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Abstract 
For a commercially operating railway company, providing a high level of service for the 
passengers is of utmost importance. The latter requires a high punctuality of the trains 
and an adequate rolling stock capacity. Unfortunately, the latter is currently (2002) one 
of the bottlenecks in the service provision by the main Dutch railway operator NS 
Reizigers. Especially during the morning rush hours, many passengers cannot be 
transported according to the usual service standards due to a shortage of the rolling stock 
capacity. On the other hand, a more effective allocation of the available rolling stock 
capacity seems to be feasible, since there are also a few trains with some slack capacity.  

The effectiveness of the rolling stock capacity is determined mainly by the allocation 
of the train types and subtypes to the lines. Therefore, we describe in this paper a model 
that can be used to find an optimal allocation of train types and subtypes to train series. 
This optimal allocation is more effective than the manually planned one, which is 
accomplished by minimizing the shortages of capacity during the rush hours.  

The model is implemented in the modeling language OPL Studio 3.1, solved by 
CPLEX 7.0, and tested on several scenarios based on the 2001-2002 timetable of NS 
Reizigers. The results of the model were received positively, both by the planners and by 
the management in practice, since these results showed that a significant service 
improvement over the manually planned allocation can be achieved within a shorter 
throughput time of the involved part of the planning process. 
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1. Introduction 
In the Netherlands, the railway operator NS Reizigers transports nearly one million 
railway passengers every workday. At the busiest moment of the morning rush hours, 
which is usually around eight o’clock in the morning, about 250 trains are running at the 
same time. The total number of trains running per day is about 4800. The number of 
available carriages equals about 2600. Part of the lines (which are called train series in 
the remainder of this paper) of NS Reizigers in the Randstad, the metropolitan area in the 
western part of the Netherlands, is shown in Figure 1 below.   

Figure 1: The train series of NS Reizigers in the Randstad 
 
For a commercially operating railway company, providing a high level of service for the 
passengers is of utmost importance. The latter requires a high punctuality and an 
adequate rolling stock capacity. Unfortunately, the latter is currently (2002) one of the 
bottlenecks in the service provision by NS Reizigers. Especially during the morning rush 
hours, many passengers do not have a seat during parts of their journey due to a shortage 
of rolling stock capacity. This shortage is caused by a combination of factors. First, the 
number of passengers has grown significantly during the last years. Second, new units of 
rolling stock have been ordered, but these units have long delivery times. 
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Given the current situation, it is important to look for the most effective allocation of 
the available rolling stock capacity among the trains, especially during the rush hours. In 
fact, a better allocation than the manually planned one seems to be feasible, since at the 
same time there are also several trains with some slack capacity. 

Most research on railway rolling stock deals with the routing and scheduling of 
locomotives and freight trains. For research in these areas, see for example the overview 
by Cordeau et al. (1998). However, also the rolling stock circulation for passenger trains 
received some attention recently. Examples of research in this area are provided by Ben-
Khedher et al. (1998), Brucker et al. (1998), and Cordeau et al. (2001). The first paper 
deals with the scheduling of high speed train units of the French railway operator SNCF. 
The other papers deal with the routing of locomotive hauled carriages. Schrijver (1993), 
Groot (1996), Blom (1998), and Van Montfort (1998) describe research focusing on the 
rolling stock circulation of Dutch train units and locomotive hauled carriages. 

All of the mentioned papers mainly deal with the operational problem of finding the 
most efficient schedule for a set of units of rolling stock, given a certain allocation of the 
train types and subtypes to the train series. In contrast with this, the current paper deals 
with the tactical problem of finding the most effective allocation of the train types, 
subtypes, and units of rolling stock to the train series, such that as many people as 
possible can be transported with a seat, especially during the rush hours.  

