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of Order Statistics
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3 Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

Summary. We shall disclose a relationship between the almost sure stability
of weighted empirical distribution functions and sums of order statistics.
First we obtain an extension of a theorem due to Csiki on the almost
sure stability of the standardized uniform empirical distribution function.
This result is then shown to be an essential tool to derive a characterization
of the almost sure stability of the sum of k, upper order statistics from
a sample of n independent observations from a distribution with positive
support in the domain of attraction of a non-normal stable law, where 1
<k,Znandk,— c0 as n— 0.

1. Introduction and Statements of Main Results

We begin with a result on the almost sure behavior of the standardized uniform
empirical distribution function, which is an extension of a theorem due to Csaki
(1975, 1982). For this let U, U,, ..., be a sequence of independent uniform
(0,1) random variables and for each n=1 let U, ,<...£U,, and G, denote
the order statistics and right continuous empirical distribution function based
on the first n of these random variables.

Theorem 1. Let I, be any sequence of positive constants, k be a fixed positive
integer and 0Sv=<1.

If 1.1 and

i 1
2 = =% : (L.1)

n=1
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then
lim sup n'|G,@)—¢t/t' " 1)=0 as. (1.2)

n=ro0 Ukngest

If ni}/1=91 qnd

i 1
e =
then
limsup sup #°|G,(t)—tl|/(t* " ])=c0 as. (1.4)

n=+o  Uknsesy
The case k=1 yields almost immediately that for any such sequence /,

limsup sup n'|G,®)—t|/(t'""1)=0 or co as.

n—ow 0151

according as (1.1) or (1.3) holds with k=1, which for v=1/2 is the original
Csaki (1975, 1982) result. The case v=0 can be shown to be equivalent to
Theorem 2 of Shorack and Wellner (1978). The statement for arbitrary 0Zv<1/2
is Theorem 2 of Mason (1981).

Theorem 1 is likely to have a wide variety of applications in probability
theory. Here we shall show that it is closely connected to the almost sure stability
of sums of order statistics. For this purpose let F be a distribution function
in the domain of attraction of a non-normal stable law with positive support,
ie.

F(0—)=0 and 1-F(x)=x""L(x), x>0, (1.5)

for some 0 <a<2 and function L which is slowly varying at infinity. Let
Q(s)=inf{x: F(x)=s}, 0<«<s=<l,

with Q(0)=Q(0+) denote the inverse or quantile function of F. Then (1.5) is
equivalent to, for the same 0 <a <2,

Q0+)20 and Q(l—s)=s ' L(s), 0O<s<l, (1.6)

where L is slowly varying at zero, cf. de Haan (1975), Corollary 1.2.1.5 or Seneta
(1976), Lemma 1.8.

Let X,,X,, ..., be independent random variables with common distribution
function F as in (1.5), and for each n=1 let X, ,<...£X, , denote the order
statistics based on the first n of these random variables. Also let k, denote
any sequence of integers such that 1<k,<n and k,— co. From S. Csdrg6 and
Mason (1986) it follows that

ky
Q(l—l/n)"l{z X,,H_i,,,—nun}——”;ma, (w7

i=1
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where 4, denotes a completely asymmetric stable random variable of index
a, and
0, if O0<ax<l
1—1/n
[ 0@)ds, if a=1

/-tn =Y 1—kn/n

1
[ 0(ds, if l<a<2.

1 —knfn

(Unless otherwise specified all convergence statements are meant to hold as
n—00.)

When az2 in (1.5), S. Csdrg and Mason (1986) demonstrate that these
sums of k, upper order statistics, when properly centered and normalized con-
verge in distribution to a standard normal random variable. The corresponding
almost sure behavior for the case a>2 is completely described in Haeusler
and Mason (1987), They show, in fact, more generally that for each fixed integer
k=1 and sequence k, converging to infinity fast enough the sums

K
2 Xusi-tmo (1.8)

i=k

when properly centered and normalized obey a law of the iterated logarithm,
whereas, for all other such sequences k, one has a stability result. In the sequel
we shall show that in the case a<2 the almost sure behavior of these sums
is different. It turns out that one now has a stability result for the sums in
(1.8) for all sequences k, of integers with 1 <k,<n and k,— co, but never a
law of the iterated logarithm.

