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1 Introduction

This dissertation is a mainly theoretical work. The questions that are raised in this
work are fundamental questions about economic theorizing and modelling. Rather
than focusing on the models that are erected from the building blocks that are used in
economic theory (or on these models’ predictions), this dissertation will focus on some
of these building blocks themselves.

This dissertation will consider two fundamental parts of standard economic theory,
i.e. two of the main building blocks that are used in economic modelling. This thesis will
critically evaluate these standard building blocks and draw attention to some of their
drawbacks. For this critical evaluation, we will again take a mainly conceptual point
of view, rather than an empirical point of view. Then, this dissertation will attempt to
provide an alternative building block that could again be used to build models from,
and that does not (or not so much) suffer from these conceptual difficulties. Finally, this
work will investigate the precise theoretical relations that exist between the standard
and the alternative building blocks.

The two fundamental parts of standard economic theory, or the building blocks of
economic modelling that were referred to, concern the models of consumer choice as
used in neoclassical microeconomics, and the models of consumption/savings as used
in macroeconomics.

The neoclassical model of consumer choice will be familiar to almost any economist,
as it typically plays a very prominent role in microeconomics courses and in micro-
economics textbooks (see e.g. Luenberger [28], Mas-Colell, Whinston and Green [30]).
The second building block, the class of consumption/savings models, is actually a more
specific case of the first. Still, in macroeconomics this more specific class of models
has a special standing of its own, as it is one of the fundamental building blocks for
macroeconomic modelling (see e.g. Romer [37]). This is why the two are mentioned
separately here. Throughout this work we will present (sub)sections dedicated to con-
sumption/savings models, that may be seen to function as more specific examples of
the ideas that are developed in the main text that is set in the more general context of
models of consumer choice.

Both models of consumer choice and models of consumption/savings decisions de-
scribe the choice problem for a consumer who has to make a decision as to how to
spend his available resources (i.e. income) over all of the consumption opportunities
that he will be confronted with presently and in the future. Both of these classes of
models are based on viewing an economic decision-maker (or a consumer) as being ra-
tional, or as what is sometimes called a ’homo economicus’; standard economic theory
assumes that a decision-maker, when confronted with a decision problem, will exten-
sively consider all the options he can choose from (affordable consumption patterns or
consumption plans), and all the possible consequences that may result from each of
these options, and that he will finally choose that option that he thinks will give him
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his most preferred consequences. Thus, in this standard approach the objects of choice
that a consumer is assumed to consider and choose from, are complete specifications of
lifetime consumption.

The alternative building block that will be introduced in this dissertation attempts
to provide a learning framework for consumer choice (and with it also for models of
consumption /savings decisions). Now, why would we want to set up such a new learning
framework? There are a number of reasons why this might be interesting.

Firstly, such a new framework might be interesting for its own sake, as this alterna-
tive approach may provide a new building block, that could be included in a modeller’s
toolbox, and from which (in principle) new types of models could again be constructed.
While learning models have found their way into numerous areas of economics, such
as game theory and macroeconomic dynamics, the same can hardly be said for the
areas of consumer choice and consumption/savings models.! One reason for this may
be that it is not at all straightforward how such a learning model of consumer choice
should be set up, as some conceptual difficulties arise. Learning is usually modelled in
settings where the same economic problem or situation is encountered repeatedly. For
instance, in learning models in game theory it is typically assumed that the same game
is repeatedly played. Then after every stage, the corresponding game is over, and the
stage’s payoffs are fully known. In principle, the same could be done in the context
of consumer choice. We could assume that a consumer would go through a sequence
of lifetimes, where in each of these lifetimes consumption decisions would have to be
made, and where a consumer could learn from his experiences in previous lives. Of
course, although such an approach may formally not be inconsistent, a model like that
would probably not seem very convincing, as we only seem to live once.? Therefore, for
learning consumption, what would really be needed is a framework in which learning
takes place within a single decision problem or a lifetime. The difficulty then, is that
choices in any period do affect the situation in all subsequent periods (how much is
spent now will influence what will be affordable in all later periods), so that all the
effects of a certain decision in a certain period will not become fully known until the
very end of the lifetime. Our learning model should deal with this in one way or an-
other. Thus, there are a few tough nuts to crack here, and from a conceptual point
of view the problem of how to construct a learning model of consumer choice may by
itself already prove to be quite interesting and rich. And although the idea of trying
to model learning in consumer choice settings is not completely new®, the approach
towards learning consumption (and towards dealing with the above conceptual difficul-
ties) that will be presented here is very different from other approaches and, to the best
of our knowledge, it is new.

Secondly, in later chapters we will draw attention to some drawbacks associated

LA survey of related work is given in chapter 3.

2Even if reincarnation does exist, this type of learning would only work if consumers would remember
the consumption decisions and their consequences from previous lives.

$We will review existing theoretical work on learning in consumption/savings models in section 3.6.
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with the standard approach to consumer choice. There we will mainly focus on the very
stringent conditions that these models pose on the cognitive abilities that a decision-
maker should have in order to behave as these models suggest. Most notably, these
cognitive abilities include being able to imagine everything that can happen in the
(economic) future, and being able to deal with all this information about the future
such as to arrive at an optimal choice. In any realistic description of a decision regarding
an individual’s (let alone a more complex household’s) lifetime consumption pattern,
the complexity of the choice problem faced is huge, both in terms of all the information
that would be relevant for making such a decision, and in terms of the computational
aspects of dealing with all this information. Thus there may be some tension between
what economic models assume people to do, and what seems reasonable to expect them
to be able to do.

Our new framework does not (as much) suffer from these drawbacks. In a learning
model, a decision-maker does not consider and decide on complete lifetime consumption
plans at once. In fact, learning seems to imply that there are multiple points in time in
which choices will have to be made. Therefore, in each of these periods such a learning
individual would only have to make consumption decisions regarding a limited time
interval. This would require less ability to perform extensive surveys of what is yet to
come, and correspondingly, a smaller computational burden.

A third reason, which is related to the second, is that we may wonder what links
would exist between a learning framework and the standard framework. For instance,
we could wonder whether making optimal consumption choices (as in the standard
framework) could be learned. Milton Friedman [15] defended the assumptions of opti-
mality in the context of consumption decisions (and thus here the standard framework)
by arguing that agents could learn roughly optimal behaviour by a process of trial and
error. Apparently Friedman felt that the standard framework needed some defending,
quite possibly (partly) because of the aforementioned conceptual difficulties. More gen-
erally, many theorists feel that theoretical constructs such as economic equilibria (such
as Nash equilibria), and similarly predicted behaviour resulting from optimization mod-
els, should be regarded as steady states of some dynamic system, rather than as being
likely to come by in a one-shot situation. Thus, these constructs are judged to be more
plausible when viewed as resulting outcomes in a dynamic setting (in which some form
of learning may occur), rather than in a static one-shot setting (see e.g. Lucas [27]). In
this dissertation we will formally provide such a dynamic setting where learning does
occur, and we will extensively investigate whether, and if so when, we can establish
that Friedman’s claim, that roughly optimal consumption behaviour could be learned,
will hold.

The alternative learning framework that will be presented here will also be called the
’ad hoc framework’. Obviously, as this new ad hoc framework tries to model learning
about consumption, it starts from the idea that a decision-maker would cut up an all-
encompassing decision of lifetime consumption into a series of subdecisions. That is,
here we will model a consumer who would cut up his one lifetime into a number of

3
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periods, and who would try to learn from what he did in previous periods. Whereas in
the standard model complete consumption horizons are decided upon at once, here it
is assumed that in any such subproblem only a decision on present consumption and
present savings is required. Then, in any such subproblem, decisions are supposed to
be made much in the same vein as the standard microeconomic framework supposes the
whole problem is dealt with: by means of (ad hoc) preference relations or (ad hoc) utility
functions. However, now these ad hoc preference relations and ad hoc utility functions
will not be defined on complete consumption horizons, but rather on combinations of
present consumption and present savings. In any such subproblem decision-making is
modelled as allocating the budget that is available in that particular subproblem over
present consumption and present savings, such as to maximize ad hoc preferences.

However, these ad hoc preferences would have a somewhat different status than
preferences in the standard framework. In the standard framework preferences are ab-
solute, they are given and can never be wrong. In the ad hoc framework, preferences,
and especially the implicit valuations for savings relative to present consumption, are
not absolute and they can be viewed as guesses or as estimates. Then, some esti-
mates may be better than others, and here the idea is that learning may improve these
estimates over time. Thus, in the ad hoc framework we assume that essentially the
valuations for money are learned over time.

The idea behind how this learning would take place is that if at a certain point
in time a consumer would regret having spent too much in the recent past, he would
adjust his valuations for money such as to value money more. And conversely, if at a
certain point in time the consumer thinks that he could have spent more in the recent
past, then adjusting would lead to lower valuations for money. A difficulty that arises
here is how such retrospective evaluations of past expenditures should be established.

In a sense the present work is still somewhat sketchy. We do not want to present the
new alternative framework as having a very definitive quality. Rather, this work should
be seen as a theoretical exploration into largely uncharted territory. In setting up the
new framework, many modelling choices have to be made, each of which may have
considerable impact on the resulting framework and its implications. And although in
instances where such modelling choices are needed we will try to justify or motivate the
choices that we do end up making, there might of course be other ways to proceed that
could also be fruitful. In the final chapter we will review some instances where certain
modelling choices were made, and where certain alternative modelling choices could
also have been made, and we will comment on how the framework and its’ implications
may change as a result of these alternative choices. Consequently, at this point we
should probably still be careful to draw very firm conclusions about economic reality
from this research.

Here we will present some notational conventions that will be used throughout this
work. The set of strictly positive integers {1,2,3,...} is denoted by N, the set of non-
negative integers {0,1,2,3,...} is denoted by Ny, and R denotes the set of rational

4



1. INTRODUCTION

numbers. The set R U {oo} is here called the extended real numbers, and denoted
by R, and similarly N = N U {oo}, and Ny = Ny U {oc}. For any n € N, we denote
the n-dimensional Euclidian space by R™. For each x € R" and each 1 < i < n (or
1 <i<mnifn=o00), we will write 2 € R to denote the i’th component of bundle
x. The relation >’ is defined on the set R™ to mean that for all x,y € R" it holds
that x > y if in all dimensions ¢ it holds that the corresponding components satisfy
x' > y'. The relation > is defined similarly on R". By R” we denote the non-negative
Euclidian n-space {x € R" : z > 0}, and by R, we denote the strictly positive
Euclidian n-space {x € R" : © > 0}, where 0 simply denotes an n-dimensional vector
of zeros. Consequently, R, denotes the non-negative real numbers, R, , denotes the
strictly positive real numbers, and R, = R, U {oc}.

Throughout this work we will refer to a consumer as a ’he’, and similarly we will
refer to "his’ preferences or 'his’ choices. Of course the use of ’he’ and ’his’ could equally
well be replaced by ’she’ or ’her’.

This thesis consists of 10 chapters. Chapter 2 will present the preliminaries. This
chapter will present the standard building blocks of the frameworks for consumer choice
and for consumption/savings models. Also, this chapter will explicitly model time
within the standard framework for consumer choice, and it will specify Expected Utility
Theory, both in a general form and more specifically in the settings of consumer choice
and consumption/savings. Also, this chapter will lay the formal groundwork that will be
drawn from in later chapters. In chapter 3 the standard framework will be discussed and
criticized, and the new, alternative approach towards modelling consumption behaviour
that is chosen here, will be motivated. In chapter 4 a first component of the new ad
hoc framework is introduced. This chapter will consider a single period in isolation,
where it is modelled how in any such period choices would be made, namely by means
of ad hoc preference relations and ad hoc utility functions. Chapter 5 investigates
the links that exist between the concepts of ad hoc preference relations (and utility
functions) as defined in the ad hoc framework, and total preference relations (and utility
functions) as defined on complete consumption horizons in the standard framework.
This chapter shows that the standard framework is in fact a special case of the ad hoc
framework, by defining a specific way in which ad hoc preferences could be derived
from total preferences, namely as summarizing total preferences consistently. Chapter
6 completes the ad hoc framework. First it provides a second component of the new
ad hoc framework. It considers two subsequent periods, and it models how the ad
hoc preferences in two such subsequent periods would be related, namely by means of a
learning procedure by which valuations for savings from the previous period are adjusted
into new valuations. These adjustments would depend on retrospective evaluations
of past expenditures. Finally, this chapter completes the ad hoc framework, putting
together all the modelling components, by considering lifetimes and formally modelling
a learning algorithm. Chapters 7, 8 and 9 investigate Friedman’s assertion that optimal
behaviour could be learned. Chapter 7 considers convergence of sequences of ad hoc
preferences, and it considers convergence towards optimality. This chapter shows that,



LEARNING IN CONSUMER CHOICE

given the specific adjustment procedure, ad hoc preferences will always converge, and it
identifies conditions under which convergence towards optimality will occur. Chapters
8 and 9 are completely set in a consumption/savings setting, and these chapters show
that under some (rather specific) conditions convergence towards optimality will occur
in these settings. Chapter 8 deals with consumption/savings models under certainty,
chapter 9 deals with expected utility models of consumption/savings decisions. The
concluding chapter 10 looks back at previous chapters, and forward towards possible
extensions and new research.



2 The standard framework for consumer choice

This chapter lays the formal groundwork for this thesis. The standard framework for
consumer choice from microeconomics, and the standard framework for modelling con-
sumption/savings decisions from macroeconomics are presented. There are a number
of reasons why these standard frameworks are presented here. Firstly, the framework of
learning consumer behaviour that is introduced in this dissertation will be contrasted
with these standard static frameworks. Secondly, the standard frameworks will serve
as a useful benchmark. And thirdly, many of the concepts and methods used in the
standard framework will also be employed in the new, learning framework (although
often in somewhat different ways).

In the first three sections the standard framework for consumer choice from micro-
economics is presented. We consecutively present the objects from which this framework
is constructed: preference relations, utility functions and basic consumer problems.

In the fifth section we will consider the standard framework for modelling consump-
tion/savings decisions from macroeconomics, and the methods of dynamic programming
that are very convenient for solving models in this specific class of models. The fourth
section, then, tries to bridge the gap between the two frameworks, and establishes that,
and in exactly what way, the second is actually a more specific case of the first.

Finally, in the sixth section choice under uncertainty is introduced. First the objects
with which uncertainty is defined are presented in a very general and abstract way, after
which they will be specifically interpreted in both standard frameworks.

2.1 Preference relations

The starting point in the formal models that accompany these analyses of consumer
choice, are the elements of choice for the consumer. These objects of choice are called
commodity bundles.

Definition 2.1.1 A commodity bundle is an element of R, forn € N.

Such a commodity bundle is an n-dimensional vector of non-negative amounts, with
n € N, and will typically be denoted by x € R?. Here n is the total number of
commodities that are (or will become) available, a commodity bundle can be thought
of as a specification of the amounts of all available goods that a consumer owns or
consumes. The set of all possible commodity bundles is called the commodity space.

Definition 2.1.2 A commodity space is a set that consists of all commodity bundles.

Typically, a commodity space will be denoted by X = R”.

The consumer can choose between elements from the set X. The set of all com-
modities may also be interpreted to include commodities that will become available at
different points in time, and an identical good, but available at different points in time,
may be seen as different commodities.
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In order to model how our consumer will choose, he is assumed to have clear, stable
preferences over elements in X. That is, he can compare pairs of elements from the
commodity space and judge which element (commodity bundle) he prefers to own or
consume. Formally, these assumptions are represented by the existence of a preference
relation.

Definition 2.1.3 A preference relation on a set X is a binary relation on X, that
satisfies completeness and transitivity.

Such a preference relation will typically be denoted by 7~. Before the properties
of completeness and transitivity are stated, we first take a look at the meaning of the
concept of a binary relation.

A binary relation 7 is a relation between ordered pairs of elements (z,z’), with
z,x’ € X (ordered means that (x,z’) is not the same as (2/,z)). This means that if
the elements in such a pair satisfy the binary relation 7, then they are related in some
way, and we write x 7~ z/. Thus, each pair of elements may or may not satisfy this
relation. The interpretation of such a relation 7 is as follows: if indeed the ordered pair
(x,2"), with z, 2" € X, satisfies the relation x 7~ 2/, then we will say that x is preferred
to 2’, hence the name preference relation. Note, however, that such preferences should
be interpreted in the weak sense of "at least as good as" (x 77 2’ and 2’ 77 z is not
impossible).

It is usual to extend the notation somewhat. We also write 2’ < x to mean x 77 2/,
and both notations may be interchanged. Furthermore, we write 2 = 2’ and say that
x is strictly preferred to 2’ if 77 2’ holds, and if 2’ 77 x does not hold. Similarly, we
write z ~ 2/, and say that x and 2’ are considered equivalent, or that the consumer is
indifferent between x and ', if both x 7~ ' and 2z’ 7~ x hold.

As we see in the definition, in order to qualify as a preference relation in the usual,
microeconomic sense, the binary relation 7~ must be assumed to satisfy the following
properties.

Definition 2.1.4 A binary relation 7 on a set X is called complete if for all pairs of
elements z, 2’ € X we have x 77 x' or 2’ 7 x (or both).

Definition 2.1.5 A binary relation 2~ on a set X is called transitive if for all x, 2’ 2" €
X we have that x 27— x' and 2’ 77 2" also implies that x 7~ x".

The consumer was already assumed to be able to state a preference between some
pairs of elements, and the completeness axiom now ensures that he can in fact do this
for all pairs of elements. Thus it is assumed that for each pair of elements he can express
whether he prefers the one or the other, or both (then he is indifferent, he finds them
equally agreeable), and it cannot happen that the consumer is unable to compare the
two.

The property of transitivity is related to the consistency and stability of preferences,
it says that a combination of different preference statements always yields an ordering

8
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on the underlying set that is consistent. So the transitivity property makes sure that
preference relations do not yield ’cycles’ of preferences, where we would have elements
x, ', 2" € X, with z = 2/, 2’ = 2", and 2" = x.

Another important assumption that a preference relation may satisfy is listed below.

Definition 2.1.6 A preference relation == on a set X* is called continuous if for all
¥ e X the sets {x € X :x Z '} and {x € X : 2/ 7 x} are closed in X.

In what follows, preference relations will usually be defined on some space X = R},
and we will simply assume that the Euclidian topology on R’ is used. In the instances
where we have preference relations that are not defined on some multi-dimensional
Euclidian space, we will come back to what topology is used.

The property of continuity essentially says that if a first element is strictly preferred
to a second one, and we have a third element that is sufficiently close to the first, then
the third will also be strictly preferred to the second. This axiom is a more technical
assumption that enables us to use a much more convenient type of mathematics.

Other properties that a preference relation may or may not have are defined next.

Definition 2.1.7 For a preference relation 77, on the space X = R (with n € N), the
commodity j € N, j < n is called weakly good if for every x € X, and for every
A € R, it holds that x + A1 = z. Here 1 € X denotes the vector with the j'th
component equal to one, and all other components equal to zero.

Definition 2.1.8 A preference relation 7, on the space X =R (with n € N), is such
that the commodity 7 € N, j < n is called strongly good if for every x € X, and for
every A € Ry, it holds that x + \17 = x.

This property says that if, for 77 on the set X = R", j is a good commodity if more
of this commodity is always preferred to less.

2.2 Utility functions

Instead of using preference relations in economic analyses, for mathematical convenience
these preferences are usually represented by means of utility functions.

Definition 2.2.1 A wutility function u (.) is a function mapping a set X into the real
numbers R. Moreover, given a preference relation 7> on X, we say that the utility
function u (.) represents the preference relation =, if for all x,x' € X it holds that
w(z) > u(z') if and only if x 77 o'.

Such a utility function is typically denoted by v : X — R, and by u(X) :=
{u € R|3z € X : u(z) = u} we will denote the range of u(z) as x varies over X.

A utility function expresses preferences in the sense that it gives for each element
r € X a real number u(x) that represents the utility that the consumer derives (or

4That is endowed with some topology.
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thinks he will derive) from the element. So the consumer prefers one element to another
if the one element will give a higher utility than the other.

The following theorem specifies when it is formally justified to use utility functions
instead of preference relations.

Theorem 2.2.1 If a preference relation = on the set X° is continuous, then it can be
represented by a continuous utility function u : X — R.

For a proof, see Rader [36].5

One feature of utility functions that follows immediately is that if the utility function
u(.) represents a consumer’s preferences, and if f : u(X) — R is a strictly increasing
function, then we can see that f(u(.)) is also a utility function that represents the
consumer’s preferences. This implies that there is no cardinal meaning to the numbers
u(z) and u(x’), only an ordinal meaning. That is, only statements of the form u(z) >
u(z), u(z) = u(x’), or u(xr) < u(z’) are really meaningful, and essentially only the
sign of u(z) — u(2’) is informative, and not its magnitude. Some properties that utility
functions may or may not satisfy are now listed.

Definition 2.2.2 A utility function u(.) on some space X = R? (with n € N) is
called strongly monotonic if for all x,2’ € X with ' > x and 2’ # x implies that
u(z') > u(x).

Definition 2.2.3 A utility function u(.) on some space X = R (withn € N) is called
quasi-concave if for allu € R and all z,2" € X, with u(x) > @ and u(z") > u it holds
that u(ax + (1 — a)z’) > a, for all 0 < a < 1.

Definition 2.2.4 A utility function u(.) on some space X = R (withn € N) is called
strongly quasi-concave if for allu € R and all z, 2’ € X, that satisfy x # ', u(x) >z
and u(z') > x, it holds that u(ax + (1 — a)z’) > x, for all 0 < a < 1.

The strong monotonicity assumption says that no matter what someone owns, get-
ting an additional amount of some of the commodities is always strictly preferred, so
more is better. The two quasi-concavity assumptions essentially say that mixing com-
modities is never bad, or even good. That is, quasi-concavity says that mixtures of
different goods are never worse than extreme outcomes where you get much of some
goods and little of other goods, and strong quasi-concavity means that mixtures are
always strictly preferred to extreme outcomes.

®That is endowed with some topology that has a countable base.
6This paper also shows that for every commodity space X = R (for n € N) there exists a topology
that has a countable base.
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2.3 The basic consumer problem

The model of consumer choice is completed by the assumption that our consumer be-
haves as if he is perfectly rational: if he is faced with a certain set of possible consump-
tion bundles that he can choose from, he will always choose a bundle that maximizes his
preferences. That is, the consumption bundle he will end up choosing will always be a
maximal element (if such a maximal element exists), i.e. an element that is preferred to
every other consumption bundle he could have alternatively chosen. In terms of utility
functions this assumption says that our consumer always chooses an element that max-
imizes utility over his choice set. So in maximizing utility the consumer is assumed to
incorporate differences in all goods simultaneously (including all future commodities).
Because of these assumptions we call our consumer a rational utility maximizer.

Whereas preference statements were only needed for pairs of commodity bundles,
now we also implicitly assume the consumer to be able to make his preference judge-
ments over all commodity bundles at once.

In the context of consumer choice, such a set of alternatives that can be chosen from
would be a budget set.

Definition 2.3.1 Given a commodity space X = R}, a price vector p is an element
of R \ {0}, and a budget is a non-negative real number m € R,. A budget set is a
set of all commodity bundles x € X that are affordable, given prices and income(s).

If for every available commodity our consumer knows the price that one unit of it
will cost, then the price vector is an n-dimensional vector of non-negative numbers,
where, for each 1 <i <n (or 1 <i < nifn = c0), p’ is the price for one unit of the 7’th
commodity (note that we allow some but not all prices to equal zero). Given this price
vector the monetary value of a commodity bundle x € X is given by p- 2 = Y, p'a’.
Hence, if the consumer has a budget of m > 0 monetary units to spend, then the
corresponding budget set B of all of the commodity bundles that are affordable given
prices p and income m can be denoted {x € X : p-x < m}.

Now we are ready to describe the basic consumer problem as maximizing utility
over the budget set.

Definition 2.3.2 Given a utility function v : X — R, and given a budget set B C X,
the basic consumer problem is given by:

)

In addition to the aforementioned assumptions about consumers’ knowledge of all
different commodities and about continuous preference relations, in using the above for-
mulation to model consumer choice, two more implicit assumptions are that consumers
know prices for all products (including all future commodities) and that they know the
(lifetime) income they will be able to spend.

Now, for a consumer with utility «(.) defined on the commodity space X, the so-
lution to this basic consumer problem gives rise to the following functions, for every
combination of prices p and budget m.

11
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Definition 2.3.3 Given a utility function u : X — R, prices p € R?\{0} and a budget
m > 0, the demand function x(p, m) is defined as:

r\p, m) = ar ma. u\xr
(p ) gwe{weX:prSm} ( )

if this is well-defined.

The demand function z(.,.) gives the commodity bundle that will solve the basic
consumer problem corresponding to prices p and income m.

Definition 2.3.4 Given a utility function u : X — R, prices p € R7\{0} and a budget
m > 0, the indirect utility function v(p,m) is defined as:

vipm)= sup  u(x)
ze{zeX:p-x<m}

The function v(.,.) gives the maximal level of utility attainable given prices p and
income m.

Note that if indeed (., .) is well-defined for p and m, that is if the function u does
assume a maximum on the set {x € X : p-2 < m}, then we have v(p, m) = u(xz(p,m)).

Now, if u(.) is a differentiable function, and if z(p, m) € X is an internal solution to
this constrained maximization problem, then by the Lagrange method there will be a
Lagrange multiplier A > 0 such that z(p, m) is also an internal solution to the following
unconstrained maximization problem: max,cx u(x) — A(p - © — m). The first order
conditions for this last maximization problem are: g;ﬁ. = \p,,Vi, and p- 2 —m = 0,
and consequently these conditions also define the solution to our original problem. So
in this setting, we see that the quantities of the commodities that the consumer will
choose will be such that all marginal utilities are proportional to the corresponding
prices. This implies that for every commodity ¢ the Lagrange multiplier will be equal
to the quotient of the marginal utility for this commodity and its price: A = g; Z% for
all i € {1,2,...,n}. Therefore in an internal solution to the basic consumer problem

it holds that M RS;; = gz;gg; = 5—; for all i and j € {1,2,...,n}. So for any pair of
commodities, the marginal rate of substitution between these goods is equal to the
ratio of their prices. In a two dimensional case (n = 2) this equality of marginal rate of
substitution and price ratio reflects the fact that the indifference curve that the solution
point lies on {x € X : u(z) = v(p,m)} touches the budget line {r € X : p-z = m}
exactly in this solution point.

The above expressions also reflect simultaneity in the maximization process. In
this situation, in determining how much of a good to buy, its benefits and costs are
compared to the benefits and costs of all other goods simultaneously.

From the above equations we also see that the Lagrange multiplier A plays a central
role in determining the optimal values for all the z%’s. Now using the envelope theorem
also gives us that g—:z(p, m) = A, that is, the Lagrange multiplier \ equals the derivative

12
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of the indirect utility function with respect to m at the optimum. So apparently the
Lagrange multiplier equals the marginal utility of budget or money, and A\ = %# thus
shows us that the quotient of the marginal utility with respect to a commodity and its

price, must in an optimum be equal to the marginal utility of the budget m.

2.4 Modelling time

Thus far we have considered the standard framework for consumer choice from mi-
croeconomics. Later in this chapter we will consider the standard framework for con-
sumption/savings decisions as used in macroeconomics. We will also see that indeed
the second framework is a more specific example of the first, as stated in the introduc-
tory chapter. This section, then, tries to bridge the gap between the two frameworks,
thereby establishing precisely in what way the second framework is a special case of the
first.

While the generality of the above microeconomic framework is certainly one of its
strengths, it also seems clear that this framework is so general that it does not permit
many investigations apart from strictly theoretical ones. For empirical investigations
into consumer spending behaviour the above framework with an appropriately chosen
utility function could probably explain almost anything and therefore essentially not
much. Thus, to be used in empirical applications the framework will necessarily have
to be made much more specific. Therefore in order to bring consumer choice theory to
the data a lot more structure will have to be imposed. Also, from a theoretical point
of view, adding some structure to the model may greatly enhance tractability.

To motivate one of the directions in which the framework can be made more specific,
first it is worth noting that in the microeconomic framework as presented above, time
does not actually play any role. Although the commodities may not become available at
the same points in time, in that framework this is irrelevant because at the first moment
in time that a decision is required with respect to some of the commodities, all other
commodities that will become available later are supposed to be known. Therefore,
stating preferences regarding the first group of commodities should also be dependent
on considerations regarding the other commodities that will become available later.

Thus, a first way to impose more structure on the framework could be to explicitly
model time. In the context of consumer choice, adding a time structure may seem
quite natural, since consumption behaviour is stretched out over a lifetime, and time
considerations may seem important.

Therefore, to become more formal, here we introduce a discrete way to model time:
a discrete time variable t is introduced, that progresses through one of the two sets
{0,1,2,3,...,T}, if we want to model a situation with a finite number of periods, or
{0,1,2,3, ...}, if we want to model an infinite number of periods. Thus there is a finite
or countably infinite number of periods.

Thus far preferences were defined on the total commodity space X = R}, where
n € N denoted the total number of commodities that were assumed to become available
for purchasing at some point in time. Here we may also assume that the consumption
opportunities do not present themselves simultaneously, but rather according to the
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above discretization of time ¢. That is, at every stage t, by X; = R’ we denote the
space of all combinations of amounts of the commodities available at time ¢, where
ns € N denotes this total number of commodities available at stage ¢. So corresponding
to the subdivision of time, the total commodity space X is subdivided into T'+ 1, or an
infinite amount of distinct period-t commodity spaces X;. And thus we would get that
the total commodity space X is now a Cartesian product of all period-t commodity
spaces
X = x Xy = RY,

with >, ny = n.

Similarly, commodity bundles are decomposed into period-t commodity bundles:
any © € X can be written as z = (x¢, 1 23,..., 1), Or £ = (Z¢, ¥1,Z3,...), Where for any
t the period-t consumption bundle is denoted x; € Xj.

2.4.1 Independence of preference relations

Of course, preference relations are still only defined on the total commodity space
X. And although we will keep assuming this, we can now, along with the above
decompositions over time, add more structure to such preference relations. In order
to formally do this, some properties that a preference relation may satisfy, which are
related to the subdivision of the total commodity space into smaller sets, are introduced
in this subsection.

An important feature that a preference relation may or may not satisfy is that of
independence. To be able to define this, first suppose we would for some reason like to
partition the set of all available commodities into two disjoint subsets of commodities.
Then, along with this partition of the set of available commodities, we can write the
overall commodity space X as the Cartesian product of the respective commodity spaces
X; and X5 that correspond to the two subsets of commodities. Note that this situation
would simply correspond to a model as in the preceding subsection, with only two
periods.

And suppose that the preference relation - is defined on X = X; x X,. Then
from the preference relation on X, a new preference relation on X; can be derived,
by conditioning on a certain choice of an element x5 € X5 (or vice versa a preference
relation on X, can be derived, by conditioning on an element x; € Xj).

Definition 2.4.1 Given a preference relation 7~ on X = X1 x X, and given an element
xe € Xy, the conditional preference relation 7,, on X, is determined by: ©1 7., T}
if and only if (v1,x9) 7 (2], 22), for all 1,2} € Xj.

The new preference relation -, is obtained from the original preference relation -
by holding a certain element xs € X, fixed. Given that this element zo is fixed, 7,
can now be seen as a relation that gives preference statements for all elements in Xj;.

It is easy to see that =, is indeed a preference relation on X; (that is, 7., satisfies

completeness and transitivity) because - is also a preference relation (and therefore
satisfies completeness and transitivity). Hence for every x5 € X5 we see that =~ on X

14
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also defines a preference relation 7~,,on X;j. In general, the precise specification of 7,
will depend on the particular element x5 € X5. In some cases, however, 7—,, will be the

Y ~AUT2
same for any element x5 € Xs.

Definition 2.4.2 For a preference relation - on X = X1 x Xo, we say that xy is
independent of xo in 7, if the conditional preference relations 7., are identical for
all conditioning choices of x4 € Xs.

Hence independence means that the particular choice of x5 that would be made
from X5, would not affect relative preferences for the goods in Xj.

Similarly, as in the previous subsection, the set of all available commodities can
be partitioned into T € N or a countably infinite number of subsets, or categories, of
commodities. And along with such a partition of the set of available commodities, we
can write the overall commodity space X as the Cartesian product of the respective
commodity spaces X; that correspond to the subsets of commodities. Again, we suppose
that the preference relation - is defined on X = x,Xj.

Now suppose that S is some proper subset of the set of categories of commodities
{1,2,...,T},or{1,2,...} and let S denote its complement. Also, let Xg and Xg. denote
the Cartesian products of all the distinct commodity spaces corresponding to all the
elements in .S, and to S¢, respectively. Then for every x5 € Xg we can define the relation
on Xge, by xge Zug Tse if and only if (zg, xse) 2 (zg, ), for all zge, 2’qc € Xge.
The new preference relation -, is again obtained from the original preference relation
2 by holding a certain element g € Xg fixed. And again, 77, is indeed a preference
relation on Xge. This allows us to impose more structure on preference relations, which
will prove very useful later on.

>—
~ZTS

Definition 2.4.3 A preference relation -, on X = x;X; is called strongly indepen-
dent with respect to the corresponding partition of commodities if, for any proper subset
S of the set of partition indices t the variable xg is independent of rge in 7.

2.4.2 Separability of utility functions

Utility functions, like preference relations, are defined on the total commodity space X.
And, similar to preference relations, we can now use the extra structure we imposed on
X, to add more structure to utility functions.

As in the previous subsection, we first suppose here that the set of all available
commodities is partitioned into two disjoint subsets of commodities, and that, along
with this partition, we can write the overall commodity space X as the Cartesian
product of the respective commodity spaces X; and X5 that correspond to the two
subsets of commodities. We can again use this extra structure such as to impose more
structure on utility functions that are defined on the overall set X.

Definition 2.4.4 The utility function u (.,.) defined on X = X1 X Xs, is called sepa-
rable in xy if u(xy, o) can be written as u(xy,x2) = U(v(xy), x2), for certain functions
v:X; — R and U :v(X;) x Xy — R,” such that U(v, zy) is strictly increasing in v.

"v(X1) = {v € R|3x; € Xy : v(zy) = v} is the range of v.
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Separability says that there is a separate function measuring the (sub)utility from
the separable commodities, such that overall utility is then only determined from the
amounts of the other commodities, and the level of subutility obtained from the sepa-
rable commodities. Notice that this subutility function for the separable commodities
is independent of all of the other commodities.

The set of all available commodities can also be partitioned into 7" € N or a count-
ably infinite number of subsets of commodities, so that the overall commodity space X
can be written as the Cartesian product of the respective commodity spaces X;. This
allows for adding more structure to utility functions u(.) that are defined on X = x;Xj.

Definition 2.4.5 The utility function w(.) defined on some set X = x;X;, is called
additively separable with respect to the corresponding partition of commodities, if
u(x) can be written as w(x) = Y, u(x,), for certain functions uy : X; — R.

Additive separability is strong property that says that utility is separable in every
x; (in the usual sense), so for every ¢ there exists a period-t utility function u(z;),
that only depends on period-t consumption, and not on consumption in other periods.
Moreover, the overall utility function (that weights all of these subutilities ;) is additive
in all the u,;’s.

