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Outlier Detection in Test and
Questionnaire Data

Wobbe P. Zijlstra, L. Andries van der Ark, and Klaas Sijtsma
Tilburg University

Classical methods for detecting outliers deal with continuous variables. These

methods are not readily applicable to categorical data, such as incorrect/correct

scores (0/1) and ordered rating scale scores (e.g., 0; : : : ; 4) typical of multi-item

tests and questionnaires. This study proposes two definitions of outlier scores suited

for categorical data. One definition combines information on outliers from scores

on all the items in the test, and the other definition combines information from all

pairs of item scores. For a particular item-score vector, an outlier score expresses

the degree to which the item-score vector is unusual. For ten real-data sets, the

distribution of each of the two outlier scores is inspected by means of Tukey’s

fences and the extreme studentized deviate procedure. It is investigated whether

the outliers that are identified are influential with respect to the statistical analysis

performed on these data. Recommendations are given for outlier identification and

accommodation in test and questionnaire data.

INTRODUCTION

Outliers are often identified as observations or subsets of observations which

appear to be inconsistent with the remainder of the data (Barnett & Lewis,

1994, p. 7). Such observations are of interest in particular when they exercise a

disproportionate influence on the outcome of the statistical analysis of one’s data.

For example, compared to a data analysis without the outlying observations, one

that includes these outliers may result in means that shift further to the left or

the right, correlations that are higher or lower, and regression coefficients that

are biased. Obviously, such influential observations should be identified and a

Correspondence concerning this article should be addressed to: Wobbe P. Zijlstra, Department

of Methodology and Statistics, Faculty of Social and Behavioral Sciences, Tilburg University, P.O.

Box 90153, 5000 LE Tilburg, The Netherlands. E-mail: w.p.zijlstra@uvt.nl
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532 ZIJLSTRA ET AL.

decision should be taken about their role in the statistical data analysis. In this

paper, we discuss outliers in the context of test and questionnaire data, that

are typically collected in psychological, sociological, educational, and political

science research.

An obvious sequence for identifying and dealing with outliers is the follow-

ing. First, one starts by noting that several observations in the data are unusual

or suspected (cf., Barnett & Lewis, 1994, p. 1) given what one would expect.

We refer to such observations as suspected observations (Iglewicz & Hoaglin,

1993, p. 30). Notice that many authors use different terms; for example, Barnett

and Lewis (1994, p. 297) use the term suspicious observations and Hadi and

Simonoff (1993) use the term potential outliers. Second, a formal decision is

made whether the suspected observations are indeed different from the remain-

der of the data. Such a decision may be based on a discordancy test (Barnett

& Lewis, 1994, chap. 4). When it is decided that a suspected observation is

discordant it is called an outlier. Third, a decision should be made what to do

with outliers. Three possibilities are the following. The first possibility is to

investigate the influence of the outliers by analyzing the data with and without

them. Outliers exercising a disproportionate influence on the statistical results

are referred to as influential observations. For example, it may be decided that

the influential observations are deleted from the data. The second possibility

is to accommodate the outliers. This entails the construction of statistics that

are robust with respect to outliers, or a transformation of the data. The third

possibility is to conclude that the outlying cases are representative of a group

that was misrepresented in the sample, and it may be decided that a new sample

should be collected based on the appropriate stratification. Alternatively, outliers

may be studied as separate interesting cases.

Barnett and Lewis (1994, pp. 33–34) distinguish three ways for outliers to

arise in a sample. In their terminology these are:

1. Measurement error: Outliers arise for deterministic reasons, for example,

due to a reading error, a recording error, or a calculation error in the data;

2. Execution error in collecting the data: Individuals that do not belong to the

population envisaged are included in the sample (such outliers are called

contaminants); and

3. Inherent variability: Outliers are merely rare events that are perfectly rea-

sonable given the model at hand.

Much research has been done into outlier detection for continuous variables

and variables with many categories. Barnett and Lewis (1994) and Rousseeuw

and Leroy (2003) provide many references until 1994 (for more recent sources,

see, e.g., Atkinson & Riani, 2000; Chambers, Hentges, & Zhao, 2004; and

Cook & Critchley, 2000). This is different when a variable has only few, say,



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ite
it 

va
n 

Ti
lb

ur
g]

 A
t: 

11
:4

4 
25

 A
pr

il 
20

08
 

OUTLIER DETECTION IN TEST AND QUESTIONNAIRE DATA 533

no more than five, categories. Such variables are typical of psychological tests

and questionnaires, and are called “items” in that context. Let Xj denote the

random variable for the score on item j (j D 1, : : : , J ), and let xj be a

realization of Xj . For example, many educational tests contain J items that

are dichotomously scored as either correct (xj D 1) or incorrect (xj D 0).

Similar correct/incorrect scoring can be found in intelligence testing. With only

two score categories, defining observations as suspected and testing for dis-

cordancy may be problematic or, at least, awkward. For example, if 60% of

the respondents give a correct answer to item j and 40% an incorrect answer,

would one conclude that people in this latter group give a surprising response

and that the group consists entirely of suspected observations? Similarly, many

questionnaires used for personality testing in psychology or attitude testing in

sociological or political science research contain rating scales to which ordered

polytomous scores are assigned. Ordering means that a higher score indicates a

higher level of endorsement with a statement about one’s personality or the atti-

tude under investigation. Polytomous items typically are scored xj D 0; : : : ; m.

The well known Likert items have five ordered answer categories (m D 4). In

general, 2 � m � 6, but larger values of m are sometimes encountered in prac-

tice, and other scoring schemes also may be used. If for one item with m D 4

a score distribution is found like .:20; :42; :18; :12; :08/, are the 8% 4-scores

all suspected observations? Or the 20% 3- and 4-scores together? Or the 20%

0-scores and the 8% 4-scores?

In the context of categorical variables outliers have not been studied fre-

quently. One exception is the study of outliers in contingency tables (e.g., Kotze

& Hawkins, 1984; Lee & Yick, 1999; Simonoff, 1988; Yick & Lee, 1998). The

J item scores produced by N respondents may be collected in a J -way contin-

gency table. Thus far, only outliers in reasonably filled two-way (i.e., J D 2)

contingency tables have been studied. Most psychological tests have J > 10,

resulting in sparse J -way contingency tables. For example, if J D 10 and

m D 4, then the contingency table has 510 D 9; 765; 625 cells. Even with a

large sample most cells are empty and the available approaches for outlier de-

tection in contingency tables fail. Hodge and Austin (2004) called this the ‘curse

of dimensionality’. An elaboration of the contingency table approach is used in

data mining techniques in computer sciences (see Hodge & Austin, 2004, for

an overview), where this approach is applicable to continuous and categorical

data. The approach is based on the distances between the observations but also

suffers from the ‘curse of dimensionality’.

