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Abstract: Let Uy, U,,... be a sequence of independent r.v.’s having the uniform distribution on (0,1). Let ﬁ,, be the empirical
distribution based on the transformed uniform spacings D; ,:=G(nD, ), i=1,2,...,n, where G is the exp(1) d.f. and D, , is the
ith spacing based on Uy, U,,...,U,_;. The main purpose of this paper is the study of the almost sure behaviour of
lim sup, Lo 4, (g, §) and lim sup,,_,mA,, ,(q, d), where A, (g, q)=supy., < [n" |EL)— 1] /(g()g(1— )] and A, g, @)=
¢ F;,(t) tl/(q(t)q(l— 1)) dt for @ [0, 2) r > 0 and certain weight functions ¢ and 4. Moreover, the weak behaviour of the
statistics will be examined briefly. It turns out that compared with the uniform empirical process (i.i.d. case) the considered
weighted Kolmogorov-Smirnov- and Cramér—von Mises-type statistics behave differently in the right tail only as far as almost sure
convergence is concerned. There is no difference in the weak sense. The results can be applied to the study of linear combinations
of functions of ordered spacings.

Keywords: Glivenko-Cantelli theorems, order statistics, strong convergence, uniform spacings, weak convergence, weighted
empirical process.

1. Introduction and main results
Let {U)7., be a sequence of independent uniform (0, 1) distributed random variables (r.v.’s) and for any
integer n > 2 define the transformed uniform spacings by D, , == G(nD, ), where

Dy =Uper = Uiy i=1,2,000,n

O_ UOn—l Uln 1 gUn—l:n—lgUn:n-—l:=1

are the uniform order statistics at stage n — 1 and G is the standard exponential distribution function
(d.f), ie. G(x)=1-¢7% x> 0. It easily follows that for t (0,1 —e™"],

F(t)y=P(D;,<t)=P(nUp,_, < log(l—t))—1—(1 @)n_
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and hence for a fixed ¢t € (0, 1),

lim F(¢)=1t.

n—o

The empirical d.f. based on the D, is defined by
n

Fn(t) =n—l Z 1(0,1](Di,n)’ te (0’ 1)
i=1

Recently the authors obtained a complete characterization of the almost sure behaviour of
lim sup,, .0V, , and lim sup, bW, ., for « €[0, ;] and a sequence of positive norming constants

{b,J;_, where

n|E (1) -t
Via= SUD ~——-—~—| (1_)a ], (1.1)
0<i<l !
n|E(t) -t
W, .= sup -u-—)—l (1.2)

p<t<1 (1 ’“l‘)l—u

The precise result is as follows:

Theorem (Einmahl and van Zuijlen, 1988). For each o € [0, %] we have for sequences of positive constants
{a,);_, the following implications:

[Za,,=00] = [hm sup a!” “Vna-ooa.s.], (1.3)
now
[Za" <, a,| and na,log n~+0] = [’}ﬂ ay"V, =0 a.s.], (1.4)
[La, log(a; ") =o] = [hm sup a,” “W,,a—ooa.s.] (1.5)
n—oo
and
[Za” log(a, ') <wand a, lO] = nh—?}» al” “W;m—Oa.s.]. ] (1.6)

Note the difference in behaviour between the left tail (¥, ,) and the right tail (W), ,): the result for V, ,
is exactly the same as the corresponding result for the one dimensional uniform empirical process (i.i.d.
case), whereas the behaviour of W, , is essentially different.

In the present paper we will use the aforementioned results in the study of weighted Kolmogorov—
Smirnov- and Cramér-von Mises-type statistics based on uniform spacings. To be more precise, we study

the almost sure behaviour, but also the weak behaviour, of the statistics

ne| B (1) - t|

4,.(a,4)= S aa=n (1.7)
and
A1) 1]
q) = f q(t)q(1~t)) dt (1.8)

for @ €10, 1), > 0 and certain weight functions g and §, which will be specified later.
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It is well-known that the unweighted versions of the statistics 4, , and A, , (g =¢§=1) can be used
for testing e.g. exponentiality, making use of the fact that the vector of uniform spacings is distributed as
a vector of »n ii.d. exponential r.v.’s divided by their sum. Cf. also Pyke (1965, 1972) and Deheuvels
(1986). The unweighted versions of 4, , and A, . exhibit poor sensitivity to deviations from the
exponential distribution that occur in the tails. This drawback can be met by using the just defined
weighted versions of the statistics.

