence towards optimality will occur, two more conditions are needed. Together
with condition 7.3.1, these conditions are su¢ cient for obtaining convergence towards
optimality.

The second condition entails that the consistency-inducing scalar should be stable.
That is, as we are trying to establish convergence of adjustment products towards a
single scalar (adjustment product) that will induce consistency in all periods, it seems
desirable that this CIS would be a ��xed point�of the learning algorithm and of the
adjustment process. We would like to have that if in a certain period the consistency-
inducing scalar is used, it will not be adjusted, so that it will also be used in the
following period (and hence in all subsequent periods). If �t = ~� for any t, we should
also have that �t+1 = ~� will hold, and we require a unit adjustment factor a(�t+1) = 1.
And since a(�t+1) = 1 will only happen if Et = 0, we require here that setting �t = ~�
will always (for all budgets mt available in this period) yield a zero excess expenditure
in the corresponding period.

Condition 7.3.2 If, given an initial time preference function U (0) and a CIS e�, in some
period t the prevailing time preference function is of the form U (t)(v; s) = U (0)(�tv; s),
then �t = e� will always (for all available budgets mt) yield Et = 0.

And thirdly, the model should be such that adjustment products that are larger than
the CIS will yield positive excess expenditures, and such that adjustment products that
are smaller than the CIS will yield negative excess expenditures. To see why this is
needed, recall from section 6.5 that positive excess expenditures will always be followed
by a decrease in the adjustment product, and that negative excess expenditures will
always be followed by an increase in the adjustment product. Therefore, if the above
implications hold, then if the prevailing adjustment product is larger than the CIS
the adjustment product will be decreased, and if the prevailing adjustment product
is smaller than the CIS the adjustment product will be increased. This would clearly
facilitate convergence towards the CIS.

Condition 7.3.3 If, given an initial time preference function U (0) and a CIS e�, in some
period t the prevailing time preference function is of the form U (t)(v; s) = U (0)(�tv; s),
then �t > ~� will always (for all available budgets mt) yield Et > 0, and �t < ~� will
always yield Et < 0.

Note that if, given an initial time preference function, conditions 7.3.2 and 7.3.3
hold, then the consistency-inducing scalar ~� will be unique.
If the above three conditions are met, then the learning algorithm will indeed yield

convergence towards optimality, and indeed conditions 7.3.1, 7.3.2 and 7.3.3 are su¢ -
cient for convergence towards optimality to occur.
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Proposition 7.3.1 Suppose that in a certain model, given an initial time preference
function U (0) : R � R+ ! R, conditions 7.3.1, 7.3.2 and 7.3.3 are satis�ed. Then
any sequence of time preference functions (U (t))1t=0 that is generated by the learning
algorithm, will converge towards optimality.

Proof. The generated sequence of time preference functions is of the form U (t)(v; s) =
U (0)(�tv; s), and from conditions 7.3.1 (the existence of a CIS ~� 2 R++) and 7.3.3,
we can �rst show that from some period onwards, the adjustment process will remain
absorbed in the third case of de�nition 6.4.6, in which both sets �E�(:) and �E+(:) are
non-empty. To see this, we will distinguish three cases, depending on the sign of the
excess expenditure E0 for the �rst period.
Firstly, suppose that �0 was such that E0 < 0, so that the process started in the �rst

case of de�nition 6.4.6. Min-max adjustment is applied every period, so the adjustment
factors �t = �t�0 will increase exponentially as long as the process remains in this �rst
case. Then for some period t0 it will hold that �t0 = �t

0
�0 > ~�, and by condition 7.3.3

we get that excess expenditure will be strictly positive in this period, and the third
case from the de�nition, where both positive and negative excess expenditures have
occurred in the past, will be entered.
Secondly, if �0 was such that E0 > 0, the process started in the second case, and

similarly min-max adjustment is applied every period, so that �t = �t�0 as long as the
process remains in this second case. For some period t0 it will hold that �t0 = �t

0
�0 < e�,

and we get that excess expenditure will become strictly negative in this period, and
again the third case from the de�nition will be entered.
And thirdly, if �0 was such that E0 = 0, then we would have that �0 2 �E�(�1) and

�0 2 �E+(�1) so neither of the sets are empty, and the process starts in the third case.
Also remember from the discussion following the learning algorithm that it is never

possible to go back from the third case to either the �rst or the second case.
Thus suppose that the sequence (�0; �1; �2; :::) is such that in some period t, the

process has entered the third case as distinguished in de�nition 6.4.6, where both sets
�E�(�t) and �

E+(�t) are non-empty. From the lemma in section 6.5, we know that
�E+min(�t) � �E�max(�t) must hold, so that �t := �E+min(�t)��E�max(�t) � 0. By the existence of
~� and its associated properties (condition 7.3.3), we know that �E+min(�t) � ~� � �E�max(�t).
Then, in period t the new adjustment product �t is determined by

�t = a�t�t�1 = � � �
E+
min(�t) + (1� �) � �E�max(�t);

which implies that �E+min(�t) � �t � �E�max(�t). Therefore we see that j�t � ~�j � �t.
Similarly, by the lemma in section 6.5 we know that in period t + 1 it will hold

that �E+min(�t+1) � �E�max(�t+1), and by the properties associated with e� we know that
�E+min(�t+1) � ~� � �E�max(�t+1). In period t+1, min-max adjustment will again be applied,
so that �E+min(�t+1) � �t+1 � �E�max(�t+1). Therefore, again we see that j�t+1 � ~�j �
�t+1. Moreover, from the proof of the previous proposition we know that �t+1 =
�E+min(�t+1)� �E�max(�t+1) � ~��t, for ~� = maxf�; 1� �g.
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The same procedure will be applied in all subsequent periods, and this will yield
that j�t+� � ~�j � �t+1, and that �t+� = �E+min(�t+� )� �E�max(�t+� ) � ~�

�
�t for every period

t+ � � t. Since ~� = maxf�; 1� �g < 1 and �t 2 R+, we see that ~�
�
�t will converge to

0 as � goes to in�nity. Thus indeed, j�t+� � ~�j will converge to zero, and the sequence
of adjustment factors (�0; �1; �2; :::) converges to ~�.

The above three conditions that are su¢ cient for convergence towards optimality
to occur, are still stated within the general ad hoc framework. Within this general
ad hoc framework, models that satisfy these conditions will be such that convergence
towards optimality will always occur. The next two chapters will be set within the
more speci�c setting of models of consumption/savings, and in these chapters we will
be able to express the three conditions that were presented in this section in terms of
a model�s primitives. There we will see that (in some cases) the above conditions will
indeed be satis�ed, and that convergence towards optimality will indeed occur.
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In what follows we will investigate convergence of preferences and behaviour, as gen-
erated by the learning algorithm, towards optimality. In this and in the next chapter,
we will do these investigations in a class of models that is particularly convenient and
tractable: we will use stationary models of consumption/savings decisions. In the pre-
vious chapter, we stated a number of conditions needed for convergence (of preferences)
towards optimality in a general setting. In the more speci�c settings of this and the next
chapter we will see that under some (rather speci�c) circumstances, these conditions
will be met, and convergence towards optimality will occur.
As noted in the previous chapter, given initial time preferences, convergence (of pref-

erences) towards optimality presupposes the existence of a consistency-inducing scalar.
In the present and in the next chapter we will see that for all stationary consump-
tion/savings models, a consistency-inducing scalar exists if and only if the initial time
preferences are of a certain (rather speci�c) form. Furthermore, the present chapter
will establish that if indeed the initial time preferences are of this speci�c form, then in
some cases convergence towards optimality will occur, and in some cases convergence
towards optimality will not occur.
Finally, this chapter will consider convergence of choices towards optimality and

the relations between convergence towards optimality of preferences and convergence
towards optimality of choices.
The present chapter will deal with consumption/savings models under certainty, the

next chapter will consider consumption/savings models with expected utility.

This chapter consists of �ve sections. The �rst section will specify the setting of
stationary models of consumption/savings under certainty, and it will specify how the
ad hoc framework can be �t into this setting. In the second section we will see that
in this setting convergence of preferences will always take place. The third section will
consider when a consistency-inducing scalar exists, and it provides a necessary con-
dition (with respect to the initial time preferences with which the learning algorithm
starts) for convergence towards optimality to occur. The fourth section will establish
conditions under which convergence towards optimality does occur, there we will see
that in models without additional income convergence towards optimality will occur (in
some circumstances), and that in models with additional income convergence towards
optimality will generally not occur. Finally, while sections 2, 3 and 4 deal with conver-
gence of preferences, section 5 deals with convergence of choices. The �fth section will
show that convergence towards optimality in terms of preferences implies convergence
towards optimality in terms of choice functions, and it investigates when convergence
towards optimality in terms of choices does occur.

8.1 Models of consumption/savings under certainty
In this chapter we will consider behaviour and preferences as governed by the learning
algorithm in a model of certainty. Although the existence of uncertainty played an
important part in the motivation for devising a learning model for consumer choice,
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another important consideration was that of computational complexity. In the present
setting the problems of the standard framework under certainty would still involve
in�nitely many periods and in�nitely many variables. Therefore, even in the absence of
uncertainty, the maximization problems that would result from the standard approach
are still computationally very complex, which may justify making a bounded rationality
assumption.

Thus here we model a consumer who has no uncertainty about the components of
the economic environment that he faces. Then, we suppose that this consumer does
know total preferences on X = �1t=0Xt, and that he does know all his instantaneous
preferences, but that he does not know ad hoc preferences that are consistent with total
preferences.
While we assume that the consumer would know all his instantaneous preferences

and his total preferences on the total commodity space X, we will also assume that our
consumer lacks the cognitive sophistication to solve the associated problem of maximiz-
ing his total preferences over a budget set at once, and similarly we assume that our
consumer would lack the cognitive sophistication to derive consistent ad hoc preferences
from the total preferences, as in chapter 5. Therefore here we assume that our consumer
would try to tackle his lifetime consumption problem in the piecemeal way as in the
learning algorithm, using ad hoc preferences to decide in all periods, and updating time
preferences after any period as speci�ed in chapter 6.

8.1.1 The setting

For tractability both this and the next chapter will deal exclusively with stationary
models of consumption/savings. In this class of models we will see that (under some
circumstances) convergence towards optimality will occur.
As before, we start from axiom 4.1.1, so there is an in�nite number of periods in

which consumption decisions have to be made. Accordingly, the commodity space is
subdivided into distinct period-t commodity spaces Xt, and the total commodity space
corresponds to their Cartesian product: X = �tXt. Since in consumption/savings
models in any period t only a consumption level ct 2 R+ has to be chosen, each of the
sets Xt is one-dimensional, and here we simply set Xt = R+ for all t.
The total utility function on X = R1+ is additively separable with respect to time,

and satis�es exponential time discounting, so for all c = (c0; c1;c2;:::) preferences can
be expressed by U(c) =

P1
t=0 �

tu0(ct), for some discount factor 0 < � < 1, and some
instantaneous utility function u0 : R+ ! R. Here it is also assumed that the instanta-
neous utility function u0 satis�es one of the next two axioms.29

Axiom 8.1.1 A function f : R+ ! R satis�es axiom 8.1.1 if it is strictly increasing,
strictly concave and continuously di¤erentiable.
29If u0 satis�es axiom 8.1.2, then u00(0) should be well-de�ned. The term u00(0) should denote the

derivative of the di¤erentiable function u0, evaluated in the point 0. However, such a function is de�ned
on R+, which is a closed set (in R). And mathematically the derivative is only properly de�ned on the
internal of this closed set, in this case R++. Hence the term u00(0) is mathematically not well-de�ned
in its usual sense.
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Axiom 8.1.2 A function f : R+ ! R satis�es axiom 8.1.2 if it satis�es axiom 8.1.1
and if f 0(0) =1.

There is no uncertainty, so at time 0 the consumer knows for any period t 2 N0 the
relevant components of the economic environment. In the (sub)sections of chapter 6
dealing with consumption/savings, we saw that commodity spaces Xt = R+ and prices
pt = 1 (the interest rate is assumed to equal zero) are by assumption already known.
In the present chapter all additional incomes It � 0 also need to be known at time 0.
Here we also assume that models are stationary. In the present setting, the fact

that Xt and pt are the same for all periods, and the use of a uniform 0 < � < 1 and
a single function u0 are consistent with stationarity, but here stationarity also requires
that the additional incomes are the same for all periods after the �rst, so that one of
the next two axioms will hold.

Axiom 8.1.3 No additional income is obtained after time 0: It = 0, for all t � 1.

Axiom 8.1.4 A constant periodical income is obtained every period after time 0:
It = I > 0, for all t � 1.

Saving is possible at a zero interest rate, and borrowing is not possible. This implies
that the budget available in period t equals the savings brought over from the previous
period plus the additional income received in that period, and that this budget also
equals the sum of all that was obtained in periods up to time t minus the sum of what
was spent in periods prior to time t:

mt = st�1 + I = mt�1 � ct�1 + I = ::: = m0 �
t�1X
i=0

ci + tI:

Still, the right-sided derivative

u00+(0) := lim
h#0
(u0(h)� u0(0))=h;

is well-de�ned. Here limh#0 denotes the limit of h approaching the point 0 from above. Mathematically
the derivative u00(c) at a strictly positive c > 0 is de�ned as:

u00(c) = lim
h!0

(u0(c+ h)� u0(c))=h;

where limh!0 denotes the limit of h approaching the point 0 (from anywhere). And since u0 is
di¤erentiable on (0;1), u00+(0) also satis�es u00+(0) = limc#0 u00(c). In what follows, we will keep using
the notation u00(0) as shorthand for the well-de�ned u

0
0+(0).

The term V 0(0) will also appear in this work. Value functions are also de�ned on R+, and similarly
V 0(0) should be thought of as short-hand for the right-sided derivative V 0+(0).
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8.1.2 Dynamic programming

Within the standard framework for consumer choice, the basic consumer problem for
the consumption/savings setting as described above, would be given by the following
sequence problem

max
(c0;c1;c2;::::)

1X
t=0

�tu0(ct) s:t:

tX
i=0

ci � m0 + tI; 8t � 0:

Corresponding to this sequence problem is the following functional equation

V �(m) = max
(c;s)

[u0(c) + �V
�(s+ I)] s:t: c+ s � m:

In section 2.5 we saw that the theory of dynamic programming shows that the value
function V � : R+ ! R that solves this functional equation, is also exactly the function
that returns for every budget level m available at period 0, the maximum discounted
lifetime utility value that can be attained from m, that is:

V �(m) = max
(c0;c1;c2;:::)

f
1X
t=0

�tu0(ct) :
tX
i=0

ci � m0 + tI;8t � 0g:

Thus we found a link between sequence problems and the corresponding functional
equations. It can also be shown (e.g. Stokey and Lucas ([43], chapter 4)) that if
instantaneous utility u0 satis�es axiom 8.1.1, then the corresponding value function V �

will also satisfy axiom 8.1.1.

8.1.3 The ad hoc framework

However, here we model the decision-making of a boundedly rational individual who
somehow has trouble dealing with the complexity of the above choice problem. We
assume that our consumer cannot solve the above problem at once. Hence the standard
framework cannot be used to model this decision-maker�s behaviour, and we will use
the ad hoc framework.
We suppose that axiom 4.4.1 holds, so our consumer would cut up his lifetime

consumption choice problem into smaller ad hoc choice problems, where in each of these
he uses ad hoc preferences to solve them. Recall from the (sub)sections of chapter 4
dealing with consumption/savings models, that in these models ad hoc utility functions
were still supposed to be of an additively separable form and to exhibit exponential
discounting, so that we can write:

u(t)(wt�1; ct; st) =

tX
i=0

�iu0(ci) + �
t+1eV (t)(st):

Here wt�1 denotes the vector of past consumption choices (c0; c1; :::; ct�1). In order
to stay closer to the notation and interpretation of value functions in dynamic pro-
gramming, and without loss of generality, the function eV (t)(st) can be replaced with
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V (t)(st + I), where the function V (t) : [I;1)! R denotes a value function that values
the next period�s budget. Again without loss of generality the above speci�cation of ad
hoc utility can be divided by �t, such as to arrive at the more convenient form of the
next axiom.

Axiom 8.1.5 For any time t, the ad hoc utility function u(t)(wt�1; ct; st) can be written
as

u(t)(c1; c2; :::; ct; st) =

tX
i=1

�i�tu0(ci) + �V
(t)(st + I):

Here V (t) is called a value function.

As in section 6.2, ad hoc preferences can be separated into instantaneous preferences,
as represented by

v(t)(wt�1; ct) =
tX
i=0

�i�tu0(ci);

and into time preferences, as represented by

U (t)(v(t); st) = v
(t) + �V (t)(st + I):

We assume that axiom 6.2.2 holds, so that instantaneous preferences (and thus v(t)) are
thought to be exogenous, while time preferences (and thus the value function V (t)) are
endogenous. Our decision-maker does not know what his consistent ad hoc preferences,
and therefore the optimal value function V �, would be. To make decisions, good value
functions V (t) remain to be found. The decision-maker is assumed to approach this
problem by using an initial guess at such a value function in the �rst period, and by
updating value functions in all subsequent periods.

Time preferences (and thus the value function) are adjusted by means of min-max
adjustment, as dependent on regular excess expenditure (REE)30 in the previous peri-
ods. Given the budget mt in period t, the (regular) excess expenditure Et = c�t � c/t in
period t is determined as the di¤erence of the actual expenditure in period t and the
ex-post optimal expenditure in period t, as determined in period t+ 1.
Here c�t denotes the actual expenditure in period t, which is determined as part of

a pair (c�t ; s
�
t ) that solves the corresponding basic ad hoc consumer problem

max
(ct;st):ct+st�mt

U (t)(v(t)(wt�1; ct); st) =

max
(ct;st):ct+st�mt

tX
i=1

�i�tu0(ci) + �V
(t)(st + I):

30Recall from subsection 6.4.2 that in models of certainty (and thus also in the present setting) the
REE and EEE measures coincide. As in models of certainty it seems strange to use the EEE measure,
in this chapter we will let the adjustment function depend on REE excess expenditure.
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Since at time t the vector wt�1 = (c0; c1; :::; ct�1) is given, by subtracting the constantPt�1
i=1 �

i�tu0(ci), we see that c�t is also part of a solution to the simpler looking problem

max
(ct;st):ct+st�mt

u0(ct) + �V
(t)(st + I):

Then, given the budget mt and the additional income I, c/t denotes the (regular)
ex-post optimal expenditure in period t, as determined in period t + 1. That is, c/t is
part of a tuple (c/t ; c

/
t+1; s

/
t+1) that solves the following hypothetical problem over ct,

ct+1, and st+1 simultaneously

max
(ct;ct+1;st+1)

U (t)(v(t+1)(wt�1; ct; ct+1); st+1) =

max
(ct;ct+1;st+1)

t+1X
i=1

�i�t�1u0(ci) + �V
(t)(st+1 + I)

sub to ct+st � mt and ct+1+st+1 � st+I. And, subtracting a constant
Pt�1

i=1 �
i�t�1u0(ci)

and multiplying with the constant � gives that (c/t ; c
/
t+1; s

/
t+1) also solves the simpler

looking problem

max
(ct;ct+1;st+1)

u0(ct) + �u0(ct+1) + �
2V (t)(st+1 + I)

sub to ct + st � mt and ct+1 + st+1 � st + I.
Instantaneous utility u0 was assumed to be strictly concave (by axiom 8.1.1), and

we also assume that the initial value function V (0) is strictly concave. The speci�c form
of the adjustment process is such that any subsequent value function V (t) will then be
strictly concave as well. Therefore, all of the above maximization problems have unique
solutions.

In period 0 an initial time preference function U (0) : R � R+ ! R is given. From
the above axiom we see that this initial time preference function will take the following
form: U (0)(v; s) = v+ �V (0)(s+ I). Here we also assume that the initial value function
V (0) : [I;1)! R satis�es axiom 8.1.1.
In any later period t+1, given a time preference function U (t)(v; s) = v+�V (t)(s+I)

from the previous period, our consumer adjusts old time preferences such as to arrive
at new time preferences U (t+1). That is, given the vector "t+1 := (E0; E1; :::; Et) of
past excess expenditures, the min-max adjustment function yields an adjustment factor
a"t+1, and in period t + 1 time preferences will be adjusted according to U

(t+1)(v; s) =
U (t)(a"t+1 � v; s).
In the present setting, the term U (t)(a"t+1 � v; s) can be rewritten as

a"t+1 � v+ �V (t)(s+ I), which would specify a new time preference function U (t+1)(v; s).
Without loss of generality this speci�cation can be divided by the scalar a"t+1, and we
write

U (t+1)(v; s) = v + �a�1"t+1V
(t)(s+ I):
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As argued in subsection 6.4.1, this rewriting does not change anything essential, but
this notation does seem to re�ect the fact that instantaneous preferences and thus v
are exogenous while time preferences and thus V are supposed endogenous. Moreover,
this notation is in line with the above axiom.
Thus, because of the speci�c form of ad hoc utility functions as imposed in the above

axiom, the procedure of adjusting time preferences can be shortened to a procedure
where the value functions are adjusted directly.

Axiom 8.1.6 In period 0 an initial value function V (0) : R+ ! R, that satis�es axiom
8.1.1, is exogenously given. In any later period t + 1, a new value function V (t+1) is
obtained from the old value function by:

V (t+1)(:) := a�1"t+1V
(t)(:);

where the adjustment factors a"t+1 are determined by min-max adjustment.

8.2 Convergence of the value function
Given an initial value function V (0), the learning algorithm will give rise to a sequence
of value functions (V (t))1t=0. Then, we may wonder if such a sequence of value functions
will converge.31

The relation V (t+1) = a�1"t+1V
(t) holds for every period t. Therefore by a repeated

argument any value function that is generated by the learning algorithm from the initial
value function V (0), can also be written as

V (t)(:) = a�1"t � a
�1
"t�1 � ::: � a

�1
"1
� V (0)(:) = ��1t V (0)(:);

where �t denotes the adjustment product. Like in the previous chapter, instead of con-
sidering sequences of value functions (V (t))1t=0, here we can consider the corresponding
sequences of adjustment products (�t)1t=0.
Since in the present setting min-max adjustment is applied in all periods, proposition

7.1.1 applies. That is, we know that any sequence of adjustment products (�t)1t=0 as gen-
erated by the learning algorithm, will converge to some limit �1 2 R+. Consequently,
any sequence of value functions (V (t))1t=0, as generated by the learning algorithm, will
converge to some limit function V (1)(:) = �1V (0)(:).

8.3 Existence of a consistency-inducing scalar
However, more than in the question of convergence per se, here we are interested in
the question of convergence towards optimality. In section 7.3 we saw that convergence
towards optimality will take place if three conditions are satis�ed. In this section we
will establish when the �rst of these conditions, condition 7.3.1 (which says that, given
the initial time preference function U (0), there exists a consistency-inducing scalar ~�),
will hold. The other conditions will be dealt with in the following sections.

31By convergence of a sequence of functions we mean pointwise convergence.
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First we will take a look at what consistency would entail in the present setting.
The optimal value function V � (that solves the functional equation) returns for every
budget m0 available at time 0 the maximum discounted lifetime utility that can be
attained from m0. Suppose that after time t the choices (wt�1; ct) = (c0; c1; :::; ct) and
an amount of savings st are given. These past choices yielded the (provisional) utilityPt

i=0 �
iu0(ci), and the period-(t+1) budget will equal mt+1 = st+I. Then, given mt+1,

the maximally attainable additional utility from period t + 1 onwards would be given
by

max
(ct+1;ct+2;:::)

1X
i=t+1

�iu0(ci) s:t:

iX
�=t+1

c� � mt+1 + (i� t� 1)I; 8i � t+ 1:

This problem faced at time t+ 1 is an exact copy of the problem that is faced at time
0 (as in the sequence problem in section 8.1.2), and by a change of variables it can be
seen that this maximal additional utility that can be attained in and after period t+1,
is given by �t+1V �(mt+1). Therefore, by de�nition of consistency, for any time t any
consistent ad hoc utility function eu(t)(wt�1; ct; st) must be of the form

eu(t)(wt�1; ct; st) = eft( tX
i=0

�iu0(ci) + �
t+1V �(st + I));

for some strictly increasing function eft : R! R.
For any time t, instantaneous preferences were supposed to be exogenous, and rep-

resented by v(t)(wt�1; ct) =
Pt

i=0 �
i�tu0(ci). Therefore, the above condition can be

rewritten as the condition that for any time t, any consistent ad hoc utility functioneu(t)(wt�1; ct; st) should be of the formeu(t)(wt�1; ct; st) = ft(v(t)(wt�1; ct) + �V �(st + I));
for some strictly increasing function ft : R! R (here with ft(x) = eft(�tx)).
Thus we also see that for any time t, given the exogenous instantaneous utility, any

consistent time preference function eU (t)(v(t); st) must be of the formeU (t)(v(t); st) = ft(v(t) + �V �(st + I));
for some strictly increasing function ft : R! R.

Now we can investigate when condition 7.3.1, that a consistency-inducing scalar
exists, will hold. The initial time preference function was given by U (0)(v(0); s0) =
v(0) + �V (0)(s0 + I). Therefore, if given U (0) a CIS ~� exists, then for any period t the
function U (t)(v(t); st) := v(t) + �~�

�1
V (0)(st + I) should be a consistent time preference

function. That is, if a consistency-inducing scalar ~� exists, then for every period t
there should be a strictly increasing function ft such that v(t)+ �~�

�1
V (0)(st+ I) equals

ft(v
(t) + �V �(st + I)).
The next proposition provides a condition on the initial value function V (0), that is

both su¢ cient and necessary for the existence of a consistency-inducing scalar in the
present context, and thus for condition 7.3.1 to hold.
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Proposition 8.3.1 Assume that axioms 4.1.1, 4.4.1, 8.1.5 and 8.1.6, and 8.1.3 or
8.1.4 hold. Then given an initial time preference function U (0) : R�R+ ! R that is of
the form U (0)(v(0); s0) = v

(0) + �V (0)(s0 + I), there exists a consistency-inducing scalar
~� if and only if the initial value function V (0) is of the form V (0)(m) = ~�V �(m)+�, for
some � 2 R and all m � I, where V � denotes the optimal value function that solves
the corresponding functional equation.

Proof. N The �if�-part is quite straightforward. Suppose that the initial time preference
function U (0)(v(0); s0) = v(0) + �V (0)(s0 + I) is such that the initial value function V (0)

satis�es V (0)(m) = ~�V �(m) + � for some � 2 R, some ~� > 0, and all m � I. Then, for
the function ft(x) = x+ �~�

�1
� it will hold that

v(t) + �~�
�1
V (0)(st + I) = v

(t) + �~�
�1
(~�V �(st + I) + �) =

v(t) + �V �(st + I) + �~�
�1
� = ft(v

(t) + �V �(st + I));

for all st � 0. Hence there exists a strictly increasing function ft such that
v(t)+�~�

�1
V (0)(st+I) equals ft(v(t)+�V �(st+I)), and ~� is indeed a consistency-inducing

scalar.
N Conversely, suppose that, given the initial time preference function U (0)(v(0); s0) =

v(0) + �V (0)(s0 + I), there exists a CIS ~�. Then for all t there must be some strictly
increasing function ft : R! R such that

v(t) + �~�
�1
V (0)(st + I) = ft(v

(t) + �V �(st + I)):

The partial derivative of the right-hand side with respect to v(t) equals
f 0t(v

(t) + �V �(st + I)), and the partial derivative of the left-hand side with respect
to v(t) equals one. By the above equality, these derivatives should also equal, so that
f 0t(x) = 1 must hold for all relevant x. This implies that the function ft must be of the
form ft(x) = x+�t, for some �t 2 R (and all relevant x). Therefore the above equality
gives that v(t) + �~�

�1
V (0)(st + I) must equal v(t) + �V �(st + I) + �t, so that

�~�
�1
V (0)(st + I) = �V

�(st + I) + �t:

Thus indeed we see that the initial time preference function V (0) must satisfy: V (0)(m) =
~�V �(m) + �, for all m � I and some � 2 R.