Another exception is person-fit analysis. An early attempt was due to Levine

and Rubin (1979), who studied the appropriateness of a vector of J binary item

scores by means of its likelihood in the 2-parameter logistic model (e.g., Van

der Linden & Hambleton, 1997). More generally, person-fit analysis studies the

fit of item response models to an individual’s item-score vector or evaluates the
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534 ZIJLSTRA ET AL.

fit of an item-score vector in a group under consideration (see Meijer & Sijtsma,

2001, for an extensive overview). The decision to categorize sets of observations

such as item-score vectors as either fitting or misfitting is known as outlier

identification (cf., Barnett & Lewis, 1994, p. 7). Recent examples can be found in

certification testing (Meijer, 2002) and adaptive testing (Bradlow & Weiss, 2001;

Bradlow, Weiss, & Cho, 1998). In person-fit analysis, the interest is mainly with

identifying aberrant item-score vectors and inferring the cause of this aberrance,

for example, for diagnostic reasons (e.g., did the respondent understand the test

instruction? Did he or she suffer from test anxiety?). Furthermore, person-fit

analysis is model based and therefore its application is more involved. In the

present study, the interest is with the sample and making valid inferences about

the population by using simple indices.

We propose a new approach to outlier analysis in which we use outlier

scores as indices for identifying suspected observations. The first outlier score

is defined as an individual’s frequency of unpopular item scores in his/her vector

of J item scores; for polytomous items this definition is a little more involved

than for binary items. This is explained later on. The rationale for this outlier

score is that for some tests or questionnaires, a respondent’s item scores are

suspected if he or she often chooses unpopular answer categories. The second

outlier score is the number of weighed Guttman (1950) errors; such an error

in combinations of binary item scores occurs each time a respondent answers

a relatively difficult item correctly and an easier item incorrectly. The rationale

for this outlier score is that a respondent’s item scores are suspected if he or she

has many score combinations that contradict the order of the items according to

difficulty. This idea is also useful with polytomous items. For ten real-data sets,

the distributions of the two outlier scores were inspected using both Tukey’s

fences and the extreme studentized deviate procedure. Also, the influence of the

identified outliers on several statistics was investigated. Recommendations are

given for the use of outlier detection methods in the analysis of real test and

questionnaire data.

METHODS OF OUTLIER DETECTION

Outlier Scores

Item-based outlier score. The idea behind the item-based outlier score,

OC, is that responses to the modal (most popular) score categories of items are

not suspected, responses to the next less popular score category are more sus-

pected, and so on; and responses to the least popular score category are the most

suspected. We assume that each item in the test or questionnaire has an equal

number of ordered answer categories, and that adjacent ordered integer scores
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OUTLIER DETECTION IN TEST AND QUESTIONNAIRE DATA 535

x D 0; : : : ; m represent this ordering. Note that for dichotomous item scores

m D 1. Proportions of answers in score categories are denoted by P.Xj D x/,

and the score distribution of item j is denoted by ŒP.Xj D 0/; : : : ; P.Xj D m/�.

Outlier item-score, Oj , equals 0 for the modal (i.e., the most popular) cate-

gory, Oj D 1 for the next less popular category, and so on; and Oj D m for

the least popular category. Assume that respondent v has item score xvj . Then,

his/her outlier score, Ovj , is determined using the rank number of P.Xj D xvj /,

denoted rankŒP.Xj D xvj /�, such that

Ovj D .m C 1/ � rankŒP.Xj D xvj /�: (1)

For respondent v, the outlier item-scores are added across items to obtain item-

based outlier score OvC:

OvC D

J
X

j D1

Ovj : (2)

As an example, for J D 5 and m C 1 D 3, Table 1 shows the frequency

distributions for each of the items. Let Xv D .Xv1; : : : ; XvJ / and let xv contain

the J item scores of respondent v. Assume that respondent v has item-score

vector xv D .2; 2; 2; 1; 1/. For item 1, the third category (Xv1 D 2) is modal

and thus has rank 3. Using Equation 1, it follows that Ov1 D .2 C 1/ � 3 D 0.

For item 2, the third category (Xv2 D 2) is the least popular and thus has

rank 1; hence Ov2 D .2 C 1/ � 1 D 2. Similarly, it follows that Ov3 D 0,

Ov4 D 1
2

, and Ov5 D 0. Using Equation 2, respondent v has item-based outlier

score OvC D 2 1
2

(see the last column of Table 1). The item-score vector that

produces the maximum value of OC is denoted xmax; here, xmax D .1; 2; 0; 0; 0/

and the corresponding outlier score equals OC D 10.

Item-pair based outlier score. Another approach to outlier detection uses

the information contained in pairs of items. Consider polytomously scored items

indexed j and k. Define the proportion of respondents that have at least a score

of g on item j , P.Xj � g/; likewise, define proportion P.Xk � h/. Because

by definition, for g D h D 0 the proportions P.Xj � 0/ D P.Xk � 0/ D

1 (see Table 1), they do not contain useful information and are left out of

consideration.

