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WEIGHTED APPROXIMATIONS OF TAIL COPULA PROCESSES
WITH APPLICATION TO TESTING THE BIVARIATE

EXTREME VALUE CONDITION

BY JOHN H. J. EINMAHL, LAURENS DE HAAN AND DEYUAN LI1

Tilburg University, Erasmus University and University of Bern

Consider n i.i.d. random vectors on R
2, with unknown, common distri-

bution function F . Under a sharpening of the extreme value condition on F ,
we derive a weighted approximation of the corresponding tail copula process.
Then we construct a test to check whether the extreme value condition holds
by comparing two estimators of the limiting extreme value distribution, one
obtained from the tail copula process and the other obtained by first estimat-
ing the spectral measure which is then used as a building block for the limit-
ing extreme value distribution. We derive the limiting distribution of the test
statistic from the aforementioned weighted approximation. This limiting dis-
tribution contains unknown functional parameters. Therefore, we show that
a version with estimated parameters converges weakly to the true limiting
distribution. Based on this result, the finite sample properties of our testing
procedure are investigated through a simulation study. A real data application
is also presented.

1. Introduction.

1.1. The extreme value model and its use. Let (X,Y ), (X1, Y1), . . . , (Xn,Yn)

be i.i.d. random vectors with continuous distribution function (d.f.) F . Suppose
that there exist norming constants an, cn > 0 and bn, dn ∈ R such that the sequence
of d.f.’s

P

(
max1≤i≤n Xi − bn

an

≤ x,
max1≤i≤n Yi − dn

cn

≤ y

)

converges to a limit d.f., say, G(x,y), with nondegenerate marginal d.f., that is,

lim
n→∞Fn(anx + bn, cny + dn) = G(x,y)(1.1)

for all but countably many x and y. Then, for a suitable choice of an, bn, cn and dn,
there exist γ1, γ2 ∈ R such that

G(x,∞) = exp
(−(1 + γ1x)−1/γ1

)
, G(∞, y) = exp

(−(1 + γ2y)−1/γ2
)
.
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The d.f. G is called an extreme value d.f. and γ1, γ2 are called the (marginal)
extreme value indices.

Any extreme value d.f. G can be represented as

G

(
x−γ1 − 1

γ1
,

y−γ2 − 1

γ2

)
(1.2)

= exp
(
−

∫ π/2

0

(
x(1 ∧ tan θ)

) ∨ (
y(1 ∧ cot θ)

)
�(dθ)

)
,

with � the d.f. of the so-called spectral measure. There is a one-to-one correspon-
dence between extreme value d.f.’s G and finite measures with d.f. � that satisfy∫ π/2

0
(1 ∧ tan θ)�(dθ) =

∫ π/2

0
(1 ∧ cot θ)�(dθ) = 1,

via (1.2).
Alternatively, one can characterize the extreme value d.f.’s G by the following:

there is a measure � on [0,∞]2 \ {(∞,∞)} such that, with

l(x, y) := − logG

(
x−γ1 − 1

γ1
,
y−γ2 − 1

γ2

)
,(1.3)

we have

1. l(x, y) = �
({(u, v) ∈ [0,∞]2 :u ≤ x or v ≤ y}),

(1.4)
2. l(ax, ay) = al(x, y) for a, x, y > 0.

More generally, we have for any a > 0 and any Borel set A ⊂ [0,∞]2 \ {(∞,∞)}
�(aA) = a�(A),(1.5)

with aA := {(ax, ay) : (x, y) ∈ A}. Also, (1.1) implies

lim
t↓0

t−1P
((

1 − F1(X),1 − F2(Y )
) ∈ tA

) = �(A)(1.6)

for any Borel set A, provided �(∂A) = 0, where F1(x) := F(x,∞) and F2(y) :=
F(∞, y). See, for example, [2].

The bivariate extreme value framework is the appropriate one when one wants
to estimate the probability of an extreme set, that is, a set outside the range of even
the largest observations. Take a > 0 small. Since by (1.5) and (1.6), for small t ,

P
((

1 − F1(X),1 − F2(Y )
) ∈ taA

) ≈ aP
((

1 − F1(X),1 − F2(Y )
) ∈ tA

)
,

we can estimate the probability of tA—outside the range of the observations—
asymptotically by estimating the probability of the pulled back set taA using the
empirical measure. See [3]. Condition (1.1) is fulfilled for many standard distrib-
utions but not for all distributions. Hence, before using this framework to estimate
probabilities of extreme sets, it is important to check whether (1.1) is a reasonable
assumption for the data set at hand. And one wants to do this beforehand, without
specifying the exact structure of the limiting distribution.
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1.2. Estimation of model parameters. Now, in order to develop a test, let us
consider the following. Relation (1.1) implies [cf. (1.6)]

lim
t↓0

t−1P
((

1 − F1(X)
) ∧ (

1 − F2(Y )
) ≤ t,

(1.7)
1 − F2(Y ) ≤ (

1 − F1(X)
)

tan θ
) = �(θ)

for continuity points θ ∈ (0, π/2] of �. Also, for (x, y) ∈ [0,∞)2,

lim
t↓0

t−1P
(
1 − F1(X) ≤ tx or 1 − F2(Y ) ≤ ty

) = l(x, y).(1.8)

A nonparametric estimator for �, suggested by the limit relation (1.7) is [8]

�̂(θ) := 1

k

n∑
i=1

I{RX
i ∨RY

i ≥n+1−k, n+1−RY
i ≤(n+1−RX

i ) tan θ},(1.9)

where RX
i is the rank of Xi among X1,X2, . . . ,Xn and RY

i is the rank of Yi among
Y1, Y2, . . . , Yn, where k = k(n) is an intermediate sequence of integers, that is,
k → ∞, k/n → 0, as n → ∞. Similarly, a nonparametric estimator for l, sug-
gested by the limit relation (1.8), is ([9]; see also [6])

l̂2(x, y) := 1

k

n∑
i=1

I{Xi>Xn+1−�kx�:n or Yi>Yn+1−�ky�:n}
(1.10)

= 1

k

n∑
i=1

I{RX
i >n+1−kx or RY

i >n+1−ky},

where X1:n ≤ · · · ≤ Xn:n are the order statistics of the Xi, i = 1,2, . . . , n (simi-
larly for the Yi ), with �z� the smallest integer ≥ z.

Another way of estimating l is via (1.2), (1.3) and (1.9):

l̂1(x, y) :=
∫ π/2

0

(
x(1 ∧ tan θ)

) ∨ (
y(1 ∧ cot θ)

)
�̂(dθ).(1.11)

1.3. The test. A promising approach to testing whether the null hypothesis
(1.8) holds seems to be to see if the two estimators l̂1 and l̂2 for l, that have a
different background, are not too different. The estimator l̂2 is a natural one mim-
icking more or less the tail of the distribution itself. But this estimator does not
necessarily satisfy condition 2 of (1.4). On the other hand, l̂1 does satisfy condi-
tion 2 of (1.4), but the estimator itself is of a somewhat more complicated nature.

The proposed test statistic is of the Anderson–Darling type:

Ln :=
∫ ∫

0<x,y≤1

(
l̂1(x, y) − l̂2(x, y)

)2
(x ∨ y)−β dx dy(1.12)

for certain β ≥ 0. The test statistic is similar to those used for testing a parametric
null hypothesis (like testing for normality), where the empirical distribution func-
tion is compared with the true distribution function with estimated parameters.
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Here, however, the estimated parameter � is a function (and we only deal with
the tail of the distribution). Also, note that our methods allow us to deal with test
statistics other than Ln as well.

It is not difficult to see that if relation (1.8) is true, the statistic Ln tends to
zero in probability as n → ∞. We shall establish the asymptotic distribution of
kLn as n → ∞ under (1.1) and some extra conditions stemming from [9] and [8],
thus providing a basis for applying a test. The hypothesis to be tested is (1.8). For
the asymptotic normality of the test statistic kLn, under H0, extra conditions are
needed. See Remark 2.2 below.