The following proposition links the properties of separability of utility functions
with the properties of independence of preference relations.

Theorem 2.4.1 (A)Let = be a preference relation on X = X1 x X, such that x1 is
independent of xo in 77, and let u : X — R be a utility function representing >~. Then
u will be separable in x1.

(B) Suppose that 7 is a preference relation on X = R% (for n < oo) that is
continuous and strongly monotonic. Then 77 is strongly independent with respect to the
partition of commodities corresponding to X = X1 X Xy X ... X X if and only if every
utility function u : X — R that represents 77 is additively separable (with respect to the

same partition).

For proofs see Luenberger [28].

The first part of the theorem indicates that the separate (sub)utility function v (.)
represents the separate conditional preferences 7—,, on Xj.

2.4.3 The basic consumer problem

If the total commodity space X = R’ (with n € N) can be written as the Cartesian
product of all the per period commodity spaces X = x;X;, and commodity bundles
can be decomposed into period-t commodity bundles x = (9,21 22...,27), Or T =
(w9, 21,%,...), then accordingly price vectors p € R\{0} for all goods in X can be
decomposed into period-t prices p; € R}*\{0}, that denote the corresponding prices for
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the goods in X3, so p = (po, p1, ..., 1), Of p = (Po, P1,-..).> Then, the budget constraint
p -2 < m would in this more specific case read ), p, - z; < m.

However, now that we have modelled time explicitly, this also allows for a situation
where income is not yet completely owned in period 0, but to be received as an income
stream. We could model this as a situation where my > 0 is the initial endowment
owned in period 0, but where in every subsequent period an additional income I; > 0
will be earned. Because we are still assuming certainty here, this model with an income
stream, can also be captured by the former model without income streams, as long as
total income is finite and if it is assumed that there is a perfect capital market. That
is, if our consumer is able to borrow and save at a (constant) interest rate r > 0, then
by certainty, this model can be captured by a model without income streams I; = 0,
but with initial endowment my = mg + Y, R™'I;, where R = 1 + r. If there is no
perfect capital market in place, then this equivalence will not hold. For instance, if we
consider a situation with an income stream, where it is possible to save at the constant
interest rate r, but where it is impossible to borrow, then the situation becomes more
complicated because the budget set is no longer defined by just one budget constraint,
but now by 7'+ 1 or an infinite number of budget constraints. These budget constraints
would read pg-z¢g < mg, and p;-x; < my, for all ¢, where m; would be an implicit period-t
budget, given the actual choices made in previous periods z; for all i < ¢, as defined by:

t t—1
me = Rtmo + Z Rtii[i — Z Rtii(pi . xl) (’E)

i=1 =0

with R = 1+ r. In period t, the effective period-t budget constraint would read
e - £y < my, which could also be rewritten as

ZRt pi - i <Rtm0+ZRt .

Then, with additively separable utility and an income stream, the basic consumer
problem would amount to

maxz u(z¢) sub to py -y < my, for all t,

where m; is the implicit budget as defined by formula (*X).

Note that this specification also still incorporates the possibility of only one budget
constraint, by setting I; = 0, for all ¢ > 0, so that all different budget constraint are
captured by: >, R'(p: - ;) < my.

®Note that the condition that the overall price vector satisfies p € R” \ {0} is not completely
equivalent to p, € R’* \ {0}, for all ¢, therefore we have to slightly restrict the overall price space here.
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2.4.4 Consumption levels

The above formulation immediately brings to light that under additively separable util-
ity, the basic ad hoc consumer problem can be subdivided into distinct subproblems:
firstly, the subdecision of choosing the levels of period-t consumption ¢; € R, that
determines how much can be spent in all periods ¢, and secondly, the subsequent sub-
decisions of allocating each of these ¢;’s over all of the commodities available in the
corresponding period. If our consumer is indeed a rational utility maximizer, then
in the second stage of the problem he will choose to allocate the period-t budgets ¢
amongst the period-t commodities in an optimal manner. That is, given prices p; and
the period-t budget ¢;, the period-t bundle x;(p;, ¢;) that he will end up choosing will
be a solution to the subproblem of maximizing period-t utility over the period-t budget
set:

x(pr, ¢r) € argmax ug(xy) sub to z; € Xy, py - 2 < ¢4
Tt

And thus, under the assumption that the decision-maker would behave optimally in
the second type of subproblems, we see that this optimal second stage utility would be
given by: uy(x¢(pe, ct)) = vi(pe, ¢i). Here vi(py, ¢;) denotes the indirect utility function
as derived from wu,, given prices p; and the period-t budget ¢;. Now, given that saving
is possible at interest rate r and borrowing is not possible, if we write the profile of
consumption levels as ¢ = (cg, ¢1, ..., cr) or ¢ = (¢, ¢q, ...), then using this notation we
can represent the first subdecision as

< .
mcaxzt:vt(pt, ¢t) sub to ¢; < my, Vit

Here m; again denotes the implicit period-t budget from formula (*X). And under
certainty we may regard all prices p; as exogenous, therefore if, for every ¢, we define
the function @;(c;) := vi(py, ¢t), then we can let the first subdecision be represented by

maXZﬁt(ct) sub to ¢; < my, Vt,
t

with m; as in formula (?K).

It is exactly this first type of subdecisions that has been studied extensively in
macroeconomics, both theoretically and empirically, where it is quite common to forget
about the second type of subproblems and just focus on the first type of subdecisions.
This is one of the reasons why in macroeconomics problems like these are typically just
presented in their own right, without referring back to the ’original’ problem that starts
from commodity spaces. That is, in typical consumption/savings models from macro-
economics, preferences are typically expressed as u(c) =), ui(c;), where v, : Ry — R
is simply a function that directly gives utility from a level of period-t consumption ¢,
rather than an indirect utility function that is derived from a more primitive utility
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function defined on some underlying commodity space. Here we will also follow this
example in the subsections dealing with consumption/savings models.

Note that this type of situations, where utility is derived directly from consumption
levels, can also be accounted for within the general microeconomic framework by simply
assuming that all the period-t commodity spaces X; = R, are one-dimensional to begin
with, so X = RY (or X = RY, in the infinite case). Then, if all the u;(x;)’s are strongly
monotonic functions, and all prices are set to unity p; = 1, for all £, then we get that
the distinction between direct utility and indirect utility is no longer necessary, so v
may be replaced by u. Indeed, then we get

() = vi(pe, ) = max  w(my) = wi(ey/pe) = w(cy).
TyprTe<ct
So in this case there would be no need for making reference to or worrying about
underlying commodity spaces.

2.4.5 Exponential discounting

With this specification of utility we are getting closer to the type of models used in
macroeconomics to study consumption/savings decisions. However, a setting like this
is still too general to be of much use in empirical investigations. If we do not have a
way in which the different functions u, : R, — R can precisely be related, then just
about anything can be explained from the above model by choosing the appropriate (or
actually inappropriate) u, functions.

So assumptions are needed on how the different period-¢ utility functions are related.
Recall that each of the period-t utility functions u;(c;) are defined on the same set R .
Moreover, these variables ¢; have the same interpretation of levels of consumption in
the concerning periods, which will simply be expressed in monetary terms. That is,
each of the variables ¢; can be measured identically.

A quite straightforward and popular way to relate these different period-¢ utility
functions, is by introducing a discounting function d(.), and basically assuming that
the utility functions are the same for all periods, except for some discount factors
d(t), so that u;(c) = d(t) - up(c). These discount factors can be said to represent time
preference, which measures the difference in valuations of consumption in different
periods. Typically we would expect that individuals would prefer consumption now
over (the same amount of) consumption in the future. The most standard choice of
these discount factors is that of exponential discounting.

Definition 2.4.6 An additively separable utility function u(c) = Y, w(c:), satisfies
exponential discounting if u;(c) = 0" - ug(c), for allt, and all c € R, and some dis-
count factor 0 < 6 < 1. The period-0 utility function ug(.) is called an instantaneous
utility function.

Hence, if such an additively separable utility function u(c) = ), w/(c;) satisfies
exponential discounting, then we see that

wp1(c) = 6" cug(e) = 8- 0" - uglc) = 0 - uy(c).
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Thus, the discount function d(t) is a function that decreases exponentially in t:
d(t) = 6", where 0 is a constant per-period discount factor. Essentially, exponential
discounting assumes that money can buy the same levels of utility in every period
(except for the decreasing desirability of consumption over time, which is only due to
time discounting). And a consequence of exponential discounting, is that discounting
between any two dates that are equally far apart is the same.

Under exponential discounting, a typical utility function will take the form:

u(c) =3, 6'ug(cy).
2.5 Consumption/savings models and Dynamic programming

Thus far in this chapter we have considered the standard framework for consumer choice
from microeconomic theory, as mentioned in the introductory chapter, and some ways to
make this general framework more specific. The most important of these specifications
are explicitly modelling time, assuming additive separability of utility functions with
respect to time, and exponential discounting. And with these specifications, we have
arrived at a basic consumer problem that can mathematically be expressed as

t
< X
max Et 8 up(c) sub to ¢ < my, Vit

Here m; denotes the implicit period-¢ budget as in formula (?X).

And with this class of models, we have arrived at the second fundamental part
of economic theory we wanted to consider: the macroeconomic models of consump-
tion/savings decisions. These consumption/savings models typically take the above
form, or something similar. Thus, the preceding section has shown that (and in what
way) the macroeconomic framework of consumption/savings is indeed a more specific
case of the microeconomic framework of consumer choice, as also stated in the intro-
duction.

But before we will take a look at the methods of dynamic programming that are
used to solve consumption/savings models, we will still make a number of additional
assumptions.

Firstly, from now on we will assume that the number of periods is (countably)
infinite: T" = oo. This implies that preferences are represented by an infinite sum
of discounted utilities: wu(co,cy,...) = Yooy 0'ug(c). We make this assumption for
two reasons, the first of which being mathematical convenience. The second reason
is that in this work we are trying to set up a learning model of consumer choice, and
investigate the convergence properties of such a model. And in order to be able to study
convergence we will generally need an infinite number of periods (we will come back to
these issues later). And although this assumption may not seem completely realistic,
note that if the discount rate 0 < § < 1 that reflects pure time preference is given,
we could additionally also assume that after every period it is only with probability
0 < 6 < 1 that there will be a next period (so after any period with probability (1 — )
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this period may turn out to have been the last). We will see later that if our decision-
maker is an expected utility maximizer, then his preferences may be represented by

[e.9]

Elu(co,c1,...)] = Z(é@)tuo(ct),

t=0

so then the combined factor 660 may also be used as a new discount factor to model this
situation.

Secondly, we will assume that models are stationary. We want to model an infinite
number of periods, in which case stationary problems are much more easy deal with
(analytically). In the framework we are considering here, stationarity would mean
that when income is not yet completely owned in period 0, but to be received as an
income stream, then this income stream should be constant. That is, we need to have
a situation with an initial endowment my > 0, and where in every subsequent period
the additional income I; that will be earned, will have to be constant: I, = I > 0, for
all t > 0.

Thirdly, for notational simplicity, we will from now on assume that no interest is
obtained from saving: r = 0, so R = 1. The analysis in this work can also be extended
to allow for (constant) non-zero interest rates. However, conceptually the analysis
would remain the same, and as it would make notation more complicated, we opt for a
zero interest rate. Under this assumption, the mathematical expression of the consumer
problem simplifies to

t
max Z §'ug(c,) sub to Z c; < mqg+tl,Vt.
t

=0
2.5.1 Dynamic Programming

We saw that in macroeconomics consumption/savings models are usually represented
by the maximization of a utility function that is additively separable over time and that
satisfies exponential discounting. In this subsection we deal with how these problems
can be solved. So in a sense, this subsection is more about mathematics than it is about
economics. Still, the ideas and methods found here are also relevant for subsequent
chapters.

Sequence problems In mathematics, the problem of maximizing an additively sep-
arable utility function that satisfies exponential discounting has a name of its own, and
will be contrasted to another method later.

Definition 2.5.1 Given instantaneous utility ug, a discount factor 0 < d < 1, and an

income stream (myg, I, 1,...), the problem of solving

0o t
max : Z 6'ug(c;) sub to Z ci <mg+tl, forallt > 0,
=0

(co,c1yee =0

1s called a sequence problem.
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Functional equations In principle we could attempt to solve a sequence problem
directly by means of the Lagrange method as in section 2.3. However, in section 2.3
a single budget constraint was faced, so that only one Lagrange multiplier needed to
be considered. Here we see that with / > 0 an infinite number of budget constraints
are faced, so that an infinite number of Lagrange multipliers are needed. Therefore in
general the Lagrange method is not very practical, and something else will have to be
attempted.

The way to proceed would typically involve taking a recursive approach and using
the fact that by stationarity, the problem faced in period 1 can be seen to be a copy of
the one faced in period 0. In the above sequence problem our consumer is supposed to
choose an infinite sequence of consumption levels ¢ = (¢, ¢1, g, ....) in (or before) period
0. In contrast to this approach, we can also think of the problem that a decision-maker
faces at period 0, as one of simply dividing his resources my between consumption c
and savings sg = mg — c¢g which, since here there is no budgetary uncertainty, would
completely determine next period’s budget m; = sqg + 1 = mg — cog + I. Then, the
decision of how to allocate m, could wait until period 1.

Given mq, the maximal lifetime utility that could be obtained in all periods after
time 0, would be given by max(e, cyes..) dorey 0 uoler) st St gei < my + (t— 1)1,
for all ¢ > 1. Now suppose that the value function V* : R, — R, would return for
every budget level m; exactly the above maximum utility value that could be attained
from budget m; from period 1 onwards, discounted to period-1 terms:

t
V*(my) max Z(V o(ct) s.t. Zci <my+(t—1)I, for all t > 1.

01702,037 i1
Then the problem faced at stage 0 could alternatively be represented as

max [ug(co) + V™ (so + I)] s.t. co + so < my.

(c0,80)

Since this is a maximization problem in only two variables, this looks a lot easier. Of
course the question remains how to find such a value function V*.

Now, by stationarity (I; = I) the consumer’s problems at dates 0 and 1 can be
seen to be copies. That is, a change of variables shows that the value function V*
evaluated at mg can also be expected to give the maximum level of total lifetime utility
attainable from this initial budget, that is: V*(mg) = max(c,cre0,) Dopoo §'ug(cy) sub
to ZE:O ci < mo+tl, for all ¢t > 0. Thus we would expect that the maximal utility
levels would be the same in the two maximization problems, i.e. that: V*(mg) =
MaX(cy,s0) (U0 (Co) + 0V *(s0 + I)] sub to co + 5o < myg. Indeed, mathematically this would
be due to the fact that maximizing over all variables simultaneously would have to
give the same result as first, for any given choice of ¢y, determining the maximum over
(¢1, g, ....) while holding ¢q fixed, and then maximizing this conditional maximum over
co. Again using the fact that the problem faced is identical in all different periods we
search for a value function V* that will solve V*(m) = max[ug(c) + §V*(s + I)] sub to
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¢+ s < m. This equation is also called a Bellman equation, and it is said to reflect the
principle of optimality

Definition 2.5.2 Given instantaneous utility ug, a discount factor 0 < 6 < 1, and an
income stream (mg, 1,1, ...), an equation such as

V*(m) = r(na:))c[uo(c) +0V*(s+1)] sub toc+ s <m,

)

that is to be solved in the unknown function V* is called a functional equation.

The method of using and solving a functional equation can be contrasted with that
of the sequence problem, as mentioned earlier in this section. The relations between
sequence problems and functional equations, and how such these functional equations
can be solved, is exactly what dynamic programming is concerned with.

For any instantaneous utility function wg(.), we define a value function by the opti-
mal value of the sequence problem

o] t
* o t
V*(myg) : (00%7&0)2%...);5 up(ct) sub to ;cl < mgqg+tl.
Now, it can be shown that if ug is an increasing function, then for any 6 < 1, the value
function V* indeed solves the functional equation
V*(m') = r(na§<[u0(c) +0V*(s+ 1) sub to c+s <m/,

for any m’ > 0. Moreover, any function that solves the functional equation must equal
the value function that maximizes the sequence problem.

Similarly, any infinite sequence of consumption levels (cf, ¢i, ¢, ....) that solves the
first period-0 sequence problem, will also be such that for each ¢t € Ny the pair (¢}, s7),
with s; = my — ¢, will maximize max(c, s,)[uo(ce) + 0V*(s¢ + I)] sit. ¢ + 50 < mj =
mo +tI — 3270 ¢t And conversely, for any infinite sequence of pairs {(é, 5,)}2, each
of which solve the corresponding maximization problem maxc, s,)[uo(ct) + 0V *(s; + I)]
s.t. ¢ +s <y =mo+tl— Zf;é ¢;, the sequence (¢, é1, G2, ....) will also solve the first
period-0 sequence problem max(c; c;.cs,..) 2 pe0 §'ug(cy) s.t. Z:ZO ¢ <mo+tl. (Seee.g.
Stokey and Lucas [43].)

Thus if the value function V* is known, then the whole optimal profile of consump-
tion levels (c§, ¢}, ¢, ....) can be determined from V* and mg. Of course, such a value
function V* would still have to be found. Often it is easier to solve a functional equation
than the corresponding sequence problem.

Also note that although we have included some intertemporal considerations in our
framework, the final maximization problem that our consumer is facing is still basically
a static problem. It still boils down to a one shot decision, where the different parts of
this single decision will be implemented at different times. Therefore the actual decision
is made at time ¢ = 0, after which all that remains to be done for the consumer is to
implement the chosen consumption plan.
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2.6 Uncertainty

Thus far we have seen models that describe consumer choice as choosing a bundle of
commodities from a budget set of affordable commodity bundles, such as to maximize
the utility that will be obtained from consuming such a commodity bundle. Underlying
all this are assumptions of perfect knowledge or of complete certainty about the elements
in the model, or the different components of the (future) economic environment. It is
assumed that the consumer knows the number of commodities that can possibly be
purchased, he knows each of these commodities (including all future ones), he knows
all prices and he knows his income (stream). These assumptions do not seem to agree
with everyday life very well, because obviously in real life always some uncertainty is
faced.

Whereas we can assume that this consumer does in fact know all the (relevant)
goods that are available to him now, it does not seem very realistic to assume that a
consumer knows all the goods that will be available at all future dates. Thus in reality,
people seem to face uncertainty about the composition of the choice set, and also about
the number of commodities in this choice set. In the more specific consumption/savings
models, there is no need to know the composition of the commodity space, as utility
is supposed to be derived from consumption levels instead of commodity bundles. But
of course, the exact composition of the future commodity space is by no means the
only source of uncertainty faced by someone who wants to plan his consumption. For
instance, the assumption that a decision-maker would know his entire (lifetime) budget
with certainty, seems to be very strong.

Similarly, we may wonder whether, when a consumer makes a choice that involves all
levels of future consumption, he really has exact knowledge of all his own future utilities,
as the standard model assumes. In some cases we can imagine that future preferences
might change, or be influenced by the mood you will be in at that particular moment
of consumption.

These obvious problems of the models of choice dealt with so far have made it
necessary to extend these models and to develop ways to incorporate uncertainty into
them. In order to properly describe what choice under uncertainty is, we need a few
definitions.

Definition 2.6.1 An act is a complete description of a particular course of action that
a deciston-maker can take in a certain choice problem.

Definition 2.6.2 An outcome is a complete description of the result that a decision-
maker may obtain in a certain choice problem.

A typical act is denoted a and the set of all possible acts for a certain choice problem
is denoted A. Similarly, a typical outcome will be denoted o, and the set of all possible
acts is denoted O. Note that the notion of an outcome refers to what a decision-maker
will end up with, the precise result of a decision, and therefore describes the situation
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after the resolution of uncertainty. The notion of an act refers to everything that a
decision-maker can do to influence what outcome will come about before the resolution
of uncertainty.

Definition 2.6.3 Choice under certainty refers to all models of decision-making
where every act can lead to only one outcome.

Definition 2.6.4 Choice under uncertainty refers to all models of decision-making
where there are acts that can lead to several outcomes.

In models of choice under certainty, any act will lead to only one outcome, so it
is usually not even necessary to distinguish acts from outcomes, they can simply be
thought of as the same objects. However, in decision-theoretic terms choice under
uncertainty means that there will be acts with which more than one possible outcome
can be associated, and the distinction between acts and outcomes becomes crucial. Of
course, only one outcome will finally occur after any particular act is chosen but at the
moment the choice is made it remains unclear which one. Hence, with choice under
uncertainty, outcomes are not completely determined by acts, but also influenced by
forces beyond the decision-maker’s control.

Thus, the setting is that of a decision maker who is faced with a choice problem for
which there is missing information between acts and outcomes that prevents him from
being able to view the problem in the prospective utility maximizing manner from the
standard static framework.

Indeed, mathematically the correspondence that associates with any act the set of
outcomes that may result from it, will under certainty only return sets containing a
single element. Therefore mathematically under certainty this correspondence satisfies
the criteria of being a function f : A — O, with f(a) € O. Under uncertainty, the
correspondence that associates with any act the set of outcomes it may yield, will now
also return sets with more than one element, and can therefore no longer be called a
function, but should mathematically indeed be called a correspondence g : A = O,
with g(a) C O.

So such an acts-outcomes-correspondence, attaches to every act the set of outcomes
that may result from this act. More structure can be added to the extent of uncertainty,
and the properties of the acts-outcomes-correspondence, by introducing states of the
world, that will help refine the above correspondences into functions.

Definition 2.6.5 A state of the world is a complete description of all factors that
are beyond the control of the decision-maker and that, together with the chosen act,
uniquely determine the outcome that will occur.

A typical state of the world will be denoted w, and the set of all states of the world,
that will also be called the state space, will be denoted 2. States of the world are
designed in such a way that any combination of an act and a state of nature will lead
to one and only one outcome. Mathematically this could be represented by a function
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f:AXxQ— O, so f(a,w) € O. Then, the above acts-outcomes-correspondence g can
be linked to the acts-states-outcomes-function f by: g(a) = {f(a,w) : w € Q}.

Since the set of outcomes O is known, everything that can happen is known. But of
course, we generally do not know which element of O will result from any act, and this
is where the states of the world or simply ’states’ come in. We are now supposed to
have a set of states {2, one of which is going to materialize, so that the state w € €2 that
does materialize, together with the act that was taken, completely determines what
outcome will result. Thus all remaining uncertainty is now embodied in uncertainty
about which of the states in €2 will occur.

It is important to note here that within this general definition of choice under uncer-
tainty, it has not yet been specified what properties the acts-outcomes-correspondence,
or the acts-states-outcomes-function may have. It has also not been specified yet how
much about this acts-outcomes-correspondence, or this acts-states-outcomes-function is
known by the decision-maker, apart from the fact that acts may not necessarily lead to
single outcomes. The modeller can choose models with different amounts of uncertainty,
depending on how much the modellee within the model, and the modeller outside the
model, know. Models can be devised in which a decision-maker has full knowledge of
this acts-states-outcomes-function, or in which the modeller does have this informa-
tion but the modellee does not. It is even possible to devise models in which even the
modeller does not know the full acts-states-outcomes-function.

2.6.1 Expected utility

Of course, the above decision-theoretic view on how to specify uncertainty, does by
itself not say anything about how decision-makers would deal with it, and make choices
under uncertainty. As usual, there is not really one undisputed way to resolve these
matters. Indeed, there is a long history of work on decision under uncertainty. However,
the approach towards uncertainty that is by far the most used in economics nowadays
is Expected Utility Theory.

From the definition of the acts-states-outcomes-function we see that any pair of an
act and a state of the world will always lead to a single, unique outcome. Therefore, we
can now also specify acts as functions from states of the world to outcomes. That is, an
act can be viewed as a rule that specifies for each possible state of the world the outcome
that will result from this act. Thus, mathematically we can now express an act here as
a function a(.), with a : Q — O. Thus, the set of acts A is a set containing a number of
functions. For any act a : 2 — O, the acts-outcomes-correspondence g would then be
given by g(a) = {0 € O : Jw € 2 s.t. a(w) = o}, and the acts-states-outcomes-function
f would be given by f(a,w) = a(w), for all w € Q.

Now, at the moment that a decision is required, our decision-maker does not know
which state of the world will occur. However, in Expected Utility Theory it is assumed
that our decision-maker knows the probabilities that each of the states of the world
will occur. That is, a probability distribution 7(.) on the state space Q is known,
with 7(w) > 0, for all w € Q, and ) _,7(w) = 1 (if Q is a countable set), or
Jeql-dm(w) =1 (if Q is not countable). The set of all probability distributions on a
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given state space is denoted by II.

Then, in Expected Utility Theory pairs (a, 7), that consist of an act a : Q@ — O, and
a probability distribution 7 :  — [0, 1], are seen as the objects of choice, and called
lotteries (or simple lotteries).

Definition 2.6.6 A lottery l is a pair (a, ™) that consists of an act a(.) that maps the
state space §) into the set of outcomes O, and a probability distribution 7 : Q — [0, 1].

Such a lottery (a, ) thus basically consists of a list of all outcomes o € O that may
happen, and their associated probabilities of occurring 74 (0) = >_, cq.4()=o T(w) for a
countable state space, or 7,(0) = |, (weQa(w)—oy L AT (w), in the uncountable case. For
notational brevity, we will also let such a lottery (a, ) be denoted by [, and the set of
all such lotteries is denoted by L = A x II.

If two lotteries | = (a,7) € L and I’ = (a/,7') € L and a number u € [0, 1] are given,
then we can define the compound lottery ul & (1 — p)l’ to be the lottery that will
result in lottery [ with probability u, and that will result in lottery " with probability
(1 — ). Now it is assumed that the compound lottery pul @(1 — u)l’ is identical to
the simple lottery that will result in each of the outcomes o € O with the probabilities

pita(0) + (1 = )y (0).

Effectively when choosing between acts, a decision-maker chooses between lists of
outcomes that will occur with certain probabilities. So these lotteries are now the
objects of choice, and similarly to the deterministic case, we assume that underlying
the choices from any set of lotteries is a preference relation - on L.

Then if we would define a topology on the set of lotteries L, and assume a preference
relation 7~ on L to be continuous with respect to this topology, then by 2.2.1 preferences
>~ could be represented by some utility function U : L — R. However, in Expected
Utility Theory we want such utility functions to have an expected utility structure: there
should be a function v : O — R such that U(l) = Er,)[u(a(w))], for all = (a,m) € L.
In order to arrive at utility functions representing such preference relations that have
an expected utility form two more requirements are needed.

Definition 2.6.7 A preference relation - on the set of lotteries L is called continuous
if for any 1, I',1" € L, the sets {p € [0,1] : pl® (1 — p)l’ Z 1"}, and {p € [0,1] : I"
pl @ (1 — p)l'} are closed (in R).
Definition 2.6.8 A preference relation 7 on the set of lotteries L satisfies inde-
pendence if for any I, I',)l" € L, and any p € [0,1], we have I 77 I' if and only if
ple (1=l Zpl' & (1—p)l".

Now, for any given act, the probability distribution on the state space can be said to
yield a probability distribution on the outcome set, where this probability distribution
would specify the probabilities each of the outcomes will occur with. And, ifu: O — R
is a function that gives the final utility as it would be derived from getting certain
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outcomes, then given an act, the probability distribution on the state space can also be
said to yield a probability distribution of final utility. And in Expected Utility Theory
it is the mathematical expectation of this probability distribution of final utility that
is ultimately maximized. Presented next is the traditional view of Expected Utility
Theory, also sometimes termed objective Expected Utility Theory.

Theorem 2.6.1 Suppose that the preference relation 7, on the set of lotteries L satisfies
continuity and independence. Then there exists a utility function U : L — R that
represents -, and has an expected utility form: there is a (Bernoulli) utility function

~)

u: O — R such that U(l) = Erylu(a(w))], for alll = (a, ) € L.
For a proof, see von Neuman and Morgenstern [33].

So (objective) Expected Utility Theory says that if a preference relation on the set
of lotteries satisfies continuity and independence, then this preference relation can be
represented by a utility function that has the expected utility form (or von Neumann-
Morgenstern form): i.e. there is a Bernoulli utility function u(.) defined on the set of
outcomes O so that, if the state space (2 is finite or countably infinite,

U(l) = Eulu(a(w))] = Xyeq m(w)ula(w)),

or if the state space €2 is not countable,

U(l) = E,[u(a(w))] = /{ et

Underlying this specification of objective Expected Utility Theory are assumptions
that whereas a decision-maker doesn’t know what will happen, he does somehow know
or can imagine everything that can happen, and that he knows all probabilities with
which everything that can happen will happen. That is, it is assumed that when our
decision maker has to decide, this probability distribution that gives a complete de-
scription of the uncertainty that is faced, is objectively given to him. This really seems
a strong assumption, since when we are dealing with uncertainty in real life we are
usually not equipped with such knowledge. Here if we don’t want to assume that our
consumer actually knows the probability distribution of the states of the world, then we
could still assume that somehow our consumer acts as if he does have such a probabil-
ity distribution at his disposal. That is, the assumption of objective knowledge of each
state’s probability of occurring can be dispensed with. Then instead of starting from a
preference relation defined on the space of lists of outcomes that will occur with known
probabilities, a preference relation can alternatively be defined on the space of lists of
outcomes directly, without the additional interpretation of known probabilities of occur-
rence. Again, it can be shown (see, e.g. Savage [38]) that if this new preference relation
satisfies a number of axioms, then this preference relation can still be represented by
a utility function that has the above expected utility form: U(l) = E,[u(a(w))]. Not
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surprisingly though, since the objects of choice that would underlie this new type of
preference relations are more general than lotteries, the axioms that such a subjective
type of preference relation would have to satisfy should then be strengthened. This kind
of expected utility that does not assume objectively known probabilities of occurrence is
called subjective expected utility. In contrast with the above objective expected utility
where the objective probabilities 7(w) of certain states occurring are exogenously given
to the decision-maker, with subjective expected utility the subjective probabilities 7(w)
of states occurring can endogenously be derived from the preference relation.

In the next subsections we will first apply uncertainty in the standard (static) mi-
croeconomic framework for consumer choice, then we will extend our explicit way to
model time to include uncertainty, after which we will apply uncertainty in the standard
macroeconomic framework for consumption/savings decisions.

2.6.2 Expected utility in consumer choice

The above framework for choice under uncertainty is very abstract and general indeed.
Therefore more specification is required in order to apply it in some more concrete
setting. How exactly the components of this framework (the acts, states and outcomes)
should be interpreted in a specific economic problem is not always straightforward, and
sometimes subject to the modeller’s choice. Thus the question arises of how the above
elements of the framework of choice under uncertainty should be interpreted within the
case of consumer choice that we were considering.

The interpretation of an outcome is probably most straightforward here. An out-
come should simply be a complete description of all consumption that a consumer would
be able to attain, thus an outcome should be a commodity bundle z € X, in the set of
all commodity bundles that may result from all combinations of acts and states that
can possibly occur.

Next, the states of the world are to be thought of as everything that is beyond the
control of the decision-maker, but that does influence what outcome x will finally occur.
One specification of these states of the world, and one that is particularly convenient,
is a specification where the uncertainty about the future economic environment can
simply be reduced to uncertainty about each of the components that this economic
environment consists of. Thus we assume that the economic environment consists of
a number of distinct components (such as available consumption opportunities, prices
and income) that are uncertain, and we may define the states of the world to specify
realizations of all the uncertain components of the consumer choice model. Thus a state
of the world would consist of a realization of the commodity space, a realization of the
price vector, and a realization of the consumer’s budget, and we write w = (X, p, m).

Such a realization of the commodity space is denoted by X, and such a space would
be some Euclidian space: X = R, where its dimension n € N does not have to be the
same for all different realizations of the commodity space. Also note that for any two
realizations X and X', even if their dimensions are equal, these spaces may very well
represent different sets of commodities, so the interpretations of each of their dimensions
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may differ. In any case, each of these realizations is a full-blown commodity space. To
be consistent with the interpretation of X, we should have that the set X equals the
union of all the possible realizations for X.

A realization of the price vector p of a state of nature w = (X, p, m) should give the
prices for all the commodities in the accompanying realization of the commodity space
X, and should therefore be given by a vector p € R"\{0}, where its dimension n € N
equals the dimension of the accompanying realization of the commodity space.

And a realization of the consumer’s budget from a state of nature w = (X, p,m)
should simply be a non-negative real number m € R,. Thus indeed, a state w could be
denoted by a triple (X, p, m).

Then, for these specifications of outcomes and states of the world, we can now
specify acts. Since a pair of an act and a state of the world will always lead to a
single, unique outcome, we can also define acts as functions from states of the world
to outcomes. That is, an act would have to be some rule that specifies a commodity
bundle for each possible state of the world. Of course, given the interpretations of the
components of states of the world, we should additionally require that such a chosen
commodity bundle should be feasible. Here feasibility would mean that given the state
of the world w = (X, p,m), the commodity bundle = that would be chosen has to satisfy
x € X and p-x < m. Thus, a feasible act is some rule that specifies for each possible
state of the world some course of action that will lead to a feasible outcome. And we
can formally define an act here as a function a(.), with a : @ — X, and such that for
any w = (X, p,m), we have a(w) € X, with p - a(w) < m.

Now, when a Bernoulli utility function u : X — R is given on the set of outcomes
(commodity bundles), and if indeed a probability distribution 7 is given on €2, then the
expected utility of any act a can be expressed as U(a) = E,[u(a(w))].

Note that in the above framework for dealing with uncertainty, it seems that the
consumer does not face any uncertainty about his future preferences or tastes, so that
utility is deterministic. However, this framework for dealing with uncertainty does also
allow for uncertainty of future preferences by choosing a different interpretation of what
outcomes should be. The description of an outcome does not have to be confined to
the physical properties of a given situation, but could also be enriched to include the
psychological reactions to this situation. Thus the consumer could deal with this extra
bit of uncertainty in the same way as he did with the other uncertain factors.

2.6.3 Modelling time

However, the above way to specify uncertainty may also not seem completely natural or
helpful. In the above account, the decision problem under uncertainty is essentially only
a series of decision problems under certainty. That is, an act would be a function from
states of the world to outcomes, thus essentially here decision-making under uncertainty
would boil down to, for every state that may occur, making a single choice as under
certainty.

And here we encounter another reason for explicitly modelling time: it will prove
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helpful in extending the present framework to include uncertainty in a more natural way.
Of course time plays a crucial role in considerations about uncertainty. Specifying the
unveiling of uncertain information requires being able to specify what happens when.
Therefore, it is probably more appropriate to further specify the extent of uncertainty,
so that the uncertain elements are not unveiled at once, but instead little by little as
time progresses.