Note that here convergence of a sequence of adjustment products towards a
consistency-inducing scalar ~� does not necessarily imply convergence of the correspond-
ing sequence of value functions towards the optimal value function that solves the
functional equation. To see this, suppose given some initial value function that satis�es
V (0)(m) = ~�V �(m) + �, for some � 2 R, so that by the above proposition the scalar e�
is a CIS. Then convergence of the sequence of adjustment products towards ~� implies
that the corresponding sequence of value functions will converge towards

~�
�1
V (0)(m) = ~�

�1
(~�V �(m) + �) = V �(m) + �~�

�1
:
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Thus, convergence of the sequence of adjustment products towards the CIS ~� does imply
that the corresponding sequence of value functions converges towards the optimal value
function, up to a constant. Note however, that such a constant �~�

�1
is essentially

irrelevant, as the choices that will be made are determined by marginal instantaneous
utility and marginal value for savings. Therefore, we will keep referring to this kind of
convergence as convergence towards optimality.

8.4 Convergence towards optimality
In section 7.3 we identi�ed three conditions that (together) are su¢ cient for convergence
towards optimality to occur. The �rst of these, condition 7.3.1, was that a consistency-
inducing scalar exists. In the previous section we established when this condition holds.
The second of these conditions, condition 7.3.2, entailed that the consistency-inducing
scalar should be a �xed point of the adjustment procedure, and this condition will be
dealt with next.
The following proposition is preliminary to establishing that this second condition

will hold. It shows that if in some period the optimal value function V � (that solves
the functional equation) is used, this will always yield a zero excess expenditure.

Proposition 8.4.1 Let a model be given that satis�es axioms 4.4.1 and 8.1.5, and
8.1.3 or 8.1.4, and with an instantaneous utility function that satis�es axiom 8.1.1.
Then if at time t the value function V (t) that prevails is identical to the optimal value
function V �, the corresponding (regular) excess expenditure will be zero: Et = 0.

Proof. Given is a model with an instantaneous utility function u0 that satis�es axiom
8.1.1, a discount factor 0 < � < 1 and an equal additional income incurred every
period after the �rst: It = I � 0, for all t � 1. The value function that is used in
period t is identical to the optimal value function that solves the functional equation
corresponding to this model: V (t)(m) = V �(m), for all m 2 R+. We will now show
that, for any period-t budget mt 2 R+ it will always hold that c�t = c/t , so that Et = 0.
To see this, for wt�1 = (c0; :::; ct�1) 2 Wt�1 given, c/t is part of a tuple (c

/
t ; c

/
t+1; s

/
t+1)

that solves

max
ct+st�mt

max
ct+1+st+1�st+I

u0(ct) + �u0(ct+1) + �
2V �(st+1 + I):

This maximization problem can alternatively be written as

max
ct+st�mt

u0(ct) + � � max
ct+1+st+1�st+I

u0(ct+1) + �V
�(st+1 + I): (1)

Now, since the function V � solves the functional equation

V �(mt+1) = max
ct+1+st+1�mt+1

u0(ct+1) + �V
�(st+1 + I);

we see that (1) could also be written as

max
ct+st�mt

u0(ct) + �V
�(st + I): (2)
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And, the triple (c/t ; c
/
t+1; s

/
t+1) maximizes the problem we started with, so if we write

s/t := mt � c/t (= c/t+1 + s/t+1 � I, by strict increasingness), we see that the pair (c/t ; s/t )
must also solve (2).
Of course, problem (2) is also exactly the one that c�t was supposed to maximize

in the �rst place. And since instantaneous utility and the optimal value function are
strictly concave, so is their sum, and we see that solutions are unique. Hence indeed we
�nd that c�t = c

/
t so that Et = 0.

For a zero excess expenditure in period t, the (min-max) adjustment function will
always yield a unit adjustment factor a"t+1 = 1. Therefore, with the above proposition
we see that if at time t the prevailing value function V (t) is identical to the optimal value
function V �, then in period t+1 the resulting adjusted value function V (t+1) = a�1"t V

(t)

will also equal the optimal value function V (t+1) = V �.
The next proposition shows that adding a constant to a value function does not

in�uence the resulting excess expenditure. As noted in the previous section, the idea
is that such a constant has no e¤ect on the choices (both actual and ex-post optimal)
that will be made, as these choices rely only on marginal instantaneous utility and on
marginal value.

Proposition 8.4.2 Let a model be given that satis�es axioms 4.4.1 and 8.1.5, and
8.1.3 or 8.1.4, and with an instantaneous utility function that satis�es axiom 8.1.1. And
suppose we are given two period-t value functions V

(t)
: R+ ! R+ and V (t) : R+ ! R+,

that satisfy axiom 8.1.1 and are such that V
(t)
(m) = V (t)(m) + �, for all m 2 R+ and

some constant � 2 R. Then for any budget mt 2 R+, the corresponding (regular) excess
expenditures Et and Et, will always satisfy Et = Et.

Proof. Given is a model with an instantaneous utility function u0 that satis�es axiom
8.1.1, and a discount factor 0 < � < 1. Also given are two period-t value functions
V
(t)
: R+ ! R+ and V (t) : R+ ! R+ that satisfy axiom 8.1.1, and that di¤er by a

constant: V
(t)
(m) = V (t)(m) + � for all m 2 R+ and some scalar � 2 R. Then, given

any initial budget mt, and the additional income I � 0 that will be obtained in period
t + 1, excess expenditure can be determined for both value functions, and we want to
show that Et = c�t � c/t (corresponding to V

(t)
) will equal Et = c

�
t � c/t (corresponding

to V (t)).
Now, the choice (c�t ; s

�
t ) that will be made in period t, given past choices wt�1 =

(c0; :::; ct�1) 2 Wt�1, and the prevailing value function V (t)(:) will solve

max
ct+st�mt

u0(ct) + �V
(t)(st + I):

It is mathematically obvious that the solution to this last problem will be the same as
the solution to the problem

max
ct+st�mt

u0(ct) + �V
(t)(st + I) + �� =
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max
ct+st�mt

u0(ct) + �V
(t)
(st + I).

And (c�t ; s
�
t ) was supposed to maximize the �rst problem, so it must also solve the last

maximization problem, which is exactly the one that (c�t ; s
�
t ) is supposed to maximize.

Then by strict concavity we know that solutions are unique, and we see that c�t = c
�
t .

Then, for wt�1 2 Wt�1 given, c/t will be part of a tuple (c
/
t ; c

/
t+1; s

/
t+1) that solves the

hypothetical maximization problem of

max
ct+st�mt

max
ct+1+st+1�st+I

u0(ct) + �u0(ct+1) + �
2V (t)(st+1 + I).

Again, (c/t ; c
/
t+1; s

/
t+1) must also solve

max
ct+st�mt

max
ct+1+st+1�st+I

u0(ct) + �u0(ct+1) + �
2V (t)(st+1 + I) + �

2� =

max
ct+st�mt

max
ct+1+st+1�st+I

u0(ct) + �u0(ct+1) + �
2V

(t)
(st+1 + I).

And (c/t ; c
/
t+1; s

/
t+1) solves the �rst problem, so it must also solve the last, which is exactly

the one that (c/t ; c
/
t+1; s

/
t+1) is supposed to maximize. By strict concavity solutions are

unique, and we see that c/t = c
/
t .

Therefore as desired, the excess expenditures Et and Et will satisfy

Et = c
�
t � c/t = c�t � c/t = Et:

With this proposition we know that, if we are given two period-0 value functions
V
(0)
: R+ ! R+ and V (0) : R+ ! R+ that di¤er by a constant: V

(0)
(m) = V (0)(m)+�0,

for all m 2 R+ and some �0 2 R, then the two corresponding excess expenditures will
always be the same. Therefore both value functions would always be adjusted with the
same factor a. Thus, if V

(0)
is adjusted to V

(1)
: R+ ! R+, and V (0) is adjusted to

V (1) : R+ ! R+, we will get that

V
(1)
(m) = a�1V

(0)
(m) = a�1(V (0)(m) + �0) = a

�1V (0)(m) + �1 = V
(1)(m) + �1;

for allm 2 R+, with �1 = a�1�0. Therefore V
(1)
and V (0) will again di¤er by a constant

�1 2 R.
A repeated argument will show that, given that V

(0)
(m) = V (0)(m) + �0, in every

subsequent period t the generated value functions V
(t)
and V (t) will di¤er by a constant:

V
(t)
(m) = V (t)(m) + �t, for all m 2 R+ and some �t 2 R.
With the above two propositions we now get that in the present setting condition

7.3.2 (that a consistency-inducing scalar is a �xed point of the adjustment procedure)
will always hold.
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Proposition 8.4.3 Suppose that axioms 4.1.1, 4.4.1, 8.1.5 and 8.1.6, and 8.1.3 or
8.1.4 hold. And suppose that, given an initial time preference function U (0) : R�R+ !
R that is of the form U (0)(v(0); s0) = v(0)+�V (0)(s0+I), a consistency-inducing scalar ~�
exists. Then, if at time t the prevailing adjustment product �t equals e�, the corresponding
excess expenditure will equal zero: Et = 0.

Proof. Given an initial time preference function U (0) : R�R+ ! R that is of the form
U (0)(v(0); s0) = v(0) + �V (0)(s0 + I), a consistency-inducing scalar ~� exists. Therefore
by proposition 8.3.1 we know that V (0) must satisfy V (0)(m) = ~�V �(m) + �, for some
� 2 R.
Suppose that in some period t the prevailing adjustment product �t equals e�,

and thus that the prevailing value function V (t) equals ~�
�1
V (0) = ~�

�1
(~�V � + �) =

V � + �~�
�1
. From the previous proposition (8.4.2) we know that this prevailing value

function will yield the same excess expenditure as the optimal value function V �. And
from proposition 8.4.1 we know that the excess expenditure will equal zero in this case:
Et = 0.

By this proposition we see that if at time t the prevailing adjustment product �t
equals the CIS e�, then excess expenditure will always equal zero, so that the next
period�s adjustment factor a"t+1 will equal one, and the subsequent adjustment product
�t+1 will also equal ~�. Thus indeed the CIS is a �xed point of the adjustment procedure.
In the previous section we already established when condition 7.3.1, the �rst of

the three conditions needed for convergence towards optimality, will hold. The above
proposition shows that the second condition, condition 7.3.2, will always hold in the
present setting.
The last of these conditions, condition 7.3.3, entailed that adjustment products

larger than the CIS yield positive excess expenditures, and that adjustment products
smaller than the CIS yield negative excess expenditures. Next, we will deal with this
last condition, which is much less straightforward to do than for the �rst two conditions.
First we need a number of technical lemmas. These lemmas do not have straightforward
economic interpretations that are very important by themselves, still they are needed to
help establish when condition 7.3.3 will hold, and when convergence towards optimality
will occur.

Condition 7.3.3 says that adjustment products larger (smaller) than the CIS will
yield positive (negative) excess expenditures. Establishing that this condition holds,
would entail showing that actual choices c� are larger (smaller) than ex-post optimal
choices c/ in certain situations. We will ultimately show that (or when) such inequalities
hold from the next lemma.
This next lemma will consider solutions c� to problems such as

max
0�c�m0

u0(c) + �V (m
0 � c+ I 0); (y)
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and it will show that steeper V -functions will yield smaller choices. Here obviously the
V -functions in the lemma could apply to value functions, however we will also apply
this lemma to more general functions. In fact, for more generality we write c� to be
able to capture both actual choices c� and ex-post optimal choices c/ in one notation.
It may seem clear that actual choices c�t would be derived from a maximization problem
as in (y) (with m0 = mt, V = V (t) and I 0 = I). In proofs of later lemmas we will see
that ex-post optimal choices c/t could also be derived from maximization problems as in
(y), although with somewhat less straightforward V -functions. After the next lemma
we will specify what these V -functions should look like in that case. Thus, in the next
lemma we do not refer to V as a value function, but instead V : R+ ! R is simply a
function that satis�es axiom 8.1.1.

Lemma 8.4.1 Let a 0 < � < 1 be given, and let the functions u0 : R+ ! R,
V : R+ ! R and V : R+ ! R satisfy axiom 8.1.1, with V and V such that V 0(m) �
V
0
(m), for all m 2 R+. Then for every m0 2 R+ and every I 0 2 R+, the choices c� and

c� that maximize the problems

c� 2 arg max
0�c�m0

u0(c) + �V (m
0 � c+ I 0);

corresponding to V and V respectively, will be such that c� � c�.
Moreover, additionally suppose that V and V are such that V 0(m) < V

0
(m) for

all m 2 R++, and that for m0 2 R++ and I 0 2 R+ it holds that V 0(m0 + I 0) <

u00(0)=�, and that V
0
(I 0) > u00(m

0)=�. Then the choices c� and c� will be such that
c� > c�.

Proof. Given are a function u0 : R+ ! R that satis�es axiom 8.1.1, and a scalar
0 < � < 1. Also given are two functions V : R+ ! R and V : R+ ! R that satisfy
axiom 8.1.1, and are such that V 0(m) � V 0(m), 8 m 2 R+.
Now, for any given m0 2 R+, and any I 0 2 R+, the choice c� will maximize

u0(c) + �V (s+ I
0) sub to c+ s � m0 (here c� may represent c� and c�, V may represent

V and V ). By strict increasingness of the utility function and of the value function,
this problem is the same as max0�c�m0 u0(c)+ �V (m

0� c+ I 0). Now, we will distinguish
three cases depending on whether c� is an internal or a boundary solution.
(I) 0 < c� < m0, in which case u00(c

�) = �V 0(m0 � c� + I 0),
(II) c� = 0, in which case u00(c

�) � �V 0(m0 � c� + I 0), and
(III) c� = m0, in which case u00(c

�) � �V 0(m0 � c� + I 0).
By strict concavity of u0 we know that u00(c) is strictly decreasing in c. And similarly,

by strict concavity of V , V 0(m0 � c+ I 0) is strictly increasing in c.
Now, c� can satisfy case (I), case (II) or case (III), and we will show that in each

case it will hold that c� � c�.
First we assume that c� satis�es case (III): c� is a boundary solution with c� = m0,

then obviously any solution c� to the problem corresponding to V , must satisfy 0 �
c� � m0. Thus indeed we �nd c� � c�.
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Secondly, we assume that c� satis�es case (II): c� is a boundary solution with c� = 0.
Then we see that u00(c

�) � �V 0(m0� c�+ I 0) must hold. Then if we would suppose that
0 < c�, it must hold that u00(c

�) � �V 0(m0 � c� + I 0). But we know that

u00(0) � �V 0(m0 � 0 + I 0) � �V 0(m0 � 0 + I 0);

and by concavity we know that for c larger than 0, u00(c) will be smaller than u
0
0(0),

and �V
0
(m0 � c+ I 0) will be larger than �V 0(m0 � 0 + I 0), thereby only aggravating the

inequality in marginal utilities, so that u00(c) < �V
0
(m0� c+ I 0) must hold for all c > 0.

Therefore assuming 0 < c� leads to a contradiction, and indeed c� � c�.
Thirdly, we assume that c� satis�es case (I): 0 < c� < m0. Then c� will satisfy

u00(c
�) = �V 0(m0 � c� + I 0). Now, since V 0(m) � V

0
(m), for all m 2 R+, we see that

u00(c
�) � �V 0(m0 � c� + I 0) must hold. Now, similarly as in the second case above, by

strict increasingness of V
0
(m0 � c+ I 0) in c, and strict decreasingness of u00 in c, we see

that u00(c) < �V
0
(m0� c+ I 0) must hold for all c > c�. However, for any solution c� > 0

to the problem corresponding to V , from the above three cases we see that it must hold
that u00(c

�) � �V 0(m0 � c� + I 0). Hence, assuming c� > c� yields a contradiction, and it
must hold that c� � c�.
N For the second part of the proposition we additionally impose that m0 2 R++

(rather than m0 2 R+), and we additionally impose stronger requirements on the two
value functions: V and V should now be such that V 0(m) < V

0
(m), for allm 2 R++ (the

strict inequality need not necessarily hold for m = 0), and V 0(m0 + I 0) < u00(0)=�, and
V
0
(I 0) > u00(m

0)=� should hold. Again, by c� we denote the unique (by strict concavity)
solution to max0�c�m0 u0(c) + �Vi(m

0 � c+ I 0).
Now, we want to prove that c� > c�. The �rst part of the lemma still applies, so

we already know that it must hold that c� � c�. Thus to prove the second part of the
lemma it su¢ ces to additionally show that c� 6= c�.
By the additional condition that V 0(m0 + I 0) < u00(0)=� we see that c

� cannot equal
zero. Similarly, the additional condition V

0
(I 0) > u00(m

0)=� implies that c� cannot equal
m0. Therefore we only need to show that it can never happen that 0 < c� = c� < m0.
If c� is an internal solution 0 < c� < m0, then it must hold that

u00(c
�) = �V 0(m0 � c� + I 0). Then c� = c� would imply that it should also hold that

u00(c
�) = �V

0
(m0 � c� + I 0). However, by V 0 < V

0
this cannot hold, and we see that

c� 6= c� must be true.

From the proof of the previous lemma we can see that the additional condition
V 0(m0+ I 0) < u00(0)=� that is required for the second part of the lemma, is only needed
to make sure that c� = 0 does not occur. If c� = 0 would occur, then by the �rst
part of the lemma c� = 0 would also hold, and we would get that c� = c�. Similarly,
from the proof of the second part of the lemma we see that the additional requirement
V
0
(I 0) > u00(m

0)=� is only needed to rule out the possibility that c� = m0 occurs, as this
would also imply that c� = m0, and that c� = c�.
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The next lemma is a result that we will make much use of in later proofs. For
two functions u0 and V and a scalar 
 given, it de�nes a new function W
(m) as
maxc+s�m u0(c) + �
V (s + I), and it relates derivatives of W
 to derivatives of u0 and
V .
As stated before the previous lemma, ex-post optimal choices c/t would also solve

maximization problems as in (y). In proofs of later lemmas we will see that this is
indeed the case, if the V -functions from (y) would be of the form of W
.

Lemma 8.4.2 Let two functions u0 : R+ ! R and V : R+ ! R that satisfy axiom
8.1.1, and some scalars 0 < � < 1 and I � 0 be given. Then, for any 
 2 R++, we can
de�ne the function W
 : R+ ! R so that for all m 2 R+:

W
(m) := max
c+s�m

u0(c) + �
V (s+ I): (*)

Then the function W
 is well-de�ned and it satis�es axiom 8.1.1. Moreover, its deriv-
ative is given by

W 0

(m) = maxf�
V 0(m� c
(m) + I); u00(m)g;

where c
(m) is such that (c
(m);m� c
(m)) solves (*).

Proof. Given are the functions u0 : R+ ! R and V : R+ ! R that satisfy axiom
8.1.1, and the scalars 0 < � < 1 and I � 0. Then, for any 
 2 R++, the function
W
 : R+ ! R is de�ned by:

W
(m) := max
c+s�m

u0(c) + �
V (s+ I);

for all m 2 R+.
Thus the function W
 is de�ned as the maximum of the function u0(c)+ �
V (s+ I)

over the set f(c; s) 2 R2+ : c+ s � mg. Since by axiom 8.1.1 the functions u0 : R+ ! R
and V : R+ ! R are strictly increasing, we can alternatively write W
 as the optimum
of an unconstrained maximization problem:

W
(m) = max
0�c�m

u0(c) + �
V (m� c+ I):

And since by axiom 8.1.1 the functions u0 and V are continuous, so is the function
u0(c) + �
V (m� c+ I). This function is maximized over the compact set fc 2 R : 0 �
c � mg. Hence, this maximum is attained, and the functionW
 is indeed a well-de�ned
function for any I 2 R+, any 
 2 R++, and all m 2 R+.
We now also want to show that W
 satis�es axiom 8.1.1, that is, we want to show

thatW
 is a strictly increasing, strictly concave and continuously di¤erentiable function.
First note that since, for any I 2 R+ given, for any 
 2 R++ and for all m 2 R+ the
above maximum is attained, there must exist a 0 � c
(m) � m, that satis�es

u0(c
(m)) + �
V (m� c
(m) + I) =W
(m):
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N For strict increasingness ofW
, assume givenm0 andm00, that satisfym0 < m00. We
should now show that W
(m

0) < W
(m
00). We know that there exists a c
(m0) 2 [0;m0]

that attains the maximum in (*), given m0. Then 0 � c
(m0) � m00 also holds, so that

W
(m
0) = u0(c
(m

0)) + �
V (m0 � c
(m0) + I) <

u0(c
(m
0)) + �
V (m00 � c
(m0) + I) � W
(m

00).

The �rst inequality follows by strict increasingness of V , the last by de�nition of W
.
Hence indeed W
(m

0) < W
(m
00) holds.

N For strict concavity of W
, we assume given m0 and m00, that satisfy m0 6= m00.
We should now show that

W
(�m
0 + (1� �)m00) > �W
(m

0) + (1� �)W
(m
00);

for any � 2 (0; 1). We know that there are c
(m0) 2 [0;m0] and c
(m00) 2 [0;m00] such
that

W
(m
0) = u0(c
(m

0)) + �
V (m0 � c
(m0) + I)

and that
W
(m

00) = u0(c
(m
00)) + �
V (m00 � c
(m00) + I):

Here we will introduce two new variables � and � by � := �m0 + (1 � �)m00, and by
� := �c
(m

0) + (1 � �)c
(m00). Since 0 � c
(m0) � m0, and 0 � c
(m00) � m00, we also
know that 0 � � � �. By de�nition of W
, we know that

W
(�) � u0(�) + �
V (�� �+ I).

And by strict concavity of u0 we know that

u0(�) > �u0(c
(m
0)) + (1� �)u0(c
(m00)): (1)

Similarly, we know that

�� �+ I = �(m0 � c
(m0) + I) + (1� �)(m00 � c
(m00) + I);

so that by strict concavity of V we see that

V (�� �+ I) > �V (m0 � c
(m0) + I) + (1� �)V (m00 � c
(m00) + I): (2)

Therefore, combining (1) and (2), we get that

W
(�) � u0(�) + �
V (�� �+ I) >

�u0(c
(m
0)) + (1� �)u0(c
(m00))+

��
V (m0 � c
(m0) + I) + (1� �)�
V (m00 � c
(m00) + I) =

�W
(m
0) + (1� �)W
(m

00):
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Hence indeed the desired inequality holds.
N For continuous di¤erentiability of W
(m), we need to show that the function

W
(m) is continuous and that the derivative function W 0

(m) is well-de�ned and con-

tinuous. Here we will �rst show that W
(m) is continuous.
Above we saw that for any I 2 R+, any 
 2 R++ and any m 2 R+, there exists a

0 � c
(m) � m, that satis�es (*). By continuity of u0 and V it can be shown that the
function c
(:) will also be continuous in m (see e.g. Luenberger [28], p. 462). Thus,
continuity of u0, V and c
 also implies continuity of W
.
N Next, we will show that the derivative functionW 0


(m) is well-de�ned, or in other
words that the function W
(m) is di¤erentiable. It is known that for any function f on
R+ that is continuous in a point x 2 R++, this function will also be di¤erentiable in x
if both the left-sided derivative f 0�(x) := limh"0(f(x+ h)� f(x))=h and the right-sided
derivative f 0+(x) := limh#0(f(x+h)�f(x))=h in the point x exist, and if they are equal:
f 0�(x) = f

0
+(x). This property will be used to establish di¤erentiability.

We already saw that the function c
(m) is continuous. Here we denote the derivative
of c
(m) with respect to m by c0
(m). If indeed c

0

(:) is well-de�ned in m, then the

derivative W 0

(:) of the function W
 in the point m can be expressed as

W 0

(m) = u

0
0(c
(m))c

0

(m) + �
V

0(m� c
(m) + I)(1� c0
(m)) =

�
V 0(m� c
(m) + I) + c0
(m)[u00(c
(m))� �
V 0(m� c
(m) + I)]: (3)

Thus if c0
(:) is well-de�ned in m, then W
0

(:) is well-de�ned in m. Note that it still

remains to be seen whether this function c0
(m) is well-de�ned everywhere. For any
given m > 0, we will now distinguish �ve cases with respect to whether c
(m) 2 [0;m]
is an internal solution and whether c
(m) satis�es the �rst order condition.
(I) c
(m) = 0, and u00(c
(m)) < �
V

0(m� c
(m) + I),
(II) c
(m) = 0, and u00(c
(m)) = �
V

0(m� c
(m) + I),
(III) 0 < c
(m) < m, and u00(c
(m)) = �
V

0(m� c
(m) + I),
(IV) c
(m) = m, and u00(c
(m)) = �
V

0(m� c
(m) + I),
(V) c
(m) = m, and u00(c
(m)) > �
V

0(m� c
(m) + I).
We will see that although c0
(m) may not be well-de�ned in cases (II) and (IV),

these cases only correspond to single points. And we will see that nevertheless W 0

(m)

is well-de�ned in all cases.
If case (III) holds for m, then we can directly apply the envelope theorem, which

will show that W 0

(m) is well-de�ned in m, and that

W 0

(m) =

@[u0(c) + �
V (m� c+ I)]
@m

����
c=c
(m)

= �
V 0(m� c
(m) + I):

If case (I) holds for m, then by continuity of c
(:), of u00(:) and of V
0(:), it will also

hold that
u00(c
(m

0)) < �
V 0(m0 � c
(m0) + I)

for allm0 su¢ ciently close tom. Therefore c
(m
0) = 0 will also hold for allm0 su¢ ciently

close to m, and we see that c0
(m) = 0. Thus, in this case the function c
0

(:) is indeed
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well-de�ned in the point m. This also implies that W 0

(:) is well-de�ned in m, and by

(3) we see that W 0

(m) = �
V

0(m� c
(m) + I).
If case (V) holds for m, then like in case (I), by continuity of c
(:), of u00(:) and of

V 0(:),
u00(c
(m

0)) > �
V 0(m0 � c
(m0) + I)

will also hold for all m0 su¢ ciently close to m. Therefore c
(m
0) = m0 will hold for

all m0 su¢ ciently close to m, and we see that c0
(m) = 1. Thus, the function c0
(:) is
well-de�ned in the point m, which also implies that W 0


(:) is well-de�ned in m, and by
(3) we see that W 0


(m) = u
0
0(c
(m)).

If case (II) holds for m, then things get more complicated, as c0
(m) may not be
well-de�ned. To see this, note that in this case it holds that u00(0) = �
V

0(m+I), so for
any m0 < m, it will hold that u00(0) < �
V

0(m0 + I). This implies that c
(m0) = 0 and
that c
(m0) will be in case (I), for any m0 < m. Thus the left-sided derivative of c
 will
equal zero. However, there is no reason why the same should hold for the right-sided
derivative of c
. To see this, for any m00 > m, it will hold that u00(0) > �
V

0(m00 + I),
which implies that c
(m00) > 0 must be true. Thus, c
(m00) must belong to one of the
last three cases. However, the last two cases require that u00(m

00) � �
V 0(I), while

u00(m
00) < u00(0) = �
V

0(m+ I) � �
V 0(I);

so that, for m00 > m, c
(m00) will be in case (III).
Still, in case (II) W 0


(:) will be well-de�ned in m. To see this, note that case (I)
will prevail to the left of m, where the function W
 is di¤erentiable with derivatives
W 0

(m

0) = �
V 0(m0 � c
(m0) + I) for m0 < m. Therefore as m0 tends to m, these
derivatives W 0


(m
0) will converge to the left-sided derivative in m. Similarly, case (III)

will prevail to the right of m, and the function W
 is di¤erentiable to the right of m,
with derivatives W 0


(m
00) = �
V 0(m00 � c
(m00) + I) for m00 > m. And as m00 tends to

m, these derivatives W 0

(m

00) will converge to the right-sided derivative in m. Now, by
continuity of c
(:) and of V 0(:) we see that the left-sided derivative equals the right-
sided derivative (= �
V 0(m � c
(m) + I)). Thus indeed, W 0


(:) is well-de�ned in m,
with W 0


(m) = �
V
0(m� c
(m) + I).