Note that this test checks whether the dependence structure satisfies (1.8) and
not if the marginals F1,F2 are of the right type. It is only based on the relative posi-
tions (ranks) of the data and completely independent of the marginal distributions
for which tests have been developed already in [5] and [4].

1.4. Use of test. As mentioned before, the test statistic kLn can be used for
a preliminary test of the extreme value model (1.1) before one uses the model in
applications. Note that the test statistic kLn is based on observations for which at
least one component exceeds a certain threshold. Since the estimators depend on
this threshold, one can plot kLn as a function of k. This plot can be used as an
exploratory tool for determining from which threshold on the two estimators l̂1
and l̂2 are close to each other, suggesting that the approximations (1.7) and (1.8)
can be trusted, and, hence, yields a heuristic procedure for determining k. So this
is a second use of the test statistic kLn. See also [14], Section 5.4, and [1].

1.5. Outline of the paper. The weak convergence of kLn is stated in Theo-
rem 2.3. For the proof of this theorem, the known asymptotic normality result
for �̂ [8] is sufficient but not the known one for l̂2 [9]. Hence, as a preliminary but
important result, we first develop a Gaussian approximation for the weighted tail
copula process on (0,1]2,

√
k
(
l̂2(x, y) − l(x, y)

)
/(x ∨ y)η, 0 ≤ η < 1/2,

thus extending significantly the result of [9], where η = 0. This result is stated in
Theorem 2.2. The proofs are given in Section 3.

The limiting random variable in Theorem 2.3 is determined as an integral of a
combination of Gaussian processes. They are parametrized by functions which can
be estimated consistently. In Section 4 it is proved that the probability distribution
of the limiting random variable with these functions estimated converges to the
distribution of the limiting random variable with these functions equal to the actual
ones, which makes the procedure applicable in practice. In Section 5 simulation
results and an application to real data are reported.
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2. Main results. Before stating the main results, we need to introduce some
notation.

Let W� be a Wiener process indexed by the Borel sets in [0,∞]2 \ {(∞,∞)},
depending on the parameter � from (1.4) in the following way: W� is a Gaussian
process and for Borel sets C and C̃,

EW�(C) = 0 and EW�(C)W�(C̃) = �(C ∩ C̃).

Define the sets Cθ by

Cθ = {(x, y) ∈ [0,∞]2 :x ∧ y ≤ 1, y ≤ x tan θ}, θ ∈ [0, π/2].
Assume that the measure � has a density λ. The process Z on [0, π/2] is defined

by

Z(θ) =
∫ 1∨1/(tan θ)

0
λ(x, x tan θ)

(
W1(x) tan θ − W2(x tan θ)

)
dx

− W2(1)

∫ ∞
1∨1/(tan θ)

λ(x,1) dx

(2.1)

− I(π/4,π/2](θ)W1(1)

∫ tan θ

1
λ(1, y) dy, θ ∈ [0, π/2),

Z

(
π

2

)
= −W2(1)

∫ ∞
1

λ(x,1) dx − W1(1)

∫ ∞
1

λ(1, y) dy,

where W1,W2 are the marginal processes defined by

W1(x) = W�([0, x] × [0,∞]) and W2(y) = W�([0,∞] × [0, y]).
Clearly, both processes are standard Wiener processes. Define, for x, y > 0,

R(x, y) = �([0, x] × [0, y]),(2.2)

WR(x, y) = W�([0, x] × [0, y]),(2.3)

R1(x, y) = ∂R(x, y)/∂x, R2(x, y) = ∂R(x, y)/∂y.(2.4)

For convenient presentation and convenient application, the next two theorems
are presented in an approximation setting (with all the processes involved defined
on one probability space), via the Skorohod construction. So in these theorems, l̂1,
l̂2 and the limiting processes A and B (defined below) are only equal in distribution
to the original ones, but we do not add the usual tildes to the notation.

THEOREM 2.1. Assume that condition (1.6) and Conditions 1 and 2 of [8]
hold, and that � has a continuous density λ on [0,∞)2 \ {(0,0)}. Then

sup
0<x,y≤1

|√k(l̂1(x, y) − l(x, y)) − A(x, y)|
x ∨ y

P→ 0
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as n → ∞, where

A(x, y) :=




x

(
W�(Cπ/2) + Z

(
π

2

))

+ y

∫ arctany/x

π/4

1

sin2 θ

(
W�(Cθ) + Z(θ)

)
dθ, if y ≥ x,

x

(
W�(Cπ/2) + Z

(
π

2

))

− x

∫ π/4

arctany/x

1

cos2 θ

(
W�(Cθ) + Z(θ)

)
dθ, if y < x.

Write Ui = 1 − F1(Xi),Vi = 1 − F2(Yi), i = 1,2, . . . , n. Let C(x, y) be the
distribution function of (Ui,Vi). By (1.6) and (2.2), we have

R(x, y) = lim
t↓0

t−1C(tx, ty).

We assume, as in [9], that, for some α > 0,

t−1C(tx, ty) − R(x, y) = O(tα) as t ↓ 0,(2.5)

uniformly for x ∨ y ≤ 1, x, y ≥ 0.

THEOREM 2.2. Assume that conditions (1.6) and (2.5) hold and that k =
o(n2α/(1+2α)). If R1 and R2 are continuous, then we have, for 0 ≤ η < 1/2,

sup
0<x,y≤1

|√k(l̂2(x, y) − l(x, y)) + B(x, y)|
(x ∨ y)η

P→ 0

as n → ∞, where B(x, y) := WR(x, y) − R1(x, y)W1(x) − R2(x, y)W2(y).

THEOREM 2.3. Assume the conditions of Theorems 2.1 and 2.2 hold. Then
for each 0 ≤ β < 3,

∫ ∫
0<x,y≤1

k(l̂1(x, y) − l̂2(x, y))2

(x ∨ y)β
dx dy

(2.6)
d→

∫ ∫
0<x,y≤1

(A(x, y) + B(x, y))2

(x ∨ y)β
dx dy

as n → ∞, and the limit is finite almost surely.

REMARK 2.1. The case β = 0 is similar to the Cramér–von Mises test. Note
that for β < 2, Theorem 2.3 easily follows from an unweighted approximation
in Theorems 2.1 and 2.2. Therefore, the case β = 2 (and not, as usual, β = 1) is
similar to the Anderson–Darling test.
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REMARK 2.2. Conditions 1 and 2 of [8] are rather involved. They require that
the convergence in (1.6) hold uniformly over certain classes of sets. Moreover,
they put an extra restriction on the growth of the sequence k(n), related to the rate
of that convergence. The assumption that � has a density λ excludes, for example,
asymptotic independence, that is, l(x, y) = x + y, for all x, y ≥ 0. Condition (2.5)
is rather weak, but there are distributions for which (1.1) holds with asymptotic
dependence, but where the rate of convergence is slower than tα for any α > 0.

REMARK 2.3. The random variable on the right in Theorem 2.3 has a contin-
uous distribution function. This follows from a property of Gaussian measures on
Banach spaces: the measure of a closed ball is a continuous function of its radius;
see, for example, [13], Chapter 4, Theorem 1.2.

REMARK 2.4. Since x ∨ y ≤ l(x, y) ≤ x + y ≤ 2(x ∨ y), (2.6) remains true
with x ∨y replaced with l(x, y) or x +y, but, when choosing l(x, y), the left-hand
side of (2.6) is not a statistic and l has to be estimated.

3. Proofs. Before proving Theorem 2.1, we first present two lemmas and a
proposition.

LEMMA 3.1.

l(x, y) =




x�

(
π

2

)
+ y

∫ arctany/x

π/4

1

sin2 θ
�(θ) dθ, if y ≥ x,

x�

(
π

2

)
− x

∫ π/4

arctany/x

1

cos2 θ
�(θ) dθ, if y < x.