To model this, we use the same discrete way to model time, as presented before.
Thus, we have a time variable ¢, that progresses through one of the sets {0, 1,2, ..., T},
in case of a finite number of periods, or {0,1,2,...}, in case of a (countably) infinite
number of periods. Now, above we saw that this time variable was used to break up the
commodity space into period-t commodity spaces X;, such that the overall commodity
space X would equal the Cartesian product of all the X;’s: X = x;X;. Similarly,
overall price vectors p were broken up into sequences (pg, p1, ..., pr) or (po, P1, P2, ---)-

Accordingly, a state of the world w is a triple (X, p, m), and can now also be written
as

w = ((X07X17 "'7XT)7 (p(bph "‘7pT)7m>7

or
w = ((Xo, Xl, XQ, ), (po,pl,pg, ), m)

However, recall that explicitly modelling a time structure also allows for the possibility
of an income stream (my, I1, ..., I7), or (mg, I1, I3, ...). In this case a state of the world
could thus be written as

W= ((X07X17 "'7XT)7 (p[hpla "'7pT)7 (m0>117 "'7IT))7

or
W = ((X07X17X27 )7 (p07p17p27 )7 (mo,fl, [2’ ))

Now we could also break up states of the world w into sequences of time-t states wy,
so that w = (wg, w1, ..., wr), or w = (wg, w1, ws, ...). Then by wy = (Xy, py, I;) we would
denote the prevailing period-t part of the state of the world, consisting of a period-t
commodity space, a period-t price vector, and a period-t income (we define Iy := my).

Recall that for such period-t commodity spaces X; = R’, the dimension n; € N
may vary across realizations. A realization of the period-t price vector p; € R}*\{0}
should be of the same dimension as the accompanying realized commodity space. A
realization of the additional income in period ¢ should again be some [; € R,.

As noted above, we also wanted to explicitly model time in order to allow for the
possibility of a gradual unveiling of uncertainty. That is, since we can now write a state
of the world w as a sequence w = (wg, w1, ...,wr), Or W = (wo, w1, ...), different parts w;
may be learned at different points in time. Indeed, here we will rather straightforwardly
assume that the period-t part of the state of the world is in fact learned at (and never
before) time t. Therefore, at time ¢, the subsequence (wg,ws, ...,w;), which we also
denote here by w}, is already known. The future part of the state of the world th+17
or weYy, is not known at time ¢. Thus for ¢t < T, such a sequence w§ = (wp, w1, ..., w;)
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corresponds to several different states of the world w that may finally occur. Here we
denote the set of all final states of the world w that can occur, given wf, by {wh} x QF, |,
or {wh} x Q4.

Given this new decomposition of states of nature, recall that an act is still a function
a(.) from states of the world into outcomes such that for any w = (X, p, m), we have
a(w) € X, with p-a(w) < m. But since X = x,X;, all elements of the overall commodity
space X can be broken down into sequences (zg, 1, ...,x7) or (xg, 21, Ts,...), and the
same can be done with acts. We can now write acts a(w) as sequences of functions:
a(w) = (ag(w), a1 (w), ...,ar(w)), or a(w) = (ap(w), a1 (w), as(w), ...).

Now, we assume that an action taken at a certain point in time can only depend
on the information available at that point in time. Mathematically, for any ¢ < T,
and all w,w’ € {wh} x QL |, or w,w’ € w € {wh} x Q2,, it should always hold that
a;(w) = a;(w'), for all i < t. Therefore, the period-t action a,(.) can only depend on wj,
so we should write a;(w}).

Thus we would get that

a(w) = (ao(wo), a1(wy), ..., ar(wy ),

a(w) = (ag(wo), ar(wp), as(wp), ...).

In this case the expected utility of any act a is still given by U(a) = E,[u(a(w))],
and this can now be written as

BEoo By - B [u(ag(wo), a1 (wp), ... ar(wd))].

Or, in the infinite case,
U(a) = By B, B, [ulag(wo), a1 (w)), as(wd), ...)].

2.6.4 Expected utility in consumption/savings models

Remember that in consumption/savings models, we set T = oo and R = 1. And
rather than commodity bundles, we considered the objects of choice to be consumption
patterns ¢ = (co, ¢y, ...), that specify sequences of levels of period-t consumption ¢.
And in these models we made the assumptions of additive separability over time and
of exponential discounting so the utility function reads u(c) = > 57 8 ug(c;). We have
a situation with an initial budget mo and a stream of additional incomes (Iy, I, ...),
with I, > 0, for all ¢, where no borrowing is possible, but saving is possible (at a zero
interest rate). Therefore this utility function is then supposed to be maximized over all
consumption patterns that satisfy the budget constraints:

t t—1
< my = mo—l—ZIi — ZC"’ for all ¢.
i=1 i=0
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Next we consider consumption/savings models under uncertainty. These models
then naturally fit the mould as introduced in the previous subsection. States of the
world are decomposed into sequences over time w = (wg, w1, ...), with w; = (X4, py, ),
for all ¢ (here Iy = mg). Every w; is learned at time ¢, and acts a : 2 — X can be
decomposed in to sequences a(w) = (ag(wp), a1(w}), az(w?), ...).

But now, within this class of consumption/savings models we see that the role
of uncertainty is limited by the fact that, for every w, = (Xi,py, I;), the commodity
spaces X; are all one-dimensional and basically representing the same variable ’level
of consumption’, which will be valued equally across periods, except for the discount
factor 0. Thus, all X;’s are basically known.

Also, since all ¢;’s denote levels of consumption, and since for simplicity we assumed
no interest R = 1, in this setting the price for each period’s level of consumption is
equal to p; = 1, so the p;’s are also certain.

Therefore, there may now only be uncertainty regarding the available budgets. In
this setting, period-t states of the world w; can thus be equated with additional incomes
I;. These states of the world, and thus the I;’s would not be known in advance, but
they would be gradually learned. It is this specification of budgetary uncertainty that
we will consider extensively here in consumption/savings models.

In this case the expected utility of any act a is still given by U(a) = E,[u(a(w))],
but can now be further specified to

Ula) = Ey[u(a(w))] = EpyFuy Ew,--..[u(ag(wo), a1 (wo, w1), as(wo, wi,ws), ...)] =

EmOEIIEI2""[Z 5tu0(ct(m0, Il, ceny It))] = E]1E12E[2...‘[Z 5tU0(Ct(mo7 Il, PN It))]
t=0 t=0

Here the acts a(w) = (ap(wo), a1(wo,w1), as(wo,w1,ws),...) are given by the se-
quences of functions (co(myg), ¢1(mo, 11), c2(mo, I1, I3), ...). Each of the decision functions
ci(mo, Iy, ..., I;) within such a sequence should satisfy the budget constraint
ci(mo, Iy, ..., It) < my. And like in formula (%K), the implicit budgets m; are speci-

. t i—1 . .
fied according to m, = mo+>.,_, I; — >_,_, ¢;, which can now be rewritten as

t t—1
my = Mo + Z[Z — ZCi(mo, [1, 711)
i=1 =0

Thus the resulting basic consumer problem reads:

max E]1E12E13...[Z 5tu0(ct(m0, Il, ceey It))]

t=0

sub to

t t—1
ci(mo, Iy, .. ) <m + Zji — Zci(mo,fl, ., 1;), for all ¢
i=1 i=0
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2.6.5 Dynamic programming in consumption/savings models with uncer-
tainty.

A maximization problem as obtained in the previous subsection may look quite com-
plicated, but fortunately we can extend the procedures from dynamic programming
to include uncertainty. In fact, the procedures of dynamic programming become even
more appropriate and convenient under uncertainty.

Then, the maximization problem that we ended up with in the previous subsection,
is one of the following type.

Definition 2.6.9 Given instantaneous utility uy, a discount factor 0 < 6 < 1, an
initial income myq, and probability distributions for additional incomes I;, fort > 1, the
problem of solving

max Ep,Ep,..[Y  6'ug(ci(mo, Iy, ..., 1))

(co,c1,C25-..) o

over sequences of functions c;(mg, I1, ..., I;) that satisfy the budget constraints

t

t
ZCi(mmIl, 711) S mo + ZL,
=1

=0

for allt > 0, is called a sequence problem.

If we would take a degenerate probability with only one state that can possibly occur
(@2 = {w}), we would have the old definition of a sequence problem under certainty
back. Thus this definition is really a more general one than the definition of a sequence
problem under certainty, which would justify using the same name twice.

However, instead of trying to solve such a sequence problem directly (by solving for
all variables simultaneously), dynamic programming again considers functional equa-
tions.

Definition 2.6.10 Given instantaneous utility ug, a discount factor 0 < § < 1, an
initial income mg, and probability distributions for additional incomes I, fort > 1, an
equation such as

V*(m) = max {ug(c) + IE[V*(s+1)]},

(¢,8):c+s<m
that is to be solved in the unknown function V* is called a functional equation.

Under certainty we saw that functional equations were of the form V*(m) =
max.is<mito(c) + 0V*(s + I)}. Under uncertainty, next period’s additional income
is uncertain, which is why the term § E;[V*(s + I)] appears.

In the case we are considering here, the relations between sequence problems and
the corresponding functional equations that existed under certainty, also hold under
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uncertainty (see e.g. Stokey and Lucas [43]). In the current setting, it can be shown
that the value function V* that is defined to maximize a sequence problem indeed
solves the corresponding functional equation. Moreover, any function that solves the
functional equation must equal the value function that maximizes the corresponding
sequence problem (Stokey and Lucas [43]).

In this chapter we have introduced two fundamental economic building blocks: the
standard microeconomic framework for consumer choice, and the models of consump-
tion/savings decisions from macroeconomics. We have established that, and in exactly
what way, the second is a special case of the first. And in presenting these building
blocks we have laid a formal groundwork that will be drawn from in the rest of this
work.
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3 Problems and motivations

In the present chapter we will discuss and evaluate the standard frameworks of consumer
choice and consumption/savings, and we will draw attention to some drawbacks of these
standard frameworks. We will briefly go over some empirical problems, and then present
some conceptual problems. These conceptual problems of the standard approach to
modelling consumption behaviour will also motivate the new approach that is taken in
the remainder of this work.

The choice problem that is faced in actual real-life consumption problems is ex-
tremely complex, as it seems to be influenced by thousands of different variables. As
a result, modelling the process of deciding on actual real-life consumption behaviour
could be influenced by thousands of different considerations. If we want to try to cap-
ture this complex consumption behaviour in an economic model (and especially if we
prefer such a model to be relatively simple), then somewhere down the line assumptions
will have to be made that may seem quite strong and not entirely realistic, or even very
strong and plainly unrealistic. However, the fact that some assumptions that are made
do not always agree with every day life does not necessarily have to be insuperable,
because our models (hopefully) do not claim to fully capture all of the economic real-
ity. Instead, the best we seem to be able to do is to very much simplify or stylize the
relevant problem, while somehow capturing some features of the economic reality that
seem particularly important or even essential to us. Of course, which features of the
economic reality we judge as being important or essential may depend on, for instance,
the kind of questions about the economic reality that we are trying to answer from the
models we use. So the fact alone that an assumption underlying a theoretical model
seems not (completely) realistic does not have to be a reason for dismissing the model
altogether, as long as we feel that there are essential features of the economic reality
that remain more or less intact, and that are somehow illuminated by the model.

Still, in this chapter we will argue that the standard approach to modelling consump-
tion behaviour has some serious drawbacks, and that an alternative approach might not
suffer as much from all of these drawbacks.

This chapter consists of six sections. The first section recaptures the assumptions
underlying the standard way to model consumption behaviour, and some possible jus-
tifications for these assumptions. The second section briefly goes over some empirical
problems of the standard framework, from both econometric and experimental work.
The third section will present some conceptual problems of the standard approach.
The fourth section will provide categorizations of types of economic models and of
types of rationality, that will help place the alternative framework, and that will help
to distinguish it from the standard framework. The fifth section will briefly sketch the
alternative approach towards consumer choice that will be taken here, and it will look
back at preceding sections to motivate this new approach. The final section will review
some related literature.
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3.1 The standard framework

In most microeconomics textbooks we find more or less the same (neoclassical) analysis
of consumer choice, which was reproduced in the first three sections of the previous
chapter. This analysis models a consumer who has a certain number of commodities he
can choose from, that may also include commodities that will become available in the
future. Given this total number of commodities, commodity bundles are specified as
possible combinations of amounts of each of the available commodities that a consumer
might conceivably own or be able to consume in a certain situation.

In order to make choices our consumer is assumed to be able to compare all of
these bundles of commodities, and to state preferences over these bundles. Thus, our
consumer is assumed to be able to make comparisons between bundles for all goods
simultaneously (including all future commodities).

The model of consumer choice is completed by assuming that a consumer, when
faced with a certain set of possible consumption bundles that he can choose from, will
always choose a consumption bundle that maximizes his preferences. That is, he always
chooses a consumption bundle that he prefers to every other consumption bundle he
could otherwise have chosen.

This neoclassical theory of consumer choice is typically set under certainty (or per-
fect information), in its standard specification there is no uncertainty about any of
the aspects relevant to the problem at hand: all commodities that will be available,
all prices and budgets are supposed to be known. However, it seems apparent that
in real-life consumption choice problems uncertainty is present. Of all the information
about the future (economic) environment that is relevant to deciding an expenditure
level now, only very little is in fact certain. And especially for information about the
more distant future we might argue that hardly anything is really certain. Hence for
more descriptive realism the setting of consumer choice should be extended to include
uncertainty.

Then, in the face of uncertainty the assumption that a consumer knows everything
that will happen is replaced by new assumptions. These new assumptions are that the
consumer does know everything that can happen, and the probabilities that all these
possibilities will happen with. This probabilistic information would enable a consumer
to still view his problem in a fully prospective way.

Given the information that will allow for this prospective view, Expected Utility
Theory seems to be the standard choice for incorporating uncertainty into economic
models. Given the probability distributions that link actions to outcomes, and given a
utility function on these outcomes, in Expected Utility Theory a consumer is supposed
to choose that action that will maximize the expectation of his final utility. Expected
Utility Theory was presented in section 2.6, both in its general form and in a more
specific form applied to consumer choice.

However, it seems questionable that the thought processes that people actually go
through in making consumption decisions, would resemble the procedures as described
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in the standard model of consumer choice. A consumer would have to be assumed to
have (or have constructed) probability distributions for all variables for which the values
are not entirely certain, and moreover, the consumer would have to be assumed to be
able to deal with all this information in a way that corresponds to the maximization of
expected utility.

From our own lives we know that we are not just given credible descriptions of our
future environments from a source outside us. And from the simple thought experiment
of trying to mentally construct such a complete description of our future economic
environments, and consequently trying to make sense of all this information such as
to choose an optimal consumption plan, it seems that such a task does not altogether
come natural to us, and that our minds do not seem used to doing this. Thus it seems
that the prospective description of the choice process is not very close to the way in
which we mentally do consider these problems.

Even if there were no uncertainty whatsoever, then it would still not seem completely
plausible that people would actually have such utility functions in mind when making
choices. Therefore the question to what extent these utility functions actually exist
seems a legitimate one. The answer that standard economic theory would give would
be that these utility functions do not really have to exist in people’s minds, because it
is enough to assume that people make choices as if they use these functions. It doesn’t
matter if the concepts we employ are cognitively real, as long as people’s behaviour is in
line with our models’ predictions. A justification for this view can be found by linking
the unobservable concepts we use (utility functions) to certain regularities in people’s
observable behaviour (completeness, transitivity, continuity of preferences). One exam-
ple of an axiomatization that expresses the possibility for a preference relation to be
represented by a utility function in terms of the (in principle) observable characteristics
of the underlying preference relation, is theorem 2.2.1 which applies under certainty.
Theorem 2.6.1 shows a similar result for objective Expected Utility Theory, where the
probabilities for all possible realizations are assumed to be given exogenously. As for
subjective Expected Utility Theory, where probability distributions are not objectively
given, axiomatizations like that of Savage [38] show that if the preference relations on
lotteries that we assume to underlie the choices, satisfy certain axioms then these pref-
erence relations can be represented by utility functions that have an expected utility
structure, and by subjective probability distributions.

Thus, when we model a consumer’s consumption behaviour in the standard way, we
don’t have to claim that our consumer actually mentally constructs the complete model,
including all probability distributions, and solves the problem by actually calculating
the optimal solution. Instead, we may assume that our consumer makes choices as if he
has such a complete structure of the problem at his disposal and as if he subsequently
chooses such as to maximize (expected) utility.

However, there still remain problems with the standard way to model consumption
behaviour, first we will present some empirical problems, and then we will focus on
some conceptual problems.
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3.2 Empirical Drawbacks

In section 2.4 we mentioned that the standard microeconomic framework for consumer
choice is too general to be tested empirically. This standard framework does not yield
enough clear-cut behavioural predictions that can be tested, as this framework could
predict almost anything, from appropriately chosen utility functions.

3.2.1 Expected Utility Theory

However, some of the assumptions that are made in modelling consumer choice as in
the previous chapter can be tested separately. For instance, Expected Utility Theory
can be tested as a theory of choice under uncertainty. It would typically not be tested
in choice situations as complicated as those that are modelled in the previous chapter,
but in much more simple, highly stylized settings in laboratory experiments. Since
Allais [1] a lot of experimental studies have been done to test the predictions made by
Expected Utility Theory, and these studies have shown a number of biases in which
most people systematically deviate from these predictions, see for instance Kahneman
and Tversky [21].

Thus people do not always behave according to Expected Utility Theory and, to be
more in line with these experimental findings, a whole line of different alternative the-
ories of choice under uncertainty have been developed, that are appropriately grouped
under the header non-expected utility theory. Probably the most well known of these
is Kahneman and Tversky’s Prospect Theory [21].

However, the experimental studies that proved Expected Utility Theory wrong (or
not entirely right) usually stay within an Expected Utility Theory setting: before mak-
ing a decision a subject is typically given an extensive list of all outcomes that can
occur, and the probabilities each of them will occur with. As a result, most alterna-
tive theories of choice under uncertainty are still specified in this same setting where
decisions are made based on probability distributions specifying the uncertainty that
is faced. Therefore like with Expected Utility Theory, there are also some conceptual
problems associated with using these alternative theories (in the context of consumer
choice). Some of these conceptual problems will be discussed in the next section.

3.2.2 Consumption/savings models

As mentioned in section 2.4, and as stated above, the standard microeconomic frame-
work for consumer choice cannot really be tested empirically in its completely general
form. Therefore in section 2.4 a lot more structure was imposed. Time was explicitly
modelled, and in all periods only spending levels were considered, so that in any pe-
riod the commodity space would effectively be one-dimensional. Utility was assumed
to be additively separable (with respect to time) and to satisfy exponential discount-
ing. Thus the framework was very much narrowed down, and we ended up with the
consumption/savings setting as used in macroeconomics.

Like with Expected Utility Theory, some of the assumptions that are made in mod-
elling consumption behaviour as in consumption/savings models (such as exponential
discounting) can be tested separately, see for instance Loewenstein and Thaler [26] or
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Laibson [23]. However, the implications of consumption/savings models can also be
tested empirically as a whole. In fact, these implications have been tested extensively,
mainly in econometric work, and some empirical deviations from the predictions of
these models have been documented.

Econometric work Before we can consider any deviations from theoretical predic-
tions, we should first say something about the predictions that arise from consump-
tion/savings models. And although the specific predictions will depend on the exact
forms of the specific consumption/savings models, here we can identify two features at
a more general level that would be predicted by these models in some form or another.
These two features that are implied by consumption/savings models, are that consump-
tion smoothing will occur, and that the growth or decline in consumption should be
determined by preferences, and not by the particular pattern that the income stream
takes.

The prediction that consumption growth or decline is determined by preferences
(and maybe the interest rate), and not by the particular pattern of the income stream,
will always hold in consumption/savings models if there is a perfect capital market, i.e.
if saving and borrowing is possible at the same interest rate. If this last assumption
holds, then for any income stream the corresponding budget set is determined by only
a single constraint, namely that total (discounted) lifetime spending should not exceed
total (discounted) lifetime income. Then, it is a simple mathematical fact that any
two income patterns that (given the interest rate) yield the same total lifetime income,
will also yield the same budget set and thus the same maximizing choice from this
budget set. Thus, consumption growth or decline should not be related to the growth
or decline in income. Of course, in the presence of liquidity constraints, where saving
and borrowing is not possible at the same interest rate (for instance because of income
uncertainty) this principle need not fully apply anymore.

As the term seems to suggest, the idea of consumption smoothing is that it is best
to follow a smooth consumption pattern, rather than a pattern with large spending
differences between periods (that are not too far apart). This property will typically
hold in consumption/savings models in some form, the permanent income hypothesis
(Friedman [16]) and the life-cycle hypothesis (Modigliani and Brumberg [31]) are two
specific forms that consumption smoothing can take. Mathematically consumption
smoothing is a result of the very common assumption of concavity of utility functions.
Recall from section 2.2 that in the general consumer choice setting, (quasi-)concavity
meant that mixing was good. This already suggests that situations in which nothing
can be consumed in some period(s) will never be preferred and will thus, if possible,
be avoided. A fortiori, in a setting of consumption/savings models, where utility is
of the form 3, 6'ug(c;), the per-period utilities are all very comparable. Therefore
under certainty and if instantaneous utility is strictly concave, we get that any chosen
consumption pattern (in an internal solution) will be very smooth over time. Under
expected utility the same principle of consumption smoothing applies, although to a
lesser extent, since in that case it is expected consumption that will typically follow a
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smooth pattern. Of course, under expected utility, consumption choices also depend on
the realizations of the uncertain additional incomes. Still, a single favourable additional
income realization in some period would simply raise the total expected lifetime income
a bit, which would typically be spread out more or less evenly across all future periods,
so this will not lead to dramatic changes in consumption.

These theoretical predictions are not always observed (to the extent that they are
predicted) in empirical studies. The feature of excess sensitivity of consumption to
transitory income entails that consumption patterns are not as smooth as theory would
suggest. Excess sensitivity of consumption to transitory income is a well-known em-
pirical phenomenon, see for instance Flavin [14], Zeldes [48] or Browning and Lusardi
[5].

Also, the theoretical prediction that consumption growth or decline should not be
related to income growth or decline does not always agree with empirical findings.
Carroll and Summers [7] find that high income growth is typically associated with high
consumption growth, both across countries and across occupational groups.

And more generally, most households hold rather small amounts of savings (see e.g.
Wolff [46]), so that consumption approximately tracks income. In the terminology of
Deaton (1991)), most households exhibit buffer-stock saving.

Zeldes [49] and a number of more recent, similar publications have shown that
the above empirical observations are not necessarily incompatible with using optimal
policies in consumption/savings models. Thus, there are at least some specifications of
consumption/savings models under which buffer-stock saving behaviour is an optimal
policy.

The idea of learning consumption could point in the same direction, and perhaps
provide an alternative explanation. We will return to these questions in chapter 10.

Experimental work There have also been some, although relatively few, experi-
mental studies investigating consumption/savings models. These studies show that in
laboratory settings subjects’ behaviour diverges from the theoretical predictions, in
some way or another (see e.g. Hey and Dardanoni [19], Noussair and Matheny [34],
Fehr and Zych [13].

Ballinger, Palumbo and Wilcox [3] experimentally study social learning in con-
sumption/savings models. They group subjects into "families" of three, that choose
consumption patterns sequentially, where later generations can observe choices and
outcomes of earlier generations. The authors observe a strong tendency to save too
little early on, so that not enough consumption smoothing can occur. However, later
generations perform significantly better than earlier generations.

Chua and Camerer [8] study learning (both individual and social) in an intertem-
poral consumption setting. They consider a consumption/savings model of 30-period
lifetimes with induced constant relative risk aversion utility, where subjects face income
uncertainty and habit formation. Subjects are asked to choose consumption patterns
for a sequence of lifetimes, in treatments with and without social learning. Subjects
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have the possibility to learn from previous lifetimes, so this setting gives rise to ’reincar-
nation learning’, and is not chosen to closely mimic reality. The authors argue that if
convergence towards optimality is slow (even in a relatively simple setting), this would
justify skepticism about people being able to learn within a single lifetime. Chua and
Camerer find that in first lifetimes, choices are far from optimal but that subjects do
learn to approach optimality rather quickly (within about four lifetimes), even more so
in the presence of social learning.

Johnson, Kotlikoff and Samuelson [20] present the results of an experimental study of
a life-cycle model under certainty. Subjects are first asked to determine a consumption
pattern for a 40-year lifetime, where an income stream and a 4% interest rate are given
with certainty. Subsequently they are asked how much they would like to consume in
some selected periods, given some particular combinations of current assets and future
incomes. They find that "errors in consumption decision-making appear to be very
substantial and, in many cases, systematic". For instance, this paper reports that
subjects displayed significant inconsistencies in their consumption decisions. Many
subjects chose consumption values that differed by at least twenty percent in pairs of
economically equivalent, or even identical situations. This result contradicts standard
economic theory, and it could point in the direction of learning. If we would not want
to dismiss these errors altogether as signs of irrationality, then they would indicate
that some valuations or framings would have changed (or have been learned) over the
process of making these decisions.

Moreover, Johnson et al. find that most subjects seem to oversave, possibly because
they underestimated the power of compound interest. As subjects approach the end of
their lifetimes, they appear to realize that they have saved too much, and start spending
much more. The authors call this "adaptive" consumption behaviour.

3.3 Conceptual Drawbacks

Besides the empirical drawbacks, there are also some conceptual problems associated
with modelling consumption behaviour in the standard way as presented in the previous
chapter. Here we will argue that the complexity of real-life consumption choice problems
is simply overwhelming, that these problems seem to involve a more profound, more
fundamental kind of uncertainty than is modelled in Expected Utility Theory, and that
introspection may show us that the standard setting that is used to model consumer
choice problems in, does not seem to resemble how people think about such consumption
problems.

A choice problem that is faced in actual real-life consumption problems is extremely
complex; we can argue that it is influenced by thousands of different variables. As
a result, trying to find an optimal solution (as in the standard framework) in such
choice problems would be extremely demanding. This difficulty is not only experienced
by consumers, but also by economists who try to model consumer behaviour. Even
in the rather stylized setting of consumption/savings models (that already assumes
very stringent conditions on utility functions), under somewhat plausible assumptions
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about instantaneous utility and about income uncertainty, these models typically do
not permit analytical solutions (see [7]). Therefore, finding solutions requires numerical
approximation by computers. But, as Allen and Carroll [7]° note: "One fact that is
known by any economist who has attempted numerical solution of consumption models
is that finding optimal behavior in these models is an extraordinarily computation-
intensive task." These consumption/savings models are often too complicated for even
our most powerful computers to solve; as computers become more powerful, this enables
economists to make their models a bit more realistic, and still get a solution.

If finding (approximate) solutions in these models seems to require using a super-
computer, assuming that consumers simply behave in accordance with these solutions
may seem troublesome. Therefore, we can wonder whether the way in which consump-
tion choice problems are specified in standard economics is very representative of the
way in which people perceive of and think about these problems.

3.3.1 Risk, uncertainty and structural ignorance

Also, real-life consumption problems seem to involve a more profound, more funda-
mental kind of uncertainty than is modelled in Expected Utility Theory. Recall that in
section 2.6, choice under uncertainty was defined alongside the notions of acts, outcomes
and states. Also recall that the Expected Utility Theory approach towards dealing with
uncertainty required that a decision-maker would know all these acts, outcomes and
states. However, it seems that in many real-life choice situations we don’t have clear
descriptions of the states of the world that might occur, or of the resulting outcomes,
and we could wonder how appropriate Expected Utility Theory is in these situations.
As Gilboa and Schmeidler [18] argue:

"Yet it seems that in many situations of choice under uncertainty, the very
language of expected utility models is inappropriate. For instance, states of
the world are neither naturally given, nor can they be simply formulated.
Furthermore, sometimes even a comprehensive list of all possible outcomes is
not readily available or easily imagined."

The kind of situations that Gilboa and Schmeidler refer to here does not correspond
to either of the categories of risk and uncertainty, as distinguished by Knight [22]. Under
risk, a decision maker does not know what will happen, but he does know everything
that possibly could happen, and he knows the probabilities with which each of those
possibilities will occur. In models of uncertainty, a decision maker also does not
know what will happen, he also knows anything that could possibly happen, but he
doesn’t know the probabilities with which each of those possibilities will occur. In the
situations that Gilboa and Schmeidler have in mind, the decision maker does not even
know everything that could possibly happen. Thus Gilboa and Schmeidler add a third
category, which they call structural ignorance:

9 Also see section 3.6.
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" "risk" refers to situations where probabilities are given; "uncertainty" -
to situations in which states are naturally defined, or can be simply con-
structed, but probabilities are not. Finally, decision under "structural igno-
rance" refers to decision problems for which states are neither (i) naturally
given in the problem; nor (ii) can they be easily constructed by the decision
maker. "¢

It seems that the context of consumer choice that we are considering in this work,
should be categorized as one of structural ignorance, as there is much fundamental un-
certainty about future consumption opportunities. A comprehensive list of all possible
outcomes does not seem readily available or easily imagined. These outcomes would
in the present case be commodity bundles that can be consumed. Thus knowing all
outcomes would mean knowing all different commodities available at each future date.
But people don’t seem to have this knowledge, technological progress and fashion are
obvious sources for commodities that will be available in the future, but which we
cannot even imagine now.

Moreover, in the context of consumer choice, states don’t seem to be naturally
given, nor can they be easily constructed. For instance, financial markets, political
constellations (both domestic and internationally), climatological conditions and our
medical situations (or that of close relatives) may change in ways we cannot even
conceive of now. And what is more, these changes could be quite dramatic and have
great implications for our personal consumption.

3.3.2 Case-Based Decision Theory

Gilboa and Schmeidler argue that in situations of risk Expected Utility Theory is ap-
propriate, and also in the face of uncertainty Expected Utility Theory or one of its
generalizations may still be used. However, Expected Utility Theory is not very appro-
priate in cases of structural ignorance:

" Expected utility theory does not describe the way people actually think
about such problems. Correspondingly, it is doubtful that expected utility
theory is the most useful tool for predicting behavior in decision problems
of this nature. A theory that will provide a more faithful description of how
people think would have a better chance of predicting what they will do."

But then what else is there that we can do? How else can we perform a mi-
croeconomic analysis then by assuming thorough, prospective thinking? Gilboa and

10This new category of structural ignorance is not the same as the category of "unawareness" (see
e.g. Dekel et al [11]). Unawareness refers to situations where there are things that one does not know,
that one does not know that one does not know, and so on. Under unawareness, one thinks that one
has a good understanding of the situation, where one really doesn’t, so this is clearly different from
the concept of structural ignorance. Structural ignorance does seem to be identical, or at least very
similar, to the notion of "radical uncertainty", a term that can (for instance) be found in the literature
on Austrian Economics (e.g. Vaughn [45]).
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Schmeidler [18] develop an entirely new paradigm for modelling decision-making under
uncertainty, and call it Case-Based Decision Theory. This new paradigm suggests that
people may use the past in making choices concerning the future, and thus assumes
that decision makers come to their choices in a predominantly retrospective way.

"Case-based decision theory suggests that people make decisions by analo-
gies to past cases: they tend to choose acts that performed well in the past
in similar situations, and to avoid acts that performed poorly."

Unlike the usual prospective way of trying to solve decision problems, where what-
ever happened in the past may basically only be used for determining probabilities,
Case-Based Decision Theory is mainly based on retrospective viewing. Case-Based
Decision Theory asserts that decisions are made by drawing on similarities that exist
between the problem at hand and previous choice problems, and this approach has the
advantage that the information that decisions are based on are known and certain.

As argued above, it seems that the context of consumer choice that we are consid-
ering here, should be categorized as one of structural ignorance, as there seems to be a
more fundamental kind of uncertainty about future consumption opportunities than is
modelled in Expected Utility Theory. But although the new paradigm that Gilboa and
Schmeidler introduce is set in a relatively general type of choice situation, it does not
seem very appropriate for the application we have in mind here. This is because Case-
Based Decision Theory models a series of basically unrelated choice problems. That is,
choices and outcomes from previous cases seem to be independent of the outcomes in
present and future choice problems, these past cases are only used as indications of how
favourable or unfavourable the outcomes of certain actions might turn out to be in the
problem at hand. In the context of consumer choice, however, all different (sub)choices
are strongly linked, consumer choice is actually one big problem that is divided into
different subproblems. Thus Case-Based Decision Theory as such does not seem to be
very appropriate to be applied in the consumption choice problems we have in mind
here.!! Still, the approach we will apply here to consumer choice does have something
of a similar flavour.

3.4 Rationality and models

This section will provide a categorization of types of economic models and a catego-
rization of types of rationality that will help place the new alternative framework, and
that will help to distinguish it from the standard framework.

1 Case-Based Decision Theory is also extended to explicitly model dynamic settings. Gilboa and
Schmeidler [17] introduce a dynamic theory of consumer choices, but this theory is restricted to the case
of repeated small decisions. And Gilboa and Schmeidler [18] model a theory of case-based planning,
but this theory does not seem very appropriate here either, because of its rather specific nature.
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3.4.1 Types of rationality

Corresponding to a difference in the notions of rationality as they are employed in
economics and in psychology, Simon [42] distinguishes two types of rationality, called
‘'substantive rationality’ and 'procedural rationality’. Substantive rationality cor-
responds to what is in economics usually called rationality proper. By this definition,
an act or choice is called (substantively) rational if it is the result of selecting a course
of action that will be most appropriate to the achievement of given goals within the
limits imposed by given conditions and constraints. In contrast, a choice is said to be
procedurally rational simply if it is based on reasoning, rather than on emotional or
affective responses. Substantive rationality focuses on the outcome of the choice pro-
cedure or on what decisions are made, whereas procedural rationality focuses on the
choice procedure itself or on how decisions are made.

We may recognize the definition of substantive rationality in the descriptions of the
standard framework as presented in the previous chapter. Case-Based Decision Theory
is a theory of procedurally rational behaviour. The behaviour that will be modelled in
the learning framework that is presented here will also fall in the category of procedural
rationality.

When in later chapters we refer to rationality, we use this term in the way in which
it is usually used in economics, to mean substantive rationality.

3.4.2 Types of models

Simon [41] also distinguishes two types of models: 'models of optimization’ and 'models
of adaptive behaviour’. The first type, the models of optimization

"are those that employ as their central concepts the notions of: (1) a set of
alternative courses of action presented to the individual’s choice; (2) knowl-
edge and information that permit the individual to predict the consequences
of choosing any alternative; and (3) a criterion for determining which set of
consequences he prefers."

Thus, it can be seen that models of optimization will yield substantively rational
behaviour. Obviously, the standard framework for modelling consumer choice fits neatly
into this category of models. As argued above, and as seen under (2) in the definition,
models of optimization require detailed and extensive information about the alternatives
and about their consequences, and possibly a considerable amount of analytic ability
enabling the consumer to actually determine a preferred alternative.

The models of adaptive behaviour are those that are based

"on the ability of the individual to distinguish "better" (or "preferred")
from "worse" directions of change in his behavior and to adjust continually
in the direction of the "better".

Learning behaviour as in models of adaptive behaviour is also sometimes called
"hill climbing’ or ’'gradient descent’ learning, by analogy to the problem of trying to
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find the peak of a mountain (or the lowest point of a valley) while being blindfolded,
by simply continuing to move in the direction with the steepest slope. Models of
adaptive behaviour require much less information about the environment, and analytic
ability of the decision maker. Whereas in models of optimization the considerations
and evaluations are of a global type, in adaptive models only local considerations and
evaluations are needed.