If case (IV) holds for m, then similarly to case (II), c0
(m) may not be well-de�ned.
In this case it must hold that u00(m) = �
V

0(I), so for any m0 < m, it will hold that
u00(m

0) > �
V 0(I). This implies that c
(m0) = m0 and that c
(m0) will be in case
(V), for m0 < m. Thus the left-sided derivative of c
 will equal one. However, the
right-sided derivative of c
 need not equal one, as for any m00 > m, it will hold that
u00(m

00) < �
V 0(I), which implies that c
(m00) < m00. Thus, c
(m00) must belong to one
of the �rst three cases. However, the �rst two cases require that u00(0) � �
V 0(m00+ I),
while

u00(0) � u00(m) = �
V 0(I) > �
V 0(m00 + I);

so that, for m00 > m, c
(m00) will be in case (III).
Still,W 0


(m) is well-de�ned in case (IV). Case (V) will prevail to the left ofm, where
the function W
 is di¤erentiable, with derivatives W 0


(m
0) = u00(c
(m

0)), for m0 < m.

156



8. CONVERGENCE UNDER CERTAINTY

As m0 tends to m, these derivatives W 0

(m

0) will converge to the left-sided derivative in
m. Similarly, case (III) will prevail to the right of m, where W
 is di¤erentiable, with
derivatives W 0


(m
00) = �
V 0(m00 � c
(m00) + I), for m00 > m. As m00 tends to m, these

derivativesW 0

(m

00) will converge to the right-sided derivative in m. Now, by continuity
of c
(:), of u00(:) and of V

0(:), the left-sided derivative will equal u00(c
(m)), and the
right-sided derivative will equal �
V 0(m� c
(m)+ I). In case (IV) these quantities are
known to be equal. Thus, W 0


(:) is well-de�ned in m, with

W 0

(m) = u

0
0(c
(m)) = �
V

0(m� c
(m) + I):

Hence indeed W 0

(m) is well-de�ned everywhere (in all cases).

N Next, we will show that

W 0

(m) = maxf�
V 0(m� c
(m) + I); u00(m)g:

We can summarize the above implications for W 0

(m) into

W 0

(m) =

�
�
V 0(m� c
(m) + I) in cases (I), (II), (III) and (IV)

u00(m) in cases (IV) and (V)

Recall that u00(m) = �
V
0(m� c
(m)+ I) holds in case (IV). Therefore, we can also

write the derivative as:

W 0

(m) =

�
�
V 0(m� c
(m) + I) if 0 � c
(m) < m

u00(m) if c
(m) = m
(4)

If 0 � c
(m) < m, then it will also hold that

�
V 0(m� c
(m) + I) � u00(c
(m)) � u00(m);

where the last inequality holds by concavity of u0.
If c
(m) = m it will hold that

u00(m) = u
0
0(c
(m)) � �
V 0(m� c
(m) + I):

Therefore, indeed we get that W 0

(m) = maxf�
V 0(m� c
(m) + I); u00(m)g.

N Finally then, we need to show that the derivative function W 0

(m) is continuous.

This can now easily be seen from the previous formulation as c
(:), u00(:) and V
0(:) are

also known to be continuous.

The next lemma follows up on the previous. It says that for any 
 smaller than one
the function W
 (as de�ned in the above lemma) will be steeper than the function


W1 = 
 � max
c+s�m

u0(c) + �V (s+ I);

and conversely it says that 
W1 will be steeper than W
 for 
 larger than one.
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As mentioned above, we will ultimately use lemma 8.4.1 to show that in certain
situations actual choices c� are larger (smaller) than ex-post optimal choices c/, so that
excess expenditures will be positive (negative), and so that condition 7.3.3 will hold.
However, for applying lemma 8.4.1 it is needed that certain V -functions are steeper
than others. To prove that (or when) this will hold, the next lemma will be used. We
will see shortly that (in certain situations) actual choices c�t will solve maximization
problems such as maxct+st�mt u0(ct) + �
tW1(st + I), and that ex-post optimal choices
c/ will solve maximization problems such as maxct+st�mt u0(ct) + �W
t(st + I). Here
the functions W1 and W
t are as in the above lemma. The next lemma shows that for

t � 1 it will hold that W 0


t
(:) � 
tW

0
1(:). Then lemma 8.4.1 can in turn be used to

show that c�t � c/t , and thus that Et � 0. Similarly, for 
 � 1 we will get that Et � 0.
But �rst it needs to be established that 
t � 1 indeed implies thatW 0


t
(:) � 
tW 0

1(:),
and that 
t � 1 implies that W 0


t
(:) � 
tW 0

1(:).

Lemma 8.4.3 Let two functions u0 : R+ ! R and V : R+ ! R that satisfy axiom
8.1.1, and some scalars 0 < � < 1 and I � 0 be given. Then, let the functions W1 and
W
, for any 
 2 R++, be de�ned as in lemma 8.4.2. Then if 
 � 1 it will hold that
W 0

(m) � 
W 0

1(m), for all m 2 R+, and if 
 � 1 it will hold that W 0

(m) � 
W 0

1(m),
for all m 2 R+.
Moreover, we may additionally assume that �V 0(I) � u00(0). Then if 
 < 1 it

will hold that W 0

(m) > 
W 0

1(m), for all m 2 R++, and if 
 > 1 it will hold that
W 0

(m) < 
W

0
1(m), for all m 2 R++.

Proof. Two functions u0 : R+ ! R and V : R+ ! R that satisfy axiom 8.1.1, and some
scalars 0 < � < 1 and I � 0 are given. The functions W1 and W
, for any 
 2 R++, are
de�ned as in lemma 8.4.2. By this lemma we know that W1 and W
 are well-de�ned
and that they satisfy axiom 8.1.1. This lemma also shows that for any 
 2 R++, the
derivative of W
 is given by

W 0

(m) = maxf�
V 0(m� c
(m) + I); u00(m)g;

where c
(m) solves problem (*) from the previous lemma, for any given 
. And, the
derivative of 
W1 is given by


W 0
1(m) = maxf�
V 0(m� c1(m) + I); 
u00(m)g;

where c1(m) solves problem (*) from the previous lemma, for 
 = 1.
N Now we want to prove that W 0


(m) � 
W 0
1(m) if 
 � 1. Recall that c
(m)

maximizes u0(c)+�
V (m�c+I), and that c1(m)maximizes u0(c)+�V (m�c+I) (c1(m)
also maximizes 
u0(c)+�
V (m�c+I)) over the same budget set fc 2 R : 0 � c � mg.
Thus, by lemma 8.4.1 we �nd that c
(m) � c1(m) for 
 � 1. Therefore we can now
distinguish three cases, and we will show that W 0


(m) � 
W 0
1(m) will hold in any case:

(A) c1(m) � c
(m) < m,
(B) c1(m) < c
(m) = m, and
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(C) c1(m) = c
(m) = m.
In case (A) we have c1(m) < m and c
(m) < m. Recall from (4) in the proof of

the previous lemma that this implies that W 0

(m) = �
V 0(m � c
(m) + I) and that


W 0
1(m) = �
V 0(m � c1(m) + I). Now, we know that c
(m) � c1(m), so by strict

concavity of V we get that

�
V 0(m� c
(m) + I) � �
V 0(m� c1(m) + I),

and thus that the desired inequality W 0

(m) � 
W 0

1(m) holds.
In case (B) we get that W 0


(m) = u
0
0(m) and that 
W

0
1(m) = �
V

0(m� c1(m) + I).
Now, by c
(m) =m we know that u00(c
(m)) � �
V 0(m�c
(m)+I), and c1(m) < c
(m)
so like in case (A) we get that

u00(c
(m)) � �
V 0(m� c
(m) + I) � �
V 0(m� c1(m) + I)

which again shows that W 0

(m) � 
W 0

1(m).
In case (C) we have that W 0


(m) = u00(m), and that 
W
0
1(m) = 
u00(m). Then

from u00(:) > 0 and from the assumption that 
 � 1 it immediately follows that
u00(m) � 
u00(m), and the desired inequality W 0


(m) � 
W 0
1(m) again holds.

Thus indeed inequality W 0

(m) � 
W 0

1(m) holds if 
 � 1.
N Then to establish that W 0


(m) � 
W 0
1(m) if 
 � 1, the proof is almost the same.

Again, lemma 8.4.1 shows that c
(m) � c1(m) for 
 � 1, and we distinguish three
cases:
(A�) c
(m) � c1(m) < m,
(B�) c
(m) < c1(m) = m, and
(C�) c
(m) = c1(m) = m.
In cases (A�) and (C�) it can be shown thatW 0


(m) � 
W 0
1(m) will hold, analogously

to cases (A) and (C) above.
In case (B�) we have that W 0


(m) = �
V 0(m � c
(m) + I) and that

W 0

1(m) = 
u
0
0(m). Then, similarly to case (B) above, we get

�
V 0(m� c
(m) + I) � �
V 0(m� c1(m) + I) � 
u00(c1(m)),

which again shows that W 0

(m) � 
W 0

1(m).
Thus, in either case W 0


(m) � 
W 0
1(m) holds if 
 � 1, which concludes the proof of

the �rst part of the lemma.
N For the second part of the lemma, we additionally assume that �V 0(I) � u00(0).

Then if 
 < 1, we want to show that W 0

(m) > 
W

0
1(m), for all m 2 R++.

Here we will �rst show that for all m > 0, we will now either get that c
(m) >
c1(m), or that c
(m) = c1(m) = m. We will prove this from the last part of lemma
8.4.1 which, in the present lemma�s notation, can be applied under the conditions that

V 0 < V 0, that 
V 0(m+ I) < u00(0)=�, and that V

0(I) > u00(m)=�.
The �rst condition follows easily from 
 < 1.
The second condition holds as


V 0(m+ I) < V 0(m+ I) < V 0(I) � u00(0)=�.
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Here the �rst inequality follows from 
 < 1, the second from strict concavity of V , and
the third from the additional assumption that �V 0(I) � u00(0).
However, the third condition V 0(I) > u00(m)=� needed to apply lemma 8.4.1 does

generally not hold. Still, from the discussion after lemma 8.4.1 we know that this con-
dition was only needed to exclude the possibility that c
(m) = c1(m) = m. Therefore,
in the present context we see that it will indeed hold that c
(m) > c1(m), or that
c
(m) = c1(m) = m.
Now, we will show that the desired inequality W 0


(m) > 
W
0
1(m) will hold in each

of the three possible cases:
(a) c1(m) < c
(m) < m,
(b) c1(m) < c
(m) = m, and
(c) c1(m) = c
(m) = m.
In case (a) we get that W 0


(m) = �
V 0(m � c
(m) + I) and similarly that

W 0

1(m) = �
V 0(m � c1(m) + I), and as in (A) above, by strict concavity we get
that

W 0

(m) = �
V

0(m� c
(m) + I) > �
V 0(m� c1(m) + I) = 
W 0
1(m)

follows from the given that c
(m) > c1(m).
In case (b) we get that W 0


(m) = u
0
0(m) and that 
W

0
1(m) = �
V

0(m� c1(m) + I),
and similarly to (B) above, we get that

u00(m) � �
V 0(m� c
(m) + I) > �
V 0(m� c1(m) + I):

Here the last inequality again follows from c
(m) = m > c1(m). This again shows that
W 0

(m) > 
W

0
1(m).

In case (c) we know that W 0

(m) = u00(m) and that 
W

0
1(m) = 
u00(m), so 
 < 1

implies that u00(m) > 
u
0
0(m), and the desired inequality W

0

(m) > 
W

0
1(m) holds.

Thus indeed the property that W 0

(m) > 
W 0

1(m) holds if 
 < 1 and if
�V 0(I) � u00(0).
N To conclude the proof, we want to show thatW 0


(m) < 
W
0
1(m), for all m 2 R++,

under the assumptions that 
 > 1 and that �V 0(I) � u00(0).
Similarly to above, applying lemma 8.4.1 would require the conditions 
V 0 > V 0,

V 0(m+ I) < u00(0)=�, and 
V
0(I) > u00(m)=�. Again, the �rst two conditions can easily

be seen to hold, while the third generally does not hold, and this will then imply that
c
(m) < c1(m), or that c
(m) = c1(m) = m. Then we can again distinguish three cases:
(a�) c
(m) < c1(m) < m,
(b�) c
(m) < c1(m) = m, and
(c�) c
(m) = c1(m) = m.
In cases (a�) and (c�) it can be shown that W 0


(m) < 
W
0
1(m) will hold, analogously

to cases (a) and (c) above.
In case (b�), we have that W 0


(m) = �
V 0(m � c
(m) + I) and that

W 0

1(m) = 
u
0
0(m). Then, we get that

�
V 0(m� c
(m) + I) < �
V 0(m� c1(m) + I) � 
u00(m),
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which again shows that W 0

(m) � 
W 0

1(m).
Thus, in either case W 0


(m) < 
W
0
1(m) holds if 
 > 1 and if �V

0(I) � u00(0), which
concludes the proof.

The next lemma will formalize the reasoning that was outlined between the above
lemmas, about how we will prove that condition 7.3.3 will hold. However, unlike condi-
tion 7.3.3, which is set in terms of adjustment products, the next lemma is set in terms
of value functions. It will show that adjustment does work in the right direction. If a
value function V (t) = 
tV

� equals a scalar 
t 2 R++ times the optimal value function,
then for 
t � 1 the excess expenditure will be non-negative, which will be followed by
a heavier weight for savings, so that 
t+1 � 
t. And conversely, if 
t � 1, then the
lemma will show that excess expenditure will be non-positive, which will be followed
by a smaller weight for savings, so that 
t+1 � 
t.

Lemma 8.4.4 Assume given a model that satis�es axioms 4.4.1 and 8.1.5, and 8.1.3
or 8.1.4, and with an instantaneous utility function that satis�es axiom 8.1.1. Then, for
some period t, suppose given a value function V (t) = 
tV

� that equals a scalar 
t 2 R++
times the optimal value function V �. Then for any budget mt � 0 it will hold that

t � 1 implies that the corresponding (regular) excess expenditure will satisfy Et � 0,
and 
t � 1 implies that Et � 0.

Proof. Given is a model with an instantaneous utility function u0 that satis�es axiom
8.1.1, and a discount factor 0 < � < 1. A constant additional income will be obtained
in every period after period 0: It = I � 0, for all t � 1. Then, in some period t � 0,
given is a value function V (t) : R+ ! R that equals a scalar 
t 2 (0; 1] times the optimal
value function that solves the functional equation: V (t)(m) = 
tV

�(m), for all m 2 R+.
And suppose given some budget mt � 0 in period t.
We now want to establish that the (regular) excess expenditure associated with this

value function V (t) will be non-negative: Et = c�t � c/t � 0. Here c�t is part of a pair
(c�t ; s

�
t ) that solves

max
ct+st�mt

u0(ct) + �
tV
�(st + I): (1)

The second term that the excess expenditure depends on is c/t , which is part of a
tuple (c/t ; c

/
t+1; s

/
t+1) that solves

max
ct+st�mt

max
ct+1+st+1�st+I

u0(ct) + �u0(ct+1) + �
2
tV

�(st+1 + I): (2)

The maximization problem in (2) can be rewritten as

max
ct+st�mt

u0(ct) + � � max
ct+1+st+1�st+I

u0(ct+1) + �
tV
�(st+1 + I): (2�)

We now de�ne the function W
t : R+ ! R as the last part of (2�):

W
t(mt+1) = max
ct+1+st+1�mt+1

u0(ct+1) + �
tV
�(st+1 + I). (3)
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By lemma 8.4.2 the functionW
t is indeed a well-de�ned function, and we can now also
write (2�) in analogy to (1) as

max
ct+st�mt

u0(ct) + �W
t(st + I): (2�)

We know that (c/t ; c
/
t+1; s

/
t+1) solves (2), and now (c/t ; s

/
t ), with s

/
t := mt � c/t =

c/t+1 + s
/
t+1 � I (by strict increasingness), must also solve (2�). (By strict concavity all

of the above maximization problems have unique solutions.)
From lemma 8.4.2 we know that the function W
t satis�es axiom 8.1.1, and note

that is an example of a function W
, as de�ned in lemma 8.4.3. Also note that since
the function V � solves the functional equation as in subsection 8.1.2, 
tV

� satis�es


tV
�(mt+1) = max

ct+1+st+1�mt+1


tu0(ct+1) + �
tV
�(st+1 + I); (4)

so that it is an example of a function 
W1 as de�ned in lemma 8.4.3.
Since 
t � 1 we can apply the previous lemma to obtain that

W 0

t
(mt+1) � 
tW 0

1(mt+1) = 
tV
�0(mt+1);

for all mt+1 2 R+.
Then because of the above inequality, and because c�t solves (1), and c

/
t solves (2�),

we can apply lemma 8.4.1 to obtain that c�t � c/t . Hence indeed we �nd that excess
expenditure Et = c�t � c/t � 0 is non-negative.
N For 
t 2 [1;1) the proof follows the same pattern, while reversing the inequalities.

Then, with 
t � 1 the preceding lemma will show that W 0

t
(mt+1) � 
tV �0(mt+1), for

all mt+1 2 R+. Subsequently, we can again apply lemma 8.4.1 to obtain that c�t � c/t .
Therefore, excess expenditure Et = c�t � c/t � 0 will indeed be non-positive.

If there exists a consistency-inducing scalar e�, then with the above lemma we also
get that �t � e� implies that Et � 0, and that �t � e� implies that Et � 0.
To see this, suppose that a CIS e� exists, so that by proposition 8.3.1 the initial

value function V (0) must be of the form: V (0)(m) = ~�V �(m) + �, for some � 2 R. If
the value function V (t) is generated by the learning algorithm from V (0), it will satisfy
V (t) = ��1t V

(0) = ��1t (
e�V � + �). If we now de�ne 
t := ��1t e� and �t := ��1t �, then this

generated value function can also be written as V (t) = 
tV
� + �t.

Then suppose that �t � e� holds, which implies that 
t � 1. By proposition 8.4.2
the constant �t does not in�uence the excess expenditure that will result from V (t), and
by the previous lemma we see that 
t � 1 implies that Et � 0. Hence indeed �t � e�
implies that Et � 0. Reversing the inequalities will similarly show that �t � e� implies
that Et � 0.

Note that the above implications almost specify condition 7.3.3, except that all
the above inequalities would have to be replaced by strict inequalities. Hence, while
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the previous lemma is useful, it is not su¢ cient for establishing convergence towards
optimality. What is needed is a strengthening of this lemma, where the inequalities
can be made strict: so that 
t > 1 would imply that Et < 0 (and thus that 
t+1 < 
t),
and so that 
t < 1 would imply that Et > 0 (and thus that 
t+1 > 
t). In that case
condition 7.3.3 would hold, and convergence towards optimality would occur.
Thus far in this chapter we have treated all models under certainty simultaneously.

All results apply for both models with and models without an income steam. To provide
such a strengthening of the above lemma, and thus to establish if and when conver-
gence towards optimality will take place, we will consider the two cases of models with
and without income streams separately, as the implications of the two cases are quite
di¤erent.

8.4.1 Models with no income stream

We start with the simpler case of models where axiom 8.1.3 holds, so that no additional
income is received after the �rst period. In that setting, the additional assumption that
instantaneous utility u0 satis�es axiom 8.1.2 instead of axiom 8.1.1 (so that u00(0) =1
additionally holds) is su¢ cient for proving that the next lemma holds. This lemma
provides the required strengthening of the previous lemma, where all the inequalities
are strict, which will imply that condition 7.3.3 will hold.

Lemma 8.4.5 Let a model be given that satis�es axioms 4.4.1, 8.1.3 and 8.1.5, and
with an instantaneous utility function that satis�es axiom 8.1.2. Then, for some period
t, suppose given a value function V (t) = 
tV

� that equals a scalar 
t 2 R++ times the
optimal value function V �. Then for any budget mt > 0 it will hold that 
t < 1 implies
that the corresponding (regular) excess expenditure will satisfy Et > 0, and 
t > 1
implies that Et < 0.

Proof. Given is a model with an instantaneous utility function u0 that satis�es axiom
8.1.1 and u00(0) = 1, a discount factor 0 < � < 1, and where no additional income is
obtained after period 0: It = 0, for all t � 1. Then, for some period t, suppose given a
period-t value function V (t) : R+ ! R that equals a scalar 
t 2 R++ times the optimal
value function that solves the functional equation: V (t)(m) = 
tV

�(m), for all m 2 R+.
And suppose given some budget mt > 0 in period t.
N First suppose that 
t 2 (0; 1). We now want to determine that the excess expen-

diture associated with this value function V (t) will be strictly positive. This proof will
follow the same pattern as that of the previous lemma. Like in that proof we will use
lemmas 8.4.3 and 8.4.1 to arrive at the desired result. Here, however, we are interested
in strict inequalities, so we will need to use the second parts of these lemmas.
Excess expenditure is determined by Et = c�t � c/t , where c�t is part of a pair (c�t ; s�t )

that solves
max

ct+st�mt

u0(ct) + �
tV
�(st): (1)
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Then, c/t is determined as part of a tuple (c
/
t ; c

/
t+1; s

/
t+1) that solves

max
ct+ct+1+st+1�mt

u0(ct) + �u0(ct+1) + �
2
tV

�(st+1): (2)

This maximization problem can be rewritten as

max
ct+st�mt

u0(ct) + � � max
ct+1+st+1�st

u0(ct+1) + �
tV
�(st+1): (2�)

If we write the function W
t : R+ ! R as the last part of (2�),

W
t(mt+1) = max
ct+1+st+1�mt+1

u0(ct+1) + �
tV
�(st+1); (3)

then we can also write (2�) in analogy to (1) as

max
ct+st�mt

u0(ct) + �W
t(st): (2�)

Like in the proof of the previous lemma, we know that W
t is well-de�ned, and
that it satis�es axiom 8.1.1. And since (c/t ; c

/
t+1; s

/
t+1) solves (2), the pair (c

/
t ; s

/
t ), with

s/t := mt � c/t = c/t+1 + s
/
t+1 (by strict increasingness), will also solve (2�). (By strict

concavity all of the above maximization problems have unique solutions.)
Now, we want to show that it holds that Et = c�t � c/t > 0. Recall that c�t solves

(1), and that c/t solves (2�). Therefore, we can apply the second part of lemma 8.4.1 to
obtain that c�t > c

/
t , if the functions 
tV

� and W
t satisfy the following conditions:
(I) 
tV

�0(mt+1) < W
0

t
(mt+1); 8mt+1,

(II) �
tV
�0(mt) < u

0
0(0),

(III) �W 0

t
(0) > u00(mt).

(III) For the last condition needed to apply the lemma, recall from lemma 8.4.2 that
W 0

t
(0) � u00(0). Thus u00(0) = 1 also implies that W 0


t
(0) = 1. The function u0(:) is

di¤erentiable on the interval (0;1), which means that the derivative function u00(:) is
real-valued on this interval. Thus by mt > 0 we get that u00(mt) 2 R, and indeed we
see that u00(mt) < �W

0

t
(0) =1, so that this condition is satis�ed.

(II) The second of the conditions needed to apply the lemma reads
�
tV

�0(mt) < u00(0). In subsection 8.1.2 we saw that if u0 satis�es axiom 8.1.1, so
will the value function V �, which implies that V �(:) will be di¤erentiable on the in-
terval (0;1). Therefore by mt > 0 we get that V �0(mt) 2 R, and indeed we see that
�
tV

�0(mt) < u
0
0(0) =1, and this second condition is satis�ed.

(I) The �rst condition needed for the lemma reads 
tV
�0(mt+1) < W

0

t
(mt+1), for all

mt+1 2 R+. To show that this condition will indeed be satis�ed, we want to apply the
second part of lemma 8.4.3. And as in the proof of the preceding lemma, the function
W
t is an example of a function W
, as de�ned in lemma 8.4.3, and the function 
tV

�

satis�es

tV

�(mt+1) = max
ct+1+st+1�mt+1


tu0(ct+1) + �
tV
�(st+1); (4)
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so that it is an example of a function 
W1, as de�ned in lemma 8.4.3. Since 
t <
1, the second part of lemma 8.4.3 can be applied if the additional assumption that
�V 0(0) � u00(0) is satis�ed. This additional assumption is simply implied by u00(0) =1.
Thus, lemma 8.4.3 applies to show that

W 0

t
(mt+1) > 
tV

�0(mt+1);

for all mt+1 2 R+.
Thus indeed all three conditions needed for lemma 8.4.1 are satis�ed, and this lemma

shows that Et = c�t � c/t > 0.
N For 
t 2 (1;1) the proof follows a similar pattern. We then want to use lemma

8.4.1 to show that c�t < c
/
t . This lemma can be applied if the functions 
tV

� and W
t

satisfy the following conditions:
(I�) 
tV

�0(mt+1) > W
0

t
(mt+1); 8mt+1,

(II�) �W 0

t
(mt) < u

0
0(0),

(III�) �
tV
�0(0) > u00(mt).

(III�) For the third condition, since V � solves the functional equation, from lemma
8.4.2 we know that V �0(0) � u00(0) =1. And by di¤erentiability of u0, mt > 0 implies
that u00(mt) 2 R, so that this condition holds.
(II�) For the second condition, by lemma 8.4.2 we know thatW 0


t
(mt) satis�es axiom

8.1.1, so that it is di¤erentiable on R++. Thus, by mt > 0 we see that
�W 0


t
(mt) <1 = u00(0), and the second condition is satis�ed.
(I�) To show that the �rst condition will indeed be satis�ed, we want to apply

the second part of lemma 8.4.3. Since 
t < 1, this second part of lemma 8.4.3 can
be applied if the additional assumption that �V 0(0) � u00(0) is satis�ed. This addi-
tional assumption was already shown to hold in (I), so lemma 8.4.3 does show that
W 0

t
(mt+1) < 
tV

�0(mt+1), for all mt+1 2 R+.
Indeed, all three conditions needed for lemma 8.4.1 are satis�ed, and this lemma

then shows that Et = c�t � c/t < 0.

One of the conditions that are needed to prove this lemma is that marginal instan-
taneous utility becomes in�nitely large near zero: u00(0) = 1. This condition ensures
that the actual expenditures c�t and the ex-post optimal expenditures c

/
t will always be

strictly positive: c�t > 0 and c
/
t > 0 (see the de�nition of regular excess expenditure in

subsection 6.4.2). And the optimal value function solves the functional equation, so by
lemma 8.4.2 u00(0) =1 also implies that V �0(0) =1. Then if V (t) = 
tV �, it will also
hold that V (t)0(0) = 1, which would imply that c�t < mt. Similarly, with lemma 8.4.2
we see that u00(0) = 1 implies that W 0


t
(0) = maxf�
tV �0(0); u00(0)g = 1, and thus

that c/t < mt. Thus in the present case (with I = 0), from u00(0) = 1 we get that c�t
and c/t will always be internal solutions, which essentially enables us to establish the
above result.
With the previous lemma we can now establish that convergence towards optimality

will occur, if the initial value function is an a¢ ne transformation of the optimal value

165



LEARNING IN CONSUMER CHOICE

function that solves the functional equation: V (0) = 
0V
� + �0, for some 
0 and some

�0.

