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Abstract

The Chopstick Auction is an auction game in which the highest
bidder receives two valuable objects, and the second highest bidder
one worthless object. This game models the exposure problem, as the
second highest bidder has to pay. We analyze the Chopstick Auction
with incomplete information. For two risk neutral bidders, the Chop-
stick Auction has an efficient equilibrium and is revenue equivalent
with the second-price sealed-bid auction in which three chopsticks are
sold as one bundle. If bidders are loss averse, the Chopstick Auc-
tion is either inefficient, or raises less revenue than the second-price
sealed-bid auction. In case of three bidders, the Chopstick Auction
has no symmetric equilibrium. We use the Dutch DCS-1800 auction
as illustration.
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1 Introduction

In February 1998, the Dutch government auctioned licenses for second gen-
eration mobile telecommunication. Two big lots and sixteen small lots were
sold using a variant of the ascending multiple object auction format that had
been used by the FCC to sell PCS licenses in the US.! The big lots (A and
B) consisted of 75 DCS-1800 channels each, 15 small lots (1,...,15) consisted
of 12 or 13 DCS-1800 channels each, and 1 small lot (16) contained 22 chan-
nels.? The Dutch government decided to split the spectrum in such small
fractions in order to give bidders enough flexibility to get an optimal division
of the channels. Incumbents bidders (KPN? and Libertel?) were not allowed
to bid on lots A and B, and newcomers (Telfort,” Dutchtone,® TeleDanmark,
Orange/Veba” and Airtouch®) were allowed to bid on all lots. A newcomer
was believed to need one big lot or at least five small lots in order to oper-
ate a feasible network for mobile telecommunication. A set of less than five
small lots would, if we neglect the possibility of resale, be of no value to a

newcomer.’

1See, McMillan (1994), Cramton (1995, 1998), McAfee and McMillan (1996), and Mil-
grom (2000) for descriptions and discussions of these auctions.

20ne channel is equivalent to 0.2 MHz.

3KPN used to be the state monopolist of telecommunication and mail in The Nether-
lands.

4Libertel was at that time a consortium of Vodaphone and the Dutch bank ING.

>Telfort was at that time a consortium of British Telecom and Dutch Railways.

5DutchTone was bidding under the name of Federa, a consortium of Deutsche Telekom,
France Telecom and two Dutch banks. After the auction, Deutsche Telekom withdrew from
the consortium.

"Orange and Veba are mobile telecom operators in the UK and Germany respectively.

8 Airtouch is a US baby bell.

9Resale was in fact possible, but only to a party that did not actively participate in
the auction, and then only with the approval of the Minister of Economic Affairs.



The lots were sold according to the following rules.!® There is a sequence
of rounds, in which bidders submit bids on lots. For each lot, the minimum
bid in round 1 equals 0. For the following rounds, the minimum bid on each
lot is equal to the current highest bid on this lot plus a small bid increment
of at most 10% of the current highest bid. Each bidder is eligible to bid
in round ¢ + 1 if either she submits at least one bid in round ¢, or she is
overbid in round ¢ on at least one of the lots she currently has the highest
bid on. When eligible to bid, a bidder is allowed to submit bids on all
lots.!! The only exception to this rule is that a bidder is not allowed to be
active on both lot A and lot B. At the beginning of round ¢ + 1, each bidder
receives information about bidding activity in round ¢, and information that
is relevant for the current round. The auction ends when in a certain round
no bids are submitted. Each lot is allocated to the bidder with the current
highest bid for a price equal to this bid.

The Dutch rules differ from the ones used for the US auctions in at least
four ways. First, bidders are not allowed to withdraw their bid when an
inefficient lock-in is imminent. Second, there is no activity rule which forces
bidders to remain active on a given fraction of the number of channels they
desire to obtain. Third, there is no common knowledge about who has the
highest bid on which lots in a round. Fourth, the auction is asymmetric in
the sense that incumbents are restricted on the lots they are allowed to bid
on. In this paper, we will discuss the effect of the first difference on the

outcome of the auction. For discussion of the effects of the other differences,

10See Van Damme (2000) for a more detailed description of the auction rules.

