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Multiple imputation for item scores when test
data are factorially complex

Joost R. van Ginkel*, L. Andries van der Ark and Klaas Sijtsma
Tilburg University, The Netherlands

Multiple imputation under a two-way model with error is a simple and effective method
that has been used to handle missing item scores in unidimensional test and
questionnaire data. Extensions of this method to multidimensional data are proposed.
A simulation study is used to investigate whether these extensions produce biased
estimates of important statistics in multidimensional data, and to compare them with
lower benchmark listwise deletion, two-way with error and multivariate normal
imputation. The new methods produce smaller bias in several psychometrically
interesting statistics than the existing methods of two-way with error and multivariate
normal imputation. One of these new methods clearly is preferable for handling missing
item scores in multidimensional test data.

1. Introduction

This study deals with the imputation of scores in incomplete, multidimensional rating-

scale data stemming from questionnaires used in psychological, sociological and other

research. Examples of such multidimensional data come from questionnaires intended

to measure different ways of being religious (Hills, Francis, & Robbins, 2005), different
aspects of schizotypal personality disorder (Mata, Mataix-Cols, & Peralta, 2005),

different coping styles (Brough, O’Driscoll, & Kalliath, 2005), and different kinds of

phobias (Brown, White, & Barlow, 2005). Each subset of items in such a questionnaire

measures one dimension of a broader construct and different subsets measure different

dimensions. The data are often collected by means of group, mail, telephone and

Internet testing, each of which gives ample rise to the occurrence of missing data.

The focus of this study is item non-response – the respondent leaves at least one

answer open but also provides at least one answer so that his/her data record is
incomplete but not completely missing. Item non-response may have many causes, such

as embarrassment (e.g. invasion of privacy), secrecy (e.g. income, career history),

boredom (e.g. too many questions), misunderstanding (e.g. unfortunate phrasing of

* Correspondence should be addressed to Joost R. van Ginkel, VU University Medical Centre, Department of
Clinical Epidemiology & Biostatistics, PK 62 183, PO Box 7057, 1007 MB, Amsterdam, The Netherlands (e-mail:
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questions), stubbornness (e.g. reluctance to cooperate) or sloppiness. The multi-

dimensional or multifactor structure in the available data is used to obtain good item-

score estimates by means of simple multiple-imputation methods. Hopefully, statistical

results based on this completed data matrix show little bias and also little discrepancy

relative to the results based on the original, complete data.

Item scores may be missing completely at random (MCAR), missing at random (MAR)
and not missing at random (NMAR) (Little & Rubin, 2002, p. 12; Rubin, 1976). Let N be

the number of participants who filled out a questionnaire consisting of J items, and let X
be the resulting N £ J data matrix consisting of scores Xij (i ¼ 1; : : : ;N ; j ¼ 1; : : : ; J).

Furthermore, let R be a response-indicator matrix with entry Rij ¼ 1 if score Xij in X is

observed, and Rij ¼ 0 if score Xij in X is missing. Finally, let j be a parameter vector that

explains the missingness. MCAR means that the item-score missingness is related neither

to the observed part of data matrix X (denoted Xobs) nor to the unobserved part (Xmis),

and is formalized as

PðRjXobs;Xmis; jÞ ¼ PðRjjÞ: ð1Þ

MAR means that missingness depends on completely observed covariates, so that:

PðRjXobs;Xmis; jÞ ¼ PðRjXobs; jÞ: ð2Þ

NMAR means that the missing item score Xij depends either on variables that were not

collected, or on the unobserved value of Xij itself, or both. When the missingness
parameters (j) and the parameters that govern the data are distinct, MAR and MCAR

represent ignorable missingness, and NMAR non-ignorable missingness. Otherwise the

missingness is always non-ignorable. We assume that the parameters are distinct.

Multiple imputation (MI) is a procedure recommended for handling missing data

(Rubin, 1987, p. 9). MI estimates the missing data w times using a stochastic population

model, resulting in w different plausible, complete data sets. The results from statistical

analyses on these w data sets are combined into one conclusion. Accordingly,

uncertainty about missing values is taken into account. Multivariate normal imputation
is available in the programs NORM (Schafer, 1998), S-plus 6 for Windows (2001) and SAS

8.1 (Yuan, 2000). S-plus also performs MI under the saturated logistic model and the

general location model. These methods produce statistical results with little bias (Ezzati-

Rice et al., 1995; Graham & Schafer, 1999; Schafer, 1997; Schafer et al., 1996). Each

method assumes ignorable missingness. For non-ignorable missingness methods, see

Heckman (1976) for continuous data, and Fay (1986) and O’Muircheartaigh and

Moustaki (1999) for categorical data.

Many practical researchers have only been trained in basic data analysis and do not
have a statistician available who can help them use relatively complicated methods.

They often resort to methods such as listwise deletion that produce biased and less

efficient results (Schafer & Graham, 2002). Alternatively, imputation methods may be

used, such as two-way imputation (TW; Bernaards & Sijtsma, 2000), corrected item-

mean substitution (Huisman, 1998, p. 96), relative mean imputation (Raaijmakers, 1999)

and response-function imputation (Sijtsma & Van der Ark, 2003); see also Smits,

Mellenbergh, and Vorst (2002).

Van der Ark and Sijtsma (2005) and Van Ginkel, Van der Ark, and Sijtsma (2007)
showed that an MI version of method TW produced little discrepancy and little loss of

efficiency in Cronbach’s (1951) alpha, Loevinger’s (1948) H, the item-cluster solution

from Mokken (1971) scale analysis, and fit statistics for the Rasch (1960) model, for
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unidimensional data and correlated (at least 0.24) two-dimensional data (Bernaards &

Sijtsma, 2000; Van Ginkel et al., 2007). This study discusses new versions of method TW

that deal explicitly with general forms of multidimensional data by making use of the

correlation structure of the items in the questionnaire.

2. Method

2.1. Outline of methodology
In outline, the methodology of this study is as follows:

(1) Complete data sets of multidimensional rating-scale scores were simulated using a

multidimensional item response model, producing original data sets. Statistics of

interest were estimated from these data. For each combination of questionnaire

and population, 100 original data sets were sampled. This enabled estimation of

the sampling variation of statistics of interest.

(2) Item scores were deleted from original data sets, thus creating data sets with

missing item scores. These were called incomplete data sets.
(3) For an incomplete data set, a multiple-imputation method was used to estimate the

missing item scores five times yielding five completed data sets.