For item pair .j; k/, determine the common, decreasing ordering of the

proportions P.Xj � g/ and P.Xk � h/, for g; h D 1; : : : ; m. For example, for

items 1 and 2 (m D 2) in Table 1 the common ordering of the proportions is,

P.X1 � 1/ � P.X1 � 2/ � P.X2 � 1/ � P.X2 � 2/: (3)
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TABLE 1

Examples of Item Category Proportions [P(Xj D x)] of Five Items With Three Answer Categories Each, the Rank of the P(Xj D x)’s,

the Item-Based Outlier Score (Oj) (Equation 1) for Each Answer Category, the Cumulative Item Category Proportions [P(Xj � x)],

and the Ovj Scores for Item-Score Vectors xv D (2, 2, 2, 1, 1) and xmax D (1, 2, 0, 0, 0). The Last Column Shows OvC

Item 1 Item 2 Item 3 Item 4 Item 5

x 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 OvC

P.Xj D x/ .3 .2 .5 .6 .3 .1 .1 .4 .5 .2 .4 .4 .2 .5 .3

rankŒP .Xj D x/� 2 1 3 3 2 1 1 2 3 1 2 1
2

2 1
2

1 3 2

Oj 1 2 0 0 1 2 2 1 0 2 1
2

1
2

2 0 1

P.Xj � x/ 1.0 .7 .5 1.0 .4 .1 1.0 .9 .5 1.0 .8 .4 1.0 .8 .3

Ovj 0 2 0 1
2

0 2 1
2

Omax;j 2 2 2 2 2 10

5
3
6
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OUTLIER DETECTION IN TEST AND QUESTIONNAIRE DATA 537

Item-pair based outlier scores use weighed Guttman errors in polytomous item

scores (Molenaar, 1991). Such errors are defined on the common ordering of

proportions from different items as in Equation 3. Based on this ordering, item-

pair scores can represent either Guttman errors (i.e., score pairs that disagree

with the Guttman model) or conformal patterns (i.e., score pairs that agree with

the Guttman model). For example, score pair .X1; X2/ D .1; 0/ is a conformal

pattern: Given the ordering in Equation 3, the event that one has a score of

at least 1 on item 1 is more likely than the event of having a score of at

least 1 on item 2, because P.X1 � 1/ D :7 exceeds P.X2 � 1/ D :4 (Table 1).

Following the same line of reasoning, score pair (0, 1) is a Guttman error because

having at least a score of 1 on item 2 is less likely than having a score of at

least 1 on item 1, and X1 D 0 contradicts this ordering. Taking the common

ordering of the proportions into account, one may check that the conformal

patterns are .0; 0/; .1; 0/; .2; 0/; .2; 1/, and .2; 2/, and that the Guttman errors

are .0; 1/; .0; 2/; .1; 1/, and .1; 2/.

A helpful metaphor may result from considering the ordering in Equation 3 as

a staircase which is climbed from left (“easy”) to right (“difficult”). A respondent

who produced a Guttman error on the items j and k is assumed to have missed

one or more steps, which expresses the idea that he or she partly “ignored”

the common ordering. Molenaar (1991) proposed weighing each Guttman error

for the number of steps missed. For each step respondent v takes, previously

missed steps—if any—are counted, and the total number of steps missed equals

the weight assigned to the Guttman error; this weight is denoted wvjk.

As a first example of counting errors, consider the Guttman error .X1; X2/ D

.1; 1/. Starting from conformal pattern (0, 0), the steps taken to achieve .1; 1/

are X1 � 1 and X2 � 1. Given the ordering in Equation 3, all steps preceding

X1 � 1 have been taken, so the number of previous steps missed equals zero.

However, one step preceding X2 � 1 [i.e., step X1 � 2] should have been

taken but was missed. As a result, the weight given to Guttman error .1; 1/ is

wv12 D 0 C 1 D 1.

As a second example, consider the Guttman error .X1; X2/ D .0; 2/. Starting

from conformal pattern (0, 0), the steps taken to achieve .0; 2/ are X2 � 1 and

X2 � 2. Given the ordering in Equation 3, two steps preceding X2 � 1 should

have been taken but were missed [i.e., steps X1 � 1 and X1 � 2]. The same

two steps preceding X2 � 2 should have been taken but were also missed. Thus,

the weight assigned to Guttman error .0; 2/ is wv12 D 2 C 2 D 4.

Respondent v may either produce or not produce a Guttman error on item

pair .j; k/. This results in Guttman score Gvjk D 1 or Gvjk D 0, respectively.

Weighing Gvjk by error count wvjk and adding across all .j; k/ combinations,

yields for a given respondent v the item-pair based outlier score

GvC D

J �1
X

j D1

J
X

kDj C1

wvjkGvjk: (4)
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538 ZIJLSTRA ET AL.

For dichotomously scored items, it is readily checked that wvjk D 1. Index GC

also plays an important role in person-fit analysis (Meijer & Sijtsma, 2001).

Relationships between outlier scores and test score. Test score XC

is defined as the sum of the J item scores, such that XC D
PJ

j D1 Xj . Some

relationships between the outlier scores OC and GC, and test score XC are

the following (but notice that many other possibilities exist depending on the

properties of the test and the resulting data).

One example is a questionnaire that measures a relatively rare phenomenon,

such as a particular pathology. As a result, the distribution of XC is skewed

to the right. Respondents that have relatively high XC scores are expected to

have high OC scores because they have many high item scores which are rare

among the majority of the group. Thus, in such questionnaires we expect a strong

positive linear relationship between XC and OC and suggest that observations

in the right-tail of the XC distribution may be outliers. Another example is that

the distribution of XC on a relatively easy educational test may be skewed to

the left. As a result, the XC and OC are expected to have a strong negative

linear relationship which suggests possible outliers in the left tail. Obviously,

the thinner the tail and the more distant observations in the tail are from the

central tendency of the distribution, the more likely they are outliers.

Respondents having low or high XC scores cannot have many Guttman errors;

thus, their GC scores are low by definition and an inverse U-shaped relationship

is expected between XC and GC.

Finally, notice that a strong positive linear relationship between OC and GC

suggests that they quantify similar outlier concepts even though their definitions

are different.

Identifying Suspected Observations and
Testing for Discordancy

Respondents with a surprisingly high outlier score, OC or GC, or both, are

considered suspected. Tukey’s fences (Tukey, 1977, pp. 43–44), also known as

the boxplot method (e.g., Vanderviere & Hubert, 2004), may be used to identify

suspected observations as follows. The interquartile range (IQR) is the difference

between the 75th percentile (Q3) and the 25th percentile (Q1) of the outlier

score. The (inner) fences are at Q3 C 1 1
2

� IQR and Q1 � 1 1
2

� IQR (e.g.,

see the boxplots in the first column of Figure 1). For the proposed outlier

scores, observations smaller than Q1 � 1 1
2

� IQR are not suspected and, as

a consequence, they are not considered any further. Observations greater than

Q3 C 1 1
2

� IQR are considered to be suspected observations.