The behaviour in models of adaptive behaviour seems to fall outside the scope of
substantive rationality and should be categorized as procedurally rational. The above
categorization of models is not exhaustive, not all learning models fall in one of the
above two categories, in section 3.6 we will encounter two learning models that are not
really models of adaptive behaviour. The ad hoc framework that will be presented here,
does more or less fall into this last category.

Also note that these models of adaptive behaviour do allow for learning within an
episode, rather than between episodes. The term ’directions of change in behavior’
can also be interpreted to mean changes during an ongoing effort. Moreover, the hill
climbing analogy gives an example where learning would take place within one trip to
a mountaintop.

In many circumstances it seems quite natural to link the two types of models.
For a given system, a model of optimization could specify some optimal solution or
equilibrium, and an adaptive model could specify behaviour out of equilibrium, where
this behaviour may or may not lead towards equilibrium. For instance, consider a
system that at any point in time will find itself in a certain situation or state 6, where
there is a criterion ., or an optimal state that the system is directed towards. In
a model of optimization that we might construct corresponding to this situation, the
solution or outcome would simply be that 6. will be the prevailing state. We could also
construct an adaptive model for this situation. For instance, a very simple adaptation
rule would be that if (f. — @) is the system’s error (or departure from its goal), the
system would adapt its state in the direction of the system’s error, according to the
error-correction term % = k(0.—6). Models where adaptations are made in this way
are also called error-correction models. If the adjustment coefficient £ > 0 is chosen
appropriately, we would expect the system to move towards its goal or equilibrium, if
no further shocks occur.

Linking the two types of models in such a way, does presuppose the global kind of
information needed in the static model, which we may not assume to be available in
the dynamic model, so as modellers we would then place ourselves on a higher level
of information than the adapting decision maker. The above learning procedure does
depend on 6., which may be problematic, as this optimal state may not be known by
the adaptive decision-maker.

Artificial intelligence is one scientific area where these models of adaptive behaviour

are very prominent. Still, early in the development of Artificial intelligence as a scien-
tific discipline, models of optimization were often used (see e.g. Crevier [10]). Early
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artificially intelligent systems (robots) were designed to perform certain tasks, by being
equipped with complete inner representations of the outside world (exact information
about, or a 'map’ of the relevant environment) and enough calculation power to be
able to solve the problem of finding an optimal way to complete a task. Many first
generation Artificial Intelligence models worked according to this ’brute force’ method.
One important criticism directed towards these models was that they were not judged
to be biologically very realistic, for instance because of the assumptions of complete
inner representations of the outside world. In reality, many tasks are performed by
actual intelligent beings through interacting with the outside world, so that informa-
tion gathering and action are interrelated, rather than isolated elements of the process
of completing a task. When faced with the task of walking to the refrigerator, we do
not plan ahead the number of steps in the exact directions that are needed to reach
it, before executing the plan. We simply start moving in what seems to be the right
direction, when there is furniture or other obstacles on the way to the fridge we deter-
mine the exact behavioural changes that are needed to avoid them only when we come
close to them, and when we approach the refrigerator we see that a behavioural change
is called for and we stop walking. Thus the task performance of a real-life intelligent
being does not seem to be based on complete inner representations (an exact inner
map of your house specifying all distances). Another problem for these first generation
models is that in a lot of situations (such as chess) things become so complex that a
computer’s calculating power is insufficient for running down all different possibilities
in a reasonable amount of time, and the system ends up being paralyzed. Later devel-
opments in Artificial Intelligence showed that in a lot of situations it is not necessary
to endow the system with complete inner representations of the outside world and with
gigantic calculating power to be able to achieve a (near-)optimal performance. Most
second and third generation Artificial Intelligence models are in fact adaptive models
that use some learning algorithm similar to gradient descent learning (see Crevier [10]).

The similarities between the criticisms to the first generation Artificial Intelligence
models and some criticisms raised to the standard models of optimization in economics
are worth noting (for instance about the assumptions of the very detailed information
about the outside world). Maybe some flavour of the alternatives to these criticized
models employed in Artificial Intelligence may also prove useful in economics.

3.5 The ad hoc framework

To get an idea for the new approach towards consumer choice that will be presented
here, imagine you need new shoes and in a shoe store you see a pair of shoes (that you
haven’t seen before) that you like but that is a bit expensive so you hesitate whether you
should buy the pair. As we saw standard economic theory says that people’s choices are
based on preferences over all possible plans of present and future consumption that are
affordable. You had not seen this particular pair of shoes before, so obviously it wasn’t
included in previous specifications (or possible realizations) of the commodity space, and
you cannot decide whether or not to buy the shoes by simply implementing a previously
chosen consumption plan. Therefore to at least stay in line with standard economic
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theory, after the information update of seeing these new shoes a new consumption plan
would have to be chosen. Once again, you should consider your preferences over all
possible plans of present and future consumption that will be affordable, and from this
determine your choice. Now the problem is updated with respect to the last choice
problem by enlarging the commodity space to include the new shoes (and possibly by
adjusting for other changed circumstances). So when faced with the new shoes you will
have to choose a whole new consumption horizon, including the subdecision to buy the
shoes or not, but also including specifications of your total consumption future. This
new consumption plan is totally based on what you know (or think) will be available,
and is therefore also based on the knowledge you have about all other pairs of shoes
you could alternatively buy. However, in reality when deciding whether or not to buy
the shoes it is likely (or at least plausible) that you will not only use the information
that you do have about other shoes, but that you would also take into account the fact
that if you would continue your search you would probably also encounter shoes that
you had never seen before, and didn’t know existed. That is, you do need new shoes,
so if you would decide not to buy the shoes, then this decision is probably not only
based on what you know or imagine to be available, but it will also take into account
the fact that there is an unknown and unknowable stream of information that you
will receive when continuing your search. And especially when dealing with product
categories where information regarding what will be available at what price at certain
points in time is limited (for example in markets where supply changes quickly because
of fashion) actual choices are probably not determined solely by what you know to be
(or become) available.

Of course, a situation where a consumer realizes that when he does not buy, he
will probably obtain new information about his future economic environment that he
cannot even conceive of now, cannot be accounted for within the standard model. Hence
maybe the sort of decision process that someone might go through in choice problems
like these is much closer to a sort of satisficing procedure (see e.g. Simon (1955)) than
to the standard prospective way to look at it.

And, like Gilboa and Schmeidler argued, if the way in which we view these choice
problems does not resemble the prospective view that would underlie the standard
account of consumer choice, then maybe we could come up with an alternative theory
of consumer choice that is closer to the sort of thought processes and trade-offs that
people do actually make in their minds.

In what follows, we choose a different approach to consumer choice that seems closer
to the type of reasoning from the above shoe example, and that starts from a different
type of choice sets.

In fact, every time we make a choice whether or not to purchase a certain item, we
are (at least implicitly) making a trade-off between the utility gain that is associated
with the consumption of the item and the fall in utility due to being able to spend a
bit less in the future. And while we may imagine that people translate this spending
potential immediately into the consumption plans that can be bought from it, we might
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say that this is somewhat hypothetical. What we do know is that people just do make
choices between goods and money on a daily basis.

Therefore, here we assume that total consumption horizons are not really our choice
variables, but that instead bundles of present consumption (until the next moment
where some relevant uncertainty is faced) and present monetary resources are really
what we choose from. Then we proceed in a similar way as in the standard framework.
We suppose that in making these choices a consumer behaves sufficiently rational, so
that these choices can be derived from a preference relation (or a utility function). Of
course, now these preferences would not be defined on complete consumption horizons,
but on bundles of present consumption and savings.

The idea of treating money as part of choice variables, and letting money enter
into utility functions, is quite unusual in economics. As in the previous chapter, in the
standard view money is not valued in itself, it is only valued as a means of reaching
consumption. In the indirect utility function, the value for money is not a direct given,
but rather indirectly derived from direct valuations of consumption.

There is some support from neuroeconomics for the alternative approach of letting
money enter into utility functions. Camerer, Loewenstein and Prelec [6] review some
findings from neuroeconomics, and they find that this research suggests that money
provides direct reinforcement. That is, they find that money becomes what psycholo-
gists call a "primary reinforcer", which would indicate that people value money without
carefully computing what they plan to buy with it. They state that

"brain-scans conducted while people won or lost money, suggest that money
activates similar reward areas as other "primary reinforcers" like food and
drugs do, which implies that money confers direct utility, rather than simply
being valued only for what it can buy."

Thus, our alternative approach starts from preferences or utility on bundles of
present consumption and present monetary resources, rather than on complete con-
sumption horizons. However, these two types of preferences do not have the same sta-
tus. The preferences on complete consumption horizons from the standard framework
are absolute, in the sense that they are given and can never be wrong. By definition,
maximizing these preferences will always yield optimality and (substantive) rationality.

Instead, the new type of preferences that are defined on bundles of present con-
sumption and money, are not absolute. In a sense these new preferences are guesses
or estimates. More specifically, especially the implicit valuations for money, relative to
present consumption, are guesses or estimates. As the money variable still does repre-
sent future consumption, and as this future is unknown, valuations for money do not
at all have to agree with optimality or rationality. In fact, these notions of optimality
and rationality may not even be well-defined. And since these valuations for money
are in fact estimates, some estimates may be better than others, and here the idea is
that over time these estimates may be improved by a learning procedure. Thus, in the
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new framework that we will present here, we assume that the valuations for money are
learned over time.

The idea behind how such valuations for money could be learned, would be that
if at a certain point in time a consumer would regret having spent too much in the
recent past, then he would adjust his valuation for money such as to value money more.
And conversely, if at a certain point in time the consumer thinks that he could have
spent more in the recent past, then the adjustment should lead to a lower valuation for
money.

The resulting learning model does more or less fit the structure of an error-correction
model (see the previous section). Here the valuations for money would be the states,
and regret about past spending would indicate an error. Adjusting the valuations for
money in the above way such as to deal with regret can be seen as error-correction.

Some casual observations about how people speak about their expenditure patterns
may be seen as supporting the view that consumer choice is not determined by isolated
decisions that are unrelated to past decisions. When confronted with disappointing news
about their economic futures, people tend to use terms as ’cutting down on expenses’
or 'making cutbacks’ and ’tightening your belt’. Using these terms already seems to
imply the existence of some previous expenditure pattern relative to which adjustments
have to be made. Maybe this use of language can be seen as an indication that in fact
consumers do not look at consumption decisions as a series of isolated single decisions
that try to achieve an optimal use of endowments to make the future and the present
as good as possible independently from the past. Instead, maybe people approach
consumer choice much more like a continuous effort that reacts to changes by making
adjustments to previously chosen strategies.

Learning in consumption models could alternatively also be modelled by means of
more basic rules of thumb, each of which would simply specify a course of action that
would be taken in any situation that might arise, where more efficient rules could be
learned over time. Instead of courses of action that are learned over time, the ad hoc
framework models a setting where preferences are (to some extent) learned over time.
This ad hoc framework could be called a ’hybrid’ framework, where in the short term a
decision-maker would behave exactly as standard economic theory says he would, but
where in the long term he doesn’t. Although the behaviour that is modelled in this ad
hoc framework is boundedly rational, this type of behaviour may require some more
rationality than rule of thumb learning models. In the ad hoc framework consumers
would in a sense be locally rational, but not globally.

3.6 Related literature

As mentioned in the previous section, the new framework that is presented here will start
from preferences or utility functions that are defined on bundles of present consumption
and present monetary resources. It is not an entirely new approach to consider money
as part of the objects of choice that a decision-maker’s preferences are defined on, see for

51



LEARNING IN CONSUMER CHOICE

instance Morishima [32] or Patinkin [35]. There, however, the motivations for doing so,
and the models that follow from these motivations, are very different from what we have
in mind here. In that literature, the motivation for including money in the arguments
of utility functions has nothing to do with bounded rationality. There the motivation
is to generalize the standard neoclassical, non-monetary models of equilibrium theory
into models with monetary equilibria, such as to generalize non-monetary economies
into monetary economies.

In the equilibrium theory literature it is standard practice to model an economy with
a number of consumers who can choose from several commodities such as to maximize
their preferences over their budget sets, when prices are given. In equilibrium theory
the focus then is on economic equilibrium, where at certain equilibrium prices the total
demand for any of the goods (as aggregated over all individuals in the economy) should
equal the total (aggregated) supply for this good. A well-known property of these
equilibrium theory models is that if all equilibrium prices are multiplied by the same
constant, this will not change the prevailing equilibrium. In that sense, the economy is
non-monetary.

The models of Morishima and Patinkin, try to generalize these equilibrium theory
models by considering money more explicitly. They do so by introducing different
periods, so that consumers may have to save or borrow. In any period a consumer’s
demand for money simply equals his budget minus the monetary value of his demand
for consumption goods. In this literature the equilibrium concept is expanded so that
not only all (physical) commodities should be in equilibrium, but so that also the money
variable should be in equilibrium (that is, the total demand for money should equal
the total supply). In these models we no longer get that equilibrium is unaffected
by a multiplication of all equilibrium prices by the same constant. In that sense, the
economy has become a monetary economy.

Obviously, in the present work the motivation for letting money enter into utility
functions is very different, and focussed more on an individual or micro level, rather
than an aggregate or macro level. In this work no equilibrium concept is defined,
although it would not be impossible to do so.

The standard way to model consumption behaviour in which consumers act ratio-
nally, as in the previous chapter, is by no means the only approach that can be and
has been taken. For instance, models have been devised in which consumers use sim-
ple rules of thumb in choosing their consumption (see e.g. Shefrin and Thaler [39] or
Cochrane [9]). These rules of thumb would usually consist of simply spending a fixed
proportion of current income, or of cash-on-hand, in all periods. It is possible that such
rules would do a reasonable job, but only for certain parameter values or proportions.
In these models the rules of thumb would typically be somehow exogenously given, so
the question of how such rules of thumb would arise remains unanswered.!?

Of course, the use of learning models, or models of adaptive behaviour, is not new

2Lettau and Uhlig [25] do provide a model where rules of thumb are learned.
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in economics. In the last decades a lot of research has incorporated learning into
economic models, for instance in the areas of game theory (see e.g. Young [47]), finance
(e.g. Lettau [24] or Timmermann [44]), and also in macroeconomics (e.g. Evans and
Honkapohja [12]).

However, there have only been a few theoretical papers trying to incorporate learning
into consumption/savings models. Hence Friedman’s assertion, that (roughly) optimal
behaviour could be learned, has hardly been substantiated by theoretical research in-
vestigating whether it is likely, or even possible, to hold. Here we list the papers that
do model learning in consumption/savings settings.

Marcet and Sargent [29] model learning in an investment problem, but they assume
that consumers do behave according to dynamic programming theory, and are learning
only about the distribution of shocks.

Lettau and Uhlig [25] construct a model where decision-makers learn their be-
haviour in a context of dynamic decision problems, which they also apply in a con-
sumption/savings setting. In their setting decision-makers face income uncertainty: in
each period an additional income realization occurs. These realizations are also called
"states": if in a certain period a particular additional income realization occurs, the
consumer is said to find himself in the corresponding state in that period. The paper
considers a boundedly rational decision-maker who in every period can choose to use
one out of a set of exogenously given rules of thumb, or courses of action. Such rules of
thumb directly determine how much to consume in the relevant period as a function of
the last period’s savings and of the current period’s additional income (state). These
rules of thumb may also include a rule that prescribes to consume according to the op-
timal consumption function (and thus to behave in accordance with standard theory),
and not all of these rules of thumb need to be applicable in all states (i.e. in periods in
which some particular additional income realization occurs).

In any state in which more than one rules are applicable, the consumer can choose
which rule to use, and he is assumed to choose that rule that gave him the best average
past experience. In any period in which a certain rule is used, the consumer’s experience
of that rule in that period is reflected by the instantaneous utility experienced in that
period plus a term that reflects the discounted value of the resulting situation that
is faced in the following period. Thus, choices are made according to average past
experiences, which are updated in every period, and this will thus give rise to a learning
model.

Lettau and Uhlig find that in situations where the optimal decision rule is included
in the set of rules, and where this optimal rule is applicable in all states, it may still
happen that in some favourable state(s) (in which a high realization occurs) the decision-
maker likes another, suboptimal rule (or more than one) better than the optimal rule,
so that in such a state the optimal rule is consistently not chosen. This result is due
to the fact that the consumer fails to recognize that the favourable outcomes that are
experienced in periods in which the suboptimal rule(s) is used should be attributed to
being in a good state, rather than to the rule that is used. The consumer thus fails
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to distinguish between luck and smart behaviour, and Lettau and Uhlig call this the
"good state bias", and present this as a candidate explanation of the empirical finding
of excess sensitivity of consumption to transitory income.

Obviously, this model is very different from the idea we have in mind here. Lettau
and Uhlig consider learning of rules of thumb, and they start from an exogenously given
set of rules of thumb, without the possibility of generating new rules. Learning would
mean learning which of these given rules of thumb is best. Moreover, as the optimal
consumption rule would somehow be exogenously given to the consumer, this model
essentially does not allow for investigating Friedman’s claim that optimal behaviour
could be learned.

In the paper "Individual learning about consumption", Allen and Carroll [2] set up
a learning model of consumption, and they do theoretically try to investigate whether
(near-) optimal behaviour could be learned. However, their approach is still quite
different from the approach that we have in mind here. We will list four important
differences.

Firstly, the setting in which Allen and Carroll specify their learning model is much
more specific. They consider one particular consumption/savings model, with one par-
ticular instantaneous utility function, where all parameters are calibrated to what they
argue to be realistic values. They consider an instantaneous utility function ug that
is of a constant relative risk aversion type: ug(c) = ¢!=?/(1 — p), where the coefficient
of relative risk aversion p is calibrated to p = 3. Furthermore, they assume that in
all periods the uncertain additional income can take three values (0.7,1,1.3) with the
probabilities (0.2,0.6,0.2). The discount rate 0 is set to equal 0.95.

Secondly, their learning model involves learning of rules of thumb, or consumption
functions, that directly specify how much to consume as a function of cash-on-hand.
All the rules of thumb that they consider have the following two-part linear structure

) (m):{1+7(m—u)ifcz(1—’7#)/(1—7>
Vol m if c<(1—~p)/(1—7)

for two positive constants v and u. There are different rules of thumb that differ only in
the constants v and p. For the above calibrations Allen and Carroll specify (a numerical
approximation of) the optimal consumption function ¢*(m), and they show that this
optimal consumption function can be closely approximated (in utility terms) by a two-
part linear function ¢+, (m) of the above type, for certain specific constants v* and p*.
Then they argue that since this approximation to the optimal consumption function
has a simple structure, these parameter values v* and p* could perhaps be learned.

Thirdly, their learning procedure employs a grid search. For each of these two
constants v and p, intervals which would reasonably contain the optimal values ~*
and p* are identified, and subdivided into 20 points. Thus they end up with a grid
consisting of 400 points, each of which represents a specific combination of values of
the two constants.
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Fourthly, each of these grid points is evaluated by means of the utility that is
obtained while living with the corresponding rule for n € N periods. That is, any point
(v, i) is evaluated according to the summed discounted utilities S .7 1 5" ug (e (my))
that are obtained in the n periods in which this rule is used, thereby not taking account
of the situation that the process is left in after the n periods. This evaluation does not
take into account what happens after the n periods, so it does not value savings in
period t +n. Finally, after the 400 times n learning periods, the grid point that yielded

the highest utility in the periods that it was used in, will be chosen.

Due to time discounting, the distortion of not valuing savings in period ¢ + n will
be relatively small for n relatively large. However, Allen and Carroll find that the best
(or a good) grid point will generally not be reached, not even for large n, as each of
the obtained utilities from a certain rule is heavily influenced by the additional income
realizations that will occur early on in the n periods. If instead each of the rules is
lived with during m separate time intervals of n periods, then as m and n get large,
the process can be expected to find the best (or a good) rule in the grid with a high
probability.

However, in this paper Allen and Carroll also focus on how long learning roughly
optimal behaviour would take. They interpret periods as years (which they argue is in
line with setting § = 0.95), and they conclude that it would take this learning process
more than a million periods before it could identify a good grid point with a high
probability.

This chapter has provided a discussion of the standard approach to modelling con-
sumption behaviour. We have seen some empirical and conceptual problems associated
with the standard approach. Also, this chapter has provided a first sketch of the new
alternative framework, and some motivations for the choices made in this particular
approach. Finally, this chapter has reviewed some related literature.
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4 Ad hoc preferences

In the present chapter the first part of the alternative framework for consumer choice
is introduced. Here an all-encompassing decision of lifetime consumption is cut up
into a series of subdecisions, and it is modelled how a consumer would solve any such
subdecision within this framework. In the first section subproblems are considered as
an alternative to the all-encompassing decisions of lifetime consumption patterns from
the standard microeconomic framework. In the subsequent sections we model how a
consumer would deal with any of these subdecisions within this framework, much in
the same vein as the standard microeconomic framework supposes the whole problem
is dealt with. Paragraph 2 defines ad hoc preference relations for any such subdecision,
section 3 defines ad hoc utility functions, which may represent these ad hoc preferences,
and section 4 puts the elements together to form a basic ad hoc consumer problem that
models which choices are made in any such subproblem. Thus in this chapter any
such subdecision is treated in isolation. In chapter 6 we will continue the set-up of
the new, alternative framework by specifying how the different subproblems, and the
decision-making that is used to solve them, would be related.

4.1 Considering subproblems

In this work we want to construct a learning model in the context of consumer choice.
A first thing to note is that in order to do this, it seems inevitable to distinguish
different subproblems and different subdecisions taken at them. We cannot set up a
learning model without modelling time explicitly, and viewing consumption as a series
of subdecisions, rather than as one big all-encompassing decision. This is in contrast
with the standard framework, where all choices are made simultaneously, so where
essentially only one all-encompassing consumption choice is made.

As we also want to be able to study the convergence properties of such a learning
model, we will need an infinite (though countably infinite) amount of such subproblems,
as convergence in finite time is quite unlikely to occur in any model.

Therefore, we use the same discrete way to model time as in chapter 2: a time
variable ¢ progresses through the set Ng = {0,1,2,3,...}. So, where in chapter 2 we
assumed this discrete time set to be either finite or countably infinite, here we only
model situations of the last type, where T" = oco. In chapter 2 the time variable was used
to be able to distinguish between periods and arrive at models of consumption /savings,
and to be able to specify a gradual way in which uncertainty unfolds. Here we will use
the same time structure, and the same decompositions of commodity spaces, commodity
bundles, prices, and budgets to set up a model of consumer learning.

In this chapter we will focus on only a single, isolated subdecision, say at time ¢, in
which there is a subset of commodities that have to be decided upon at that time, and
where there remains a set of other commodities that will have to be decided upon later.
These other commodities would probably in turn be subdivided and decided upon at
different points in time, as the above way to model time seems to suggest, but for now
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we can proceed by considering what happens at time ¢ without making specific what
will happen afterwards.

To become more formal, recall that in the standard model under certainty, prefer-
ences were defined on the total commodity space X = R, where n € N denoted the
total number of commodities that were assumed to be available for purchasing at some
point in time. The elements that such a commodity space consists of are commodity
bundles that specify amounts of all commodities, including all future commodities.

However, here we assume that the consumption opportunities do not present them-
selves simultaneously, but rather according to the above discrete model of time ¢. That
is at every stage t € Ny, by X; = R!’ we denote the space of all combinations of
amounts of commodities available at time ¢, where n; € N denotes this total number
of commodities available at stage t. And thus we get that X = x°,.X;. Since here we
assumed the overall problem to consist of a countably infinite number of periods, here
we should have that indeed n = oo, so X = RY.

Axiom 4.1.1 The total number of available commodities n is (countably) infinite.
Moreover, there is a countably infinite number of periods, and for any period t the
total number of commodities available in that period is denoted n; € N. Accordingly,
X, = RY denotes the commodity space that corresponds to all commodities available at
time t, and the (total) commodity space can be written as X = x7°,X;.

The above decomposition of the total commodity space also allows for the following,
alternative approach of cutting up the overall problem into distinct, smaller subprob-
lems. Instead of making one big decision involving all stages at once, here we suppose
that a consumer would make an infinite number of smaller decisions, one for each pe-
riod t. Therefore when at stage ¢ of the process, t periods have already passed, and
t subdecisions have already been made. Then at stage ¢, another one of these smaller
decisions will have to be made. Now, at stage ¢, the consumer is confronted with the
period-t commodity space X; of which one element z; will have to be picked. Thus such
a smaller problem involves determining what to choose from only the set X; = R’’. To
extend the model, a few definitions are presented.

Definition 4.1.1 At time t, a present commodity space is a space R, where n,
18 the number of commodities available at stage t. A present commodity bundle in
some period is an element of the corresponding present commodity space.

Definition 4.1.2 At time t, a past commodity space is the Cartesian product of all
the present commodity spaces of periods preceding time t. A past commodity bundle
in some period is an element of the corresponding past commodity space.

Definition 4.1.3 At time t, a future commodity space is the Cartesian product of

all the present commodity spaces of periods after time t. A future commodity bundle
i some period is an element of the corresponding future commodity space.
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A typical present commodity space at time ¢ is denoted by X; = R, a typical
present commodity bundle is denoted by x;. A past commodity space at time ¢ will
typically be denoted by W;_; := x!2tX; = ]R]f‘l, where k;_; = Zf;é n; < oo is the
number of commodities that have been available to the consumer before stage ¢, a
typical past commodity bundle is denoted by w;_;. A future commodity space at time
t is typically denoted by Y1 := x2,,,X; = R (the number of commodities that
will become available to the consumer after stage ¢ is infinite), and a typical future
commodity bundle is denoted by v 1.

Our notation and interpretation of the formal objects introduced here will remain
in line with that of chapter 2. For each z; € R and each 1 <7 < n,, we will interpret
the 7’th component z% € R, to represent the amount of commodity ¢ in bundle z;, and
similarly for past and future commodity bundles.

Now, in accordance with the sequential unveiling of the commodity space as in
chapter 2, we assume that there is never any uncertainty about what is presently (and
was previously) available. Thus a consumer has full knowledge of what the sets W, 4
and X; look like, and we do not yet make any assumptions here about what knowledge
our consumer has with respect to Y;; (we will come back to this later). Since the sets
Wi_1 = Ri“l and X; = R}* are known, their respective dimensions k;_; and n, are also
known at time ¢. However, the sets X; = R!” and also the dimensions n, for 7 > ¢ may
not be known at time t. Still, since there is an infinite number of periods, and in each
of these periods the number of commodities available will be a natural number, we see
that the dimensions of the sets X and Y;,; must be countably infinite, and therefore
are basically known.

We are now considering a situation at time ¢ where a previously chosen past com-
modity bundle w;_; is given, and where a consumer has a certain period-¢ budget. We
can now view the resulting choice problem as one of choosing an element in X; and
determining how much money to save for later consumption from the remaining com-
modities in Y; ;. We propose that our consumer simply chooses how much to consume,
and how much to save for the future. Thus here we do not take the ad hoc commodity
bundles in X; alone to be the elements of choice, but rather we attach to every such
element x; an amount of money that is saved for consumption from Y; 1, so we add a
dimension to X; that represents a new money good.

Definition 4.1.4 At time t, an extended present commodity space or alterna-
tively, an ad hoc choice set, is a Cartesian product X; x R, of a present commodity
space X; and the non-negative real numbers. Any element (x4, s;) of such an ad hoc
choice set is called an ad hoc choice paar.

Definition 4.1.5 At time t, an ad hoc commodity space is a Cartesian product
W1 x Xy x Ry of a past commodity space W,_1, a present commodity space X; and
the non-negative real numbers. Any element (wi_1, T, S¢) of such an ad hoc commodity
space is called an ad hoc commodity bundle.
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As can be seen in the definitions, a typical ad hoc choice set is denoted X; x R,
a typical element of such an ad hoc choice set is denoted (x;,s;). A typical ad hoc
commodity space is denoted W;_; x X; x R, , and a typical element of such an ad hoc
commodity space is denoted (w;_1,x,S:). Here w;_ is a past commodity bundle, x;
is simply a present commodity bundle from X;, and s; is a non-negative real number,
that can be seen as a new auxiliary commodity, and that we will throughout interpret
as an amount of money that is saved for consumption in the remaining periods. The
lower bound of zero on the amounts of savings that are allowed reflects the fact that
saving is possible but borrowing is not.

It is important to bear in mind that the amount s, that is saved, does not have to
be equal to the budget m;,; with which the next period t + 1 will be entered. After
all, this depends on the specifications of how the m;’s are related, and thus ultimately
on additional incomes (and interest rates). We may recall that there were several ways
to do this. However, in this chapter we will treat only one period in isolation; the links
between subsequent are dealt with in a later chapter. Therefore here we do not need to
specify the links between budgets across periods. Still, it is important to distinguish s;
from m;,1, and to remember that the extra dimension in ad hoc choice sets or ad hoc
commodity spaces represents amounts of savings, and not next period budgets.

Hence in the elements of choice that are primitive to the model, the complete de-
scriptions of all (future) consumption from Y;,; from the standard framework are here
replaced by amounts of money, that represent savings for consumption from Y;, ;.

4.1.1 Subproblems in dynamic programming

At this point it is worth noting a similarity between the ideas presented here of consid-
ering subproblems, and the dynamic programming approach towards solving consump-
tion/savings models. Remember that the sequence problem approach to solving such a
model involves solving for an optimal infinite sequence of consumption levels at once.
In stead, in the dynamic programming approach to solving such a model, the maxi-
mization problem inside a functional equation considers a single subproblem, in which
a decision-maker only has to decide how to divide his resources m; between consump-
tion ¢; and savings s; = m; — ¢;. To make this view consistent, a recursive approach
was taken, thereby determining a value function that actually solves such a functional
equation. In what follows, we will see that these similarities can be further extended.

4.2 Ad hoc preferences

Here we assume that when deciding upon which ad hoc choice pair to choose, given a
past commodity bundle and a budget, our decision-maker would just make trade-offs
between the benefits obtained from consuming the corresponding present commodity
bundles and the costs of paying for them. Here we proceed in a way similar to that of the
standard microeconomic framework, by assuming that a consumer can state preferences
between any pair of elements from the ad hoc commodity space. In order to be sure
to end up with stable and consistent preferences, we will assume that underlying the
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choices from such a set is a binary relation on this set that satisfies completeness and
transitivity. Given a past commodity bundle that was chosen previously, and given the
new ad hoc choice set X; x R,, we assume that any consumer’s preferences can be
represented by a preference relation on this choice set.

Here we also want to allow for the possibility that such preferences on the ad hoc
choice set depend on the previously chosen past commodity bundle. Therefore here
we will not just define preferences on the ad hoc choice set, but rather on the ad hoc
commodity space. Note, however, that at period ¢ where these new preferences be-
come relevant, one specific past commodity bundle was already chosen, while a present
commodity bundle is not. Therefore we could also simply view the particular past
commodity bundle that is given, as a parameter that may influence preferences on the
ad hoc choice set. And whereas in principle it would suffice to have preferences for only
one given past commodity bundle, here we want to be able to track how these past
choices may influence present preferences on the ad hoc choice set. Therefore we do not
define ad hoc preferences on the Cartesian product of the present commodity space,
the non-negative real numbers, and a set containing only a single past commodity bun-
dle. Rather, here we define ad hoc preferences on the Cartesian product of the present
commodity space, the non-negative real numbers, and the past commodity space. Note
that this is not an extra requirement of the model. This assumption actually makes the
model more general, not more specific. It also makes it possible to allow for things like
habit formation, or more generally complementarities and substitutabilities over time.

Definition 4.2.1 An ad hoc preference relation is a preference relation defined on
an ad hoc commodity space.

At time t, given the ad hoc commodity space W;_; x X; x R, a typical ad hoc
preference relation is denoted by =@,

Note that if in the standard microeconomic framework for consumer choice a situ-
ation would arise in which a decision is needed regarding what to choose from X;, and
how much money to keep for later consumption from Y, ., then a decision maker can
only make such a decision by somehow imagining what Y;.; will look like, because by
assumption his decisions are derived from preferences over complete consumption bun-
dles in X. So even if he does not in fact know yet which commodities will be available
later in Y; 1, he can only arrive at a solution to the problem at hand by imagining what
Y11 might look like, since preferences on X are all that he has to reach a decision. Then
he would arrive at a decision of which element of X; x R, to choose, by translating
money back into complete specifications of affordable future consumption.

In this chapter we just start from the fact that if a consumer is faced with the
problem of what to choose from the set X; x R, he will somehow have to make a
choice, and from the assumptions that he can state preferences over the elements, and
that these preferences can be represented by a preference ordering. Here we do not
yet worry about whether these ad hoc preferences are in fact (or can be) derived from
preferences on the whole commodity space X. Later we will come back to this question
of where these new ad hoc preferences do come from.
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Note that in the standard framework, if the commodity space is given then prefer-
ences (and utility) can be regarded as exogenous, there we do not have to worry where
such preferences come from. In the context that we are considering here it does not
suffice to treat ad hoc preferences as being completely exogenous, at least to some ex-
tent these preferences will have to be "explained". After all, it seems inevitable that
preferences for money should somehow be related to future purchasing power, but in
what way? Also note that while in the standard framework there is only one prefer-
ence relation defined over all commodities at once, in the ad hoc framework a different
preference relation is needed for every single period. Then we also need to answer
the question of how these ad hoc preferences would (or should) be related to ad hoc
preferences in different periods. We will come back to these questions later, but in the
present chapter, we will only consider what happens in an isolated period, and we wll
treat ad hoc preferences as being exogenous.

4.3 Ad hoc utility

Again, for mathematical convenience ad hoc preferences will usually be represented by
means of (ad hoc) utility functions.

Definition 4.3.1 An ad hoc utility function is a utility function defined on an ad
hoc commodity space.

Such an ad hoc utility function (that is defined on an ad hoc commodity space
corresponding to period t) is typically denoted by u® : W,_; x X; x Ry — R.

Then, as in section 2.2, the question of whether such an ad hoc preference relation
can always be represented by an ad hoc utility function can be posed. Now, note that
although the remaining budget s; € R, in this model has a new meaning, mathemati-
cally we still have a choice set in R¥***! and the whole mathematical analysis from the
standard framework is still valid. So if we also assume an (ad hoc) preference relation
>=® to be continuous'® on W;_; x X; x R,, then theorem 2.2.1 tells us that it can be
represented by a continuous ad hoc utility function v® : W,_; x X; x R, — R.

4.4 The basic ad hoc consumer problem

Similar to consumption bundles, price vectors p are broken up into sequences
p = (po, p1, P2, --.), where for every ¢ the vector p, € R\ {0} denotes the vector of prices
for the commodities in the corresponding present commodity space X;. And similarly
to the definitions of w;_; and y,,1, a past price vector will be denoted by o, ; :=
(po,p1, -, Pi—1), and a future price vector is denoted q;11 := (Pra1, Prr2, Pra3y ---)-

At time ¢, our consumer is faced with prices p, € R*\{0} for the goods in X;, and
if he has an available budget of m; > 0 monetary units, this determines what is feasible
in that period. Here it seems natural to take (p;,1) as a price vector for bundles in
X; x Ry, so that the monetary value of the bundle (z;,s;) in X; x R, is given by

13With respect to the usual Euclidian topology.
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p-x;+ s;. Thus, the consumer’s choice of elements from the ad hoc choice set will have
to satisfy the budget constraint p - x; + sy < my.