For any sequence of non-decreasing constants b, converging to infinity set

a,=b, (1 —1/n). (1.9)

Obviously by (1.7), we have for any sequence of positive integers 1 <k, <n and
k,— oo and sequence b, as above that

kn
a;rl{z Xn+1—i,n—n‘un}_)0: (110)

i=1

in probability. Theorem 1 will be an important tool in characterizing those
sequences b, for which the convergence in probability to zero in (1.10) can
be replaced by almost sure convergence to zero. Our results on this problem
are contained in

Theorem 2. Assume F is of the form (1.5) for some 0<a<2. Let k, be a sequence
of positive integers such that 1=k, sn and k,— oo and let a, be defined by (1.9)
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for some sequence of constants b,1co. Then the following three statements are
equivalent for any fixed integer k= 1:

i 11— F(a,)f < oo, (1.11)
a7 X1 -en—0 as, {1.12)

and there exists a sequence of constants ¢, such that

kn
a;‘{Z X,,H_i,,,—cn} -0 as. (1.13)

i=k

If (1.13) is true, then one can choose ¢,=np,. . '
In addition, the following three statements are equivalent for any fixed integer
k=1:

Y n* T 1= F(a,)*= oo, (1.14)
n=1
limsupa; ! Xyi1-pn=00 as., (1.15)

and for any sequence of constants c,

k"
Hmsup @n | Y, Xps1-1n—Col=0 a.s. (1.16)

n—w i=k

Our Theorem 2 demonstrates that the almost sure behavior of the sums
of order statistics in (1.8) is governed by the largest order statistic X, (s,

appearing in this sum. Assume that a, is such that (1.16) holds for the whole
k)l

sum Y X,4;-i, (i€, k=1) and any sequence of centering constants c,; then
i=1

it can be inferred from the first part of the theorem whether it is possible to

delete a fixed number of the upper extremes X, ,, ..., X1, from this sum

to obtain a stability result as described by (1.13) or not. In the case that this

is possible, the exact number can be determined from (1.11) and (1.14).

A similar phenomenon has been noticed before in the context of trimmed
sums formed by deleting the top k largest observations in absolute value. For
investigations along this line based on the methods of classical probability,
the reader is referred to Mori (1976, 1977) and Maller (1984). Our method,
on the other hand, utilizes a connection between weighted uniform empirical
distributions and sums of order statistics. It is particularly suited to analysing
the behavior of sums of the form (1.8), which cover the case of sums of extreme
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values (e.g., k, — 00, but k,/n—0 as n— c0) and complete sums (ie., k,=n for
all n= 1) simultaneously.

The proof of Theorem 1 is given in Sect. 2 and the proof of Theorem 2
in Sect. 3.

2. Proof of Theorem 1

For convenient reference later on we record the following facts:

Fact 1 (Mori (1976); see also Kiefer (1972)). For any sequence of positive con-
stants 4, with g,

P, ,£a,1.0)=0 or 1

according as the series

[+s]
Y nlak<oo or =00,
n=1

with the same assertion holding with U , replaced by 1—U, . - ,..

Fact 2 (Csaki (1977)). For any ae(0, c0)

limsup sup  (n/loglogn)'/?|G,()—t|/t}? <2 as.

n—sw (logn)¥/n=t=1
For any positive integer k and 0=v=<1/2, let

dox= sup WG, ()=t

Ui, nSts1
We are now ready to prove the first part of Theorem 1. Choose any 0=<v<1/2.

First assume that (1.3) holds and nl}/*~1. Since nl}/* ™1 it follows from
Fact 1 that for every ¢>0

P(U, , Smin{e/(nl¥* N, k/(2n)} io)=1. 2.1

We have
An,k/ln _2_ n’ (k/n'—' (Jk,n)/(ln I]I«'.l,r;—v)

Now (2.1) implies that for every ¢>0

limsup 4, ,/l,2k/(2e' ™) as.

=+

Letting €] 0 proves (1.4).
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Next we assume that (1.1) holds and [, 1. We first consider the most difficult
case v=1/2. Observe that we may assume without loss of generality that I,<logn
for all large enough n. Set b, =(log n)**/n and write

{Sw ni2(G, ()t} if U, ,<b,
A=

UenStShy

0 otherwise.

