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Global, Local, and Graphical Person-Fit Analysis Using
Person-Response Functions

Wilco H. M. Emons and Klaas Sijtsma
Tilburg University

Rob R. Meijer
University of Twente

Person-fit statistics test whether the likelihood of a respondent’s complete vector of item
scores on a test is low given the hypothesized item response theory model. This binary
information may be insufficient for diagnosing the cause of a misfitting item-score vector.
The authors propose a comprehensive methodology for person-fit analysis in the context of
nonparametric item response theory. The methodology (a) includes H. Van der Flier’s (1982)
global person-fit statistic U3 to make the binary decision about fit or misfit of a person’s
item-score vector, (b) uses kernel smoothing (J. O. Ramsay, 1991) to estimate the person-
response function for the misfitting item-score vectors, and (c) evaluates unexpected trends
in the person-response function using a new local person-fit statistic (W. H. M. Emons, 2003).
An empirical data example shows how to use the methodology for practical person-fit
analysis.

Keywords: aberrant response patterns, misfitting item-score vectors, nonparametric item
response theory, person-fit analysis, person-response function

A long tradition in psychological assessment has argued
for investigating the quality of individual score patterns on
tests. In one line of research additional information obtained
from the arrangement of the scores on different subtests has
been used to predict criterion behavior (e.g., Davison &
Davenport, 2002). In another line of research the arrange-
ment of individual item scores has been investigated and
compared with what has been expected on the basis of a test
model. This research has usually been referred to as per-
son-fit research (e.g., Drasgow, Levine, & McLaughlin,
1987; Meijer & Sijtsma, 2001). Person-fit analysis may, for
example, lead to the conclusion that John’s performance on
an intelligence test reflects an unusual lack of concentration
on the easiest items instead of his true intelligence level.
Likewise, in a personality inventory the person-fit analysis
of Mary’s performance may indicate an unusual fear of

being evaluated, which is greater or stronger than her true
level of introversion. Although one hopes that valid tests
produce valid results for each individual being tested, the
examples show that this may not always be true. Person-fit
analysis helps to identify cases of invalid individual test
performance and may be helpful to suggest remedies for the
problems involved.

Person-fit researchers (e.g., Drasgow et al., 1987; Klauer,
1991; Molenaar & Hoijtink, 1990; Reise, 2000; Reise &
Widaman, 1999) have suggested several statistics for iden-
tifying misfitting vectors of item scores on the J items from
a test; see Meijer and Sijtsma (2001) for a comprehensive
review. These person-fit statistics all assume a particular
item response theory (IRT) model (e.g., Embretson & Reise,
2000; Sijtsma & Molenaar, 2002) to fit the test data. Per-
son-fit statistics have been used, for example, to identify
examinees with inconsistent item-score patterns on items
that required similar cognitive skills (Tatsuoka & Tatsuoka,
1983), to investigate the effect of test anxiety on test per-
formance (Birenbaum, 1986), and to detect respondents
who faked on a personality test to convey a favorable
impression (Zickar & Drasgow, 1996).

By evaluating the whole vector of J item scores simulta-
neously, person-fit statistics allow the conclusion that a
particular IRT model either does or does not fit a respon-
dent’s item-score vector. In this sense, most person-fit meth-
ods are global methods that identify misfit but do not help to
identify the type of behavior that caused the misfit. An
exception is due to Klauer (1991; also, see Meijer, 2003),
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who proposed a method that identifies person misfit caused
by violations of either unidimensional measurement, item
discrimination, or local independence under the Rasch
(1960) model. Also, on the basis of work by Wright and
Stone (1979) for the Rasch model, Smith (1985) assumed
that a test can be divided into nonoverlapping subtests for
which large discrepancies between observed and expected
item scores indicate person misfit. This approach is flexible
in that it allows for groupings of items based not only on
difficulty, as is common in person-fit research (Meijer &
Sijtsma, 2001), but also on item content or presentation
order of the items. However, Type I error rates were found
to be highly sensitive to the distributions of ability and the
item parameters, and Molenaar and Hoijtink (1990) found
that several standardizations of the statistics could not alle-
viate these deficiencies. Li and Olejnik (1997) found that the
sampling distributions of the statistics discussed by Smith
(1986) deviated significantly from the standard normal
distribution.

In this article, we propose a comprehensive person-fit
methodology that gives more insight than does a single
statistic into the possible causes of a misfitting item-score
vector. Thus, this methodology helps the practitioner to
reach a better diagnosis of respondents’ misfitting item
scores. The methods we use are sensitive to the ordering of
the items according to their difficulty. Other orderings may
be useful, but are the topic of future research. Another
concern in person-fit analysis is that an item-score vector of
only J observations is available for each respondent. The
number J typically ranges from, say, 10 to 60. This small
number of data points makes person-fit analysis hazardous
from a statistical point of view. In particular, low power
may render misfitting item-score vectors difficult to detect,
resulting in detection rates that are too low. Because of
limited testing time for each ability to be tested, the length-
ening of tests to well over, say, a hundred items, is not a
realistic option.

An alternative to both the limited value of a binary
outcome (that provides little information for individual di-
agnosis) and the small number of data points (that provides
little power, implying modest detection rates) may be to
seek various other sources of information about an item-
score vector’s misfit. The combination of these sources may
lead to a more accurate decision about misfit or fit and also
to more insight into the cause of an item-score vector’s
misfit. This article discusses a methodology for a more
comprehensive person-fit analysis that uses various sources
of person-fit information. The methodology compensates to
some extent for the necessarily small number of data points
in person-fit analysis and facilitates the interpretation of
misfit. The methodology includes the global person-fit sta-
tistic U3 (Emons, Meijer, & Sijtsma, 2002; Van der Flier,
1982); a new graphical method that uses kernel smoothing
to estimate the person-response function (PRF), based on

Ramsay’s (1991; also see Douglas & Cohen, 2001; Habing,
2001) smooth estimates of item response functions (IRFs);
and a new local person-fit statistic (Emons, 2003) that
evaluates unexpected trends in the PRF. The context of the
research was nonparametric item response theory (NIRT;
Junker, 1993; Ramsay, 1991; Sijtsma & Molenaar, 2002;
Stout, 1987). An empirical data example shows how to use
the methodology in practical person-fit analysis.

In this study, we restricted ourselves to intelligence data
(mostly due to space limitations), but person-fit methods are
also useful for analyzing personality data. For example,
Reise and Waller (1993) explored the study of person fit in
personality measurement by analyzing empirical data from
the Multidimensional Personality Questionnaire (Tellegen,
1982). They noted that because of measurement error or
faulty responding it can be difficult to distinguish persons
fitting the particular trait from persons misfitting the trait.
To reduce the opportunities for misfit due to measurement
error or faulty responding, they used unidimensional sub-
scales and information from detection scales that identify
inconsistent answer behavior. A person-fit statistic was ef-
fective in identifying persons who were not responding
according to a particular IRT model but had not been
identified by detection scales.

Methodology for Comprehensive Person-
Fit Analysis

Methodology Proposal

We suggest three stages in a comprehensive person-fit
analysis. The technical details of the methods used at each
stage are discussed below. The first stage entails traditional
person-fit analysis, the second and third are new.