In what follows, L denotes the number of suspected observations in the

sample (e.g., based on Tukey’s fences or another heuristic) and K the number
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FIGURE 1 Examples of Box-Cox power transformations of outlier scores for data sets

ACL, TRA, BAL, CRY, and RAK. Note. For the transformed outlier scores the boxplots

with Tukey’s fences are based on the transformation of the non-transformed boxplots and

Tukey’s fences, and not on the transformed outlier scores.
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540 ZIJLSTRA ET AL.

of observations judged to be outliers (e.g., based on a formal statistical test).

We use two methods to judge whether observations are outliers. First, we adopt

Tukey’s fences as an informal test; all L scores greater than Q3 C1 1
2

�IQR are

considered outliers (this implies that K D L). Second, we use Tukey’s fences

as a heuristic device to identify suspected observations and use a formal test—

called a discordancy test—to decide which suspected observations are outliers

(note that this implies that K � L).

As a formal discordancy test the generalized extreme studentized deviate

(ESD) procedure is used (e.g., Barnett & Lewis, 1994, pp. 221–222; Iglewicz &

Hoaglin, 1993, pp. 32–33; Rosner, 1983). The generalized ESD procedure tests

the null hypothesis that the scores have a normal distribution with mean � and

variance ¢2 against the alternative that the scores are contaminated by scores

from a normal distribution with mean � C a (a > 0) and variance ¢2. Let the

generic notation U denote an outlier score with realization u, sample mean U

and sample standard deviation SU . The ESD is defined as

ESDv D
max jUv � U j

SU

: (5)

Rosner (1983; also see Barnett & Lewis, 1994, p. 221) approximated the sig-

nificance probability (SP ) of the test by

SP.ESDv/ � N � P

 

tN�2 >

s

N.N � 2/ESD2
v

.N � 1/2 � N � ESD2
v

!

; (6)

where N is the number of observations and P.tN�2 > c/ is the probability that

an observation from a Student’s t distribution with N � 2 degrees of freedom

exceeds c. Among the abundance of discordancy tests for univariate samples

(Barnett & Lewis, 1994, chap. 6), the ESD procedure is the most powerful

test when the remainder of the scores is normally distributed and the number of

genuine outliers does not exceed the number of suspected observations (Iglewicz

& Hoaglin, 1993, pp. 38–41; Jain, 1981). This means that for the ESD procedure

to be powerful, the number of suspected observations that is tested has to be

at least as large as the number of genuine outliers. Also, the ESD procedure

has the advantage that the p-value can be approximated well using Equation 6.

Equation 6 includes a minor practical adjustment proposed by Simonoff (1984),

which is that the significance probability is calculated as if only one suspected

observation is tested for discordancy.

When multiple outliers are present in the sample, problems of masking and

swamping may occur (e.g., Barnett & Lewis, 1994, pp. 109–110; Iglewicz &

Hoaglin, 1993, p. 30). Masking occurs when a small cluster of outliers attracts

the mean U and inflates the standard deviation SU (Hadi, 1992); this results

in the presence of one or more less extreme outliers masking the presence
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OUTLIER DETECTION IN TEST AND QUESTIONNAIRE DATA 541

of the more extreme outliers. As a result, neither the more extreme nor the

less extreme outliers may be identified. Swamping happens when a cluster of

observations are tested simultaneously (called block-testing), some of which are

non-outlying scores and others outlying scores, and the whole block is found to

be significant; then the non-outlying observations are labelled discordant due to

the presence of one or more outliers (Hadi, 1992). To minimize masking and

swamping, outward consecutive testing is advocated (Barnett & Lewis, 1994,

p. 131; Simonoff, 1984), meaning that the suspected observation that deviates the

least is tested first. If this observation is judged to be discordant, all observations

that are more extreme are also judged to be discordant. If this observation is not

judged to be discordant, the next suspected observation is tested for discordancy,

and this is repeated until a suspected observation is judged to be discordant or

the suspected observation that deviates the most is found not to be discordant.

When a particular outlier score is observed multiple times, only one of these

observations (called the pivot observation) is tested. If the pivot observation is

judged to be discordant, all observations that are equal or greater than the pivot

observation are judged to be discordant. If the pivot observation is not judged

to be discordant, none of the same observations are discordant, and the next

extreme suspected observation is tested.

A suspected observation is judged to be discordant if p < :05 (Equation 6).

The significance probabilities are based on the assumption that the outlier scores

follow a normal distribution, and may be incorrect if this assumption is not

satisfied. Hence, observations may be incorrectly declared to be outliers due to

the non-normality of the population (Tietjen & Moore, 1972). In general, the

distribution of the outlier scores is unknown and depends on the test or the

questionnaire that produced the data. In our data examples discussed shortly,

we found that the observed outlier score distributions were often skewed to the

right and sometimes bounded by zero.

In order to render the p-values resulting from the ESD procedure (based

on Equation 6) more trustworthy, outlier scores are transformed to an approx-

imately normal distribution using the Box-Cox power transformation (Box &

Cox, 1964; Iglewicz & Hoaglin, 1993, pp. 50-53). The Box-Cox power trans-

formation changes the relative distances between the scores and is especially

useful for skewed distributions with a relatively large range (Hoaglin, Mosteller,

& Tukey, 1983, chap. 4). Let œ be a parameter defining a particular transfor-

mation, and Y.œ/ the transformed outlier score, then for U > 0 the Box-Cox

power transformation is defined as

Y.œ/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

U œ � 1

œ
if œ ¤ 0;

ln.U / if œ D 0:

(7)
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542 ZIJLSTRA ET AL.

The following points may be noted with respect to the application of the

Box-Cox power transformation in this study:

1. In general, parameter œ is chosen such that the distribution of Y.œ/ ap-

proximates a normal distribution as closely as possible. In this study, œ was

chosen such that it maximized the correlation between the proportions of

the transformed outlier scores and the ordinates of the transformed outlier

scores when they are normal (NIST/SEMATECH, 2006).

2. The estimates for œ were found by computing this correlation for œ D

�1:00; �0:99; �0:98; : : : ; 2:50 and choosing the œ value that produced

the highest correlation. More accurate estimates of œ do not necessarily

improve the Box-Cox power transformation (cf., Box & Cox, 1964).

3. In this study, suspected observations were disregarded for the estimation

of œ because the ESD procedure assumes that such observations come

from a different distribution than the non-suspected observations.

4. If an outlier score had a value of zero the Box-Cox power transformation

could not be applied (Equation 7); therefore a constant was added to all

observations so that all outlier scores were positive (i.e., U 0 D U C 1).