In order to state our results (which will be proved in Section 2), let us first introduce the following
classes of weight functions. We write

Q={g:(0, 11— (0, »): g bounded away from 0 on 8, 1] for every 6 > 0 and g bounded}
(19)

and for 7> 0,
Q.={qe€Q: g/I" is non-increasing}, (1.10)

where [ is the identity function on (0, 1]. The first theorem gives a complete characterization of the
almost sure behaviour of 4, .

Theorem 1. Let 0<a <3 andq, §€Q,_,. If

[a) ™ de<o and [ 10g(1/6)(a(r)) "4 de <o, (1.11)
0 0
then
lim A, (g,4)=0 a.s. (1.12)
n-— o .
If at least one of these integrals is infinite, then

lim sup4, (g, §) = a.s. - (1.13)

n—oo

Remark 1. Note that in case a =0 we have the Glivenko—Cantelli theorem for the weighted cmpirical
process based on uniform spacings.

Remark 2. The weak analogue of Theorem 1 for A, (g, §) with a € (0, 3) and ¢, §€Q is almost
immediate from the corresponding weak result for 4, (1'% I'~®) (see Theorem 3 in Csorgd and
Horvath, 1986) and reads as follows. If

Pl l-a . o
lim =c¢,€[0,»] and lim —— =¢,€]0, ], 1.14
tioq(t) 1 [ ] lloq(t) 2 [ ] ( )
then we have for ¢, €[0, ) and ¢, €[0, »): ‘
A, — X, Ve, X!, : (1.15)

where X is an independent copy of X, = Sup, e g N() —1¢ | /t1=%), with {N(¢), ¢t €[0, »)} a Poisson
process with intensity parameter 1. Moreover, if ¢; = o or ¢, = « then we have

A~ e, (1.16)

n,a
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Corollary 1, Let g€ Q,. If

[Ol(q(t))”1 dt <o, (1.17)
then

E(t t
lim sup —-L—)= sup —— a.s. (1.18)
Ol NPT ‘I(t) 0<r<1 Q(t)

If the integral in (1.17) is infinite, then

lim sup sup ﬁ"(t)
n—o 0<i<l Q(t)

= a.s. (1.19)

Our next theorem deals with the statistic A, . In this case we give sufficient conditions for the almost
sure convergence of A, , to zero and show that they are very close to being also necessary.

Theorem 2A. Let r >0 and q, § € Q, 41y, If
Ll(q(t))—r/(”_l) d[<00 and Al(log(l/t))r/(r-i-l)(q(t>)'—r/(l‘+1) dt<°°, (120)

then
lim A, .(q,4)=0 a.us. (1.21)
n—o

However, if g =1"*D/" or §=IU*D/7 then

A, (q,§)=» a.s. (1.22)
The in probability version of the above theorem is as follows:

Theorem 2B. Let r >0 and g, € Q. If

/1(~—t—— df<ew and [1( )dt<oo, (1.23)
0 \q(t) 0 \4(t)
then

A,, —— 0. (1.24)

Howeuver, if at least one of the integrals in (1.23) is infinite, then (almost surely)

Ay, = (1.25)

Discussion of the results. For the uniform empirical process (abbreviated as ‘i.i.d. case’), the convergence
half of Theorem 1 with a=0 has been established in Lai (1974), whereas Wellner (1977, 1978)
essentially solved the whole characterization problem for 4, ; and showed how that result can be used to
obtain almost sure nearly linear bounds for the empirical distribution function in that case. These nearly
linear bounds can . be used in turn as a tool for proving strong laws of large numbers for linear
combinations of functions of order statistics in the i.i.d. case. Obviously, our results for 4, ,— in the case
of uniform spacings — can be used similarly to obtain almost sure nearly linear bounds for the empirical
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distribution function in the considered situation and to obtain strong laws for linear combinations of
functions of ordered spacings. For related results see also Beirlant and van Zuijlen (1985). Recently,
Andersen, Giné and Zinn (1988) obtained essentially Theorem 1 for general « in the ii.d. case. See also
Einmahl and Mason (1988) for other related results in the i.i.d. case.