(4) The statistical calculations on each of the five completed data sets were combined

using Rubin’s (1987) rules.

(5) Steps 2, 3 and 4 were repeated for each of the 100 independently sampled original

data sets. The mean and the sampling variation were determined of the bias in, for

example, Cronbach’s alpha. When the complete data produce biased estimates of

Cronbach’s alpha, the discrepancy in Cronbach’s alpha between original data and
completed data may be a better indicator of the performance of the multiple-

imputation methods. Thus, the mean and sampling variation of this discrepancy

measure were also determined. Imputation methods should produce little bias and

discrepancy.

2.2. Missing-data methods

2.2.1. Listwise deletion (LD)
Method LD – removal of all incomplete cases prior to analysis – was used as lower

benchmark.

2.2.2. Two-way imputation with normally distributed errors (TW-E) – unidimensional-data case
Following ANOVA, method TW-E (Bernaards & Sijtsma, 2000; also, see Little & Su, 1989)

imputes scores using a person and an item effect. Let obs(i ) be the set of observed item

scores of person i, and #obs(i ) the size of this set. The mean of the #obs(i) observed

scores for person i is denoted PMi. Likewise, item mean IMj for the observed scores on

item j and the overall mean OM for all observed item scores in X are defined. First, for

cell (i, j ), in which Rij ¼ 0, define an expected item score, denoted TWij, as

TW ij ¼ PMi þ IMj 2 OM: ð3Þ

Second, let 1ij be a random error from Nð0;s2
1Þ. To estimate s2

1; expected item scores are

computed for all observed scores using equation (3). This results in estimate

S2
1 ¼

XX
i; j[obs

ðXij 2 TW ijÞ2=ð#obs 2 1Þ:
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Third, 1ij is drawn from Nð0; S2
1Þ; and added to TWij, so that

TW ijðEÞ ¼ TW ij þ 1ij:

Let item scores be adjacent, ordered integers, denoted xmin, : : : , xmax, and round

TW ijðEÞ to the nearest feasible integer. The result is imputed in cell (i, j ).

2.2.3. Two-way imputation – multidimensional-data case
Main types of two-way imputation
Throughout this section, we use factor loadings resulting from principal

components analysis followed by varimax rotation (PCA/VR) for weighting item

scores. PCA/VR is often used for determining the dimensionality of questionnaire

data. We assume that the number of principal components was equal to the number

of dimensions in the simulated data. Table 1 shows six new extensions of method

TW to multidimensional data. They represent two main types with three variations

each.

Main type I: Two-way imputation for separate scales (TW-SS). Assume the

availability of a PCA/VR solution for the incomplete data matrix X (how this solution is

obtained, will be discussed shortly). Next, apply method TW-E separately to each item

subset consisting of the items that load highest on the same rotated factor. This main

type is denoted TW-SS (‘SS’ for separate scales).

Main type II: Two-way with factor loadings (TW-FL). Assume that Rij ¼ 0 and that

item j has its highest loading on the kth rotated factor; denote this loading ajk. Method

TW-FL (‘FL’ for factor loadings) uses a different estimate of the person mean than
methods TW-E and TW-SS, and weights available item scores with the items’ loadings on

factor k. As a point of departure, consider

PM#
ik ¼

P
j[obsði Þ ajk £ XijP

j[obsði Þ ajk

: ð4Þ

Note that negative loadings may have the effect of reducing the denominator so that the

behaviour of PM#
ik is unpredictable. This effect can be corrected by means of the

Table 1. Missing-data methods

Missing-data
method

Factor loadings
obtained from:

PMi and OM are
computed using:

Are item scores
weighted with loadings?

TW-SStw Completed data using TW-E Only items in scale k No
TW-SSbs Bootstrap sample Only items in scale k No
TW-SSod Original data Only items in scale k No
TW-FLtw Completed data using TW-E All items Yes
TW-FLbs Bootstrap sample All items Yes
TW-FLod Original data All items Yes
TW-E – All Items No
LD – – –
MNI – – –
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midrange score of item j, defined as

xmid ¼ 1

2
ðxmax 2 xminÞ;

and, using xmid, by defining an alternative person mean as

PM�
ik ¼

P
j[obsði Þ ajk £ ðXij 2 xmidÞP

j[obsði Þ ajk

�� �� þ xmid: ð5Þ

This definition does not suffer from the undesirable effect that negative loadings may

have; see the Appendix for details. The item means and the overall means can be defined

similarly, but technical details are ignored here.

Using these corrected means, the expected value TW �
ij; k is computed as

TW �
ij; k ¼ IM�

jk þ PM�
ik 2 OM�

k: ð6Þ

Let obs(k) be the set of all observed scores on the items that load highest on factor k, and

let #obs(k) be the size of this set. The error variance of these data is estimated as

S2�
1; k ¼

XX
i; j[obsðkÞ

ðXij 2 TW �
ij; kÞ2=½#obsðkÞ2 1�:

For cell (i, j ) we obtain

TW ij; kðFLÞ ¼ TW �
ij; k þ 1ij; k;

with 1ij; k , Nð0; S2�
1; kÞ: Finally, TW ij; kðFLÞ is rounded to the nearest feasible integer and

the result is imputed in cell (i, j ).

Specific types of two-way imputation
We distinguish three versions of method two-way for separate scales (Main type I):

(1) Method TW-SS using two-way (TW-SStw). Method TW-SStw has the following steps:

(1) Item scores are imputed in the incomplete data using method TW-E, ignoring

the dimensionality of the data; (2) PCA/VR is applied to the completed data set,

and item subsets are identified by the items’ highest loadings; and (3) item scores

are imputed anew in the incomplete data using method TW-E, but now for each
item subset separately. This process is repeated five times yielding five completed

data sets.

(2) Method TW-SS using bootstrap sampling (TW-SSbs). Method TW-SStw does not

propagate error in the factor loadings; thus it is improper (Rubin, 1987). A reviewer

suggested remedying this by means of bootstrap sampling: (1) A bootstrap sample

is drawn from the incomplete data set; (2) method TW-E is applied to this

bootstrap sample; (3) PCA/VR is applied to the completed data; and (4) method

TW-SS is applied to the incomplete data set, using factor loadings obtained from
the completed bootstrap data set. This process is repeated five times. Method TW-

SSbs is a refinement of method TW-SStw, and was studied in a specialized design.