PROOF. Since

l(x, y) =
∫ π/2

0

(
x(1 ∧ tan θ)

) ∨ (
y(1 ∧ cot θ)

)
�(dθ)

=
∫ π/4

0
(x tan θ) ∨ y�(dθ) +

∫ π/2

π/4
x ∨ (y cot θ)�(dθ)

and x tan θ > y ⇔ x > y cot θ ⇔ θ > arctan y
x
, we have

l(x, y) =
∫ π/4∧arctany/x

0
y�(dθ) +

∫ π/4

π/4∧arctany/x
x tan θ�(dθ)

+
∫ π/4∨arctany/x

π/4
y cot θ�(dθ) +

∫ π/2

π/4∨arctany/x
x�(dθ)
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=




∫ π/4

0
y�(dθ) +

∫ arctany/x

π/4
y cot θ�(dθ) +

∫ π/2

arctany/x
x�(dθ),

if y ≥ x,∫ arctany/x

0
y�(dθ) +

∫ π/4

arctany/x
x tan θ�(dθ) +

∫ π/2

π/4
x�(dθ),

if y < x.

In the case y ≥ x, via integration by parts, one has

l(x, y) = y�

(
π

4

)
− y�(0) + y cot

(
arctan

y

x

)
�

(
arctan

y

x

)
− y cot

π

4
�

(
π

4

)

− y

∫ arctany/x

π/4
�(θ)

(
− 1

sin2 θ

)
dθ + x�

(
π

2

)
− x�

(
arctan

y

x

)

= x�

(
π

2

)
+ y

∫ arctany/x

π/4

1

sin2 θ
�(θ) dθ.

In the case y < x, via integration by parts again, one has

l(x, y) = y�

(
arctan

y

x

)
− y�(0) + x tan

π

4
�

(
π

4

)

− x tan
(

arctan
y

x

)
�

(
arctan

y

x

)

− x

∫ π/4

arctany/x
�(θ)

1

cos2 θ
dθ + x�

(
π

2

)
− x�

(
π

4

)

= x�

(
π

2

)
− x

∫ π/4

arctany/x

1

cos2 θ
�(θ) dθ. �

Write

Rn(x, y) = n

k
C

(
kx

n
,
ky

n

)
, Tn(x, y) = 1

k

n∑
i=1

I{Ui<kx/n,Vi<ky/n},(3.1)

vn(x, y) = √
k
(
Tn(x, y) − Rn(x, y)

)
, vn,η(x, y) = vn(x, y)

(x ∨ y)η
(3.2)

and

vn,η,1(x) = vn(x,∞)

xη
,

(3.3)

vn,η,2(y) = vn(∞, y)

yη
, vn,j = vn,0,j , j = 1,2.

PROPOSITION 3.1. Let T > 0. For 0 ≤ η < 1/2,(
vn,η(x, y), x, y ∈ (0, T ], vn,η,1(x), x ∈ (0, T ], vn,η,2(y), y ∈ (0, T ])
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converges in distribution to(
WR(x, y)

(x ∨ y)η
, x, y ∈ (0, T ], W1(x)

xη
, x ∈ (0, T ], W2(y)

yη
, y ∈ (0, T ]

)

as n → ∞.

PROOF. Define

Zn,i = 1√
k
δ((n/k)Ui,(n/k)Vi),

and for all 0 < x,y ≤ T , define the functions

fx,y = I[0,x)×[0,y)/(x ∨ y)η,

f (1)
x = I[0,x)×[0,∞]/xη, f (2)

y = I[0,∞]×[0,y)/y
η.

All these f ’s form the class F . We equip F with the semi-metric d defined by

d(fx,y, fu,v) =
√√√√E

(
WR(x, y)

(x ∨ y)η
− WR(u, v)

(u ∨ v)η

)2

,

d
(
fx,y, f

(1)
u

) =
√√√√

E

(
WR(x, y)

(x ∨ y)η
− W1(u)

uη

)2

,

and so on.
For any ε > 0, the bracketing number N[](ε,F ) is the minimal number of sets

Nε in a partition F = ⋃Nε

j=1 Fεj of the index set into sets Fεj such that, for every
partitioning set Fεj ,

n∑
i=1

E∗ sup
f,g∈Fεj

|Zn,i(f ) − Zn,i(g)|2 ≤ ε2,(3.4)

where, as usual, Zn,i(f ) = ∫
f dZn,i and E∗ means taking the outer integral when

computing the expectation.
We will use Theorem 2.11.9 in [17]: For each n, let Zn,1,Zn,2, . . . , Zn,n be

independent stochastic processes with finite second moments indexed by a totally
bounded semimetric space (F , d). Suppose

n∑
i=1

E∗‖Zn,i‖F 1{‖Zn,i‖F >λ} → 0 for every λ > 0,

where ‖Zn,i‖F = supf ∈F |Zn,i(f )|, and

∫ δn

0

√
logN[](ε,F ) dε → 0 for every δn ↓ 0.
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Then the sequence
∑n

i=1(Zn,i −EZn,i) is asymptotically tight in ∞(F ) and con-
verges weakly, provided the finite-dimensional distributions converge weakly.

We briefly sketch the total boundedness of (F , d). We only consider the sub-
class F2 of F consisting of the bivariate fx,y’s; moreover, we restrict ourselves to
the case x ≥ y, u ≥ v and x ≥ u, y ≥ v. For any δ > 0, assuming |x − u| ≤ δ and
|y − v| ≤ δ, one has

d2(fx,y, fu,v) = E

(
WR(x, y)

(x ∨ y)η
− WR(u, v)

(u ∨ v)η

)2

= E

(
uηWR(x, y) − xηWR(u, v)

(xu)η

)2

= u2ηR(x, y) − 2xηuηR(u, v) + x2ηR(u, v)

(xu)2η
.

If u ≤ δ, then

d2(fx,y, fu,v) ≤ R(x, y)

x2η
+ 2R(u, v)

u2η
+ R(u, v)

u2η

≤ x1−2η + 3u1−2η ≤ (2δ)1−2η + 3δ1−2η ≤ 5δ1−2η.

If u > δ, then, since

R(x, y) ≤ R(u, v) + �([u,x] × [0,∞]) + �([0,∞] × [v, y]) ≤ R(u, v) + 2δ,

we have

d2(fx,y, fu,v) ≤ R(u, v)(uη − xη)2

(xu)2η
+ 2δu2η

(xu)2η

≤ u1−4η(uη − xη)2 + 2δ1−2η

≤ u1−4ηx2η−2(x − u)2 + 2δ1−2η

≤ u−1−2η(x − u)2 + 2δ1−2η ≤ 3δ1−2η.

So, since 1 − 2η > 0, we see that, for every ε > 0, we can find a δ > 0 such that,
for |x − u| ≤ δ and |y − v| ≤ δ, d2(fx,y, fu,v) < ε. Hence, since [0, T ]2 is totally
bounded with respect to the Euclidean metric, we obtain the total boundedness
of (F , d).

Observe that

Zn,i(fx,y) = 1√
k
I{Ui<(k/n)x,Vi<(k/n)y}/(x ∨ y)η,

n∑
i=1

(Zn,i − EZn,i)(fx,y) = vn,η(x, y)
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and similarly for the marginal processes. First we have to show that, for every
λ > 0,

n∑
i=1

E‖Zn,i‖F I{‖Zn,i‖F >λ} → 0(3.5)

as n → ∞. Again, we will restrict ourselves to the subclass F2. For the univariate
f

(1)
x ’s and f

(2)
y ’s, it can be shown in a similar but easier way.

