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Bounds for Weighted
Multivariate Empirical Distribution Functions

John H.J. Einmahl! and David M. Mason?

! Dept. of Math.,, Catholic University, Nijmegen, The Nethetlands
2 Dept. of Statistics, University of Wisconsin, Madison, W1 53706, USA

1. Introduction

Let X,,X,,... be a sequence of independent random vectors, each uniformly
distribu@d over (0,1)%, deN. The first n random vectors determine the empiri-
cal d.f. F, in the usual way:

n d

E@y=n"'Y T LX), te(0, 1), (1.1)

i=1 j=1

where X,; is the j-th component of X, and ¢, the j-th component of t. Writing
d ) l

lt}=T1 ¢, we define

Jj=1 ”\.|F‘ (t) —|t”
”I/nv|= Su _‘*”—'—":T, 0§v§
M= 5P G-y

In the one-dimensional case, much attention has been paid to criteria which
determine the almost sure behaviour of limsup «, [V, |, where (a,),.n i5 a se-

h— &

quence of positive norming constants, Csaki (1974, 1975, 1982) investigated the
important value v=% (i.e. in each point the process is divided by its standard
deviation), while Shorack and Wellner (1978) considered the other extreme val-
ue v=0. Mason (1981) connected thesc two results and derived criteria for
every ve[0,4+]. For arbitrary dimension d the case v=0 has been also consid-
ered by Mason (1982). In this paper we generalize Csaki’s theorem (1974, 1975,
1982) and even Mason’s generalization (1981) to arbitrary dimension d. An
interesting corollary of this result is a law of the iterated logarithm [or
log]l¥, I

N

. (L.2)

ol

1,V

2. Main Results

In this section we present our theorem and its corollaries. The proofs of these
are deferred to the next section. Observe that we use sequences of positive
norming constants (a,),.n Which differ from those in the introduction.
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Theorem. Let F(t)=t], t€(0, 1), deN and 0=Sv<3.

o« 1 d—1
WY a (log a—) — o, then
1 n

=

limsup(na,)' ||V, =0 as. (2.1

n-— O

o] d—1
() If ) a, (log i) < oo and na,l, then
n=1

lim (na,)! ="V, | =0 as. (2.2)

Lindie]

Corollary 1. There exists no sequence of positive real numbers (a,), . such that
na,l and

limsup(na,)' "IV, J=1 as. (2.3)
Corollary 2. o7
timsup 28l g o (2.4)

how  loglogn
Corollary 3. For all a>0

lim n=¢||¥, | =0 as. (2.5)

h=+ 0

1, V

Corollary 3 is the multidimensional version of Corollary 1 of Mason (1981).
In order to formulate Corollary 4 we have to introduce some notation. The
(open) rectangles (s;,t,)%...x(syt,) in (0,1)" will be written as R=R(s,).

Given an arbitrary rectangle R=(0, 1) we define £, {R}=n"" Y 1,(X)) and we
write |R| for the Lebesgue measure of R, i=1

Corollary 4. Let F(t)=|t], te(0,1), delN and pe(—o0,1). Then we have
loglogn n*|F{R}—IR|| 1

Hm  sup = a.s. 2.6
v e fog -5 (RII—RDF T—p °° (20
however, "
1 #F {R} —|R
limsup sup miEAR) ZIRIT a.s. (2.7

o RIz4 (l0gm* (RI(L~[RD)*

For the proof of this corollary we will require a result of Alexander (1984).

It is easy to see that the distinction between open, half-open and closed
rectangles is inessential for the type of results just stated. Also, all of our re-
sults remain true if we replace F(t)=|t| by F, whenever F has a density with
respect to Lebesgue measure that is bounded away from 0 and oo.

3. Proofs

Before beginning the actual proofs we first present two inequalities. The first
one can be found in Ruymgaart and Wellner (1982, Corollary 2.4); sec also
Ruymgaart and Wellner (1984) for related results.



Bounds for Weighted Multivariate Empirical Distribution Functions 565

Inequality 1. There exists c,,c,,c,€(0, ), only depending on d, such that for any

0e(0,1) )
n*|E, () — ]| )
P — L >4
(ﬁf“‘é% =

2 d,
=, (log3) exp(—ea 7Y (e 2n0)H), 420, (3.

where Y: [0, 00} — (0, 00) satisfies y(c)~2c~! logo as ¢— oo,
Inequality 2. For each delN, 0£v<4, aell, o) and n=3 we have

~1

v 1
ey >o) <d(lognai=)' " 'ai— 3.2)

[

P ( sup
O<|t)<( mu;)"‘
Proof of Inequallty 2. Let |X|,.,= mm \|X [}. Notice that the probability on the
left side of (3.2) is equal to

1 1
P(X|,,,<(naT=")")=P(max (~log|X,) 2 log(naT")
1gisn
1

SnP(—log|X |=log(nat-")).