Definition 4.4.1 At time t, given an ad hoc choice set X; x R, prices p; for present
consumption and a budget m;, an ad hoc budget set is a set of all ad hoc choice pairs
(x4, 5¢) that satisfy py - x¢ + s¢ < my.

In the framework as developed in the previous sections we arrived at ad hoc utility
functions from ad hoc preference relations. These ad hoc preference relations were
defined on ad hoc commodity spaces that consist of ad hoc commodity bundles. Now
at time t, a past commodity bundle is given and fixed, therefore the decision problem
that a consumer would face should not consist of maximizing ad hoc utility over all ad
hoc commodity bundles that are feasible. Rather, the most straightforward way to put
the elements of the framework together in order to describe the basic (ad hoc) consumer
problem would be as the problem of maximizing ad hoc utility over the elements of the
ad hoc choice set that satisfy a feasibility condition, given the fixed past commodity
bundle.

Definition 4.4.2 Given a past commodity bundle w, 1 € W;_1, an ad hoc utility func-
tion u® : W, x X; x Ry — R, a present price vector p; € R\{0} and a budget
m; > 0, the basic ad hoc consumer problem is given by:

(max) D (Wy_y, 24, 5¢) sub to (x4, 5:) € Xy X Ry, py - 24 + 50 < my.
Tt,St

If the function u® (w,_1, ., .) is differentiable in the second and third argument, then
again such an ad hoc consumer problem can be solved by the Lagrange method. If
(xf,s;) € Xy x R, is an internal solution to this maximization problem, then it will

hold that there is a Lagrange multiplier A > 0 such that aa“—;? =\p,,Vie{1,2,...,m},

and such that ag(t) = \. Therefore we see that a{;‘(? 1= 8“(;) L=\ =2 forall i and
st i p ox] P’ Ost

j €41,2,...,m}. So in an internal solution, the quantities of each of the commodities

in X; will be such that the marginal utility with respect to such a commodity, divided

by its price, is the same for each of these commodities, and is equal to the marginal

utility of money. Within this framework it also still holds that A = 22 (p, my), where

oy
v®(p, m;) is the indirect utility function associated with «). Hence we see that because
we set the price of s; to be 1, it holds that at the optimum the marginal utility of money
85‘8(:) is equal to the marginal value of budget %”—W(:. So here the marginal utility of money

88“—::) plays the same role as the marginal utility of budget did in the standard framework.

We also see that

ou® /ot pt
MBS = 500 joul ~ 12

for all i and j € {1,2,...,n;}, and that

ou® /ot

MRS, = -1t =
RSz’r‘ 0u(t)/8st p
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for all i € {1,2,...,m¢}. So for any pair of commodities in X, the marginal rate of
substitution between these goods is equal to the ratio of their prices. The marginal
rate of substitution between any of the X;-goods and money s; is equal to the price of
this good.

Remember that while in the standard framework this equality of marginal rates of
substitution and price ratios holds for all pairs of commodities (in X), here this doesn’t
have to be true. Here it holds only for all pairs of goods in X;, and doesn’t have to
hold for other goods outside of X;. And while this quotient of marginal utility and
price will be constant again within other sets of commodities that are decided upon
simultaneously, within this new framework it is possible that this quotient may differ
between these different sets.

So from this analysis we also see that money can be seen as sort of an auxiliary good
that helps to distribute consumption or utility efficiently over the different periods. We
also see that here utility might not be distributed in such a completely efficient way as
in the standard framework.

All the assumptions that are made thus far in this chapter are summarized into the
following axiom.

Axiom 4.4.1 In every period, a consumer is assumed to be endowed with a continuous
ad hoc preference relation that can be represented by a continuous utility function, and
to choose an element from the corresponding ad hoc choice set, that solves the relevant
basic ad hoc consumer problem.

4.4.1 Ad hoc utility and basic ad hoc consumer problems in dynamic pro-
gramming

In the above subsection dealing with dynamic programming, it was already noted that
the ad hoc framework presented here, and the approach towards solving consump-
tion/savings models using dynamic programming, are somewhat similar in the sense
that they both start from considering subproblems, rather than taking all variables
into account at once. Now, the similarity between the ideas presented here and the
ideas behind dynamic programming can be further extended to the notions of ad hoc
utility (and ad hoc preferences) and of the basic ad hoc consumer problem.
Dynamic programming starts from problems such as

(max)[ug(ct) + 0V (sy + I)] sub to ¢; + s; < my. (1)
(Remember that to make these models stationary we set I; = I, for all ¢.) This
maximization problem looks like a basic ad hoc consumer problem, as the space R, xR
over which the maximization is done, can be seen as an ad hoc choice set. The set of
all elements of this space that satisfy the constraint ¢; + s; < m; can be seen as an
ad hoc budget set. And the function ug(c;) + 6V (s; 4+ I) that is being maximized in
this problem looks like an ad hoc utility function. Of course, in our account at period
t an ad hoc utility function ) would have to be defined on the ad hoc commodity
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space W;_1 x R, x R, and should therefore also include past consumption. The above
function ug(c;) + 6V (s; + I) is only defined on the set Ry x R, .

Still, recall that the methods of dynamic programming are only used in models
with additively separable total utility > ;= 6'ug(c;). Therefore the utility of future
consumption after period ¢ also enters this total utility function additively. And since
the function V' is devised exactly to collapse the desirability of the whole consumption
future after period ¢ into the single variable of period-t savings, it seems that the
function u® : W,_; x R, x R, — R, as defined by

t
u(t) (wt—la Ct,s St) = u(t) (CO7 C1y .-y G,y St) - Z 5iu0(ci) + 5t+1v(8t + I)’ (2)
1=0

would be a good candidate to specify an ad hoc utility function.

Then, for a past commodity bundle w;_1 = (cg,c1,...,c;—1) € Wi_1 and a period-
t budget m; € R, given, the corresponding basic ad hoc consumer problem could
be represented as a maximization of the ad hoc utility function in (2) over the set
{(ct,8) € Ry xRy : ¢ + s, < my}. And as the past commodity bundle w, ; € W;_; is
fixed, this basic ad hoc consumer problem is indeed very similar to the problem in (1).
In fact, for a fixed w;_; the function in (2) equals the function in (1) plus a constant,
so it is clear that the pair (cf, s*) will solve the problem of maximizing u® in (2) (for
wy_1 € Wy_1 given) over the ad hoc choice set ¢; + s, < my, if and only if it will solve
the maximization problem from the functional equation in (1). Thus, the maximization
problems inside functional equations are indeed very similar to basic ad hoc consumer
problems.

However, the methods of dynamic programming are made consistent by finding not
just any, but one particularly appropriate choice for the value function V', namely the
value function V* that solves the functional equation

V*(my) = max  [ug(c) + 0V *(s¢ + 1)],
(ct,8t):ct+se<my

and that consequently also gives the maximally attainable additional future utility.

Therefore as we will see more clearly in the next chapter, a decision-maker who
chooses in basic ad hoc consumer problems by means of ad hoc preferences as in (2),
using an optimal value function that solves the corresponding functional equation, is no
less rational than a decision-maker solving the problem at once in a sequence problem.
This solution to a functional equation is equally well based on perfect foresight and
perfect rationality; it is simply a more convenient way to find a solution to the same
problem. Still, as the problem that is being solved inside a functional equation can be
seen as a basic ad hoc consumer problem, the ideas behind the ad hoc framework are
somewhat similar to the ideas behind dynamic programming.

The ad hoc framework in consumption/savings models Aside from the similar-
ities that exist between the ad hoc framework and the dynamic programming approach
to solving consumption/savings models, of course the ad hoc framework can also just
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be modelled in consumption/savings models. Solving a dynamic program can really
be quite a complicated task, which is the reason why finding ways to solve them is a
science by itself. Therefore in such settings we may also want to consider the possibility
of boundedly rational behaviour, as postulated in the above axiom.

We would again start from a decision-maker who subdivides the problem of what to
decide in a consumption/savings problem into different subproblems, or ad hoc prob-
lems. Any of these subproblems that our boundedly rational consumer would face, say
at time ¢, would in fact consist of dividing resources into period-t consumption ¢; and
period-t savings s;. And each of these trade-offs are supposed to be made by using ad
hoc preferences u® (w;_1, ¢y, 5;).

Total utility, which our consumer would apparently find too complicated to maxi-
mize at once, would still be of the additive form Y77 §‘ug(c;), and would therefore also
be additive in future utility. And, because of this additive separability of the function
he should optimally be trying to solve, it seems rather straightforward to keep using this
additive separability assumption for his ad hoc preferences. That is, we may assume
here that the ad hoc preferences will take the form:

t

u(t) (wt717 Ct, St) = u(t) (607 C1y .-y Ct,y St) == Z (SiUO(Ci) + ‘7(81‘/>
=0

for some value function V : R, — R. In order to stay closer to the notation and
interpretation of the value function as in dynamic programming, here we choose the
more specific form 6"V (s, + I) for V (s,):

¢
u(t)(wt_l, Ct, S¢) = Z 5iu0(ci) + 5t+1V(St +1I).
i—0

Trying to maximize this function over some budget constraint ¢; + s; < my, given
past choices w;_1, indeed does look simpler. However, the problem of what value
function V' to use, still remains. As we saw, the value function V* that solves the
corresponding functional equation would be the best choice, as it simply collapses the
whole consumption future into one single monetary variable in an optimal way.

Here we do not yet try to answer the question of which value function is used and
simply treat such a value function as given. In later chapters we will come back to the
questions of which value function will (or could) be used. W

In this chapter we started the formal set-up for a new, alternative framework. We
postulated that series of subproblems and subdecisions are considered, and that each
of these subproblems consists of choosing how much to consume and how much to save
in that period. These choices are supposed to be arrived at, from maximizing (ad hoc)
preferences over all affordable combinations of present consumption and savings.
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In the previous chapter a first component of the alternative ad hoc framework was
introduced. In that chapter we distinguished sequences of consumption subdecisions,
and modelled how choices would be made in any period (subdecision) in isolation. The
previous chapter did not yet specify how the individual periods would be linked; these
specifications will follow in chapter 6.

But before we close the model, this chapter investigates the links and relations that
exist between the alternative ad hoc framework as presented so far, and the standard
framework. That is, this chapter focuses on the links between the alternative view of ad
hoc preference relations and ad hoc maximization problems on the one hand, and the
standard view of total preference relations and corresponding maximization problems
on the other hand. We will see that the alternative view is not incompatible with the
standard view. More specifically, we will see that the standard framework can be seen
as a special case of the alternative ad hoc framework, or equivalently, that the ad hoc
framework introduced here can be seen as an extension of the standard framework.

In order to demonstrate this, we will show that it is always possible to consistently
model ad hoc preferences within the standard framework, and by showing that is not
always possible to consistently model a standard framework ’around’ a system of ad hoc
preferences. That is, we will see that total preferences within the standard framework
can always be summarized consistently into ad hoc preferences. And we will also see
that for a single given ad hoc preference relation there usually exists total preferences
such that the ad hoc preferences summarize these total preferences consistently, but
that for multiple given ad hoc preference relations there generally does not exist total
preferences that can consistently be summarized into each of the ad hoc preference
relations. Only if these different ad hoc preferences are related in some specific way,
then there will be total preferences that can be consistently summarized into each of
the ad hoc preference relations.

The exact way in which the different ad hoc preferences should be related in order
to be consistent with the standard framework also gives a first answer as to how the
different periods could be linked within the alternative ad hoc framework. That is,
the extra assumptions needed to make the ad hoc framework agree exactly with the
standard framework, provide a way in which the links across periods can be specified.
In fact, this specification of the links between periods will serve as a benchmark in later
chapters.

This chapter consists of four sections. The first section will specify what is meant by
the aforementioned property that total preferences would be consistently summarized
into ad hoc preferences, by providing formal definitions for consistency between ad hoc
preferences (or utility) and total preferences (or utility).

The second section shows that from total preferences as specified in the standard
microeconomic framework, we can always derive ad hoc preferences in a consistent way.
Essentially this result says that the global problem from the standard framework can
be correctly summarized into local problems in the ad hoc framework.
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The third section investigates the converse direction: are the specifications of the ad
hoc framework non-contradictory with the specifications of the standard framework? In
case only a single period’s ad hoc preferences would be given, the answer will turn out
to be affirmative: we can generally find total preferences within the standard framework
with which the given ad hoc preferences are consistent. In case multiple periods’ ad hoc
preferences would be given, the answer is less clear-cut: there will exist total preferences
within the standard framework with which all of the given ad hoc preferences are
consistent, only if these different ad hoc preference relations are related in a certain
way.

The fourth section investigates whether properties of functional separability would
be carried over from total utility functions to consistent ad hoc utility functions.

5.1 Consistency

In this chapter we investigate how the ad hoc framework, or the notion of ad hoc
preferences, is related to the standard framework, or the notion of total preferences. We
investigate whether from a given total preference ordering on a total commodity space,
we can always derive an ad hoc preference ordering on some smaller ad hoc commodity
space, such that these ad hoc preferences basically reflect the same preferences as the
original total preference ordering. And conversely, we investigate whether for a given ad
hoc preference ordering on some ad hoc commodity space, there exists a total preference
ordering on some larger total commodity space, such that the ad hoc preferences reflect
the same preferences as the total preference ordering. In order to be able to make
these investigations precise, we will first need to specify what is exactly meant by this
property that total preferences can be consistently summarized into ad hoc preferences,
so that ad hoc preferences would reflect the same preferences as total preferences.

A precise definition of this property can only be given within a setting where total
preferences are well-defined: in the standard static framework, either under certainty
or under uncertainty. First we will define the property of consistency in models of
certainty, and later in this section we will do the same in expected utility models.

Hence, the present section is set within the standard microeconomic framework
under certainty, and we assume that a commodity space X = RZ° is known and given.
Also given is a discrete time variable ¢ that progresses through the set {0,1,2,...}.
Accordingly, the commodity space X is written as a Cartesian product X = x2°,X;,
where X; = RY}* and n, € N. Similarly, the prevailing price vector p is known, and
broken down into a sequence p = (po,p1,p2,...) with p, € R7*\{0}, and an income
stream {mo, I1, I5, ...} is given. Also given is a continuous preference relation 77 on X,
that can be represented by a continuous utility function u : X — R.

Now, within this setting we consider the situation at time ¢. Not all commodities
are to be purchased at the same time, and here we suppose that particular interest is
in just the subset of all goods that can be purchased in period t. At time t, w;_; :=
(Zo, T1, ..., Ty—1) was already chosen from the set W;_; := Xy x Xj X ... x X;_1, and
a decision is required with respect to how much of each of the n; goods to purchase,
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and how much of the budget m; should be saved for later. Thus, X; x R, denotes
the ad hoc choice set at time t, where the last dimension of this set denotes savings
for consumption from Y;; = x32, ; X;. In subsequent periods decisions will have to
be made as to how to spend the remaining budget on the goods in Y;,;. All of these
decisions are, however, still based on u : X — R, so preferences are stated for all goods
simultaneously.

The problem of translating money (savings) into optimally chosen future consump-
tion bundles (and with it the idea of consistency) was already touched on in those
(sub)sections of the previous chapter dealing with dynamic programming. Here we will
further specify these ideas in a dynamic programming setting, to motivate the formal
definition of consistency in more general settings.

5.1.1 Dynamic programming

Recall that in consumption/savings models total preferences are additively separable
and satisfy exponential discounting, so that they can be represented by > oo 6'ug(c;).
Such a utility function would then have to be maximized over a budget set. If the model
were stationary (i.e. I, = I, Vt), then a convenient way to solve such a maximization
problem would be by using the methods of dynamic programming, more specifically by
a functional equation

V*(my) = max {uo(e) +0V*(sy + 1)}

ct+st<my

As seen in the previous chapter, the function that is maximized inside the functional
equation ug(c;) + dV*(s; + I) is like an ad hoc utility function, and the maximization
problem inside the functional equation is like a basic ad hoc consumer problem.

More precisely, in the previous chapter we saw that the only difference with a basic
ad hoc consumer problem is the function ug(c;) + 0V*(s; + I) that is being maximized
inside the functional equation. That is, given a value function V*(.) that gives the
maximally attainable discounted future utility, at time ¢ a full-blown ad hoc utility
function u® : W,_; x Ry x R, — R would optimally be of the form

t
u(t) (wt—17 Ct, St) - u(t) (007 Cly.eey Gty St) - Z 5iu0(ci) + 5t+1v*(st + I)
=0

Past consumption does enter this optimal ad hoc utility function, but it does not enter
the function that is being maximized inside the functional equation. However, the
past also enters the above optimal ad hoc utility function in an additive way. And at
time t the past commodity bundle w;_; = (¢, ¢, ..., ¢;—1) is fixed, so that this ad hoc
utility function is to be maximized over ¢; and s; only. Therefore in maximization,
past utility ZE;}) §'ug(c;) will drop out. Hence the difference between the maximization
problem from the above functional equation and the basic ad hoc consumer problem is
inconsequential as both yield the same choices.
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And in the second chapter we saw that in general, a decision-maker who would
solve the appropriate functional equations with the optimal value function V* to make
choices, will end up making exactly the same decisions as a decision-maker solving the
sequence problem in (¢, ¢y, ¢, ...) directly. This equivalence is due to the fact that
this V* that solves the above functional equation, also gives the maximal value for the
sequence problem in which the utility function Y ;2 6"u(c;) is directly maximized over
the appropriate budget set, and the fact that by stationarity the period-t problem is an
exact copy of the period-0 problem. Therefore implicit in using the ad hoc preferences
u®(cy, 81) = S20_, 0'ulc;) + 0"V *(s, + I) is the property that any budget that will be
saved into period ¢ will also be spent optimally afterwards.

So in a sense, in the present case we see that the analysis on the total commodity
space X can be correctly 'summarized’ to an analysis on the ad hoc choice set R, xR, .
From total preferences, ad hoc preferences can be found that basically represent the
same preferences (and that yield the same choices), so that these ad hoc preferences
can be called consistent with the original total preferences. |

Thus, the notion of consistency is related to the property that money saved will
always be spent optimally afterwards. Therefore in order to define consistency it needs
to be specified what future consumption would be feasible in a certain situation with
savings, a future commodity space, future income and future prices given. Recall that

in period ¢ a future price vector is given by a vector ¢; := (py, Pii1, Prs2,---), With
pr € RY7\ {0} for all 7 > ¢, that specifies all prices as of period ¢. Similarly, we can
define a future income stream as a vector J; = ([y, I;11, [110,...), with I, € R,

for all 7 > t that specifies all additional incomes that will be obtained from period
t onwards. For ¢ = 0, a future income stream is simply equal to an income stream

JO = (mo, Il, IQ, )

Definition 5.1.1 Given a future price vector q;, an amount of savings s;_1 € Ry, and
a future income stream J;, a future budget set as of period t is a set

Bi(qi, se-1, Jr) = {(x, 441, ...) € Ve : Zpi X < S+ ZL’,VT > t},

=t =t

and a strict future budget set is a set

ét(thst—l; Jp) = {(zt, xt,...) € Ye: sz‘ - x; < Sp—1 + ZL‘;VT >t}

i=t i=t

For period 0, there is no previous period so there will also be no savings brought into
this period, and a future budget set for this first period can be denoted by By(p, 0, Jo),
or by By(qo, 0, Jo).

Thus, a future budget set specifies all the future commodity bundles that will be
affordable after period ¢t — 1, given a future price vector ¢;, an amount of savings
si—1 € Ry that is brought over from the previous period, and a future income stream
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Ji. And similarly for the strict future budget set, where the only difference is that all
budget constraints will have to hold strictly.

The following definitions specify the property of consistency, both in terms of pref-
erence relations and in terms of utility functions, in the general setting under certainty.
In the next subsection consistency will also be formally defined under uncertainty.

Definition 5.1.2 An ad hoc preference relation = on the ad hoc commodity space
Wi_1 x Xy x Ry is called consistent with a (total) preference relation 77, on the com-
modity space X = W, 1 x X; X Y11, given some future price vector q;11 and some
future income stream Jyy1, if for all (w1, x4, 8¢), (w; 1,2}, 8,) € Wig X Xy x Ry it
holds that (wy_1, x4, 5¢) 5O (wi_y, 24, s,) if for every y,., € Bii1 (G, S, Jrsr) there is

~Y

a Y1 € ét—l—l(Qt-ﬁ-la St, Jt+1) such that (wt—la xtayt-kl) i (wllf—la :L‘évyz-',-l)'

Definition 5.1.3 An ad hoc utility function u® : W,_q x X; x R, — R is called
consistent with a total utility function u : X — R, given a future price vector q;.1 and
a future income stream Jy.q, if there is some strictly increasing function f : R — R
such that

u(t) (wt—17 L, St) - f( sup u(wt—la L, yt+1))7
Yi+1E€Bt+1(qe+1,5¢,J1+1)

for all (wy_1, x4, 8;) € Wi x Xy x Ry

These definitions may need some explaining.

Firstly, notice that in the second definition we have f : R — R (recall that R denotes
the extended real numbers R U {cc}), rather than (for instance) f : R — R. At this
point it may not be clear why we would allow the 400 to be both in the domain and
in the range of the strictly increasing functions f.

A first thing to note here is that the specific form of such a function f will depend
on the given functions u and u®. Therefore such a function f need not in all cases take
the value +o00. Still, we do want to allow for it.

As for why R is the domain of f, since the future commodity space Y;;; has infinite
dimension, it would get quite complicated to ensure that the suprema
sup,, ., (w1, ¥4, yry1) would always be finite-valued. This problem can be avoided
by allowing for f(oco) to be well-defined.

The fact that we also allowed for the possibility to include the +oo into the range of
f may seem even more puzzling. After all, since u( is defined into the real numbers R,
we see that f(sup,, » w(wi_1, Ty, Yp41)) = 0o can never occur. The reason for defining

f into R has to do with the fact that we also want to allow for such a function f to be
unbounded on R. By strict increasingness of f, it must hold that f(c) < f(o0) < o0,
for all ¢ € R. Therefore f : R — R would give that f(co) € R, and thus that f
would be bounded from above. And while this may not be problematic or undesirable
in some cases, it would for instance exclude the possibility to have the identity function
f(c) = ¢, even in cases where the suprema sup,,  u(w;1, %, ys+1) would always be
finite-valued. This limitation can be avoided by allowing for f(oc) = co.
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Thus in cases where all suprema sup,, w(wy_1, x4, Y1) would be finite-valued, it
would be inconsequential what value we would assign to f(c0), in the sense that this
value will never be attained by «® anyway. If f would be bounded from above on R,
then f(oco) may either be finite (but larger that the upper bound) or infinite. If f would
not be bounded from above on R, then f(oo) must be infinite.

In cases where not all suprema sup,,, | u(w; 1, T, Y1) would be finite-valued, f(co)
must be finite, as f(sup,, , u(wi 1,7, yr41)) must always be finite.

Secondly, also notice that whereas in the first definition sets such as
étﬂ(qtﬂ,st, Jiy1) (with strict budget constraints) are used, in the second definition
suprema are taken over the budget sets Bii1(qi41, St, Ji+1) that are closed. Also note
that for continuous utility functions we could also have used the first type of sets in
the second definition, as a supremum of a continuous function over any set will always
be the same as the supremum of the same function over the closure of this first set.
Still, it might be a bit counter-intuitive to see the first type of sets ét+1(qt+1, Sty Jii1)
appear in any of the definitions. The reason why strict budget sets are used in the first
definition is that, if we had used the closed budget sets in both definitions, then these
definitions would not permit links as in the next proposition, because of problems with
suprema being attained or not.

From the definition of uY) being consistent with w, it also follows immediately that
such a consistent ") (wi—1, ¢, s¢) will be non-decreasing in s;. After all, for s; > s} we
know that Byi1(qir1, S}, Ji1) is a subset of Byi1(qit1, St, Ji41). And a supremum of a
function over a set is never larger than the supremum of the same function over a larger
set. Thus indeed the consistent u® (w,_1, 2, s;) is non-decreasing in s;.

Similarly, if =® is consistent with -, then s, is weakly good in =®. To see
this, for s, > s; we also get that Bt+1(<]t+1,3ta<]t+1) C Biya(Ger, 51, Jer1), 50 Y1 €
Bt+1(qt+1, sy, Ji41) implies that y; , € Bt+1(qt+1, S¢, Jt+1) Therefore for all (w;_1, ;) €
Wi1 x X we see that for every y,,, € Btﬂ(qtﬂ, sy, Jip1) there esists a
Yir1 € Bip1(Qesas se, Ji1) such that (w1, 24,95, 1) Z (W1, 24, y;,1). This implies that

~J

(wy_1, 74, 8) 7 (w1, 24, 85), and thus s, is weakly good in =®.

The next proposition justifies why the term consistency is used for both preference
relations and utility functions.

Proposition 5.1.1 Assume given for some time t € Ny an ad hoc preference relation
=® on the ad hoc commodity space Wi_; x X; x R for which the last argument s, is
strongly good in =D, and a continuous ad hoc utility function u®) that represents ==,
Also assume given a preference relation 7~ on the commodity space X = W, 1 X X; X Y; 11
for which at least one of the commodities in Y, 1 is strongly good in =, a continuous
utility function u that represents 7, a future price vector qi11, and a future income
stream Jyy1. Then =) is consistent with =, given g1 and Joy1, if and only if u® is

consistent with w, given g1 and Jyyq.

Proof. A First we prove the ’if’ part. Suppose that v : W,_; x X; x Ry — R is
consistent with u : X — R, given g1 = (P41, Dt2s ---) (with p, € R\ {0}, n, € N,
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for all 7 > t+ 1) and Jyyq := (L41, L1a2,--) (Wﬁh I e Ry forall 7 > ¢ + 1). Then
there exists some strictly increasing function f : R — R such that for all (w;_1, x4, s;) €
W;_1 x Xy x Ry, it holds that

U(t)(wt—hxta st) = f( sup u(wi—1, T4, Yr11))-
Ye+1€Bi11(qe41,5t,J141)

Since both the future price vector ¢;,; and the future income stream J;,; are fixed,
throughout this proof we will use the notation B;,1(s;) rather than By 1(qii1, St, Ji+1)-
(Similarly we write §t+1(st) in stead of §t+1(qt+1, Sty Jia1).)

We now want to show that indeed =) is consistent with =, given ¢, and J,,;.
Let (w1, 7, 8:), (W), 2}, 8)) € X; x Ry be such that (w;_1,2,s,) =0 (w)_,, 2}, 5).
We then have that

(wtfly Ty, St) i(t) (wilf—la x:ﬁ S::) ~ u(t) (wtflv Ty, St) 2 u(t) (wy,f—p 37; 3:5) g

f( sup u(w—y, T, yt+1)) > f( sup U(w;:—la fL'Q»?JtH)) A

Yt+1€Be41(st) Yi+1€Bi41(s})
( ) > (W)
sup U\ Wt—1, Tty Yt4+1) = sup U\Wy_1, Ty Y41
Yt+1€Bt41(s¢) Yi+1€Be41(s})

VY1 € ét+1(8;)a Jyiy1 € ét—l-l(st) such that w(wi_1, x4, Yes1) > w(w,_y, Ty, Ypiq)

g Vy;—&—l € étﬂ(si)a Y1 € ét+l(3t) such that (w1, 4, Y1) Z (wllf—bm:fvy;-i—l)'

Note that if the above equivalences are correct, the first statement holds if and only if
the last statement holds, which exactly specifies the definition of =) being consistent
with -, given ¢;y1 and J; ;. The third of the above equivalences follows by strict
increasingness of f. The next to last "<’ may need a bit of explanation.

For the '=’, suppose that

/ /
sup u(wt*b Ty, yt+1) > sup u(wtfh Ty, yt+1)
Yt+1€Be+1(st) Yt+1€Bi41(s})

is given. The preference relation 7~ is such that at least one of the commodities in Y;,
is strongly good in -, and the function v must be strictly increasing in this commodity.
Therefore since the set B;,; is defined by means of strict budget inequalities, it must
hold that

/ / / ro / » /
Sup u(wy_y, Thy Yer1) > u(wtflaxwywrl)’vyﬂrl € Biyi(sh).
Yt+1€Br+1(s})

This also implies that

/ o ’ - /
sup  w(wi—1, T, Yer1) > Wiy, T Yo )s YWhaq € Biga(s)).
Yi+1E€EBr+1(s¢)

Then by continuity of u we get that for all y;,, € ét+1(s;), there must exist a y;11 €
Bit1(8t), such that w(wy_1, x4, Y1) > w(wi_y, @4, Y,y ), which proves '=’.
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Now, suppose that the other direction <=’ does not hold. That is, suppose that the
last statement holds: for all y;,, € Bij1(s)), there exists a 141 € Bt+1(st) such that
w(wi—1, T, Yes1) > u(wi_q, 2y, Y;,,). And, contradictory to '<’, suppose that

/ /
sup (w1, T, Yer1) < sup u(Wy_1, Ty, Yes1)-
yt+1€Bt+1(5t) yt+1€Bt+1(3£)

Then by continuity there must be some y;,, € Byy1(s}), such that

sup w(wi—1, Ty, Yer1) < u(w£—17$;>y1€+1>'
Yt+1€Be+1(st)
But now, from the statement we started with, we know that for this y,,, € By (s))
there must also be a y; 11 € B;y1(s;) such that

u(Wy—1, e, Yeg1) > U(wi_l,fvéyyéﬂ) > sup u(wy—1, Ty, Yer1)-
Yi+1E€EBr+1(s¢)
This is obviously impossible.

Thus indeed, <’ holds, and we see that =) is consistent with -, given ¢, and
Jiv1-

A For the ’only if’ part, suppose that =® on W;_; x X; x R, is consistent with >
on X, given ¢;.1 and J; 1. And suppose given some utility function u that represents
>, and some ad hoc utility function u® : W,_; x X; x R, — R that represents =),
We now want to prove that u(® is also consistent with u, given ¢, and J,,1, i.e. that
u® can be written as:

u(t) (wt—17 L, St) = f( sup u(wt—17 L, yt+1)>7
Yt+1€EBr4+1(st)

for some strictly increasing function f : R — R.
It is given that for all (w;_1, 2, s¢) and (w;_q, 2}, s;) € Wi_1 x Xy x Ry it holds that

(i1, T4, 5t) i(t) (wi_y, x4, 8;) <
YY1 € Biva(s)), i1 € Bisa(sy) such that (we_y, 24, yes1) 2 (0)_y, 2}, y14,) &
)

= u(wgflv CL’;, y1/£+1)

! !
~ sup wW(We—1, Tt, Yey1) > sup wW(Wy_y, Ty, Yey1)-
Yt+1€Be41(st) Ye+1€Be11(s})

Vytﬂ c Bt+1( ) Elyt—l—l c Bt+1< ) such that u(wt_l, Tty Yra1

Here the first equivalence holds by definition of consistency of =® with ». The last
equivalence is the same as the next to last equivalence needed in the ’if’ part of this
proof, which was already established to hold above. Now we see that for all (w;_1, zy, s;)
and (w]_;,7},8,) € W;_1 x Xy x R, we have

u(t)(wt—lv Ty, St) > u(t) (w;g_p $;, S;) g (wt—la Lt St) i(t) (ww,f—la $;7 3:&) g
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/ /
sup wW(W—1, Ty, Yey1) > sup u(wy_y, Ty, Yig1)-
Yi+1E€EBr+1(st) Yt+1€Bi+1(s})

Then it is possible to construct a function f : R — R such that

u(t) (wtflu T, St) = f( sup u(wtflu T, yt+1)>7
Yt+1€Bi+1(st)

and this function will necessarily have to be strictly increasing. Hence indeed, u®) is
consistent with u, given ¢;,1 and Jy11. [

5.1.2 Expected utility

Next, we will define consistency of ad hoc utility functions with total (Bernouilli) utility
functions in expected utility models.

Recall from chapter 2 that in models of expected utility a state space €2, and an
accompanying probability distribution 7 :  — [0, 1] would be given. In a setting where
time is explicitly modelled, the states w € €2 would be broken up into sequences of w;’s,
so that w = (wg, w1, ws, ...). Then by w; = (X4, pt, I;) we would denote the prevailing
period-t part of the state of the world, consisting of a period-t commodity space, a
period-t price vector, and a period-t additional income (I = mg). These period-t
states of the world w; were supposed not to become known until time .

For two periods t < 7, by w] we denote the vector of all period-i states of the world,
where i ranges from period ¢ up to period 7: w] = (Wi, W1, -, wr). By wi® we denote
a complete future state of the world (wy, wi 1, ...).

Then, between periods ¢ and ¢t + 1 (for any t), the vector of past states wf =
(wo, w1, ...,w;) are known, and the vector of future states w?, that is yet to occur, is
not. We denote the set of all final states of the world w that can occur, given wf, by
{wh} x Q2. Such a future state space Q75; would also give rise to a set Yiy1 that
denotes the union of all the future commodity spaces Y; 11 = %32, X; that may occur
as part of some future state of the world wg?;.

In subsection 2.6.3 we also wrote acts as sequences:

a(w) = (ao(wo), a1(wy), az(wy), --.)-

Between periods ¢t and t + 1, the vector of past states wf is given, and the actions
wy = (ag, a, ..., a;) were already taken. Hence between periods ¢ and ¢ + 1, wf and
wy (and an amount of savings s;) are given, and a choice byy1 = (@411, Gr2,...) € Vi1
of what to purchase from period ¢ 4+ 1 onwards will still have to be made. What can
possibly be chosen here, depends on the prevailing state of the world w = (wf, wi%,).
Thus such an act can now be denoted by a function byyq : {wh} x Q% — Y;41. However,
the way in which this choice b;,; may depend on w, should satisfy a few conditions.
Firstly, for 7 > t 4+ 1 the period-7 state w, does not become known until period 7,

so as in chapter 2 the period-7 act a, may only depend on wj. Thus
b1 (W) = (ar1(wp™)s area(wWp™), o).
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Secondly, if w would be such that the period-7 commodity space X, would be part
of w,, then obviously a,(wf) € X,. That is, if the future commodity space Y;,, is part
of the future state wgy,, then obviously b;1(w) € Y;41 should hold.

Thirdly, the choice by1(w) = (aii1(wh™), arpa(wh™),...) should also be feasible.
That is, for any vector of realizations wj, ; of the states of the world in periods ¢ + 1
through 7, the prices (pii1(wis1), ..., Pr(ws)) of consumption from the corresponding
space X1 X ... x X, and the additional incomes (I;.1(w;i1), ..., I;(w,)) obtained in
the periods between t+1 and 7, help determine what is affordable in period 7 > t+1. As
before, for an amount of savings s;, and the previous choices (as ;1 (wh™), ..., ar_1 (w5 ™))
given, any choice a,(w]) should be such that what is spent p,(w;) - a-(wf) in period 7
should never exceed the budget

my 1= S + Z Ii(w;) — Z pi(wi) - ai(wé) ()
i=t+1 i=t+1

that is available in period 7.
All these requirements on which choices b;;1(w) can be made in later periods are
summarized in the specification of the future budget set.