Note that

sup
fx,y∈F2

1√
k
I{Ui<(k/n)x,Vi<(k/n)y}/(x ∨ y)η ≤ 1√

k

1

((n/k)(Ui ∨ Vi))η
,

so for each λ > 0,
n∑

i=1

E‖Zn,i‖F2I{‖Zn,i‖F2>λ}

≤ n√
k
E

1

((n/k)(U1 ∨ V1))η
I{(n/k)(U1∨V1)<(

√
kλ)−1/η}

= n√
k

∫ (
√

kλ)−1/η

0
x−η dC

(
k

n
x,

k

n
x

)

= n√
k

(√
kλC

(
k

n

(√
kλ

)−1/η
,
k

n

(√
kλ

)−1/η
)

+ η

∫ (
√

kλ)−1/η

0
C

(
k

n
x,

k

n
x

)
x−η−1 dx

)

≤ n√
k

(√
kλ

k

n

(√
kλ

)−1/η + η

∫ (
√

kλ)−1/η

0

k

n
x−η dx

)

= λ1−1/ηk1−1/(2η) + √
k

η

1 − η

(√
kλ

)1−1/η

= 1

1 − η
λ1−1/ηk1−1/(2η) → 0 (η < 1/2).

Next, we want to prove ∫ δn

0

√
logN[](ε,F ) dε → 0(3.6)

for every δn ↓ 0. For notational convenience, we choose T = 1; for general T > 0,
the proof goes the same. Let ε > 0 be small, define a = ε3/(1−2η) and θ = 1 − ε3.
We again consider only F2; the univariate f ’s are easier to handle. Define

F (a) = {fx,y ∈ F2 :x ∧ y ≤ a},
F (l,m) = {fx,y ∈ F2 : θ l+1 ≤ x ≤ θ l, θm+1 ≤ y ≤ θm}.



1998 J. H. J. EINMAHL, L. DE HAAN AND D. LI

Then

F2 = F (a) ∪
( [loga/ log θ ]⋃

m=0

[loga/ log θ ]⋃
l=0

F (l,m)

)
.

First check (3.4) for F (a):
n∑

i=1

E sup
f,g∈F (a)

(
Zn,i(f ) − Zn,i(g)

)2

= nE sup
f,g∈F (a)

(
Zn,1(f ) − Zn,1(g)

)2

≤ 4nE sup
f ∈F (a)

Z2
n,1(f )

= 4n

k
E sup

x,y>0
x∧y≤a

I{U1<kx/n,V1<ky/n}/(x ∨ y)2η

≤ 4n

k
E

(
n

k
U1

)−2η

I{(n/k)U1<a}

= 4n

k

∫ ak/n

0

(
n

k
x

)−2η

dx

= 4

1 − 2η
a1−2η ≤ ε2.

Now we consider (3.4) for the F (l,m); w.l.o.g. we take l ≤ m:

n∑
i=1

E sup
f,g∈F (l,m)

(
Zn,i(f ) − Zn,i(g)

)2

≤ nE

(
sup

f ∈F (l,m)

Zn,1(f ) − inf
f ∈F (l,m)

Zn,1(f )

)2

≤ n

k
E

(
I{U1<(k/n)θ l,V1<(k/n)θm}/(θ l+1 ∨ θm+1)η

− I{U1<(k/n)θ l+1,V1<(k/n)θm+1}/(θ l ∨ θm)η
)2

= n

k
E

(
I{U1<(k/n)θ l,V1<(k/n)θm}

(
1

θη(l+1)
− 1

θηl

)

+ (
I{U1<(k/n)θ l,V1<(k/n)θm} − I{U1<(k/n)θ l+1,V1<(k/n)θm+1}

) 1

θηl

)2

≤ 2n

k

(
C

(
k

n
θl,

k

n
θm

)
1

θ2ηl

(
1

θη
− 1

)2
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+
[
C

(
k

n
θl,

k

n
θm

)
− C

(
k

n
θl+1,

k

n
θm+1

)]
1

θ2ηl

)

≤ 2n

k

(
k

n

θl

θ2ηl

(
1

θη
− 1

)2

+ 2k

n

θl

θ2ηl
(1 − θ)

)

≤ 2
(

1

θ1/2 − 1
)2

+ 4(1 − θ) ≤ ε6 + 4ε3 ≤ ε2.

It is easy to see that the number of elements of the “partition” of F2 is bounded
by ε−7, which yields (3.6). Hence, we have proved the asymptotic tightness con-
dition.

It remains to prove that the finite-dimensional distributions of our process con-
verge weakly. This follows from the fact that multivariate weak convergence fol-
lows from weak convergence of linear combinations of the components and the
univariate Lindeberg–Feller central limit theorem. It is easily seen that the Linde-
berg condition is satisfied for these linear combinations since the elements of F
are weighted indicators and, hence, bounded. �

LEMMA 3.2. For 0 ≤ η < 1/2,

P

(
sup

x∨y≤ε
x,y>0

|WR(x, y)|
(x ∨ y)η

≥ λ

)
≤ 16

∞∑
m=0

exp
(
− λ2

21+2η

2m(1−2η)

ε1−2η

)
.

PROOF. For m = 0,1,2, . . . , define

Am =
{
(x, y) :

ε

2m+1 ≤ x ≤ ε

2m
,

ε

2m+1 ≤ y ≤ ε

}
.

Then, with Z a standard normal random variable,

P

(
sup

x∨y≤ε
0<x≤y

|WR(x, y)|
(x ∨ y)η

≥ λ

)
= P

(
sup

x∨y≤ε
0<x≤y

|WR(x, y)|
yη

≥ λ

)

≤ P

(
sup

m∈{0,1,2,...}
sup

(x,y)∈Am

|WR(x, y)|
yη

≥ λ

)

≤
∞∑

m=0

P

(
sup

(x,y)∈Am

|WR(x, y)| ≥ λ

(
ε

2m+1

)η)

≤ 4
∞∑

m=0

P

(∣∣∣∣WR

(
ε

2m
, ε

)∣∣∣∣ ≥ λ

(
ε

2m+1

)η)

≤ 4
∞∑

m=0

P

(
|Z| ≥ λ

2η

(
2m

ε

)1/2−η)
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≤ 8
∞∑

m=0

exp
(
− λ2

21+2η

2m(1−2η)

ε1−2η

)
,

where the third inequality follows, for instance, from an adaptation of Lemma 1.2
in [12] and the last inequality from Mill’s ratio. A symmetry argument completes
the proof. �

By Theorem 2 in [8] and Proposition 3.1 (and their proofs), it follows that(√
k
(
�̂(θ) − �(θ)

)
, vn,η(x, y), vn,η,1(u), vn,η,2(v)

)
d→

(
W�(Cθ) + Z(θ),

WR(x, y)

(x ∨ y)η
,
W1(u)

uη
,
W2(v)

vη

)

on D[0, π/2] × D[0, T ]2 × D[0, T ] × D[0, T ]. By the Skorohod construction,
there exists now a probability space carrying �̂∗, v∗

n , v∗
n,1, v∗

n,2, W ∗
�(C·), Z∗, W ∗

R ,
W ∗

1 and W ∗
2 such that

(�̂∗, v∗
n, v∗

n,1, v
∗
n,2)

d= (�̂, vn, vn,1, vn,2),(
W ∗

�(C·),Z∗,W ∗
R,W ∗

1 ,W ∗
2
) d= (

W�(C·),Z,WR,W1,W2
)

and for 0 ≤ η < 1/2,

Dn := sup
0≤θ≤π/2

∣∣√k
(
�̂∗(θ) − �(θ)

) − (
W ∗

�(Cθ) + Z∗(θ)
)∣∣ = oP (1),(3.7)

sup
0<x,y≤T

|v∗
n(x, y) − W ∗

R(x, y)|
(x ∨ y)η

= oP (1),(3.8)

sup
0<x≤T

|v∗
n,1(x) − W ∗

1 (x)|
xη

= oP (1),

(3.9)

sup
0<y≤T

|v∗
n,2(y) − W ∗

2 (y)|
yη

= oP (1),

as n → ∞. Henceforth, we will work on this probability space, but drop the ∗ from
the notation.