Proposition 8.4.4 Let a model be given that satis�es axioms 4.1.1, 4.4.1, 8.1.3, 8.1.5
and 8.1.6, and with an instantaneous utility function that satis�es axiom 8.1.2. Suppose
that the initial budget m0 is strictly positive, and that the initial value function is an
a¢ ne transformation of the optimal value function: V (0) = 
0V

� + �0, for some 
0 2
R++ and some �0 2 R. If subsequently the learning algorithm is used, then convergence
towards optimality will occur

Proof. Given is a model with a discount factor 0 < � < 1, and an instantaneous utility
function u0 that satis�es axiom 8.1.1 and u00(0) =1. No additional income is obtained
after period 0: It = 0, for all t � 1. Also given are an initial budget m0 > 0 and an
initial value function V (0), that is an a¢ ne transformation of the optimal value function
that solves the functional equation: V (0) = 
0V

� + �0, for some 
0 2 R++, and some
�0 2 R. Subsequently, the learning algorithm (with min-max adjustment32) is applied,
and this learning algorithm will generate a sequence of value functions (V (t))1t=0 from
the initial value function V (0).
Any two subsequent value functions from such a sequence are related according to

V (t)(m) = a�1"t V
(t�1)(m), where a"t is the adjustment factor as determined by min-max

adjustment. Consequently, any value function from such a sequence can be written as

V (t)(m) = a�1"t � a
�1
"t�1 � ::: � a

�1
"1
� V (0)(m) = ��1t V (0)(m) = ��1t (
0V �(m) + �0);

where �t denotes the adjustment product. If we de�ne 
t and �t by 
t := �
�1
t 
0 and by

�t := �
�1
t �0, then we see that any value function V

(t) will also be an a¢ ne transforma-
tion of the optimal value function that solves the functional equation:
V (t) = 
tV

� + �t.
By proposition 7.1.1 we know that convergence will always occur. Here we want

to apply proposition 7.3.1 in order to show that convergence towards optimality will
occur, so we need to show that the conditions 7.3.1, 7.3.2 and 7.3.3 are satis�ed. By
proposition 8.3.1 we know that in the present setting (with V (0) = 
0V

� + �0) 
0 is a
consistency-inducing scalar, so that condition 7.3.1 holds. Also, from proposition 8.4.3
we know that in the present setting condition 7.3.2 (that setting �t = 
0 will yield
Et = 0) holds. Thus what remains to be shown is that condition 7.3.3 is satis�ed.
That is, we need to establish that for any time t, setting �t > 
0 will yield Et > 0

for all mt, and that setting �t < 
0 yield Et < 0 for all mt.
Now, �t > 
0 would imply that 
t = ��1t 
0 < 1, so with proposition 8.4.2 and

with the previous lemma we know that the excess expenditure corresponding to 
t will
be strictly positive, as long as mt > 0 is satis�ed. Similarly, �t < 
0 would imply

32For any � > 1, � < 1 and � 2 (0; 1).
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that 
t = ��1t 
0 > 1, and the previous lemma shows that the excess expenditure
corresponding to 
t will be strictly negative, as long as mt > 0 is satis�ed.33

Therefore, here it only remains to be shown that for any given m0 > 0, the sequence
of budgets (mt)

1
t=0 that will result from the choices as made by a decision-maker who

follows the learning algorithm, will be such that mt > 0 for all t. To show that this
holds, we will use an induction argument. For t = 0, it was already given that m0 > 0.
Thus what is left to prove, is that mt > 0 implies that mt+1 > 0. Suppose that mt > 0.
Then in period t, the consumption choice c�t that will be chosen, will solve

max
ct+st�mt

u0(ct) + �V
(t)(st):

Now, V (t)0(0) = ��1t 
0V
�0(0), and from the proof of the previous lemma, we know that

V �0(0) = 1. Thus V (t)0(0) = 1, which implies that c�t < mt must hold. Therefore we
get that mt+1 = s

�
t = mt � c�t > 0. Thus we have established that mt > 0 for all t.

Therefore, conditions 7.3.1, 7.3.2 and 7.3.3 are indeed satis�ed, and proposition 7.3.1
shows that the sequence of adjustment products (�t)1t=1 converges to ~� = 
0. Hence
convergence towards optimality occurs.

8.4.2 Models with an income stream

In this section we will investigate convergence towards optimality in situations where
axiom 8.1.4 holds, so where an initial endowment m0 � 0 is given and where in all later
periods the same additional income It = I > 0 is obtained. In this situation results will
be very di¤erent from those in situations without an income stream.
In models like these, we will see that convergence towards optimality will generally

not occur. However, if the initial value function is an a¢ ne transformation of the
optimal value function, then any sequence of value functions that is generated by the
learning algorithm from this initial value function, will converge to a limit function that
will lie in some �neighbourhood�of the optimal value function.
To show this, �rst we need a lemma. This lemma is somewhat like lemma 8.4.4

from the previous subsection, although the implications of the next lemma are not as
strong as those of lemma 8.4.4.

Lemma 8.4.6 Assume given a model that satis�es axioms 4.4.1, 8.1.4 and 8.1.5, and
with an instantaneous utility function that satis�es axiom 8.1.2. Then, in some period
t, suppose given a budget mt � I, and a value function V (t) = 
tV � that equals a scalar

t > ��1 times the optimal value function V �. Then (regular) excess expenditure will
be strictly negative Et < 0.

Proof. Given is a model with an instantaneous utility function u0 that satis�es axiom
8.1.1 and u00(0) = 1, and a discount factor 0 < � < 1. In every period after period

33For mt = 0 we will always get that excess expenditure equals zero, irrespective of �t (or of 
t).
Therefore, if we can show that mt = 0 will never occur in the present context, then Et = 0 will only
occur for �t = 
0, so that �t > 
0 will always yield Et > 0, and �t < 
0 will always yield Et < 0.
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0 a strictly positive constant additional income is obtained: It = I > 0, for all t � 1.
Then, in some period t, a budget mt � I is given, and the period-t value function
V (t) : R+ ! R equals a scalar 
t > ��1 times the optimal value function that solves the
functional equation: V (t) = 
tV

�.
We now want to show that excess expenditure will be strictly negative: Et = c�t�c/t <

0. Again, the proof of this lemma follows a familiar pattern. The variable c�t denotes
the actual period-t choice as derived from

max
ct+st�mt

u0(ct) + �
tV
�(st + I): (1)

Next, in period t+ 1, c/t is determined as part of a tuple (c
/
t ; c

/
t+1; s

/
t+1) that solves

max
ct+st�mt

max
ct+1+st+1�st+I

u0(ct) + �u0(ct+1) + �
2
tV

�(st+1 + I) = (2)

max
ct+st�mt

u0(ct) + � � max
ct+1+st+1�st+I

u0(ct+1) + �
tV
�(st+1 + I): (2�)

If we now write the function W
t : R+ ! R as the last part of (2�):

W
t(mt+1) = max
ct+1+st+1�mt+1

u0(ct+1) + �
tV
�(st+1 + I); (3)

then we can also write (2�) in analogy to (1) as

max
ct+st�mt

u0(ct) + �W
t(st + I): (2�)

Since (c/t ; c
/
t+1; s

/
t+1) solves (2), the pair (c

/
t ; s

/
t ), with s

/
t := mt � c/t = c/t+1 + s

/
t+1

will also solve (2�). (By strict concavity the above maximization problems have unique
solutions.)
We now want to show that c�t < c/t by showing that the functions 
tV

� and W
t

satisfy the conditions required for the second part of lemma 8.4.1. That is, we need
that
(I) 
tV

�0(mt+1) > W
0

t
(mt+1); 8mt+1,

(II) �W 0

t
(mt + I) < u

0
0(0),

(III) �
tV
�0(I) > u00(mt).

(III) For the third condition, recall that V � solves the functional equation (such as
in subsection 8.1.2), so that by lemma 8.4.2 we know that V �0(I) � u00(I): Thus, we
see that �
tV

�0(I) > V �0(I) � u00(I) � u00(mt). Here the �rst inequality follows from
the assumption that 
t > �

�1, and the last inequality follows from strict concavity and
from I � mt. Therefore this third condition is satis�ed.
(II) For the second condition, since both u0 and V � satisfy lemma 8.1.1, by lemma

8.4.2 we know that the function W
t also satis�es lemma 8.1.1. Therefore W
t is di¤er-
entiable on R++, and by mt + I > 0 we get that W 0


t
(mt + I) <1 = u00(0), and we see

that the second condition is always satis�ed.
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(I) The �rst condition needed for the lemma reads 
tV
�0(mt+1) > W 0


t
(mt+1), for

all mt+1 2 R++. To show that this condition will indeed be satis�ed, we want to
apply the second part of lemma 8.4.3. And as in previous proofs, the function W
t

is an example of a function W
, as de�ned in lemma 8.4.3, and V � solves a functional
equation, so that 
tV

� is an example of a function 
W1, as de�ned in lemma 8.4.3. Now,
since 
t > ��1 > 1, the second part of lemma 8.4.3 can be applied if the additional
assumption �V 0(I) � u00(0) is satis�ed. This additional assumption is simply implied
by u00(0) =1. Thus, lemma 8.4.3 does apply to show that

W 0

t
(mt+1) < 
tV

�0(mt+1);

for all mt+1 2 R+.
And indeed all three conditions needed for lemma 8.4.1 are satis�ed, and as desired,

this lemma then shows that excess expenditure is strictly negative: Et = c�t � c/t < 0.

In the previous section, where we dealt with models where no additional income is
obtained, we saw that the condition u00(0) =1 ensures that actual expenditures and ex-
post optimal expenditures will be strictly positive c�t > 0 and c

/
t > 0. Also, u

0
0(0) =1

implied that V (t)0(0) =1 and W 0

t
(0) =1, so that c�t < mt and c/t < mt would always

hold. Thus, in settings without additional income, the condition u00(0) = 1 ensured
that c�t and c

/
t would always be internal solutions.

In the present setting, where additional income is strictly positive, if u00(0) = 1
then by a similar reasoning the �rst conclusion that c�t > 0 and c

/
t > 0, will still hold.

However, c�t < mt and c/t < mt can no longer be guaranteed to hold if I > 0. This is
also the reason why in the present setting a converse of the statement in the previous
lemma, where it would always hold that excess expenditure would be strictly positive
Et > 0 for all 
t small enough and for all mt, will not hold.
To see that c�t and c

/
t need not be internal solutions here, suppose that the function

V (t) can indeed be written as V (t) = 
tV
�, for some 
t < 1. Then, Et > 0 can only

be shown to always hold, if the possibility of c�t = c
/
t = mt can be ruled out. However,

c�t = c
/
t = mt will hold if c/t = mt, which will hold if �W 0


t
(I) � u00(mt). By lemma 8.4.2

this inequality can be expanded to

� �maxf�
tV (t)0(I � c
t(I) + I); u
0
0(I)g � u00(mt):

Now, c
(I) 2 [0; I], so that I � c
(I) + I � I > 0. Like V (0), the function V (t) satis�es
axiom 8.1.1, so it is di¤erentiable, and V (t)0(I � c
(I) + I) < 1. And I > 0 similarly
implies that u00(I) < 1, so we see that �W 0


t
(I) < 1. Therefore, u00(0) = 1 implies

that for small enough budgets, �W 0

t
(I) � u00(mt) will indeed hold, and c�t = c/t =

mt will occur. Thus indeed here the problem arises from I > 0, which implies that
�W 0


t
(I) <1.

By proposition 7.1.1 we know that any sequence of value functions that is gener-
ated by the learning algorithm from an initial value function, will converge. However,
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since in the present setting a converse of the statement in the previous lemma will not
hold, convergence towards optimality will generally not occur. The next proposition
shows that if the initial value function is an a¢ ne transformation of the optimal value
function, then the limit function, towards which convergence will occur, will lie in some
�neighbourhood�of the optimal value function that solves the functional equation. That
is, convergence will occur to some value function V 1 = 
1V

� + �1, where the coe¢ -
cient 
1 will belong to a neighbourhood [0; �

�1] of one. Still, a proposition in the next
section will show that in this case the corresponding sequence of choices that a learning
ad hoc utility maximizer would make, will converge to the same limit as the sequence
of choices that would be made by a rational utility maximizer.

Proposition 8.4.5 Let a model be given that satis�es axioms 4.1.1, 4.4.1, 8.1.4, 8.1.5
and 8.1.6, and with an instantaneous utility function that satis�es axiom 8.1.2. Suppose
that the initial budget is large enough m0 � I, and that the initial value function is an
a¢ ne transformation of the optimal value function: V (0) = 
0V

� + �0, for some 
0 2
R++ and some �0 2 R. If subsequently the learning algorithm is used, then the generated
sequence of value functions (V (t))1t=0 will converge to some function V

1 = 
1V
�+�1,

with 
1 2 [0; ��1] and �1 = �0
1=
0.

Proof. A model is given with a discount factor 0 < � < 1, and an instantaneous utility
function u0 that satis�es axiom 8.1.1 and u00(0) = 1. A strictly positive constant
additional income is obtained every period after time 0: It = I > 0, for all t � 1, and
the initial budget is su¢ ciently large: m0 � I.
The initial value function V (0) is such that V (0) = 
0V

� + �0, for some 
0 2 R++,
and some �0 2 R, and subsequently the learning algorithm with min-max adjustment34
is used. By construction of the learning algorithm and the adjustment function, any
resulting value function V (t) would satisfy V (t) = ��1t V

(0), where �t denotes the adjust-
ment product. If we de�ne 
t and �t by 
t := �

�1
t 
0 and by �t := �

�1
t �0, then we see

that each of the generated value functions V (t) will also be an a¢ ne transformation of
the optimal value function: V (t) = 
tV

� + �t.
By proposition 7.1.1 the sequence of adjustment products (�t)1t=0 will always con-

verge to some �1 2 R+. Consequently, the sequence (
t)1t=0 will converge to some

1 := �

�1
1 
0 2 R+ (we suppose that 
1 =1 if �1 = 0, and that 
1 = 0 if �1 =1),

and the sequence of value functions V (t) = 
tV
� + �t will converge to some function

V 1 = 
1V
� + �1, with �1 := �

�1
1 �0.

What remains to be shown here is that �1 � �
0, and thus that 0 � 
1 � ��1 will
now hold. We will prove this in a way that is somewhat similar to the proof of propo-
sition 7.1.1, where we derived convergence of adjustment products �t from convergence
of the variables �E+min(�t+1) = min�i2�E+(�t+1) �i and �

E�
max(�t+1) = max�i2�E�(�t+1) �i. For

any �t < �
0 it will hold that 
t > ��1, and the previous lemma shows that in this
case the corresponding excess expenditure will be strictly negative. (Since m0 � I, and
since I will be obtained in every subsequent period, all budgets mt that will be faced

34For some � > 1, � < 1 and 0 < � < 1.
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during the learning process will also satisfy mt � I, so that the previous lemma can
indeed be applied.) Therefore we see that the variable �E+min(�t+1) � �
0 must hold for
all t. This has two implications. Firstly, that convergence of (�t)1t=0 towards �1 = 0 is
impossible, as by the proof of proposition 7.1.1 we know that this would require that
the variable �E+min(�t+1) would converge towards zero. And secondly, that convergence
towards a �1 2 (0; �
0) cannot happen, since by the proof of proposition 7.1.1 we know
that this would require that the variables �E+min(�t+1) and �

E�
max(�t+1) would both converge

towards �1.
Hence indeed �1 � �
0 must hold, and we get that 0 � 
1 � ��1. Also, 
1 = ��11 
0

implies that ��11 = 
1=
0, and indeed we see that �1 = �
�1
1 �0 = �0
1=
0.

8.5 Convergence of choices
Thus far in this chapter we considered sequences of value functions as generated by the
learning algorithm. We investigated convergence of such sequences of value functions,
and more speci�cally we investigated convergence towards optimality. Thus, we have
considered convergence of ad hoc preferences.
We may also wonder whether the choices that would be made by an individual

whose behaviour would be generated by the learning algorithm, would converge. That
is, given a sequence of value functions generated by the learning algorithm, in this
section we focus merely on sequences of choices, each of which will maximize the ad hoc
utility as determined by the corresponding value function. And we investigate whether
such sequences of choices will converge, and more speci�cally, we investigate whether
these choices will converge towards choices that would be made by a rational utility
maximizer in the same setting.
The next proposition shows that convergence towards optimality in terms of ad hoc

preferences also implies convergence towards optimality of the corresponding sequences
of consumption functions.

Proposition 8.5.1 Let a model be given that satis�es axioms 4.1.1, 4.4.1, 8.1.5 and
8.1.6, and 8.1.3 or 8.1.4, and with an instantaneous utility function u0 that satis�es
8.1.1. Suppose that given an initial value function V (0) that satis�es axiom 8.1.1, the
learning algorithm is used, and that preferences do converge to optimality. Then, the
sequence of choice functions (c�t (m))

1
t=0, as de�ned by

c�t (m) := arg max
0�ct�m

u0(ct) + �V
(t)(m� ct + I);

that corresponds to the sequence of value functions (V (t))1t=0 as generated by the learning
algorithm from V (0), will converge to the optimal choice function ~c(m), as de�ned by

~c(m) := arg max
0�c�m

u0(c) + �V
�(m� c+ I):

Proof. Let a model be given with an instantaneous utility function u0 that satis�es
axiom 8.1.1, a discount factor 0 < � < 1, and an constant additional periodical in-
come It = I � 0, for all t � 1. And suppose that, given an initial value function
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V (0) that satis�es axiom 8.1.1, the learning algorithm is used, and that preferences
converge to optimality. This means that for (V (t))1t=0 = (��1t V

(0))1t=0 the sequence of
adjustment products (�t)1t=0 converges to some consistency-inducing scalar ~�. By propo-
sition 8.3.1 we know that if such a CIS ~� exists, the initial value function must be an
a¢ ne transformation of the optimal value function that solves the functional equation:
V (0) = ~�V � + �.
For any period t, the choice function c�t : R+ ! R+ will return for any budget m

that is available in period t, the choice c�t (m) that solves

max
0�ct�m

u0(ct) + ��
�1
t V

(0)(m� ct + I):

We can also capture such a sequence of choice functions by the single function
f : R+ � R++ ! R+, as de�ned by

f(m; �) := arg max
0�c�m

u0(c) + ��
�1V (0)(m� c+ I);

for all m 2 R+ and all � 2 R++. Then we see that c�t (m) = f(m; �t). By Luenberger
([28], p.462) we know that for any given m 2 R+, the function f(m; �) must be contin-
uous in �. Since the sequence of adjustment products (�t)1t=0 converges to the scalar ~�,
we see that the sequence of choice functions (c�t (m))

1
t=0 = (f(m; �t))

1
t=0 will converge

35

to f(m; ~�).
For any given m 2 R+, this limit quantity f(m; ~�) solves

max
0�c�m

u0(c) + �~�
�1
V (0)(m� c+ I) = max

0�c�m
u0(c) + �V

�(m� c+ I) + �~��1�:

And, for any given m 2 R+, by proposition 8.4.2 we see that ~c(m) must also
maximize this last maximization problem. Since u0 and V (0) are strictly concave,
the solutions to all of the above maximization problems are unique, and we see that
~c(m) = f(m; ~�) must hold. Thus indeed we see that the consumption functions c�t (m)
will converge to ~c(m).

Note that the above proposition proves that consumption functions will converge
towards the optimal consumption function. The rest of this chapter will investigate
convergence of actual consumption patterns. That is, we will investigate convergence
of sequences of choices c�t (m

�
t ), as determined by the above choice functions c

�
t (:), when

evaluated at the budgets m�
t = m0+ tI�

Pt�1
i=0 c

�
i that actually result from the learning

algorithm.

8.5.1 Models with no income stream

Wemodel a decision-maker who cannot borrow and who can save, but who would receive
no interest for saving. Here the decision-maker would face a situation with a �nite
initial budget of m0 and without additional income after the �rst period. Hence in this

35Pointwise.
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situation there is a single budget constraint, which reads
P1

t+1=0 ct � m0. Then, for any
sequence of choices (c0; c1; :::) that satis�es this budget constraint, we will necessarily
get that limt!1 ct = 0.
Hence we see that the choices made by a decision-maker who behaves as postulated

in the previous chapters, do converge. Similarly, the choices that would be made by a
rational utility maximizer would converge, and we get that the two limits are the same.
Note however, that this convergence to zero is already implied by the budget con-

straint; it is completely independent of the value functions that the particular choices ct
are derived from. Therefore, no matter how sophisticated or primitive a decision-maker
would be in approaching this problem, behaviour in the limit will always be the same.

In the setting of proposition 8.4.4, without additional income and with an in�nite
marginal instantaneous utility in the point 0, in every period the consumption and
savings choices will be internal solutions. This will not only be the case when these
choices are made by a rational utility maximizer, but also when they are made by a
learning ad hoc utility maximizer whose initial value function has an in�nite marginal
value for saving in the point 0 (see the discussion before proposition 8.4.4). Therefore
each of the elements of a generated sequence of savings will be strictly positive, and
the same holds for the generated elements of a sequence of consumption choices. Thus
convergence within each of these generated sequences of choices and savings will never
be achieved in �nite time.
In models with an income stream, this will be very di¤erent, in that case convergence

of choices will generally happen in �nite time.

8.5.2 Models with an income stream

In this section we will deal with models with an income stream. Here we will get
convergence of choices in �nite time, both in the case where these choices would be
made by a rational utility maximizer, and in the case where they would be made by a
learning ad hoc utility maximizer.
It can be shown that in consumption/savings models where a constant additional

income I is obtained in all periods after the �rst, the choices that a rational utility
maximizer would make would converge in �nite time. In fact, within the standard
framework an optimal policy would consist of always consuming strictly more than the
constant additional income: ~ct > I (if of course this is possible, if mt > I) so that
mt+1 < mt (unless mt+1 = mt = I), and of exhausting the initial endowment m0 in
�nite time, and consuming the �xed additional income I forever thereafter. Here the
number of periods in which this initial endowment is exhausted increases in the initial
endowment. More speci�cally, for m0 small enough, the optimal policy consists of
consuming ~c0 = m0 (and saving nothing) in period 0, and consuming the �xed income
thereafter: ~ct = I, for all t > 0. Thus, for these small values of the initial endowment,
the optimal value function would be given by V �(m0) = u0(m0) +

�
(1��)u0(I) (for m0

small enough). (See Stokey and Lucas ([43], section 5.17).)
The next proposition will show that convergence of choices towards the limit I will
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also occur in �nite time if these choices are made by an ad hoc utility maximizer whose
initial value function would be an a¢ ne transformation of the optimal value function.

Proposition 8.5.2 Let a model be given that satis�es axioms 4.1.1, 4.4.1, 8.1.4, 8.1.5
and 8.1.6, and with an instantaneous utility function that satis�es axiom 8.1.2. Suppose
that the initial budget is larger than the constant additional income: m0 � I, and that
the initial value function is an a¢ ne transformation of the optimal value function:
V (0) = 
0V

� + �0, for some 
0 2 R++ and some �0 2 R. If subsequently the learning
algorithm is used, then the resulting sequence of choices (c�t )

1
t=0 will converge in �nite

time to the limit I.

Proof. A model with a discount factor 0 < � < 1, and an instantaneous utility
function u0 that satis�es axiom 8.1.1 and u00(0) = 1, is given. A strictly positive
constant additional income is obtained every period after time 0: It = I > 0, for all
t � 1, and the initial budget is su¢ ciently large: m0 � I.
We know (see Stokey and Lucas [43]) that within the standard framework a rational

utility maximizer�s optimal policy would entail always (if possible) consuming strictly
more than the constant additional income: ~ct(mt) > I if mt > I, and ~ct(mt) = I if
mt = I. This also implies that the occurring budgets ~mt+1 = ~mt � ~ct(mt) + I will
satisfy ~mt+1 < ~mt (unless ~mt+1 = ~mt = I). Moreover, a rational utility maximizer�s
optimal policy would consist of exhausting the initial endowment m0 in �nite time, and
consuming the �xed additional income I forever thereafter, so that the choices ~ct that
a rational utility maximizer would make will converge in �nite time to I. Similarly, the
resulting budgets ~mt will converge in �nite time to I.
The initial value function V (0) is such that V (0) = 
0V

� + �0, for some 
0 2 R++
and some �0 2 R. Subsequently the learning algorithm with min-max adjustment36

(as dependent on regular excess expenditure) is used, and this will generate a sequence
of value functions (V (t))1t=0 from the initial value function V (0). As before each of
these value functions V (t) will satisfy V (t) = ��1t V

(0), where �t denotes the adjustment
product. If we de�ne 
t and �t by 
t := �

�1
t 
0 and by �t := �

�1
t �0, then we see that

each of the generated value functions V (t) will also be an a¢ ne transformation of the
optimal value function: V (t) = 
tV

� + �t.
Here we focus on sequences of choices (c�t )

1
t=0 that will result from the learning al-

gorithm. That is, the learning algorithm will generate a sequence of value functions
(V (t))1t=0, and for any period t the choice c

�
t will maximize the ad hoc utility correspond-

ing to the value function V (t), given the period-t budget m�
t :

c�t := arg max
0�ct�m�

t

u0(ct) + �V
(t)(m�

t � ct + I):

This period-t budget m�
t is determined endogenously by what happened before time t:

m�
t = m0 + tI �

Pt�1
i=0 c

�
i .

36For some � > 1, � < 1 and 0 < � < 1.
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By proposition 8.4.5 we know that converge will take place towards some limit
function V 1 = 
1V

�+�1, with 
1 2 [0; ��1] and with �1 = �0
1=
0. We now want
to show that the corresponding sequence of choices (c�t )

1
t=0 will converge in �nite time

to the limit I.
If 
1 2 [0; 1), then there must be some period t̂ for which it will hold that 
t < 1,

for all t � t̂. By lemma 8.4.1 we know that for any budget mt the expenditure c�t
as derived from the value function 
tV

� (with 
t < 1) will never be smaller than the
expenditure ~ct that would correspond to the optimal value function V �, given the same
budget mt. And we know that the choices ~ct and the budgets ~mt that would be derived
from V � would converge in �nite time to I. Therefore, we see that in the present case
budgets will decrease even faster than in the case of optimality, and convergence of the
sequence of consumption choices c�t to the limit I will also occur in �nite time.
If 
1 2 [1; ��1], then it will hold that 0 < �
0 � �1 � 
0 < 1. By the proof

of proposition 7.1.1 we know that the two variables �E+min("t+1) = min�i2�E+("t+1) �i and
�E�max("t+1) = max�i2�E�("t+1) �i must then both converge to �1, and one of the following
two cases must hold:
(I) the variables �E+min("t+1) and �

E�
max("t+1) are equal from some period t0 onwards,

(II) the variables �E+min("t+1) and �
E�
max("t+1) become arbitrarily close as t goes to

in�nity.
Suppose that case (I) holds: that �E+min("t0+1) = �E�max("t0+1) will hold for some t

0.
With lemma 6.5.1 it can be shown that this equality can only hold if Et0 = c�t0� c/t0 = 0.
By the assumption that u00(0) =1, we know that the possibility of boundary solutions
with c�t0 = c

/
t0 = 0 is excluded. Thus there remain two possibilities as to how this zero

excess expenditure came about.
(A) c�t0 = c/t0 = m�

t0. Recall from the discussion after lemma 8.4.1 that we could
rule out boundary solutions where all is spent for both c�t and c

/
t , if the additional

assumption �
tV
�0(I) > u00(m

�
t ) would hold. Now however, for small 
t0 and small

budgets this condition may be violated. If indeed 
t0 and m
�
t0 are such that the inverse

condition �
t0V
�0(I) � u00(m

�
t0) holds, then we will get boundary solutions with c

�
t0 =

c/t0 = m
�
t0.