Global analysis. Van der Flier’s (1982) global person-
fit statistic U3 was used to identify fitting and misfitting
item-score vectors.

Graphical analysis. Kernel smoothing is used to esti-
mate the PRFs for the misfitting item-score vectors that
were flagged by U3. The PRF gives the probability of a
correct response (scored 1) as a function of the difficulty of
the items. This function is nonincreasing when the J IRFs in
a test do not intersect (Sijtsma & Meijer, 2001). For each
misfitting item-score vector, the graph of the PRF is in-
spected for local increases.

Local analysis. Deviations from the monotone nonin-
creasing trend in the PRFs are tested locally using a statis-
tical test proposed by Emons (2003).

The combination of global testing, graphical inspection
of the PRF for misfitting item-score vectors, and local
testing of increases found in the PRF together help to better
diagnose the misfit indicated by U3, but it may be noted that
the final diagnosis also depends on other information. For
example, knowing that one individual is dyslexic or that
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another individual has a history of fearing personal evalu-
ation may be important, and catching a cheating student
red-handed overrules any other source of information. As
the psychologist usually does not know the cause of an
atypical item-score vector, for a better understanding of the
potential causes, background information about individual
examinees needs to be incorporated into the diagnostic
process. Depending on the application, such information
may come from previous psychological-ability and achieve-
ment testing, school performance (tests and teacher’s ac-
counts), personality testing, clinical and health sources (e.g.,
about dyslexia, learning, and memory problems), and social–
economic indicators (e.g., related to language problems at
home). Exactly how this background information may be
used to explain person-fit statistics and PRFs is the topic of
our present ongoing research. In the next subsection, some
examples of misfit and the use of the proposed methodology
are given.

Examples

Test anxiety. Assume a respondent was presented the
items in an intelligence test in order of ascending difficulty
and that he or she suffered from test anxiety during, say, the
first 10 items in the test (the easiest items) and performed
much better on the other more difficult items. Furthermore,
assume that the resulting atypical item-score vector was
detected by the U3 statistic. To facilitate the diagnosis of the
cause of the misfit, we estimated the PRF (Figure 1A) for
this respondent. Given the effect of test anxiety described,
the PRF started at a low value for the lower levels of item
difficulty, increased for the items of average difficulty when
test anxiety has diminished, and decreased when item dif-
ficulty increased further. For a respondent of average or
high ability and for items that are administered in ascending
difficulty ordering, test anxiety typically results in this bell-
shaped curve. For a low-ability respondent, however, the
PRF probably would look more like a near-horizontal curve
located at a narrow range of low-response probabilities. We
return to this latter case in the Item disclosure section. For
the PRF in Figure 1A, a local test statistic (Emons, 2003), to
be explained below, may be used to determine whether the
increase in the first 10 items is significant. When a signifi-
cant local test result is found, the researcher may use the bell
shape for further diagnostic decision-making, possibly tak-
ing additional background information into account.

Item disclosure. When a test is used for selection with
important consequences for individuals, people may be
tempted to obtain information about the type of test ques-
tions or even about correct answers to particular items
before they take the test in an attempt to improve their test
performance. Item disclosure is a realistic concern because
it may result in a larger percentage of correct answers than
expected on the basis of the trait being measured. For

example, in the Netherlands only a few different types of
intelligence tests are available for persons with a higher
educational background. Thus, the psychologist has little
opportunity to vary the choice of tests and keep test content
a secret.

Assume now that a low- or average-ability respondent
takes a 50-item intelligence test and tries the 40 relatively
easier items but has advance knowledge of the 10 most
difficult items (note that the items need not be presented

Figure 1. Hypothetical person-response functions for three types
of response behavior. A: Test anxiety. B: Item disclosure. C:
Random response behavior.
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according to ascending difficulty). Assume that the U3
person-fit statistic identified the resulting item-score vector
as a misfit. A smooth estimate of the PRF shows a decrease
for the easiest 40 items because with increasing item diffi-
culty the probability of a correct answer decreases and then
shows an increase for the 10 most difficult items because
here the respondent gave an unusually high number of
correct answers given the item difficulty level; see Figure
1B for this U-shaped PRF. The local test of the PRF may be
used to investigate whether the increase in the last 10 items
is significant.

Random response behavior. An important line of re-
search in personality assessment has focused on identifying
test takers who respond to personality inventories in a
random, dishonest, or otherwise deviant fashion. These re-
sponse sets are threats to the validity of the interpretations
made from the resulting profiles (e.g., Grossman, Haywood,
& Wasyliw, 1988; Pinsoneault, 2002). One response set that
has received considerable attention is that of random re-
sponse. The random response set includes any approach in
which “responses are made without regard to item content”
(Graham, 1993, p. 38). Several authors have stressed the
particular importance of screening for deviant response sets
in criminal populations. Suppose a respondent randomly
responds to the four-choice items (say one option is keyed
as characteristic of the trait and the others as uncharacter-
istic) in a personality inventory because he or she is unmo-
tivated to answer the items according to the trait being
measured. Assume that the item-score vector that was pro-
duced by random response behavior on almost all items was
identified by the U3 statistic. Figure 1C gives a near-
horizontal PRF that resulted from an almost constant ran-
dom response behavior probability of .25 for all J items.
This PRF does not deviate noticeably from monotone non-
increasingness, and the local test cannot be applied here.
However, given that the items vary widely in difficulty, a
near-constant PRF at the random response level for some
scale values warns the researcher of aberrant behavior. This
example shows the strength of graphical tools for diagnos-
ing aberrant test performance.

Remark about use of other information. A near-hori-
zontal PRF, as in Figure 1C, that is typical of randomly
responding cannot be distinguished from a similar PRF that
would result from test anxiety for a low-ability respondent
or test anxiety for higher ability respondents that resulted
from serious panic. Here, other auxiliary information about
the respondent may be helpful when evaluating item-
score vectors.

For example, suppose that trait-level estimates are avail-
able from previous testing (e.g., Drasgow, Levine, & Wil-
liams, 1985). Also, assume that a respondent takes different
versions of the same test several times per year, for example
to measure cognitive improvement after therapy. Given this
knowledge, for a high-ability respondent who took the first

version of this test, a PRF like that in Figure 1C would
probably indicate random response behavior. In this situa-
tion, no additional action needs to be taken. However, for a
high-stakes test that is taken only once (e.g., for selection
purposes), the explanation may be a complete off-day that
resulted in panic. Here, one could decide to retest this
respondent but under less threatening circumstances. Note
that we used the ability level and the test situation (auxiliary
information) to make a decision on how to proceed. For a
low-ability respondent, a near-horizontal PRF may mean
excessive random response behavior due to a test difficulty
level that was too high. Here, retesting using a more appro-
priately tailored test may be reasonable. Auxiliary informa-
tion based on, for example, the respondent’s personal his-
tory could indicate, however, that he or she suffered from
extreme anxiety. In this case, it would probably not be
sufficient to administer an easier test, but perhaps precau-
tions like better instruction and many more exercise items
should be taken as well. The use of the ability level is
discussed below in an empirical example.