(3) Method TW-SS using original data (TW-SSod). PCA/VR on the original data yielded

factor loadings that could be used for identifying item subsets and, using this

information method TW-SS could be used for imputing scores in the incomplete
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data. This is method TW-SSod. Five data sets are created. This is not a practically

useful method, but it provided information on the amount of discrepancy

produced by method TW-SStw due to using factor loadings obtained from a

completed data set in which scores were imputed using method TW-E, and

method TW-SSbs due to using factor loadings obtained from a completed bootstrap

data set in which scores were imputed using method TW-E.

Also, three versions of method two-way using factor loadings (Main type II) are

distinguished:

(1) Method TW-FL using two-way (TW-FLtw). Method TW-FLtw has the following steps:

(1) Item scores are imputed in the incomplete data using method TW-E, ignoring

the dimensionality of the data; (2) the PCA/VR solution for this completed data set

is used to identify item subsets; and (3) method TW-FL is used to impute item

scores in the incomplete data using the factor loadings found in the second step.

This is repeated to obtain five completed data sets.

(2) Method TW-SS using bootstrap sampling (TW-SSbs). Method TW-FLbs has the

following steps. (1) A bootstrap sample is drawn from the incomplete data; (2)
this bootstrap sample is completed using method TW-E; (3) PCA/VR is applied to

this completed bootstrap data set; and (4) the resulting factor solution is used for

imputation with method TW-FLbs. This is repeated five times. Method TW-FLbs was

studied in a specialized design.

(3) Method TW-FL using original data (TW-FLod). This method has the following

steps: (1) Method TW-FLod uses the PCA/VR solution for the original data; and (2)

method TW-E is applied to each of the item subsets resulting from PCA/VR. Five

data sets are created. This method cannot be used in practice but is used to assess
discrepancy compared with methods TW-FLtw and TW-FLbs.

2.2.4. Multivariate normal imputation (MNI)
Method MNI (Schafer, 1998) uses data augmentation (Tanner & Wong, 1987), which

obtains the distribution of the missing item scores, given the observed data. Scores

are imputed by random draws from the multivariate normal distribution. Starting

values are obtained using an EM algorithm (Dempster, Laird, & Rubin, 1977). In this

study, imputed scores were rounded to the nearest integer within the range
xmin; : : : ; xmax:

MI under the saturated logistic model could have been a more natural choice, but its

application was found to be problematic for large data sets (cf. Van der Ark & Sijtsma,

2005). Also, Ezzati-Rice et al. (1995) and Schafer et al. (1996) showed that MNI is robust

to departures from the multivariate normal model. MNI is available in the programs

NORM, S-plus 6 and SAS 8.01.

2.3. Setup of simulation study

2.3.1. Fixed design characteristics
Item scores. Data sets were simulated using the multidimensional polytomous latent
trait (MPLT) model (Kelderman & Rijkes, 1994). Four latent variables were assumed,

denoted uq ðq ¼ 1; : : : ;Q; here Q ¼ 4Þ: Parameter uiq is the value of person i on latent

variable q. Also, cjqx is the separation parameter of item j for latent variable q and answer

category x; and BjqxðBjqx $ 0Þ is the discrimination parameter of item j with respect to
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latent variable q and score x. The MPLT model is defined as

PðXij ¼ xjui1; : : : ; uiQÞ ¼
exp

PQ
q¼1 ðuiq 2 cjqxÞBjqx

h i
Px

y¼0 exp
PQ

q¼1 ðuiq 2 cjqyÞBjqy

h in o : ð7Þ

Parameters Bjq0 and cjq0 must be set to 0 to ensure uniqueness of the parameters. Data

sets of 40 polytomously scored items with five answer categories (i.e. xmin ¼ 0,
xmax ¼ 4) were simulated. Items 1–10 were driven by u1, items 11–20 by u2, items 21–30

by u3 and items 31–40 by u4.

Item parameters. Table 2 shows the item parameters (based on Van Ginkel et al.,

2007). Items with an even index in the range 1–20 had Bjqx ¼ 2 (i.e. high

discrimination) and items with an odd index had Bjqx ¼ 0:5 (i.e. low discrimination).

For items 21–40 this was reversed. The separation parameters cjqx ranged

from 22.75 to 2.75. For each latent variable, item difficulty increased with

increasing item index.

Covariate classes. Dichotomous covariate Y was used for simulating missingness

mechanisms. For Y ¼ 1, four latent variable values were randomly drawn from

a multivariate normal distribution with m1 ¼ ½2:25;2:25;2:25;2:25�: Likewise, for

Y ¼ 2 we used m2 ¼ ½:25; :25; :25; :25�: Both covariance matrices of the latent variables

were equal to express that the items measured the same constructs in, for example,

gender groups. Covariance matrices equaled the correlation matrices, with ones on the

main diagonal and elements r on the off-diagonal places.

2.3.2. Independent variables
Sample size. The sample sizes N ¼ 300 (‘fair’) and N ¼ 1000 (‘excellent’) were based on

rules of thumb for PCA (Comrey & Lee, 1992).
Correlation between latent variables. The correlation (r) between the latent

variables was varied to be 0, .24 and .50 (see Bernaards & Sijtsma, 2000).

Percentage of missing item scores. One, 5 and 15% missing item scores were

simulated.

Table 2. Location parameters cjqx and discrimination parameters Bjqx of simulated data

Items cjq1 cjq2 cjq3 cjq4 Bjqx

1, 11, 22, 32 1.25 1.75 2.25 2.75 0.5
2, 12, 21, 31 1.25 1.75 2.25 2.75 2
3, 13, 24, 34 0.25 0.75 1.25 1.75 0.5
4, 14, 23, 33 0.25 0.75 1.25 1.75 2
5, 15, 26, 36 20.75 20.25 0.25 0.75 0.5
6, 16, 25, 35 20.75 20.25 0.25 0.75 2
7, 17, 28, 38 21.75 21.25 20.75 20.25 0.5
8, 18, 27, 37 21.75 21.25 20.75 20.25 2
9, 19, 30, 40 22.75 22.25 21.75 21.25 0.5

10, 20, 29, 39 22.75 22.25 21.75 21.25 2
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Effect of covariate on missingness. For missingness unrelated to Y, the probability of

scores being missing was equal for both classes. For missingness related to Y, the

probability of scores being missing was twice as high for Y ¼ 2 as for Y ¼ 1. Given these

relative probabilities, a random sample of item scores was removed from the original

data matrix.