Definition 5.1.4 Given an amount of savings s; € Ry, a past state of the world w},
a future state space 079, and a set of future consumption possibilities Y, 1, a future
budget set as of period t + 1 is a set

t+1 t+2

. be1(w) = (a1 (wg ), arra(wp™), ),
Bt+1<3t) = bt+1 : {wé} X Qtoil - Y;E—i-l VT Z t+1: aT(WS € X’T Z’fwT = (XTapT)I'r)’
Vr>t+1:pr(wr)-ar(wh) < m,.

Here m, is as in (1).

With this definition we can now also define consistency of ad hoc utility functions
in expected utility models. Analogously to the corresponding definition in models
under certainty, consistency would mean that money is optimally translated into future
consumption.

Definition 5.1.5 Given a past state of the world wf, a future state space 3%, and a
probability distribution 7 : Q0 — [0, 1], an ad hoc utility function u® : W,_; x X; xR, —
R is called consistent with a (total) Bernouilli utility function u : X — R, if there
exists some strictly increasing function f : R — R such that

u(t) (wt—la T, St) = f( Sup E7r(w|w6)u(wt—1a T, bt-i—l(w))a
be+1E€Bry1(st)

fOT all (wt_l,xt,st) € VVt_l X Xt X R+.

The remainder of this chapter is completely set under certainty. This definition of
consistency in expected utility models is presented here because we will need a formal
definition in later chapters.
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5.2 From total to ad hoc preferences

In this section we investigate whether in general within the standard microeconomic
framework under certainty, for a given preference structure on a total commodity space
X there exists an ad hoc preference structure on some ad hoc commodity space W;_1 x
X; x Ry, that is consistent with the original total preference structure.

In the above dynamic programming example we argued that the answer was affirma-
tive. This section shows that in a more general setting the answer is affirmative as well:
for future prices and a future income stream as of next period given, total preferences
on X can also be seen to define consistent ad hoc preferences on W;_; x X; x R,..

Proposition 5.2.1 Suppose a (total) utility function u : X — R is given. Then, for
any time t € Ny, any future price vector q;.1 and any future income stream J;,1 given,
there exists an ad hoc utility function u® : W,_1 x X; x R, — R that is consistent with
u, gen qiq and Jiiq.

Proof. The function u (.) is a (total) utility function on the (total) commodity space
X. For a given time ¢t € Ny, some system of future prices ¢+1 = (pyy1, Prs2,-..) (wWith
pr € RU7\{0}, n, € N, for all 7 > t+1) and a future income stream J;, 1 = (l441, [i12, ...)
(with I, € Ry for all 7 > ¢t + 1) are given. Given ¢, we can also write X =
Wiy x Xy X Yiqa. .

Then the new function g : W;_; x X; x R, — R, given by

g(wtfla T, St) = sup U(wtfl, T, yt+1)7
Ye+1€Bs11(qe41,5¢,Je41)

for all (wy_1,x, 8¢) € Wi_1 x Xy xR, can be derived from u. The set By1(qi41, St, Ji+1)
is never empty as it always contains the zero-vector in Y;,, so that g is a well-defined
function mapping W;_; x X; x R, into the extended real numbers R. Thus, for any
strictly increasing function f : R — R, we see that the function u® : W,_; x X; xR, —
R, as defined by u® (w,_1, 7, 5,) := f(g(w,_1,24,5;)) is a well-defined ad hoc utility
function. Moreover, by definition u(*) satisfies the criteria for being consistent with u,
given ¢; 1 and J;, 1, which concludes the proof.

Thus within the standard framework, from given total preferences on total commod-
ity bundles we can derive consistent ad hoc preferences on ad hoc commodity bundles.
Moreover, this property holds for all periods. However, as mentioned before, in this
setting comparisons are still essentially made for all goods simultaneously; the actual
introspective process of determining what you like is still done all goods at once.

The next proposition shows that a profile of choices (zf, z7,...) € X solves the basic
consumer problem corresponding to certain total preferences if and only if for every pe-
riod ¢ the corresponding pair (z7, s7), with s = mo+> ', ;= ._, pi-z}, solves the cor-
responding basic ad hoc consumer problem for any ad hoc preferences that are consistent
with the total preferences.
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Proposition 5.2.2  Suppose given a total utility function v : X — R on the com-
modity space X = x; Xy, a price vector p = (po,p1,...) and an income stream Jy =
(mo, Il, _[2, )

( A ) Suppose that the function u is such that for all t it is strictly increasing in at
least one commodity from Y11, and that the profile (xf,x%,...) € X solves the basic
consumer problem corresponding to u, p and Jy. Then, for any t € Ny, and any ad
hoc utility function u® : W,_; x X, x R — R that is consistent with u, given ¢, =
(P41, Peyas ) and Jepr = (Iirq, Liio, ...), the pair (xf, m} —p;-xf) will solve the basic ad
hoc consumer problem corresponding to u®, (p;,1) and m; = mg—i-z;;l I;,— Zz;é pi-xl,
given wy_y = (x§, x5, ..., x7_1).

(B) Suppose that the profile (z§,z3,...) € X is such that for every t € Ny and
for any ad hoc utility function u® : W,_; x X; x R, — R that is consistent with u,
given quy1 and Jiyq, the pair (z7, mf — p, - x7) solves the basic ad hoc consumer problem
corresponding to u®, (p;, 1) and my = mo + > _i_, I; — Zf;é p;i - x;, giwen w;_,. Then
(x5, 7, ...) will also solve the basic consumer problem corresponding to u, p and Jy.

Proof. Given are a utility function v : X — R on the commodity space X, a price
vector p = (po, p1,...) (with p, € R% \ {0}, n; € N, for all ¢), and an income stream
Jo = (mo, I1, L5, ...) (with my € Ry and I; € R, for all t > 0).

(A) For the first part of this proposition, suppose that the profile z* = (zf, 3, x3, ...)
€ X solves the basic consumer problem corresponding to u, p and Jy. That is, x* is
such that u(z*) = max u(z) sub to x € By(p, 0, Jy).

Then, for some specific t € Ny, let u® : W,_; x X; x R, — R be some ad hoc utility
function that is consistent with u, given ¢+1 = (P11, Pra2, -..) and Jy1 1 = (g1, Liyo, -..).
That is, u® is a function that can be written as

ul® (W1, 4, 5¢) = fi( sup W(W—1, Tty Yey1))s
Ye+1€Bi+1(qe+1,5¢,Jt4+1)

for all (wy_1,2¢,5,) € X; x Ry, and for some strictly increasing function f, : R — R.
We now want to show that the pair (z}, m; — p; - 2}) solves the basic ad hoc consumer
problem corresponding to u®, (p;, 1) and m} = mg + 2;1 I; — ZZ;(I) pi - x}, given the
previous choices w; | = (x§, 7, ...,z _1).

In period ¢ this basic ad hoc choice problem corresponding to u*), (p;,1) and m*,
for wy_, given, reads

() (0y*
max U w Te. S )
(zt,5¢): D¢ T +5e <my ( t—1s %t t) ( )

This can now be expanded to:

*
max i sup w(wy_y, Ty, Yir1)) =
PeTerstSMe oy €By g (qrg1,se i)

* _
sup  fi( sup u(wy_y, Te, Yer1)) =
pr-xe+se<my Ye+1€Bey1(qer1,5¢,Je11)

fi( sup | sup w(wi_y, T, Yer1)]) =
pt-xt+5t <My yi+1€Br+1(qe+1,5¢t,Jt4+1)
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Sl sup w(wi_y, ye))- (2)
yt€Bi(qe,m; —1It,J¢)

These equalities may need a bit of explaining. The first equality of replacing a
maximum by a supremum can be justified if indeed this supremum is attained, which
we will shortly see is the case here. The second equality follows from strict increasingness
of f;.

The last equality should hold if we have specified the budget sets correctly. To see
that this is so, note that with the identity m; = s} ; + I, the constraint p, -z, + s, < mj
under which the outer supremum is taken, can be broken down into p; - x; < s7_; + I
and into s; < s;_; + I; — p; - x;. The inner supremum is taken over the future budget
set

Bii1(qir1, 86, Jer1) = {(Teg1, Tega, ) € Yigu Z Di T < S+ Z L,V >t+4 1}
i=t+1 i=t+1

Together, the constraint s; < s; ; + I; — p; - ©; and the budget constraints from
Bii1(qes1, Sty Jy1) imply that >0, p; -2 < spy +>.._, I; must hold for all 7 > ¢ + 1.
Therefore, any feasible bundle y; = (x4, y;4+1) must satisfy the latter system of budget
constraints and the constraint p; - z; < sf ; + I;. Thus, any feasible bundle 7, must
belong to the following set:

{(z¢, x441,...) €Yy Zpi s <85+ ZL,VT > t}.

1=t i=t

In this set we recognize the future budget set as of period t, for the level of savings
sty = m; — I given: By(q,m; — I, J;). It is exactly this last set over which the
supremum in (2) is taken. Hence the last of the above equalities holds.

We now want to show that y; = (x}, 2,4, ...) attains the maximum in (2). In (2) it is
given that the tuple w;_; = (x, x7, ..., z;_,) was chosen in the periods before ¢, and the
supremum is taken over the budget set B;(q;, m; — I, J;). By strict increasingness, no
budget is ever wasted, and the choices w;_; resulted in the period-(f—1) level of savings
st =mo+ S I — 312} pi - af (which equals m} — I;). Therefore the set of bundles
(x4, Tey1, ...) that are feasible from period ¢ onwards, given wy |, is indeed exactly given
by the budget set Bi(q, m; — Iy, J;). Since we know that u(z§, x7,...) = maxu(x) sub
to x € By(p,0,Jy), the truncated profile y; = (z},x;,,,...) must now also attain the
SUpremum in supy, ¢, (g, m: —1,,5,) WWi_1; Yi)-

Andsince y; = (7, 2}, , ...) maximizes (2), by strict increasingness the pair (z}, m; —
pe - f) must maximize (1). And indeed (z},m; — p; - z7) will solve the basic ad hoc
choice problem corresponding to u(, (p;, 1) and my, for w;_, given.

(B) The profile (xf,x7,...) € X is such that for every ¢t € Ny and for any ad hoc
utility function u® W, 1 x X, X R, — R that is consistent with u, given ¢;1 =
(Pra1, Preo,--.) and Jiog = (Lyyq, Li1e, -..), the pair (z7,m} — p; - xF) solves the basic ad
hoc choice problem corresponding to u®, (p;, 1) and m} = mg + 25:1 I; — Z:;é pi - xl,
given wy | = (xf, 2%, ..., x5 ;).
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Such an ad hoc utility function uv® : W,_; x X; x Ry — R is consistent with w,
given ;41 and Jii1, so it can be written as

ul® (w1, 4, 5) = fil sup W(W—1, Tty Yey1))s
Ye+1€Bi41(qs41,5¢,Jt41)

for all (w,_1, 7y, 5,) € X; x R, and for some strictly increasing function f; : R — R.

Now, we want to show that the profile z* = (z, 7, ...) also solves the basic consumer
problem corresponding to u, p and Jy, i.e. that u(z*) = sup,cpp0.5) “(7). (Note that
it also still remains to be shown that the last supremum is indeed attained.) For
every t the truncated profile (xf,z7, ..., z}) will satisfy ZE:O Di T < Mo+ 22:1 I;, so
that it must be the case that (zf,z7,...) € By(p,0,Jy). Then obviously we get that
u(r*) < S, 1y 0L0)

Suppose that u(z*) < sup,ep,(p.0.70) %(). Then there must be some (earliest) period
7 € N at which z7 is suboptimal. That is, there must be some time 7 in which

sSup u(w:—laxjay‘r+1> < Sup u(m)
Yr+1 GBT+1(lI7—+17mi—P‘r'mi’Jﬂ'+1) xGBo(p,O,J())

However, we know that for ¢ = 0 it holds that (zf,mo — po - xf) attains
MAX .20+ 50<mo U (T0, S0) for any consistent u(®). So for s5 = mg — po -, we have
that

u®(xg,55) = sup u@(zo,50) =  sup  fi( Sup u(wo, y1)) =
Po-To+50<mo Po-To+50<mo y1€B1(q1,50,J1)
Sl sup [ sup u(wo,yn)]) = i sup  u(z)).
Po-To+s0<mo y1€B1(q1,50,J1) x€Bo(p,0,Jo)

Again, the third equality follows from f; being strictly increasing. The last equality
was already justified in the first part of this proof, where we saw that

SUDy,.opt-sy<my SUPy, 1€ Boyr (qur,seess) COI alternatively be written as SUDy, € B, (qrm?— s, J1)
Moreover, by consistency it holds that

u(zg,s5) = fil  sup  u(xg,m).
y1€B1(q1,85,J1)

Hence we see that sup, cp, (4, 5.51) U(Z5: Y1) = SUPsepy(p0,so) U(%), and thus that 7> 0.
Similarly, for any ¢ € N it holds that (z},s}), with s; = m; — p; - =}, attains
MaXy,.q,+s<m: W (W)_y, 4, s¢) for any consistent u”, so that

(t) * ® k\ t * o
u(wy_y, 77, 87) = sup ul )<wt_17$t, 5¢) =
(x¢,5¢):pt-xe+se<my

sup  fi( sup w(wy_y, Te, Yer1)) =
pt-Tt+st<my Yi+1E€Bt+1(qe+1,5¢,Jt4+1)
fi( sup | sSup w(wi_y, Ty, ye1)]) = fil sup u(wi_y, yr))-
pt-Tt+5t <M} yp+1€Biy1(qe+1,5t,Jt+1) yt€Bi(qt,m;—1Iz,Jt)
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And again by consistency it holds that

ul® (wi_y, 77, 87) = fil sup u(wy_y, 77, Yir1))
Ye+1€Be+1(qe+1,55,Jt+1)

and with s;_; = m; — I, we thus see that

* * *
sup u(wy_y, oy, Y1) = sSup u(wy_y, Ye)-
Yt+1€Be+1(qt+1,87 ,Jt+1) yt€Bt(qt,57_1,Jt)

This same principle applies for every period before ¢, so by induction we find that for
every t it holds that

* * _
sup u<wt717 Lt s yt+1) - sup U(I’)
Yt+1€Bs11(qe41,57,Jt41) x€Bo(p,0,Jo)

This contradicts the existence of 7, and indeed we find that u(z*) = max,epy(p,0,4,) w().
]

The above proposition is based on the simple mathematical fact that

max u(W;_1, Ty, Y1) = max(max u(Wy_1, Ty, Yer1))-
Tt Yt+1 Tt Yt4+1

Because of this Bellman-like equation we see that it doesn’t matter when choices for
the future commodities are made. A choice between goods in X; and remaining budget
is based on the fact that this remaining budget is indeed afterwards spent optimally,
so the order in which purchases are made is irrelevant.

Next we provide a few cases where we can explicitly specify consistent ad hoc utility
functions for some standard examples of utility functions that are typically found in
microeconomic texts. Moreover, we show that in some cases consistent ad hoc utility
inherits its functional structure from the functional structure of the underlying total
utility.

Example 5.2.1 Additively separable utility

Like in definition 2.4.5, a total utility function u on X = x2,X; is additively
separable (with respect to the partition of X corresponding to xi°,X;, with X; = R’
for some n; € N and all t) if there are functions u; : X; — R, such that u(zg, x1,...) =
Do ur(we).

Suppose that for some specific timet € Ny a future price vector qu+1 = (Pra1, Pes2, ---)
and a future income stream Jii1 = (141, liyo,...) are given. Then we can define the
function u®® on W,_q x X, x R, by

t _
U( )(wt—la T, St) = sup U(wt—h Tt, yt+1)
Yt+1€Be+1(qe41,5t,Jt+1)

80



5. TOTAL AND AD HOC PREFERENCES

Thus u® (w,_1, 7, 5;) equals

sup Z wi(z;) =

Yt+1€Be1(ge+1,5¢,Jt41) 1

t o] t
Z ui(z;) + sup Z ui(z;) = Z wi(;) + vega(se)-
i—0 Yer1€Be 41 (qe 1,56, Je41) ;1 i—0

Here vyy1(s;) denotes the function supy, . cp,  (gir.soties) 2oietsr Yilwi). If this function
vep1(.) is finite-valued, we see that u*) is a well-defined ad hoc utility function, and by
definition it is consistent with u. Moreover, the consistent ad hoc utility function u®
18 also additively separable.

Example 5.2.2 Linear utility

A more specific example of additively separable utility is that of linear utility. For
all t it holds that X, = R"' for some n, € N. Then, a (total) utility function u on
X = %2, X4, is called linear if there are vectors oy € RY}* such that u(x) = > ,° o - x4.
This would mean that all goods are perfect substitutes.

Then for some specific timet € Ny, suppose that a strictly positive future price vector
Gt+1 = (Des1, Pey2, --.) € R, is given, and that no additional income will be obtained
after period t: Jii 1 = 0= (0,0, ...). In this case, the budget set can be written as

B (g1, st,(j) = {(zt41, Try2, ...) € Yeg Z i < s, VT >t + 1} =
i=t+1

oo
{($t+1,l’t+2, ) €Y Z Di T < St} = {3/t+1 € Yir1 i Ger1 - Y1 < St}'
i=t+1

Then we can define the function u® on W,_1 x X, x Ry by

oo
t _ — —
ul )<wt—1axta St) = sup  u(wi—1, Ty, Yer1) = sSup E Q- Ty =
qt+1-Yt+155¢ q+1Yy+158t

o0

t t
g ;- T;+  sup E Q- T = g Q- T+ B8t
=0 1=0

Gt+1 Y158t 7y

Here 3, | == SUD;> 41 maxogjgm{;‘—g} denotes the maximal quotient of a-coefficients and
prices, across all commodities fro;n Y,i1. The last equality is due to the fact that all
commodities are perfect substitutes, so that savings can most efficiently be spent on that
commodity with the largest quotient of a-coefficients and prices. Then if 5,,; < oo,
the function u') is a well-defined ad hoc utility function, that is by definition consistent
with u. Moreover, this ad hoc utility function also has a linear form.
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In the more general case where Ji 1 # 0, the shape of the budget set will be more
complicated. However, s; will still be spent on that commodity from Y;11 with the largest
quotient of a-coefficients and prices, across all commodities from Yiiq. Similarly, for
any period T >t + 1, the additional income I. will be spent on that commodity from Y,
with the largest quotient of a-coefficients and prices. Therefore, if J1 # 0 then

t
ul )(wtfla Ty, St) = sup u(wtfla l“taytﬂ) =
Yt+1€Bt+1(qe+1,5t,Jt+1)

Zaz xz+ﬁt+13t+ Z 6 IT>

T=t+1

so that u®) is still (more or less) linear.

Example 5.2.3 Cobb-Douglas utility

For all t it holds that X, = RY}* for some n; € N, and for notational simplicity we
first suppose that ny = 1 for all t. Then a (total) utility function u on X = X2, X; is
of Cobb-Douglas form if there are constants v > 0 and cy > 0, with o := "> ay < 00,
such that

uw(z) = u(zg, 21,22, ...) =7 [[1op ©t™
For some specific time t, suppose that no additional income will be obtained after period
t so that Jiy1 = 0 = (0,0,...), and that all prices are strictly positive q.41 € R, .

As seen in the linear utility example, the budget set Byi1(qiy1, St, 6) reduces to {y;+1 €
Yii1: Gua1 - Yes1 < 81+ Again, we define the function u® on W,_; x X, x R, by

t
ul )(wt—bxt; St) = sup UJ(wt—laxayt-&—l) =
qt+1-Yt+1<5t

@ ; ] a;
sup v Hz 0 zl v Hz 0 zl' sup Hi=t+1$il'

Qt+1-Yt+1585¢ qt+1Yt+155¢
It is a well-known fact that under Cobb-Douglas utility the last supremum is attained
by spending a (o, /B, 1)-proportion of the available budget s, in any period i > t + 1,
for By == 37,1 ;. That is, the optimal time-i choices are given by x} = (%),
for alli >t + 1. Thus we get that

U()(wt 1,$t,8t)—7 Hz oL ‘Hﬁtﬂ(

QS

ﬁt—i- 1Pi

) =

Q;

i St i i B
v HZ:O xza ) (B )BHI Hfim(f) = k- Hz 0T tt+1a
t4+1 Di

Btlﬂ)ﬁtﬂ (55, Then if k < oo the function u® s a well-

defined ad hoc utility function is, and by definition it is consistent with u. Moreover,
the resulting consistent ad hoc utility function is also of a Cobb-Douglas form.

 The same principle applies in the case where ny > 1 for all t. Then if we denote
x] to be the j’th component of x;, and given coefficients o} > 0 for all components,

where kK = 7y - (
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the (total) utility would be given by v - [[;=o [}~ O(mi)o‘i Then the same reasoning will

show that the similarly defined consistent ad hoc utility function u® will still be of a
Cobb-Douglas form.

However, the assumption that no additional income is obtained after period t, is
necessary to obtain this result. If Jo1 # 0, the shape of the budget set will be more

St

complicated, and the rule that x} = (m) no longer applies.

Example 5.2.4 Leontief utility

For allt it holds that X; = R for some n, € N, here we first assume that n, = 1 for
allt. A (total) utility function u on X = x2,X; is of a Leontief (or fixed-proportions)
form if there are scalars oy > 0 for all t, such that u(x) = inf{Z2, 2 =2 ..} This
means that all goods are perfect complements.

We suppose that after time t no additional income will be obtained so that J;11 =
0= (0,0,...). Then for any future price vector qi+1 = (Prs1, Pes2,---), again the budget
set Bii1(qs1, St O) reduces to {y;11 € Yie1 : a1 - Y1 < S¢}. Now, a consistent ad hoc
utility function is given by

t
ul )(wtfla Ty, St) = sup U(wt—h T, Z/t+1)
qt4+1-Yt+1<5¢

Tt Tiy1 Te42

= sup mf{ vy —, , .
Qt+1-Yt4+1<5¢ al a2 O Oy Qg2

Given wy_1 and xy, the objective would be to have x’ L > = m1n0<]<t L for all periods
t > t+ 1. This is affordable if Zl:tﬂ P < st. If this is not ajj”ordable then the

best that can be done is to set Z- = X, for all periods i > t + 1, with X\ such that

Y1 PiciA = s In that case, inf; 2 would equal A = $:(X i1 Pic) = <fo for

Ct+1 = ZZtH pic;. Thus,

if MCt-H < 8¢

1
u(t) (wt—ly xt’ St) = { fﬂ€t+1 > St

Ct+1

LTy St

Cay oy G

—h

— min{p, =~} = min{ 2
Crpa a1

and the consistent ad hoc utility function also has a Leontief form. '
The same principle applies in the case where ny > 1 for all t. Then if x] is the
j 'th component of x;, and given coefficients o > 0 for all components, total utility

would be given by u(x) = inf, min; <<, z—% Then the same reasoning will show that the

consistent ad hoc utility function will still be of a Leontief form.

Again, the assumption that J; 1 = 0, is necessary to obtain this result. If Jii1 # 0,
the shape of the budget set and consequently the shape of the consistent ad hoc utility
function, will be more complicated.
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5.3 From ad hoc to total preferences

In the previous section we found that, given total preferences on some given total
commodity space, we could always find consistent ad hoc preferences defined on the
ad hoc commodity space that corresponds to a certain period. In this section we try
the opposite direction: we alternatively start from a consumer, who has for every (or
for some) period ¢, ad hoc preferences defined on the corresponding ad hoc commodity
spaces. Then for the total commodity space that would be constructed as the Cartesian
product of all the present commodity spaces, we investigate if it is possible to find total
preferences with which (all of) these ad hoc preferences would be consistent. In other
words: we investigate whether such given ad hoc preferences could be obtained from
the total preferences of a rational utility maximizer who would be able to consistently
summarize total preferences into ad hoc preferences, and thus whether the notion of
ad hoc preferences can always be made compatible with the notion of maximizing total
preferences. We find that for a single period’s ad hoc preferences we can generally
find total preferences with which the ad hoc preferences are consistent. However, this
same result does generally not hold for several periods’ ad hoc preferences, only if
these different ad hoc preferences are related in some specific way (that resembles
consistency), then there will be total preferences, each of the ad hoc preferences will be
consistent with.

Here we first start with one single period ¢ for which ad hoc preferences are given,
and investigate the converse of proposition 5.2.1. For some period t € Ny an ad hoc
utility function u® (w;_,, ;, ;) is defined on the corresponding ad hoc commodity space
W1 x X; x Ry (with Wy_y = R (k,_; € N) and X; = R™ (n; € N)). Then for any
future commodity space Y {; = R for the remaining periods, the corresponding total
commodity space would be X = W;_; x X; x Y;,;. And for any future price vector
¢:+1 and any future income stream J;;; given, the question is can we always find total
preferences on X represented by some u(z), such that the ad hoc utility function 1
is consistent with u, given ¢, 1 and J; 17

Of course it is possible that there are several different total utility functions that give
rise to the same consistent ad hoc utility function, so finding one total utility function
that does this already proves that the ad hoc utility function is not incompatible with
the assumptions from the standard framework.

Proposition 5.3.1 Suppose given for somet € Ny an ad hoc commodity space W;_1 x
X; x Ry and an ad hoc utility function u' : W,_; x X; x R, — R, which is such
that u (w,_y, 4, 5,) is non-decreasing in s;. Then for any future commodity space
Y1 = R, any strictly positive future price vector q.41 € R, , and any future income
stream Jip1 = (Lyy1, Liro, ...) with E;’itﬂ I; < oo, there exists some total utility function
u: Wiy x Xy xY1 — R, such that u® is consistent with u, given qsgr1 and Jyiq.

Proof. Given are an ad hoc commodity space W;_; x X; x Ry (with W;_; = Rit‘l,
ki—1 € N, and X; = R’}*, n, € N), and an ad hoc utility function u® W x Xy xR, —
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R. Also suppose given some future commodity space Y;;; = RS, some strictly positive
future price vector ¢;11 = (D141, Dit2, ...) € R, and some future income stream Jy;1 =
(Ie41, Try2, ...) € RY that satisfies ¢ := Y7, || I; < co. We now want to show that there
exists some total utility function v on the commodity space X = W, ; x X; X Y1,
such that u® is consistent with u, given ¢,11 and Ji,;. That is, we want to show that

there exists some function u : X — R, such that

u® (wt—b T, St) = f( sup u(wt—la T, yt-i-l))v
Ye+1€Bi11(qe41,5¢t,J141)

for all (wy_1, 7y, 8¢) € W1 X X X R, and some strictly increasing function f : R — R.

To prove this proposition, it suffices to explicitly provide one total utility function
that satisfies the above relation. This is exactly what we will do here, and we start
from a ((quasi-)linear) function v : Y;,; — R, as defined by

V(Y1) = Z Q- T — Ly

1=t+1

where for all 7 > ¢ + 1 the vector a; = R} (with n; € N) is such that the coefficients

for all commodities in X; are the same: o] = @; := min;<p<,, {p’}, for all 1 < j < n,.

This function v : ;11 — R can be interpreted as a separate (sub)utility function that

represents preferences for the commodities in Y;, 1, independent of whatever choices

(w1, ;) have or will be made from the past and present commodity spaces. The

above specification of v means that all commodities in Y;,; are perfect substitutes.
Now we are ready to define the function u : X — R by

U(wt—1, xtayt-i-l) = u(t)(wt—la xnv(ytﬂ))-

This new function u has the property that, for the future price vector ¢;,; and the
future income stream J;;1 given, it holds that

sSup U(wt—l, $t7yt+1) = u® (wt—la T, St), (1)
Ye+1€Bi1(qs41,5¢t,J141)
for all (z;,s) € Xy x Ry.
To prove this claim, we first take a look at the left-hand side, which can be expanded
to

t
sup ul )(wtfla Ty, U(Yey1))-
Ye+r1€Ber1(qer1,5¢,Jt41)

The function u® (w1, Ty, $¢) is non-decreasing in s;, so that the supremum can be

brought inside to get

t
ul )(wt—la Tt, sup V(Yet1))-
Yt+1€Be1(qe41,5t,Jt41)
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Now, the innermost term reads

)
sup V(Y1) = sup E Q- Ty — L.
Ye+1€Bi+1(qe+1,5t,J¢+1) Yi+1€Bi+1(qe+1,5¢,Je+1) i=t+1

For any period ¢ > ¢+ 1 the coefficients for all goods 1 < j < n; available in this period
are equal: a{ = @;. Therefore by perfect substitutability, within each period there may
only be consumption from that commodity that has the lowest price. And since for
any period ¢ the coefficients o for all period-i commodities equal the smallest price in
this period (o) = minj<p<, {pF}), again by perfect substitutability consumption will
be equally desirable in all periods (when of course this means consumption from the
best priced commodity in any period). Then, like in the linear utility example from the
previous section, we get that

o0 o0
sup E Q; Ty — L= sup E ;- T; — UL =
Yt+1 eBt+1(qz+173t7Jt+1) i=t+1 Yt+1 EBt+1(qt+1,st+L,6) i=t+1
sup Qi1 Tpp1 — L =1 (st + 1) /1) —t =8 +1— 1= 5.

Yt+1€Bey1(qe41,5t+,0)

Here the first two equalities follow by perfect substitutability. The third equality follows
from the optimal policy of spending the total budget s, + ¢ on that period-(¢ + 1)
commodity j' € {1,2,...,n.41} that satisfies pﬂrl = Qpp1 = Milj<h<n,,, (P51 }-

Hence, the above equalities prove our claim that (1) holds, and (with the function
f: R — R defined by f(z) = z, for all z € R) indeed we have established that there
exists a total utility function u such that u® is consistent with u, given q; 11 and Jy .
[ |

The above proof uses one specific (and especially convenient) example for the subu-
tility function v. And while this particular example suffices to prove the proposition,
here we point out that the same procedure can be followed with other subutility func-
tions. More generally, given some ¢;1; € R, and some .J;,;, we could for any function
v : Yy 1 — R define the corresponding indirect utility function v by

V(Qt+17 m, Jt+1) = sup U(yt+1)-
Ye+1€Be11(qer1,m,Je11)

And we can define, for ¢;y; and J;,; fixed, the function g : Ry — R, by g(m) =
v(qey1,m, Jii1) for all m € R,. Now, if we can show that g is a strictly increasing, real
valued function, then there exists an inverse function ¢=! : R — R, which will also be
strictly increasing. In that case, as in the above proof, it can be shown that the function
w(wy_1, ¢, Y1) = uD (w1, 24, g7 (v(ye11))) would be consistent with u®), given ¢,
and Jt+1.

However, in general here the hard part is to indeed demonstrate that the function g is
real valued (and thus finite valued), and strictly increasing. Since the domain for g is an

86



5. TOTAL AND AD HOC PREFERENCES

infinite-dimensional space, this can get tricky. The choice of v(y1) = D72, i@ — ¢,
used in the proof, is especially convenient as

g(st) = sup E Q- Ty — L= S¢.
Yer1€Bep1(qer 1,56, Je41) ;1

In this proposition we see that ad hoc utility being non-decreasing in savings is
sufficient for the existence of a total utility function on any total commodity space, with
which u® is consistent. Recall from the discussion after the definition of consistency
that ad hoc utility being non-decreasing in savings was also a necessary condition for
being consistent with some total utility function.

If we would be given ad hoc preferences for several periods we could ask the same
question. Under what circumstances can we find a total preference relation such that
each of the given ad hoc preference relations is consistent with the (same) total prefer-
ence relation?

To answer this question, here we look at two different periods t,t' € Ny, with ¢ < ¢/,
for which we suppose given an ad hoc utility function u® on the ad hoc commodity
space W,_1 x X; x R, and an ad hoc utility function u®*? on the ad hoc commodity
space Wy_y x Xy x R,. Here W,_, = R"' (with k_; € N) and Wy_, = R~
(kv_1 € N) are the respective past commodity spaces, X; = R’ (with n, € N) and
Xy =R} (with ny € N) are the respective present commodity spaces.

Now, we denote the set Z to represent consumption opportumtles in all periods
after t, but not after . That is, Z := x!_, ., X; = R., for [ := Zﬁ_tﬂ n;, so that we
can write W;_1 x X; x Z = Wy_1 x Xy, and we must have that ky_1+ny = ki1 +n,+1.

Then, for any given future commodity space Y; .1, the period-t future commodity
space is given by Y;.1 = Z X Yy,1. As usual we write the total commodity space X
as Wy_1 X Xy X Ypiq or as W1 x X; X Yy41. For the earlier period ¢, we suppose
given a future price vector qi41 = (D141, Prs2, -..), with p; € RYP\{0} for all i > ¢ + 1,
and a future income stream J; 1 = ([;41, 119, ...), with I; > 0 for all ¢ > ¢+ 1. For the
later period we denote the future price vector g1 = (py+1, Prrs2,-..), and the future
income stream Jyy1 = (Iyy1, [y42,...), to be the truncated versions of ¢;y1 and Jy1,
respectively. Similarly, the price vector p, = (pi41, Pr+2, ..., pr) and the income stream
I, = (1441, Li42, ..., Iy) are truncated versions of ¢;,1 and Jy 1, so that we can also write
qi+1 = (pz7 Qt’—l-l); and Ji 1 = (Iz7 Jt’-‘,—l)-

Then given the future price vectors ¢;; and gy.1, and the future income streams
Jir1 and Jyyq, we investigate whether (or when) we can find a total utility function
u: X — R such that u® is consistent with u, given ¢;11 and J;y1, and such that ut)
is consistent with u, given ¢y and Jy 1.

To answer this question we define a budget set for commodity bundles in Z and
period-t’ savings by

i z< LYt+1<7<¢t,
Cz(puSt;[z) = {(Z,St/)erR+ ZZ 41 Pi T —St+21 t+1 + T }

t
Sp =S¢+ Zz Ty szt-&-l pi - Zi
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With this set C.(p., s, I.) we can now specify that, if u) is consistent with a
utility function wu, u'® will also be consistent with v if and only if ©® and u®) are
related according to the equation

ul® (we—1,2¢,8:) = g( sup U(t,)(wtq? Ty, 2, 8¢1)),
(#,841)€C:(pz,5t,12)

for some strictly increasing function g : R — R. Note the similarity with the definition
of consistency of an ad hoc utility function.

Proposition 5.3.2 Suppose that for some periods t,t' € No, with t < t', we are given
past commodity spaces W;_1 = Rﬁ:’l, Wy_1 = Rﬁ:"l (with ki1, ky—1 € N, I = ky_q —
k-1 € N), and present commodity spaces X; = R, Xy = R} (with ny,ny € N).
Also suppose we are given ad hoc utility functions u® : W,_1 x X; x R, — R, and
u®™) s Wy x Xp x Ry — R, such that u'*) is consistent with a total utility function
u: X — R, given a future price vector qui1 and a future income stream Jy.,. We
define the set Z as xf;HlXi (=R.). Then, for a price vector p, € R, and an income
vector I, € ]R'i_t given, it holds that u®) is also consistent with u, given g1 = (P2y qr41)
and Jyy1 = (I, Jyy1), if and only if

u(t) (wt—l? Tt, St) - g( sup u(t/) (wt—h Ty 2, St’))’ (1)
(Z7St/)€0z(pz,5t71z)

for some strictly increasing function g : R — R.