Observe that —log|X,| is a gamma random variable with density f(x)=
(d—1)" %" e 1y 4)(X). Thus

__1___ [<¢] xd—le—x
P(—log|X | = log(na!l—v))= f —&dx
log(na‘_‘) (d - 1)

d=1 1 1
=Y {(log(nal—V))"~(na1-“k!)“l}

k=0

1 L

sd(lognat-v))*~(nat-v)~ 1 (3.3)

This completes the proof of Inequality 2.

Proof of the Theorem. (i) It is a consequence of a result on the almost sure
behaviour of the first order statistic in Geffroy (1958/1959) or Kiefer (1972)

1 d-1 .
that X a, (log a—) =00 implies P(|X|,.,<ea, Lo)=1 for any ¢>0. It can be

easily seen that
(na,)t—"n"n=

|Xll n(l |X|1 n))

(ra) 1V, 25 (34)

Hence we have

limsup(na,) ||V, 1 = a.s. (3.5)

1=
pr 0 2e777

Letting £} 0 proves the first part of our theorem.
(i) It is easy to see that we may restrict ourselves without loss of generality

1 1 . . .
to sequences (¢,),.n With ———<a < . We first consider the case v=3% Using
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1 2 - .
a,,g; we see that ) a,(logn)’~' <o0. We now define
n=1
E(0) -1
U= sup -“Hm5—, 3.6)
0<Itl§b" le]* (
with b, =(n(logn)*~*)~!, and prove that
lim natU,=0 as. (3.7)
It suffices to prove that limsup na? U 1 as.
Define the following events:
1
An= Ung? ; Cn=AuA:Ex—1‘ (38)

According to the Borel-Cantelli lemma we need to prove that ZPC, <o and
PA,—0 as n— w. Define

Bn,k= {V::xk_ (<t S XA b,.(” - 1)Fﬂn— 1([)§k -1 at:xk_ 1<t Exk A ,,’1121‘:;,(1?):/(},

where x,(=x,,) is the solution of the equation

nx+a;ixt=k, (3.9)
i.e. p
i
x,=((1 +4nka,,)’f—1)2/(4nza,,)=’—7{1 —2(1+(1 +4nka)¥) =}, (3.10)
and .
B ,={sup(n—1F,_O)zk—-1;1X |2x,.}.

H,
Jt] S xi

We see that B, < B, ,.
For any t>0 we have the following inclusions (for large n):

R 1/
Cllc{vl:0<|l|§bnEz—l(t)<lt|+_( ) ?

n—1\a,_,
3 1y
3::0<|l|§bnE:(t)g|t[+E (a—”) }
ko ko
< B,,c U B o)
k=1 k=1

where ko=[ ‘ ] (We will choose 1 later on.) For the verification of

na,(log n)*~*
the second inclusion we have to show that x, =b, for large n, which follows
[=4]

)Il— 1

from an elementary computation using the fact that ) a,(logn < oo and

n=1
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na,| imply
lim na,(log n)?=0. (3.12)

n— w

We are now going to derive an upper bound for PC,. The inclusions in
(3.11) yield

ko

PC,< ) PB,,. (3.13)
k=1
Using (3.3), it is easy to see that

P(sup (1—1)F_,()zk-1)< (”_1) k=L (dil (mgxi)i)k_]. (3.14)
k

[l £ xx k—1 i=0
Hence we have
71—1 d—1 1 ik k (”x )k - 1 1 ivk
< X R e A ")) 315
PB.xs (k—-l) * (,-;0 (log x,)) “n k! (i;, (og X, (3.13)

It can be seen from (3.9) that x,<k?a,. This yields for large n
.k 2wl k(d - 1)
PB, ,S—(cnk?*a) —(ogn)
: " k!
=ckda,(cnk?a) lkl—'(log )kl =1, (3.16)

where ce(0,00) is a constant depending on d. Using k<k, for a sufficiently
small © we see that

PB  <ck*(ckr)—!

mk=

71—|a”(10g B <o ta,logn)y -1, (3.17)
3

which entails PC,<2ca,(logn)’~*, hence Z PC,< 0.
For the proof of PA,—0 as n— o we need

A, ={sup nF(n)zk}. (3.18)
[t] = x5
Using x,,2b, we see that
ko
A,e U A (3.19)
k=1
We have
n d — | 1 ink (”x)k d—1 l ik
<[5 bt (5 e
PA= (k) i (,:20 (log x,‘)) =\ 2 (s (3.20)

Using (3.15)-(3.17) we sce that

I k-1
PA, S (5) a(logni=" for k=k,: (3.21)
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hence

ko
PA,<c Y (EF-'na,logn)f~t<2cna,(logn)~t—0 as n—oo. (322)

k=1

Our next step is investigating the a.s. behaviour of

t|—E(t
H,= sup U—-—?"—(—) (3.23)
o<lilsb.
We immediately see that
1
H, £ sup |iff= e (3.24)
0 <lel bn n¥(logn) 2
yielding that
lim nafH,=0 as. (3.25)
n— o
: E@ -l . .
Now consider  sup T —r using Inequality 1 we find for large 1,
1 ba<ft| <1
ith p, ===
W By na,(log n)*’
IF, 0 -l )
Pl sup ——5—2
(b.,<|r|p<1 [e]* na*
Scy(logn) exp(—c,(logn)’p, ¥ (c;(logn)~* p)) (3.26)