1Tn fact, in the Dutch DCS-1800 auction, a bidder was only allowed to bid on lots for
which he paid a relatively small deposit before the start of the auction. All bidder had
paid the deposit for all lots they were eligible to bid on.



see Van Damme (2000).

In contrast to the outcome of the American auctions,'? the outcome of
the Dutch DCS-1800 auction was probably not efficient. From Table 3, it can
be seen that identical objects'® were sold for substantial different prices.!4
In other words, the Law of One Price was not satisfied, which should have
been the case in a perfect market, and which indicates inefficiency. Another
indicator of inefficiency was the fact that there was resale of channels after
the auction. Ben'® was authorized by the Dutch authorities to acquire the

licences bought by TeleDanmark and Orange/Veba in the auction.

12See Cramton (1998).

13In fact, there were small differences. Some of the frequencies could not be used for
regions near the Belgium and/or the German border, and the A and B lots also included
some GSM frequencies. Van Damme (2000) argues that the effects of these heterogoneities
on the value per frequency are not large enough to explain the large price differences.

4The incumbents, KPN and Libertel, seem to have profited from the auction design.
They paid a lower price for their frequencies than two of their upcoming competitors, even
though they were limited in the sense that they were not allowed to bid for the large lots.

15Ben was at the time a joint venture of Belgacom (70%) and TeleDanmark (30%).



Lot C Winner P P/C
A 75 Dutchtone 600 8
B 75 Telfort 545 7.3
1 13 Libertel 404 3.1
2 12 KPN 40.2 34
3 13 Orange/Veba 38 2.9
4 12 Telfort 40.5 34
5 13 KPN 43 3.3
6 12  TeleDanmark 41.1 3.4
7 13 KPN 404 3.1
8 12 KPN 39.1 3.3
9 13 Orange/Veba 46.5 3.6

10 12 TeleDanmark 41.25 3.4

11 13 KPN 42.98 3.3
12 12 TeleDanmark 39.9 3.3
13 13 KPN 399 3.1
14 12 KPN 40.5 34
15 13 Libertel 45.5 3.5

16 22 TeleDanmark 71.5 3.3

Table 3. Summary of the outcome of the DCS-1800 auction. P stands
for the final price of the lot in millions of Dutch guilders, C for the number
of channels the lot consisted of, and P/C for the price (in millions of Dutch
guilders) paid per channel.

We conjecture, following Van Damme (2000), that the auction format that
was used in the Netherlands leads to lower bids and to a less efficient auction
outcome than the American auction format, as the Dutch auction format
confronts bidders with the exposure problem, whereas the American format
does not, as bidders are allowed to withdraw their bid. As a consequence of
the fact that a bid could not be withdrawn in the Dutch DCS-1800 auction,

the money a bidder spent on the small lots on which she had the highest



bid should be regarded as sunk costs. Bidders then rather play the war of
attrition than a standard auction game. Being aware of the possibility of
losing money on the small lots, bidders were very active on the large ones,
and bid hardly on the small ones. Such bidding behavior probably leads to
inefficient outcomes and a low revenue. In the literature on multiple object
auctions, this problem is referred to as the exposure problem, as bidders are
exposed to the risk of paying more for an object than what it is worth to
them.'6

Motivated by the Dutch DCS-1800 auction, and with the aim to get a
better understanding of the exposure problem, we will study a stylized model
of a multiple object auction in which the exposure problem is present. The
model is defined in Section 2. A seller simultaneously sells three chopsticks
in an auction, which we will call the Chopstick Auction (CSA). In CSA,
the price, which is the same for each object, is raised continuously. Bidders
have the opportunity to step out at each price, until one bidder is left. The
outcome of CSA is such that the second highest bidder gets one chopstick for
the auction price p, and the highest bidder gets two chopsticks for a price of
2p. We assume that bidders’ marginal values are zero on the first chopstick,
positive on second, and zero on the third. Bidders are incompletely informed
about the other bidders’ marginal value for the second chopstick. As the
second highest bidder wins a worthless chopstick for a positive price, bidders
face the exposure problem in CSA.