Andersen, Giné and Zinn (1988) gave for general « in the L.i.d. case a slightly weaker result of our in
probability version of Theorem 1 (see Remark 2).

A slight modification of the counterpart of our Theorem 2A in the i.i.d. case can be found in Einmahl
and Mason (1988).

Note that the restrictions on the weight functions under which we stated our results are very mild;
only some monotonicity-condition is needed. Finally, we remark that we find (as could be expected) a
difference between the left and the right tail in case of almost sure results, whereas there is no difference
if one considers only ‘weak’ results.

2. Proofs of the results

In this section we will successively give the proofs of Theorem 1, Corollary 1, Theorem 2A and Theorem
2B. The proof of Remark 2 following Theorem 1 is easy and will be omitted.

Proof of Theorem 1. It is easily seen that it suffices to consider the left and right tail separately, i.e. it is
sufficient to prove that

fl(q(t))~l/(l—a) df < oo,
0

implies
; n|£(1) 1|
im sup ——F—— =
n-e ey q(t)
and that
1 - 3
fO(Q(t)) VA=) 4y o
implies
| | B (1) ¢
lim sup sup =00 4.8,
n—o  0<t<1 Q(t)

and the analogous statements for the right tail. Since the proof for the right tail is slightly more
complicated we give the proofs for that tail and omit those for the left one.
So first assume

f]log(l/t)((j(t)) BRAN TR
0
We begin with proving that

n?| B (1) — 1

lim sup —_—— =0 a.s. 2.1
g(l—1t) 2.1

H—>0 -
1-n"1241<1
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Write ¢(t) =1/(g(t)!'/" =, 0 <t <1 and observe that ¢ 7 and that
follog(l/r)t" (1) dt <o,
By the change of variables ¢ =s~'/2 we also see that
/f)(;,’)(s"‘/z)s‘1 log s ds < oo

and, since ¢ T,

Yon lp(n"?) log n <.

n

Writing a, =n~'¢(n~'/? and using some elementary analysis it is immediate from (2.3) that

Zall log(l/all) < .
n

Moreover we have na, |0 by (2.4) and the fact that ¢ 1. Observe that

n®| £,(¢) - 1] n| B(1) — ¢
sup —_— = sup —=(o(1—-1)
l—n~Vigrel q(l"t) 1-n~12<1<1 (1_t)l ( )
ne () 1|

-«
< (na,) sup
- " 0<t<l (1—1‘)1 “

Combining (2.5) with (2.4) and (1.6) yields (2.1).
Next we show

. ne () —1|
lim sup ——— =0 a.s.
2% 0<tgl—n~l2 G(1-1)
Observe that, since I'™*/4 1,
A O wp MIEO
O<tgl—n"12 q(]‘_t) q(l) O<tgl—-n"1/? (l_t)l “

Hence for a proof of (2.6) it suffices to prove

ne| B(1) —¢|
lim sup —_— =
n=®gciet-n-iz (L—1t)
Note that
__tl n1/4+a/zlﬁ~n(l‘) _ t|
sup  — i <
O<t<1—-n~12 (1_t)l ¢ 0<tgl—-n"1? (l_t)lﬂ

Using formula (3.3) in Einmahl and van Zuijlen (1988) yields that for every & > 0,

nl/4*e 2| B (1) — ]
1-1)?