Joint effect of item score and item location parameters on missingness. For
ignorable (MAR, MCAR) missingness, all scores within one covariate class had equal

probability of being missing. Given these probabilities, a random sample of item scores

was removed from the original data matrix.

Non-ignorable missingness (NMAR) was simulated as follows. Let cjq be the mean

location parameter of item j (equation (7)). Within one covariate class, for items with

cjq $ 0 scores of Xij $ 3 had a higher probability of being missing than smaller scores:

For cjq ¼ 0 this probability was twice as high, for cjq ¼ 1 this probability was four times

as high, and for cjq ¼ 2 this probability was six times as high. This type of missingness
may occur when people with higher latent variable values are reluctant to answer

questions that may reveal their latent variable value.

Together with the influence of the covariate this manipulation of the response

probabilities resulted in four different missingness mechanisms. Missingness was MCAR

if it depended neither on Y nor on Xij and cjq; MAR if it depended only on Y; NMAR of

type 1 [denoted NMAR(1)] when it depended on Xij and cjq; and NMAR(2) when it

depended on Y, Xij and cjq; see Table 3. Table 4 shows the probability ratios for the four

missingness mechanisms, all values of Y, all values of the mean location parameter cjq,
and of all values of Xij.

Ignoring the covariate. Ignoring a relevant covariate produces NMAR (Schafer,

1997, p. 23). Its effect was compared to properly taking the covariate into account. For
method TW-E, the influence of the covariate was evaluated by using TW-E in both

classes separately. For methods TW-SStw, TW-FLtw, TW-SSbs and TW-FLbs scores were first

imputed for both classes separately using method TW-E. Next, a PCA/VR solution was

obtained for the whole completed data and then scores were imputed in the incomplete

data for both classes separately, using for both classes the same PCA/VR results. For

methods TW-SSod and TW-FLod, a PCA/VR solution was obtained for the original data

after which the imputation methods were used in both classes separately, using for both

classes the same PCA/VR results. For method MNI, the covariate was included in the
multivariate normal model that was estimated from the data. Ignoring the covariate

meant that each of the five TW methods was used for imputation in the whole data set,

and for method MNI the covariate was not included in the multivariate normal model

estimated from the data.

Table 3. The relation of the four different missingness mechanisms used in the simulation study:

MCAR, MAR, NMAR(1) and NMAR(2)

Is missingness related to value of Y?

No Yes

Is missingness related to values of Xij and cjq?

No MCAR MAR
Yes NMAR(1) NMAR(2)
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2.3.3. Dependent variables
Cronbach’s alpha is reported in almost every study that uses tests or questionnaires;

Loevinger’s H is an easy-to-use coefficient that evaluates the scalability of a set of items

(see Sijtsma and Molenaar, 2002, for an overview of approximately 30 applications); and

Mokken’s (1971) item selection cluster-algorithm is used for investigating the
dimensionality of test and questionnaire data (see, for example, Van Abswoude, Van

der Ark, & Sijtsma, 2004). These three dependent variables provide a good impression of

the degree of success of the proposed imputation methods.

Results of Cronbach’s alpha and coefficient H. Definitions and computations

concerning Cronbach’s alpha and coefficient H run parallel; thus, to avoid

redundancy we focus exclusively on alpha. First, the discrepancy between

Cronbach’s alpha based on completed data and Cronbach’s alpha based on

corresponding original data was computed. Second, the bias of Cronbach’s alpha
based on completed data relative to the population value was computed. Note that

there were four population values of Cronbach’s alpha, one for each item subset

that was driven by a particular uq (q ¼ 1; : : : ; 4), and denoted aq. Bias was

computed for each item subset.

Computations were done as follows. Cronbach’s alpha was computed for each item

subset in each original data set (indexed v ¼ 1; : : : ; 100), and denoted âor;vq; and for

Table 4. Probability ratios for all missingness mechanisms, and all values of covariate Y, mean location

parameter cjq, and item score Xij

Y

1 2

Xij Xij

Missingness mechanism cjq 0 1 2 3 4 0 1 2 3 4

MCAR 22 1 1 1 1 1 1 1 1 1 1
21 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1

MAR 22 1 1 1 1 1 2 2 2 2 2
21 1 1 1 1 1 2 2 2 2 2

0 1 1 1 1 1 2 2 2 2 2
1 1 1 1 1 1 2 2 2 2 2
2 1 1 1 1 1 2 2 2 2 2

NMAR(1) 22 1 1 1 1 1 1 1 1 1 1
21 1 1 1 1 1 1 1 1 1 1

0 1 1 1 2 2 1 1 1 2 2
1 1 1 1 4 4 1 1 1 4 4
2 1 1 1 6 6 1 1 1 6 6

NMAR(2) 22 1 1 1 1 1 2 2 2 2 2
21 1 1 1 1 1 2 2 2 2 2

0 1 1 1 2 2 2 2 2 4 4
1 1 1 1 4 4 2 2 2 8 8
2 1 1 1 6 6 2 2 2 12 12
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each of the five completed data sets corresponding to original data set v. The mean of

these five values was denoted âimp;vq. Bias in the original data was âor;vq 2 aq and bias in

the completed data was âimp;vq 2 aq. Discrepancy in alpha was defined as

âimp;vq 2 âor;vq. Both bias and discrepancy served as dependent variables in ANOVAs.

The tables contain the mean (M) and the standard deviation (SD) of the bias/discrepancy

calculated over 100 replications.
For method LD, alpha was computed for the available complete cases and

denoted âcc;vq. Bias and discrepancy produced by method LD are defined as âcc;vq 2 aq

and âcc;vq 2 âor;vq, respectively. Because each item subset produced a bias/discrepancy

estimate, ‘item subset’ was included as a within-subjects factor in ANOVA.

Results of cluster solution from Mokken scale analysis. In exploratory Mokken

scale analysis, one or more scales are selected from the data using a sequential

cluster algorithm, described in detail by Mokken (1971) and Sijtsma and Molenaar

(2002). The program MSP (Molenaar & Sijtsma, 2000) was used for this analysis.
First, by assigning the items to the clusters in which they were selected most

frequently the modal cluster solution was determined for the five completed data

sets; see Van der Ark and Sijtsma (2005) for details. Second, the minimum number

of items to be moved from the modal cluster solution to reobtain the four

theoretical scales from the simulation model was determined, and called the

population classification error. Also, the minimum number of items to be moved

from the modal cluster solution to reobtain the original-data cluster solution was

computed, and called the original-data classification error.
For method LD, the classification errors were the minimum number of items to be

moved from the cluster solution based on the available complete cases in order to re-

obtain the population cluster solution and the original-data cluster solution,

respectively. The means (M) and standard deviations (SD) of the classification errors

across 100 replicated data sets are reported.