We will investigate whether an auction with an exposure problem is less

efficient and/or yield less revenue than an auction in which the exposure

16See Bykowsky et al. (1998), and Milgrom (2000).



problem is not present. In order to do so, in Sections 3 and 4, we will
compare CSA with the second-price sealed-bid auction, in which the three
chopsticks are sold as one bundle (SPSB). From standard auction theory,
we learn that SPSB has an efficient equilibrium (in dominant strategies), in
which each bidder submits a bid equal to her value for the chopsticks. In the
case of two risk neutral bidders with identical value distribution functions,
we show that CSA has a unique symmetric Bayesian-Nash equilibrium. CSA
is efficient, and revenue equivalent with SPSB. However, in the case of loss
averse bidders, SPSB has either a more efficient outcome or a higher expected
auction revenue than CSA. With three bidders, under general assumptions
on the value distributions and the utility functions of the bidders, we derive
an impossibility result: CSA has no symmetric equilibrium. We conjecture
that this result implies that CSA has no efficient equilibrium, so that the
seller, when aiming at efficiency, is better off by replacing CSA with SPSB.

From these findings, we conclude that the Dutch government could have
improved the DCS-1800 auction by designing an auction in which bidders do
not suffer from the exposure problem. There are at least three ways for auc-
tion designers to prevent auctions from suffering from the exposure problem.
The first is that the auction designer offers large packages of objects rather
than small ones. Specifically, the Dutch government may have obtained a
better auction outcome in the DCS-1800 auction by not splitting up the spec-
trum in such small lots, despite the fact that in that case, the bidders are
not given the opportunity to “let the market decide” on the division of the

spectrum.'” In the model, we have shown that the seller is weakly better

17«Letting the market decide” has another important drawback, namely that the realized
market structure may be very concentrated, which is a concern when thinking about



off if he auctions the chopsticks as one bundle rather than as three different
objects.

A second way to get rid of the exposure problem is a withdrawal rule.
Such a rule gives bidders the opportunity to withdraw their bid when an
inefficient lock-in is imminent. In the FCC auctions in the US, and also in
the DCS-1800 auction and the UMTS auction in Germany,'® a withdrawal
rule was implemented. After the auction, bidders were allowed to withdraw
their bid on certain licenses. A withdrawing bidder had to pay a penalty in
case the final price of the license was lower than her bid. It is questionable
if such a withdrawal rule completely solves the exposure problem, as bidders
still face a considerable risk of having to pay the penalty. In our model, the
driving force behind the results is that the losing bidder has to pay money,
so that these results remain valid with the introduction of a withdrawal rule
with penalty.

A third way to get around the exposure problem is to allow for combina-
torial bids. In our model, rational bidders will only submit strictly positive
bids on bundles of two or three chopsticks. If the payments rules are such that
the winning bidder pays the highest bid of its opponents on a bundle of two,
the auction reduces to the second-price sealed-bid auction, which we have
shown to be (weakly) better than the Chopstick Auction. However, allowing
for combinatorial bids may lead to other problems. Bykowsky et al. (1998)
identify the threshold problem in such auctions, which states that small bid-

ders may have to solve complicated coordination problems in order to be able

consumer surplus (Jehiel and Moldovanu, 2000; Klemperer, 2001).
18See Jehiel and Moldovanu (2000) for a theoretical analysis of the German UMTS
auction.



to overbid large bidders. Another problem is that in the case of a large num-
ber of objects, determining the winning combination may be computationally
intractable. In fact, Rothkopf et al. (1998) show the winner determination
problem to be NP-hard. Also, bidding in the case of combinatorial bids is
complicated for the bidders. For instance, in the Dutch DCS-1800 auction,
a bidder has the possibility to submit bids on all 2!8 — 1 ~ 250, 000 possible
combinations of licenses!