The remaining part of this paper is structured as follows. In Section 2, we present 
some additional background information for providing a better understanding of the 
rolling stock allocation problem. In Section 3, we give a rough description of the 
planning process related to the rolling stock circulation. The details of the allocation 
problem are described in Section 4. Section 5 describes the assumptions underlying the 
model and the notation that we used to describe the model. Section 6 gives the details of 
the model. Section 7 presents our computational results based on several scenarios 
involving the 2001-2002 timetable of NS Reizigers. The paper is finished in Section 8 
with conclusions and some subjects for further research.  
 
2. Background information 
Before we go into the details of the rolling stock allocation problem, we first describe 
some background information pertaining to the rolling stock circulation of NS Reizigers. 
In the Netherlands, three different categories of trains for passenger transportation can be 
distinguished: Intercity trains, Inter-Regional trains, and Regional trains. The line system 
contains the train series, each of which connecting an origin station and a destination 
station with a certain frequency. Each train series belongs to one of the three train 
categories. The timetable gives the arrival and departure times of the trains at the relevant 
stations. The timetable of NS Reizigers is cyclic with a cycle length of one hour.  
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Figure 2: Koploper train unit with 3 carriages 
 

 

Figure 3: Mat’64 train unit with 2 carriages 
 
NS Reizigers has a large variety of rolling stock available for passenger transportation. 
Some examples are given in Figures 2 and 3. The three main classes to be distinguished 
are: power driven equipment, diesel driven equipment, and locomotive hauled carriages. 
Power driven and diesel driven equipment consist of train units that can move 
individually without a locomotive. Each train unit consists of a certain number of 
carriages that cannot be split from each other during the operations. Within each class, 
various train types can be distinguished. Power driven equipment comprises, among 
others, Koplopers for the Intercity trains and Mat’64 for the Regional trains. 
 The train types can be subdivided subsequently into different subtypes. Koplopers, for 
instance, can be subdivided into Koplopers with three carriages and Koplopers with four 
carriages. Similarly, Mat’64 can be subdivided into train units with two carriages and 
train units with four carriages. Train units of the same train type can be combined into 
longer trains. Train units of different train types cannot be combined in one train. It 
should be noted that not the entire fleet of rolling stock is available for passenger 
transportation. Some train units are reserved for maintenance or backup. 

 
Figure 4: Part of the rolling stock circulation during the morning rush hours  
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The way the train units are put together into longer trains within a rolling stock 
circulation is shown in Figure 4. This figure shows a time-space diagram for part of the 
trains of the Regional train series 8800 between Leiden (Ledn) and Utrecht (Ut). See also 
Figure 1 for the locations of the mentioned stations. Trains of the 8800 train series run 
twice per hour. The numbers at the top of the figure indicate the time axis. The dashed 
diagonal lines indicate the trains and the adjacent numbers are the train numbers. Each 
line represents one train unit of the type Mat’64 with two carriages.  

Train 8820, for instance, is run with three train units. Upon arrival in Leiden, two of 
these train units return to Utrecht on train 8833, and the third train unit remains in 
Leiden. This train unit is stored on the local shunting yard, and is used only in the 
afternoon rush hours on train 8865, as is indicated at the end of the corresponding line. 
Something similar happens with one train unit of train 8822. Notice the Last-In-First-Out 
principle that is used when storing train units on the shunting yard of Leiden. This is 
because the tracks of the shunting yard can be approached from one side only. 
 
3. Planning process 
The planning process related to the rolling stock allocation and circulation starts after the 
line system and the timetable have been completed. This planning process is initiated 
within the commercial branch of NS Reizigers, where an overview of the preferred train 
types per train series is composed. This overview takes into account the train category of 
the train series, the technical possibilities of the train types and subtypes, their running 
time characteristics, the required capacity per train, and the passengers’ preferences. 