NIRT

Theoretical Introduction to NIRT

The context of this study was NIRT (Sijtsma & Molenaar,
2002). NIRT models assume order restrictions on the IRFs.
Let Xj (j � 1, . . . , J) denote the binary random variable for
the item responses, with realization xj � 1 for a correct or
coded response, and xj � 0 otherwise. Let X� � �j�1

J Xj

denote the unweighted sum score; let �̂j (j � 1, . . . , J)
denote the population proportion of persons with a 1 score
on item j; and let �̂j � Nj/N (N is the sample size and Nj the
frequency of 1s on item j) be the sample estimate of �j. We
assume that the J items in the test are ordered and numbered
from easy to difficult: �1 � �2 � . . . � �J. The probability
of obtaining a 1 score is related to the latent trait � by the
IRF: Pj�� � � P�Xj � 1|� �. We assume a scalar � (this is
the unidimensionality assumption of IRT, abbreviated UD).
Given UD we assume that item scores are locally indepen-
dent (assumption LI). A typical NIRT assumption is that the
IRFs are monotone nondecreasing in the latent trait (as-
sumption M); that is, for two arbitrary fixed values �a and �b,

Pj��a� � Pj��b�, whenever �a � �b; j � 1, . . . , J.

NIRT models that satisfy the assumptions of UD, LI, and M
imply that the total score X� stochastically orders � (Gray-
son, 1988; Hemker, Sijtsma, Molenaar, & Junker, 1997).
Stochastic ordering justifies the use of X� for ordering
persons on � and is a useful ordering property in practice
whenever a test is used to order respondents. Mokken’s
(1971; also, see Ellis & Van den Wollenberg, 1993; Holland
& Rosenbaum, 1986; Junker, 1993) monotone homogeneity
model is defined by the assumptions of UD, LI, and M.
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For person-fit analysis it is convenient that the IRFs do
not intersect, because the same ordering of items by diffi-
culty then applies to each respondent, and this facilitates the
interpretation of test performance. Nonintersection for two
items i and j means that if we know for a fixed value �0 that
Pi��0� � Pj��0�, then

Pi�� � � Pj�� �, for all �. (1)

This is the assumption of invariant item ordering (IIO;
Sijtsma & Junker, 1996). Mokken’s model of double mono-
tonicity is defined by the assumptions of UD, LI, M, and
IIO. Several methods exist to investigate whether the double
monotonicity model fits a set of items (e.g., Hoijtink &
Molenaar, 1997; Karabatsos & Sheu, 2004; Mokken, 1971;
Sijtsma & Molenaar, 2002). The definitions of the PRF
(Sijtsma & Meijer, 2001) and the local person-fit statistic
(Emons, 2003), to be discussed shortly, require an IIO.

The Place of the Double Monotonicity Model Within
IRT

Figure 2 shows a Venn diagram that explains how the
double monotonicity model is related to the monotone ho-
mogeneity model and the well known l-, 2-, 3-, and 4-pa-
rameter logistic models (abbreviated 1PLM, 2PLM, 3PLM,
and 4PLM, respectively). Let �j denote the location param-
eter of the IRF of the 4PLM, 	j the slope parameter, 
j the
lower asymptote, and �j the upper asymptote; the 4PLM is
then defined as

Pj�� � � 
j �
��j 
 
j�exp�	j�� 
 �j��

1 � exp�	j�� 
 �j��
. (2)

The 3PLM is a special case of the 4PLM that assumes that
the upper asymptotes are equal to 1 for all J items (�j � 1,

j � 1, . . . , J); the 2PLM further narrows the 3PLM by
assuming that the lower asymptotes of the IRFs are equal to
0 for all J items (
j � 0, j � 1, . . . , J); and the 1PLM
narrows the 2PLM by assuming that the J slopes are equal
(normed at 	j � 1, j � 1, . . . , J). Thus, the set of tests
agreeing with the 1PLM is nested within the set of tests
agreeing with the 2PLM, the set of tests agreeing with the
2PLM is nested within the set agreeing with the 3PLM, and
the set of tests agreeing with the 3PLM is nested within the
set agreeing with the 4PLM. Each of these four models
adopts the assumptions of UD, LI, and M, which together
define the monotone homogeneity model, and each specif-
ically defines assumption M by adopting a logistic IRF. This
means that the 1PLM, the 2PLM, the 3PLM, and the 4PLM
are all nested within the monotone homogeneity model (see
Figure 2).

Instead of specifying assumption M by means of logistic
IRFs, in the nonparametric context the double monotonicity
model assumes that the J IRFs in a test do not intersect (IIO;
Equation 1). How does this assumption locate the double
monotonicity model in the Venn diagram in Figure 2? First,
the double monotonicity model is a special case of the
monotone homogeneity model because it is based on the
assumptions of UD, LI, and M and, in addition, assumes an
IIO. Second, like the double monotonicity model the 1PLM
assumes nonintersecting IRFs, but it is more restrictive
because the IRFs are logistic curves that are translations of
one another along the � axis. Thus, next to the nested series
“monotone homogeneity model–4PLM–3PLM–2PLM–
1PLM,” Figure 2 also contains the nested series “monotone
homogeneity model–double monotonicity model–1PLM.”
Third, the relationship of the double monotonicity model to
the 2PLM, the 3PLM, and the 4PLM is as follows. It is easy
to show that IRFs in the 2PLM do not intersect only if their
slope parameters 	 are equal (Sijtsma & Meijer, 2001).
Mathematically, the 2PLM has then been reduced to the
1PLM. It follows that there are no IRFs in the 2PLM that are
also in the double monotonicity model unless they are also
IRFs in the 1PLM. Thus, in Figure 2 the intersection of the
sets of the double monotonicity model and the 2PLM is the
set of 1PLM items (this is the shaded area). For the 3PLM
and the 4PLM the situation is different. Sijtsma and Meijer
(2001) showed that if for the 3PLM (1) 	1 � 	2 � . . . � 	J,
and (2) 
1 � 
2 � . . . � 
J and �1 � �2 � . . . � �J, then
the J IRFs do not intersect. For the 4PLM, if the conditions
1 and 2 are satisfied and, in addition, (3) �1 � �2 � . . . �
�J, then the J IRFs do not intersect. Sets of 3PLM IRFs that
satisfy conditions 1 and 2 and sets of 4PLM IRFs that
satisfy conditions 1, 2, and 3 also agree with the double
monotonicity model. Finally, any sets of monotone IRFs
that do not intersect are double monotonicity IRFs. Such
IRFs may have lower asymptotes greater than 0, higher
asymptotes smaller than 1 (even high-ability examinees
have success probability smaller than 1), and multiple in-

Figure 2. Venn diagram of the relationships between the double
monotonicity model and the monotone homogeneity model
(MHM), the 4PLM, the 3PLM, the 2PLM, and the 1PLM. PLM �
parameter logistic model.
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flection points (logistic IRFs have one) and may not be
symmetric (logistic IRFs are). Figure 3 shows a set of such
double monotonicity IRFs.