5. The Shapiro-Wilk test (Shapiro & Wilk, 1965) was used to test whether

the transformed data without the suspected observations followed a normal

distribution (using a significance level of ’ D :05). The Shapiro-Wilk

test is an omnibus test known to have excellent power when testing for

normality (e.g., Henderson, 2006, pp. 124–125).

Investigating the Influence of Outliers

Leaving out observations from a data set will likely change the outcome of

the statistical analysis. When omission of outliers results in a larger change

than omission of an equal number of random observations, the outliers are

considered to be influential observations. Given that K cases were judged to

be outliers, a useful research strategy may be to compare the effect of omitting

the K outliers with omitting K randomly selected cases on the same statistical

analysis. When the omission of K randomly selected cases is repeated a great

number of times, each time omitting K randomly selected cases that are replaced

after the computations in that round have been completed, confidence intervals

for the outcome of the statistical analysis may be constructed. It may then be

checked whether the result based on the data without the outlying cases lies

outside this interval. If it does, the outliers were influential with respect to this

particular statistical analysis. To determine whether outliers were influential, a

distribution of the statistic of interest, generically denoted S , can be determined

as follows:



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ite
it 

va
n 

Ti
lb

ur
g]

 A
t: 

11
:4

4 
25

 A
pr

il 
20

08
 

OUTLIER DETECTION IN TEST AND QUESTIONNAIRE DATA 543

1. Compute S after the K outliers have been deleted from the sample. The

resulting statistic is denoted S�
.K/

.

2. Compute S after K different observations have been deleted at random

from the sample. Repeat this 1000 times, and denote the resulting statistics

by S.K/b (b D 1; : : : ; 1000; b indexes repetitions). The 1000 values of

S.K/b were used to determine the 2:5th and the 97:5th percentile of the

sampling distribution.

3. Under the null hypothesis that the influence of the K outliers is equal

to the influence of K randomly selected cases, S�
.K/

is expected to lie

within the 2:5th and the 97:5th percentile boundaries of the distribution.

If S�
.K/

lies outside these boundaries, the null hypothesis is rejected, and

the outliers are considered to be influential.

INVESTIGATION OF OUTLYING OBSERVATIONS
IN REAL-DATA SETS

Method

First, the outlier scores OC and GC and the methods for identifying outliers,

Tukey’s fences and the ESD procedure, were used for inspecting ten real-data

sets (Table 2) with respect to the presence of outliers. The data sets were chosen

from studies in which the authors had been involved. The data sets were collected

with tests and questionnaires that differed with respect to the attributes measured,

the number of items and the sample size, and the number of answer categories.

Second, we investigated whether a statistical analysis of the complete data

leads to other results than a similar analysis of the data excluding the identified

outliers. If the results are different, the omitted cases are considered influential.

For example, the statistic of interest may be Cronbach’s (1951) alpha coefficient,

which is a well known lower bound to the reliability of test score XC. The

question is whether another value of alpha is found in the complete data than

in the data without the identified outliers.

Four well known statistics (including Cronbach’s alpha) that are often used

as quality indices for test scores and individual items were used for determining

the possible influence of deleting the identified outliers. They were:

� Cronbach’s alpha. Let Cov.Xj ; Xk/ denote the sample covariance between

the scores on items j and k, and let S2
XC

denote the sample variance of

total score XC; then

’ D
J

J � 1

XX

j ¤k

Cov.Xj ; Xk/

S2
XC

:
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TABLE 2

Data Sets Used for Outlier Identification and Accommodation; Attribute Measured,

Sample Size, Test Length, Number of Answers Categories, and Reference

Data Set Attribute N J m C 1 Reference

1 VER Verbal intelligence by means of

verbal analogies

990 32 2 Meijer, Sijtsma, & Smid

(1990)

2 BAL Intelligence by balance scale

problem-solving

484 25 2 Van Maanen, Been, &

Sijtsma (1989)

3 CRY Tendency to cry 705 23 2 Vingerhoets &

Cornelius (2001)

4 IND Inductive reasoning 478 43 2 De Koning, Sijtsma, &

Hamers (2003)

5 RAK Word comprehension 1641 60 2 Bleichrodt, Drenth,

Zaal, & Resing

(1985)

6 TRA Transitive reasoning 425 10 2 Verweij, Sijtsma, &

Koops (1999)

7 COP Strategies for coping with

industrial malodor

828 7 4 Cavalini (1992)

8 ACL Personality traits 433 52 5 Gough & Heilbrun

(1980)

9 WIL Willingness to participate in

labor union action

496 6 5 Van der Veen (1992)

10 SEN Sensation seeking tendency 441 13 7 Van den Berg (1992)

� Item-rest correlation. The correlation between the score on item j and the

total score on the other J � 1 items, defined as R.�j / D XC � Xj , is often

used as an index for the degree to which item j is a measure of the same

construct as the other J � 1 items. In SPSS (2005) output, the item-rest

correlation is called corrected item-total correlation.
� Loevinger’s/Mokken’s H. Loevinger’s (1948; also, see Mokken, 1971) scal-

ability coefficient H may be interpreted as an index for the accuracy of

a person ordering with respect to XC. It is used in the context of ordinal

measurement (Sijtsma & Molenaar, 2002, chap. 4). Let Covmax.Xj ; Xk/

denote the maximum covariance of the scores on the items j and k given

the marginal distributions of the cross-table of Xj and Xk ; then

H D

XX

j <k

Cov.Xj ; Xk/

XX

j <k

Covmax.Xj ; Xk/

:
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� Item scalability coefficient Hj . The item scalability coefficient Hj gives

the scalability of item j with respect to the other J � 1 items, and is

defined as

Hj D

X

k¤j

Cov.Xj ; Xk/

X

k¤j

Covmax.Xj ; Xk/
:

The higher Hj , the more item j contributes to an accurate person ordering

as expressed by the overall H .

Results

Association between outlier scores and test score. Figure 2 shows three

examples of the association between the test score XC (abscissa) and the outlier

scores (ordinate), OC (first column) and GC (second column). The regression

curve was obtained using the LOESS fitting method (e.g., Chambers & Hastie,

1992). The association between OC and XC was approximately linear for data

sets CRY (r D :98; Figure 2d), TRA (r D �:81), COP (r D :79), and SEN

(r D �:61). For data sets VER (Figure 2a), BAL, IND, RAK, ACL (Figure 2g),

and WIL the association can be best characterized as a U -shape. Irrespective of

the form of the association, for all data sets the item-based outliers were found

in the tails of the XC distribution.