Proof. Given is that the ad hoc utility function u(*) is consistent with a total utility
function u : X — R (on some commodity space X = W;_1 x X; X Z x Yy11), given a
future price vector qv1 = (pr41, Pr+2, ...) (with p, € RY7\ {0}, n, € N, for all 7 > t/),
and a future income stream Jy 1 = (Iy41, [y 1o,...) (with I € Ry for all 7 > ).

A Then, for the ’if’ part of the proposition, suppose that (1) holds for some strictly
increasing function g : R — R. We then want to show that u(® is consistent with w,
given g1 = (P2, quy1) and Jyq = (I, Jypa).

It was given that u*) is consistent with u, given gy, and Jy,1, so that there exists
a strictly increasing function f : R — R such that

U(t/)(wt'—l, vy, sp) = f( sup U(wtul, Ty, yt/+1))- (2)
yt’+1€Bt'+1(qt’+1’st’7‘]t’+1)

Now, we can enter this into (1) to obtain

ul? (w1, 1, 50) = g Sup U(t,)(wt—l, Ty, 2, Sp)) =
(Zfst/)ecz(pz,stylz)

9( sup I sup wW(wi—1, Tt 2, Yr41))) =

(2,841)€C:(P2,5¢,12) Yy 1€Bp1(qpr 41,8405 J4111)

g(f( sup [ sup u(wt—b Tty 2, yt’-i-l)])) =

(2,81)€C (P25, 12) Yy 1 1€By 11 (155054 41)
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g(f( sup W(W—1, Ty, Yey1)))- (3)

Yt+1E€Bt+1(qe+1,5¢,Jt4+1)

The third equality follows by strict increasingness of f. The last equality results from
joining the two suprema sup; ; )ec. (p..s,.2.) a0d SUDy,, By, (qy 41059y 1y) DEO 2 single

SUDPTeMUI SUD,, | e B, 1 (qu11,50,Jic1)0 LK€ 0 the proof of proposition 5.2.2.

To see that this is allowed, we can use the equality s, = s, —i—ZZ,:t li— Zflzt 41 Dir i
from the set C, to rewrite

Bt’+1(Qt/+1a ) Jt’+l) = {yt’+1 €Yy Z Pi vy < Sy + Z I, N1 > t'+ 1}
i=t/+1 i=t/+1

as

T t/ t/ T
{ypi1 € Yoyq - Z Di T < S+ ZL‘— Zpi‘$i+ Z LN >t +1}

i=t/+1 i=t+1 i=t+1 i=t'+1

= {ypr41 € Yoq1 Z Di-x; <S¢+ Z LT >t +1}
i=t+1 i=t+1
The remaining constraints from the set C, read ZZ—:t D m < s+ Z;t 41 1i, for all
t+1<7<¢.
Therefore, since the vectors (z, yy 1) = (X441, Tyro, ...) € Yiy1 over which total utility
is maximized in (3) should satisfy all the constraints from the sets C, and By, 1, we get
that these vectors should satisfy

szzzgst—i— Z[i,forallrzt—l—l.

i=t+1 i=t+1

In this description of the set of all feasible vectors y;11 € Y;11 we may recognize the
budget set Bii1(Git1, St, Ji+1), which indeed justifies joining the two suprema.

Thus, if we denote the function i : R — R by h(x) = g(f(z)), then by the above
equalities from (1) and (2) we obtain

u® (wy_1, x4, 8¢) = h( sup u(wi—1, e, Y11)), (4)
Yt+1€B+1(qe41,5¢,J¢41)
for all (w;_1,zy,8;) € W1 x Xy x R,. And since both f and g are strictly increasing
functions, so is their composition A, and we see that indeed u(*) is consistent with w,
given i1 and Jyiq.

A For the ’only if’ part, suppose that u®) is consistent with u, given future prices
Gt+1 = (P2, qv+1) and the future income stream J; 1 = (I, Jy11). That is, (4) holds for
all (w1, 24, 8;) € Wi_1 x Xy x Ry, and for some strictly increasing function h : R — R.
And it was already given that u(*) is consistent with u, given gy, and Jy .1, so that
(2) holds for some strictly increasing function f : R — R. We now want to show that
there is some strictly increasing function ¢ : R — R for which (1) holds.
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We can now relate the consistent ad hoc utility from the later stage u®) (w1, Ty, Syr),
to the consistent ad hoc utility from the earlier stage u® (w,_, ¢, s;). That is, for
Gt+1 = (P2, qr41) and Jiq = (1., Jy41) given, we see that

u® (wt—lu T, St) = h( sup U(wt—h $t7yt+1)) =
Yt+1E€Br+1(qe+1,5¢,Je41}

h( sup [ sup u(Wi—1, T4, 2, Ypr11)]) =
(2,841)€C(p2,5t,12) Ypr 1 1€By 1 1(qp 41,540 T4r 11)

h( sup F W (wy_y, 2y, 2, 80))) =
(Z,St/)ECZ (pz,stylz)

h(f_l( sup U’(tl)(wt—lawtazast’)))'
(Z’St’)ecz(pz,st,lz)
Here the last three equalities may need to be explained. The second equality follows
from splitting up the supremum supy, . ep, | (g 1,50, /0513 60 SUD(. s ). (p. ,s,,2,) @0 IntO

SUDy,,  €Byr . (g s1.50dyr o) WhiCh was already shown to be equivalent in the ’if” part. As

for the third equality, f~' denotes the inverse of the function f : R — R, which can
indeed be inverted by strict increasingness. This third equality uses the equivalence

!
'U,(t )(wtlfl, Tyt St’) = f( sup 'u,(’wtsz Ty, ?/t'+1)) R
Ypr 1 1€By 1 (qyr 1,840, Jp 4 1)

f_l(u(t,)(wt’fly Ty St')) = sSup U(wtul, Tyry yt’+1)-
Yor 41€By 11 (@ 1,550 41)
The last equality follows from strict increasingness of f~!, which in turn follows from
strict increasingness of f.

Thus if we define the function g : R — R as the composition g(x) = h(f~!(x)), then
from the above equalities we see that (1) holds, for all (w;_1,x¢, ;) € Wi—1 x Xy X R
And since both h and f~! are strictly increasing functions, so is g, which concludes the
proof. [ ]

The interpretation of the above proposition is quite intuitive, it says that both ad
hoc utility functions «® and u*) are consistent with the same total utility function if
and only if the ad hoc utility at stage ¢ for a given choice of (w;_1, x4, s;), is equal to
the maximum of stage ¢’ ad hoc utility over all bundles (from C,) that are feasible in
the stages between the periods t and ', given this stage ¢ choice of (w;_1, 2y, s;). This
is a consequence of the fact that by definition consistent time-¢ (and time-t") ad hoc
utility is derived from final utility by assuming optimal choices in stage ¢t and beyond
(in stage ¢ and beyond), or of the fact that

max u(wy_1, Ty, 2, Yp+1) = max(max u(wy_1, Ty, 2, Yp11))-
Yt +1 Z o Y

So this says that the number u® (w;_;, 2, 5;) does not only correspond to an optimal
final utility level that may ultimately be obtained after choosing to consume z; from X,
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and keeping s, for later consumption. But it also says that «® (w,_y, 7, s;) corresponds
to a maximal level of ad hoc utility that may be reached in a next stage after choosing
x¢ and keeping s;.

Remember that we were trying to set up a learning model of consumer behaviour,
and that we were interested in investigating the convergence properties of the learning
model with respect to the standard model. The definition of consistency relates ad hoc
utility to total utility in a specific way in the benchmark case of the standard framework.
And although we argued that the usual prospective view on consumer choice might
descriptively not be very appropriate, this ideal situation may still somehow serve as
a reference point. In the next chapters we will deviate from the assumptions of the
standard framework, so that ad hoc preferences can no longer be explicitly calculated
from final utility of optimal commodity bundles (or so that there are no total preferences
given from which anything can be derived in the first place). Still, throughout we will
keep using the standard framework and its relations between total preferences and
consistent ad hoc preferences as a normative benchmark. We may even suggest that
while people are not able to perform the sort of analysis that the standard framework
predicts they do, they still try to sort of mimic the corresponding behaviour.

5.4 Separability

The present section investigates whether separability properties are carried over from
total utility functions and to consistent ad hoc utility functions. These separability
properties will play an important role in the following chapters. The following propo-
sition shows that some type of (quasi-)separability carries over from total utility to
consistent ad hoc utility.

Proposition 5.4.1 Suppose given a commodity space X, that can for some t € N be
written as X = Wy_1x Xy xY, 11, and a utility function u : X — R, that can be written as
w(z) = w(wi_1, T, Y1) = Up(vg(wi—1, 2¢), Yea1), for some functions vy - Wy_q x Xy — R
and U; : R x Yiy1 — R. Then for any ad hoc utility function u® : W,_; x X; xR, — R
that is consistent with u, given some future price vector q;11 and some future income
stream Jy,1, there exists a function U® : R x R, — R such that u® can be written as
u® (wy_1, w4, 8;) = UD (v (wy_1,21), 5¢).

Proof. Given is a utility function v on the set X = W,_; x X; X Y,,1, which can be
written as w(w_1, Ty, Y1) = Up(ve(wi_1, 1), yey1), for all (wy_1, 2, Y1) € Wio1 X Xy X
Y11, and for some functions vy : W;_1 x X; — R and U, : R x Y;;; — R. Also suppose
given some period-t ad hoc utility function «® : W,_; x X; x R, — R on the ad hoc
commodity space W;_; x X; x R, that is consistent with u, given some system of future
price vectors qiy1 = (Pet1, Py, -..) (wWith p, € R\ {0}, n, € N, for all 7 > ¢) and some
future income stream J; 11 = (Iy41, l142,...) (with I, € R, for all 7 > ¢). That is, u®
can be written as

U(t)(wt—l,xt; 51) = f( sup U(wt—la T, Yir1)),
Yi+1€Bi+1(qe+1,5¢,J¢+1)
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for all (w;_1, 2y, 8;) € W1 x Xy x Ry, and some strictly increasing function f : R — R.

What needs to be shown now, is that for the given ad hoc utility function u® :
Wi_1 x Xy x Ry — R, and the given function v; : W;_; X X; — R, there exists some
function U® : R x R, — R, such that

U(t)(wt—b T, St) = U(t) (Ut(wt—h fEt), St)7

for all (wy_1,x¢,8:) € Wi1 x Xy x Ry
The function u® can also be written as

ul® (wt—la T, 5t> = f( sup Ut(vt(wt—la xt), yt+1))-

Yt+1€Bs41(qs41,5¢,J141)

Now, given ¢;11 and J,;1, we can define the function ¢ : R x R, — R by

g(ve, 5¢) = f( sup Ui(Ve, Yer1)),
Yt+1€B4+1(qe+1,5¢,J1+1)
for all (v;,s;) € R x Ry. For any ¢;41, any s; and any Jy,1, the set Byi1(qi1, Se, Ji11)
at least contains the zero vector in Y 1, so that Byy1(qii1, St, Ji+1) is never empty, and
the supremum sup,, ., cp, ., (gi1.500000) Ut (Ve Yey1) is a well-defined element of R. Thus
we see that g is a well-defined function mapping R x R, into R. The function g so
defined has the property that

u(t) (wtfh T, St) = Q(Ut<wt—17 'Tt)a 87f)7 v(wtfla T, St) (1)

Thus, g would be a good candidate for the function U® that we are looking for, except
that g is defined into R, rather than into R. That is, it may happen that g(v, s;) = oo
for some (v, s;) € R x R. Still, because of (1) and the fact that u(®) is a real-valued
function on W;_; x X; x R, we see that it must be the case that g(vi(w;_1, z), $¢) < 00
for all (wy_1,x¢,8¢) € Wi_1 x Xy x R, Thus, we can define a new function g : RxR, —
R, so that g(v,s;) := g(v,s;) for all v in the range of the function v, (i.e. for all
v € vu(Wi_1 x X;) x Ry), and so that g(v,s;) is somehow finite otherwise (for all
v ¢ v (W1 x X;) x Ry). This new function g would indeed be real-valued, and like
g it would satisfy the property described in (1). Therefore the function g satisfies all
properties that were needed for the function U® : R x R, — R, which completes the
proof. [ ]

The following corollary applies the above proposition in a setting with some recursive
type of (quasi-)separability. It establishes that this property carries over from total
utility functions to consistent ad hoc utility functions.

Corollary 5.4.1 Suppose given a commodity space X, that can for some t € Ny be
written as X = Xg X ... X Xy X Yiu1, and a utility function v : X — R, that can be
written as u(z) =

U(wo,xl, '--7xtayt+1) = Ut(%(%—l(---%(%(%%$1)---,ﬂft—1),iBt),Z/t+1),
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for some functions vg : Xg - R, v, : Rx X, - R, VO <7 <t and Uy : R x
Y,i1 — R. Then, for any 0 < 7 < t, and any ad hoc preference relation u(”) on
the ad hoc commodity space W,._1 x X, x R, that is consistent with u, given some
Jri1 = (Iry1, Iy, ...) and some Gri1 = (Dri1,Prio,...), there exists a function U :
R x R, — R, such that

U (zg, .oy e, 57) = UD (0 (0r_1 (vr (vo(0), 1) ooy Tr1), 1), Sr).

The functional structures that the functions in the above proposition and corollary
satisfy were referred to as quasi-separability. Note that for separability proper it was
also required that the functions U; (v, 3:,1) and U (v, s;) (and similarly v; through v;)
would be strictly increasing in the first argument v. We could of course simply assume
that the function U;(v,ysy1) would indeed be strictly increasing in v. However, this
would not imply that in the above proposition there would exist a strictly increasing
function U® such that the consistent ad hoc utility function could be separated into
u® (wy_1, 14, 8;) = UD(vp(wy_1,2,), 5;). Here the problem would be that the function
U® should satisfy

UD (v, 5) = f( sup Uy(vr, Yr41)),

Yt+1€Bt+1(qe+1,5t,Jt+1)

and that the right-hand side need not be strictly increasing in v;. To see this, if
(v}, s¢) € RxR, is such that SUDy,  \eB, 1y Ui(ve, Y41) is infinite (which is not impossible),
then we will get that

f( sup Ut(”élaytﬂ)):f( sup Ut(vzltayt+1))

Yt+1€Bt+1 Ye+1€B11

for all vy’ > vj.

In this chapter we have modelled ad hoc preferences in the standard framework, in
which total preferences are also defined. This chapter has shown that, and exactly in
what way, the standard framework is a special case of the alternative ad hoc framework.
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6 Preference adjustment and the learning algorithm

In the previous chapters we considered situations where consumption opportunities are
not encountered simultaneously, but rather sequentially. Moreover, we assumed that
consumption choices are made sequentially, rather than simultaneously. In such situa-
tions each of these consumption choices would consist of choosing present consumption,
and deciding how much of the available budget to save for the possibly uncertain (or
even unknowable) future consumption opportunities. In every period a preference re-
lation is assumed to underlie these choices. Thus, in order to model decision-making in
an isolated period, ad hoc preferences were introduced.

In the previous chapters these ad hoc preferences were just supposed to exist, they
were introduced without worrying about where they would come from. In the previous
chapters ad hoc preferences were essentially treated as being exogenous. But as noted
before, ultimately it does not suffice to treat ad hoc preferences as being completely
exogenous; at least to some extent these ad hoc preferences will have to be "explained",
because it seems inevitable that preferences for money should somehow be related to
future purchasing power.

Also, in the previous chapters we only considered such subdecisions (and the un-
derlying preferences) in isolation. No general answer was yet given as to how these ad
hoc preferences would (or should) be related across periods.

You could say that up to now we have dodged the bullet, in just assuming that
these ad hoc preferences exist without worrying about where they come from or how
they are determined or related. In this chapter we propose to answer these questions,
of how ad hoc preferences come about and how they are related across periods, at the
same time. We will do this in such a general way that it may be applicable in models
of choice under certainty, under uncertainty, or even under structural ignorance.

Of course, as can be seen in the previous chapter, the standard microeconomic
framework for consumer choice would give a rather straightforward answer to the above
questions of how ad hoc preferences come about and how they are related across periods:
since money that is not spent yet is saved for future consumption, savings will simply
be translated into optimally chosen future consumption bundles, and (ad hoc) utility
for savings will be derived from (total) utility of optimally chosen future consumption
bundles. In this standard microeconomic approach, judgments regarding the value of
money are still based on prospective viewing and on full rationality.

Here, however, we assume bounded rationality, so that a consumer would lack the
foresight and/or the rationality to tackle the lifetime consumption problem as standard
microeconomic theory suggests. Thus, in all periods decisions are based on ad hoc pref-
erences, and we proceed by assuming that the ad hoc preferences in the very first period
are exogenous, and that in all later periods the ad hoc preferences are endogenously
determined by updating the ad hoc preferences from the period before that. Thus, ad
hoc preferences in the first period are somehow obtained or invented by the consumer,
they reflect some initial guess at what might be reasonable, and they are assumed to be
exogenous. In later stages, ad hoc preferences are assumed to be endogenously deter-
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mined from ad hoc preferences in the period before that, where adjustments are made
to account for the changing perspective or the additional information that is obtained
since this previous period. Ad hoc preferences from the previous period serve as a basis
for new ad hoc preferences, and old ad hoc preferences are adjusted according to a
retrospective evaluation of the actual choices that were arrived at from these old pref-
erences. Thus, these assumptions specify a learning model of consumer choice, where
ad hoc preferences are learned over time. Ad hoc preferences in the first period are
given, and if the process of adjusting ad hoc preferences is in some way efficient, then
this process may ’improve’ subsequent ad hoc preferences, and their derived choices.
We will return to these questions of efficiency and improvements in later chapters.

In chapter 4 a first component of the ad hoc framework that this dissertation
presents, was introduced by considering single periods in isolation. The present chapter
will provide a second component that will link (preferences in) any two subsequent pe-
riods, and it will close the model by putting together all components, such as to arrive
at a learning algorithm. Thus, we consider whole lifetimes where within each separate
period a basic ad hoc consumer problem as introduced in chapter 4 is solved, and where
between any pair of subsequent periods preferences are updated in a way that will be
presented in the present chapter.

This chapter consists of six sections. The setting of two subsequent periods is spec-
ified in the first section. In the second section ad hoc preferences in any period are
broken down into two different types of (sub)preferences: (1) instantaneous preferences
that specify preferences for consumption in the corresponding period, independently of
savings, and (2) time preferences that specify preferences between instantaneous pref-
erences (or instantaneous consumption as a whole) in the corresponding period, and
savings in this period. We use this distinction to assume that instantaneous preferences
are exogenously given, while time preferences have to be determined endogenously by
the learning procedure. The third section is somewhat technical, it links instantaneous
preferences across two subsequent periods, in order to mathematically justify the ad-
justment procedure introduced in section 4. The fourth section provides an exact way
in which time preferences (and thus ad hoc preferences) can be adjusted from the time
preferences (and the ad hoc preferences) that were used in the preceding period. To
that end, an adjustment function is defined that is based on retrospective evaluations
of the choices made in the preceding periods. The fifth section puts all elements of
the ad hoc framework together to form a learning algorithm, and the sixth section dis-
cusses and motivates some assumptions that are made in this chapter, and underlie the
learning algorithm.

6.1 The setting

The formal description of the dynamics of our framework can be said to continue both
logically and chronologically from the descriptions in the previous chapters. We start
from the same story as before by supposing that axiom 4.1.1 holds. There is a dis-
crete time variable ¢ that progresses through the set {0,1,2,...}. In every period t, a
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corresponding present commodity space X; = R’* (with n; € N), a price vector p; €
R7%\{0}, and an additional income I; > 0 (here we also write Iy = mg) will be given.

However, there may be uncertainty. Here the assumptions made about the unveiling
of uncertainty are that Xy, p; and I, are known at time ¢ (at the latest). It is important
to note that this may also mean that (some of) this information is known before time
t. In fact, here we want to set up a learning model that can be applied in situations
with certainty, uncertainty or structural ignorance. Under certainty, we would have
that X;, p; and I; are known at time 0 for every period . Under expected utility, we
would have that all the realizations of X;, p; and I; that might possibly occur (and
the corresponding probabilities) would be known before time ¢, but that the actual
realizations that do occur are only learned at time ¢. Under structural ignorance, we
would have that X;, p, and I; are learned at time ¢, and that nothing about these
realizations is known before time t.

Now, we suppose that the process has reached some period t + 1 € N, and that in
every period i < t before time ¢ + 1, our consumer was faced with a present commodity
space X;, a present price vector p;, and an additional income I; that gave rise to a budget
m;, and we suppose that axiom 4.4.1 holds. From these elements an (ad hoc) budget
set was constructed. Our consumer made choices in every such previous period 7 based
on an ad hoc preference relation »~(*), which is represented here by an ad hoc utility
function u®, defined on the corresponding ad hoc commodity space W;_ 1 x X; x R,.
Furthermore, by (Z;, 5;,) € X; x Ry we denote the ad hoc choice pair that the consumer
ended up choosing in that previous period i.

Here we continue the story in the next stage, at time ¢ + 1, where our consumer
finds himself confronted with the next set of consumption opportunities X;,;, with
prices p;.1 for these goods, and with the additional income I;,; > 0. At that time,
wy := (Zo, T1, ..., T;) was already chosen from the set W; := X x X X ... X X;, and since
we modelled a situation where no borrowing is possible but where saving is possible (at
a zero interest rate), we would have that the implicit budget in period ¢ + 1 is given by

t+1 t _
Mypr =mo+ >0 I = 32 pi T

Then, at time ¢ 4+ 1 the ad hoc choice set is given by X;,;; x R, where the last
dimension of this set denotes savings for future consumption. The relevant ad hoc
budget set consists of all elements that satisfy the budget constraint p;q - 21 + 411 <
my1, and a decision is required with respect to how much to purchase of each of the
N1 goods, and how much of the budget m;,; should be saved for later. By axiom
4.4.1 a basic ad hoc consumer problem, that consists of the maximization of ad hoc
preferences over the ad hoc budget set, should be solved. So this stage of the model
can only be completed with an ad hoc preference relation or an ad hoc utility function.
And such a new (endogenous) ad hoc utility function u*9 : W, x X,;; x Ry — R is
exactly what is needed here.

6.1.1 The setting in consumption/savings models

Recall that in consumption/savings models we considered profiles of consumption levels
¢ = (co, c1, C2, ...) rather than commodity bundles. Thus in every period t we have that
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n; = 1, and that X; = R,. The variables ¢; denote consumption levels, that are
measured in monetary terms, and since saving will yield no interest, we can now set
pr = 1 for every period ¢t. And at time ¢ an additional income I; > 0 (here we also write
Iy = my) is given. Thus, there is no uncertainty about commodity spaces and prices,
but additional incomes may not be certain.

In any period ¢, given the past choices w; 1 = (¢, 1, ..., 1), our consumer finds
himself confronted with the implicit budget m; = mg + 25:1 I; — ZZ: ¢;- Then our
decision-maker is supposed to make trade-offs between consumption and savings such
as to arrive at a decision of how to distribute this relevant budget. These trade-offs
are supposed to based on some ad hoc utility function u® : W,_; x R, x R, — R. In
consumption/savings models we supposed that (total) utility functions are additively
separable and satisfy exponential discounting. Therefore, it may seem reasonable to
assume that ad hoc utility at time ¢ could similarly be written as

u® (wy_q, ¢, 50) = u (co, e, ..., 1, 51) Z(S wo(e;) + 8V O (s,),

where 1 still denotes the (same) instantaneous utility function, and V® denotes some
value function that collapses the whole future into one dimension.

Then, if the process has reached period £+ 1, a new ad hoc utility function on the ad
hoc commodity space W; x R, x R, is needed. This new ad hoc utility function should
still be of the form in the above formula. And while Zf’;é §'ug(c;) is exogenously given,
the function V**1) should be endogenous, so that determining new ad hoc preferences
would boil down to determining a new value function V1,

6.2 Instantaneous preferences and time preference

In the previous section we saw that at time ¢ + 1, given a past commodity bundle
wy € Wy, a decision is required with respect to what element to choose from the period-
(t + 1) budget set

{11, 8041) € Xopn X Ry i ppyr - Ten + Sep1 < Mg )

In order to make such a decision of how much to purchase of each of the n;; goods in
Xy+1, and how much of the budget m;,; should be saved for later, a new (endogenous)
ad hoc utility function u =+ . W, x Xir1 X Ry — R is needed. The question that
remains here is how to form new ad hoc preferences.

As mentioned before, here we assume that ad hoc preferences in the very first period
are exogenously given, and that in later periods ad hoc preferences (at least to some
extent) are endogenously determined (i.e. learned) from ad hoc preferences in the stage
before that. Updating these ad hoc preferences would be done by making adjustments
to account for newly gained additional information or a somehow changed perspective.
Thus, ad hoc preferences from the previous period serve as a basis for new ad hoc
preferences.
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So how should preferences be adapted, or how can the new ad hoc preferences, that
the current choice from X;.; x R, will have to be based on, be determined from the
information available at that point in time? Here in trying to answer this question we
distinguish two aspects of these ad hoc preferences in order to add some more structure
to the problem.

We consider relative preferences for ad hoc commodity bundles separately from
the question of what the preferences for money should be. We divide the process of
forming preferences into two distinct types of considerations, and we may also think
of these as being two different stages of the process. The first type of considerations,
which will here also be referred to as instantaneous preferences, would specify relative
preferences on the ad hoc commodity space, without considering preferences for money
or the trade off between instantaneous consumption from this ad hoc commodity space
and savings for remaining periods. The second type of consideration would, given the
first type, only make the remaining trade off between instantaneous consumption and
money, or essentially between the present and the future, and can therefore also be
termed time preference. So the instantaneous preferences define preferences over all ad
hoc commodity bundles independent of the money variable. Time preference trades
off instantaneous consumption and money, where now no distinction is made anymore
between ad hoc commodity bundles that were judged to be indifferent according to the
instantaneous preferences.

Note that the distinction made above has a ring of independence (or separability)
to it. Indeed, if for some period ¢ ad hoc preferences =* are defined on the ad hoc
commodity space W;_1 x X; xR, then making the above distinction can mathematically
be justified if (w;_1, z;) is independent of s;,'* as defined in section 2.4. Remember that
from the preference relation >‘ ) that is defined on W,_; x X; x R, we can derive the
preference relation >§t , that gives preferences for elements in W,_; x X, given the
fixed element s, € R,. And (w,_1,7,) was defined to be independent of s, in =® if
the preference relations zﬁ) are identical for all s, € R,. Thus indeed, making this

distinction is mathematically valid if the conditional preference relations i:g? do not
depend on the particular conditioning choice of s, € R.!?

Definition 6.2.1 If the ad hoc preference relation >‘(t on Wy_1 x Xy x Ry is such that
(wy_1, ;) is independent of s, in =, then the resultmg conditional preference relation

=0 on Wi_1 x X; is called an znstantaneous preference relation.

~oSt

A typical element of W;_; x X; x Ry is denoted (w;_1,2¢, 5¢).
15Similarly, s; will be independent of (w;_1,2:) in =® if s; is strongly good in =® (or if the
corresponding utility function u® is strictly increasing in s;). Then we would have two full-fledged

preference relations >Ef) and >(2 z0) that are independent of each other. And the considerations of

time preference (determining the relatlve importance of §§§ and ig}) zt)) could then be seen as a

third preference relation that trades off 'levels’ of both types of 1ndependent preferences, such as to
complete the overall preference relation =®).
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Such an instantaneous preference relation >§? can be seen to partition the set W;_; x

X; into a number of subsets or indifference classes, in such a way that all elements
contained in any such a subset are judged as equally desirable. The relation >‘st also
orders all of these different subsets, or indifference classes, into more and less desirable
ones. That is, it seems natural to say that one indifference class is preferred to a second
indifference class if any element from the first indifference class is preferred to any
element from the second indifference class. Note that if we define such an indifference
class as containing all of the elements of W;_; x X, that are judged equally desirable as
a certain element of W;_; x X;, it cannot happen that there are two or more of these
indifference classes that are judged as equally desirable. So ig) defines a partition on
W1 x Xy, and a strict ordering of the elements (indifference classes) of this partition.
Consequently, time preference makes a trade off between the desire to obtain higher or
more desirable indifference classes of instantaneous consumption and the desire to keep
money for next periods.

6.2.1 Instantaneous utility

In the previous subsection we considered ad hoc preference relations that satisfy in-
dependence in order to mathematically justify distinguishing the two types of aspects
or considerations underlying ad hoc preferences. In the present subsection we will use
the equivalence of preference relations satisfying independence, and utility functions
satisfying separability, to further elaborate on the aforementioned distinction. This
equivalence allows us to describe the distinction between the two types of considera-
tions (or stages) underlying ad hoc preferences more conveniently in a mathematically
precise way.

According to theorem 2.4.1, if the ad hoc preference relation =® on W,_; x X; xR, is
represented by the utility functlon u® (wy_y, x4, s¢), then 1ndependence of the preference
relation holds if and only if the utility function satisfies separability. Hence, if some
ad hoc preference relation >‘() on some ad hoc commodity space W;_1 x X; x R, is
such that (w1, ) is 1ndependent of s; in >‘ , then we know that any utility function
u® (w,_y, 74, 5;) that represents these ad hoc preferences = Can be decomposed into
u® (wy_y, x4, 5,) = UD(v® (w,_1, 2), 5,), for certain functions v : W,_; x X; — R and
UD R xRy — R, with U® (v, s,) strictly increasing in v,

Definition 6.2.2 For a sepamble ad hoc utility function u® Wt 1 XXy xRy — R, as
given by u® (wy, 2, 5,) = UD (0O (wy, 1), 5,), the function v® : W,_; x X, — R is called
an instantaneous utility function, and the function U® : v(t (Wi x X)) xRy — R
15 called a time preference function.

Now, the fact that both the preference relation ?\:gt and the utility function v®
carry the prefix ’'instantaneous’ is not a coincidence. In fact, if zﬁ? is an instantaneous
preference relation, as derived from the ad hoc preference relation =), and if v(® is
an instantaneous utility function, as derived from the ad hoc utility function «, then

if u® represents =, it will also hold that v(® represents ={”. To see this, for all

99



LEARNING IN CONSUMER CHOICE

(W1, ), (wi_q, xy) € Wiy x X; we have that
v (wpg, 20) 2 00wy, 2}) &

UD 0O (wy_y,2),8:) > U (0D (w)_,,2}),5),Ys € Ry &
u® (wy_q, x4y, 5) > uD(w]_,, 2}, 50), Vs € Ry <=

(Wi—1, T4, 5¢) i‘,(t) (wi_1, 74, 80), Vs € Ry & (wi1, ) = (Wi, })-

~USt

Here the first equality holds by strict increasingness of U® (v s,) in v®. Thus we see
that the function v : W,_; x X; — R is indeed a utility function that represents the

preference relation =" .16

Axiom 6.2.1 For any period t € Ny and any ad hoc commodity space Wy_1 x Xy x R,
every ad hoc preference relation = on W,_; x X; x R, is assumed to be such that
(wy_1, ;) is independent of s, in =M, and every ad hoc utility function u® is assumed
to be separable in (w;_1,x).

Given an instantaneous utility function v® : W,_; x X, — R, we could define a
preference relation on the set v® (W,_; x X;) xR, !'7 to represent time preferences. Then,
the composition of the instantaneous preference relation ’inside’ this second (time)
preference relation would specify an ad hoc preference relation. As the instantaneous
preferences would represent the first type of considerations from the above distinction,
this second preference relation would represent the second type of considerations, which
we associated with time preference before. A function U® : v®(W,_; x X;) x R, — R
that would weight the relative importance of instantaneous utility and savings, or of the
present and the future, would then essentially be another utility function that represents
the second preference relation over elements (v, s;).

The above distinction of the process of forming preferences, into two types of consid-
erations or two stages, now allows us to consider the first stage to be basically exogenous,
and the second stage to be endogenous. This may seem reasonable since the consid-
erations of the first stage are only influenced by the forms and shapes of W;_; x X;,
that are known and given at time ¢, and not by what may happen in the (uncertain)
future, so they don’t have to be related to considerations about money or the future.
The second type of considerations would then obviously have to be endogenous, and
would somehow have to be invented or constructed by the consumer.

Also note here, that an explicit assumption that instantaneous preferences should
be seen as exogenous also implies that instantaneous utility would be exogenous.

16 Also note that if we assume u®) to be strictly increasing in s;, then the identity function
(%)

i:Ry — Ry (i(st) = s¢) can also be seen as a separate utility function that represents Zolws_1.w0)"

1"The set v (W,_; x X;) denotes the range of v*).
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Axiom 6.2.2 For any period t € Ny, any instantaneous preference relation z&? on
W,_1 x X, is supposed to be exogenous. Similarly, for any t instantaneous utility v :
Wi_1 x Xy — R is supposed to be exogenous. Fxcept for in period 0, time preference

functions are endogenous.

At a first glance the assumption of separability, or independence, that is made
here may seem quite strong, and maybe it is from a micro-economic point of view.
However, this separability assumption may also be seen as a mathematical, or technical
assumption that will improve tractability. The separability and exogeneity assumptions
do add a lot of structure to the problem, and enable us to explain something from
something else. If we would not make these assumptions it would be very hard to
specify a way how the ad hoc preferences could be related across periods.

Next we will see that of the examples of utility functions of specific forms that were
presented in the previous chapter, some do satisfy these conditions of independence and
separability, and some don’t.

Example 6.2.1 Additively separable utility

Suppose an ad hoc utility function u® : W,_; x X, x R, — R is additively sepa-
rable, so that there are functions u; : X; — R, for alli < t, and us : R, — R such
that u (w;_1, 2, 8,) = ZZ:O wi(z;) + us(sy). In this case it is obvious that the func-
tion u® (w,_1, x4, 5,) can be separated into the functions v®(w,_y,x;) = ZEZO w;(z;)
and UD(v® s) == v® + uy(s;), where indeed UY) is strictly increasing in v®. If
=® s an ad hoc preference relation that is represented by u®, then by theorem 2.4.1
(wy_1, ;) is independent of s, in =), It may also be instructive to show directly
that the relative preferences for (wy_1,x;) are independent of s;. To see this, for all
(w1, x1), (w_q, x;) € Wi_y x Xy we have

(wt—la l‘t) i:g? (wi—lv I:&) - (wt—hxt? St) i(t) (w;t—lv l’;, St) ~

t

D wilw) +us(se) = i) + ug(sy) <

=0 =0 i=

~

t

o

t t

D )+ us) = D wilal) + wils)

1=0

(wi1, 1, 87) 2O (Wi, 2, 5) & (wer, ) 28 (w)_y, 7).

Y

This will hold for all s, € R, so indeed we get independence.