We shall show that
lim 4/1,=0 as. (2.2)

Let

U, nStSby

i{sw:ﬂm@mqw” if Uy <b,
4 n =
0 otherwise.

To establish (2.2) it is enough to prove that
limsup 45/1,£0 as. (23+)

n—+ao

Notice that whenever [, satisfies (1.1), then for any >0, ¢l, also satisfies (1.1).
Thus to verify (2.3 +) it suffices to show that (1.1) implies

limsup4, /I, <1 as. (2.4)

n—+w
Define the following events:
A,={4z2l} and C,=A4,nA_,.

According to the Borel-Cantelli lemma we need to prove

i P(C,)< o0 2.5)
n=2

and
lim P(4,)=0. (2.6)

For any integer 0<i<n define x; , to be the min(y; ,, b,) where ¥i.. 18 the solution
of the equation

ny+nl/?l, yti2 =i, (2.7)

Define k,=1+ [(log n)'*+1,(log n)'/®¥], where [x] denotes the integer part of
x. Notice that /,7 along with (1.1) implies

lim £/(logn)!/*= co, (2.8)
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which in turn implies that

le k,/12=0. (2.9)
Also note that trivially we have
xk,,,n=bn‘ (2.10)

To establish (2.5) and (2.6) we require the following lemmas whose statements
are assumed to hold for all large enough n.

Lemma 2.1,
{af <l _d={n—1)G,o O<tn+n'? [ 1P :x,_y ,<t<h,}.  (2.11)

Proof. Let we{d, ;<1,_}.
Case I (U, ,—1>b,).

In this case, we have (n—1)G,_;(0)<k—1 for all 0<¢<b,, which implies that
(n—1)G,_ O)<tn+nl? 1 ¢} forall x,_, ,<t=<bh,.

Case 2 (Uk,n-l é bn)'

In this case, we have (n—1) G,_; () <t(n—1)+(n—1)21,_, t' for all U, ,—,
ZLt<b,, which since [, { implies

(n—1)G,_()<tn+n'? [ t'?  for U -y <t=h,. (2.12)

Notice that if U, ,—; <Vi—y1.» then (n—1) G,_;(¥x—1 )=k, which contradicts
(2.12). Thus if (2.12) holds we must have

Uin~1>Yi-1,n- (2.13)
Now (2.13) implies that
(n—1) Gy () <tn+n? 1 1'% for yo_ o <t<U,—y. (2.14)
Combining (2.12) and (2.14) and replacing y,— ¢ , by x,—, , yields
wef{(n—1)G,_(<tn+n*? 1, 1" x,_, ,<t<h,}.
This completes the proof of Lemma 2.1.
Lemma 2.2.
k"
{4F =zl = | {nG, )z nt+n 21, 1" forsome x;_,<t=x;,};. (2.15)
i=k

Proof. Let we{d,f 21,}. We must have U, ,=b,. Since x, ,=b, there exists
1£igk, such that

Uk.ne(xi—-l,na xi,u]' (216)
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If (2.16) holds with i<k, then nG,(x, )=k, which implies that w is an element

of the set on the right-hand side of (2.15). If (2.16) holds with

must exist a £ with y—; ,=%Xp-;,,<Up,£t=h, and nG,(H)Znt+n

i=k, then there
1/2 1, tuz’

which also implies that @ is an element of the set on the right-hand side of

(2.15). This completes the proof of Lemma 2.2.

Lemma 2.3.

kn
{A:—-1<ln—1} ﬁ{[]: gln}c U {(n_l) Gn—l(yi.n)gi—lg Uuéyi,n}' (217)
i=k

Proof. Observe that for any kZi<k,

{(n—1) G- @) <nt+n'? ]t x,_, ,<tXh,}
N{nG, (= nt+n'? [t/ for some x;_; , <t £ x; .}

c{nG,(t)ziforsome x;_; ,<t<x;,and (n—1) G,_ (x; ) <i}

C{(n-— 1) Gn——l (xi,n)=i_15 U;léxi"'}
C{(n_ 1) Gn-—l (yi,n)gi_ L ljnéyi,n}‘

Lemma 2.3 now follows from Lemmas 2.1 and 2.2.