For the data sets VER (Figure 2b), CRY (Figure 2e), RAK, COP, WIL,

and SEN the association between XC and GC can be best characterized by an

inverse U -shape. The mean and the variance of GC were larger in the middle

of the range of XC scores and smaller when the XC scores were low or high.

Data sets BAL, IND and ACL (Figure 2h) showed only part of the inverse U -

shape association, because only part of the XC range was observed. In general,

item-pair based outliers were found in the middle of the XC distribution. An

exception was data set TRA, which showed an approximate linear association

(r D �:60), with the item-pair based outliers found in the lower tail of the XC

distribution.

Figure 2 (third column) shows three examples of the association between

the item-based outlier score OC (abscissa) and item-pair based outlier score

GC (ordinate). The associations were all positive, and appeared in three ways.

First, data sets BAL, IND, and TRA showed approximately linear relationships

characterized by correlations of .77, .72, and .71, respectively. Second, data set

CRY (Figure 2f) showed an inverse U -shape association, which was the same

as the association between XC and GC because r.XC; OC/ D :98. Third, data
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546 ZIJLSTRA ET AL.

FIGURE 2 Examples of scatter plots (with smoothed association curves using LOESS

fitting method) among the two outlier scores (OC, GC) and test scores (XC) for data

sets VER, CRY, and ACL. Note. First column: association between XC (abscissa) and OC

(ordinate); Second column: association between XC (abscissa) and GC (ordinate); Third

column: association between OC (abscissa) and GC (ordinate).

sets VER (Figure 2c), RAK, COP, ACL (Figure 2i), WIL, and SEN showed

heteroscedastic associations, which can be described as follows. Larger OC

values were associated with a wide range of GC values, and smaller OC values

were associated with small GC values, but smaller GC values were associated

with a wide range of OC values. This suggests that the two outlier scores

quantify different concepts and may be used complementary.

Outlier detection. For each data set, Table 3 shows the number (L) and

the percentage (L%) of suspected observations identified by Tukey’s fences,

the number of outliers (K) identified by the ESD procedure, and details of the

Box-Cox power transformation using the item-based outlier score OC and the

item-pair based outlier score GC.
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OUTLIER DETECTION IN TEST AND QUESTIONNAIRE DATA 547

TABLE 3

Suspected Observations, Outliers, and Information on the Box-Cox Power

Transformation for Ten Data Sets

Skewness

Data

Set

Outlier

Score L L% K œ

S-W

p-value Before After Comments

VER OC 8 0.8% 0 0.59 < :001 0:19 �0:17 B(18)

GC 6 0.6% 0 0.93 :033 0:17 0:08

BAL OC 15 3.1% 11 2.02 < :001 �0:46 0:30 B(10), C(7)

GC 28 5.8% 0 0.52 < :001 0:57 �0:36 C(15)

CRY OC 0 0% 0 0.49 < :001 0:38 �0:00 B(22), C(2), D

GC 2 0.3% 0 0.74 < :001 0:59 0:16 C(0)

IND OC 8 1.7% 1 0.86 :003 0:18 0:08 B(19)

GC 1 0.2% 1 0.75 :162 0:27 �0:00 A

RAK OC 58 3.5% 0 0.42 < :001 0:51 �0:10 B(23)

GC 71 4.3% 0 0.44 < :001 0:78 �0:06

TRA OC 37 8.7% 6 0.72 < :001 0:12 �0:07 B(4)

GC 29 6.8% 0 0.26 < :001 0:99 �0:51 B(8), C(0)

COP OC 9 1.1% 0 0.54 < :001 0:43 �0:08 B(14)

GC 42 5.1% 0 0.49 < :001 0:91 0:16 B(28), C(0)

ACL OC 10 2.3% 0 0.06 :023 0:63 �0:07

GC 15 3.5% 1 0.32 :137 0:69 �0:09 A

WIL OC 13 2.6% 0 0.39 < :001 0:53 �0:22 B(17)

GC 34 6.9% 0 0.41 < :001 0:86 �0:00 B(27), C(0)

SEN OC 2 0.5% 0 0.62 :037 0:18 �0:09

GC 10 2.3% 0 0.55 :058 0:67 0:03 A

Note. L: number of suspected observations identified by Tukey’s fences; L%: percentage of

suspected observations; K: number of outliers identified by the ESD procedure; œ: Box-Cox power

transformation coefficient; S-W p-value: the p-value of the Shapiro-Wilk test. If p � :05 the Box-

Cox power transformation to a normal distribution was considered successful; Before: the skewness

of the outlier score without the suspected observations before the Box-Cox power transformation;

After: the skewness of the outlier score without the suspected observations after the Box-Cox power

transformation. Comments: A = Box-Cox power transformation successful; B(R) D Box-Cox power

transformation unsuccessful due to short range of outlier scores, where R is the number of different

values of the N � L outlier scores; C(u) D Box-Cox power transformation unsuccessful due to

dominant outlier score u; D D Box-Cox power transformation unsuccessful due to platykurtic

distribution of the outlier scores.

The percentage of suspected observations (based on Tukey’s fences) ranged

from 0% (CRY, OC) to 8.75% (TRA, OC). This percentage is positively related

to the number of outlier scores with value equal to zero (not tabulated). The OC

scores and GC scores generally indicated different observations as suspected.

Only for data set BAL, 13 of the 15 suspected observations according to OC were

also suspected according to GC; and for data set TRA, 17 of the 37 suspected

observations according to OC were also suspected according to GC. This was
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548 ZIJLSTRA ET AL.

expected because these data sets had strong positive correlations between OC

and GC (r D :77 and r D :71, respectively).

The distributions of the outlier scores were skewed to the right except for data

set CRY (OC; almost uniform), data set BAL (OC; symmetric and leptokurtic),

and data set VER (GC; normal). Except for data sets ACL and SEN in which the

OC scores were also non-integer valued, in the other data sets the outlier scores

were nonnegative integers. Non-integer scores may occur when the ranks of item

categories are tied (for an example, see Table 1, item 4). In general, applying

the Box-Cox power transformation to the outlier scores without suspected obser-

vations decreased the skewness of the distribution (Table 3). The œ value used

in the Box-Cox power transformation (Table 3) ranged from œ D 0:06 (ACL,

OC; almost a logistic transformation) to œ D 2:02 (BAL, OC; quadratic trans-

formation). Most œ values were close to 1
2

or 1
3

, which corresponds to taking

the square root or the cubic root of the outlier scores, respectively. For outlier

score GC of data set VER, œ was close to 1 (i.e., œ D 0:93), which indicates

that no transformation was needed.