Figure 2 shows that sets of tests agreeing with the 1PLM
also agree with the double monotonicity model and that
some tests agreeing with the 3PLM and the 4PLM and some
agreeing with the monotone homogeneity model also agree
with the double monotonicity model. Thus, the double
monotonicity model is more general than the 1PLM and
may be seen as a nonparametric version of it.

Desirability of IIO for Person-Fit Analysis

The double monotonicity model based on the IIO assump-
tion is the basis of the person-fit methods used in this study.
Do we really need the assumption that the IRFs in the test
do not intersect? After all, IRT models that allow the
intersection of the IRFs, such as the monotone homogeneity
model or perhaps even the 3PLM or the 2PLM, are more
likely to fit test data than models based on the IIO assump-
tion (see Figure 2). Below, we argue that person-fit analysis
often pursues strong statements about individual test per-
formance at the level of items and that this requires the
strong IIO assumption. Without the IIO assumption such
statements may be problematic. Next, we argue that, theo-
retically, IIO is desirable for person-fit analysis in order to
have interpretable person-fit results. This is why our meth-
odology is based on the assumption of IIO. Then, we
discuss some results from a robustness study, which show
that in practical data analysis our methodology is still likely
to produce valid results when IIO is not fully satisfied in

one’s data. The conclusion is that IIO is a desirable property
of a person-fit methodology but that in real data analysis
small deviations from IIO may be tolerated.

Theoretical discussion of IIO in person-fit analysis.
First, we investigate how IRT models that do not have an
IIO, such as the 2PLM and the 3PLM, contribute to per-
son-fit analysis. The 2PLM and the 3PLM allow the esti-
mation of an individual’s � from the likelihood based on the
vector of all J item scores. If these models do not fit a
particular item-score vector, then the respondent’s � esti-
mate, denoted �̂, may be biased and unduly inaccurate
(Drasgow et al., 1985; Meijer, 1997; Schmitt, Chan, Sacco,
McFarland, & Jennings, 1999) and, as a result, may not be
trusted. This is the kind of information provided by person-
fit statistics based on the 2PLM and the 3PLM. It is impor-
tant for the proper evaluation of an individual’s perfor-
mance on all J items together as summarized in the latent
trait �. Thus, IRT models not implying an IIO are useful for
evaluating individual test performance.

For diagnostic purposes, the next question is which item
scores caused the person misfit. If all misfitting item-score
vectors could be compared with one overall item ordering,
this would help greatly to understand misfit at a substantive
level. To understand why IIO is needed, suppose that the
opposite situation holds, which is that the IRFs intersect as
in the 2PLM and the 3PLM. What are the consequences of
not having an IIO for the interpretation of individual item-
score vectors? As an example, consider IRFs from the
2PLM. Two such IRFs have one intersection point when-
ever their slope parameters are unequal; and J such items

Figure 3. Example of four item response functions satisfying the double monotonicity model.
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have 1/2 J�J 
 1� intersection points defining 1/2 J�J

 1� � 1 disjoint intervals on �, each characterized by a
unique ordering of items by response probability (Sijtsma &
Meijer, 2001). For example, Figure 4 shows that four IRFs
from the 2PLM define seven disjoint intervals on �. The
figure also shows three �s that have item orderings from
easy to difficult: 1–4–3–2 (John), 1–3–4–2 (Mary), and
1–2–3–4 (Cynthia). Note that for Cynthia a 0 score on Item
4 (her most difficult item) and 1 scores on the other three
easier items do not produce misfit. However, for John the
same item-score vector may produce misfit because for him
Item 4 is his second easiest item.

The example shows that under the 2PLM (and also the
3PLM) item ordering depends on the latent trait. Obviously,
if item ordering depends on � (e.g., for J � 10, the number
of � intervals is already 46, defining equally many item
orderings), an easy interpretation of individual item-score
vectors is highly improbable. In the double monotonicity
model it is independent of the latent trait due to IIO. IRT
models implying IIO (such as the double monotonicity
model and the Rasch model) facilitate the interpretation of
individual test performance.

Practical discussion of IIO in person-fit analysis. IRT
models that have the IIO property in addition to assumption
M facilitate the interpretation of individual test results,
because each item-score vector can be compared with one
overall item ordering, which then serves as a kind of gold

standard. IRT models having an IIO are the double mono-
tonicity model and its special case, the 1PLM. Although
these are rather restrictive models that sometimes may not
fit the data for all J items in a test, there are two reasons why
one may be optimistic about the fit of IRT models with an
IIO to test data.

First, experienced test constructors often aim to include
sets of items that have a wide difficulty range, especially in
intelligence and ability testing, and exclude items that have
little discriminating power. These two goals together ex-
clude IRFs that are close together and have relatively flat
slopes (Figure 5, dotted and dashed IRFs). These would be
the IRFs with the highest risk of crossing other IRFs. As a
result, the items that are selected in the final test (Figure 5,
solid curves) tend to have IRFs that approach the IIO
property rather well. Thus, it is likely that data from many
real testing applications approximate an IIO because of the
way tests are assembled.

Second, for intersecting IRFs that are close together (e.g.,
Figure 5, solid curves), simulation research (e.g., Sijtsma &
Meijer, 2001) has shown that the person-fit methods we
used here are robust against departures from IIO. Sijtsma
and Meijer (2001) investigated detection rates of aberrant
item-score vectors for moderately long tests (J � 40) and
long tests (J � 80) under the 2PLM with slope parameters
ranging from 0.8 to 1.2 and under a more general IRT model
allowing both lower IRF asymptotes greater than 0, upper

Figure 4. Item response functions from the two-parameter logistic model. Item parameter values
are as follows: 	1 � 2.5, 	2 � 1.3, 	3 � 1.0, 	4 � 0.5, �1 � 	0.8, �2 � 0.1, �3 � 	0.1, and �4 �
0.1. John � item ordering of 1–4–3–2; Mary � item ordering of 1–3–4–2; Cynthia � item ordering
of 1–2–3–4.
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asymptotes smaller than 1, and slopes ranging from 0.8 to
1.2. This choice of slopes created many intersections of the
IRFs within a test. At different sides of the intersection point
the ordering of success probabilities was opposite, but be-
cause the IRFs’ slopes were similar, for a fixed � value
success probabilities for different items were close (i.e., the
IRFs were rather close). This was designated a mild viola-
tion of IIO. It was found that compared with IRFs that were
highly comparable but had the same slopes (i.e., IIO held)
the detection rates were almost the same. These results
indicate that in practical person-fit analysis we can use these
person-fit methods even when IIO is not satisfied com-
pletely.