We shall now show that (2.5) holds. Applying Lemma 2.3 we have

kn . a1\
P(CISY PU,Z3,) P(n—1)Gyoy () 2i— DS Y ( )y;,,,.

i=k i=k
From Eq. (2.7) we see that

VinZ2/n1}).
Thus

kn n—l i2 i 1 kn k ik ii+k+l
P(C)= —1 = — .
=205 )Ga) = L

n =k il
Using the Stirling formula we obtain
1/m! = (e/m)™,

We now see that the last summation given above is

k i—k
< 1 i(ek"y ok F 1
= 2k 2 >
nln i=k ln

which since by (2.9) k,/I2 —0, is for all n sufficiently large

I A AU 1
énl,z,k §k<§) ek lk+1=l’ll,%k Ck

with C, < cc. Therefore, since we assume (1.1) we have (2.5).

i—1

(2.18)
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We show next that (2.6) holds. Observe that by Lemma 2.2 for all large
enough n

kn k,
P(ANE Y P(nG, (1 Z)< Y (:') Yo (2.19)
i=k i=k

which by the same bound as just given is for all n sufficiently large < C,/I2*.
Since by (2.8) I,— o as n— o« we have (2.6). Therefore we have established
(2.4) and hence (2.3+).

Next consider (2.3 —). Notice that trivially

A7 /LS b))V, {2.20)

Applying (2.8) we see that the right-hand side of (2.20) converges to zero. so
we also have (2.3 —). Statements (2.3 +) and (2.3 —) imply {2.2).
Set
AP = sup n'2|G,(t)—t]/tV2

bastg1l
Combining Fact 2 and (2.8) implies

lim A2 =0 as. (2.21)

R

Obviously, statements (2.2) and (2.21) imply (1.2).

Having established that under the above assumptions (1.2) holds for the
case v=1/2, we are now ready to prove the general case. Choose any 0<v < 1/2
and notice that

sup nvlcn(t)—tlll(tluv lu)

Uknstsl

1 1/2—v ) ) .
é(m) sup n'2G, () —tf/(eF 1A
n k,n

=D D@,

Uk.nses

Assumption (1.1} holding for this choice of v implies by Theorem 1 (for the
case v=1/2) that D{? converges to zero almost surely and by Fact 1 that

limsupDP<1  as.

n-x

This completes the proof of Theorem 1.

3. Proof of Theorem 2

Since the two sequences of random variables X,, X,, ..., and Q(U,), Q(U3), ...,
are equal in law and consequently the two processes {X;,: 1<ign n=1} and
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{Q(U,,): 1<i<n, n=1) are equal in law, too, we shall assume without loss
of generality that X, ,=Q(U,,) for ISiSnandnz1.
We shall require the following technical lemmas:

Lemma 3.1. Let x, and y, be two sequences of positive constants such that
X, =0(y,) and y,—0. Then for any f<0, y§ L(y,)=0(x} L(x,).

Lemma 3.2. For all 0<e<l/a and 0<y<oo there exists a 6>0 such that for
all 0<s£t<d

Lo0-y t7HLE)

—1ifate
S0y s L =T

$(e/s)~Hem

Lemma 3.3. Let x, and b, be two sequences of positive constants converging
to infinity. Then for all § >0 and all sufficiently large n

by <L(b, x,)/L(x,) <bS.

Lemma 34. 1 —F(Q(1—s)~sas s]0.

Lemmas 3.1, 3.2 and 3.3 are direct consequences of the Karamata representa-
tion theorem and Lemma 3.4 is contained in the results in Sect. 1.5 of Seneta
(1976).

We are now prepared to begin the proof of Theorem 2. Since the sequence
a, is non-decreasing, Lemma 3 in Mori (1976) implies the equivalence of (1.11)
and (1.12), and (1.14) and (1.15), cf. also Theorem 4 in Hall (1979). Next we
shall demonstrate that (1.11), respectively (1.12), imply (1.13).