The required capacity per train is based on the expected numbers of passengers. These 
numbers are based on the counting figures, which are estimates by conductors of the 
number of passengers per train. The statistical procedure, which is used to transform the 
counting figures of the conductors into the required capacity per train, falls outside the 
scope of this paper. Apart from these counting figures, an annual growth factor is taken 
into account, and also a certain comfort factor may be applied. The required capacity per 
train distinguishes between first class and second class passengers. 

The trains that run in parallel at one particular moment of the day make up a so-called 
cross-section. The eight o’clock cross-section indicates all trains that run at eight o’clock 
in the morning, which is usually the busiest moment of the day. The circulation time of a 
train series, including the return times at the endpoints, and its frequency determine the 
number of cross-section trains of the train series. For instance, the Regional train series 
8800 that was shown in Figure 4 contains four eight o’clock cross-section trains, namely 
the trains 8820, 8822, 8829, and 8831. This is caused by the fact that the circulation time 
between Utrecht and Leiden and vice versa is about two hours and that there are two 
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trains per hour in each direction. The eight o’clock cross-section trains of all train series 
together make up the complete eight o’clock cross-section. 

As a first step in the planning process of the rolling stock, an allocation of the rolling 
stock capacity is determined to the trains in the eight o’clock cross-section. Here the idea 
is that, if it is possible to determine an appropriate allocation of the rolling stock capacity 
during the morning rush hours, then this allocation will be appropriate during the other 
hours of the day as well. This is reasonable, since in practice the required capacity during 
the evening rush is usually less than during the morning rush: the evening rush lasts 
longer than the morning rush, and it has a lower peak. The allocation of the rolling stock 
capacity to the eight o’clock cross-section trains is an example of bottleneck planning, 
where the aim is to maximize the effective rolling stock capacity.  

After the allocation of the rolling stock has been planned for the eight o’clock cross-
section trains, the rolling stock circulation is also planned for the other trains during the 
day. The results of this process are charts as shown in Figure 4 for each train series, 
possibly including inter-connections between different train series. The planning of the 
rolling stock circulation for the other trains during the day is an efficiency problem, 
where the aim is to minimize the total number of carriage kilometers.  

After the rolling stock circulation has been planned throughout the day and for each 
individual day of the week, it will also be balanced across the days of the week: on each 
shunting yard, the number of train units stored there during the night will be equaled to 
the number of train units that are required there on the next morning. This is 
accomplished by modifying the rolling stock circulation on the early morning trains or on 
the late evening trains, or by adding some so-called deadheading trains. A final step in 
the planning process is the organization of the maintenance of the rolling stock. 
 
4. Problem definition 
The problem discussed in this paper is the allocation of the rolling stock capacity to the 
trains in the eight o’clock cross-section. To be more exact, the question is: how many 
units of each train type and subtype should be deployed on each train of the eight o’clock 
cross-section in order to maximize the effective capacity for transporting passengers?  

When determining the allocation of equipment in a train series, the preferred 
equipment is to be taken into account as much as possible. It is, however, not always 
possible to deploy the most preferred equipment in a train series. As was mentioned 
earlier, NS Reizigers is faced with a shortage of rolling stock capacity. Hence, even if a 
particular type of equipment is preferred, alternatives will often have to be chosen, since 
not enough train units of the preferred type are available.  
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Secondly, the allocation is determined by the required capacity. Train units of 
different types usually have different capacities. Therefore, depending on the required 
capacities, one particular type of equipment will be more suitable than another.  

Furthermore, it is a strict requirement that the length of each train does not exceed the 
length of the shortest platform along the train’s route. Hence, if a busy train series 
contains a station with a short platform, then a train type with a large capacity per 
carriage (such as double-deckers) will have to be chosen.  

Finally, there are restrictions for the Regional train series regarding the running time 
characteristics. Especially on a train series with stops at a relatively short distance of 
each other, the allocated rolling stock should be able to accelerate and brake quickly.  

In most train series, the equipment is transferred to the next return train of the same 
train series at the terminal station. However, on a number of train series the equipment is 
transferred to another train series at the terminal station. If this is structurally the case, 
then obviously the same train type must be allocated to both train series. 