Several papers of Robert Rosenthal and co-authors are closely related
to ours. Krishna and Rosenthal (1996), and Rosenthal and Wang (1996)
analyze multiple object auctions with two types of bidders, namely “local”
bidders who are interested in only one object, and “global” bidders who try
to acquire several. The global bidders, in competition with the local ones,
face the exposure problem when attempting to realize synergies between the
objects. The equilibrium outcome of the auction is typically not efficient.
Szentes and Rosenthal (2001a, 2001b) construct equilibria in the first-price
sealed-bid, the second-price sealed-bid, and the all-pay version of CSA with
complete information. The value of a bundle of chopsticks is the same for
each bidder. In equilibrium, these auctions are efficient. The most important
different between Rosenthal’s studies and ours is that all mentioned papers
consider one shot auctions, whereas CSA is an ascending auction, as are the
PCS auctions in the US and the DCS-1800 auction in the Netherlands.

Some other papers in the literature on multiple object auctions are related
to ours as well. Bykowsky et al. (1998) gives an illustrative example in which
in equilibrium the auction outcome is either inefficient, or at least one of the

bidders ends up paying more for the purchased items than they are worth to



her. Ausubel and Cramton (1998) stress the importance of efficiency of the
auction outcome in terms of revenues for the seller in auctions of perfectly
divisible objects. Ausubel and Cramton (1999) show that efficiency of the
auction outcome is necessary for revenue maximization when the auction is
followed by a perfect resale market and when the seller cannot commit to
not selling some objects. Milgrom (2000) constructs an example in which, in
contrast to our results, the seller realizes a less efficient outcome when using
larger packages (but gets a higher revenue). Klemperer (2001) lists issues that
are of practical importance in the design of multiple object auctions. The
results derived in this paper indicate that the warning “avoid the exposure

problem” should be added to this list.

2 The model

Consider a situation with n bidders, n € {2, 3}, labeled 1, ...,n, who wish to
eat Chinese food. However, none of the bidders has anything to eat with.
Suppose that a seller sells 3 chopsticks in the Chopstick Auction!® (CSA)
which has the following rules. The price starts at zero, and is continuously
raised. Bidders have the opportunity to quit the auction at any price they
desire. The seller informs all remaining bidders when one of the bidders quit.
The auction ends when one bidder is left, who wins two chopsticks, and pays

two times the price at which the second highest bidder quits. The second

9The credit for the name of this auction game goes to Mary Lucking-Reiley. Thanks
to Balasz Szentes and Robert Rosenthal for pointing this out to me.

10



highest bidder wins one chopstick and pays the price at which she quits.?’
We will compare CSA with the second-price sealed bid auction in which the
three chopsticks are sold as one bundle (SPSB).

The value V;(s) bidder i attaches to owning s chopsticks is given by

vie={g 1o m
where v; is a private signal of bidder ¢. In words, a bidder attaches a value
of v; to winning two chopsticks, and no value to winning only one chopstick
or to winning a third one. We assume that v; is drawn independently from
the other signals from the interval [v,7], with 0 < v < 7, according to
a strictly increasing, continuous probability distribution Fj(.) with density
fi(.) = F!(.). Sometimes we will take the simplifying assumption that bidders
draw their signal from the same distribution.

Each bidder is an expected utility maximizer. The utility for bidder ¢
who buys a set of chopsticks which gives her value V; for a price of p; is given
by U;(V; — p;). For every i, U; is assumed to be a continuous function which
is strictly increasing, with U;(0) = 0. For the sake of tractability, we assume
in Section 3 that the bidders are either risk neutral (i.e., U;(z) = z for all x)

or loss averse, which will be defined later. In Section 4, we use general utility

20In this auction, ties are broken as follows. In case of two (remaining) bidders, when a
tie takes place at a price of p, a fair coin is tossed. If tails comes up, the bidder with the
lowest label wins two chopsticks for a price of 2p, and the other bidder wins one chopstick
for a price of p. If heads come up, the outcome is reversed. When the auction is played
by three bidders, in the first stage, either two or three bidders may decide to step out at
the same price of p. In either case, the game ends immediately. When two bidders step
out, then the third bidder gets two chopsticks for a price of 2p. With 50-50 probability,
one of the other bidders is awarded one chopstick for a price of p. When all three bidders
decide to step out at p, the bidders’ labels are randomly ordened in such a way that each
ordering is equally likely. The first bidder then gets two chopsticks for a price of 2p, and
the second one for a price of p. The third neither gets nor pays anything.