2.3.4. Main design
The seven independent variables were: (1) Correlation between latent variables (r ¼ 0,

.24, .5); (2) sample size (N ¼ 300, 1,000); (3) percentage of missingness (1%, 5%, 15%);

(4) effect of covariate on missingness (No, Yes); (5) joint effect of item score and
location parameters on missingness (No, Yes); (6) ignoring covariate (No, Yes); and (7)

missing-data method (LD, TW-E, TW-SStw, TW-FLtw, TW-SSod, TW-FLod and MNI). An item

had five answer categories and the number of items was 40 (see Table 5 for the design

characteristics).

2.3.5. Three specialized designs
Specialized design: Unequal correlations between latent variables. In practice, the

correlations between latent variables are likely to be unequal. Thus, in a specialized

design the correlation matrix of the latent variables was

X
¼

1

0 1

:24 :50 1

:50 :24 0 1

2
666664

3
777775
;
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using correlations from the main design. Methods TW-E, TW-SStw, TW-FLtw, TW-SSod,

TW-FLod and MNI were studied, the sample size was fixed at N ¼ 1; 000, the percentage

of missingness was 5%, the missingness mechanism was MAR, and the effect of the

covariate was taken into account.

Specialized design: Confidence intervals. Because MI corrects confidence intervals
of parameter estimates using Rubin’s (1987) rules, this specialized design studied

focused on this topic. Kristof’s (1963) derivation of the sampling distribution of

Cronbach’s alpha assumes multivariate normality and compound symmetry. Thus, data

were sampled from a multivariate standard normal distribution for the item scores

( J ¼ 40). Even though these assumptions do not hold for highly discrete questionnaire

data, Kristof’s results were used as a benchmark for performance of the multiple-

imputation methods.

There were four scales, and each scale consisted of 10 items. Items within the same
scale correlated .5 and items from different scales correlated 0. There was no covariate.

Methods TW-E, TW-SStw, TW-FLtw, TW-SSod, TW-FLod and MNI were used, sample size

was 1,000, missingness mechanism was MCAR and percentage of missingness was 5.

One thousand replications were drawn to have more accurate estimates of the

confidence intervals.

Because Rubin’s rules for MI are defined for normally distributed variables, the non-

normal sampling distribution of Cronbach’s alpha was transformed into an

approximately normal Fisher z-score by means of

z ¼ 1

2
ln

1

1 2 â

� �

(e.g. McGraw & Wong, 1996). The number of replicated data sets out of 1,000 in which
aq was covered by the confidence interval was counted, and the mean (M) and standard

deviation (SD) of the bias were computed.

The sampling distribution of coefficient H has been derived only for binary items

(Mokken, 1971, pp. 157–169). Thus, confidence intervals for coefficient H were not

Table 5. Independent variables and fixed characteristics of the main design

Independent variables Levels

Correlation between latent variables 0, .24, .50
Sample size 300, 1000
Percentage of missingness 1, 5, 15
Effect of covariate on missingness No, Yes
Joint effect of item scores and location

parameters on missingness
No, Yes

Ignoring covariate No, Yes
Imputation methods TW-E, TW-FLtw, TW-SStw, TW-FLod, TW-SSod, MNI

Fixed design characteristics Value

Number of latent variables 4; multivariate normally distributed
Number of items 40
Number of answer categories 5
Number of imputations 5
Item parameters Fixed per item, see Tables 1 and 2
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considered here. Mokken scale analysis was not considered because its outcome is not a

parameter estimate.

Specialized design: Bootstrap methods. Bootstrap methods TW-SSbs and TW-FLbs

were compared with methods TW-SStw, TW-FLtw, TW-SSod and TW-FLod. It was expected

that the bootstrap would be more relevant for large percentages of missingness; thus,

15% missingness was studied here. Missingness mechanism was MAR and covariate was
taken into account. Correlations between latent variables were 0, .24 and .50, and

sample sizes were 300 and 1,000; for this design choice the largest differences between

the bootstrap and the other methods were expected.

2.4. Statistical analyses
ANOVAs were used to analyze bias and discrepancy in coefficients alpha and H. Sample

size was treated as a between-subjects factor. All other factors were dependent measures

and treated as within-subjects factors. Because classification error is discrete and

skewed, a logistic regression with binomial counts was used. Let yvt be the classification

error of data set v in within-subjects design cell t, and evt the maximum number of items

that are incorrectly clustered. For a test of 40 items, we have evt ¼ 39. Let b be a column

vector with regression coefficients, and for simulated data set v let zv be a row vector
with responses to the independent (dummy) variables. The probability that one item is

incorrectly clustered is modelled as

pt;zv
¼ exp ðzvbÞ

1 þ exp ðzvbÞ
:

The logistic regression model with binomial counts is

Pð yvt jzv; evtÞ ¼
evt !

yvtðevt 2 yvtÞ!

� �
ðpt;zv

Þyvt ð1 2 pt;zv
Þevt2yvt :

(Vermunt & Magidson, 2005a, p. 11). Sample size was treated as an independent
measure and the other factors as dependent measures. The logistic regression analyses

with binomial counts were done using Latent Gold 4.0 (Vermunt & Magidson, 2005b).

3. Results

Both for alpha and H, the standard deviations of bias were approximately 10 times larger

than the standard deviations of discrepancy. Because the original data produced

unbiased estimates of alpha and H in all situations (one-sample t tests) the mean bias and

the mean discrepancy were almost identical. Thus, it is sufficient to discuss only bias and

ignore discrepancy.

The results for the population classification error in Mokken scale analysis deviated

substantially from those for the original-data classification error. However, this was not

entirely an effect related to missing-data problems but also of MSP having trouble finding
the population cluster solution when correlations between latent variables were

relatively high (see Van Abswoude et al., 2004, for similar conclusions). Because the

modal cluster solutions for the completed data and those for the corresponding original

data were often similar, it made sense to study only the original-data classification error,

henceforth called the classification error for short.
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The results of method LD were much worse than the results of MI methods. LD

produced bias with larger standard deviations, relatively large bias for 5% missingness

and under departures from MCAR bias increased dramatically while bias due to MI

methods was much smaller. For 15% missingness, almost no complete cases were

available. Therefore, results of method LD are not further discussed.