P sup
0<tg1-n"172 (

v

| <K, log n exp(—K,n'/*"%)
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(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)
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for some K,, K, €(0, ©) only depending on £. This, in combination with the Borel-Cantelli lemma,

completes the proof of (2.8) and hence of the first part of Theorem 1.
Finally we must show that

f(,llogwr)(c;(z))“/““*’ dt=eo (2.11)

implies

; n| £ =] 1)
im sup sup ——————— =® a5, .
noo 0<t<i  G(L—1t)

Again write ¢ =1/3"/"~* and note that (2.11) implies

[Mtog(1/0)t7(1) dt =,
0

which, in turn by the change of variables ¢ = 52, gives

/mqﬁ(s‘z)s‘l log s ds = co.
t
Since ¢ 1, we have

Y n'¢(n"?) log n =,

n

Writing a,, =n~'¢(n~?) it is easily seen that

Zan IOg(]'/an) =&
n

Now from (1.3) and (1.10) in Einmahl and van Zuijlen (1988) we have for every & > 0,
P(1-¢a,<D,,<1-n"%io0)=1 (2.13)
Note that

wp Bt ne A1) ~ 1|
0<r<l q(l—t) g " 0<tgl—n~2 (1“t)1 .

Combination of (2.13) and (2.14) easily yields

) n B —el 1
1m sup sup — = -
now 0<t<l q(l_t) 281 «

Letting £ | 0 completes the proof of Theorem 1. O

(2.14)

a.s.

Proof of Corollary 1. The first part of the corollary follows immediately from Theorem 1, with o =0 and
d =1, and an application of the triangle inequality. The second part can be proved along similar lines as
the second part of Theorem 1. O

Proof of Theorem 2A. For similar reasons as in the proof of Theorem 1 we restrict ourselves to the proof
for the right tail. First assume

fJ(log(l/r»"“"*”(q(r)) T dr <, (2.15)
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Write Lx =1V log x, x > 0, and note that

[ <t>—r!) are| s £ ~ 1] "
0 q(l—t) = D<r<l ([]—(1_t))r/(r+1)(L(1/(1_t)))l/(m-l)

1 1 r/(r+1)
[ (L(————)) (g(1—1))7*0 gt (2.16)
0 1—1t
It is now immediate from (2.15) and Theorem 1, with « =0, that the right side of (2.16) converges to zero
almost surely. (Observe that, strictly speaking, 4’/ "“)(L(l /INYUFD has to be bounded for the
application of Theorem 1. An inspection of the proof of Theorem 1, however, shows that the
boundedness of (the present) 4"/t Y, or equivalently of 4, is in fact sufficient.) This finishes the proof of
the first part of Theorem 2A.
Now take §=I"*1/", We have

o By - ) 1
,/;) (1_t)(rf1)/r) dt;/D

nin

|£,(1) ~ 1 )

1
m dl‘=f 1/(1—t)dt=°° a.s. O

nin

(2.17)

Proof of Theorem 2B. Again it suffices to consider both tails separately. Moreover, both proofs are
similar again. Therefore we restrict ourselves to the proof for the left tail.
First we show that

1 rd
j(;(;(—;—)‘) <o (218)
implies
(LA@ =1\ &
fo 0 ) 0. (2.19)

Since g €@, it is easily seen that for arbitrary & > 0,

NUAGE
fa q(t)

Therefore it suffices to show that for every & > 0 there exists a § > 0 and N € N such that

|£,(0) -]
‘/0( 0 ) dt=e

P

dt —2 0. (2.20)

<e¢ fornz=N. (2.21)

But note that

s( 160 — ]} ZORIA a( ‘ )
—— | dtg| sup ———| - —— dt. 2.22
‘/;) q(t) 0<t<l1 ¢ /0 q(t) ( )
It readily follows from Theorem 3 in Csérgd and Horvath (1986), with e.g. their v = 2, that the first term

on the right side of (2.22) is #,(1). This, in combination with (2.18) and (2.22), yields (2.21) and hence
(2.19).
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Finally we have to show that
of ¢\
— | dt=w
/0 (Q(t) )

GRS
/0 —-———-—-—-q(t) dt=o

implies

Note that

NAGETIAY D,
fo q(t) ’f

T oq(t)

STATISTICS & PROBABILITY LETTERS
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(2.23)

(2.24)

Dy '
dt—fo (q—(t—)—) dt

The right side of (2.24) is equal to infinity because of g € Q and (2.23). This completes the proof of

Theorem 2B. 0O
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