On each individual train, at most one train type can be allocated, since train units of 
different train types cannot be combined into one train. Furthermore, on each train series, 
it is desirable to have as few as possible train types and subtypes: the latter may lead to 
an increased robustness of the railway system, because the adjustments by traffic control 
become much simpler. For each train series, the maximum allowed numbers of train 
types and subtypes depend on the number of cross-section trains in the train series.  
 
5. Assumptions and notation 
In this section we describe the assumptions that were made for modeling the problem of 
allocating the rolling stock capacity to the train series. First, we assume the timetable, 
and the required capacities of each train to be known. Based on these elements, for each 
train series the relevant trains of the eight o’clock cross-section can be determined a 
priori. We also assume that for each train series a list of allowed train types as well as all 
other relevant data elements have been provided.  

Next, we assume that we only have to allocate the available train units (power driven 
and diesel driven equipment) to the train series. In other words, the locomotive hauled 
carriages have been allocated to certain train series already before running the model. 
This is a reasonable assumption, since there are only a few train series that are 
appropriate for being serviced in this way. The rolling stock allocation for these train 
series is assumed to remain the same as in the current situation in practice. 

There are also a few train series on which train units are combined and split 
underway. For example, on the 700 train series, trains arriving in Zwolle from Groningen 
and Leeuwarden are combined into one train bound for Amersfoort. In Amersfoort, this 
train is split again into one part bound for Amsterdam and one part bound for Schiphol. 
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In the reverse direction, the combining and splitting process takes place in the reverse 
order. This process leads to a complex rolling stock circulation, which falls outside the 
scope of our model. Furthermore, the currently allocated type of rolling stock 
(Koplopers) is undoubtedly the most appropriate train type for these train series. 
Therefore, an alternative allocation of train types would be highly undesirable there.  

As a final part of this section, we describe the notation that we use to express the 
capacity allocation model. The train series (or lines) are denoted by l = 1,…,L, and the 
cross-section trains within train series l are represented by t = 1,…,Tl. Next, the different 
types and subtypes of train units are represented by τ = 1,…, τmax, and by σ = 1,…, στ, 
respectively. First and second class are denoted by c =1,2, both for passengers and for 
capacities of train units. For each train series l, the parameters Ml and ml denote the 
maximum allowed number of train types and subtypes. The length of the shortest 
platform along the route of train series l is described by Ll and the set of allowed train 
types for this train series is denoted by Dl. For cross-section train t of train series l, the 
expected number of passengers in class c is given by Pl,t,c and the maximum number of 
shortages in class c is represented by Ul,t,c. The parameters σλ and cC ,σ denote the length 
of each train unit of subtype σ  in meters, and the capacity for passengers in class c of 
each train unit of subtype σ, respectively. The available number of train units of subtype 
σ and the train type to which subtype σ  belongs are denoted by σN and στ .  
 
6. Model  
In this section, we describe the model that we used for solving the capacity allocation 
problem. Here we only give a description of the decision variables, the objective function 
and the most relevant constraints. In the Appendix of this paper, the remaining 
constraints of the model can be found.  
 
6.1  Decision variables 
The most important decision variables of the model are the variables σ,,tlN and Sl,t,c. The 
variable σ,,tlN denotes the number of train units of subtype σ  that are allocated to cross-
section train t of train series l. The variable ctlS ,, represents the shortages in class c on 
cross-section train t of train series l. The latter is explained in detail in Section 6.2. Other 
decision variables in the model are the binary allocation variables τ,,tlA , σ,,tlA , τ,lA , and 

σ,lA . For example, the variables τ,,tlA have the following meaning: 

τ,,tlA = (1 / 0) if train type τ (is / is not) allocated to cross-section train t of train series l. 