Global Analysis: Van der Flier’s U3 Statistic

Let X � (X1, . . . , XJ) denote the vector of J item-score
random variables, and let item score vector x � (x1, . . . , xJ)
denote the realization of X. Given that items are ordered by
decreasing �̂j values, an item-score vector x with 1s in the
first x� positions and 0s elsewhere is called a Guttman
vector, and a vector with 1s in the last x� positions and 0s
elsewhere is a reversed Guttman vector. The U3 statistic
(Emons et al., 2002; Meijer, Molenaar, & Sijtsma, 1994;
Van der Flier, 1980, 1982) for observed item-score vector
X, denoted U3(X), is defined as

U3�X� �

�j�1
X� log� �̂j

1 
 �̂j
� 
 �j�1

J Xj log� �̂j

1 
 �̂j
�

�j�1
X� log� �̂j

1 
 �̂j
� 
 �j�J	X��1

J log� �̂j

1 
 �̂j
� . (3)

For fixed X� all terms are constant, except

W�X� � �
j�1

J

Xj log� �̂j

1 
 �̂j
� , (4)

which is a random variable and also a function of the
random vector X. Equation 3 shows that U3 � 0 only if the
respondent’s item score vector is a Guttman vector, and that
U3 � 1 only if the respondent’s item score vector is a
reversed Guttman vector.

Using the sampling theory derived by Van der Flier
(1980, 1982) for U3, Emons et al. (2002) found that the
Type I error rate did not always match the nominal signif-
icance level. However, because a higher U3 corresponds to
a less likely item-score vector, the descriptive use of U3
may involve selecting the highest, say, 5% of the U3 values
to identify atypical item-score vectors. If subsequent re-
search suggests that many of these item-score vectors hap-
pen to be aberrant, 5% may have been too low and a higher
percentage may be selected. For a distribution in which
most of the U3 values are low, the highest 5% of U3 values

Figure 5. Example of four item response functions with medium discrimination (solid lines) and
two item response functions with low discrimination (dotted and dashed lines). Item parameter
values are: 	1 � 0.2, 	2 � 1.5, 	3 � 2.0, 	4 � 0.7, 	5 � 2.0, 	6 � 1.3, �1 � 2.0, �2 � 	0.7, �3 �
0.0, �4 � 0.0, �5 � 0.5, and �6 � 0.7.
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may contain only a few item-score vectors that are really
atypical. Then, only U3 values may be selected that appear
as outliers in the right tail of the empirical U3 distribution.
The effect is that fewer than 5% of the item-score vectors
are subjected to further investigation. In a study using
simulated data, Karabatsos (2003) found U3 to be among
the 4 best-performing person-fit statistics out of 36 statistics.
Future research may replace U3 by each of the other three
statistics in the first stage of our methodology. However, the
flexible use of U3 for selecting possibly atypical item-score
vectors as proposed here is likely to make it an effective
statistic.

Graphical Analysis

The Person-Response Function

Sijtsma and Meijer (2001) defined the PRF for respondent
v as the probability of a correct answer to items measuring
� as a function of their item difficulty. This is formalized by
a random variable Svj that takes value 1 if respondent v
answered item j correctly and 0 if the answer was incorrect.
Let G(�) be the cumulative � distribution. Item difficulty is
defined as

1 
 �j � �
�

�1 
 Pj�� ��dG�� �, j � 1, . . . , J, (5)

and sample estimates �1 
 �̂j� can be used to estimate the
ordering of the items. In the context of person-fit analysis, to
prevent biased estimates, ideally, the sample should not
contain many misfitting item-score vectors (e.g., Meijer &
Sijtsma, 2001). In practice, such data may not be available,
and the researcher should then be cautious in interpret-
ing his or her results. Under IIO, the item difficulties,
1 
 �j (j � 1, . . . , J), theoretically are reverse ordered
relative to the response probabilities, Pj�� �, j � 1, . . . , J.
The probability for respondent v to give correct answers as
a function of item difficulty, 1 
 �, can be written as

Pv�1 
 �� � P�S � 1|1 
 �,�v�. (6)

This conditional probability is defined on the continuous
scale �1 
 �� with domain [0,1]. The PRF, Pv�1 
 ��, is
nonincreasing under NIRT models that have IIO (Sijtsma &
Meijer, 2001). Kernel smoothing (e.g., Fox, 1997; Ramsay,
1991; Simonoff, 1996) was used to obtain a (quasi-)contin-
uous estimate of the PRF. This estimate is convenient for
the localization and the interpretation of misfit.

Kernel Smoothed Estimates of the PRF

Kernel smoothing is a nonparametric regression tech-
nique (e.g., see Fox, 1997; also, Simonoff, 1996). The input
to the method are the J items in the test, which are ordered

along the abscissa on the basis of their estimated item
difficulties, 1 
 �̂j (because of IIO, the same item ordering
holds for each respondent), and for each respondent the
input is his or her 0/1 scores on the J items, which are
displayed on the ordinate. Basically, kernel smoothing fits a
smooth, nonlinear curve through the 0/1 scores of respon-
dent v as a function of the item difficulties. The result is an
estimated PRF. A program for estimating continuous PRFs
and variability bands can be obtained from Wilco H. M.
Emons.

More specifically, kernel smoothing takes a focal obser-
vation indexed 0, here an item difficulty, say, 1 
 �̂j�0� and
several of its neighbor item difficulties, and then estimates
Pv�1 
 �̂j�0�� as the weighted mean of the item score xvj�0�

and the xvj’s of the neighbor items. Weights are assigned by
the kernel function, K � � �. A subset of observations that is
used for estimating one function value is called a window.
Each observation 1 
 �̂j (j � 1, . . ., J) is the focal point
once, and moving to the next focal point means that the
left-most item from the previous window does not move
along to the new window while the next-difficult item enters
the new window from the right. Windows for items at or
near the endpoints of the item ordering contain less data.
Special precautions take care of the resulting inaccuracy in
estimation (e.g., Habing, 2001).

The bandwidth determines the number of observations
used in the estimation of the function values. A broader
bandwidth means that adjacent estimated function values
are more alike because the windows used for estimation are
almost identical. Thus, the PRF is estimated relatively ac-
curately (i.e., with little variance), but interesting details
may get lost (i.e., this may induce much bias). A narrower
bandwidth has the opposite effect: Function values are
different because subsequent windows contain few obser-
vations, as observations quickly enter and exit the windows
as one moves along the item difficulty range. Particular jags
in the PRF are visible (and are estimated with little bias), but
statistical accuracy is small (i.e., estimates are highly vari-
able). Thus, for a particular application the choice of the
bandwidth involves finding the balance between bias and
inaccuracy. This is explained in more detail shortly.

Let zj � ��1 
 �̂j� 
 �1 
 �̂j�0���/h � ��̂j�0�


 �̂j�/h, where h is the bandwidth to be defined shortly,
and let K(zj) be the kernel function. The nonparametric
regression function we use is defined as

P̂v�1 
 �̂j�0�� �
�j�1

J K� zj� xvj

�j�1
J K� zj�

. (7)

For the kernel function we use the standard normal density,

K� zj� �
1

�2 � 3.141
exp	zj

2/ 2, (8)

which is a common choice. When the standard normal
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kernel function is used, each window in fact uses all J
observations, but observations further away from the focal
observation receive small weights, and truncation elimi-
nates the influence of distant observations. For calculations
similar to those performed here, for both several simulated
data sets and several real data sets, Emons, Sijtsma, and
Meijer (2004) tried bandwidth values h � 0.05, 0.09, and
0.13. For h � 0.05, they found that PRF estimates are too
inaccurate, which lead to many Type I errors; that is, ran-
dom increases are erroneously taken for signs of real aber-
rant behavior. For h � 0.13, most of the sampling variation
was smoothed away and the PRF estimates tended to be-
come linear (except in the tails). Bandwidth h � 0.09 tended
to show enough detail with sufficient accuracy. It was
concluded that each application requires some trial and error
to find the best compromise. The PRFs in Figure 1 were
estimated using this kernel-smoothing procedure.