This would also imply that

m�
t0+1 = s

�
t0 + I = 0 + I � s�t0�1 + I = m�

t0 :

And Et0 = 0 will yield an adjustment factor equal to one, so that no adjustment takes
place in period t0 + 1: �t0+1 = �t0 and 
t0+1 = 
t0. This again implies that

�
t0+1V
�0(I) = �
t0V

�0(I) � u00(m�
t0) � u00(m�

t0+1):

Hence in the next period t0 + 1 we will again get that c�t0+1 = c
/
t0+1 = m

�
t0+1 = I, and

that excess expenditure will equal zero, so that the value function will still remain con-
stant. Of course, by repeating the above argument we will then get that the equalities
m�
t0+� = I , 
t0+� = 
t0, c

�
t0+� = c/t0+� = I and Et0+� = 0 will hold in all subsequent

periods t0+ � > t0. Thus indeed, we see that in this case (c�t )
1
t=0 converges to I in �nite

time.
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(B) 0 < c�t0 = c/t0 < m
�
t0. From the proof of lemma 8.4.1 we can see that this case

can only happen if 
t0 = 1 holds, which would imply that V (t
0) = V � + �t0, for some

�t0 2 R. In this case, we would also get that 
t0+1 = 
t0 = 1, and by lemma 8.4.4
that Et0+1 = 0, and etcetera for all later periods. Thus, from period t0 onwards, the ad
hoc utility maximizer�s behaviour would be the same as a rational utility maximizer�s
behaviour. Therefore the ad hoc utility maximizer�s choices (c�t )

1
t=0 would converge in

a �nite number of periods after time t0 to the limit I.

Then suppose that case (II) holds: the variables �E+min("t+1) and �
E�
max("t+1) never

equal, but become arbitrarily close to each other (and to �1) as t goes to in�nity. This
can only occur for �1 = 
0 and thus for 
1 = 1. To see this, �rst note that in case (II)
only strictly positive and strictly negative excess expenditures occur along the learning
path. After all, from the last paragraphs of section 6.5 we know that Et = 0 would
imply that �E+min("t+1) = �

E�
max("t+1), which would contradict case (II).

Now, for �t � 
0 it will hold that 
t = ��1t 
0 � 1, and by lemma 8.4.4 the excess
expenditure corresponding to 
tV

� will be non-negative. Similarly, for �t � 
0 it will
hold that 
t � 1, and the excess expenditure will be non-positive. For �t = 
0 it will
hold that 
t = 1, and from lemma 8.4.4 we know that in this case the excess expenditure
corresponding to 
tV

� will equal zero. Thus, excess expenditure can only be strictly
negative for 
t > 1 (so for �t < 
0), and strictly positive for 
t < 1 (for �t > 
0).
Therefore, as zero excess expenditures do not occur, we see that �E+min("t+1) > 
0 and
that �E�max("t+1) < 
0 must hold for all t, and convergence where the two variables
�E+min("t+1) and �

E�
max("t+1) become arbitrarily close, but never equal, can indeed only

occur for �1 = 
0 (so for 
1 = 1).

We already saw that excess expenditure will never equal zero, and we can now
also see that there can never be a last adjustment product that gives a positive (or a
negative) excess expenditure. For suppose not, suppose that time �t is such that E�t > 0
(so that 
�t < 1, and ��t > 
0), and such that E�t+� < 0 for all �t + � > �t. Then it
must hold that �E+min("�t+� ) = ��t for all �t + � > �t, and that �

E�
max("�t+� ) must converge to

��t > 
0 as � ! 1. However, this would imply that from some period onwards, ��t+�
would become larger than 
0, and thus that excess expenditure would become positive.
This contradicts the assumption that �t was the last period in which a positive excess
expenditure occurred. Similarly it can be shown that there can never be a last period
in which a negative excess expenditure occurs.

As 
t converges towards one, there must be a period �t such that for all periods t � �t
it will hold that 
t � ��1. Now we will show that for 
t � ��1 it will hold that the
choice c�t corresponding to 
tV

�, will always satisfy c�t � I. To show this, it su¢ ces to
show that c�t � I will always hold for 
t = ��1. After all, for any given budget mt, by
lemma 8.4.1 the expenditure corresponding to 
t < �

�1 will never be smaller than the
expenditure corresponding to 
t = �

�1.

Thus, here we want to show that 
t = �
�1 implies that c�t � I. Remember that the

choice c�t that the ad hoc utility maximizer would make in period t, would maximize
the function u0(ct) + �
tV

�(st + I), which now becomes u0(ct) + V �(st + I). Thus c�t
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8. CONVERGENCE UNDER CERTAINTY

will be such that

u0(c
�
t ) + V

�(m�
t � c�t + I) = max

0�ct�m�
t

u0(ct) + V
�(m�

t � ct + I):

By u00(0) = 1 we know that c�t = 0 cannot happen. Also, c�t = m�
t cannot happen,

as by lemma 8.4.4 this would also imply that c/t = m�
t , and thus that Et = 0, which

we just concluded cannot occur in this case. Therefore c�t will be internal, and satisfy
u00(c

�
t ) = V

�0(m�
t � c�t + I).

Now, for any m 2 R+ it will hold that V �0(m) = u00(~c(m)), where ~c(m) denotes
the choice that would solve the maximization problem inside the functional equation:
u0(c) + �V

�(m � c + I) subject to 0 � c � m. To see this, the assumption that
u00(0) =1 implies that ~c(m) > 0 will always hold. Therefore from the proof of lemma
8.4.2 (cases (I) and (II) of the proof of lemma 8.4.2 cannot occur here) we can see that
V �0(m) = u00(~c(m)) will now always hold.
Thus V �0(m�

t � c�t + I) = u00(~c(m�
t � c�t + I)), and we see that c�t will satisfy

u00(c
�
t ) = V

�0(m�
t � c�t + I) = u00(~c(m�

t � c�t + I));

and by strict concavity of u0 we get that c�t = ~c(m
�
t�c�t+I). The quantity ~c(m�

t�c�t+I) is
derived from the maximization of u0+�V �, and would thus correspond to the behaviour
of a rational utility maximizer, which we saw satis�ed ~c(m�

t�c�t+I) > I ifm�
t�c�t+I > I.

By c�t < m�
t both these inequalities are indeed satis�ed. Thus we see that 
t = ��1

implies that c�t > I, so that no money accumulation will take place. And indeed, more
generally for 
t � ��1, the expenditure c�t corresponding to 
tV � is never smaller than
the constant additional income I, so that m�

t+1 = m�
t � c�t + I < m�

t , and no capital
accumulation will occur.
For all �t > 
0 it will hold that 
t < 1, and as in the case with 
1 2 [0; 1) above,

we know that for any budget mt, the expenditure c�t that corresponds to the value
function 
tV

�, will never be smaller than the expenditure ~ct that would correspond to
the optimal value function V �. And choices and budgets corresponding to V � would
always be such that ~ct � I and such that ~mt+1 < ~mt (unless ~mt = I), and both would
converge in �nite time to I. Therefore if only 
t�s smaller than one would occur, the
budgets m�

t would certainly decrease in a �nite number of steps towards I, and the
choices c�t would convergence in �nite time towards I. However, in the case we are
considering here, the 
t�s will vary between being smaller than one and larger than
one. Therefore, the decrease of the budgets m�

t in �nite time towards I due to the 
t�s
smaller than one, could in principle be undone by capital accumulation due to the 
t�s
larger than one. Still, we saw that for 
t � ��1 no capital accumulation will occur, and
it must be the case that the budgets will indeed decrease towards I in a �nite number of
steps after period �t. Thus indeed, convergence of the sequence of consumption choices
c�t to the limit I will occur in �nite time. The 
t�s larger than one are close enough to
one so that the exhausting of resources by the 
t�s smaller than one is not undone by the

t�s larger than one, and the adjustment factors smaller than one ensure convergence
to the constant additional income in �nite time.
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LEARNING IN CONSUMER CHOICE

In this chapter we considered the properties of convergence and of convergence to-
wards optimality, in stationary consumption/savings models under certainty. We saw
that sequences of value functions as generated by the learning algorithm always con-
verge. We saw that a necessary condition for convergence towards optimality is that the
initial value function is an a¢ ne transformation of the optimal value function. In cases
without additional income after the �rst period, we found that convergence towards
optimality will occur if indeed the initial value function is an a¢ ne transformation of
the optimal value function. In cases with additional income we found that conver-
gence towards optimality will generally not occur. Finally, we considered convergence
of choices. We saw that convergence towards optimality of preferences implies conver-
gence towards optimality of choice functions, and we found that both in models with
and without income streams, choices will converge towards optimality if the initial value
function is an a¢ ne transformation of the optimal value function.
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9 Convergence under expected utility

Like the previous chapter, this chapter follows up on chapter 7. We will investigate
convergence of ad hoc preferences, as generated by the learning algorithm, towards a
limit that would represent optimality. We will again do these investigations within
the class of stationary consumption/savings models. The previous chapter dealt with
consumption/savings models under certainty, and in this previous chapter we saw that
under some circumstances convergence towards optimality does occur. The present
chapter is similar to the last; here we will establish when convergence towards optimality
will occur, and when it will not occur, in stationary consumption/savings models with
expected utility.

The present chapter has a structure that is similar to that of the previous chap-
ter. This chapter consists of six sections. The �rst section will specify the setting of
stationary consumption/savings models under expected utility, and it will specify how
the ad hoc framework can be �t into this setting, both in the case of regular excess
expenditure adjustment and in the case of expected excess expenditure adjustment.
In the second section we will see that learned ad hoc preferences do always converge.
The third section will consider when a consistency-inducing scalar exists, and thus it
provides a necessary condition (with respect to the initial time preferences with which
the learning algorithm starts) for convergence towards optimality to occur. The fourth
and �fth sections will establish if or when convergence towards optimality does occur.
In the fourth section we will see that convergence towards optimality will generally not
occur in the case of regular excess expenditure adjustment. In the �fth section we will
see that in the case of expected excess expenditure adjustment, convergence towards
optimality will occur under some (rather speci�c) circumstances. Finally, the sixth
section investigates the relation between convergence towards optimality in terms of
actual choices, and convergence towards optimality of preferences.

9.1 Models of consumption/savings under expected utility
In this chapter we will consider the asymptotic properties of lifetimes of behaviour and
preferences, as governed by the learning algorithm in stationary models of expected
utility. While the learning algorithm and the min-max adjustment function are de�ned
unequivocally, in models of expected utility the adjustment function may either depend
on regular excess expenditure (REE), or on expected excess expenditure (EEE). Since
in models of certainty the two excess expenditure measures coincide, in the previous
chapter we only considered adjustments based on the more basic REE measure. In the
present chapter with expected utility models, the two measures of excess expenditure
generally do not coincide. Therefore the dynamic properties of the learning algorithm
may be very di¤erent for the two excess expenditure measures, and here we will need to
consider the cases of REE adjustment and EEE adjustment separately. As mentioned
in subsection 6.4.2, REE adjustment should probably be thought of as more basic, while
the more complicated EEE adjustment can be thought of as a benchmark (that will
prove to be more e¢ cient).
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As in the previous chapter, we model a consumer who does know all his instanta-
neous preferences and who does know his total preferences. However, we assume that
our consumer lacks the cognitive sophistication to solve the problem of maximizing his
total preferences over a budget set at once, and that he lacks the cognitive sophistica-
tion to derive consistent ad hoc preferences from the total preferences. Therefore we
assume that our consumer does not know ad hoc preferences that are consistent with
total preferences, and we suppose that our consumer would try to tackle his lifetime
consumption problem by using the learning algorithm.

9.1.1 The setting

Here we consider models of expected utility; we model a consumer who does not know
all features of the economic environment that he will be facing, but who does know
all the realizations of these features that could possibly occur, and all the probabilities
each of these realizations will occur with.
As in the previous chapter, we suppose that axiom 4.1.1 applies so that the number of

periods is in�nite, and that in every period t the consumer has to choose a consumption
level ct 2 R+. The total (Bernouilli) utility function u on X = R1+ is additively
separable with respect to time, and satis�es exponential time discounting, so for every
c = (c0; c1;c2;:::), preferences can be expressed as u(c) =

P1
t=0 �

tu0(ct), where � is a
discount factor in (0; 1), and where u0 : R+ ! R is an instantaneous utility function,
which is assumed to satisfy axiom 8.1.1.

Our decision-maker is faced with an uncertain economic environment. However, in
the subsections of chapter 6 dealing with consumption/savings models, we saw that in
this setting commodity spaces Xt = R+ and prices pt = 1 are by assumption known.
Hence there isn�t any uncertainty about commodity spaces and prices.
Still, consumption/savings models do allow for budgetary uncertainty. We suppose

that for any period t � 1 the additional income It � 0 becomes known at time t.
Where in the previous chapter these additional incomes were �xed numbers, now they
are random variables.
Like the previous chapter, this chapter deals with stationary consumption/savings

models. In the present context, stationarity requires that the additional income random
variables would be independently and identically distributed (IID). More speci�cally,
here we assume that for any period t, the additional income random variable It will
take its realizations from the �nite set fI0; I1; :::; IRg (that does not depend on t) with
Ir 2 R+ for all 0 � r � R, and R 2 N. We suppose that the indexation of these
realizations re�ects their sizes: I0 � I1 � ::: � IR�1 � IR. We denote the probability
that the random variable It, for any t � 1, will take the value Ir 2 fI0; I1; :::; IRg by
�r. These probabilities f�0; �1; :::; �Rg (that also do not depend on t) satisfy �r > 0,
for all 0 � r � R, and

PR
r=0 �r = 1, so this indeed speci�es a well-de�ned random

variable. We suppose that one of the following two axioms is satis�ed.

Axiom 9.1.1 The additional periodical incomes It, for t � 1, are IID distributed and
each can take a �nite number of realizations.
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9. CONVERGENCE UNDER EXPECTED UTILITY

Axiom 9.1.2 The additional periodical incomes satisfy axiom 9.1.1, and the smallest
realization equals I0 = 0.

Saving is possible at a zero interest rate, borrowing is not possible, so that the
budget available in period t equals the savings brought over from the previous period
plus the additional income received in that period: mt = st�1 + It = mt�1 � ct�1 + It.
9.1.2 Dynamic programming

In consumption/savings models with income uncertainty, the period-t consumption
choice ct may depend on the information that is known at time t about the uncertain
income stream, so we can write ct(m0; I1; :::; It). Such consumption choices should
also satisfy the budget constraints 0 � ct(m0; I1; :::; It) � mt. Saving is possible and
borrowing is not, so the implicit time-t budgets mt would be speci�ed by

mt = m0 +
tX

�=1

I� �
t�1X
�=0

c� (m0; I1; :::; I� ):

Hence, the period-t budget constraint ct(m0; I1; :::; It) � mt can also be written as

tX
�=0

c� (m0; I1; :::; I� ) � m0 +
tX

�=1

I� ;

which simply says that what was spent should at no point in time exceed what was
incurred.
Within the standard framework for consumer choice, the basic consumer problem

in the present context would thus be given by the following sequence problem:

maxEI1EI2 :::[
1X
t=0

�tu0(ct(m0; I1; :::; It))] (1)

sub to
tX

�=0

c� (m0; I1; :::; I� ) � m0 +
tX

�=1

I� ;8t � 0: (2)

Corresponding to this sequence problem is the following functional equation

V �(m) = max
(c;s):c+s�m

fu0(c) + �EI [V �(s+ I)]g =

max
(c;s):c+s�m

fu0(c) + �
RX
r=0

�rV
�(s+ Ir)g:

In subsection 2.6.5 we saw that the theory of dynamic programming shows that the
value function V � : R+ ! R that solves this functional equation, is also exactly the
function that returns for every budget level m available in period 0, the maximum
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discounted lifetime expected utility that can be attained from the budget m. That is,
for any budget level m, the value V �(m) exactly equals the maximum of (1) sub to (2).
Thus we found a link between sequence problems and their corresponding functional

equations. It can also be shown (Stokey and Lucas [43]) that if instantaneous utility u0
satis�es axiom 8.1.1, then the optimal value function V � will also satisfy axiom 8.1.1.

Given the optimal value function V �, we can de�ne the optimal expected value
function EV � : R+ ! R by

EV �(s) := EI [V
�(s+ I)] =

RX
r=0

�rV
�(s+ Ir);

as the expectation of the optimal value that will derived from a certain amount of
savings s. Note that the arguments that enter the value function V � are actual budgets
m that can be spent in a certain period, while the arguments that enter the expected
value function EV � are amounts of savings s that are brought over from the previous
period, and will yet have to be augmented with an additional income to arrive at an
actual budget. Then the functional equation can alternatively be written as

V �(m) = max
(c;s):c+s�m

fu0(c) + �EV �(s)g:

Above we saw that if instantaneous utility u0 satis�es axiom 8.1.1, then the optimal
value function V � will also satisfy axiom 8.1.1. It is easy to see that in that case the
optimal expected value function EV � will consequently also satisfy axiom 8.1.1.

9.1.3 The ad hoc framework

As before, here we model a boundedly rational individual who has trouble solving the
above problem at once, so that the standard framework for consumer choice cannot
be used to model this decision-maker�s behaviour, and we use the ad hoc framework.
Axiom 4.4.1 is assumed to hold, so our consumer would cut up his lifetime consumption
choice into smaller ad hoc choice problems, where in each of these he uses ad hoc
preferences u(t)(wt�1; ct; st) to reach a decision.
As in the previous chapter, we suppose that ad hoc utility functions are of an

additively separable form and exhibit exponential discounting, and we write:

u(t)(wt�1; ct; st) =

tX
i=0

�iu0(ci) + �
t+1eV (t)(st):

Here wt�1 denotes the vector of past consumption choices (c0; c1; :::; ct�1).
The function eV (t) : R+ ! R denotes some function that values saving. In the

previous chapter, that dealt with models of certainty, without loss of generality the
functions eV (t)(st) were replaced by V (t)(st + I), where I was the known per-period
additional income. Thus, in order to stay closer to the notation and the interpretation
of value functions as in dynamic programming, the arguments of the V (t)-functions that
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9. CONVERGENCE UNDER EXPECTED UTILITY

would be generated by the learning algorithm were chosen to be next period�s budgets,
rather than current savings.
Here we will do something similar, we will again use value functions V (t) that depend

on budgets mt+1 = st + It+1 rather than on amounts of savings st. However, in the
setting of this chapter, the additional incomes It+1 and consequently the value of next
period�s budget V (t)(st + It+1) are not known at time t. Still, similar to how EV � was
de�ned in the previous section, given a value function V (t) : R+ ! R we can de�ne a
corresponding expected value function EV (t) : R+ ! R as the expectation of the
next period�s value V (t) that will derived from a certain amount of savings st, by

EV (t)(st) := EIt+1 [V
(t)(st + It+1)] =

RX
r=0

�rV
(t)(st + I

r):

Then, to remain in line with the notation and interpretation of value functions
as in the previous chapter and in dynamic programming, here we replace eV (t)(st) by
EV (t)(st). Without loss of generality the above speci�cation of ad hoc utility can be
divided by �t, and with the above notation we arrive at the speci�cation of the next
axiom.

Axiom 9.1.3 For any time t, the ad hoc utility function u(t)(wt�1; ct; st) can be written
as

u(t)(c1; c2; :::; ct; ss) =
tX
i=1

�i�tu0(ci) + �EV
(t)(st):

Here EV (t) is called an expected value function.

As in chapter 6, ad hoc preferences can be separated into instantaneous preferences,
which can be represented by

v(t)(wt�1; ct) =
tX
i=0

�i�tu0(ci);

and into time preferences, which can be represented by

U (t)(v(t); st) = v
(t) + �EV (t)(st):

Axiom 6.2.2 is assumed to apply, so instantaneous utility is thought to be exogenous,
while time preferences, and thus the functions EV (t)(:), are endogenous.
As in the previous chapter, our decision-maker does not know what his consistent ad

hoc preferences, and therefore the optimal expected value function EV �, would be. The
decision-maker is assumed to form an initial guess at such an expected value function
in the �rst period, and to adjust expected value functions in all subsequent periods.
Adjustments can either depend on REE or on EEE excess expenditure. Since the

present setting is one of expected utility models, the EEE measure is well-de�ned, and
(except in the degenerate case where R = 0) REE will not coincide with EEE.

183



LEARNING IN CONSUMER CHOICE

Then, in both cases of REE and EEE adjustment, in period 0 an initial time pref-
erence function U (0) : R � R+ ! R is given. From the above axiom we see that this
initial time preference function will take the following form: U (0)(v; s) = v+ �EV (0)(s).
Moreover, here we assume that the initial expected value function EV (0) : R+ ! R
satis�es axiom 8.1.1.
In any later period t+1, given a time preference function U (t)(v; s) = v+ �EV (t)(s)

from the previous period, our consumer adjusts old time preferences into new time
preferences U (t+1)(v; s) = U (t)(a�t+1 �v; s). Here a�t+1 denotes an adjustment factor that
is determined by min-max adjustment from the vector �t+1 := (E0; E1; :::; Et) of past
excess expenditures (REE or EEE).
As in the previous chapter, U (t)(a�t+1 � v; s) can be written as a�t+1 � v + �EV (t)(s),

which can (without loss of generality) be divided by the scalar a�t+1, such as to arrive
at

U (t+1)(v; s) = v + �a�1�t+1EV
(t)(s):

Thus, as in the previous chapter, both in the case of REE adjustment and in the
case of EEE adjustment, the procedure of adjusting time preferences can be shortened
to a procedure where the expected value functions are updated directly.

Axiom 9.1.4 In period 0 an initial expected value function EV (0) : R+ ! R is exoge-
nously given, and assumed to satisfy axiom 8.1.1. In every later period, a new expected
value function EV (t+1) is obtained from the old one by:

EV (t+1)(s) := a�1�t+1EV
(t)(s);

where the adjustment factors a�t+1 are determined by min-max adjustment from histories
of excess expenditures �t+1 = (E0; :::; Et).

Regular excess expenditure adjustment In this subsection we specify how regular
excess expenditure is determined in the present setting. This is the same as in the
previous chapter (subsection 8.1.3); value functions would only have to be replaced by
expected value functions. In period t, given a budget mt and an additional income It+1,
REE is still given by Et = c�t � c/t . Here c�t denotes the actual expenditure in period t
that solves

max
(ct;st):ct+st�mt

U (t)(v(t)(wt�1; ct); st) = max
(ct;st):ct+st�mt

tX
i=1

�i�tu0(ci) + �EV
(t)(st):

and that solves
max

(ct;st):ct+st�mt

u0(ct) + �EV
(t)(st):

And, given mt and It+1, the (regular) ex-post optimal expenditure c/t is determined
as part of a solution (c/t ; c

/
t+1; s

/
t+1) to the following hypothetical maximization problems

over ct, ct+1, and st+1 simultaneously:
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max
ct+st�mt

max
ct+1+st+1�st+It+1

U (t)(v(t+1)(wt�1; ct; ct+1); st+1) =

max
ct+st�mt

max
ct+1+st+1�st+It+1

t+1X
i=1

�i�t�1u0(ci) + �EV
(t)(st+1)

and

max
ct+st�mt

max
ct+1+st+1�st+It+1

u0(ct) + �u0(ct+1) + �
2EV (t)(st+1):

Instantaneous utility u0 is assumed to be strictly concave, as was the initial expected
value function EV (0). Therefore any subsequent expected value function will be strictly
concave as well, and by strict concavity each of the above maximization problems has
a unique solution.

Expected excess expenditure adjustment In this subsection we will specify how
expected excess expenditure is determined in the present setting. This is similar to the
case of REE. Given a budget mt, the EEE excess expenditure in period t is de�ned as
Ft = c

�
t � c�t . Here c�t still denotes the actual expenditure in period t that is part of a

solution to

max
(ct;st):ct+st�mt

u0(ct) + �EV
(t)(st):

(This is the same as for REE excess expenditure.)
The period-t ex-post optimal expenditure c�t (as determined in period t+ 1) is part

of a plan (c�t ; (c
r
t+1; s

r
t+1)

R
r=0) that solves the following hypothetical problem

max
ct+st�mt

EIt+1 [ max
ct+1+st+1�st+It+1

U (t)(v(t+1)(wt�1; ct; ct+1); st+1)] =

max
ct+st�mt

EIt+1 [ max
ct+1+st+1�st+It+1

t+1X
i=1

�i�t�1u0(ci) + �EV
(t)(st+1)]:

Again, (c�t ; (c
r
t+1; s

r
t+1)

R
r=0) will also solve the simpler looking problem

max
ct+st�mt

EIt+1 [ max
ct+1+st+1�st+It+1

u0(ct) + �u0(ct+1) + �
2EV (t)(st+1)] =

max
ct+st�mt

u0(ct) + �EIt+1 [ max
ct+1+st+1�st+It+1

u0(ct+1) + �EV
(t)(st+1)]:

That is, (c�t ; (c
r
t+1; s

r
t+1)

R
r=0) solves

max
ct+st�mt

u0(ct) + �

RX
r=0

�r[ max
ct+1+st+1�st+Ir

u0(ct+1) + �EV
(t)(st+1)]:

Again, this problem is hypothetical, and by strict concavity, each of the above maxi-
mization problems has a unique solution.
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9.2 Convergence of the value function
Both in the cases of REE adjustment and of EEE adjustment, given an initial expected
value function EV (0), the learning algorithm will give rise to a sequence of expected
value functions (EV (t))1t=0. Here we will investigate if such a sequence of expected value
functions will converge.
As in the previous chapter, any expected value function that is generated by the

learning algorithm from the initial expected value function EV (0), can be written as

EV (t)(s) = a�1�t � a
�1
�t�1

� ::: � a�1�1 � EV
(0)(s) = ��1t EV

(0)(s);

where �t denotes the adjustment product, and we can consider sequences of adjustment
products (�t)1t=0.
We know that in the present setting, proposition 7.1.1 applies, so that any se-

quence of adjustment products (�t)1t=0 as generated by the learning algorithm, will
converge to some limit �1 2 R+. Consequently, any sequence of expected value func-
tions (EV (t))1t=0 that is generated by the learning algorithm, will converge to some limit
function EV (1)(:) = �1EV (0)(:).
However, in the cases of REE adjustment and of EEE adjustment the measures of

excess expenditure (Et and Ft) do not coincide, so that the adjustment factors (a"t and
a�t) will generally not be the same, and consequently the limit adjustment products
�1 towards which convergence occurs may not be the same. Therefore, although under
both REE and EEE adjustment convergence of sequences of adjustment products will
always occur, the limits �E1 and �

F
1 towards which convergence will occur will generally

not be the same.

9.3 Existence of a consistency-inducing scalar
Of course, here we are mainly interested in the question of convergence towards opti-
mality. In section 7.3 we saw that convergence towards optimality will take place if
three conditions are satis�ed. In this section we will establish when the �rst of these
conditions, condition 7.3.1 (which says that, given the initial time preference function
U (0), there exists a consistency-inducing scalar ~�), will hold.

First we will look at what consistency would entail in the present setting. The
optimal value function V � returns for every budget level m0 available in period 0, the
maximum discounted lifetime expected utility that can be attained from m0.
Then, suppose that at time t the choices (c0; c1; :::; ct) and an amount of savings st

are given. These past choices yielded the (provisional) utility
Pt

i=0 �
iu0(ci), and the

period-(t + 1) budget will equal mt+1 = st + It+1. If the next period�s budget mt+1

were known, then the maximally attainable additional discounted expected utility from
period t+ 1 onwards would be given by

maxEIt+2EIt+3 :::

1X
i=t+1

�iu0(ci) s:t:

iX
�=t+1

c� � mt+1 +

iX
�=t+2

I� ; 8i � t+ 1:
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This problem faced at time t+ 1 is an exact copy of the problem that is faced at time
0 (the problem of maximizing (1) sub to (2), as in section 9.1.2), and by a change of
variables it can be seen that this maximal additional utility that can be attained in and
after period t+ 1, is given by �t+1V �(mt+1).
In the present setting at time t the amount of savings st is known, and the next

period�s budgetmt+1 = st+It+1 is subject to uncertainty. Hence the maximal additional
discounted expected utility that can be attained from st in and after period t+1, would
be given by EIt+1�

t+1V �(st+It+1) which equals �
t+1EV �(st) (the function EV � is de�ned

in section 9.1.2).
Then, as in the previous chapter, for any time t any consistent ad hoc utility functioneu(t)(wt�1; ct; st) must be of the form

eu(t)(wt�1; ct; st) = eft( tX
i=0

�iu0(ci) + �
t+1EV �(st));

for some strictly increasing function eft : R! R.
For any time t the instantaneous utility v(t)(wt�1; ct) =

Pt
i=0 �

i�tu0(ci) is exogenous,
so the above condition can be rewritten as the condition that any consistent ad hoc
utility function eu(t)(wt�1; ct; st) should be of the form

eu(t)(wt�1; ct; st) = ft(v(t)(wt�1; ct) + �EV �(st));
for some strictly increasing function ft : R! R (here with ft(x) = eft(�tx)).
Thus we also see that, for any time t, any consistent time preference functioneU (t)(v(t); st) must be of the form

eU (t)(v(t); st) = ft(v(t) + �EV �(st));
for some strictly increasing function ft : R! R.