<c,(logn) exp(—csp} logn)
+ 1
Scylognfnem S,

where c,, c;€(0, co) are constants depending on d. Applying the Borel-Cantelli
lemma shows that

lim na sup M=0 a.s. (3.27)
n— 0 by <|t| <1 Itlz
Summarizing (3.8), (3.25) and (3.27) yields
t
fm gt sup O oo (3.28)
- o<|tj<1 [t]*

We are now going to consider arbitrary ve[0,$) and we shall prove

, R —It

lim (na,)' - MEO—M_o (3.29)
no o O<i<1 |t|

It suffices to prove that

t
P (nai qup 1ML

O<|t|<1 |l'|1 M

>1 1'.0.) 0. (3.30)
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Set ¢,=(na,)*~' and define

n'|F 13 .
D={ sup ——l—ﬁl)_—vl—|—|=c" 1.0},

0<lt]<1
n|F (1) —|t .
E:{ sup _l__'l(T}__l__I_!_gc” 1‘0_}’
! [
o<l g
HL'E,‘:;
n|E (6 —|t .
F= sup —|—"(1)——|—u2c 1.0. 3.
1 s
=<l
nep-v

We see that P(D)< P(E)+ P(F).
We w111 flrst show that P(E ) 0. Note that for all te(0, 1) such that

|t|<(ncl~V) , we have n’|t|"Scl-v. Since necessarily c¢,— o, c,}—V§§c,, for
large enough n. Hence EcE’, where

: (t) .
E ={ sup | |t|1_v “26" Lo p.

0<lis
nej—v

Let n,=2" for relN. Obviously

P(EY<P ( max sup

m<n§m+10<m<

SO i.o.), (3.31)

nei-v

which, since ¢,1 and nF (f)1 as a function of & for fixed ¢, is less than or equal
to

P ( sup M’—“—‘(—Qz% i.o.).
0<ltf< m o
NOW "r(c"’)‘_‘—"
0 v l
Z P ( Sup n"+1i?'t:l(t)24—1c'1r>
r=1 o<|ts |t|

1,(¢,)'~*
= ., F t
Se( s, ol
r=1 o<t = ; ’

A

IIA

where ¢, =2"""c, .
Application of Inequality 2 gives that this last series is less than or equal to

2d i(log(n cl-“))"‘l/c1 v, (3.32)

»“hy ny
ra=1

Since for large enough x (log x)*~'/x|, we have for r,eIN large enough:
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L 1

ST (ogne] ) el )

r=rg M-y <nEnye

o0 1 1
=Y (n,—n,_ H(logn.ch- T el
T 1 :
=1 3 (log(n,cf=))"~"fet-. (3.33)
r=rg

We see immediately now that finiteness of the series in (ii) implies that the
series in (3.32) is finite. Therefore by the Borel-Cantelli lemma P(E’)=0, which
in turn implies that P(E)=0.

We will now show that P(F)=0. Notice that

n* 1B (1) — ]
sup —_—

1—-v
e gger M

nep-v

£ (6) — ]

0<lf<t |t|'%'

(3.34)

Hence P(F)ZP(F'), where

| (6) |t .
Fr=d sup " I n()_ l > (3 T 1.0.},
0<|tj<1 Itl

but we now can use (3.28), ie. the case v=1, which gives that P(F")=0, which
in turn implies P(F)=0. Thus we have shown that P(D)=0. This completes the
proof of (3.29).

Noting that 0<y<i implies 1<(1—y)'"'<2, we see that it remains to
prove for 0<vd

. B0 =1l

lim (ng)'~" sup —2-7——=0 as. (3.35)
S
With the same approach as in Einmahl et al. (1984, proof of Theorem 2.2) we
can prove, using results of Ruymgaart and Wellner (1982, Corollary 2.3) or
Alexander (1982, Corollary 6.2) that “large d-dimensional points” behave as
“small (or large) 1-dimensional points”, i.e

Zl a,<co and na,| imply
. IE () It
lim ()t~ sup g o (3.36)

n— w 0<ltf<1 (l—lfl)l !
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We omit the proof of (3.36), because it is straightforward though
tedious. Q.E.D.

Proof of Corollary 2. Applying the theorem for a,=(n(logn)¥)~! and for
a,=(n(logn)"+*)~1 £>0, gives the desired result. Q.E.D.

Proof of Corollary 4. “Large d-dimensional rectangles” also have the same be-
haviour as “small 1-dimensional points™. That means that (3.36) holds true with
t replaced by R (cf. Einmahl et al. (1984, proof of Theorem 3.2)). Taking v=1%
and combining this with Corollary 3.9 of Alexander (1984) proves this
corollary, Q.E.D.

Acknowledgement. The first named author should like to thank Frits Ruymgaart for his continuing
interest during the preparation of this paper.
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