The PRF and Local Person Fit

Discrete PRF Estimate

For local person-fit testing, we used a discrete estimate of
the PRF (Trabin & Weiss, 1983; also, see Nering & Meijer,
1998; Sijtsma & Meijer, 2001). This discrete estimate may
be seen as an extreme version of kernel smoothing, with
uniform kernels that do not overlap. First, the J items are
ordered by increasing (1 	 �) values. Then, they are di-

vided into K ordered disjoint subsets, denoted Ak, with k �
1, . . . , K. For simplicity’s sake (but not by necessity), each
subset contains m items, such that A1 � {X1, . . . , Xm}, A2 �
{Xm�1, . . . , X2m}, . . . , AK � {XJ-m�1, . . . , XJ}. For re-
spondent v, the expected proportion of correct answers to
the items in Ak equals �vk � m	1�j�Ak Pj��v�. Given an IIO,
an ordering of the items according to the (1 	 �j)s implies
that for each respondent v,

m	1�
j�Ak

Pj��v� � m	1 �
j�Ak�1

Pj��v�,

for all �; and v � 1, . . . , N. (9)

For the K item subsets it follows that

�v1 � �v2 � . . . � �vK, for all �. (10)

Let Xvj denote the score of person v on item j. The ordering
in Equation 10 is estimated using sample fractions

�̂vk � m	1�
j�Ak

Xvj, k � 1,. . . , K. (11)

Figure 6 shows a solid PRF that is decreasing and, thus, in
agreement with an IIO (Equation 10). The dashed PRF
shows that the proportions correct for the two most difficult
item subsets are greater than those of several easier item
subsets. This violates Equation 10.

Figure 6. Example of a discrete person-response function indicating expected response behavior
(solid line) and a person-response function indicating aberrant response behavior (dashed line).
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Testing Local Person Fit

We propose a person-fit statistic that, given an IIO, quan-
tifies the result that in any item subset the correct answers
are most likely to be given to the relatively easy items.
Define any item vector Y (e.g., combine subsets Ak and Ak�1

into one set) in which all JY items are ordered by ascending
difficulty. Then, count the number of item pairs in Y in
which the easiest item is answered incorrectly while the
more difficult item is answered correctly. This is the
number of Guttman errors (see, e.g., Meijer, 1994). For
respondent v the number of (0,1) patterns on all possible
item pairs (including pairs that contain the same item
twice) equals

Gv � �
j�1

JY �
i�1

j

�1 
 Yvj�Yvi. (12)

Person misfit in Y is revealed by an exceptionally high G
value given the expected G value under the postulated NIRT
model. For sum score Y� � �Yj and realization y�, we
evaluate the probability P�G � g|y�, JY� using a theorem
proven by Rosenbaum (1987). The theorem says, essen-
tially, that given that the IRFs have IIO (Equation 1), the
number of Guttman errors cannot exceed the corresponding
number expected under the exchangeable distribution; that
is, the number of Guttman errors expected when the re-
sponse probabilities, Pj�� � (j � 1, . . . , JY), are equal for all
items. This means that the IRFs coincide completely.
Because under an NIRT model we cannot evaluate
P�G � g|y�, JY� directly, we compare it to the correspond-
ing probability under the exchangeable distribution. The
probability under the exchangeable distribution is at least as
great as the probability of interest under the NIRT model
and, thus, provides an upper bound for the probability under
the NIRT model. A program to test the local fit can also be
obtained from Wilco H. M. Emons.

How is statistic G distributed under the exchangeable
distribution? Emons (2003) showed that G is a linear func-
tion of the sum of ranks. Thus, under the exchangeable
distribution, P�G � g|y�, JY� can be obtained from the
Wilcoxon’s rank-sum distribution. This probability pro-
vides an upper bound for P�G � g|y�, JY� under IIO. For
item subsets containing fewer than 20 items, tables provided
by Sprent (1993, p. 319) may be used to obtain probabilities
of exceedance. For item subsets containing at least 20 items,
G is approximately normally distributed (Sprent, 1993, pp.
116–117). Emons (2003) concluded from a simulation
study that for many tests the Type I error rate of G often
ranged from 0.02 to 0.03 (nominal 	 � .05), with slightly
better results for higher �s. This was found for item sets
both with and without an IIO.

Empirical Examples

Amsterdam Revised Child Intelligence Test (RAKIT)

In this section, we used data (N � 1,641) of the RAKIT
(Bleichrodt, Drenth, Zaal, & Resing, 1984; Bleichrodt, Res-
ing, Drenth, & Zaal, 1987) to illustrate the person-fit meth-
odology. The RAKIT measures the cognitive development
of children ranging from age 4 to age 11. We analyzed data
from four subscales measuring perceptual reasoning: Figure
Recognition (J � 50), Exclusion (J � 50), Quantity (J �
65), and Hidden Figures (J � 45). For each of the four
subscales, the fit of Mokken’s (1971) double monotonicity
model to the data was investigated using the computer
program Mokken Scale analysis for Polytomous items (Mo-
lenaar & Sijtsma, 2000). Two results are of main interest
here.

First, coefficient HT (Sijtsma & Meijer, 1992) was used to
investigate the IIO assumption for the whole set of J IRFs
(the global IIO investigation). According to Sijtsma and
Meijer (1992), increasing values of HT between 0.30 and
1.00 (maximum) mean that the evidence for IIO is more
convincing, whereas values below 0.30 indicate important
violations of IIO. For the four subsets it was found that
HT � 0.74 (Figure Recognition), HT � 0.69 (Exclusion),
HT � 0.68 (Quantity), and HT � 0.60 (Hidden Figures).
Additional analysis showed no significant intersections be-
tween pairs of IRFs (local IIO investigation). Thus, the fit
results showed that each subscale well approximates the
property of an IIO.

Second, the IRFs had steep slopes relative to the � dis-
tribution; that is, the discrimination power of each item was
sufficiently high to have good measurement quality: Hj �
0.36 for all items from each subscale (as a rule of thumb,
Hj � 0.30 leads to the rejection of an item; see Sijtsma &
Molenaar, 2002, p. 60). This is a favorable property for
person-fit analysis. Because the Hjs were high, the scalabil-
ity of the subscales was also high: H � 0.54 for all four
subscales; using Mokken’s terminology, these are strong
scales (H � 0.50; Mokken & Lewis, 1982; Sijtsma &
Molenaar, 2002, p. 60). The difficulty ordering of the items
was estimated from the sample difficulties 1 
 �̂. This
ordering closely agreed with the administration ordering,
from easy to difficult.