PROOF OF THEOREM 2.1. By Lemma 3.1,√
k
(
l̂1(x, y) − l(x, y)

)

=




x
√

k

(
�̂

(
π

2

)
− �

(
π

2

))
+ y

∫ arctany/x

π/4

1

sin2 θ

√
k
(
�̂(θ) − �(θ)

)
dθ,

if y ≥ x,

x
√

k

(
�̂

(
π

2

)
− �

(
π

2

))
− x

∫ π/4

arctany/x

1

cos2 θ

√
k
(
�̂(θ) − �(θ)

)
dθ,

if y < x.
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First consider the case y ≥ x:

sup
0<x≤y≤1

∣∣∣∣
√

k(l̂1(x, y) − l(x, y)) − A(x, y)

x ∨ y

∣∣∣∣
= sup

0<x≤y≤1

1

x ∨ y

∣∣∣∣x
(√

k

(
�̂

(
π

2

)
− �

(
π

2

))
−

(
W�(Cπ/2) + Z

(
π

2

)))

+ y

∫ arctany/x

π/4

1

sin2 θ

(√
k
(
�̂(θ) − �(θ)

)

− (
W�(Cθ) + Z(θ)

))
dθ

∣∣∣∣
≤ sup

0<x≤y≤1

xDn

x ∨ y
+ sup

0<x≤y≤1

yDn

x ∨ y

∫ π/2

π/4

1

sin2 θ
dθ → 0,

in probability as n → ∞. For the case y < x, the proof is similar. �

Let Q1n and Q2n be the empirical quantile functions of the {Ui}ni=1 and {Vi}ni=1,
respectively. Define

R̂(x, y) = 1

k

n∑
i=1

I{Ui<Q1n(kx/n),Vi<Q2n(ky/n)}.

Note that, by (1.10),

l̂2(x, y) = 1

k

n∑
i=1

I{Ui<Q1n(kx/n) or Vi<Q2n(ky/n)}.

PROOF OF THEOREM 2.2. It is easily seen that l̂2(x, y) + R̂(x, y) = (�kx� +
�ky� − 2)/k ≤ ([kx] + [ky])/k, for each x, y ∈ (0,1], almost surely. So we have

sup
0<x,y≤1
x∨y≥1/k

|√k(l̂2(x, y) − l(x, y)) + √
k(R̂(x, y) − R(x, y))|

(x ∨ y)η

a.s.= sup
0<x,y≤1
x∨y≥1/k

|√k((1/k)(�kx� + �ky� − 2) − (x + y))|
(x ∨ y)η

≤ kη sup
0<x,y≤1

√
k
(
x + y − ([kx] + [ky])/k

)

≤ 2
√

k · kη−1 = 2kη−1/2 → 0.

Write Sjn(x) = n
k
Qjn(

k
n
x), j = 1,2. Then we have

sup
0<x,y≤1
x∨y≥1/k

|√k(l̂2(x, y) − l(x, y)) + WR(x, y) − R1(x, y)W1(x) − R2(x, y)W2(y)|
(x ∨ y)η
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a.s.= sup
0<x,y≤1
x∨y≥1/k

∣∣√k
(
R̂(x, y) − R(x, y)

) − WR(x, y)

+ R1(x, y)W1(x) + R2(x, y)W2(y)
∣∣(x ∨ y)−η + o(1)

= sup
0<x,y≤1
x∨y≥1/k

|√k(R̂(x, y) − Rn(S1n(x), S2n(y))) − WR(x, y)|
(x ∨ y)η

+ sup
0<x,y≤1
x∨y≥1/k

|√k(Rn(S1n(x), S2n(y))) − R(S1n(x), S2n(y))|
(x ∨ y)η

+ sup
0<x,y≤1
x∨y≥1/k

∣∣√k
(
R

(
S1n(x), S2n(y)

) − R(x, y)
)

+ R1(x, y)W1(x, y) + R2(x, y)W2(y)
∣∣(x ∨ y)−η + o(1)

=: D1 + D2 + D3 + o(1).

We will show that Dj → 0 in probability, j = 1,2,3. We have

D1 = sup
0<x,y≤1
x∨y≥1/k

|√k(Tn(S1n(x), S2n(y)) − Rn(S1n(x), S2n(y))) − WR(x, y)|
(x ∨ y)η

≤ sup
0<x,y≤1
x∨y≥1/k

∣∣√k
(
Tn

(
S1n(x), S2n(y)

)

− Rn

(
S1n(x), S2n(y)

)) − WR

(
S1n(x), S2n(y)

)∣∣
× (

S1n(x) ∨ S2n(y)
)−η ·

(
S1n(x) ∨ S2n(y)

x ∨ y

)η

+ sup
0<x,y≤1
x∨y≥1/k

|WR(S1n(x), S2n(y)) − WR(x, y)|
(x ∨ y)η

≤ sup
0<s,t≤2

|vn(s, t) − WR(s, t)|
(s ∨ t)η

· sup
0<s,t≤k/n
s∨t≥1/n

(
Q1n(s) ∨ Q2n(t)

s ∨ t

)η

+ sup
0<x,y≤1
x∨y≥1/k

|WR(S1n(x), S2n(y)) − WR(x, y)|
(x ∨ y)η

=: D11 · D12 + D13,

where the last inequality holds with arbitrarily high probability. Then D11 → 0 in
probability because of (3.8) with T = 2. It is well known that

sup
s≥1/n

Qjn(s)

s
= OP (1), j = 1,2(3.10)
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(see [16], page 419). Hence, D11 ·D12 → 0, in probability. Now consider, for each
ε > 1/k,

D13 ≤ sup
0<x,y≤1
x∨y≥ε

|WR(S1n(x), S2n(y)) − WR(x, y)|
εη

+ sup
0<x,y≤1

1/k≤x∨y≤ε

|WR(S1n(x), S2n(y))|
(S1n(x) ∨ S2n(y))η

· sup
s,t≥1/n

(
Q1n(s) ∨ Q2n(t)

s ∨ t

)η

+ sup
0<x,y≤1

1/k≤x∨y≤ε

|WR(x, y)|
(x ∨ y)η

=: D14 + D15 + D16.

By the (uniform) continuity of WR and the fact that

sup
0<t≤k/n

n

k
|Qjn(t) − t | → 0, a.s., j = 1,2,(3.11)

D14 → 0 in probability a.s. for any ε > 0. Let δ > 0; by (3.10) and Lemma 3.2,
we see that, for large n, P(D15 ≥ δ) ≤ δ for ε > 0 small enough. Again, from
Lemma 3.2, we have P(D16 ≥ δ) ≤ δ. Hence, D13 → 0 in probability and, conse-
quently D1 → 0, in probability.

Consider D2. Take (a, b) with a ∨ b = u. Then according to (2.5),

1

t
C(ta, tb) = u

ut
C

(
tu

a

u
, tu

b

u

)

= uR

(
a

u
,
b

u

)
+ u1+αO(tα) = R(a, b) + (a ∨ b)1+αO(tα).

Now with arbitrarily high probability,

D2 ≤ sup
0<x,y≤2

|√k(Rn(x, y) − R(x, y))|
(x ∨ y)η

· sup
s∨t≥1/n

(
Q1n(s) ∨ Q2n(t)

s ∨ t

)η

.

We have seen before that the second term of this product is OP (1). So it suffices
to show that the first term is o(1):

sup
0<x,y≤2

|√k(Rn(x, y) − R(x, y))|
(x ∨ y)η

=
(

sup
0<x,y≤2

√
k(x ∨ y)1+α

(x ∨ y)η

)
O

((
k

n

)α)

= O

(
kα+1/2

nα

)
= o(1),

by assumption. Hence, D2 → 0 in probability.
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It remains to show that D3 → 0 in probability. By two applications of the mean-
value theorem, we obtain

R
(
S1n(x), S2n(y)

) − R(x, y)

= R
(
S1n(x), S2n(y)

) − R
(
x,S2n(y)

) + R
(
x,S2n(y)

) − R(x, y)

= R1
(
θ1n, S2n(y)

)(
S1n(x) − x

) + R2(x, θ2n)
(
S2n(y) − y

)
,

with θ1n between x and S1n(x) and θ2n between y and S2n(y). So

D3 ≤ sup
0<x,y≤1
x∨y≥1/k

|R1(θ1n, S2n(y))
√

k(S1n(x) − x) + R1(x, y)W1(x)|
(x ∨ y)η

+ sup
0<x,y≤1
x∨y≥1/k

|R2(x, θ2n)
√

k(S2n(y) − y) + R2(x, y)W2(y)|
(x ∨ y)η

.