3.1. Results of main design

3.1.1. Bias in Cronbach’s alpha
A full-factorial ANOVA was conducted on the data from the completely crossed

design of order 4 (item subsets) £ 2 (sample size) £ 3 (correlation) £ 2 (percentage

of missingness) £ 2 (effect of covariate) £ 2 (effect of nonignorable missingness) £ 2

(ignoring covariate) £ 6 (imputation method), with bias in Cronbach’s alpha as depen-

dent variable. One hundred and nine effects out of 240 were statistically significant, but

Table 6 only shows the small, medium and large effects and their effect sizes (based on

Cohen, 1988). Table 7 shows that bias was usually small; it ranged from 20.049 (method
TW-E, 15% missingness, r ¼ 0) to 0 (method TW-SStw, 1% missingness, r ¼ 0) (Table 7).

Standard deviations ranged from 0.011 to 0.024.

Imputation method £ percentage missingness. For all imputation methods, bias

in Cronbach’s alpha increased as percentage of missingness increased (Table 7), but for

1% missingness bias was small. Increase in bias was larger for methods that produced

larger bias for 1% missingness.
Imputation method £ correlation. Bias produced by method MNI and the TW-SS

methods was the same for different correlations (Table 7). Bias produced by the TW-FL

methods increased little and for method TW-E bias decreased as the correlation between

latent variables increased (Table 7).

Percentage of missingness. As the percentage of missingness increased, the bias in

Cronbach’s alpha also increased (Table 7).

Imputation method. Biases in Cronbach’s alpha due to methods TW-FLtw, TW-FLod,

and method MNI were similar. Methods TW-SStw and TW-SSod produced smaller bias and
method TW-E the largest bias (Table 7).

3.1.2. Bias in coefficient H
Means and standard deviations of bias in H were somewhat larger than those for

Cronbach’s alpha, but conclusions were similar (Table 8). Bias ranged from 20.082

(method TW-E, 15% missingness, r ¼ 0) to 0 (method TW-FLtw, 1% missingness, r ¼ 0).

Standard deviations of bias ranged from 0.019 to 0.039.

Table 6. Effect size of ANOVA with bias in Cronbach’s alpha as dependent variable

Effect F df1 df 2 h2

Method 53844.39 5 990 .16***
Percentage of missingness 21819.53 2 396 .08**
Method £ percentage of missingness 46632.58 10 1980 .12**
Method £ correlation 33067.88 10 1980 .02*

*Small effect; **medium effect; ***large effect.
All p-values smaller than .001.

Multiple imputation for factorially complex test data 327



Copyright © The British Psychological Society
Reproduction in any form (including the internet) is prohibited without prior permission from the Society

3.1.3. Classification error
A full-factorial logistic regression with binomial counts was conducted on a

completely crossed design of order 2 (sample size) £ 3 (correlation) £ 2 (percentage

of missingness) £ 2 (effect of covariate) £ 2 (effect of non-ignorable missingness) £ 2

(ignoring covariate) £ 6 (imputation method), with classification error as dependent
variable. Thirty-seven effects out of 127 were significant. Only the largest effects are

reported. Table 9 shows classification error results for all combinations of imputation

method and correlation between latent variables.

Imputation method £ correlation between latent variables. The interaction effect

of imputation method and correlation between latent variables was significant (Wald

test; x2ð10Þ ¼ 874:38, p , :001). For r ¼ 0 and .24, classification error was smaller than

for r ¼ :50 (Table 9). For methods TW-FLod and TW-FLtw, the effect of correlation

Table 7. Mean (M) and standard deviation (SD) of bias in Cronbach’s alpha for all combinations of

percentage of missingness, imputation method, and correlation between latent variables

Correlation between latent variables

Percentage of Imputation
0 .24 .50 Mean

missingness method M SD M SD M SD M SD

1% TW-SStw 0 11 0 11 0 11 0 11
TW-FLtw 0 11 21 11 21 11 21 11
TW-SSod 0 11 0 11 0 11 0 11
TW-FLod 0 11 21 11 21 11 21 11
TW-E 23 11 23 11 22 11 23 11
MNI 0 11 21 11 21 11 21 11
Mean 21 11 21 11 21 11 21 11

5% TW-SStw 1 11 0 11 0 11 0 11
TW-FLtw 22 11 24 11 24 11 23 11
TW-SSod 0 11 0 11 0 11 0 11
TW-FLod 22 11 23 11 24 11 23 11
TW-E 215 12 212 11 29 12 212 12
MNI 22 11 22 11 22 11 22 11
Mean 23 13 23 12 23 12 23 12

15% TW-SStw 2 11 1 11 1 11 1 11
TW-FLtw 210 13 213 14 214 14 212 14
TW-SSod 1 11 1 11 1 11 1 11
TW-FLod 26 12 210 13 212 13 29 13
TW-E 249 17 237 15 216 14 237 18
MNI 27 12 27 12 27 12 27 12
Mean 211 22 211 18 211 18 29 16

Mean TW-SStw 1 11 1 11 1 11 1 11
TW-FLtw 24 17 24 13 24 13 24 13
TW-SSod 1 11 1 11 1 11 1 11
TW-FLod 23 12 23 12 23 12 23 12
TW-E 222 24 222 24 222 24 222 24
MNI 23 12 23 12 23 12 23 12

Entries in table must be multiplied by 1023.
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resembled that for method MNI. Methods TW-SStw and TW-SSod produced the largest

classification error for r ¼ :50, but method TW-E produced nearly the same

classification error for different correlations.

Imputation method £ percentage of missingness. The interaction of imputation

method and percentage of missingness was significant (x2ð10Þ ¼ 732:16, p , :001).

Classification error increased as percentage of missingness increased and
methods that produced a relatively large classification error for 1% missingness also

produced a larger classification error as percentage of missingness increased further

(Table 9).

Imputation method. A significant effect of imputation method was found,

(x2ð5Þ ¼ 1562:64, p , :001). Methods MNI, TW-FLtw and TW-FLod produced the

smallest classification error Method TW-E produced the largest classification error.