Seventeen out of 20 Box-Cox power transformations resulted in a rejection

of the hypothesis that the transformed data follow a normal distribution (based

on the Shapiro-Wilk test with ’ D :05). Figure 1 (top row) shows an example of

a successful Box-Cox power transformation (i.e., GC for data set ACL). When

the Box-Cox power transformation failed to produce a normal distribution, this

could be attributed to one of the following reasons (or a combination of these

reasons) (Table 3, last column):

1. Short range of outlier scores. The Box-Cox power transformation of outlier

scores is unlikely to be useful when the range of the outlier scores is small

(Hoaglin et al., 1983, pp. 124–125). For outlier scores OC and GC a short

range means that few different values of the outlier scores were observed.

Data sets containing few items and/or items having few answer categories

cause the range of the outlier scores to be short. Removing the suspected

observations from the data reduced the range even more. This was an

important cause for failure of the Box-Cox power transformation of OC

scores in data sets VER, BAL, CRY, IND, RAK, TRA, COP, and WIL,

and of GC scores in data sets TRA, COP, and WIL. For example, for

data set TRA outlier score OC had only four different values (Table 3).

Figure 1 (second, third, fourth, and fifth row) shows the Box-Cox power

transformation of distributions with a short scale range.

2. Dominant outlier score value. An outlier score value is dominant when it

is observed more often than other outlier score values or more often than

expected. The OC scores of data sets BAL and CRY, and the GC scores of

data sets BAL, CRY, TRA, COP, and WIL had one dominant value which

caused the Box-Cox power transformation to be unsuccessful. Changing
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the relative distances between the scores did not affect the dominance of a

particular value. Figure 1 (second, third, and fourth row) shows the Box-

Cox power transformation of a distribution with dominant value GC D 0

(data set TRA) and a distribution with a dominant OC value in the middle

of scale (data set BAL) and at the left of the scale (data set CRY).

3. Platykurtic distribution. The distribution of the OC scores of data set CRY

was almost uniform (kurtosis D 1:9) (Figure 1, fourth row). Transforma-

tion of a uniform distribution cannot result in a normal one.

Alternatively, none of the explanations above applied to failure of the Box-

Cox power transformation of OC in data sets ACL and SEN or to the transfor-

mation of GC in data sets VER and RAK (Figure 1, fifth row). The transformed

distributions of OC in data sets VER, IND, RAK, COP, ACL, WIL, and SEN,

and of GC in data sets VER and RAK were found to be non-normal (Shapiro-

Wilk test) but appeared bell-shaped. The number of outliers K was determined

regardless of the Shapiro-Wilk test results, and ranged from K D 0 (14 times)

to K D 11 (Table 3, fifth column).

Influence of outliers. Table 4 shows the separate effects of deleting L

outliers identified by means of Tukey’s fences and K outliers identified by

means of the ESD procedure on the following statistics: Cronbach’s alpha, the

item-rest correlation of item j , coefficient H , and coefficient Hj . Item j is

the item out of J items in the test or questionnaire which has its Hj value

closest to .3; this is an important lower bound for selecting items (Sijtsma &

Molenaar, 2002, pp. 60–61). Notation “��” denotes a significant decrease and

“CC” denotes a significant increase of the statistic of interest.

In general, deleting outliers based on OC resulted in a decrease of the statis-

tics, whereas deleting outliers based on GC resulted in an increase. The explana-

tion for the first result is that almost all outliers identified by OC were in the tails

of the XC distribution, and that their removal resulted in a truncated distribution

of XC. This caused the statistics to have lower values. The explanation for the

second result is that the statistics are based on covariances, which increase when

the data contain fewer Guttman errors (Sijtsma & Molenaar, 2002, pp. 55–58).

This produced lower covariances and thus lower values of the statistics.

For data set TRA the effects of removing the L outliers based on OC were

strongest. The decrease of the values of all statistics was large after omission

of the L outliers. This effect could be explained as follows. All OC values

greater than 3 were identified as outliers using Tukey’s fences, and given the

strong negative linear correlation between OC and XC (r D �:81), this implied

that only cases having either one of the four highest test scores (XC = 7, 8, 9,

and 10) were included in the data. This was a homogeneous group and, as a
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TABLE 4

Values of Four Statistics from Psychometrics, and the Influence on These Statistics

of Omitting L or K Outliers From Ten Real-Data Sets on the Basis

of Outlier Scores OC and GC

OC GC

Data

Set Outlier alpha IRC(j ) H Hj Outlier alpha IRC(j ) H Hj

VER .8594 .2132 .2457 .3014 .8594 .2132 .2457 .3014

L D 8 �� �� �� �� L D 6 CC CC CC CC
K D 0 K D 0

BAL .5621 .6393 .0993 .3126 .5621 .6393 .0993 .3126

L D 15 �� C � CC L D 28 CC CC CC CC
K D 11 �� C � CC K D 1 � CC � CC

CRY .9237 .5097 .4476 .3866 .9237 .5097 .4476 .3866

L D 0 L D 2 CC � CC C
K D 0 K D 0

IND .8456 .5391 .1898 .3004 .8456 .5391 .1898 .3004

L D 8 �� CC �� � L D 1 0 CC C CC
K D 1 �� CC �� CC K D 1 0 CC C CC

RAK .9464 .4274 .5798 .4254 .9464 .4274 .5798 .4254

L D 58 �� �� �� �� L D 71 C CC CC CC
K D 0 K D 0

TRA .5162 .3740 .2048 .2929 .5162 .3740 .2048 .2929

L D 37 �� �� �� �� L D 29 �� �� � �
K D 6 �� �� �� �� K D 0

COP .7120 .4164 .3123 .3069 .7120 .4164 .3123 .3069

L D 9 �� �� �� �� L D 42 CC CC CC CC
K D 0 K D 0

ACL .9497 .5104 .3021 .3002 .9497 .5104 .3021 .3002

L D 10 �� �� �� �� L D 15 C � C C
K D 0 K D 1 CC C CC C

WIL .7444 .4377 .3584 .3420 .7444 .4377 .3584 .3420

L D 13 �� C �� � L D 34 CC CC CC CC
K D 0 K D 0

SEN .8584 .4575 .3465 .2996 .8584 .4575 .3465 .2996

L D 2 � � � � L D 10 CC C CC C
K D 0 K D 0

Note. j is the item which has Hj value closest to .3; “��”: omission of outliers leads to

significantly lower values than random omission; “�”: omission of outliers leads to lower values

than random omission but not significant; “CC”: omission of outliers leads to significantly larger

values than random omission; “C”: omission of outliers leads to larger values than random omission

but not significant; “0”: omission of outliers does not lead to difference; IRC(j ): item-rest correlation

of item j .

result, the correlational structure in the data was lost. Thus, OC should not be

used as an outlier score for data set TRA.