We consider only the first term on the right-hand side of this expression; the second
one can be dealt with similarly. Write zn(x) = √

k(S1n(x) − x). From (3.9) with
η = 0, it follows that sup0<x≤1 |zn(x) + W1(x)| → 0 in probability. From this, it
can be shown that, for 0 ≤ η < 1/2,

sup
1/k≤x≤1

|zn(x) + W1(x)|
xη

→ 0(3.12)

in probability (see, e.g., [7]). Now

sup
0<x,y≤1
x∨y≥1/k

|R1(θ1n, S2n(y))zn(x) + R1(x, y)W1(x)|
(x ∨ y)η

≤ sup
0<x,y≤1

R1
(
θ1n, S2n(y)

) · sup
1/k≤x≤1

|zn(x) + W1(x)|
xη

+ sup
0<x,y≤1

∣∣R1(x, y) − R1
(
θ1n, S2n(y)

)∣∣ · sup
0<x≤1

|W1(x)|
xη

=: D31 + D32.

Since R1 is continuous on [0,2]2, it is uniformly continuous and bounded.
This, together with (3.12), yields D31 → 0 in probability. The uniform continu-
ity of R1, together with (3.11) and the fact that sup0<x≤1 |W1(x)|/xη < ∞ a.s.,
yields D32 → 0 in probability and, consequently, D3 → 0 in probability.

Finally, we show that

sup
0<x,y<1/k

|√k(l̂2(x, y) − l(x, y)) + B(x, y)|
(x ∨ y)η

= oP (1).

Observing that sup0<x,y<1/k l̂2(x, y) = 0 a.s., this follows easily. �
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PROOF OF THEOREM 2.3. For each 0 ≤ β < 3, there exist α ∈ [0,2) and
η ∈ [0,1/2) such that β = α + 2η. By Theorems 2.1 and 2.2, and

∫ 1
0

∫ 1
0 (x ∨

y)−α dx dy < ∞, it follows that, as n → ∞,

∫ ∫
0<x,y≤1

k(l̂1(x, y) − l̂2(x, y))2

(x ∨ y)β
dx dy

= oP (1)

∫ ∫
0<x,y≤1

1

(x ∨ y)α
dx dy

+
∫ ∫

0<x,y≤1

(A(x, y) + B(x, y))2

(x ∨ y)β
dx dy

d→
∫ ∫

0<x,y≤1

(A(x, y) + B(x, y))2

(x ∨ y)β
dx dy. �

4. Approximating the limit. For testing purposes, we have to find the prob-
ability distribution of the limiting random variable in Theorem 2.3. This can be
done by simulating the processes A and B , but unfortunately their distributions
depend on the unknown measure �. Therefore, we generate approximations An

and Bn, respectively, of the processes A and B , not with parameter �, but with
approximated parameter �n. In this section we consider the convergence of the
sequence of these approximated limiting random variables. Until further notice,
we take {�n}n≥1 to be a sequence of deterministic measures.

Define

R1n(x, y) := 1
2k1/5�n

([x − k−1/5, x + k−1/5] × [0, y)
)
,

R2n(x, y) := 1
2k1/5�n

([0, x) × [y − k−1/5, y + k−1/5]),
WRn(x, y) := W�n([0, x] × [0, y]),

W1n(x) := W�n([0, x] × [0,∞]),
W2n(y) := W�n([0,∞] × [0, y]),

and the process Bn by

Bn(x, y) := WRn(x, y) − R1n(x, y)W1n(x) − R2n(x, y)W2n(y).

Based on the definition of Z in (2.1) and the homogeneity property of λ [i.e.,
λ(tx, ty) = 1

t
λ(x, y)], we define the approximating process Zn by



2006 J. H. J. EINMAHL, L. DE HAAN AND D. LI

Zn(θ) =




λn(1, tan θ) tan θ

∫ 1/ tan θ

0

W1n(x)

x
dx

− λn(1, tan θ)

∫ 1

0

W2n(x)

x
dx

− W2n(1)

∫ ∞
1/ tan θ

λn(x,1) dx, θ ∈ [0, π/4],

λn(1/ tan θ,1)

∫ 1

0

W1n(x)

x
dx

− λn(1/ tan θ,1)
1

tan θ

∫ tan θ

0

W2n(x)

x
dx

− W2n(1)

∫ ∞
1

λn(x,1) dx − W1n(1)

∫ tan θ

1
λn(1, y) dy,

θ ∈ (π/4, π/2),

−W2n(1)

∫ ∞
1

λn(x,1) dx − W1n(1)

∫ ∞
1

λn(1, y) dy,

θ = π/2,

(4.1)

where λn is the approximation of λ defined by

λn(1, y) := 1
4k1/3�n([1 − k−1/6,1 + k−1/6] × [y − k−1/6, y + k−1/6]),

y > 0,

λn(x,1) := 1
4k1/3�n([x − k−1/6, x + k−1/6] × [1 − k−1/6,1 + k−1/6]),

x > 0.

Finally, define the process An by

An(x, y) :=




x

(
W�n(Cπ/2) + Zn

(
π

2

))

+ y

∫ arctany/x

π/4

1

sin2 θ

(
W�n(Cθ) + Zn(θ)

)
dθ, if y ≥ x,

x

(
W�n(Cπ/2) + Zn

(
π

2

))

− x

∫ π/4

arctany/x

1

cos2 θ

(
W�n(Cθ) + Zn(θ)

)
dθ, if y < x.

First we consider the weak convergence of the weighted approximating
processes. We write D2 := D[0,1]2 for the generalization of D[0,1] to dimen-
sion 2, and Ld for the Borel σ -algebra on (D2, d), where d is the metric on D2
defined in [11].

PROPOSITION 4.1. Let � be as in Theorem 2.3. Suppose that {�n}n≥1 is a
sequence of measures on [0,∞]2 \ {(∞,∞)} satisfying that, for each x, y ≥ 0,

�n([0, x] × [0,∞]) = [kx]/k, �n([0,∞] × [0, y]) = [ky]/k,(4.2)
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sup
0<x,y≤1

|�n([0, x] × [0, y]) − �([0, x] × [0, y])| → 0(4.3)

as n → ∞. Further, suppose that

sup
0<x≤1

|λn(x,1) − λ(x,1)| → 0, sup
0<y≤1

|λn(1, y) − λ(1, y)| → 0,(4.4)

sup
0<x,y≤1

|Rjn(x, y) − Rj(x, y)| → 0, j = 1,2,(4.5)

as n → ∞. Then for each 0 ≤ η < 1/2,{
An(x, y) + Bn(x, y)

(x ∨ y)η
, (x, y) ∈ [0,1]2

}
→

{
A(x, y) + B(x, y)

(x ∨ y)η
, (x, y) ∈ [0,1]2

}
,

weakly in D2.

Before proving this proposition, we present three corollaries. The last one is the
main result of this section.

COROLLARY 4.1. Under the conditions of Proposition 4.1, for each
0 ≤ β < 3, ∫ ∫

0<x,y≤1

(An(x, y) + Bn(x, y))2

(x ∨ y)β
dx dy

(4.6)
d→

∫ ∫
0<x,y≤1

(A(x, y) + B(x, y))2

(x ∨ y)β
dx dy

as n → ∞.

Let Q�n be the quantile function of the random variable on the left-hand side
of (4.6) and Q� the quantile function of the random variable on the right-hand
side of (4.6).

COROLLARY 4.2. Under the conditions of Proposition 4.1, for each
0 ≤ β < 3 and for each continuity point 1 − α (0 < α < 1) of Q�,

lim
n→∞Q�n(1 − α) = Q�(1 − α).