The decision variables σ,,tlA , τ,lA , and σ,lA have a similar meaning. These binary 
variables are defined only for allowed combinations of indices. For example, if train type 
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τ  does not belong to the set of allowed train types of train series l, then the variables 
τ,,tlA and τ,lA are not defined, and the same holds for the variables σ,,tlA and σ,lA if τ = τσ.  

 
6.2  Objective function 
The objective function of the capacity allocation model basically focuses on minimizing 
the weighted total number of shortages on the trains. Here the shortages in class c of train 
t are equal to the expected number of passengers in class c of train t that do not have a 
seat during (part of) their train. This objective function can be expressed as in (1): 

∑∑∑
l t c

ctlctl Sw ,,,,min                 (1) 

Subject to 

∑−≥
σ

σσ ,,,,,,, tlcctlctl NCPS    for all l, t, c          (2) 

0,, ≥ctlS          for all l, t, c         (3) 

And all other constraints (described in Section 6.3 and in the Appendix) 
 
The other constraints to be satisfied are described in Section 6.3 and in the Appendix.  
Constraints (2) specify that the shortages on a certain train are not less than the 
difference between the required and the allocated capacity. Constraints (3) are required 
in order to exclude the possibility that shortages on a certain train are compensated by an 
excess of capacity on another train. Since Constraints (2) and (3) are the only constraints 
involving the variables Sl,t,c, any solution in which none of the Constraints (2) and (3) is 
satisfied with equality for a certain variable Sl,t,c can be improved. From the foregoing, it 
follows that Sl,t,c indeed equals the shortages in class c on train t of train series l. 

The parameters wl,t,c are used to give a certain weight to the shortages on the trains, 
e.g. based on the lengths of the trains. In order to get an accurate representation of the 
total number of kilometers traveled by passengers without a seat, it may be necessary to 
split each train into a number of consecutive trips. In fact, shortages usually do not occur 
on the whole length of the route of a train, but only on certain parts of it.  

Note that the weights wl,t,c may be chosen in such a way that the objective does not 
count the absolute number of shortages on the trains, but the relative ones (that is: the 
shortages as a percentage of the required capacity). Indeed, by choosing wl,t,c = 1/ Pl,t,c, 
and denoting the relative shortages in class c on train t of train series l by Rl,t,c, we obtain  
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∑∑∑
l t c

ctlR ,,min                   (1´) 

∑≥
σ

σσ

ctl

tlc
ctl P

NC
R

,,

,,,
,, -1      for all l, t, c         (2´) 

0,, ≥ctlR           for all l, t,c         (3´) 

Note that this is the definition of the inverse utilization rather than the utilization as 
defined usually. However, in an optimization model, this linear inverse utilization can be 
handled more easily. A disadvantage of the alternative objective function may be the fact 
that now a certain percentage of shortages on a busy train is as bad as a certain 
percentage of shortages on a quiet train. Nevertheless, these relative shortages are used in 
practice as an alternative criterion to evaluate feasible capacity allocations. 
 
6.3  Constraints 
In this section we describe the most relevant constraints of the model. A description of 
the other constraints of the model can be found in the Appendix. The latter constraints 
mainly handle the selection of correct combinations of allocation variables. The most 
relevant constraints of the model are the following: 

 ∑ ≥
σ

σ 1,,tlN          for all l, t          (4) 

∑ =
τ

τ 1,,tlA           for all l, t          (5) 

∑ ≤
σ

σσλ ltl LN ,,          for all l, t          (6) 

ctlctl US ,,,, ≤           for all l, t, c         (7) 

∑∑ ≤
l t

tl NN σσ,,         for all σ          (8) 

∑ ≤
τ

τ ll MA ,           for all l          (9) 

ll mA ≤∑
σ

σ,           for all l          (10) 

First, Constraints (4) specify that at least one train unit should be allocated to each cross-
section train. Second, Constraints (5) state that on each train exactly one train type is to 
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be allocated. This is important since train units of different train types cannot be 
combined into one single train. Constraints (6) describe that on each train the total length 
of the allocated train units should not exceed the length of the shortest platform along the 
route. Constraints (7) guarantee that the shortages on each cross-section train respect the 
upper limit Ul,t,c. Next, Constraints (8) describe that for each subtype the number of 
allocated train units should not exceed the available number of units. According to 
Constraints (9), the number of train types allocated to each train series should not exceed 
the upper bound Ml. Similarly, Constraints (10) specify that the number of subtypes 
allocated to each train series should not exceed the upper bound ml.  
 