11



functions.

In CSA, there is one winner, the bidder who wins both chopsticks, and
one “real” loser, which is the bidder who buys one worthless chopstick for a
positive price. Table 4 shows the effect of the quitting order on the utility
levels of the bidders in the case of three bidders, when the price of a chopstick
is equal to p. From Table 4, it becomes clear that CSA can also be seen as
an English auction, in which the winner pays the bid of the second highest
bidder, and the second highest bidder pays half of her own bid.

Bidder Quits # Chopsticks won Payment Utility

i First 0 0 Ui(0)=0
j Second 1 D U;(—p)
k Third 2 2p Uk (v, — 2p)

Table 4. Possible outcomes of CSA.

We assume that the seller aims at reaching the following two goals.

Efficiency: Generate an efficient outcome, i.e., the bidder with the highest
signal obtains two chopsticks;
Revenue: Given that Efficiency is fulfilled, maximize expected auction

revenue.

3 Two bidders

Consider CSA with two bidders. The game ends immediately when one of

the bidders indicates to quit. Therefore, the strategy of a bidder is a bid in

12



the interval [0, 00) for each realization of her signal.

3.1 Risk neutral bidders

In order to keep the model tractable, we restrict our attention to identical
distributions, i.e., both bidders draw their signal from the same distribution
F=F =F.

Proposition 1 gives equilibrium bidding in CSA when both bidders are
risk neutral. By a standard argument, this bid function must be strictly
increasing and continuous. Let U (v, w) be the utility for a bidder with signal
v who behaves as if she has signal w, whereas the other bidders play according

to the equilibrium bid function. A necessary equilibrium condition is that

oU (v, w)

=0
ow
at w = v. From this condition, a differential equation is derived, from which

the equilibrium bid function is uniquely determined.

Proposition 1 Let n = 2. Suppose both bidders are risk neutral, and draw
their signals from the same distribution function F. Let B(v), the bid of a

bidder with signal v, be given by

Bv)=(1- F(v))/%dm.

Then B is the unique symmetric Bayesian Nash equilibrium of CSA. The

outcome of the auction s efficient.

Proof. The following observations imply that a symmetric equilibrium

bid function must be strictly increasing. First, a higher-value type of a bidder

13



cannot exit before a lower-value type of the same bidder would exit. (Suppose
the lower type is indifferent between two different strategies, giving her two
different probabilities of being the ultimate winner of two chopsticks. The
higher type then strictly prefers the strategy with the higher probability to
win. Therefore, she will never quit earlier than the lower type.) Furthermore,
there is no range in which the bid function is flat. (Suppose there is the bid
function is flat at a price level of p. Then each bidder being in the range of
signals that bid p exits the auction with positive probability at p. But if this
is the case, then each bidder strictly prefers staying just a bit longer.)

Let B be a symmetric and strictly increasing equilibrium bid function. If
the other bidder bids according to B, the expected utility of a bidder with

signal v who bids as if she has signal w is given by
Uv,w) = —(1 — F(w))B (w) + /f(a:)(v — 2B (z))dz.

The first (second) term of the RHS refers to the case that the bidder makes
the second highest (highest) bid.
The FOC of the equilibrium is

oU (v, w)
ow

ool
E
+
4
g
g
Il
(e
S

= (1~ F(w))B' (w) — f(w)
at w = v. Rearranging terms we find

(1—F()B () + f)B() _ f(o)
(1 - F(v))? (1= F(v))*’

which is equivalent to

Bw) [ f@)e
1——F(U) :/—2dx—|—C,

[



for some C. C must be zero (C' must be at least zero, otherwise a bidder
with signal v submits a negative bid; if C' is larger than zero, a bidder with
signal v submits a strictly positive bid. As B is (by assumption) strictly
increasing, this bidder submits the lowest bid with probability one, and has
to buy one chopstick for a positive price. Clearly, she is strictly better off by
bidding zero.) Also the SOC is fulfilled as sign(%) = sign(v —w). It is
readily checked that B is a solution.