Table 8. Mean (M) and standard deviation (SD) of bias in coefficient H for all combinations of

percentage of missingness, imputation method and correlation between latent variables

Correlation between latent variables

Percentage of Imputation
0 .24 .50 Mean

missingness method M SD M SD M SD M SD

1% TW-SStw 2 20 1 19 1 20 1 20
TW-FLtw 1 20 0 19 0 20 0 20
TW-SSod 2 20 2 19 1 20 1 20
TW-FLod 1 20 0 19 0 20 0 20
TW-E 24 20 23 19 22 20 22 20
MNI 1 20 1 19 1 20 1 20
Mean* 0 20 0 19 0 20 0 20

5% TW-SStw 1 20 0 19 0 20 0 19
TW-FLtw 24 20 27 19 27 20 26 20
TW-SSod 1 20 0 19 0 20 0 19
TW-FLod 23 20 26 19 27 20 26 20
TW-E 227 20 222 19 216 20 222 20
MNI 22 20 23 20 23 20 23 20
Mean 26 22 26 21 26 20 26 21

15% TW-SStw 22 20 23 20 24 21 23 21
TW-FLtw 221 24 227 24 227 24 225 24
TW-SSod 23 20 23 20 23 21 23 20
TW-FLod 215 22 222 22 224 23 220 23
TW-E 282 23 265 22 247 21 265 26
MNI 213 21 213 21 213 21 213 21
Mean 222 35 222 30 220 27 221 31

Mean TW-SStw 22 20 0 20 21 20 0 20
TW-FLtw 210 23 211 24 212 24 210 24
TW-SSod 22 20 0 20 21 20 0 20
TW-FLod 28 22 29 22 210 23 28 22
TW-E 240 39 230 33 222 28 230 34
MNI 27 21 29 21 25 21 25 21

Entries in table must be multiplied by 1023.
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Correlation between latent variables. Correlation between latent variables had a

significant main effect (x2ð2Þ ¼ 204:82, p , :001). For r ¼ 0 and .24, classification error
was smaller than for r ¼ :50 (Table 9).

Percentage of missingness. Percentage of missingness had a significant effect (Wald

test; x2ð2Þ ¼ 2418:22, p , :001). As percentage of missingness increased, the

magnitude of the classification error also increased (Table 9).

3.2. Results of specialized designs
Unequal correlations between latent variables. An ANOVA was conducted on a

completely crossed design of order 4 (item subset) £ 4 (correlation) £ 6 (imputation
method). For Cronbach’s alpha, two effects were found: a small interaction effect of

correlation between latent variables and imputation method (Fð15; 1485Þ ¼ 8470:36,

p , :001, h2 ¼ :01) and a large main effect of imputation method (Fð5; 495Þ ¼18,955.68,

p , :001, h2 ¼ :22). For coefficient H, again two effects were found: a small

Table 9. Mean (M) and standard deviation (SD) of classification error for all combinations of imputation

method, percentage of missingness and correlation between latent variables

Correlation between latent variables

Percentage of Imputation
0 .24 .50 Mean

missingness method M SD M SD M SD M SD

1% TW-SStw 0.45 0.77 0.53 0.85 1.59 2.64 0.86 1.74
TW-FLtw 0.48 0.79 0.56 0.85 1.47 2.50 0.83 1.65
TW-SSod 0.44 0.75 0.54 0.85 1.59 2.78 0.86 1.81
TW-FLod 0.46 0.77 0.55 0.85 1.43 2.34 0.81 1.57
TW-E 0.71 0.90 0.73 0.98 1.48 2.46 0.97 1.66
MNI 0.52 0.81 0.64 1.00 1.37 2.36 0.84 1.59
Mean 0.51 0.80 0.59 0.90 1.49 2.52 0.86 1.67

5% TW-SStw 0.99 1.04 1.14 1.31 4.09 4.56 2.07 3.15
TW-FLtw 0.98 1.05 1.25 1.35 2.71 3.09 1.65 2.17
TW-SSod 0.99 1.04 1.13 1.25 4.20 4.76 2.11 3.26
TW-FLod 0.99 1.05 1.19 1.25 2.78 3.21 1.65 2.23
TW-E 2.60 1.35 2.27 1.56 2.71 3.06 2.52 2.14
MNI 1.19 1.17 1.33 1.34 2.55 3.11 1.69 2.16
Mean 1.29 1.27 1.38 1.41 3.17 3.77 1.95 2.58

15% TW-SStw 1.89 1.23 2.01 1.53 15.89 8.94 6.60 8.44
TW-FLtw 2.23 1.49 2.73 1.79 4.88 4.34 3.28 3.06
TW-SSod 1.86 1.24 2.01 1.54 15.90 8.86 6.59 8.42
TW-FLod 1.91 1.38 2.29 1.70 4.94 4.47 3.05 3.17
TW-E 8.49 1.93 6.68 2.10 3.71 3.38 6.29 3.23
MNI 2.37 1.46 2.55 1.75 3.82 3.53 2.91 2.51
Mean 3.12 2.82 3.04 2.40 8.19 8.17 4.79 5.71

Mean TW-SStw 1.11 1.19 1.23 1.40 7.19 8.65 3.17 5.84
TW-FLtw 1.23 1.36 1.51 1.65 3.02 3.68 1.92 2.58
TW-SSod 1.10 1.18 1.22 1.39 7.23 8.66 3.18 5.88
TW-FLod 1.12 1.25 1.34 1.50 3.05 3.74 1.83 2.58
TW-E 3.93 3.62 3.23 3.00 2.63 3.13 3.26 3.30
MNI 1.33 1.40 1.47 1.62 2.58 3.16 1.79 2.27
Mean 1.64 2.15 1.67 1.98 4.28 6.10 2.53 4.09
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interaction effect of imputation method and correlation between latent variables

(Fð15; 1485Þ ¼ 7994:57, p , :001, h2 ¼ :01) and a large main effect of imputation

method (Fð5; 495Þ ¼ 19180:15, p , :001, h2 ¼ :22).

For classification error, a logistic regression with binomial counts on the 4

(correlation) £ 6 (imputation method) design showed significant effects for correlation

between latent variables (x2ð3Þ ¼ 289:21, p , :001), imputation method
(x2ð5Þ ¼ 135:29, p , :001) and interaction of imputation method and correlation

between latent variables (x2ð15Þ ¼ 210:90, p , :001).

Table 10 shows that for unequal correlations between latent variables, bias in

Cronbach’s alpha and coefficient H was similar to bias for equal correlations. Unequal

correlations produced the largest classification error for all imputation methods.