7.  Computational results    
In order to test the model, we implemented it in OPL Studio 3.1 using CPLEX 7.0. The 
hardware that we applied was a Pentium III processor with 1 GHz and 256 Mb RAM.  

We studied the allocation of the available rolling stock to 50 Regional train series of 
the 2001-2002 timetable of NS Reizigers. This is almost the complete set of Regional 
train series of NS Reizigers. The number of cross-section trains in this data set equals 
188, which gives a model with about 2800 decision variables and 6600 constraints.  

Most of the input data for the model, such as the expected numbers of passengers per 
train, are the same as in the manual solution, so that the rolling stock allocations obtained 
by the model can be compared with the manually planned one. The weights wl,t,c for the 
shortages were set to 1 for second class shortages and to 2 for first class shortages, but 
we also experimented with the relative shortages as described in Section 6.2.  
 
7.1  Manual solution    
The characteristics of the manual solution are summarized in Tables 1 and 2. In Table 1, 
the columns “# Short. 1” and  “# Short. 2” denote the number of trains with shortages in 
the first and second class, respectively. The columns “Short. 1” and  “Short. 2” denote 
the total number of shortages in the first and second class, respectively.  
 
Table 1: Manual solution, Shortages 

# Short. 1 # Short. 2 Short. 1 Short. 2 Total Weighted 
32 75 375 4869 5244 5619 

    
Table 2: Manual solution, Utilization 

Min. util. 1 Min. util. 2 Avg. util. 1 Avg. util. 2 Max. util. 1 Max. util. 2 
0,15 0,46 0,98 0,95 1,50 1,61 
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Table 2 evaluates the manual solution in terms of the utilization of the capacity. Here the 
utilization on a certain train is defined as the ratio of the required capacity and the 
allocated capacity. Note that this is different from the relative shortages as defined in 
Section 6.2. The average utilization equals the unweighted average over the trains.  
 
7.2  Scenarios 
In our computational analysis, we studied four scenarios, which differ from each other 
mainly by the maximum numbers of train types and subtypes that are allowed per train 
series. Within these scenarios, we also varied the available rolling stock capacities. We 
used the current operational rolling stock capacity, but we also assumed an infinite 
capacity to be available. The latter is interesting in order to get an idea of the influence of 
the shortage of rolling stock capacity. Table 3 summarizes the studied scenarios. 
 
Table 3: Different scenarios 
 Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Max. # of types 1 1 1 1 or 2 
Max. # of subtypes 1 2 1 or 2 1, 2 or 3 
Rolling stock capacity Current or 

Infinite 
Current or 

Infinite 
Current or 

Infinite 
Current or 

Infinite 
 
In Scenario 3, the number of allowed subtypes per train series depends on the number of 
cross section trains per train series. For train series with up to four trains, only one train 
type is allowed. For train series with more than four trains, two different train types are 
allowed. The applied rules in Scenarios 1 and 3 are more restrictive than in the manual 
solution. In Scenario 4 we set the maximum numbers of train types and subtypes per train 
series equal to the numbers that are used in the manual solution.  

All scenarios were solved using the objective function that minimizes the absolute 
number of shortages. Only Scenario 4 was also solved using the objective function that 
minimizes the relative shortages, as was explained in Section 6.2.  
    