What remains to be checked it that B is strictly increasing. From (2), B

is strictly increasing if and only if B(v) < v for (almost) all v. This is true,

Bw) = (1-F@)) /%d@«
= v—y—(l—F(v))/U(l_;@))dx

< .

As B is strictly increasing, CSA is efficient.

The uniqueness of the equilibrium follows with the Revenue Equivalence
Theorem which states that the expected payment made by any bidder given
her signal is unique by the efficiency of the outcome and the utility of the
lowest type. As the equilibrium bid function is strictly increasing, and the
utility of the lowest type is always zero in an efficient equilibrium, B is the

unique equilibrium bid function. m

Using CSA, the seller reaches both his goals Efficiency and Revenue. By
the Revenue Equivalence Theorem (Myerson, 1981), CSA yields the same ex-

pected revenue as any other efficient auction mechanism in which the bidder

15



with the lowest signal obtains zero expected utility. This follows from the
fact that CSA is an auction of a single object, namely a set of two chopsticks,
which is allocated efficiently according to Proposition 1. Therefore, there is
no efficient auction that can improve the revenues for the seller in compari-
son with CSA, so that the seller reaches both Efficiency and Revenue. More
specifically, the seller is indifferent between using CSA and SPSB to sell the

three chopsticks.

Corollary 2 Let n = 2. Suppose both bidders are risk neutral, and draw
their signals from the same distribution function. When the seller uses either

CSA or SPSB, then his goals Efficiency and Revenue are fulfilled.

3.2 Loss averse bidders

What is the effect on the outcome of CSA when bidders are loss averse rather
than risk neutral? We model loss aversion in the following simplified way.

Bidder i is called 6;-loss averse if her utility function U;(.) is given by

Uz($1> = I for all ZT; Z 0

Ui(z;) = 0O;x; for all x; <0,

where 6; > 1 is the loss aversion parameter for bidder . The interpretation
of ;-loss aversion is the following. If a 6;-loss averse bidder loses z; units,
then she perceives this as if she were a risk neutral bidder losing 6;x; units.
More specifically, the realized utility u; from CSA for bidder ¢ having signal
v;, who buys s € {1,2} chopsticks in CSA at a price of p per chopstick, is

16



given by

v — 2p if s =2 and v; > 2p,
u;i(vi, 8,p) = ¢ 0i(v; —2p) if s =2 and v; < 2p,
—0;p if s =1.

Proposition 3 establishes that the seller strictly prefers SPSB over CSA.
As SPSB has en efficient outcome, this auction fulfills Efficiency. There are
two possibilities that have to be checked. If is CSA not efficient, then the
Proposition is immediately established, as the targets of efficiency and rev-
enue maximization are lexicographically ordened. If CSA is efficient, then
it remains to be checked that SPSB yields strictly more revenue than CSA.
Using the Envelope Theorem, we show that the expected utility for each bid-
der ¢ given her signal v; is higher than in SPSB, which implies that expected
payments in CSA are lower than in SPSB.

Proposition 3 Suppose that each bidder i is 0;-loss averse. The seller who
atms at fulfilling the criteria Efficiency and Revenue 1is strictly better off
replacing CSA with SPSB.

Proof. As SPSB has an equilibrium in weakly dominated strategies, in
which each bidders bids her value for the bundle of three chopsticks, the
outcome of SPSB is efficient, so that Efficiency is fulfilled. Myerson (1981)
shows that for this auction, the interim utility for bidder ¢ having signal v;
is given by

UsPSB () = [ P,
with P;(z) the probability that x is the_highest signal.
Let (p;, 6;) denote the outcome of CSA for bidder i, where p; is her pay-

ment, 6; = 1 if she wins two chopsticks and ¢; = 0 if she wins 0 or 1 chopstick.