Results of the Empirical Person-Fit Analysis

We first summarize the most important results of the
global and graphical person-fit analysis for the total sample.
Then, we discuss in detail the results of the local person-fit
analysis for six individual cases (see Table 1 for the details)
who had a U3 value in the upper 5% range for the 45-item
scale Hidden Figures. These cases represent different types
of person misfit that were detected using our three-step
methodology.
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Step 1: Global person fit—U3 analysis. Because the
subscales had high discrimination, we analyzed global per-
son fit using U3 as a descriptive statistic. The U3 frequency
distributions in Figure 7 show that each subscale had few
extreme U3 values, which appeared in the right tails of the
distributions. For each subscale, we selected the 5% of the
item-score vectors with the highest U3 values and classified
them into three X� levels, denoted low, medium, and high
(not displayed in a figure). Except for Hidden Figures, for
the other three subscales more than 70% of the item-score
vectors having the highest U3s corresponded to the high X�

level. The subscale Hidden Figures had approximately a
uniform distribution of the item-score vectors over the three
X� levels.

Step 2: Graphical person-fit analysis. For each selected
item-score vector, kernel smoothing was used to estimate a
(quasi-)continuous PRF. For the subscales Figure Recogni-
tion, Exclusion, and Quantity we used a bandwidth h �
0.08, and for Hidden Figures we used h � 0.09. For each
subscale, for low and medium X� levels the PRFs had an
irregular shape. In particular, for low and medium X�, some
PRFs had a bell shape, such as the example given in Figure
8A. However, most misfitting PRFs for low and medium X�

showed an increase at medium item difficulty. Examples are
given in Figures 8B through 8D. The PRFs for high X�

levels typically showed a small increase at medium to high
item difficulty (see, e.g., right-hand side of Figure 8E). The
PRFs for medium X� and high X� levels rarely showed
misfit on the easiest items. Some of the PRFs for high X�

levels did not show any deviations from the expected non-
increasingness (e.g., Figure 8F). These PRFs result from
item-score vectors that contain few incorrect answers that
are scattered throughout the test. This pattern may be due to
short lapses of concentration or perhaps coincidence. Also,
note that when an easy item was failed but several more-
difficult items were answered correctly, the failure received
much weight and produced a high U3 but did not affect the
shape of the PRF.

Step 3: Local person-fit analysis. Local increases of the
PRFs were tested for significance by means of the Wilcox-

on’s rank-sum test using the number of Guttman errors, G
(Equation 12). We illustrate this for the six cases presented
in Table 1, which were taken from the 45-item subscale
Hidden Figures; see Table 1 for details. For each case,
Figure 9 shows the estimated continuous PRF obtained by
means of kernel smoothing (h � 0.09) and the 90% confi-
dence envelope (evaluated along the ordinate) obtained by
means of a jackknife procedure (Emons et al., 2004). The
confidence envelopes may be used as a precursor to the
Wilcoxon’s rank-sum test. This is done as follows.

Consider the null hypothesis, P�1 
 �i� � P�1 
 �j�,
which represents the extreme case of no increase between
P�1 
 �i� and P�1 
 �j�, and evaluate it against the
alternative hypothesis of increase, P�1 
 �i� � P�1

 �j�. For testing this null hypothesis, assume that the
confidence interval for P�1 
 �i� was derived from the
sampling distribution of P̂�1 
 �̂i� under the null hypoth-
esis. If the sample value, P̂�1 
 �̂j�, is outside the confi-
dence interval for parameter P�1 
 �i�, it is concluded
that the PRF increases significantly between 1 
 �i and
1 
 �j.

For example, for Case 1 in Figure 9 consider the difficulty
values (on the abscissa) approximately equal to .00 and .35
and the corresponding increase in the sample PRF. It is
readily verified that the PRF estimate at difficulty value .35
is outside the confidence interval (on the ordinate) for the
PRF at difficulty value .00. Thus, the increase is significant.
For Case 5, the sample PRF increases between difficulty
values of approximately .4 and 1.0. One can verify that the
PRF estimate at, for example, difficulty value .6 falls in the
confidence region for the PRF at difficulty value .4. This
result suggests that the local increase of the PRF between
the difficulty values of .4 and .6 is due to sampling error.
The PRF estimate at difficulty value 1.0 clearly is outside
the confidence interval for the PRF at difficulty value .4.
This result suggests a significant increase of the PRF be-
tween the difficulty values of .4 and 1.0. These results are
corroborated by the Wilcoxon’s rank-sum test, to be dis-
cussed below.

This procedure demonstrates that the confidence enve-

Table 1
Observed Item-Score Vectors from the Subtest Hidden Figures That Are Used for the Six Examples of Graphical and Local
Person-Fit Analysis

Case

Observed item-score vector

X� U31 2 3 4 5 6 7 8 9

1 00010 11100 11101 11111 10111 01110 00000 00000 00000 19 .28
2 00000 01101 10100 10000 00000 00000 00000 00000 00000 6 .24
3 11011 00000 10101 01111 11100 01000 00000 00000 00000 15 .23
4 11111 10100 11011 11111 11101 11111 01100 00100 10111 32 .35
5 11111 11111 11111 10011 10010 10111 01111 11101 11111 37 .42
6 11111 11111 11111 10111 11110 11110 00011 01111 11101 37 .27

Note. Examples were drawn from a U3 distribution with M � .11, Mdn � .10, 25th percentile � .05, and 75th percentile � .15. The cutoff value that
was used for identifying misfitting item-score vectors was .23.

112 EMONS, SIJTSMA, AND MEIJER



lopes of the PRFs suggest misfit on the easiest items for
Case 1 but not for Case 2; the PRF of Case 3 on the
relatively easy items, but not on the easiest items; the PRF
of Case 4 on the items of medium and high difficulty; and
the PRFs of Cases 5 and 6 on the difficult items. We divided
the items into K � 9 disjoint subsets, each containing m �
5 items; that is, A1 � {X1, . . . , X5}, . . . , A9 � {X41, . . . ,
X45}. The discrete approximation of the PRF (see Figure 10)
was obtained using Equation 11.

Table 2 gives the results of the local person-fit tests. The
item subsets (Table 2, second column) used for local per-

son-fit testing were chosen on the basis of the confidence
envelopes (see Figure 9) showing possibly significant local
increases of the PRFs. Column 3 shows the number of items
in these item subsets. Columns 4, 5, and 7 show the number
correct (Y�), the number of Guttman errors (G), and the
significance probability, respectively. The normed number
of Guttman errors (G*) is also presented, and will be dis-
cussed below.

For Case 1, the PRF shows a local increase for the first
four subsets, A1 through A4 (Figure 10A). We combined
these subsets into one vector, Y, and counted the number of

Figure 7. Histograms of U3 for the four Revised Amsterdam Child Intelligence Test subscales. A:
Figure Recognition. B: Exclusion. C: Quantity. D: Hidden Figures.
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Figure 8. Examples of estimated continuous person-response functions for low latent trait level
respondents (A, B, and C), medium latent trait level respondents (D), and high latent trait level
respondents (E and F).
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Figure 9. Estimated continuous person-response functions (solid lines) and 90% confidence
envelopes (dashed lines) of six cases, subscale Hidden Figures. A: Case 1. B: Case 2. C: Case 3. D:
Case 4. E: Case 5. F: Case 6.