7.3 Results    
Tables 4 and 5 show the results that were obtained by solving the allocation model to 
optimality using the current rolling stock capacities. Computation times are not 
displayed, since all computation times were less than 1 minute. When we started this 
project with another version of CPLEX and with less sophisticated hardware, the 
computation times ran into hours or even days to get acceptable solutions, but nowadays 
we find optimal solutions usually in a couple of seconds. 
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Table 4: Current capacities, Shortages    
Scen. # Short. 1  # Short. 2 Short. 1  Short. 2  Total Weighted 

1 35 92 283 5512 5795 6079 
2 27 69 237 3770 4007 4245 
3 37 87 304 4826 5130 5435 
4 26 69 239 3657 3896 4136 

 
Table 5: Current capacities, Utilization    

Scen. Min. util. 1 Min. util. 2 Avg. util. 1 Avg. util. 2 Max. util. 1 Max. util. 2 
1 0,14 0,48 0,76 1,01 1,41 1,49 
2 0,14 0,48 0,73 0,96 1,27 1,49 
3 0,14 0,41 0,76 1,00 1,39 1,49 
4 0,14 0,41 0,72 0,95 1,39 1,43 

    
Furthermore, if a higher number of different types and subtypes are allowed per train 
series, then this obviously has a positive influence on the shortages. On the other hand, a 
higher number of different types and subtypes per train series will have a negative effect 
on the robustness of the allocation, as was explained earlier.  

Note that the evaluation of the optimal solution for Scenario 3 is rather similar to the 
evaluation of the manual solution. However, the optimal solution for Scenario 3 may be 
more robust in practice than the manual solution, due to the application of stricter rules. 
The optimal solutions for Scenarios 2 and 4 are better than the manual solution. Here the 
total number of shortages is more than 20% lower than in the manual solution. Also the 
numbers of trains with shortages are lower than in the manual solution.  

Tables 6 and 7 show the results that were obtained by applying the capacity allocation 
model in the case of infinite rolling stock capacities. Obviously, there are still shortages 
in this case. These are due to the restrictions that are posed by the lengths of the 
platforms in the stations, which prohibit the deployment of longer trains. 
 
Table 6: Infinite capacities, Shortages    

Scen. # Short. 1 # Short. 2 Short. 1 Short. 2 Total Weighted 
1 15 19 196 1779 1975 2173 
2 11 20 154 1797 1951 2106 
3 12 20 160 1797 1957 2118 
4 11 20 154 1797 1951 2106 
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Table 7: Infinite capacities, Utilization    
Scen. Min. util. 1 Min. util. 2 Avg. util. 1 Avg. util. 2 Max. util. 1 Max. util. 2

1 0,14 0,46 0,64 0,81 1,41 1,43 
2 0,14 0,41 0,62 0,81 1,41 1,43 
3 0,14 0,48 0,63 0,81 1,41 1,43 
4 0,14 0,41 0,63 0,80 1,41 1,43 

 
Since these shortages are not caused by a lack of rolling stock capacity, they may be 
called unavoidable: these shortages can only be avoided by running more trains, by 
extending the infrastructure, or by relaxing some of the other constraints that are to be 
satisfied. However, such options cannot be put into practice on the short run. It follows 
that the application of the rolling stock allocation model gives a reduction of the 
avoidable shortages by about 35% (e.g. 1-(4007-1951)/(5244-1951) for Scenario 2).      

Tables 8 and 9 show the results that were obtained by applying the allocation model 
to Scenario 4 with the current rolling stock capacities. However, here we studied the 
influence of the objective of minimizing the relative shortages (as described in Section 
6.2) instead of the objective of minimizing the absolute shortages. 
    