We shall first show when (1.11) holds that for some fixed integer =k

ky 1-1n
a7’ Y Xypioje—n | Q@6)dsyp—>0 as. 3.1)

j=1+1 1 —knin

Notice that for any fixed integer /=1 that by two integrations by parts, where
the usual conventions about integration with respect to the left continuous func-
tion Q are applied,

3 Kn 1—1/n
ay, 1{ Z Xn+1—j,n_n j Q(S)dS}
J

=41 1—ku/n

Up—=tn 1—1ln

=a,,‘1{n I Q®dG,(—n | Q(s)ds}

Un-ten 1—kp/n

Un-tn
—1

Uyt
=a;'n [ (—-G,(s)dQE)—a,'n [ (I—s—im)dQ(s)

U, =k 1-1I/n

Uy — Kyt

_‘ar;—ln _[ (I—S-—k,,/l’l) dQ(S)

1 =knin

EAl,n-*_A2,n—_A3,n'
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Our aim is to prove that for a sufficiently large integer I the terms 1, ,. i=1,2, 3,
converge to zero with probability one,
Note that by Lemmas 3.3 and 3.4 for any 6 >0 we have for all large enough »

1=, 001~ )
1= F(Q(= [/n)

~b; {L(h, Q1 — /mL(Q(L — Ljmh n !

2n"throd, (3.2)

1—Fla,)= (L= F(Q(l— /)

Consequently with § =2—a >0 convergence of the series in (1.11) implies

Z n~thr <o (3.3)
n=1
which since b, T oo yields
(log n)/b3* - 0. (34)

Subsequently for all | sufficiently large we have

oL X
Y o nTlp Ut N T p el D e o, (3.5)
n=1

n=1

Choose any positive integer | such that the right-hand series in (3.5) is {inite.
First consider the term 4, ,. We see that

(P P - PRy P

where
I,,= sup n'2|G,(s)=sl/(b,/*(1—5)'"?)
T 0S5EUn-1n
and
Un-1,n
L= [ (1-9V2dQ@s)/(b¥*n~ 1> Q(1—1/n)).
V]

Since the left-hand series in (3.5) is also finite, the obvious upper tail version
of Theorem 1 implies that I, ,— 0 almost surely.
Next by integration by parts and applying Theorem 1.2.1 in de Haan (1975)

1t

2
J (1=9'2dQ(s)~ 52" L) as 1},

0
Thus almost surely as n— o

2 (I=U_ Y L ~-U, o)
2—a bt 1218 L (1/m)

IZ.n"‘ (36)
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Applying Lemma 3.2 with y=1/a along with Q(1 -—'S)T as le‘wc have almost
surely for all n sufficiently large that the right-hand side of (3.6) is

=3 L 11— Uy IBED (B3 (= Uy + 13-
—da

By Theorem 2 of Kiefer (1972) we have for any fixed positive integer [

limsup n(1 —U,-,,)/loglogn=1 as, (3.7)

and by the finiteness of the right-hand series in (3.5) in combination with Fact

1 of Sect. 2
/(b n(1—U,_, ))—0 as. (3.8)

Hence by (3.4), (3.7), and (3.8), I, ,—0 almost surely, which by the preceding

steps gives 4, ,— 0 almost surely. . B
We shall now show that for a sufficiently large I, 4, ,—0 with probability

one. Choose I such that the series in (3.5) are finite. Observe that

sl sart n|Uyoy— 1= YmQU, 1) — (1 —/n)]
Sl s, (3.9)

where
I ,=2max{,n(1—U,_,,)}/b;?

and
Iy n=2max {Q(U,_,.), Q1 —I/m)}/(b)* Q(1 —1/n)).

Statements (3.4) and (3.7) imply I ,—0 almost surely and by nearly the same
proof as just given, I, — 0 almost surely. Thus 4, , — 0 with probability one.

Finally we must verify that 4, ,— 0 with probability one. For each integer
nz=1set

L=k, v [(loglogn)*] and m,=k, A [(loglog n)*].