Now we can investigate when condition 7.3.1, that a consistency-inducing scalar
exists, will hold. The initial time preference function U (0) was given by U (0)(v(0); s0) =
v(0) + �EV (0)(s0). Therefore, if given these initial time preferences a consistency-
inducing scalar ~� exists, then for any period t the function v(t)+�~�

�1
EV (0)(st) should be

a consistent time preference function, i.e. there should be a strictly increasing function
ft such that v(t) + �~�

�1
EV (0)(st) equals ft(v(t) + �EV �(st)).

Now, from proposition 8.3.1 it can be seen that, given an initial time preference
function U (0)(v(0); s0) = v(0) + �EV (0)(s0), there exists a consistency-inducing scalar ~�
if and only if the initial expected value function EV (0) is an a¢ ne transformation of
the optimal expected value function: EV (0)(m) = ~�EV �(m) + �, for some � 2 R.37

37While proposition 8.3.1 was set under certainty and dealt with ordinary value functions rather
than expected value functions, the present setting can be �t into the setting of proposition 8.3.1. Both
expected value functions and regular value functions are mathematically just functions mapping R+
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Thus, like in the previous chapter, we have a condition on EV (0) that is both
necessary and su¢ cient for the existence of a consistency-inducing scalar.

And like in the previous chapter, here convergence of a sequence of adjustment prod-
ucts towards a consistency-inducing scalar ~� implies that the corresponding sequence of
expected value functions will converge towards the optimal expected value function up
to a constant. Again, such a constant has no e¤ect on the choices that will be made, and
we will keep referring to this kind of convergence as convergence towards optimality.

In general, given an initial time preference function, there exists at most one
consistency-inducing scalar ~�. In the previous section we saw that in the cases of
REE adjustment and of EEE adjustment, convergence always occurs, but that the lim-
its towards which convergence occurs will generally not be the same for these two cases.
Thus, if indeed these limits are not the same, then in at most one of the two cases
this will mean that convergence towards optimality does take place. The subsequent
sections of this chapter will investigate if and when convergence towards optimality will
occur, �rst in the case of REE adjustment, and then in the case of EEE adjustment.

9.4 Convergence towards optimality with REE adjustment
Given the adjustment procedure for expected value functions as based on regular excess
expenditure, we already saw that convergence will always occur, and here we investigate
if this means convergence towards optimality.
That is, given an initial budget m0 and an initial expected value function EV (0)

that is used in period 0, and given that REE adjustment is applied in every period, will
the resulting sequence of adjustment products (�t)1t=0 converge towards a consistency-
inducing scalar ~�? Here we will see that in the present setting the answer to this
question will generally be negative.

In comparison to the setting of the previous chapter, a complicating factor of the
current setting is that now regular excess expenditure in any period does not only
depend on the (expected) value function that is used and on the budget that is available
in that particular period, but also on the additional income realization that occurs in the
next period. The following lemma shows that, holding all other variables �xed, smaller
additional income realizations will always yield larger (regular) excess expenditures.
This makes sense, it seems quite intuitive that smaller additional income realizations
would be more likely to lead to regret about having spent too much in the previous
period.

Lemma 9.4.1 Let a model be given that satis�es axioms 4.4.1 and 9.1.3, and with
an instantaneous utility that satis�es axiom 8.1.1. Suppose that the additional income

into R. Therefore, in proposition 8.3.1 and in its proof, the term �value function�and the notation
V (0) and V � can simply be replaced by the term �expected value function�and the notation EV (0) and
EV � (when interpreted with the additional assumption that axiom 8.1.3 holds, so that I = 0), which
yields the corresponding result.
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random variables It+1 satisfy 9.1.1, and that two realizations Ir and Ir
0
, with Ir

0
<

Ir, are given. Then, if at time t a budget mt 2 R+ and an expected value function
EV (t) that satis�es axiom 8.1.1 are given, It+1 = Ir

0
will yield a larger regular excess

expenditure than It+1 = Ir: Et(Ir
0
) � Et(Ir).

Proof. Given is a model with an instantaneous utility function u0 that satis�es axiom
8.1.1, and with a discount factor 0 < � < 1. In every period t � 1 an uncertain
additional income is obtained, that can be modelled by the random variable It. These
random variables It follow an IID distribution that gives weight to only a �nite number
of realizations. In some speci�c period t a budget mt 2 R+, and an expected value
function EV (t) that satis�es axiom 8.1.1 are given.
Here we will consider period-t regular excess expenditures for two di¤erent situa-

tions, corresponding to the di¤erent realizations Ir and Ir
0
for the additional income

random variable It+1. That is, excess expenditure in period t may depend on the addi-
tional income in period t+1, and we will use the notation Et(It+1). Given the function
EV (t) and the budget mt 2 R+, for an additional income It+1 the regular excess expen-
diture Et(It+1) is as before given by Et(It+1) = c�t (It+1)� c/t (It+1). Here c�t (It+1) is part
of a solution to

max
ct+st�mt

u0(ct) + �EV
(t)(st):

Note that the additional income does not in any way in�uence EV (t)(st) or the decision
problem that c�t (It+1) is supposed to maximize. Thus, the period-t choice c

�
t (It+1) will

be the same for all additional income realizations, so that we may use the notation c�t
instead of c�t (It+1).
Then, in period t + 1, given the additional income It+1, c/t (It+1) is determined as

part of a tuple (c/t (It+1); c
/
t+1(It+1); s

/
t+1(It+1)) that solves the hypothetical maximization

problem
max

ct+st�mt

u0(ct) + � max
ct+1+st+1�st+It+1

u0(ct+1) + �EV
(t)(st+1):

We may de�ne the function W1 : R+ ! R as the last part of the above formula, by

W1(mt+1) := max
ct+1+st+1�mt+1

u0(ct+1) + �EV
(t)(st+1):

Then c/t (It+1) must also be part of a solution to

max
ct+st�mt

u0(ct) + �W1(st + It+1): (1)

Two realizations Ir and Ir
0
for the additional income random variable It+1 are

given, with 0 � Ir0 < Ir. Then the quantities c/t (Ir) and c/t (Ir
0
) are determined by the

last maximization problem (1). Note that the function W1 itself does not depend on
the additional income realization. The only di¤erence between the two maximization
problems as in (1) that c/t (I

r) and c/t (I
r0) are derived from, is that for each st the

function W1 will be evaluated at di¤erent points (st + Ir or st + Ir
0
). Since Ir

0
< Ir,
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and by the fact that (by lemma 8.4.2) W1 is a strictly concave function, we know that
W 0
1(st + I

r0) > W 0
1(st + I

r), for all st 2 R+. Then by lemma 8.4.1 this implies that
c/t (I

r0) � c/t (Ir) must hold, so that

Et(I
r0) = c�t � c/t (Ir

0
) � c�t � c/t (Ir) = Et(Ir):

In the above proof we see thatW 0
1(st+I

r0) > W 0
1(st+I

r) holds for all Ir
0
< Ir. Then

from the discussion after lemma 8.4.1 we see that c/t (I
r0) = c/t (I

r) can only occur for
boundary solutions. Thus, except for in boundary solutions we see that Et(Ir

0
) > Et(I

r)
will always hold for Ir

0
< Ir.

The dependence of regular excess expenditure on the next period�s additional in-
come realization from the previous lemma will also become apparent in the following
proposition. This proposition shows that under REE adjustment the optimal expected
value function EV � is generally not a �xed point of the adjustment procedure.

Proposition 9.4.1 Let a model be given that satis�es axioms 4.4.1 and 9.1.3, with
instantaneous utility u0 that satis�es axiom 8.1.1, and with additional income random
variables It+1 that satisfy 9.1.1. Suppose that at time t the prevailing expected value
function EV (t) is identical to the optimal expected value function EV �. Then, for any
given budget mt 2 R+, the smallest realization I0 for It+1 will yield a non-negative reg-
ular excess expenditure: Et(mt; I

0) � 0, and the largest realization IR for It+1 will yield
Et(mt; I

R) � 0. Moreover, if limc!1 u
0
0(c) = 0, then there is at most one additional

income realization Ir such that the corresponding regular excess expenditure will always
equal zero: Et(mt; I

r) = 0, for all mt.

Proof. Given is a model with a discount factor 0 < � < 1, and an instantaneous
utility function u0 that satis�es axiom 8.1.1. In all periods after the �rst an uncertain
additional income is obtained, which is represented by the random variable It. These
random variables are IID distributed; in every period the corresponding random variable
can take a �nite number R � 1 of realizations fI0; I1; :::; IRg (where Ir 2 R+ for all
0 � r � R) with probabilitiesf�0; �1; :::; �Rg. Also given is that in some speci�c period
t, the prevailing expected value function EV (t) is identical to the optimal expected value
function: EV (t)(m) = EV �(m), for all m 2 R+.
Then given a budget mt 2 R+, and additional income It+1, regular excess expendi-

ture Et(mt; It+1) is as before given by Et(mt; It+1) = c
�
t (mt)� c/t (mt; It+1). Here c�t (mt)

is part of a pair that solves

max
(ct;st):ct+st�mt

u0(ct) + �EV
�(st) = max

ct+st�mt

u0(ct) + �

RX
r=0

�rV
�(st + I

r):

As in the previous lemma, additional income It+1 does not in�uence the decision
problem that c�t (mt) is supposed to maximize, so the period-t choice c�t (mt) does not
depend on the period-(t+ 1) additional income It+1.
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Then, in period t + 1, c/t (mt; It+1) is determined as part of a tuple
(c/t (mt; It+1); c

/
t+1(mt; It+1); s

/
t+1(mt; It+1)) that solves the hypothetical maximization

problem
max

ct+st�mt

u0(ct) + � max
ct+1+st+1�st+It+1

u0(ct+1) + �EV
�(st+1):

And since the optimal value function V � solves the functional equation

V �(mt+1) = max
ct+1+st+1�mt+1

u0(ct+1) + �EV
�(st+1); (1)

we see that c/t (mt; It+1) is also part of a solution to

max
ct+st�mt

u0(ct) + �V
�(st + It+1):

N First suppose that in period t + 1 the smallest realization I0 for the additional
income random variable It+1 occurs. Then for all Ir we have that Ir � I0, and by strict
concavity of V � we know that V �0(st + Ir) � V �0(st + I0) holds for all st 2 R+. This
also implies that

EV �0(st) =
RX
r=0

�rV
�0(st + I

r) � V �0(st + I0)

holds for all st 2 R+. Then by lemma 8.4.1 we see that c�t (mt) � c/t (mt; I
0) will always

hold, and indeed we get that Et(mt; I
0) = c�t (mt)� c/t (mt; I

0) � 0, for any budget mt.
N Then suppose that the largest realization IR for the random variable It+1 occurs.

Then similarly, for all Ir we have that IR � Ir, so by strict decreasingness of V �0

we see that V �0(st + Ir) � V �0(st + I
R), and thus that EV �0(st) � V �0(st + I

R) will
hold for all st 2 R+. With lemma 8.4.1 we get that c�t (mt) � c/t (mt; I

R), and indeed
Et(mt; I

R) = c�t (mt)� c/t (mt; I
R) � 0 is satis�ed for all budgets mt 2 R+.

N Then additionally suppose that limc!1 u
0
0(c) = 0 holds, and suppose that the last

part of the proposition is not true. That is, suppose that there are two realizations Ir

and Ir
0
(with Ir

0 6= Ir) for the additional income random variable It+1, that will both
yield that Et(mt; I

r0) = Et(mt; I
r) = 0 for all budgets mt 2 R+. Then for all mt it

needs to hold that c�t (mt) = c
/
t (mt; I

r0), and that c�t (mt) = c
/
t (mt; I

r). As seen above,
c�t (mt) does not depend on the additional income realization, so we must also have that
c/t (mt; I

r0) = c/t (mt; I
r) for all mt.

If for some mt it would hold that 0 < c/t (mt; I
r0) = c/t (mt; I

r) < mt, then we should
have that

u00(c
/
t (mt; I

r)) = �V �0(mt � c/t (mt; I
r) + Ir);

and similarly that

u00(c
/
t (mt; I

r0)) = �V �0(mt � c/t (mt; I
r0) + Ir

0
):

However, u00(c
/
t (mt; I

r0)) needs to equal u00(c
/
t (mt; I

r)), while by strict concavity of V �

we know that V �0(mt� c/t (mt; I
r)+ Ir) can never be equal to V �0(mt� c/t (mt; I

r0)+ Ir
0
).

Thus 0 < c/t (mt; I
r0) = c/t (mt; I

r) < mt is not possible.
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Therefore, for c�t (mt), c/t (mt; I
r0) and c/t (mt; I

r), we should get boundary solutions
for all budgets. And it can be shown (e.g. Luenberger [28], p. 462) that the function
c�t (mt) will be continuous in mt. Therefore one of the following two cases must occur,
and we will show that both cases yield a contradiction.
(I) c�t (mt) = c

/
t (mt; I

r) = c/t (mt; I
r0) = 0, for all mt,

(II) c�t (mt) = c
/
t (mt; I

r) = c/t (mt; I
r0) = mt, for all mt.

If case (I) holds, then we must have that u00(0) � �V �0(mt+ I
r) for all mt. However,

in subsection 9.1.2 we saw that if u0 satis�es axiom 8.1.1, so will V �, so that V � is
di¤erentiable on R++. Thus for all mt > 0 it will hold that V �0(mt+ I

r) <1, and with
u00(0) =1, we see that case (I) is impossible.
If case (II) holds, then we must have that u00(mt) � �V �0(Ir) for all mt. However,

since V � solves (1), by lemma 8.4.2 we know that V �0(Ir) � u00(Ir) > 0. Therefore since
limc!1 u

0
0(c) = 0 holds, for mt large enough u00(mt) will drop below �V �0(Ir

0
) > 0, so

that case (II) is also impossible.
Hence, we indeed see that there cannot be two realizations for the additional income

random variable that will both yield regular excess expenditures equal to zero for all
budgets.

The above proposition shows that if limc!1 u
0
0(c) = 0 holds, there is at most one

additional income realization Ir
0
that will always yield a regular excess expenditure

equal to zero, given EV (t) = EV �. Thus, such an additional income realization that
always yields a zero REE need not exist. If there would exist one such additional income
realization Ir

0
that would always yield a zero REE, then obviously in all periods this

realization Ir
0
would only occur with probability �r0 < 1. For all other realizations the

regular excess expenditure would not (always) equal zero. In fact, by the above lemma
and the above proposition, for all Ir > Ir

0
it would hold that Et(mt; I

r) � 0 for all
mt 2 R+ and Et(mt; I

r) < 0 for some mt, and for all Ir
00
< Ir

0
it would hold that

Et(mt; I
r00) � 0 for all mt 2 R+ and Et(mt; I

r) > 0 for some mt.
If there is no realization Ir

0
that always yields a regular excess expenditure equal to

zero, then Et(mt; I
r) = 0 will only occur for speci�c combinations of Ir and mt.

From the above proof we see that the condition limc!1 u
0
0(c) = 0 that is needed

for this proposition is only used to rule out the possibility of boundary solutions where
all is spent (for c�t (mt), c/t (mt; I

r) and c/t (mt; I
r0)). If this condition limc!1 u

0
0(c) = 0

is not satis�ed, then there may exist multiple additional income realizations that al-
ways yield a zero REE. In fact, then it may even happen that REE will equal zero
for all additional income realizations, given EV (t) = EV �. If indeed limc!1 u

0
0(c) > 0

holds, then from the last part of the above proof we can see that if the smallest ad-
ditional income realization I0 is su¢ ciently large (if limc!1 u

0
0(c) � �V �0(I0)), then

it will hold that u00(mt) � �V �0(I0) � �V �0(Ir), and thus that c/t (mt; I
r) = mt for

all mt and all realizations Ir. The above condition on I0 would also imply that
limc!1 u

0
0(c) � �V �0(I0) � �EV �0(0), which yields that u00(mt) � �EV �0(0), and thus

that c�t (mt) = mt for all mt. In this case it would indeed hold that Et(mt; I
r) = 0 for

all mt and all realizations Ir, as only boundary solutions where all is spent will occur.
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More interestingly, though, if the condition limc!1 u
0
0(c) = 0 is satis�ed, then with

the above proposition we can see that in the present setting the conditions needed for
convergence towards optimality will not be met, and in fact that convergence towards
optimality will generally not occur. Conditions 7.3.1, 7.3.2 and 7.3.3 were needed to
prove that convergence towards optimality will occur. In the previous section we saw
that condition 7.3.1 (that a CIS exists) will hold if and only if the initial expected value
function is an a¢ ne transformation of the optimal expected value function. However,
even in situations where condition 7.3.1 does hold, condition 7.3.2 will not hold in the
present setting.
Condition 7.3.2 entailed that the consistency-inducing scalar should be stable, i.e.

that given an initial expected value function EV (0) and a CIS e�, setting �t = ~� would
always yield Et = 0. If given EV (0), ~� is a consistency-inducing scalar, then EV (0)

must be of the form EV (0)(m) = ~�EV �(m) + �, for some � 2 R. Then setting �t = ~�
in some period t would give that the time-t expected value function EV (t) = ��1t EV

(0)

would equal ~�
�1
(~�EV � + �) = EV � + ~�

�1
�. As in proposition 8.4.2 the constant ~�

�1
�

does not in�uence (regular) excess expenditure, and from (the last part of) the previous
proposition we know that the optimal expected value function EV � will not always yield
an excess expenditure equal to zero.
Thus condition 7.3.2 is violated, so that proposition 7.3.1 cannot be applied. Of

course, conditions 7.3.2 and 7.3.3 were only su¢ cient for convergence towards opti-
mality to occur, so just the fact that condition 7.3.2 is not satis�ed does not prove
that convergence towards optimality will not occur. In fact, in the present setting
convergence towards optimality can occur, although it will only occur in very special
circumstances.
For instance, if limc!1 u

0
0(c) = 0 holds, then setting �t = ~� will yield Et > 0 for

It+1 = I0 and some mt.38 Regular excess expenditure Et is continuous in �t (see e.g.
Luenberger ([28] p.462)). Therefore for any �0 < ~�, but with �0 su¢ ciently close to e�,
38To see this, the above proposition shows that Et(mt; I

0) � 0 will always hold, and here we will
see that I0 cannot be the unique realization that always yields Et = 0 for �t = ~�.
Suppose that for some mt it holds that 0 < c�t (mt) = c

/
t (mt; I

0) < mt. Then it should hold that

u00(c
�
t (mt)) = �EV

�0(mt � c�t (mt));

and similarly that
u00(c

/
t (mt; I

0)) = �V �0(mt � c/t (mt; I
0) + I0):

Thus, c�t (mt) = c/t (mt; I
0) implies that the two left-hand-sides equal, and for s�t = mt � c�t (mt), the

above equalities imply that EV �0(s�t ) = V
�0(s�t + I

0). However, this cannot hold as by strict concavity
of V � we know that

EV �0(s�t ) =
RX
r=0

�rV
�0(s�t + I

r) < V �0(s�t + I
0):

Moreover, as in case (I) from the last part of the above proof it can be seen that c�t (mt) = c
/
t (mt; I

0) =
0 is not possible for any mt.
Finally, as in case (II) from the last part of the above proof c�t (mt) = c/t (mt; I

0) = mt can only
occur for small mt.
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setting �t = �
0 would also yield Et > 0 formt and I0. (This would also violate condition

7.3.3.) From the last part of section 6.5 we know that in this case all subsequent
adjustment products will be smaller than �t = �

0. In this case adjustment does not work
in the right direction, and after this we can never get convergence of the adjustment
products towards ~�.
Similarly, setting �t = ~� would yield Et < 0 for It+1 = IR and some mt. And for

any �0 larger than ~� but su¢ ciently close to e�, setting �t = �0 would also yield Et < 0
for mt and IR, which would cause all subsequent adjustment products to be larger than
�t, so that convergence towards ~� will not occur.
We know that convergence towards optimality can only occur if EV (0) = e�EV �+�.

Then, convergence towards optimality that takes in�nitely long (where the two variables
�+mint and ��maxt never equal, but become arbitrarily close to each other and to e� as t
goes to in�nity) will only occur if Et > 0 does always occur for all �t > ~�, and if Et < 0
does always occur for all �t < ~�. However, as we have just seen, for �t close to e�, the
signs of excess expenditure will also depend on whether large or small additional income
realizations occur. Thus, adjustment may not always work in the right direction, and
for �t close to e� the probabilities �(Et > 0j�t;mt) and �(Et < 0j�t;mt) will both be
strictly smaller than one. Hence, convergence towards optimality that takes in�nitely
long may only occur with probability zero.
And convergence towards optimality in �nite time (where the two variables �+mint

and ��maxt are equal and equal to e� in and from some period t0 onwards) will only occur
in the special case where in some period t0 the prevailing expected value function would
be an a¢ ne transformation of the optimal expected value function: EV (t

0) = EV �+�t0,
and where the budget mt0 and the additional income realization Ir would incidentally
be such that Et0(mt0 ; I

r) = 0.

9.5 Convergence towards optimality with EEE adjustment
In the previous section we saw that in consumption/savings models with expected
utility, convergence towards optimality will generally not occur in the more basic case
of REE adjustment. In the present section we will consider the case of EEE adjustment,
and here we will see that under some circumstances convergence towards optimality will
occur.
The analysis in this section is similar to that of the previous chapter, and especially

to that of the �rst part of section 8.4 and subsection 8.4.1. We start with a proposition
that is a counterpart of proposition 8.4.1, it shows that expected excess expenditure
will always equal zero in some period if in that period the prevailing expected value
function equals the optimal expected value function. Recall from the previous section
that this property did not hold for regular excess expenditure.

Proposition 9.5.1 Let a model be given that satis�es axioms 4.4.1, 9.1.1 and 9.1.3,
and with an instantaneous utility that satis�es axiom 8.1.1. Then, if the period-t ex-
pected value function EV (t) is identical to the optimal expected value function
EV (t) = EV �, the corresponding expected excess expenditure will be zero: Ft = 0.
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Proof. Given is a model with an instantaneous utility function u0 that satis�es axiom
8.1.1 and with a discount factor 0 < � < 1. The additional periodical incomes It, for t �
1, are IID distributed and each can take a �nite number of realizations fI0; I1; :::; IRg
(where Ir 2 R+ for all 0 � r � R) with probabilities f�0; �1; :::; �Rg. The expected
value function that is used in period t is identical to the optimal expected value function:
EV (t)(m) = EV �(m), for all m 2 R+. We will now show that, for any period-t budget
mt 2 R+ it will hold that c�t = c�t , so that Ft = 0.
The quantity c�t is part of a solution to

max
ct+st�mt

u0(ct) + �EV
�(st) = max

ct+st�mt

u0(ct) + �

RX
r=0

�rV
�(st + I

r).

The optimal value function V � solves the functional equation

V �(m) = max
c+s�m

u0(c) + �EV
�(s);

so that c�t will also be part of solution to the following problem:

max
ct+st�mt

u0(ct) + �
RX
r=0

�r[ max
ct+1+st+1�st+Ir

u0(ct+1) + �EV
�(st+1)].

Of course, the quantity c�t would be determined as part of a plan that maximizes
exactly this last problem. And since instantaneous utility and the value functions are
strictly concave, so is their sum, and we see that solutions are unique. Thus indeed we
�nd that c�t = c

�
t , and that Ft = 0.

The previous proposition implies that the optimal expected value function EV � is
a �xed point of the adjustment procedure. The adjustment function satis�es a�t = 1
if Ft = 0, so this proposition implies that if at time t the prevailing expected value
function EV (t) is identical to the optimal expected value function EV �, then in period
t + 1 the adjusted expected value function EV (t+1) = a�1�t EV

(t) will also equal the
optimal expected value function EV �.
The next proposition is a counterpart of proposition 8.4.2, and it shows that adding a

constant to expected value functions does not change the resulting excess expenditures.

Proposition 9.5.2 Let a model be given that satis�es axioms 4.4.1, 9.1.1 and 9.1.3,
and with an instantaneous utility that satis�es axiom 8.1.1. Suppose we are given two
period-t expected value functions EV

(t)
: R+ ! R+ and EV (t) : R+ ! R+ that satisfy

axiom 8.1.1, and that are such that EV
(t)
(m) = EV (t)(m) + �, for all m 2 R+ and

some constant � 2 R+. Then for any budget mt 2 R+ the corresponding expected excess
expenditures F t and F t, will always satisfy F t = F t.

Proof. Given is a model with an instantaneous utility function u0 that satis�es axiom
8.1.1, and a discount factor 0 < � < 1. The additional periodical incomes It, for t � 1,
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are IID distributed and each can take a �nite number of realizations. Also given are
two period-t expected value functions EV

(t)
: R+ ! R+ and EV (t) : R+ ! R+ that

satisfy axiom 8.1.1, and that di¤er by a constant: EV
(t)
(m) = EV (t)(m) + �, for all

m 2 R+ and some scalar � 2 R+. Then, given any initial budget mt, expected excess
expenditure can be determined for both value functions, and we want to show that
F t = c

�
t � c�t will equal F t = c�t � c�t .

The choice (c�t ; s
�
t ) that will be made in period t, given the prevailing expected value

function EV (t)(:) will attain

max
ct+st�mt

u0(ct) + �EV
(t)(st):

Now, it is mathematically obvious that a solution to this last problem will also solve

max
ct+st�mt

u0(ct) + �EV
(t)(st) + �� = max

ct+st�mt

u0(ct) + �EV
(t)
(st):

This last maximization problem is of course exactly the one that (c�t ; s
�
t ) is supposed to

solve. Therefore, by strict concavity (u0, EV
(t)
and EV (t) satisfy axiom 8.1.1) solutions

are unique, and we see that c�t = c
�
t .

The variable c�t will be part of a plan that solves

max
ct+st�mt

u0(ct) + �EI [ max
ct+1+st+1�st+I

u0(ct+1) + �EV
(t)(st+1)].

Then, c�t will also be part of a plan that solves

max
ct+st�mt

u0(ct) + �EI [ max
ct+1+st+1�st+I

u0(ct+1) + �EV
(t)(st+1) + ��] =

max
ct+st�mt

u0(ct) + �EI [ max
ct+1+st+1�st+I

�u0(ct+1) + �EV
(t)
(st+1)]:

The quantity c�t maximizes this last problem, and by strict concavity both c
�
t and c

�
t

will be unique, so that c�t = c
�
t must hold.