DISCUSSION

Outlier identification and accommodation is a neglected topic in the analysis

of test and questionnaire data collected in psychology, education, sociology,
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political science, and other fields. In this study, two scores were used to assess

the degree to which an observation is inconsistent with the remainder of the

data. The first score was the item-based outlier score OC, which quantifies the

number of times a subject has item scores in the less frequently observed answer

categories. The second was the item-pair based outlier score GC, which counts

the number of Guttman errors.

Two methods were used to identify inconsistent observations as outliers. The

first method was Tukey’s fences procedure and the second was the extreme

studentized deviate (ESD) procedure. The ESD procedure assumes normality of

the distribution of outlier scores. For most data sets, the distributions of OC and

GC were highly skewed to the right. A Box-Cox power transformation to achieve

normality was successful in three cases, but failed in 17 cases. Unsuccessful

transformation of OC to normality (for all data sets) was mostly caused by the

short scale range of the outlier scores (8 times). However, in most cases when

the transformation of OC appeared to be unsuccessful the transformed data

looked approximately normal. Unsuccessful transformation of GC to normality

(7 times) was mostly caused by a dominant outlier score (5 times). Four out of

five times the dominant value was zero. In these cases, transforming the data to

normality is nearly impossible.

A respondent who has (nearly all) J item scores either equal to 0 or m, has

a GC value equal to or close to 0, which will not show up as an outlier when

GC is used. This property of GC should be taken into consideration when GC

is used. Also, an item that does not measure the attribute well can cause many

errors, and thus may influence the distribution of GC. On the other hand, all

respondents are influenced by this “bad” item, and this may prevent outliers

from appearing.

Tukey’s fences procedure identified 0.3% to 8.7% of the observations as out-

liers. The only exception was data set CRY, in which no outliers were identified

by means of OC. The ESD procedure identified outliers in four out of ten data

sets but none in the other six data sets. When the Box-Cox power transforma-

tion was unsuccessful, the quality of the ESD procedure could not be guaranteed

(i.e., we do not know whether the ESD procedure is robust to non-normality).

When the Box-Cox power transformation is successful the ESD procedure can

be considered. However, the transformation could cause extreme observations to

be not extreme anymore when œ is small, and vice versa, cause normal obser-

vations to be extreme when œ is large. Also, some criticism has been exercised

on using Tukey’s fences for detecting outliers when the distribution is extremely

skewed. Because Tukey’s fences are based on measures of location and scale

of a distribution, but not on measures of skewness, Tukey’s fences may iden-

tify too many outliers when the data are skewed (Vanderviere & Hubert, 2004).

Alternatively, Vanderviere and Hubert proposed the use of an adjusted boxplot.

Since in our study real-data sets were used, it is unknown how many outliers
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were present, let alone if any outliers were present at all. Simulation studies

should be performed to answer the question how well outliers are detected by

the outlier scores and the testing methods defined here.

Removal of outliers detected with item-based OC outlier scores resulted in

a decrease of the value of these statistics and removal of outliers detected with

item-pair based GC outlier scores resulted in an increase of the value of the

statistics. In most cases, the detected outliers were influential on the statistics

from psychometrics. This is taken as an indication that detection of outliers was

successful. Removing outliers should lead to values of statistics closer to the

population value. Thus, an outlier score such as GC which tends to increase

Cronbach’s alpha and other statistics is not automatically a good method unless,

after removal of outliers, it produces closer approximations to the population

value. The two outlier scores have different effects on statistics from psycho-

metrics, they have different relationships with the test score, and for most real-

data sets they have a weak relationship with each other. This suggests that they

quantify different concepts and may be used complementary.

Identified outliers may contain valuable information and should be investi-

gated carefully. If a reasonable theoretical explanation is available for an obser-

vation to be an outlier and if it may be concluded that the observation is not

representative for the population under study, it may be deleted from the analysis.

However, if such an explanation is absent, one should consider the possibility

that the model is wrong. To overcome the influence of outliers if deleting them

is not an option, a proper procedure is to accommodate the outliers by using

robust estimation procedures, or transforming the data.

Future research may concentrate on other outlier scores. One may think of

identification of item-score patterns typical of response styles, such as the ten-

dency to primarily give neutral, extreme, or affirmative answers to rating-scale

items. Usually, item-score vectors based on one of these mechanisms give evi-

dence of not responding according to instruction. Their presence calls for closer

inspection of the statistical results.

Another topic for future research is accommodation of categorical influential

data. The results presented here are only a first step in this direction, but more

definitive results may be obtained from a systematic investigation using simu-

lated data. Such data could contain outliers simulated according to definitions

on which outlier indices are based, and the power of such indices for identifying

these cases may be investigated. Also, some more insight could be gained into

the way in which relevant outcome variables are influenced by outliers. It is a

hopeful sign that the analysis of ten real-data sets already gave some indica-

tions of the usefulness of two outlier indices proposed, and also suggested a

methodology for identifying influential cases and how to accommodate them.

The third topic for future research is the choice of meaningful outcome vari-

ables. Here, we have chosen some well known and much used statistics in
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psychometric data analysis, but modern test and questionnaire analysis would

be served well by including outcome statistics such as estimated latent person

and item parameters from item response models, their standard errors, test in-

formation functions, and diagnostic model tests, both for testing models under

the null hypothesis and for model selection (such as the AIC and the BIC).

Together, we believe that the suggestions made here set up a complete research

program. This study is a modest albeit useful start of this program.
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