Since inequality (3.9) holds with 2 replaced by 3 and [ replaced by k, it will
be enough to show that

Diw=ar  nlUpmy = (= l/mIQU,-y, ) — Q1 —L/m)| >0 as. (3.10)

and
Dz,nEa,fl nlU,,—m,.,n-(1—-m,,/n)l[Q(U,,_,,,"’,,)—Q(I—mn/n)| -0 as. (3.11)

For_the proof of (3.10), we observe that l/loglog n— oo, so that Theorem 2
of Einmahl and Mason (1988) implies that with probability one

n, (]n—l,,,n_(l _lrx/n)l <

limsup

n-w  (lloglogn)!/? 2 (3.12)



Weighted Empirical Distributions and Sums of Order Statistics 71

Let 4 denote the event on which (3.12) holds. Then we have 1—U,_, ,~L/n
on A. Let n' be any subsequence of the sequence of positive integers such that
Ly/n —c as n' — oo for some 0<c<1. If ¢c=0, then on 4 in view of (1.6)

Q(Un'—l,,r,n’)/Q(l _‘ln'/n,) -1 as n—ow,

hence for all large enough n’ by (3.12)

(b loglog n)'™ 9 (1 —L/n') _, (loglog n)'"

D, .= <
= by Q(1—1/n) = by

where the last inequality follows from Lemma 3.2 with e=1/a— 1/2. This proves
D;y,—0as n—ow on A on account of (3.4). If ¢>0, then Q(U,._,,. ) and
0(1—1,/n") are bounded on A along n', and by (3.12) for all large »’

n I l]n' —ly,n' (1 - l,,:/l’l’)‘ < (nl loglog n/)l/Z

Qay. = bn’ Q(l'—l/n/)
n1/2 1/a—1j2
=_____(loglcl)7gn) (%) Lt (l,)—>0 as n'— o

on account of (3.4) and 1/a—1/2>0. This proves Dy ,—0 as n'— 00 on 4
again, which therefore holds for any subsequence n' for which I,,/n’ converges.
The proof of (3.10) is now completed by an elementary subsequence argument.

For the proof of (3.11) we note that since k,— co, for any fixed integer
[ for all n sufficiently large with [<m, <[(loglogn)*]1=p,

D2,n§nll'" (Jn——pmnl Q(l]n—l,n)/(bn Q(l_ 1/"’))
+n|l=U,—p,al QL —~I/m)/(b, Q(1—1/m)
+m, Q(U,-,,,)/(by QL — 1/n) +m, Q(L —/m)/(b, Q(1—1/n)).

From (3.12) with [, replaced by p, we have n|1-U,_, ,|<2 (loglog n)? with
probability one for all large n, and hence

(20 0
"ETRE b Q=1 by Q- 1/n)

Statement (3.4) and I, ,— 0 with probability one imply D, ,— 0 almost surely.
Hence we have established that 45 ,—0 with probability one. This completes
the proof of assertion (3.1).

Routine arguments based on well known properties of regularly varying
functions, cf. de Haan (1975), Seneta (1976), show that for all 0<a<2 and
all fixed integers [=1

o (i T eds=nu)-0.

1—kyfn
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Since (1.12) implies that for each fixed integer /=2 k

i
-1
a, Z Xn+1—i,n'—’0 a.8.,
i=k

this finishes the proof that (1.11), respectively (1.12), implies (1.13) with ¢,=np,.
We shall demonstrate next that

kn
Y Xyri-in—Co|<cO as. (3.13)

i=k

limsup a, !
n—*ao

for some sequence of constants ¢, implies (1.11). Our first step will be to show
that the constants ¢, can be replaced by np,. As remarked in S. Csorg and
Mason (1986) we have for each fixed integer k=1

k-1 k—1
QU—1/m)™ Y Xpyyoim—er Y (S)71
i=1 i=1

with §;=E,+...+E;, i=1, ..., k—1, where E,, ..., E,_, are independent expo-
nential random variables with mean one. Consequently, in probability,

k—1
-1
an Z Xur1-in—0.

i=1

Thus on account of (3.13) and (1.10) the sequence of constants a, *|nu,—c,|
must be bounded, which in combination with (3.13) yields

kn
Y Xypi—in— Ny <00 as. (3.14)

i=k

limsup a, !

n—r oo

Setfornz2

- Y N oa—1
b,,—max {bn: 212?; 0 (1 l(]Og i)1/(2k))/Q(1 l/l)}

and a,=>b; Q(1 —1/n). Observe that b, 1 co and notice that by Lemma 3.4

1—F(a;)§1—F(Q(1 L )) 1

" n(logn)!@R ~ n(log n)t/R°

This leads to

M8

nH1 = F(a))**1 <o,

n=1
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which by the already established fact that (1.11) implies (1.13) gives

kn
fm et ¥ Xy nf=0 as 619
i=2k+1

Since a,=a,, statements (3.14) and (3.15) and the assumed positivity of the
random variables imply that