Next, with abuse of notation, we estimate �n from the data, so it becomes ran-
dom. In [8], �n is defined as

�n(A) := 1

k

n∑
i=1

IkA/n

(
1

n

n∑
j=1

I(−∞,Ui ](Uj ),
1

n

n∑
j=1

I(−∞,Vi ](Vj )

)

(4.7)

= 1

k

n∑
i=1

IkA(n + 1 − RX
i , n + 1 − RY

i ),



2008 J. H. J. EINMAHL, L. DE HAAN AND D. LI

where Ui := 1 − F1(Xi), Vi := 1 − F2(Yi), for i = 1,2, . . . , n. Note that, for
x, y > 0,

�n

([0, x) × [0, y)
) = 1

k

n∑
i=1

I{Ui<Q1n(kx/n),Vi<Q2n(ky/n)}.

So �n([0, x) × [0,∞]) = (�kx� − 1)/k ≤ [kx]/k = �n([0, x] × [0,∞]) a.s. and
�n([0,∞] × [0, y)) = (�ky� − 1)/k ≤ [ky]/k = �n([0,∞] × [0, y]) a.s.

The final and main corollary deals with the random measures �n, where the
functions derived from �n, like λn, are defined as before. In particular, we de-
fine Q�n as the quantile function of the random variable on the left-hand side
of (4.6), conditional on �n, so it is also random.

COROLLARY 4.3. Let �n be as in (4.7). Under the conditions of Theorem 2.3,
we have, for each 0 ≤ β < 3 and each continuity point 1 − α (0 < α < 1) of Q�,
that

Q�n(1 − α)
P→ Q�(1 − α) as n → ∞.

For testing purposes, Corollary 4.3 shows that simulation of the limiting random
variable in Theorem 2.3 with � replaced by the estimated �n is asymptotically
correct.

Now we turn to the proofs. In order to prove Proposition 4.1, by Prohorov’s
theorem, it is necessary and sufficient to prove the following:

(i) The finite-dimensional distributions of {(An(x, y) + Bn(x, y))/(x ∨ y)η,

(x, y) ∈ [0,1]2}n≥1 converge to those of {(A(x, y) + B(x, y))/(x ∨ y)η, (x, y) ∈
[0,1]2};

(ii) {(An(x, y)+Bn(x, y))/(x∨y)η, (x, y) ∈ [0,1]2}n≥1 is relatively compact.

For the relative compactness, we need several lemmas. These lemmas and their
proofs can be found in a separate Appendix, posted at http://center.uvt.nl/staff/
einmahl/AppEdHL.pdf, or in [10], pages 81–87. These lemmas lead to the follow-
ing results: Under the conditions of Proposition 4.1, for each 0 ≤ η < 1/2,{

Bn(x, y)

(x ∨ y)η
, (x, y) ∈ [0,1]2

}
n≥1

is relatively compact, and for each 0 ≤ η < 1,{
An(x, y)

(x ∨ y)η
, (x, y) ∈ [0,1]2

}
n≥1

is relatively compact.

PROOF OF PROPOSITION 4.1. By these results,{
An(x, y) + Bn(x, y)

(x ∨ y)η
, (x, y) ∈ [0,1]2

}
n≥1

(4.8)

http://center.uvt.nl/staff/einmahl/AppEdHL.pdf
http://center.uvt.nl/staff/einmahl/AppEdHL.pdf
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is relatively compact. It is easy to check that the finite-dimensional distributions of
our estimated processes in (4.8) converge to those of the limiting process, which
completes the proof. �

PROOF OF COROLLARY 4.1. After applying a Skorohod construction to the
weak convergence statement of Proposition 4.1, the proof is similar to that of The-
orem 2.3. �

PROOF OF COROLLARY 4.2. Proposition 4.1 implies the weak convergence
of the distribution function of the left-hand side of (4.6) to the distribution function
of the right-hand side of (4.6). This property carries over to the inverse functions
Q�n and Q�. �

PROOF OF COROLLARY 4.3. From another Skorohod construction, we obtain
an a.s. version of the statement of Theorem 2.2; without changing the notation, we
now work with this construction. Since, for 0 < x,y ≤ 1,

�([0, x] × [0, y]) = x + y − l(x, y),

�n([0, x] × [0, y]) = �kx�/k + �ky�/k − l̂2(x, y) − δn(x, y)/k

[δn(x, y) takes values in {0,1,2}], it follows that, for each ε > 0,

sup
0<x,y≤1

k1/2−ε|�n([0, x] × [0, y]) − �([0, x] × [0, y])| → 0 a.s.,(4.9)

as n → ∞.
We now show that (4.2), (4.3), (4.4) and (4.5) hold a.s. We already saw, be-

low (4.7), that (4.2) holds a.s. and the a.s. version of (4.3) follows immediately
from (4.9).

By (4.9) and (4.2), it easily follows that

sup
E∈E

k1/2−ε|�n(E) − �(E)| → 0 a.s.,(4.10)

as n → ∞, where E := {E|E = [x1, x2] × [y1, y2],0 < x1 ≤ x2 ≤ 2,0 < y1 ≤
y2 ≤ 2}. Let En(x) = [x −k−1/6, x +k−1/6]×[1−k−1/6,1+k−1/6]. Then, setting
λ(u, v) = 0 if u < 0,

sup
0<x≤1

|λn(x,1) − λ(x,1)|

≤ sup
0<x≤1

1
4k1/3|�n(En(x)) − �(En(x))| + sup

0<x≤1

∣∣1
4k1/3�(En(x)) − λ(x,1)

∣∣
≤ sup

0<x≤1

1
4k1/3|�n(En(x)) − �(En(x))|

+ sup
0<x≤1

sup
(u,v)∈En(x)

|λ(u, v) − λ(x,1)| → 0 a.s.,
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as n → ∞, by (4.10) and the uniform continuity of λ on [−1,2] × [1
2 ,2] [which

follows from λ(0,1) = 0]. The proofs of sup0<y≤1 |λn(1, y) − λ(1, y)| → 0 a.s.
and sup0<x,y≤1 |Rjn(x, y) − Rj(x, y)| → 0, j = 1,2, a.s. are similar. Hence,
(4.4) and (4.5) hold a.s.

According to Corollary 4.2 we have Q�n(1−α) → Q�(1−α) a.s., as n → ∞,
hence, also in probability. �

5. Simulation study and real data application. In this section we present
a simulation study, making use of the results of Section 4. We will consider two
distributions satisfying the domain of attraction condition and one that fails to
satisfy it. At the end of the section we will apply our procedure to financial data.

Theoretically, we can choose any β ∈ [0,3) in the test statistic in (1.12). We in-
vestigate the influence of β on the testing procedure by sampling from the bivariate
Cauchy distribution. We choose β to be 0, 1 or 2.

Consider the bivariate Cauchy distribution restricted to the first quadrant, with
density

f (x, y) = 2

π(1 + x2 + y2)3/2 , x, y > 0.

It readily follows that

�([0, x] × [0, y]) = x + y −
√

x2 + y2,

λ(x, y) = xy

(x2 + y2)3/2 , x, y > 0.

This distribution satisfies the conditions of Theorem 2.3; in particular, (2.5) holds
with α = 2 (see [8], pages 1409–1410). First we present in Table 1 the quantiles of
the limiting random variable∫ ∫

0<x,y≤1

(A(x, y) + B(x, y))2

(x ∨ y)β
dx dy.

We used 1,000,000 replications. With high probability, these quantiles are accurate
up to 0.01.