Example 6.2.2 Example: linear utility

An ad hoc utility function u® : W,_; x X, x R — R is called linear if there are
vectors o; € R} for all periods i <'t, and a scalar > 0, such that u®(wy_1, 1y, 8) =
St (- 3;) + Bsy. This means that all goods are perfect substitutes. Obviously this ad
hoc utility function satisfies additive separability, so that the reasoning of the preceding
example applies.
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Example 6.2.3 Example: Cobb- Douglas utelity

As before, an ad hoc utility function u® is defined on the set W,_1 x X, x R, where
W1 = XZ:éX@, with X; = R for some n, € N and for all © < t. First suppose that
n; =1 for all t. Then such an ad hoc utility function is of Cobb-Douglas form if there
are coefficients o; > 0 for all i < t, and B > 0, such that

u (i1, e, 50) = 7 - [Tizp

We see that the function u™® (w,_1, xt, st) can (for instance) be separated into the func-
tions v (wy_y, 1) == [['_y 2% and UD (WO, 5,) = v-v®) .57, However, the function U®
is only strictly increasing in v® for strictly positive s, as U (v® 0) = 0 for all v®.
This does not depend on the specific functional form of ad hoc utility, as any strictly
monotone transformation of u® will also have these properties. Hence u would only
really satisfy the separability property if it could be restricted to the set Wt—l X Xy xR, .
Similarly, if =® is an ad hoc preference relation that is represented by u®), we get that
(w1, x¢) is independent of s; in >' zf 1t would be restricted to W1 X Xy x Ry,.
Indeed, we see that for all (w;_q, xt), (Wy_1,74) € Wi x Xy, the equivalences

(we—1, z4) -0 (Wi—1, &) & (We—1, T4, S¢t) =) (Wi—1, Ty, 5¢) <

St

7H1028t>fszO’LSt©7H1025t>7H101'§tB

& (W1, 7, 50) =D (e, T4, 31) & (W41, 1) >'f;tt) (W1, T),

will hold if and only if s; and 5; are strictly positive.

With a bit of extra notation, the same result would also hold in case the period-i
commodity spaces are more-dimensional: n; > 1 for all i < t.

Example 6.2.4 Leontief utility

Suppose that an ad hoc utility function u'®) is defined on the set Wi_1 x X; x R,
with Wy, = x'25X;, where every X; is one-dimensional: X; = Ry (so that n; = 1).
Then ad hoc utility is of a Leontief form if there are coefficients a;; > 0 for all i < t,

and 3 > 0 such that u® (w,_y, z;, s;) = min x , z—z o Zt, Sé} In this case it seems hard

to find a functional separation. In fact, if = is an ad hoc preference relation that

is represented by u®, then >‘5t) certainly does depend on sy. To see this, consider an

‘efficient’ point (wt_l,xt, 8t) that satisfies o = ... = 5t =%, Then for any (w;_,,x}) €

Wiy x Xy with o > &; for all i < t, we see that (w;_,,x}) ) (Wy—1, %), but that

St
(w,_q, ) () (Wy_1,24) for any s, > ;. Then indeed by theorem 2.4.1 we find that

St
there will be no functionally separable ad hoc utility function that represents =®).

Obuviously then, in the Leontief case independence and separability properties will
also not hold if present commodity spaces have higher dimensions n; > 1 for all 1.
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Consumption/savings In models of consumption/savings, we arrived at ad hoc
utility functions «® : W,_; x R, x R, — R of the following form:

t
u (w1, ¢, 8) =uW(co,c1, ..y 00, 81) = Z S'ug(ci) + V0 (s,),

where 1 denotes an instantaneous utility function, and where V® denotes some value
function measuring the utility for money.

Such an ad hoc utility function is an instance of an additively separable utility
function, as in the above example, so that it is indeed separable. For instance, this ad
hoc utility function can be separated into

v( (w1, ¢p) g 5t tu() (¢i)

and
UD O s,) = 5" (v® + V0 (s,)).

Here U® is indeed strictly increasing in v®.

Such an ad hoc utility function could alternatively have been separated into
oD (w1, ¢) = Yor_y6'up(c;) and into UM @V, s,) = @ + 6"V O (s,). Mathemati-
cally, both ways of separating ad hoc utility are fine. In what follows we will keep using
the first way, as it will turn out more convenient for intertemporal comparisons. We
will come back to these issues later. W

The assumptions of separability of ad hoc utility, and of exogeneity of instantaneous
utility are made to be able to further specify how ad hoc preferences from one stage can
be used to determine ad hoc preferences in a next stage. Since instantaneous utility is
supposed to be given exogenously, in order to arrive at a new ad hoc utility function
it suffices to find a new time preference function. In our specification instantaneous
utility will be used to help determine time preference functions.

As mentioned before, we assume that ad hoc preferences in the first period are given,
and that in any later stage ad hoc preferences are determined from ad hoc preferences
in the preceding stage. Thus, by the above separability and exogeneity assumptions,
this must mean that old time preferences are used to determine new time preferences.
In stead of coming up with entirely new time preferences, here the idea is that old time
preferences may serve as a basis for new time preferences, so that new time preferences
are obtained by improving, or adjusting, old time preferences. Thus time preferences
would be adjusted to account for newly gained additional information, or a changed
perspective.

In period ¢ + 1, an old time preference function U®(.,.) and a new instantaneous
utility function v (+1) : W; x X¢41 — R would be given. And as U® will serve as a basis
for the new time preference function UV the composite function U® (vtV s, 1)
will implicitly serve as a basis for the new ad hoc utility function «**V). Here ’serving
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as a basis’ will mean that adjustments may still be necessary. Thus, the new auxiliary
function U® (v*+Y s, 1) may still need updating, and since instantaneous utility v(*+)
is given exogenously, this means that it is the time preference function U® that may
have to be updated.

Therefore adjusting ad hoc preferences over time would basically only boil down to
making adjustments in the valuations for money and instantaneous utility.

6.3 Linking subsequent stages

However, if we want to use the composite function U® (v+1) s,,,) as a basis for the
new ad hoc utility function u*t1), as stated in the previous section, then a first thing
we need to convince ourselves of, is that the composite function U® (v®*V) s,.,) is
actually well-defined, and that it really makes sense. Are we simply allowed to insert
the new period’s instantaneous utility into the old period’s time preference function?
And how do we know that the instantaneous utility functions from the old and from
the new period are scaled in such ways that comparisons are meaningful, and thus that
interchanging them is allowed? Therefore, the question that arises here, is how the new
instantaneous utility function v**") should be scaled, in order to allow for inserting it
into the old time preferences function.

Moreover, this scaling of v(*+1) should also take into account time discounting. In
comparing instantaneous utility across periods it should not be forgotten that consump-
tion at later dates might be valued less than consumption at earlier dates. Between
any two subsequent periods this time discounting effect may be present. Therefore it
will have to be dealt with in the particular way in which comparisons of instantaneous
utility across periods are established, and thus in the scaling of v(*+1),

First we will clarify why it is needed that the scalings of instantaneous utility in
different periods are in line with each other, in order to justify using last period’s trade-
offs between instantaneous utility and money as a basis for the current period’s trade-
offs between instantaneous utility and money. Suppose that instantaneous preferences
i&? in period t are represented by the given instantaneous utility function v® : W,_; x
X, — R, and suppose that 2D : W, x X;;; — R would be some function that
represents zgﬁi} ). Then the question would be how to compare the utility v® (w,_y, z;)
of a certain bundle (w,_1, x;) from W,_; x X,, with the utility 9+ (w,, 2,,,) of another
bundle (wy, x4y1) in the different set W, x X;,1. Of course, the instantaneous utilities
v® (w,_1, 1) and 6+ (wy, x,4) are simply real numbers, and from any pair of real
numbers the greater one can be determined. However, if 0+ represents tgﬂ ), then
so does f(9*V), for any strictly increasing function f : R — R. Therefore, as there
is great freedom in choosing the scaling for the new instantaneous utility function, in
general we are not allowed to compare its levels to the levels of the old instantaneous
utility function. Thus we generally can’t extrapolate any meaning of these utility
numbers to outside the domains of each of these instantaneous utility functions.

Recall that, at the more basic level of preference relations, time preference trades off
amounts of savings with ’levels’ of instantaneous preferences. That is, time preference
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from the previous period trades off instantaneous preferences with savings in this pre-
vious period. And we now want to use the time preferences from this previous period
as a basis for making trade-offs between instantaneous preferences and savings in the
current period. The savings variables could rather straightforwardly be modelled as
the non-negative real numbers, that simply represent amounts of money that are saved.
Thus it seems that savings can be quite easily compared across periods. Therefore, in
order to be able to use and adapt a previous period’s time preference for the new period,
it has to be the case that a decision-maker can also somehow compare the ’levels’ of
instantaneous preferences across periods.

The set W, x X;41 = Wi_1 x X; x X4 that @V (and zgiﬂ)) would have to be
defined on, is a bigger set than the set W,_; x X, that v (and i&?) is defined on.
However, note that the set W;_; x X, is not a subset of W;_; x X; x X;,1, because
elements of W, 1 x X; are not elements of the set W, ; x X; x X,,1. Of course,
with the element (w;_1,2¢) € Wi_1 x X; we could (for instance) associate the element
(wi—1,1,0) € Wy x Xy11. However, it is important to distinguish between these two
bundles (wi_1,x;) € Wi—1 x Xy and (w;_1,2¢,0) € Wy x X;41 as they are not the same
object.

In sections after the next, we will simply assume that a consumer is able to estab-
lish links between instantaneous preferences across periods, and that new instantaneous
utility would always be scaled in correspondence with the scaling of old instantaneous
utility, whereby taking into account the effects of time discounting. In the following
subsections we will provide a mathematical justification for these assumptions, by sup-
posing that the new instantaneous preferences are actually derived from a preference
relation that is defined on the union of both sets W;_; x X; and W, x X, ;. Still, in
sections after these, we will continue without explicitly making use of this last new
preference relation. We will simply proceed by supposing that levels of instantaneous
preferences and utility can be directly compared.'®

18This could for instance be justified in case we suppose that previous instantaneous preferences
are used to determine new ones. That is, while we do assume new instantaneous preferences to be
exogenous in the sense that these are unaffected by considerations of time preference, we may still
assume that new instantaneous preferences are being determined by the consumer by reference to old
instantaneous preferences. It might be the case that whenever a consumer is faced with the problem
of determining new instantaneous preferences on Wy_; x Xy x Xy41, he would do this by comparing
the commodities in X;;; to the commodities that he already knew. The new opportunity set X;41
may contain commodities that he already encountered before, so these will probably not be too hard
to categorize or classify in terms of the commodities that were known before the realization of Xy .
But X;;; may also contain commodities that our consumer did not previously know existed, and
similarly there may be commodities that were included in W;_; x X; but that are not included in
Xi+1. Hence we could assume that he approaches the problem of assessing the new set X;41 precisely
by trying to compare the commodities contained in it to the old commodities. For instance, this could
be established by imagining all the complementarities and substitutabilities that may exist between
the commodities that are encountered for the first time and the commodities that were encountered
before. Thus, determining new instantaneous preferences by reference to old ones may also make the
ability to compare levels of instantaneous preferences across stages more plausible.
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6.3.1 Consumption/savings

In our special case encountered in consumption/savings models, these comparisons
between commodity bundles obtainable in different periods seem less problematic.
By assumption, in every period a present commodity bundle only consists of a one-
dimensional variable that denotes the amount of consumption in that period, and these
amounts of consumption are simply represented by their monetary values. Moreover,
underlying this class of models is the assumption of exponential discounting, which
says that money can buy the same levels of instantaneous utility in different periods,
except for the differences due to time discounting. However, this last exception of time
discounting is an important one, as the way in which intertemporal comparisons of
instantaneous utilities are made should also take this into account.

Remember that in the consumption/savings examples we modelled a consumer who
uses ad hoc utility of an additive form

t
D (wy_y, ¢, 5¢) = Z S'ug(c;) + 0V O (s,).
i=0

In the previous subsection on consumption/savings models we separated this ad hoc
utility into exogenous instantaneous utility v® (w;_1,¢;) = S°i_; 6" up(c;) and an en-
dogenous time preference function U® (v® s,) = §'(v® 4+ sV (s,)).

This way to separate ad hoc utility deals with time discounting in such a way that
it does allow for letting new instantaneous utility v (wy, c1) = Soits 6 ug(c;)
enter into the old time preference function U®). To see this, U® (v 5, 1) =

t+1 t+1
0°0> 6 ug(er) + VI (s140)) = Y 6" un(ei) + 6V (s,10).
=0 =0

Here the exponent ¢t 41 of the discount factor for valuing savings is one higher than the
exponent of the discount factor for instantaneous utility in the relevant period ¢ + 1.
This seems appropriate, as it is the same for ad hoc utility functions.

In the previous subsection on consumption/savings models, we also noted that the
ad hoc utility function could alternatively have been separated into 7™ (w,_1,¢;) =
Sy 6'up(e;) and into UOGEO, s,) =30 4 54V 0 (s,). This way to separate ad hoc
utility does not deal with time discounting in a convenient way, and letting new instan-
taneous utility enter into the old time preference function becomes problematic. To see
this, U® (@D, 5,11) would equal 370 6%ug(e;) + 0"V ®(s,4,). In this specification

the exponent £+ 1 of the discount factor for valuing savings is the same as the exponent
of the discount factor for instantaneous utility in period ¢ + 1, which is not in line with

the functional structure of ad hoc utility.!’ W

19Still, in principle this last way (and even other ways) to separate ad hoc utility (and compare
instantaneous utility levels) could be used here, but then to end up with an efficient learning procedure,
later on in the framework adjustments would have to be made to account for time discounting.
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In the more general setting, however, commodity sets may be shaped very differently
in different periods, and comparisons of commodity bundles across periods may not at
all be possible in such a straightforward way. Therefore it needs to be investigated how
comparisons between the levels of the instantaneous preferences across periods could
be established, and how an appropriate scaling for v could be constructed.

All functions 9+ and otV that would represent igiif), would be such that
DD (wy, 2441) = 0D (w), 2,,) if and only if 9 (wy, 241) = 0D (w), 2),,) for
all pairs (wy, x441) and (w),x,,,) from W, x X,;;. Hence all utility functions ¢+

that represent ,ﬁgﬂ ) will have exactly the same level sets {(wy, z;11) € Wy x Xy -

o (wy, 441) = v} (for some v € R). Thus determining a particular scaling for a
function representing igﬂ ) would simply consist of attaching real numbers to all of
these level sets. (It is easy to see that for any utility function that represents a cer-
tain preference relation, the level sets of the utility function exactly correspond to the
indifference classes of the preference relation. Of course the above attaching of num-
bers should be such that higher numbers would correspond to more desirable level sets,
or indifference classes.) The given utility function v also attaches real numbers to
indifference classes on the set W;_; x X;.

By an appropriate scaling for new instantaneous utility v*? we would mean that
the levels of v*+1) could be compared to the levels of old instantaneous utility v(). This
would mean that for any bundles (w;_1,2;) € W1 x Xy and (wy, x441) € Wy X Xiiq
statements such as v® (w,_1,z¢) > v (wy, 244q) or v (wi_y, 2) < VD (wy, 2441)
would be meaningful, in the sense that these 'bigger than’ or ’smaller than’ relations
would indeed reflect the relative desirability of the underlying bundles. Thus we see that
finding an appropriate scaling for v+ would require being able to state preferences
over the union of the sets W;_; x X; and Wy x X;;.

If an appropriately chosen scaling of v**?) would attach the same number to a
certain level set on W, x X1 as v® attaches to some level set on W,_; x X, this
would have to mean that the two level sets should be regarded as consisting of equally
desirable bundles. Therefore, an appropriate scaling for v“t?) would also join level sets
on W;_1 x X; with level sets on W, x X,. into larger level sets, or indifference classes
on W;_; x X, with indifference classes on W; x X;.;.

The following subsections will make the above reasoning more precise.
6.3.2 Comparing instantaneous preferences

The two instantaneous preference relations ig’i) on W;_1 x X; and i&iﬂ ) on Wi X
X; X X;4q are given. As noted in section 6.2, the relation 52? defines a partition on
W;i_1 x X; into a number of indifference classes, and ?\jg? defines a strict ordering of
the elements (indifference classes) in this partition. Of course, igﬁﬂ ) does the same on
Wi x Xy X Xiqa.

What would now be needed is a way to compare the instantaneous preferences of
elements from W;_; x X; to the instantaneous preferences of elements from W, _; x X; x
Xi11. That is, a consumer would need to be able to associate certain indifference classes
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as defined by Nsﬁll ) on W1 x Xy x Xy41, to certain indifference classes as defined by ig)

on W;_1 x X;. Such an association would have the meaning that a certain indifference

class as defined by Ngﬂ ) on W,_ 1 >< X; X Xy11, is judged to be indifferent to another

indifference class as defined by - Nst on W, 1 x X;. So what is actually needed is an
ordering of all the indifference classes (this time not a strict ordering) both the ones
determined by zgﬁ; on W;_1xX; X X;41, and the ones determined by - Nst on W,_; x X;.

Thus what is formally needed is some sort of an ordering or a preference relation on
the set of all indifference classes on W;_; x X; x X;,1 and on W;_; x X;. But since these
indifference classes are in turn defined by preference relations on W;_; x X; x X;,; and
on W;_1 x X, we could also let such an ordering of indifference classes be represented
by one big ordering or preference relation on the set (W1 x X;) U (W;_1 x Xy X Xy11)
directly.

Definition 6.3.1 Given instantaneous preference relations s, on W;_1 x X; for period
t, and ?\‘Jsiﬂ ) on Wi_1 x X; X Xy4q for period t 4+ 1, an intertemporal instantaneous
preference relation is a preference relation on the set (W;_1 x Xy)U(Wy_1 x Xy X Xy41)

that agrees with >‘St) on Wi_1 x X;, and with Nsiﬂ) on Wi_1 x Xy X Xiqq.

Nst

Such an intertemporal instantaneous preference relation on the set (W;_; x X;) U
(W1 X Xy X Xyyq) will be denoted by =".

Before specifying what the extra conditions of =" agreeing with s'i) on W;_1 X
X;, and with N&iﬂ on Wy_1 x Xy x X441 exactly entail, we will first take a look
at what these conditions are needed for. Note that any preference relation on the set
(Wi—1 x Xp)U(Wy_1 x Xy x Xy 41) also divides this union set into a collection of indifference
classes, and that it provides a strict ordering on this collection of indifference classes.
Now, this new preference relation defined on the union set, was needed to join certain

t+1 o
indifference classes as deﬁned by >§L) on W;_1 x X; x X;y1, to certain indifference

classes as defined by Nst on W;_1 x X;. Therefore, to ensure that this is what such
an intertemporal instantaneous preference relation actually does, the new preference
relation on the union set should leave the indifference classes as defined by Nsiill ) on

Wi_1 x Xy x X¢41, and by = Nst on W;_1 x X; intact. The following definition formally
specifies this property.

Definition 6.3.2 Given a preference relation 7, defined on the set Sy, we say that
the preference relation 7o defined on the set S; U Sy agrees with =1 on Sy if for all
s1, 8} € Sy it holds that sy 721 s} if and only if s1 79 s).

Applying this definition, the relation Z% on (W;_1 x X;)U(W;_1 X X; x X;41) agrees
with zgﬁ) on Wiy x Xj if for all (wy_1, ;) and (w;_y,x}) in W1 x X; we have that

(wt—bxt) = (wz/t lvx;) — (wt—hxt) =0 (wz/%l?xz/t)?

~ ~USt

and similarly " agrees with >St+1 on W1 x Xy x Xy if for all (wy, 2441) and (wy, z7,,)
in Wt—l X Xt X Xt+l it holds that
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(Wi, Te41) 7 (wh, w4 yy) = (Wr, Tep1) ?Jgﬁﬂ) (Wi, Tyyq)-

Thus, since by definition - agrees with =) and with ,ﬁgﬂ ), we see that 7~V indeed

~uSt
does not change the partitions of W;,_; x X; and W;_; x X; x X;,; into indifference
classes, as defined by zg) and igﬁﬂ ), respectively. And =" also does not change the
ordering of all of the indifference classes within W;_; x X; (or within W;_; x X; X X;,1).
But since the relation 7Y is defined on (W;_; x X;) U (W;_1 x X; x X;41), this now

also gives the possibility to compare elements (w;_1,x;) € W1 X X; with elements

(wi_q,xy,2,1) € Wio1 x Xy X X4, and to join indifference classes as defined by =

with indifference classes as defined by i:g:ll ),

Note that although it is not reflected in the notation =", intertemporal instanta-
neous preference relation will generally depend on the relevant period t. The instan-
taneous preferences ig? and ;;giﬂ ) are independent of s; and s;,1, respectively, and
as the intertemporal instantaneous preferences =" agree with zg) and igﬁﬂ ) on the

relevant subsets, 7" will similarly be independent of s; and s;, .
6.3.3 Comparable scalings for instantaneous utility

At time ¢ the instantaneous utility function v() was given, and in time ¢t+1 the relations
5&1} ) and ~Y are exogenously given. It was already given that igﬂ ) can be represented
by some instantaneous utility function(s), and the problem that remained was whether
there exists an instantaneous utility function v**1 that has a scaling that is comparable
to that of v, Here we will specify what exactly is meant by v(*+?) having a comparable
scaling as v, and we will establish when, given v(), there exists such a function v+
that has a comparable scaling.

Intertemporal instantaneous preference relations can now be used to specify and
achieve such a comparable scaling for new instantaneous utility v*1. Earlier in this
section we noted that the given utility function v® attaches real numbers to indiffer-
ence classes on the set W;_; x X;, and that a scaling for a particular function pt+D)
representing ,égiﬂ ) , would simply attach real numbers to all of the indifference classes
on W; x X;1. Then, if according to the intertemporal instantaneous preference rela-
tion =" a certain indifference class on W; x X;,; is equally desirable as an indifference
class on W,_; x X, it seems that the appropriate scaling for v**1) would have to
attach to this indifference class on W; x X;.; exactly the same real number as v®
attaches to the indifference class on W;_; x X;. That is, given =", instantaneous util-
ities v® and v+ would indeed be comparable if for all (w,_i,z;) € W;_; x X; and
all (wy,r41) € Wy x X441 it holds that v® (wy_y,2,) = vV (wy, 2,41) if and only if

(wt—laxt) ~ (wt,$t+1)-
The above properties can be formalized in the following definition and axiom.

Definition 6.3.3 Suppose given instantaneous preference relations igi) on Wi_1 X Xj

for period t, and igﬂ ) on Wi_1 x Xy X Xyy1 for period t + 1, and an intertemporal
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instantaneous preference relation =" . Also suppose given instantaneous utility functions
v® and v that represent 5&? and ?\:giﬂ ). Then the scaling of vt is comparable
to the scaling of v®) if the function v” : (W1 x X;) U(W,_1 x X; x Xi41) — R which is
defined so that its restriction to the set W,_; x X, equals v®), and so that its restriction
to the set W,_1 x Xy x X;11 equals v | represents =

We will also call a function v” as in the above definition, that satisfies v"(w;_1, z;) =
v (wy_y, x;) for all (w,_1,7,) € Wi_y x Xy, and v (wy, 241) = v (wy, 2441) for all
(wy, x401) € Wy x X441, an intertemporal instantaneous utility function. If the
scalings of v® and v**1 are indeed comparable, then the intertemporal instantaneous
utility function v", would represent the intertemporal instantaneous preference relation
=Y. Thus, for all (w;_q1,2;) € Wy_1 x X; and all (wy, x441) € Wy X X;41 that satisfy
(w1, 2¢) ~° (wy, x441) it would indeed hold that v”(w;_1,x;) = v”(wy, 2441), and thus
that v® (w,_1, 2;) = v (wy, 2411).

But does such an intertemporal instantaneous utility function that represents a
given intertemporal instantaneous preference relation always exist? Or in other words,
for v, tgﬁﬂ ) and ~Ygiven, does there always exist a function v**!) that has a com-
parable scaling as v®? If the intertemporal instantaneous preference relation =" is
continuous®’, then theorem 2.2.1 can be applied to show that there exist continuous?!
functions on (W;_1 x X;) U (W;_1 x X; x X;41) that represent Z”. Now we can also
construct a new instantaneous utility function v**?) that will have a comparable scaling

as v, using =" and old instantaneous utility v(). We define the set ¥ as
\Ij = {(wt,xt+1) € VVt X Xt+1 . H(Mt—lal‘t) e VVt_l X Xt s.t. (wt_l,xt) NU (wt,$t+1)}.

Thus for all (wy,x11) € VU, there exists some (w;_1,7;) € W1 x X, for which
(wy_1, ) ~ (wy, T441), and we define vV on ¥ by v+ (w,, 2,41) = v (w,_y, ).
By continuity of Z" it can be shown that for all (w;,xi11) € ¥ = (W, x Xyi1)\
U it must hold that (wy,z,11) = (w1, 2) for all (w,_1,2,) € Wy_1 x X, or that
(wy, 2p41) <Y (w1, 2¢) for all (w1, 2,) € Wiy x X;.22 Therefore the function v+
can simply be extended from ¥ to the whole of W; x X1, by choosing some scaling on
P that simply attaches higher numbers to more desirable indifference classes or level
sets (as defined by igﬂ ), or equivalently by ).

20With respect to the topology T = {S; U Siy1 : S; € T;,S¢41 € Tiv1}, where 7; denotes the
Euclidian topology on W;_1 x X3, and 7;11 denotes the Euclidian topology on W;_1 x X3 X Xyy1.

21With respect to 7V. It can be shown that if such a function on (W;_; x X;) U (W; X X;41) is
continuous with respect to 7V, its restriction to W;_; x X; is continuous with respect to 7;, and its
restriction to Wy x X;11 is continuous with respect to 7;1.

2For (wy, w41 1) € V€ it will hold that the sets {(w;_1,2¢) € Wi_1 X Xy @ (w1, 2¢) 7V (we, 2441)}
and {(wi—1,2¢) € Wi—1 x Xy @ (w1, m) 3Y (wy, we41)} are each others complements. By continuity
both sets should always be closed, which would imply that each of the above sets should either be the
empty set, or W;_1 x X;.
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Then, given v and the newly defined function v**Y, the accompanying intertem-
poral instantaneous utility function v" would indeed represent =—". To see this, we will
distinguish a few cases.

The restriction of v” to W;_; x X; equals v, which represents ?V(t), which in turn
agrees with =% on W;_; x X;. Thus for all (w;_1,2;) and all (w]_,,x}) € Wi_y x X; it
holds that v”(w;_1, z;) > v-(w;_y, x;) if and only if (w,_q,2;) 7% (w]_4, x}).

Similarly, the restriction of v to W; x X1 equals v®*1) | and because of the way
that v+ is defined on W, x X,,, it is easy to see that for all (wy, x,41) € ¥¢ and all
(wy, w4, ) € Wix Xyqq we get that v (wy, 2441) > v (w), 2}, ) if and only if (wy, 2441) ZV
(wy, @y,q). Also, for all (wy, x441), (wi, xy,,) € ¥ we get that

t+1)(

v (we, Teg1) > 07 (wy, 2y, ) & U(Hl)(wta Tiy1) > o wy, Ty ) &

U(t)(wt—lv xt) > U(t) (wg—lv I:%) <~ (wt—hxt) i(t) (wzlt—l’xz,‘,) <~
(wi—1, ) Z7 (Wi_y, @) & (Wi, Tep) Z° (wh, Thyy)-

Here the bundles (w;_1,2;) and (w}_,x}) are such that (w;_1,2;) ~" (wy, x441), and
such that (w]_q,x}) ~Y (wy, x411), respectively. Thus v“ does represent 77~ on W, x Xy 1.
Also, for all (wy_1,x;) € W1 x X; and all (wy, x,41) € ¥ it will hold that

t+1)(

VP (wemt, 2p) = 02wy, 2ep1) € 0O (wmg, m) = 0D (wy, 241) ©

U(t)(wt—lv xt) > U(t) (wrltflv l‘;) < (wt—hxt) ?\_J(t) (wz/‘fl?xz/t) A
(Wit ) 27 Wiy, 2y) & (Wim1,20) 27 (Wi, Tyg1).

Here the bundle (w;_,, x}) is such that (w}_y,z}) ~% (wy, x441).

And lastly, because of how the function v+ was defined on ¥, it can be seen that
for all (w;_1,2¢) € W1 x X; and all (wy, z;11) € ¥€ it will hold that v“(w;_1,x;) >
v (wy, w411) if and only if (w1, 74) Z7 (Wi, T441)-

~J

Axiom 6.3.1 For any time t € Ny, and any instantaneous preference relations ig’?

t+1 . . ,
on Wi_1 x X, and r>;§t+1) on Wy_1 x Xy x X1, there exists a continuous® intertem-

poral instantaneous preference relation 7°. Moreover, given zg), tgiﬂ ) and =Y the

instantaneous utility functions v and vtV that are used, represent ig) and ?\:gill ),
and have comparable scalings.

Thus, for all ¢ we assume that the scalings of the instantaneous utility functions
v® W,y x X; — R and o) 1 W4 x X; x X;41 — R that are used in the ad hoc
framework, are indeed comparable.

One possible way in which such level comparisons of i(s'i) and igﬂ ) through =
could be made specific is by assuming that (w;_1, z;) ~" (w;_1, 24,0), (for 0 € X1 1) for
every (wy_1,x;) € Wi_1 x X;. This way to compare elements of W;_; x X; with elements

23With respect to the topology 7V.
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of W;_1 x X; x X;,1 was already referred to at the beginning of this section. From this
specification we would obtain, for every bundle (w;_1, 2y, x411) € Wi x Xy X X4 for
which there is a (w}_y,2,) € Wi_1 x X; such that (w1, ¢, ey1) fotﬂ) (w}_q,2},0),
that (w1, x¢, Tev1) ~° (w,_q, x;) must also hold. If for every bundle (w; 1,z x111) €
Wi—1 x Xy X Xyy1, there would indeed exist a bundle (w}_;,x}) € W;_1 x X; such
that (wy_1,x¢, Tyy1) ~§fj} ) (w;_4,x},0), then 72~ would be completely specified by this
relation. In this case we could indeed make explicit how indifference classes from W;_; x
X; should be paired with indifference classes from W;_; x X; x X;.1, and can be joined
to obtain indifference classes on (W;_1 x X;) U (W;_1 x Xy x Xy11).

In terms of utility functions the above specification of " would give rise to a
function v“ : (W1 x X;) U (Wi1 x Xy X Xy11) — R, that satisfies v (wy_1,24) =
v (w1, 24,0), for every (w;_q1,2¢) € W, 1 x X;. We would also have that
v (w1, x4, 1) = v (w)_q, ), for every bundle (w;_1, x4, x441) € Wiig X Xy X Xy,
and every (w,_y,z;) € W,_1 x X; such that (w;_y,x¢, 241) ~ (wj_q,25,0), (or
VP (wy_1, gy 1) = 02 (w,_q, x5, 0)). This procedure would indeed exactly specify a way
in which numbers (utility levels) can be attached to elements from W;_; x X; x X1,
that are in agreement with the numbers attached by v® on W, 1 x X,.

And although this particular way of comparing ig) with zg’iﬂ ) seems to have some
intuitive appeal, it is by no means the only way in which such a comparison can be
established. In fact, in some circumstances other ways to compare might be more
appropriate. For example, suppose that instantaneous utility would be of a Cobb-
Douglas form. If we would have that n; = 1 for every period 7, so that X; = R, then
instantaneous utility in period ¢ + 1 could be written as v+ (wy, x,11) = 1] 5, for
some «; > 0, for all i < ¢4 1. Then for any (w;—1,2:) € Wi—1 x X, the specification
v (wi_q, ) = Y (w1, 24,0) would imply that

t+1)(

v (wy_q, 1) = v (w1, 70) = " (wy_1, 24,0) = D (w,_y, 2,,0) = 0.

Therefore in a Cobb-Douglas case, this way to compare instantaneous utilities only
works in the degenerate case where v (w,_y, ;) = 0, for all (w,_1,7,) € Wi_1 X X;.
More generally, it seems that this particular way of comparing instantaneous util-
ities, with v”(w;_1, ;) = v”(wi_1,24,0), would be more appropriate if instantaneous
consumptions are substitutes across periods, such as in the cases of linear and of additive
utility. And it seems less appropriate if instantaneous consumptions are complements
across periods, such as in the cases of Cobb-Douglas and Leontief utility functions.

In what follows, we will no longer explicitly make use of intertemporal instantaneous

preference relations 7—° or intertemporal instantaneous utility functions v“. We will
simply use instantaneous preference relations iﬁ? and instantaneous utility functions
v® to model preferences on the period-t commodity space W,_; x X;, and similarly
we will use igﬁﬂ ) and v®*D to model preferences on W;_; x X; x X;,1. Axiom 6.3.1
would then ensure that these preferences are comparable, and it would justify using last
period’s trade-off between instantaneous utility and money as a basis for the current

period’s trade-off between instantaneous utility and money.
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6. PREFERENCE ADJUSTMENT AND THE LEARNING ALGORITHM

6.4 Adjusting time preference

Recall that in the new period ¢ + 1 new ad hoc preferences are needed. With instan-
taneous preferences exogenously given, new time preferences are needed to complete
these ad hoc preferences. We assume that the new period’s time preferences would
be obtained by adjusting the old period’s time preferences, and that the new period’s
instantaneous preferences are used in updating time preference.

The previous subsection established a procedure for comparing instantaneous prefer-
ences across periods, which ensures that new instantaneous utility v*t1) can be entered
into the old time preference function U®, so that the new function
UD (0D (wy_y, 24, 7441), S141) is well-defined, and so that it can be used as a basis
for the new period’s ad hoc preferences.

However, U is a time-t guess at what the time preference function should look
like, determining a time-t¢ estimate of how to value saving relative to instantaneous
consumption, which might at time ¢ + 1 have become obsolete. Since some time has
passed between time ¢ when time preference was last established and the present mo-
ment, within this time interval the outlook on the future may have changed, which
may be a reason to evaluate, and possibly adjust, this estimate as represented by time
preference.

Therefore, we proceed by assuming that the process of adjusting time preferences
from old to new, is derived from an evaluation of old time preferences, using the changed
outlook to assess the performance of these old time preferences in retrospect. Thus, our
consumer would assess whether a new perspective necessitates him to adjust his time
preference, and if so, how.

Before providing exact specifications of the procedure of updating time preferences,
here we will first present the basic idea more informally. The idea with which we will
proceed, is that instead of starting from scratch in determining new time preferences,
our consumer would use old time preferences as a starting point, and adjusts these,
thereby incorporating the new perspective. That is, the structure of the old time
preference function U® may be kept more or less intact, while modifying the exact
way in which the variables instantaneous utility and savings are weighted. Such a
modification could be established by shifting one (or both) of the variables of the time
preference function, before making the trade-offs. In mathematical terms such a shift
could be realized by an adjustment factor a that is ’inserted’ into U by multiplying
instantaneous utility with it. Instead of the unadjusted function U® (v+1 s,,1), this
would specify new ad hoc preferences by U+ (vt 5, 1) = U® (g - D 5,,1), for
some a € R, . Thus, such an adjustment factor a would change the relative weights
of instantaneous utility and savings.

Similarly, a scalar b € R, could shift the savings variable: U® v+ . 5,,.1). As
such an adjustment factor would change the relative wei