115METHODOLOGY FOR PERSON-FIT STATISTICS



Figure 10. Estimated discrete person-response functions of six cases, subscale Hidden Figures. A:
Case 1. B: Case 2. C: Case 3. D: Case 4. E: Case 5. F: Case 6.
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Guttman errors, G. The upper bound for the significance
probability was obtained from the Wilcoxon’s rank-sum
distribution. For Case 1, G � 75, which was significant at
the .01 level. The interpretation of G values is enhanced by
comparing them with their maximum (Gmax), given the
number of items (JY) and the number of correct answers
(Y�). This maximum equals Gmax � Y�(JY 	 Y�). For Case
1, we have Y� � 13 given that JY � 20, so that Gmax �
13 
 (20 – 13) � 91. The normed number of Guttman
errors is G* � G/Gmax (Meijer, 1994; Van der Flier, 1980),
which for Case 1 equals 75/91 � .82. This value may be
compared with G* � 0, which is the minimum value
(characteristic of a Guttman vector), and G* � 1, which is
the maximum value (characteristic of a reversed Guttman
vector). Another reference value is the expectation of G
under the Wilcoxon’s rank-sum distribution, which equals
Y�(JY 	 Y�) /2 (e.g., Lindgren, 1993, p. 475). As a result,
the expected value of G* under the Wilcoxon’s rank-sum
distribution is .5. It follows that G* values between .5 and
1 indicate that an item-score vector contains more Guttman
errors than expected under the null model, whereas values
between 0 and .5 indicate fewer Guttman errors. Given the
reference values of 0 (minimum), .5 (expectation) and 1
(maximum), we conclude that G* � .82 is high. More
information may be available from the empirical distribu-
tion of G* in a group of respondents (cf. Rudner, 1983;
Tatsuoka & Tatsuoka, 1982).

A school-behavior inventory (Bleichrodt, Resing, & Zaal,
1993) showed that Case 1 scored low on emotional stability.
Furthermore, the current subscale in the RAKIT battery was
preceded by the more difficult subscale Learning Names.
This may suggest that Case 1 was seriously discouraged by
the difficulty of the preceding subscale and, as a result, gave
many incorrect answers to the first and easiest items of the
current subscale. This is an example of how knowledge of

actual school behavior and the difficulty of subscales may
help to interpret person-fit results.

For Case 2, the local person-fit test on the items in A1 and
A2 was significant (G � 19, p � .02; G* � .90). For Case
3, the test showed significant misfit on the relatively easy
items (G � 50, p � .01; G* � .89). For Case 4, the PRF
showed three local increases, which were each tested for
significance. A significant result was found for Items 6
through 20 (A2, A3, A4; G � 35, p � .05; G* � .80) and for
Items 36 through 45 (A8, A9; G � 21, p � .03; G* � .84).
The local increase for Items 21 through 30 was not signif-
icant (A5, A6; G � 6, p � .40; G* � .67). This local increase
for the discrete PRF was not shown by the estimated con-
tinuous PRF (Figure 9D). Thus, for an appropriately chosen
bandwidth kernel smoothing reveals the more persistent
deviations and suppresses the unimportant ones. The high
U3 value for Case 4 (see Table 1) can be explained by the
misfit for relatively easy items and relatively difficult items.
Case 4 had also scored high on a measure of general school
performance. The zigzag pattern of correct and incorrect
answers for this high-ability respondent may be an indica-
tion of test anxiety as an explanation of the observed misfit.
In practical applications, this result may motivate further
assessment of the respondent’s test anxiety. For Case 5,
three local tests were done. Increases at Items 21 through 30
and 36 through 45 were not significant, but the increase for
Items 21 through 45 was (A5 through A9; G � 88; p � .03;
G* � .77). This misfit ranged over 25 items, which may
explain the high U3 value. For Case 6, significant misfit was
found for Items 31 through 40 (G � 22, p � .02; G* � .88)
and for Items 31 through 45 (G � 39, p � .05; G* � .78).
Thus, Case 6 had some relatively easy items incorrect, but
8 items correct out of the 10 most difficult items. Because
the RAKIT was administered individually, answer copying
was no explanation, and the interpretation of this result is
not straightforward.

Discussion

The usual person-fit statistics lead to the binary conclu-
sion that an IRT model either fits or does not fit an item-
score vector. Graphical analysis of person-response func-
tions followed by testing of local deviations in person-
response functions leads to more insight into possible
causes of item-score misfit. We used methods from non-
parametric IRT because of their flexibility in data analysis.
We argue that parametric and nonparametric IRT models
based on the assumptions of UD, LI, and M provide per-
son-fit information that is useful to identify respondents
whose test scores may not be trusted. In addition, we argue
that an invariant item ordering is needed to better under-
stand a misfitting item-score vector flagged by a global
person-fit statistic. Even though this is an important restric-
tion on data analysis, many tests may approach an invariant

Table 2
Results for the Significance Test Using Local Person-Fit
Statistic G, for the Six Examples From the Subtest Hidden
Figures

Case Items JY Y� G G* p

1 1–20 20 13 75 .82 .01
2 1–10 10 3 19 .90 .02
3 6–20 15 7 50 .89 .01
4 6–20 15 11 35 .80 .05

21–30 10 9 6 .67 .40
36–45 10 5 21 .84 .03

5 21–30 10 6 17 .71 .18
36–45 10 9 6 .67 .40
21–45 25 19 88 .77 .03

6 31–40 10 5 22 .88 .02
31–45 15 10 39 .78 .05

Note. JY � number of items; Y� � number correct; G � number of
Guttman errors; G* � normed number of Guttman errors.
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item ordering because of how test construction is typically
done. Also, simulation results (Emons, 2003; Sijtsma &
Meijer, 2001) indicated robustness of person-fit methods
against violations of invariant item ordering in test data.

The simultaneous use of U3, the estimation of PRFs by
means of kernel smoothing, and the use of the upper bound
for the number of Guttman errors based on the Wilcoxon’s
rank-sum distribution are new in person-fit research. One of
the improvements currently under investigation is the esti-
mation of confidence envelopes using a jackknife procedure
(see Figure 9). Such regions may help to better visualize the
violations that are candidates to be tested for significance.
Also, they may help researchers to better recognize and
evaluate trends in person-response functions.

Several artificial and real data examples clarified the use
of our methodology. The use of auxiliary information seems
to be highly important to reaching good decisions. This is a
topic for future research. It is our firm belief that the use of
graphical methods in combination with global and local
statistical testing, to be expanded in future applications with
models that incorporate the use of relevant background
information, can make a useful contribution to the practice
of psychological and educational diagnosis. More power for
finding misfitting item-score vectors may also come from
first determining whether the items in a test have the IIO
property and then using the proposed person-fit methodol-
ogy on newly tested individuals. However, in some appli-
cations this situation may be too idealistic, because re-
searchers may also want to investigate misfit for the sample
used to calibrate the test.
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