Now for sample size n = 2000, we simulated 2000 times the test statistic kLn,
for various values of k. Using the 0.95th quantiles above, we find the simulated
type-I error probabilities; see Table 2. In this table also the empirical median and
the empirical 0.95th quantile of the test statistics are shown. In the ideal situation
the number of rejections is a binomial r.v. with parameters 2000 and 0.05. So the
simulated type-I errors in Table 2 are remarkably close to 0.05. Only for k = 400
does bias seem to set in. Also, the empirical median and 0.95th quantile of the
test statistics are very close to those of the limiting r.v. listed in Table 1. Generally
speaking, the influence of β on the quality of the results is very small for the
Cauchy distribution. From Table 2, we feel that β = 2 works slightly better than
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TABLE 1
Quantiles of the limiting r.v. for the bivariate Cauchy distribution

p

β 0.10 0.25 0.50 0.75 0.90 0.95 0.975 0.99

0 0.018 0.025 0.038 0.065 0.106 0.142 0.177 0.227
1 0.030 0.041 0.062 0.103 0.168 0.222 0.278 0.356
2 0.074 0.099 0.144 0.224 0.347 0.447 0.554 0.699

the others. Because of this and because we want to put additional emphasis on the
extreme observations, from now on we take β = 2.

In practice, for a given dataset, we first calculate the test statistic kLn; then we
estimate the measure �n and simulate the 0.95th quantile of the estimated limiting
r.v. using the approximation of Section 4. Finally, if the test statistic is not smaller
than this 0.95th quantile, we reject the null hypothesis (1.8).

First we consider again the bivariate Cauchy distribution and take two samples
of size n = 2000. The results are presented in Figure 1. Note that the behavior
of the test statistic and the estimated 0.95th quantile fluctuate with the sample
fraction k, but that, for all k in the figure, the value is—correctly—far below the
estimated 0.95th quantile of the limiting random variable.

Next we generate 2000 independent pairs (U,1−V ), where (U,V ) has a Gum-
bel copula as distribution function, that is, the d.f. is given by

C(u, v) = exp
(−[(− logu)θ + (− logv)θ ]1/θ )

, θ ≥ 1;
we take θ = 10. It is easily checked that, for the d.f. of (U,1 − V ), (1.1) holds
and that we have asymptotic independence; see Remark 2.2. Since our results

TABLE 2
Simulated type-I error, median and 0.95th quantile of the test statistics for the Cauchy d.f.;

n = 2000, α = 0.05

β k 20 40 60 80 100 125 150 175 200 300 350 400

α̂ 0.041 0.045 0.047 0.044 0.038 0.047 0.047 0.034 0.035 0.049 0.048 0.060
0 Q(0.95) 0.134 0.135 0.139 0.132 0.129 0.139 0.139 0.127 0.125 0.141 0.140 0.153

Q(0.50) 0.036 0.038 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.040 0.040 0.047

α̂ 0.041 0.047 0.047 0.045 0.039 0.050 0.044 0.036 0.034 0.054 0.046 0.061
1 Q(0.95) 0.208 0.213 0.216 0.210 0.210 0.220 0.216 0.203 0.203 0.226 0.216 0.236

Q(0.50) 0.059 0.061 0.059 0.059 0.059 0.060 0.059 0.058 0.058 0.065 0.064 0.076

α̂ 0.047 0.042 0.049 0.048 0.044 0.047 0.044 0.044 0.042 0.053 0.050 0.068
2 Q(0.95) 0.434 0.423 0.444 0.442 0.430 0.437 0.431 0.431 0.416 0.463 0.446 0.503

Q(0.50) 0.133 0.138 0.137 0.135 0.137 0.141 0.138 0.143 0.143 0.156 0.156 0.195
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FIG. 1. Cauchy distribution: test statistic and 0.95th quantile for two samples.

do not apply for the case of asymptotic independence, we only present the test
statistic itself (Figure 2, left panel). We see that, for k up to 200, the test sta-
tistic is very close to 0 (which strongly supports H0) and that bias sets in for
larger values of k. We also consider 2000 observations from a d.f. (which is also
a copula), which does not satisfy condition (1.8). The distribution is an adapta-
tion of a distribution in [15]: take a density of 3/2 on the following rectangles:
[2−(2m+1),2−(2m)] × [2−(2r+1),2−(2r)], for m = 0,1,2, . . . and r = 0,1,2, . . .; in
this way a probability mass of 2/3 is assigned. The remaining 1/3 is assigned by
taking the uniform distribution on the line segments from (2−(2m+2),2−(2m+2)) to
(2−(2m+1),2−(2m+1)), m = 0,1,2, . . . , such that the mass of the mth segment is
equal to 2−(2m+2). In Figure 2 (right panel), we see, for varying k, the test statistic
and simulated 0.95th quantile of the sample of size n = 2000 from this distrib-
ution. Again, the test statistic and the estimated 0.95th quantile fluctuate with k,

FIG. 2. Test statistic transformed Gumbel copula (left) and alternative distribution (right).
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FIG. 3. Daily equity returns of two Dutch banks (left) and test statistic and 0.95th quantile (right).

but from a certain k on (and for most values of k), the null hypothesis is clearly
rejected.

Finally, we apply the test to real data, similarly as we just did for the simulated
data sets in Figures 1 and 2. The data are 3283 daily logarithmic equity returns
over the period 1991–2003 for two Dutch banks, ING and ABN AMRO bank. The
bivariate, heavy-tailed data are shown in Figure 3 on the left; on the right we see
again the test statistic and the simulated 0.95th quantile. Since the test statistic is
everywhere clearly below the quantile, we cannot reject the null hypothesis. This
is a satisfactory result, because it allows us to analyze these data further, using the
statistical theory of extremes.

Acknowledgment. We are grateful to two referees for a careful reading of the
manuscript and several useful comments.

REFERENCES

[1] ABDOUS, B. and GHOUDI, K. (2005). Nonparametric estimators of multivariate extreme de-
pendence functions. J. Nonparametr. Statist. 17 915–935. MR2192166

[2] DE HAAN, L. and RESNICK, S. (1977). Limit theory for multivariate sample extremes. Z.
Wahrsch. Verw. Gebiete 40 317–337. MR0478290

[3] DE HAAN, L. and SINHA, A. K. (1999). Estimating the probability of a rare event. Ann. Statist.
27 732–759. MR1714710

[4] DIETRICH, D., DE HAAN, L. and HÜSLER, J. (2002). Testing extreme value conditions. Ex-
tremes 5 71–85. MR1947789

[5] DREES, H., DE HAAN, L. and LI, D. (2006). Approximations to the tail empirical distribution
function with application to testing extreme value conditions. J. Statist. Plann. Inference
136 3498–3538.

[6] DREES, H. and HUANG, X. (1998). Best attainable rates of convergence for estimators of the
stable tail dependence function. J. Multivariate Anal. 64 25–47. MR1619974

[7] EINMAHL, J. (1992). Limit theorems for tail processes with application to intermediate quantile
estimation. J. Statist. Plann. Inference 32 137–145. MR1177363

http://www.ams.org/mathscinet-getitem?mr=2192166
http://www.ams.org/mathscinet-getitem?mr=0478290
http://www.ams.org/mathscinet-getitem?mr=1714710
http://www.ams.org/mathscinet-getitem?mr=1947789
http://www.ams.org/mathscinet-getitem?mr=1619974
http://www.ams.org/mathscinet-getitem?mr=1177363


2014 J. H. J. EINMAHL, L. DE HAAN AND D. LI

[8] EINMAHL, J., DE HAAN, L. and PITERBARG, V. (2001). Nonparametric estimation of
the spectral measure of an extreme value distribution. Ann. Statist. 29 1401–1423.
MR1873336

[9] HUANG, X. (1992). Statistics of bivariate extremes. Ph.D. dissertation, Erasmus Univ. Rotter-
dam. Tinbergen Institute Series no. 22.

[10] LI, D. (2004). On extreme value approximation to tails of distribution functions. Ph.D. disser-
tation, Erasmus Univ. Rotterdam. Tinbergen Institute Series no. 342.

[11] NEUHAUS, G. (1971). On weak convergence of stochastic processes with multidimensional
time parameter. Ann. Math. Statist. 42 1285–1295. MR0293706

[12] OREY, S. and PRUITT, W. (1973). Sample functions of the N -parameter Wiener process. Ann.
Probab. 1 138–163. MR0346925
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