Table 8: Scenario 4, Current capacities, Shortages    

Obj. # Short. 1 # Short. 2 Short. 1 Short. 2 Total Weighted 
Util. 26 69 191 4325 4516 4516 
Short 26 69 239 3657 3896 4136 

 
Table 9: Scenario 4, Current capacities, Utilization    

Obj. Min. util. 1 Min. util. 2 Avg. util. 1 Avg. util. 2 Max. util. 1 Max. util. 2
Util. 0,14 0,48 0,71 0,94 1,39 1,49 
Short. 0,14 0,41 0,72 0,95 1,39 1,43 

 
These tables show that the alternative objective leads to a solution where the numbers of 
trains with shortages are the same, but where the total number of shortages is higher. Of 
course, the latter was to be expected, since the alternative objective does not explicitly 
focus on minimizing the absolute shortages. The solutions obtained by both objective 
functions turn out to be very similar. Nevertheless, it seems to be more natural to focus 
on minimizing the absolute shortages than on minimizing the relative ones.  
 
8. Conclusions and final remarks 
The availability of rolling stock is currently (2002) one of the bottlenecks in the service 
provision by the Dutch railway operator NS Reizigers. Especially during the morning 
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rush hours, many passengers cannot be transported according to the usual service 
standards. In this paper we therefore described a model that can be used to find an 
optimal allocation of the available train types and subtypes to the train series, thereby 
aiming at minimizing the shortages during the morning rush hours. The model was 
implemented in the modeling language OPL Studio and solved by CPLEX 7.0.  

The first experiences with the model were received quite positively. In Scenarios 2 
and 4, both the total shortages and the numbers of trains with shortages obtained by the 
model were significantly lower than in the manual solution. Both the planners and the 
management of the Logistics department of NS Reizigers were satisfied by the obtained 
allocations, not only because of the improved quality of the obtained allocations, but also 
because of the reduction in the throughput time of the planning process that will be 
enabled by the application of the model. Also the possibility to analyze several allocation 
scenarios instead of just one is considered as quite useful.   

We intend to extend the model in the near future in order to make it even more useful 
for practical application. In particular, we will focus on train series involving combining 
and splitting of train units, and we will focus on combining the rolling stock allocation 
problem for the morning rush hours and the rolling stock allocation problem for the 
afternoon rush hours into one single model. A further extension of the model may also 
involve the incorporation of the locomotive hauled carriages.  

Currently, we are also working on the development of models that can be used to 
determine appropriate rolling stock circulations throughout the day and across the days 
of the week, given the rolling stock distribution obtained by the capacity allocation 
model of the current paper. The latter research is a follow-up of the research carried out 
by Schrijver (1993), Groot (1996), Blom (1998), and Van Montfort (1998). 
 
Appendix 
In this Appendix we describe the logical constraints that have to be added to the model in 
order to obtain solutions that will be feasible in practice. These constraints were omitted 
in the main text intentionally to keep the description there as simple as possible.  
 

σσσσ ,,,,,,,, tltltltl AMNA ≤≤       for all l, t, σ       (11) 

στσ ,,,, tltl AA ≤          for all l, t, σ       (12) 

στσ ,, ll AA ≤           for all l, t        (13) 

ττ ,,, ltl AA ≤           for all l, t, τ       (14) 

σσ ,,, ltl AA ≤           for all l, t, σ       (15) 
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Here Constraints (11) describe that a positive number of train units Nl,t,σ  of subtype σ  
can be allocated to cross-section train t of train series l if and only if Al,t,σ = 1. Here the 
parameter Ml,t,σ  is a fixed positive upper bound on the number of train units of subtype 
σ
  

on train t of train series l. Constraints (12) guarantee that a certain subtype σ  can be 
allocated to train t of train series l only if the corresponding train type τσ  has been 
allocated to that train as well. Similarly, Constraints (13) guarantee that subtype σ  can 
be allocated to train series l only if the corresponding train type τσ  has been allocated to 
that train series as well. Next, constraints (14) specify that train type τ can be allocated to 
train t of train series l only if this type τ  has been allocated to train series l. Constraints 
(15) have a similar interpretation for the subtypes. 
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