Hence the expected excess expenditures F t and F t will indeed satisfy

F t = c
�
t � c�t = c�t � c�t = F t:

As in proposition 8.3.1, with the above two propositions it can be shown that in
the present setting condition 7.3.2 (that the CIS is stable) holds. This was one of three
conditions that together were su¢ cient for establishing that convergence towards opti-
mality will occur. Here we will not explicitly prove that this condition holds. Instead,
a proof is implicit in the proof of the next proposition, which directly establishes that
(or when) convergence towards optimality will occur.
But �rst we need a lemma. The next lemma is a counterpart of lemma 8.4.5. It

shows that in the present setting EEE adjustment always works in the right direction.
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If an expected value function equals a scalar times the optimal expected value function
EV (t) = 
tEV

�, then for 
t < 1 the expected excess expenditure will be strictly positive,
which will be followed by a strictly heavier weight for savings, so that EV (t+1) =

t+1EV

� with 
t+1 > 
t. And conversely, if 
t > 1, then the lemma shows that expected
excess expenditure will be strictly negative, which will be followed by a strictly smaller
weight for savings, so that 
t+1 < 
t. This lemma would also be su¢ cient for showing
that in the present setting condition 7.3.3 (that adjustment products larger (smaller)
than the CIS will yield positive (negative) excess expenditures) will hold. Again, a
proof that this condition holds is implicit in the proof of the next proposition.

Lemma 9.5.1 Let a model be given that satis�es axioms 4.4.1, 9.1.2 and 9.1.3, and
with an instantaneous utility that satis�es axiom 8.1.2. Then, for some period t, suppose
given a budget mt > 0 and an expected value function EV (t) = 
tEV

� that equals a
scalar 
t 2 R++ times the optimal expected value function EV � : R+ ! R+. Then

t < 1 implies that the corresponding expected excess expenditure will satisfy Ft > 0,
and 
t > 1 implies that Ft < 0.

Proof. Given is a model with an instantaneous utility function u0 that satis�es axiom
8.1.1 and u00(0) =1, and with a discount factor 0 < � < 1. In every period after period
0 an uncertain additional income It will be obtained. The random variables It, for t � 1,
are IID distributed and take only a �nite number of realizations fI0; I1; :::; IRg with
probabilities f�0; �1; :::; �Rg. The smallest additional income realization equals zero:
I0 = 0.
Then, for some period t, suppose given an expected value function EV (t) : R+ ! R

that equals a scalar 
t 2 R++ times the optimal expected value function
EV � : R+ ! R+ that solves the functional equation: EV (t)(m) = 
tEV

�(m), for
all m 2 R+.
N First suppose that 
t 2 (0; 1). We now want to establish that for any given

budget mt > 0, the expected excess expenditure Ft = c�t � c�t is strictly positive. The
quantity c�t denotes the actual period-t choice corresponding to EV

(t), given the budget
mt. That is, there is a s�t 2 R+ such that (c�t ; s�t ) solves

max
ct+st�mt

u0(ct) + �
tEV
�(st) = (1)

max
ct+st�mt

u0(ct) + �

RX
r=0

�r
tV
�(st + I

r): (1�)

The second term that the excess expenditure depends on is c�t , which is determined
in period t+ 1 as part of a plan that solves

max
ct+st�mt

u0(ct) + �EI [ max
ct+1+st+1�st+I

u0(ct+1) + �
tEV
�(st+1)] = (2)

max
ct+st�mt

u0(ct) + �

RX
r=0

�r[ max
ct+1+st+1�st+Ir

u0(ct+1) + �
tEV
�(st+1)]: (2�)
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We now write the function W
t : R+ ! R as the last part of this last formula within
the brackets:

W
t(mt+1) := max
ct+1+st+1�mt+1

u0(ct+1) + �
tEV
�(st+1); (3)

and we de�ne the function EW
t : R+ ! R as the expectation of W
t with respect to
additional income:

EW
t(st) :=
RX
r=0

�rW
t(st + I
r): (4)

Then we can also write (2�) in analogy to (1) as

max
ct+st�mt

u0(ct) + �EW
t(st): (2�)

For the �rst part of the proposition, we want to show that c�t > c�t , by showing
that the functions 
tEV

� and EW
t satisfy the conditions required for the second
part of lemma 8.4.1. Recall that lemma 8.4.1 applies for functions V : R+ ! R and
V : R+ ! R that satisfy axiom 8.1.1, and although thus far the lemma has only been
applied to regular value functions, it can also be applied to expected value functions, as
long as they satisfy axiom 8.1.1. Indeed, in subsection 9.1.2 we saw that if u0 satis�es
axiom 8.1.1, then so do V � and EV �. Then by lemma 8.4.2 the functionW
t will satisfy
axiom 8.1.1, and consequently the function EW
t will also satisfy axiom 8.1.1.
Then, to apply lemma 8.4.1 we require that 
tEV

� and EW
t satisfy the following
conditions:
(I) 
tEV

�0(st) < EW
0

t
(st), for all st 2 R+,

(II) �
tEV
�0(mt) < u

0
0(0),

(III) �EW 0

t
(0) > u00(mt).

(III) For the third condition, recall that EW 0

t
(0) =

PR
r=0 �rW

0

t
(Ir), and that from

lemma 8.4.2 we know thatW 0

t
(Ir) � u00(Ir). The smallest additional income realization

is I0 = 0, and because of u00(0) =1 we see thatW 0

t
(I0) =1. Therefore �0 > 0 implies

that EW 0

t
(0) = 1. On the other hand, mt > 0 implies that u00(mt) 2 R, and this

condition is met.
(II) The second condition reads �
tEV

�0(mt) < u00(0). Again, EV �0(mt) =PR
r=0 �rV

�0(mt+I
r), and V � satis�es lemma 8.1.1, somt > 0 implies that V �0(mt+I

r) 2
R for all Ir, and thus that EV �0(mt) 2 R. Hence by u00(0) =1 this condition is satis-
�ed.
(I) The �rst condition reads 
tEV

�0(st) < EW
0

t
(st), or

RX
r=0

�r
tV
�0(st + I

r) <

RX
r=0

�rW
0

t
(st + I

r);

for all st 2 R+.
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This requirement will be ful�lled if the functions 
tV
� andW
t satisfy: 
tV

�0(mt+1) <
W 0

t
(mt+1), for all mt+1 2 R+. To show that this is indeed the case, we want to apply

the second part of lemma 8.4.3. As before, the function W
t is de�ned by (3), so that
it is an example of a function W
, as de�ned in lemma 8.4.3. And the function 
tV

�

satis�es

tV

�(mt+1) = max
ct+1+st+1�mt+1


tu0(ct+1) + �
tEV
�(st+1)

so that it is an example of a function 
W1, as de�ned in lemma 8.4.3. Now, since

t < 1, the second part of lemma 8.4.3 can be applied if the additional assumption
�EV 0(0) � u00(0) is satis�ed. This additional assumption is simply implied by u00(0) =
1. Thus, lemma 8.4.3 does apply to show that

W 0

t
(mt+1) > 
tV

�0(mt+1);

for all mt+1 2 R+. This in turn implies that 
tEV �0(st) < EW 0

t
(st), and the �rst

condition is satis�ed.
Thus indeed all conditions are satis�ed, so that c�t > c

�
t , and Ft > 0.

N A similar reasoning holds for the case that 
t > 1. Then we want to show that
c�t < c�t , by using the second part of lemma 8.4.1. To be able to use this lemma, the
functions 
tEV

� and EW
t need to satisfy the conditions:
(I�) 
tEV

�0(st) > EW
0

t
(st), for all st 2 R+,

(II�) �EW 0

t
(mt) < u

0
0(0),

(III�) �
tEV
�0(0) > u00(mt).

Condition (III�) can be shown to hold in a way similar to (III) above. We know
that EV �0(0) =

PR
r=0 �rV

�0(Ir), and V � solves the functional equation, so by lemma
8.4.2 we know that V �0(Ir) � u00(I

r). Therefore, I0 = 0 and u00(0) = 1 imply that
V �0(I0) = 1, and that EV �0(0) = 1. And mt > 0 implies that u00(mt) 2 R, and this
condition is met.
For condition (II�), recall that EW 0


t
(mt) =

PR
r=0 �rW

0

t
(mt+ I

r). The functions u0
and EV � satisfy axiom 8.1.1, and by lemma 8.4.2 so does W
t. This means that W
t

is di¤erentiable on R++, and by mt > 0 we see that W 0

t
(mt + I

r) < 1 for all Ir, and
that EW 0


t
(mt) <1. Then by u00(0) =1 this condition is satis�ed.

Condition (I�) can be shown to hold like (I) above, by reversing the inequalities.
Thus indeed all conditions are satis�ed, so that c�t < c

�
t , and Ft < 0.

One of the conditions that are needed for this lemma (u0 satisfying axiom 8.1.2)
implies that marginal instantaneous utility becomes in�nitely large near zero: u00(0) =
1. As in the discussion before proposition 8.4.4, this condition ensures that all actual
expenditures c�t and all ex-post optimal expenditures c

�
t will be strictly positive: c

�
t > 0

and c�t > 0. Moreover, like in the discussion before proposition 8.4.4, the optimal value
function V � solves the functional equation (as in subsection 9.1.2) so by lemma 8.4.2
we know that V �0(0) � u00(0) = 1, and the derivative of the optimal value function
will also become in�nitely large near zero. And if I0 = 0 (and axiom 8.1.2) holds, then
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consequently the derivative of the optimal expected value function will also become
in�nitely large near zero: EV �0(0) =

PR
r=0 V

�0(Ir) =1.
Then, EV (t) = 
tEV

� implies that EV (t)0(0) = 1, so that c�t < mt will always
hold. And similarly, EV (t) = 
tEV

� implies that W 0

t
(0) = maxf�
tEV �0(0)); u00(0)g =

1, and c�t < mt will always hold. Thus, like in the discussion before proposition 8.4.4,
u00(0) = 1, I0 = 0 and EV (t) = 
tEV

� imply that c�t and c
�
t will always be internal

solutions, which enables us to establish the above result.
With the previous lemma we can now establish that convergence towards optimality

will occur, if the initial expected value function is an a¢ ne transformation of the optimal
expected value function: EV (0) = 
0EV

�+�0, for some 
0 and some �0. The following
proposition is a counterpart of proposition 8.4.4.

Proposition 9.5.3 Let a model be given that satis�es axioms 4.1.1, 4.4.1, 9.1.2, 9.1.3
and 9.1.4, and with an instantaneous utility that satis�es axiom 8.1.2. Suppose given
an initial budget m0 2 R++, and an initial expected value function EV (0) that is an
a¢ ne transformation of the optimal expected value function: EV (0) = 
0EV

� + �0, for
some 
0 2 R++ and some �0 2 R. If subsequently the learning algorithm (based on
EEE adjustment) is used, then convergence towards optimality will occur.

Proof. This proof follows the same lines as the convergence proof under certainty
and without additional income (proposition 8.4.4). Given is a model with a discount
factor 0 < � < 1, and an instantaneous utility function u0 that satis�es axiom 8.1.1
and u00(0) = 1. The additional periodical incomes It, for t � 1, are IID distrib-
uted and each can take a �nite number of realizations, the smallest realization being
I0 = 0. Also given are an initial budget m0 2 R++, and an initial expected value
function EV (0) that is an a¢ ne transformation of the optimal expected value function:
EV (0)(m) = 
0EV

�(m) + �0, for some 
0 2 R++, some �0 2 R and all m 2 R+.
Subsequently, a sequence of expected value functions (EV (t))1t+1 is generated from

the initial expected value function EV (0) by the learning algorithm that uses min-max
adjustment,39 which depends on expected excess expenditure. Adjustments are made
multiplicatively, so that any EV (t) in the sequence (EV (t))1t=0 as generated by the
learning algorithm from EV (0), will be such that

EV (t) = ��1t EV
(0) = ��1t 
0EV

� + ��1t �0;

where �t denotes the adjustment product in period t. If we de�ne 
t and �t by 
t :=
��1t 
0 and by �t := �

�1
t �0, then we see that the expected value function EV

(t) will also
be an a¢ ne transformation of the optimal expected value function: EV (t) = 
tEV

�+�t.
By proposition 7.1.1 any sequence of adjustment products (�t)1t=0 will converge. Here

however, we want to establish that convergence towards optimality will occur. To see
that this will indeed occur, we need to verify that the model is such that the conditions
needed for proposition 7.3.1 (conditions 7.3.1, 7.3.2 and 7.3.3) are satis�ed.

39For any � > 1, � < 1 and � 2 (0; 1).
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As for condition 7.3.1, we know from section 9.3 that givenEV (0), 
0 is a consistency-
inducing scalar, so that this condition is satis�ed.
As for condition 7.3.2, we need to establish that for any time t, setting �t = 
0 will

yield Ft = 0 for all mt. If �t = 
0, then we will have that

EV (t)(m) = ��1t EV
(0)(m) = 
�10 (
0EV

�(m) + �0) = EV
�(m) + 
�10 �0;

so that by propositions 9.5.2 and 9.5.1 we know that excess expenditure will always
equal zero: Ft = 0 for all mt 2 R+.
As for condition 7.3.3, we need to establish that for any time t, setting �t > 
0 will

yield Ft > 0 for all mt, and that setting �t < 
0 will yield Ft < 0 for all mt. Now,
�t > 
0 would imply that 
t = �

�1
t 
0 < 1, and by proposition 9.5.2 and by the previous

lemma we know that the excess expenditure will be strictly positive, as long as mt > 0
is satis�ed. Similarly, �t < 
0 would imply that 
t = �

�1
t 
0 > 1, and with the previous

lemma we see that the excess expenditure will be strictly negative, as long as mt > 0
is satis�ed.
Therefore, here it only remains to be shown that for any m0 > 0 given, we will

also get that mt > 0 will hold for all elements mt out of a sequence of budgets (mt)
1
t=0

that will result from the choices of a decision-maker whose behaviour is generated by
the learning algorithm, given the initial expected value function EV (0). To show that
this holds, we will use an induction argument. For t = 0, it was already given that
m0 > 0. Thus, what is left to prove, is that mt > 0 implies that mt+1 > 0. Suppose
that mt > 0. Then in period t, the consumption choice c�t that will be chosen, will be
part of a solution to

max
ct+st�mt

u0(ct) + �EV
(t)(st):

Now, EV (t)0(0) = ��1t 
0EV
�0(0), and from the proof of the previous lemma, we know

that EV �0(0) = 1. This implies that c�t < mt must hold, and we get that mt+1 =
s�t + It+1 � s�t = mt � c�t > 0. Thus indeed we have established that mt > 0 will hold
for all t.

Hence, conditions 7.3.1, 7.3.2 and 7.3.3 are satis�ed, and proposition 7.3.1 shows
that the sequence of adjustment products (�t)1t=1 converges to the CIS ~� = 
0, so that
convergence towards optimality occurs.

Recall from subsection 6.4.2 that, when compared with regular excess expenditure,
the idea behind expected excess expenditure was to disregard the known information
about the new additional income realization. In period t+ 1, when excess expenditure
for period t is determined, the additional income realization It+1 is known. Whereas
REE for period t depends on the additional income realization It+1, this information
is not used in the determination of EEE. Instead, EEE uses the information known
at time t about It+1, which, in an expected utility model, is given by a probability
distribution for It+1.
While at �rst sight it may have seemed strange to disregard readily available in-

formation in the process of re-evaluating past choices (and updating time preferences),
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from this and the previous section we may see why this might not seem such a bad idea
after all. As already mentioned in subsection 6.4.2, from the previous sections we see
that in expected utility models, the EEE measure is more e¢ cient than the REE mea-
sure in terms of moving towards optimality. From this and the previous section we can
see why. If a probability distribution is given for It+1, then adjustments conditioned
on this probabilistic information will reliably yield improvements, while adjustments
conditioned on the coincidental occurrences of small of large realizations may lead to
moving away from optimality, rather than moving towards optimality.

9.6 Convergence of choices
Like in section 8.5, here we shift our attention from convergence of ad hoc preferences
to convergence of choices. We investigate whether the choices of a consumer whose
behaviour would be generated by the learning algorithm, will converge towards choices
that would be made by a rational utility maximizer in the same setting.
The next proposition is a counterpart to proposition 8.5.1, it shows that convergence

towards optimality in terms of ad hoc preferences, also implies convergence towards
optimality in terms of the corresponding sequence of consumption functions.

Proposition 9.6.1 Let a model be given that satis�es axioms 4.1.1, 4.4.1, 9.1.1, 9.1.3,
and 9.1.4, and with an instantaneous utility u0 that satis�es axiom 8.1.1. Suppose that
given an initial expected value function EV (0) that satis�es axiom 8.1.1, the learning
algorithm is used, and that preferences do converge to optimality. Then, the sequence
of choice functions (c�t (m))

1
t=0, as de�ned by

c�t (m) := arg max
0�ct�m

u0(ct) + �EV
(t)(m� ct);

that corresponds to the sequence of expected value functions (EV (t))1t=0 as generated by
the learning algorithm from EV (0), will converge to the optimal choice function ~c(m),
as de�ned by

~c(m) := arg max
0�c�m

u0(c) + �EV
�(m� c):

Proof. This proof will follow the same lines as that of proposition 8.5.1. Given is a
model with an instantaneous utility function u0 that satis�es axiom 8.1.1 and a discount
factor 0 < � < 1. The additional periodical incomes It, for t � 1, are IID distributed
and each can take a �nite number of realizations. Given an initial expected value
function EV (0) that satis�es axiom 8.1.1, the learning algorithm is used and preferences
converge to optimality. That is, for (EV (t))1t=0 = (��1t EV

(0))1t=0, the corresponding
sequence of adjustment products (�t)1t=0 converges to some consistency-inducing scalar
~�. The existence of such a consistency-inducing scalar ~� implies that the initial expected
value function must be an a¢ ne transformation of the optimal expected value function:
EV (0) = ~�EV � + �.
For any period t the choice function c�t : R+ ! R+ returns for any budget m

available in period t, the choice c�t (m) that solves

max
0�ct�m

u0(ct) + ��
�1
t EV

(0)(m� ct):
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We can capture such a sequence of choice functions by the single function
f : R+ � R++ ! R+, as de�ned by

f(m; �) := arg max
0�c�m

u0(c) + ��
�1EV (0)(m� c);

for all m 2 R+ and all � 2 R++. Then we see that c�t (m) = f(m; �t). By Luenberger
([28], p.462) the function f(m; �) must be continuous in �. And the sequence of adjust-
ment products (�t)1t=0 converges to the scalar ~�, so that the sequence of choice functions
(c�t (m))

1
t=0 = (f(m; �t))

1
t=0 will converge

40 to f(m; ~�).
For any given m 2 R+, this limit quantity f(m; ~�) solves

max
0�c�m

u0(c) + �~�
�1
EV (0)(m� c) =

max
0�c�m

u0(c) + �EV
�(m� c) + �~��1�:

And, by proposition 9.5.2 we see that for any given m 2 R+, the quantity ~c(m) must
also maximize this last maximization problem. By strict concavity, solutions are unique
and we see that ~c(m) = f(m; ~�). Indeed, (c�t (m))

1
t=0 converges to ~c(m).

In this chapter we have performed a similar analysis as in the previous chapter. We
considered when convergence towards optimality will take place in stationary consump-
tion/savings models of expected utility. We found that when adjustments are based
on regular excess expenditure, convergence towards optimality will generally not occur.
When adjustments are based on expected excess expenditure, we found that conver-
gence towards optimality will occur under some (rather speci�c) circumstances. Finally,
we considered the relation between convergence towards optimality of preferences and
convergence towards optimality of choice functions.

40Pointwise.
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10 Conclusions

In this concluding chapter we will look back at previous chapters and forward towards
possible generalizations, extensions, implications and applications of the ad hoc frame-
work. And we will discuss what the ad hoc framework can and cannot do.
As promised in previous chapters, here we will come back to some modelling choices

that were made in setting up the ad hoc framework, we will consider some modelling
choices that could alternatively have been made, and how these other choices might
change the resulting framework, and its possible implications. In this chapter we will
consider and interpret the implications of the current speci�cation of the ad hoc frame-
work. Most notably, we will try to answer whether optimal behaviour could be learned.
Also, we will present some ideas as to how the ad hoc framework could be used to
explain some behavioural irregularities, and we will consider the main shortcomings of
the ad hoc framework.

This chapter consists of �ve sections. The �rst section considers possible extensions
and generalizations of the learning approach taken in this work. The second section
comes back to the question why the min-max adjustment function was used to complete
the ad hoc framework instead of, for instance, a value-based adjustment function. The
third section reviews and interprets the results of chapters 7, 8 and 9, that investigated
convergence towards optimality. The fourth section will present some examples of how
the ad hoc framework could be used to explain some seemingly suboptimal types of
behaviour. Finally, the �fth section considers the main shortcomings of the current ad
hoc framework.

10.1 Possible extensions
Here we will �rst consider a few ways in which the learning approach that is presented
in this work can be extended. We will consider extensions of this learning approach
to other areas of economics, and we will consider extending the learning framework in
the regular consumer choice setting to allow for non-zero interest rates and borrowing.
Also, we will consider extending the analysis of chapter 5 to expected utility models.

In this work a new learning approach was used in a consumer choice setting, and
in a consumption/savings setting as a special case. The same, or a similar approach
to learning could perhaps also be taken in other areas of economics where individu-
als (or institutions) face dynamic optimization problems. It certainly seems that the
approach taken in this work, could be extended to those areas of economics where it
is standard practice to model time-separable objective functions that satisfy exponen-
tial discounting, and where dynamic programming could be used to �nd and describe
rational behaviour.

In chapter 2 time was explicitly modelled in the context of consumer choice. Initially
this modelling of time included an interest rate r � 0 and an implicit interest rate of
R = 1 + r (r and R were supposed constant). At the end of chapter 2 this possibility

204



10. CONCLUSIONS

of non-zero interest rates was dropped, and in the rest of this work we (implicitly)
assumed that r = 0, so that R = 1.
The possibility of a (constant) non-zero interest rate r > 0 could also be included

in the ad hoc framework as presented in chapters 4 and 6. Chapter 4 simply models
how choices between present consumption and savings would be made in any ad hoc
problem. In chapter 4 it is not yet speci�ed how these amounts of savings would
be related to next period�s budgets. Therefore interest rates have no place in the
story of chapter 4. The story of chapter 6 would almost be the same with non-zero
interest rates; all ad hoc preferences should be separable with instantaneous preferences
exogenous and comparable across periods, and time preferences would be updated by
means of an adjustment function that depends on excess expenditure. The only place
in chapter 6 where the relation between savings and next period�s budgets plays a role
in how the ad hoc framework is set up, is in section 6.4.2 where excess expenditure
is de�ned. Excess expenditure (both for REE and EEE) is de�ned as the di¤erence
between actual expenditure and ex-post optimal expenditure. Actual expenditure is
de�ned by a maximization problem over the single budget constraint pt � xt + st � mt,
here interest rates do not seem relevant here as no relation between st and mt+1 is
implicit in this speci�cation. The interest rate could appear in the determination of ex-
post optimal expenditure, as de�ned by a maximization problem over the twin budget
constraints pt � xt + st � mt and pt+1 � xt+1 + st+1 � Rst + It+1, here savings st would
lead to a budget of mt+1 = Rst + It+1. Hence constant interest rates could rather
straightforwardly be included in the ad hoc framework.
The ad hoc framework could even be extended to allow for uncertain (and thus

non-constant) interest rates. Then, like all time-(t + 1) information, the interest rate
Rt+1 (between periods t and t + 1) should be known at time t + 1, when the excess
expenditure of period t is determined. Then, ex-post optimal expenditure for period t
could simply depend on the realization of Rt+1 as it does on the realizations of other
uncertain variables, such as on the additional income realization It+1. Hence interest
rates could simply be treated in the same way as other uncertain information about
the future.
Thus allowing for non-zero interest rates would conceptually not make much of a

di¤erence; it would just change the way in which budgets would depend on savings
in chapter 6. For simpler notation (especially in chapters 5, 8 and 9, where relations
with the standard framework are considered) we opted for a zero interest rate. Thus,
extending the ad hoc framework to include a non-zero interest rate would mainly be a
question of bookkeeping.

In the current speci�cation of the ad hoc framework saving is possible while borrow-
ing is not possible. Somewhat similarly to the above ideas of including interest rates,
the ad hoc framework could also be generalized to allow for the possibility of borrowing,
by allowing for negative savings. In that case the lower bound for savings would not
be zero but rather strictly negative. Then the story of chapter 4 would not change,
except that ad hoc choice sets would not be of the form Xt�R+, but rather of the form
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Xt � [��;1) (for some � 2 R++) or Xt � R+. Again, the story of chapter 6 would be
more or less the same, except that budgets might be related to savings in a somewhat
more complicated way than in the current speci�cation of the ad hoc framework. Thus
borrowing could also be incorporated into the ad hoc framework.

The analysis of chapter 5 could be extended to include models of expected utility. In
chapter 5 a de�nition of consistency of an ad hoc utility function with a total Bernouilli
utility function (given a probability structure) was given, since in chapter 7 we needed a
formal de�nition of consistency under expected utility. However, besides this de�nition,
chapter 5 is completely set under certainty. Still, similar conclusions could probably
be drawn in expected utility models. For instance, it seems that the most important
propositions in chapter 5, propositions 5.2.1, 5.3.1 and 5.3.2 could be extended to
expected utility models.

10.2 Changing the adjustment function
As promised in chapter 6, here we come back to the question why the min-max ad-
justment function was used to complete the ad hoc framework. One alternative to
the min-max adjustment procedure was already speci�ed in Chapter 6, namely that of
value-based adjustment functions. Such a value-based adjustment function would be
given by a positive-valued function that would depend on, and decrease in, excess ex-
penditure (either REE or EEE) in the corresponding period, and that would return an
adjustment factor equal to one in case excess expenditure would equal zero. Like in the
case of min-max adjustment, under value-based adjustment we would get that a posi-
tive (negative) excess expenditure in the previous period would lead to an adjustment
factor that is smaller (larger) than one, so that the weighting for instantaneous utility
in time preference is decreased (increased). And in case of value-based adjustment,
the higher excess expenditure in the corresponding period, the smaller the adjustment
factor, and the further the weighting for instantaneous utility is decreased. One ex-
ample of such a value-based adjustment function that was given in chapter 6 was the
exponential adjustment function ~a(Et) = e��Et, for some � > 0, and for all Et 2 R. Such
value-based adjustment functions may seem quite straightforward, and in any case they
would be more in line with error-correction models (see subsection 3.4.2) than min-max
adjustment.
However, as noted in chapter 6, we opted to use the min-max adjustment function

mainly for reasons of tractability; value-based adjustment functions would be much
more di¢ cult to work with. Under value-based adjustment, convergence propositions
such as those in chapters 8 and 9 are much more di¢ cult to prove, if in fact they can
be proven.
To see this, recall that min-max adjustment is completely determined by the signs

of excess expenditures, and not by excess expenditure values. Of course, under value-
based adjustment these excess expenditure values will have to be taken into account.
In models of certainty, lemma 8.4.4 (and similarly lemma 9.5.1 for EEE adjustment)
shows that if the time-t value function equals a scalar times the optimal value function
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V (t) = 
tV
�, then 
t � 1 implies that Et � 0, and 
t � 1 implies that Et � 0. Note

that this result holds, irrespective of what adjustment function is used. Therefore, like
with min-max adjustment, this lemma shows that under value-based adjustment for
V (t) = 
tV

� it will hold that V (t+1) = 
t+1V
� with 
t+1 � 
t if 
t � 1, and with


t+1 � 
t if 
t � 1. Thus, like min-max adjustment, value-based adjustment does work
in the right direction.
How much smaller or larger 
t+1 will be than 
t, is under min-max adjustment

completely determined by the signs of previous excess expenditures. Under value-
based adjustment the question of how much smaller or larger 
t+1 will be than 
t,
is determined by the value of excess expenditure in the corresponding period. And
whereas the sign of Et is completely determined by 
t, the value of Et is also in�uenced
by the available budget mt.
Under min-max adjustment strict versions of the above implications (
t+1 < 
t

if 
t > 1 and 
t+1 > 
t if 
t < 1) are su¢ cient for convergence of the sequence of

t�s to one, and thus for convergence towards optimality to occur. Under value-based
adjustment strict versions of these implications would imply that if the sequence of

t�s converges, the limit would equal one, and convergence towards optimality would
occur. Thus, under value-based adjustment it will additionally have to be shown that
convergence will occur.
And under value-based adjustment the sequence of 
t�s need not necessarily con-

verge. To see this, consider the case where the initial value function equals a scalar
times the optimal value function V (0) = 
0V

�, then V (t) = 
tV
� where 
t equalsea(Et�1) �ea(Et�2) � ::: �ea(E0) � 
0. Then convergence of a sequence of 
t�s can only happen

if the sequence of ea(Et)�s would converge to one, which would in turn imply that the
sequence of Et�s should converge to zero. While it might seem that as the 
t�s get closer
to one, the Et�s would become closer to zero, this is complicated by the fact that excess
expenditure Et also depends on the available budget mt.
Under min-max adjustment, investigating convergence only requires considering se-

quences f
tg1t=0, as 
t+1 = a�t+1
t and the adjustment a�t+1 only depends on the signs of
excess expenditures �t+1 = (E0; :::; Et), which are completely determined by (
0; :::; 
t).
Under value-based adjustment, the period-(t+ 1) adjustment eaEt is determined by the
value of Et, that is in turn determined by 
t and bymt. Therefore under value-based ad-
justment, establishing convergence requires considering the sequences f
tg1t=0, fEtg1t=0
and fmtg1t=0 simultaneously, so that proofs will be much more complicated.
Maybe this problem that under value-based adjustment convergence need not occur,

could be dealt with by assuming that the learning process would become more subtle
over time, i.e. that the adjustment function would become less steep over time. This is
a common assumption in learning models. In our example of exponential value-based
adjustment this feature could be modelled by replacing the single �xed scalar � by a
sequence of scalars f�tg1t=0 that decreases over time. However, this would also mean that
investigating convergence would require keeping track of the sequences f
tg1t=0, fEtg1t=0,
fmtg1t=0 and f�tg1t=0 simultaneously. In any case, it seems clear that under value-based
adjustment establishing convergence would be much more complicated than under min-
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max adjustment.