Confidence intervals. Table 11 shows that methods TW-FLtw and MNI closely

recover the theoretical 95% confidence intervals for Cronbach’s alpha (upper panel),

directly followed by method TW-SStw. Method TW-E performs worst: Only 60% of the
simulated confidence intervals cover aq. Furthermore, method MNI produces the

smallest bias, followed by method TW-FLtw (bottom panel). This result is due to MNI

assuming multivariate normal data, which is the data model used here. Method TW-E

produces the greatest bias.

Bootstrap methods. Imputation method had a large main effect on both bias in

Cronbach’s alpha and coefficient H (Cronbach’s alpha: Fð5; 990Þ ¼ 11; 754:49,

p , :001, h2 ¼ :19; coefficient H: Fð5; 990Þ ¼ 10; 516:80, p , :001, h2 ¼ :17). Biases

produced by methods TW-SStw, TW-SSod and TW-SSbs were equally large (Table 12). Method
TW-FLtw produced a slightly smaller bias in Cronbach’s alpha and coefficient H than

method TW-FLbs. Of the TW-FL methods, method TW-FLod produced the smallest bias.

All effects on classification error in Mokken scale analysis were significant; means

and standard deviations are reported in Table 13. Differences in classification error

among methods TW-FLtw/TW-SStw, methods TW-FLod/TW-SSod and methods TW-

FLbs/TW-SSbs were small (Table 13).

4. Discussion

Bias produced by multiple-imputation versions of variations on method Two-way is

mainly influenced by percentage of missingness and correlation between latent

variables. Thus, a good MI method should be robust against variations of these factors.

Sample size and missingness mechanism were not as influential.

Method TW-SStw is the preferred method because it produced almost no bias in

Cronbach’s alpha and coefficient H for various percentages of missingness and
correlations between latent variables. Method MNI also produced small bias but, in

general, was outperformed by method TW-SStw.

For Mokken scale analysis, method TW-FLtw is a better alternative. It produced the

smallest classification error for r ¼ :50. However, as long as the different item clusters in

the data are not highly correlated, method TW-SStw may also be used.

One noticeable result was that methods that used factor loadings from the original

data (i.e. methods TW-SSod and TW-FLod) did not produce smaller bias than methods that

used factor loadings from a completed data set using method TW-E (methods TW-SStw

and TW-FLtw). Moreover, methods that estimated the factor loadings from completed

bootstrap data sets (TW-FLbs and TW-SSbs) did not produce smaller bias and sometimes

produced even larger bias than methods that estimated factor loadings from the

completed data set (TW-FLtw and TW-SStw). Thus, from a practical point of view,
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methods TW-FLtw and TW-SStw may be preferred over methods TW-FLbs and TW-SSbs,

even though the latter may be argued to be theoretically superior.

Another noticeable result was that when scores were MAR, including the covariate

in the analysis had little effect on bias. This result may have been due to the factorial

structure being the same in both covariate classes while the different latent variable

means may have been too close to make a difference. NMAR mechanisms did not have a
discernable effect on the bias in Cronbach’s alpha and coefficient H either, but an effect

was found for discrepancy (results not discussed).

Table 11. Simulated 95% confidence intervals and mean (M) and standard deviation (SD) of bias in

Cronbach’s alpha for specialized design with multivariate normally distributed variables

Scale

Method 1 2 3 4

Confidence intervals
of Cronbach’s alpha

Original data 94.5 94.0 94.3 95.4

TW-SStw 92.6 90.9 94.3 93.6
TW-FLtw 95.0 93.5 95.4 94.7
TW-SSod 93.1 91.5 94.5 94.0
TW-FLod 94.8 93.6 94.8 94.5
TW-E 61.2 61.8 58.3 58.0
MNI 94.7 94.2 94.0 95.6

Method M SD M SD M SD M SD

Bias in Cronbach’s alpha Original data 0 9 0 10 21 9 0 9
TW-SStw 4 9 4 9 3 9 4 9
TW-FLtw 2 9 2 9 1 9 1 9
TW-SSod 4 9 4 9 3 9 4 9
TW-FLod 2 9 2 9 1 9 2 9
TW-E 216 10 216 10 217 10 217 9
MNI 0 9 0 10 21 9 21 9

Entries in bottom panel must be multiplied by 1023.

Table 12. Mean (M) and standard deviation (SD) of bias in Cronbach’s alpha and coefficient H,

for specialized design with methods TW-FLbs and TW-SSbs in addition to four other TW methods

Bias

a H

Imputation method M SD M SD

TW-SStw 3 11 1 20
TW-FLtw 28 12 217 20
TW-SSod 3 11 1 19
TW-FLod 26 12 213 20
TW-SSbs 3 11 1 20
TW-FLbs 29 12 219 19

Entries must be multiplied by 1023.
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To summarize, method TW-SStw in particular, and method TW-FLtw are promising

and simpler alternatives to method MNI for multidimensional rating-scale test and

questionnaire data. These methods are easily accessible in SPSS (subroutines due to Van

Ginkel & Van der Ark, 2005). Method MNI is applicable in many missing-data problems

and may be the preferred method for many researchers who are used to it already, also

when the data are multi-item, multidimensional and highly discrete. Nevertheless, in

psychometric work the simple method TW-SStw is a good alternative.
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Appendix

This appendix presents a justification for weighting the item scores with the factor

loadings (equation (5)). The reversed item score is computed as

Xr
ij ¼ xmax þ xmin 2 Xij:

First, Harman (1976, p. 169) showed that if the loading of factor k on item j is ajk, then

the loading of factor k on the reversed scored item is 2ajk. The scores of an item are
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reversed, the loading on factor k is retained with opposite sign. Hence, reversing all

items with negative loadings on factor k is a way to circumvent negative loadings in the

denominator of equation (4). Equation (4) may then be written as

PMik ¼
P

j[obsði Þjajkj £ ZijP
j[obsði Þjajkj

Zij ¼ Xij for ajk . 0

Zij ¼ Xr
ij for ajk , 0

8<
: ðA1Þ

Second, for computational convenience we transform item score Xij into

X�
ij ¼ Xij 2 xmid ðA2Þ

Transformation of (A2) produces item scores such that X�
ij ¼ 2X�r

ij ; and thus the
following condition is satisfied:

ajk £ X�
ij ¼ 2ajk £ X�r

ij : ðA3Þ

Equation (A1) can now be written as

PM�
ik ¼

P
j[obsði Þ ajk £ X�

ijP
j[obsði Þjajkj

: ðA4Þ

To obtain the correct value of PM�
ik, xmid must be added to equation (A4) which yields

equation (5).
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