Lmsup a, ™t X, 41 —pa<0O as.

n—roo

By the equivalence of (1.11) and (1.12), and (1.14) and (1.15), this can only happen
if

i nt~ 11 —F(a,)f < oo. (3.16)
n=1

Thus by (3.2) with a, replaced by 4, we have for any 6>0

«©
Z n-—l b;,_h(a+5)<00,
n=1
which because of b, T co implies that

blatd%/log n— 0.

Applying Lemma 3.2 we obtain that for any 0<d<a there exists a constant
0<¢;<co such that for all n=2

max Q (1 —T—l——) / 0(1—1/)< c,(log m)H/2ka—9), (3.17)

25isn log )14

Noticing that for a sufficiently small &
(log n)(a+6)/(2 (a— ‘”’/log n—0,

we see by (3.17) that necessarily b,=b, and hence a,=a, for all n sufficiently
large. Therefore convergence of the series in (3.16) implies convergence of the
series in (1.11). This completes the proof of Theorem 2.

Acknowledgements. The authors thank the Editor and an Associate Editor for their comments which
improved the presentation.

References

1. Csé&ki, E.: Some notes on the law of the iterated logarithm for the empirical distribution function,
In: Révész, P. (ed) Coll. Math. Soc. Janos Bolyai 11, Limit Theorems of Probability Theory,
pp. 47-58. Amsterdam: North Holland 1975



74 J.H.J. Einmahl et al.

2. Cski, E.: The law of the iterated logarithm for normalized empirical distribution functions.
7. Wahrscheinlichkeitstheor. Verw. Geb. 38, 147-167 (1977)

3. Csaki, E.: On the standardized empirical distribution function. In: Gnedenko, B.V., Puri, M.L,,
Vincze, I. (eds.) Coll. Math. Soc. Janos Bolyai 32, Nonparametric Statistical Inference, pp. 123-138.
Amsterdam: North Holland 1982

4. Csbrgh, S, Mason, D.M.: The asymptotic distribution of sums of extreme values from a regularly
varying distribution. Ann. Probab. 14, 974-983 (1986)

5, Einmahl, J.H.J., Mason, D.M.: Strong limit theorems for weighted quantile processes. Ann. Pro-
bab.,, to appear (1988)

6. Haan, L. de: On regular variation and its application to weak convergence of samplc extremes.
Amsterdam Math, Centre Tract 32 (1975)

7. Haeusler, E., Mason, D.M.: A law of the iterated logarithm for sums of extreme values {rom
a distribution with a regularly varying upper tail. Ann, Probab. 15, 932-953 (1987)

8. Hall, P.: A note on a paper of Barnes and Tucker. J. London Math. Soc. 19, 170-174 (1979)

9. Kiefer, J.: Iterated logarithm analogues for sample quantiles when p,|0. Proc. Sixth Berkeley
Symp. 1, 227-244 (1972)

10. Maller, R.A.: Relative stability of trimmed sums. Z. Wahrscheinlichkeitstheor, Verw. Geb. 66,
61-80 (1984)

11. Mason, D.M.: Bounds for weighted empirical distribution functions. Ann. Probab. 9, 881-884
(1981)

12. Mori, T.: The strong law of large numbers when extreme terms are excluded from sums. Z.
Wahrscheinlichkeitstheor. Verw. Geb. 36, 189-194 (1976)

13, Mori, T.: Stability for sums of iid. random variables when extreme terms are excluded. Z. Wahr-
scheinlichkeitstheor. Verw. Geb. 40, 159-167 (1977)

14. Seneta, E.: Regularly varying functions (Lect. Notes Math., vol. 508). Berlin Heidelberg New
York: Springer 1976

15. Shorack, G.R., Wellner, J.A,: Linear bounds on the empirical distribution function. Ann. Probab.
6, 349-353 (1978)

Received October 10, 1985; received in revised form February 17, 1988