10.3 Convergence towards optimality
As noted in the introductory chapter, one of the reasons for trying to construct a
learning model of consumption behaviour was to investigate whether (near-)optimal
consumption behaviour could be learned over time. In chapters 7, 8 and 9 the ad hoc
learning framework was used to try to answer this question.
We found that in the ad hoc framework convergence towards optimality can occur.

There are circumstances under which sequences of ad hoc preferences as generated by
the learning algorithm do converge towards consistent ad hoc preferences, and thus
towards rationality. However, the requirements under which this would occur are very
stringent. Not only the su¢ cient conditions for convergence towards optimality to occur
are very restrictive, so are the necessary conditions. Convergence towards optimality
requires the existence of a consistency-inducing scalar, and in section 7.2 a number of
necessary conditions were speci�ed for the existence of such a CIS.

One of these necessary conditions for the existence of a CIS was that models are
stationary, in the sense that a single time preference function should be consistent in
all periods. Learning entails using past experiences to determine current behaviour.
Therefore we can only expect to see learned behaviour approach optimality if past
economic conditions are a good predictor of future conditions. Thus stationarity in
some form or another seems indispensable for learned behaviour to approach optimality.
However, in a consumer choice setting stationarity assumptions already seem quite

strong. Stationarity is often assumed in economic modelling as it greatly enhances
tractability. However, in reality it seems questionable whether consumers face station-
ary conditions. In fact, it seems that we cannot know for sure that we are facing
stationary conditions, even if the economic environment has proven relatively stable in
the past, this is no guarantee that the same will hold in the future. Only at the end
of his lifetime can a consumer really determine whether his economic environment was
stationary.
Another necessary condition is that the initial time preference function should al-

ready have a functional structure that is similar to that of some consistent time prefer-
ence function. By inserting a single scalar into the initial time preference function, we
should arrive at a consistent time preference function. In consumption/savings models
this condition means that the initial (expected) value function should be an a¢ ne trans-
formation of the optimal (expected) value function (proposition 8.3.1). If this condition
is not met, then convergence towards optimality will not occur (at least not in terms
of preferences).
It is a rather straightforward exercise to show that in the case of a consump-

tion/savings model with logarithmic instantaneous utility (u0(c) = ln(c)) and without
an income stream (It = 0, for all t > 0), the optimal value function would be an
a¢ ne transformation of the instantaneous utility function.41 In that speci�c case, if
41In this conveniently chosen example the sequence problem could simply be solved by means of the
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the initial value function would be an a¢ ne transformation of the instantaneous utility
function (which may not seem unreasonable), then the initial value function would also
be an a¢ ne transformation of the optimal value function. Thus in this speci�c case, the
a¢ nity requirement seems less problematic. However, this case is really an exception,
similar relations between instantaneous utility and value functions will generally cer-
tainly not hold. In fact, as noted in section 3.3, in many consumption/savings models
the optimal value function does not even permit an analytical form; such an optimal
value function could only be approximated.
Thus the severe requirement, that the initial time preference function should have a

functional structure that is similar to that of some consistent time preference function,
seems to very much constrain the relevance of the convergence result. This requirement
is necessary because of the fact that we have opted for the simple way of uniform
adjustment, where adjustments enter into old time preferences multiplicatively in order
to arrive at new time preferences. Since this same updating procedure is applied in all
periods, at any period the time preference function that will be used is equal to the
initial time preference function, except for the adjustment product that is inserted into
it. Thus, updating only occurs in this single parameter.

In principle this strong requirement could be relaxed by using other adjustment
procedures. Here we will sketch two possible ways in which this could be done.
Firstly, we could model a situation in which in all periods a number of categories

of commodities can be distinguished, and in which instantaneous utility is separable
in each of these categories. That is, we could model a situation where in every period
the available commodities could be divided into N 2 N categories, and where these
categories would be the same for all periods. Then in all periods excess expenditures
could be determined for all categories separately. And in this situation in every period
t instantaneous utility v(t)(wt�1; xt) should be separable in each category of goods,
so that instantaneous utility could be written in a form in which each category of
commodities xjt would have its own subutility function �

j
t(x

j
t) that would determine

instantaneous utility for this category of goods separately. That is, there should be
a function ft : Wt�1 � RN ! R, with ft strictly increasing in each of the last N
arguments, such that v(t)(wt�1; xt) = ft(wt�1; �

1
t (x

1
t ); :::; �

N
t (x

N
t )). In this situation

di¤erent adjustment factors could be used for di¤erent categories, where each of these
adjustment factors would depend on the category-speci�c excess expenditures. This
would allow for a more general learning process in which multiple category-speci�c
parameters could be �ne-tuned, in order to reach or approach optimality or consistency.
And secondly, instead of adjusting time preferences by inserting scalars into time

preference functions, adjustments could be made by letting functions be inserted into
time preferences functions. In that case adjustments would not anymore be uniform,
in the sense that di¤erent instantaneous utility levels would no longer necessarily be
updated with the same adjustment factor. In any period, the resulting time preference
function would be obtained by inserting the composition of all adjustment functions to

Lagrange method.
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date into the initial time preference function. Obviously, such an adjustment procedure
would allow for much more freedom in �ne-tuning time preferences.
Of course, the function that would yield such adjustment functions would have to

be a much more complicated construct than those used in previous chapters. Di¤eren-
tiating between adjustments for instantaneous utility levels seems to require that these
adjustments would be based on richer data than just excess expenditures. For instance,
these richer data could result from keeping track of (recent) histories of the relative
sizes of excess expenditures and actual expenditures simultaneously. That is, if there
seems to be a correlation between the relative sizes of Et (or of Et=(pt � x�t ), or of Et=mt)
and the relative sizes of (pt � x�t ) or of mt in the (recent) past, this would allow for
distinguishing in what ranges of instantaneous utility levels, expenditures or per-period
budgets, the (relative) excess expenditures seem especially bad, and in what ranges
adjustments would have to be more pronounced.

The above two alternative ways to make adjustments would widen the margins for
initial time preferences that could still lead to convergence towards optimality. However,
even then convergence towards optimality is not something that will happen easily.
Under category-based adjustment, convergence towards optimality requires a

consistency-inducing vector, rather than a consistency-inducing scalar. In order for
such a consistency-inducing vector to exist, the initial time preference function should
still have a functional structure that is similar to that of some consistent time prefer-
ence function. One function being identical to another function, except forN parameter
values is still a very restrictive requirement.
In the case of adjusting by inserting functions, instead of inserting scalars, the

requirements on initial time preferences would be much widened. However, then in
order to reshape an initial time preference function gradually into a very di¤erently
shaped consistent time preference function, then adjustments would have to be very
sophisticated. This too does not seem completely plausible.

10.4 Explaining suboptimality
Of course, �nding that convergence towards optimality will not occur is not necessarily
problematic. After all, optimality is a very strong and restrictive property. It seems
that in reality choices do not always correspond to optimality. Some people experience
serious debt problems, while some elderly people die with very sizeable amounts of
savings left, even when they don�t have relatives to leave it to. These are a few very
simple examples where some people clearly seem to over- or under-spend.
These phenomena could be explained in the ad hoc framework by a reluctance to

change or adapt behaviour (substantially) or, in terms of the ad hoc framework, by a
(very) slow adjustment process. For example, under value-based adjustment with an
exponential adjustment function ~a(Et) = e��Et, if the constant � > 0 is very small,
then all adjustment factors would stay close to one, and the adjustment process would
be very slow. Similarly, under min-max adjustment a combination of a � > 1 and a
� < 1 (see the de�nition of min-max adjustment in subsection 6.4.3) that would both
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be very close to one, would yield an adjustment process that would be very slow (at
least in the early stages). If such a slow adjustment process would be combined with
an initial time preference function that is rather optimistic (in the sense that it would
later turn out that it underestimated the utility of money), then this is likely to result
in over-spending. Similarly, combined with a rather pessimistic initial time preference
function, a slow adjustment process may result in under-spending.
Also, under min-max adjustment we could characterize a combination of relatively

large parameter values of �, � and � as a somewhat bold adjustment process. Such
adjustments seem to re�ect being much more inclined to increase rather than decrease
the adjustment product (and thus the valuation for instantaneous utility). Instead, a
combination of relatively small parameter values for �, � and � could be characterized
as a rather cautious adjustment procedure. Again, a bold adjustment procedure and an
optimistic initial time preference function would be likely to result in over-spending. A
cautious adjustment procedure and a pessimistic initial time preference function would
be likely to result in under-spending.
Note that these implications may even hold in cases where convergence towards

optimality does occur. The ad hoc framework assumes an in�nite amount of learning
periods, while people�s lives are �nite, so even in cases where mathematically conver-
gence towards optimality would ultimately occur, the above constellations might still
result in serious under- or over-spending within the relevant time horizons.

Also, in section 3.2 we saw that the phenomenon of income tracking was widely
observed in econometric studies. This phenomenon is not necessarily contradictory to
optimality, but only under some special speci�cations of consumption/savings models.
The ad hoc framework, with value-based adjustment, could perhaps also explain income
tracking.
The ad hoc framework, and especially when paired with regular excess expenditure,

uses the past and the present as indications of the future. By proposition 7.1.1 we know
that if min-max adjustment is used, convergence will always occur. Then, the resulting
limit would be mainly determined by what is encountered in early periods. Therefore,
min-max adjustment seems most appropriate in models where experiences in early
periods could be expected to be comparable to those of later experiences, most notably
in (more or less) stationary problems. In situations where this cannot be expected or
known, value-based adjustment may seem more reasonable. In those cases, we might
expect to �nd income tracking. While under min-max adjustment information from all
previous periods would essentially be treated the same, under value-based adjustment
information from the recent past plays a much more prominent role. Thus, under
value-based adjustment as dependent on regular excess expenditure, choices would be
heavily in�uenced by the consumer�s present situation and by the recent past. Then if
experienced conditions do not turn out to be very comparable over a life-time, so that
the system does not prove to be very stationary, it seems that income tracking would
occur.
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10.5 Main shortcomings
As mentioned in the introductory chapter, the present work is still somewhat sketchy,
and it should not be regarded as having a very de�nitive quality. This work consists of
theoretical explorations, and we should be careful to draw very �rm conclusions about
economic reality from this research. In its current form the ad hoc framework is certainly
not equipped to give a full account of actual consumers�consumption behaviour. Here
we will present some important shortcomings.

Firstly, the ad hoc framework is (almost) entirely based on retrospective viewing and
reasoning. Expectations or knowledge about the (economic) future do not play a role in
the ad hoc framework, except possibly in the very �rst period. The ad hoc framework
does allow for the possibility that the initial time preferences, from which the learning
algorithm starts, would incorporate what is known about the future in the initial period.
However, after this �rst period time preferences are determined by updating previous
time preferences, and updating is completely determined by excess expenditure. Still,
it seems possible or even likely that a consumer�s outlook on the future would change
over time. Of course, what happened in periods 1 through t is completely known in
period t, which already changes the outlook on the (time-0) future. But moreover, it
seems possible that at time t the information about what can be expected from time
t + 1 onwards would have changed with respect to the initial expectations. While the
time-t information about periods 1 through t is used in determining the period-t time
preferences, possible changes between time-0 information and time-t information about
periods t+ 1 and later is not used in determining period-t time preferences. Therefore
an important implication of the ad hoc framework in its current form is that changing
expectations will not in�uence consumption behaviour in any way. Again we see that
the ad hoc framework in its current form seems most appropriate in problems that are
more or less stationary. The same implication seems to typically hold for other learning
models as well.
In section 3.3 we argued, like Gilboa and Schmeidler, that a major drawback of

the standard prospective view on consumer choice is that it requires that people know,
or imagine, everything that can happen in the future. And although it seems quite
unrealistic to assume that people know or can imagine everything that can happen, it
seems equally unrealistic to assume that people would not use any information about
what can happen, or that they would never learn new information about what can or
will happen (i.e. that they face a stationary problem). It will not be very di¢ cult
to �nd empirical evidence that rejects the implication that changes in expectations or
knowledge about the future do not in�uence consumption behaviour.
This probably identi�es one of the most important shortcomings of the ad hoc frame-

work. In principle, the ad hoc framework could be extended to incorporate prospective
viewing. Here such prospective viewing need not be based on knowing or imagining all
that can happen, but it could also be based on one or a few aggregate variables of what
the future might bring. For example, such an aggregate variable could re�ect the extent
to which things can be expected to become better or worse (than the present). Then
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adjustments would not completely have to be determined by excess expenditure, but
could also be in�uenced by a changing outlook on the future. That is, all other things
equal, bad news about the future should result in smaller adjustment factors, and thus
in smaller weights for instantaneous utility. Of course, the main di¢ culty in making
such an approach work would be how to quantify changes in a decision-maker�s outlook,
and the e¤ects that such changes would (or should) have on how to value savings.

And secondly, the ad hoc framework also does not really incorporate the possibility
of social learning. Only the determination of initial time preferences could be inter-
preted to re�ect social learning in this framework. It was stated in chapter 6 that these
initial time preferences would somehow be given exogenously, so this would allow for
the possibility that initial time preferences would be learned from others (e.g. parents).
However, after the very �rst period there is no role for social learning in the ad hoc
framework.
In reality social learning might be important as to how people would arrive at their

consumption decisions. It seems very well possible that people would learn how to
make consumption choices by talking about and observing other (or older) people�s
choices and their apparent results. There are some limitations to this direct way of
social learning as in reality we are (almost) never able to form a more or less complete
picture of other persons�consumption patterns; we usually only have some scattered
information about such patterns. Also, we don�t seem to be able to observe other
people�s entire income processes, or their preferences.
Still, we might be able to observe some de�nite don�ts as demonstrated by people

getting into serious debt trouble.
However, social learning need not necessarily take the above, direct form. Institu-

tionalized social learning might also be relevant. For instance, the existence of personal
�nance books, and �nancial or investment advisors indicate that people do (try to) learn
about their consumption behaviour. Moreover, some governments try to teach people
how to improve their spending behaviour (e.g. the Dutch government via NIBUD.)

Thus it seems that social learning might play a role in how people come to their
consumption decisions. Still, it does not seem clear what role exactly it might play. As
is the case with individual learning, social learning could potentially both help explain
why people do behave optimally, and why people don�t behave optimally.
It seems possible that social learning could substitute for individual learning, which

could help people to improve their consumption behaviour. Some experimental studies
(Ballinger et al [3], Chua and Camerer [8]) indicate that this could be the case. However,
this seems more likely to work in settings that are quite stationary, only if the past and
the present are (likely to be) good predictors of the future. Indeed, the above two papers
use settings where all consumers more or less face the same stationary problem, and
where all consumers know that they are facing the same problems. If there is important
and fundamental uncertainty about the future, then all individuals would face more or
less the same uncertainty, which very much limits the possibility for social learning to
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be very e¤ective. Then, it seems that a large part of learning should consist of learning
about what problem is faced, rather than of how to solve the particular problem that is
faced. After all, it would seem that what we can learn from our grandparents about the
macroeconomic situation that we will face in a few decades from now, is rather limited.

More generally, it is known that social learning is certainly not guaranteed to lead
to optimal behaviour. The phenomena of �herd behaviour�and �information cascades�
(see e.g. Bikhchandani, Hirshleifer and Welch [4]) are examples of collective deviations
of optimality. Indeed, it seems that such suboptimalities are more likely to result
from social learning in cases where there is important uncertainty about the future.
If uncertainty is limited to the type that is faced in expected utility models, then
social learning is more likely to focus on how to solve a certain problem instead of
on what problem will be faced. In that case social learning may be helpful, rather
than detrimental in approaching optimality. Thus it seems that social learning is most
likely to facilitate convergence towards optimality in problems that are more or less
stationary.

Recall that stationarity was also one of the conditions that were needed for individual
learning to be successful. Hence, it seems that in instances where it would be possible
that individual learning would lead to (near-)optimality (under stationarity), social
learning might improve, or speed up, the learning process. In instances where individual
learning is unlikely to lead to optimality, it similarly seems questionable whether social
learning could substantially aid the learning process.
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Samenvatting

Deze dissertatie is vooral theoretisch van aard. Dit proefschrift houdt zich bezig met een
aantal theoretische constructies die gebruikt (kunnen) worden om economische mod-
ellen mee op te bouwen, waarmee vervolgens weer getracht wordt de (economische)
werkelijkheid te begrijpen. De vragen die in dit werk behandeld worden zijn funda-
mentele vragen die zich direct bezig houden met enkele bouwstenen zoals deze gebruikt
worden in de economische theorie en in het economisch modelleren, in plaats van met
de modellen die geconstrueerd (kunnen) worden met deze bouwstenen, of met mogelijke
implicaties van deze modellen voor het begrijpen van de economische werkelijkheid.
Dit proefschrift behandelt twee fundamentele onderdelen van de economische theo-

rie, d.w.z. twee van de belangrijkste bouwstenen die tegenwoordig gebruikt worden in
het economisch modelleren. Dit werk beschouwt deze standaard bouwstenen kritisch,
en vestigt de aandacht op enkele problemen van deze standaard bouwstenen. Ver-
volgens tracht dit proefschrift een nieuwe, alternatieve bouwsteen te leveren, die niet
(zozeer) te kampen heeft met deze problemen. Deze alternatieve bouwsteen zou vervol-
gens weer gebruikt kunnen worden om nieuwe modellen mee te construeren, waarmee
de economische werkelijkheid weer anders bekeken en begrepen zou kunnen worden. En
uiteindelijk onderzoekt dit proefschrift de precieze theoretische verbanden die bestaan
tussen de standaard benadering en de hier gepresenteerde alternatieve benadering.

Bij de twee bovengenoemde standaard bouwstenen van het economisch modelleren
gaat het om de "consumer choice" modellen die worden gebruikt in de neoklassieke
micro-economie, en de "consumption/savings" modellen uit de macro-economie. Hierbij
is de tweede klasse van modellen in feite een speciaal geval van de eerste klasse, maar
omdat deze klasse van consumption/savings modellen op zichzelf al een belangrijke
bouwsteen is van het macro-economisch modelleren, worden de twee klassen hier apart
behandeld.
Zowel de consumer choice modellen als de consumption/savings modellen beschri-

jven een keuzeprobleem voor een consument die moet beslissen hoe hij (of zij) zijn
inkomen zal spenderen aan alle consumptiemogelijkheden waarmee hij in het heden en
de toekomst geconfronteerd zal worden. Zoals gebruikelijk in de standaard economische
theorie beschouwen beide klassen van modellen een consument als zijnde "rationeel",
of als wat ook wel een "homo economicus" genoemd wordt; de consument wordt geacht
al zijn mogelijke opties (in dit geval consumptiepatronen) uitvoerig te beschouwen,
hij wordt geacht stabiele voorkeuren over al zijn opties te kunnen bepalen, en uitein-
delijk simpelweg zijn meest geprefereerde optie te kiezen. In deze standaard benadering
van een consumptieprobleem zijn de keuzeobjecten waar tussen een consument wordt
geacht te kiezen allesomvattende consumptiepatronen, ofwel volledige speci�caties van
alle toekomstige consumptie die nog na het keuzemoment plaats zal vinden. Dat wil
zeggen, een beslissing over wat en hoeveel nu te consumeren wordt bepaald als onderdeel
van een totale strategie die voor de hele resterende toekomst precies speci�ceert wat
wanneer geconsumeerd zal worden.
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De alternatieve bouwsteen die in dit proefschrift wordt gepresenteerd behelst een
raamwerk waarin de tijd wordt opgedeeld in periodes, aan de hand waarvan consump-
tiebeslissingen worden onderverdeeld in een serie van opeenvolgende kleinere beslissin-
gen, die één voor één bepaald zullen worden, en waarin (de resultaten van) eerdere
beslissingen kunnen worden gebruikt voor het maken van latere beslissingen. Zo ontstaat
een raamwerk waarin het maken van consumptiebeslissingen geleidelijk geleerd kan wor-
den. Dit is in tegenstelling tot de standaard benadering, waarin consumptiebeslissingen
worden bepaald in één groot, allesomvattend patroon.
In dit proefschrift modelleren we dus een consument die zijn leven opdeelt in een

aantal periodes, en die probeert te leren van wat hij in vorige periodes deed. In tegen-
stelling tot in het standaard raamwerk nemen we aan dat in elk van deze periodes
onze consument alleen een beslissing neemt met betrekking tot de consumptie in die
periode, en met betrekking tot hoeveel van het budget -waar hij in die periode over
kan beschikken- moet worden gespaard voor volgende periodes. We nemen aan dat
binnen elk zo�n periode een beslissing over wat te consumeren en hoeveel te sparen,
gemaakt wordt op een gelijksoortige manier als waarop in het standaard raamwerk een
allesomvattende consumptiebeslissing gemaakt wordt: met gebruikmaking van prefer-
entierelaties en/of nutsfuncties.
Echter, waar de onderliggende voorkeuren in het standaard raamwerk een absoluut

en exogeen gegeven zijn, zijn de voorkeuren dat in het leerraamwerk niet. In elke periode
wordt een (impliciete) afruil gemaakt tussen consumeren en sparen. De onderliggende
voorkeuren, en in het bijzonder de impliciete waardering van sparen in vergelijking tot
die van consumeren, zijn hier niet absoluut maar eerder een schatting of een benadering.
Sommige schattingen kunnen daarom beter zijn dan andere, en het idee achter het
leerproces is dat deze schattingen aangepast of verbeterd zouden kunnen worden met
het verstrijken van de tijd. Dus, het leerraamwerk dat hier gepresenteerd wordt gaat
uit van de premisse dat de (impliciete) voorkeuren tussen consumeren en sparen geleerd
worden over de tijd.
De gedachte achter hoe dit leren plaats zou vinden, is hier dat als de consument

op een bepaald moment zou denken dat hij teveel heeft uitgegeven (en dus te veel
geconsumeerd) in het (recente) verleden, hij zijn voorkeuren aan zou passen op zo�n
manier dat hij sparen meer zou gaan waarderen. En andersom, indien de consument zou
denken dat hij minder zuinig had kunnen zijn, zou hij sparen minder gaan waarderen.

Er is een aantal redenen waarom zo�n leerbenadering interessant zou kunnen zijn.
Ten eerste, er is een aantal (conceptuele) moeilijkheden verbonden aan de standaard

benadering van consumptiebeslissingen. Hierbij kunnen we met name denken aan de
cognitieve vermogens waar een consument over zou moeten kunnen beschikken om
zich zo te gedragen als de standaard modellen suggereren. Deze cognitieve vermogens
omvatten het zich voor kunnen stellen van alle toekomstige consumptiemogelijkheden
(wat wanneer tegen welke prijs verkrijgbaar zal zijn), en de mogelijkheid om al deze
informatie op een zodanige manier te verwerken dat dit inderdaad in een optimale en ef-
�ciënte keuze zou resulteren. Dit lijken zeer sterke aannames aangezien het bepalen van
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en werken met volledige speci�caties van alle toekomstige consumptie in werkelijkheid
enorm complex zou zijn.

Het nieuwe leerraamwerk heeft niet zozeer te kampen met deze conceptuele moeil-
ijkheden. Hierin hoeven geen consumptiepatronen voor de rest van een leven beschouwd
en gekozen te worden. Leren impliceert dat er meerdere, opeenvolgende beslissingen
gemaakt worden. Daarom zou in elke periode slechts de consumptie voor die periode
gekozen hoeven te worden, waardoor het niet nodig is om een duidelijke voorstelling
te hebben van wat nog in het verschiet ligt, of om op een e¢ ciënte manier om te gaan
met deze informatie.

Ten tweede, een leerraamwerk voor consumptiebeslissingen kan een nieuwe bouw-
steen vormen, waarmee weer nieuwe modellen geconstrueerd zouden kunnen worden, en
waarmee de economische werkelijkheid weer anders bekeken en begrepen zou kunnen
worden. In tegenstelling tot andere deelgebieden van de economie, zijn er nog (bijna)
geen leermodellen op het gebied van consumptiebeslissingen, mogelijk omdat hier con-
ceptuele moeilijkheden mee verbonden zijn. Bijvoorbeeld, een belangrijke moeilijkheid
die zich voordoet bij het opzetten van een leermodel in deze context, is dat de conse-
quenties van een bepaalde keuze in een bepaalde periode moeilijk te isoleren zijn van
de consequenties van de keuzes die gemaakt werden in andere periodes. Alle periodes
zijn nauw met elkaar verbonden, wat nu uitgegeven wordt kan in latere periodes niet
meer uitgegeven worden. Omdat alle consequenties van een bepaalde consumptiekeuze
in een bepaalde periode pas aan het eind van een "leven" helemaal bekend zijn, is het
moeilijk om de resultaten van de keuze uit de vorige periode duidelijk te bepalen. Dit
is één van de belangrijkste complicaties die zich voordoen bij het construeren van een
leermodel van consumptiebeslissingen, en ons leerraamwerk zal hier op één of andere
manier mee om moeten gaan.

En ten derde kunnen we ons afvragen welke (theoretische) verbanden er zouden
bestaan tussen het standaard raamwerk en een leerraamwerk. Bijvoorbeeld, zouden
optimale of rationele beslissingen (zoals in het standaard raamwerk) op den duur
geleerd kunnen worden? Veel economische theoretici vinden theoretische concepten
zoals economische evenwichten, en ook optimale of rationele beslissingen, meer plau-
sibel wanneer ze beschouwd worden als een stabiele toestand van een dynamisch sys-
teem, en dus als de uiteindelijke uitkomst in een dynamische setting, dan wanneer ze
beschouwd worden als een waarschijnlijke uitkomst in een statische situatie die maar
één keer voorkomt. In deze dissertatie worden deze (en andere) verbanden tussen de
standaard benadering en de nieuwe, alternatieve benadering uitvoerig behandeld. We
zien hier bovendien dat het standaard raamwerk opgevat kan worden als een speciaal
geval van het hier gede�nieerde leerraamwerk, of in andere woorden, dat het onderhav-
ige leerraamwerk in feite een uitbreiding is van het standaard raamwerk.
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