17



Let d;(p;, vi, 6;) be the difference between the realized value in CSA (i.e., 6;v;)
and the realized wutility level for bidder ¢ having signal v; and loss aversion
parameter 6; if the auction outcome is (p;, 6;). Hence,
0:p; if 6; =0,
di(pi, vi, 6:) = § pi if 6; =1 and p; < v,
O;pi — (0; — D)v; if §; =1 and p; > v;.
Call d;(p;,v;, ;) the subjective costs for bidder i. Observe that d;(p;, v;, 6;) >
p; (the subjective costs are higher than the actual payments), and that
d;(p;, v;,6;) is (weakly) decreasing in v;. Let D;(w,v;) denote the expected
value of d;(p;, v;, 6;) for bidder ¢ with signal v;, who bids as if she has signal w,
while all the other bidders play according to their Bayesian-Nash equilibrium
strategy.
Suppose that for CSA, Efficiency holds (otherwise SPSB is already bet-
ter). Then the equilibrium probability for a bidder with signal v; to win in
the auction is given by P;(v;). Given the equilibrium strategies of the other

bidders, a bidder optimally announces her true signal v;, maximizing
Us(w,v;) = Pi(w)v; — Di(w,v;)
with respect to w. Let
UiCSA(/Ui) = Ui(’Ui,/Ui).

By the Envelope Theorem,

Qo Py(v;) — D7 (s, vy), (3)

where D?(v;,v;) denotes the derivative of D;(v;, v;) with respect to its second

argument. By definition, D?(v;,v;) < 0. Integrating (3), and by individual

18



rationality, we have

v; v;

UESAw) = [{P(o) = Di(o,0)}do + Gifw) 2 [ Paddo = U5 (w)

v i
so that the interim utility of bidder ¢ in CSA is (weakly) higher than in
SPSB. This implies that the expected subjective costs in the CSA of bidder
i are (weakly) lower than the expected payments in SPSB. Efficiency implies
that there is always a bidder who buys one chopstick for a strictly positive
price, so that the expected payments to the seller are strictly lower than the
expected subjective costs. Therefore, the expected revenue of CSA is strictly

lower than the expected revenue of SPSB. m

Proposition 3 is intuitive in the light of the Revenue Equivalence Theorem.
In CSA, loss averse bidders bid the same as risk neutral bidders who pay 6;b
when their bid b is the second highest bid. By the Revenue Equivalence
Theorem, in the case of efficiency, the expected payment of risk neutral
bidders to the seller does not depend on 6;. Loss averse bidders, however,
only pay their bid b rather than ;b in the case they lose, so that they pay
less than their risk neutral equivalents. Therefore, the seller is better off if

he chooses an efficient auction in which the bidder cannot incur losses, such

as SPSB.2!

21Tn Proposition 3, CSA can be replaced by any auction in which the losing bidder has
to pay, such as the all-pay auction. This is true, as the only property of the Chopstick
Auction that is used in the proof is the fact that the losing bidder has to pay. Also, this
result holds in the case of three or more bidders.
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4 Three bidders

In the case of three bidders, CSA consists of two stages. In stage 1, each
bidder decides at which point to leave the auction. At some point in time,
one of the bidders leaves the auction, and the two remaining bidders enter
stage 2. In stage 2, both remaining bidders have to make a decision about
how long to stay, given the price at which the other bidder left.

A symmetric Bayesian Nash equilibrium is a Bayesian Nash equilibrium,
in which bidders with the same value play the same strategy. Proposition
4 establishes that a symmetric Bayesian Nash equilibrium cannot exist. We
prove this by contradiction. Suppose that a symmetric equilibrium exists.
Then, by a standard argument, in both stages, a bidder with a low value
must step out earlier than a bidder with a high value. Let bidders 2 and
3 step out according to the same strictly increasing bid function in stage 1.
Then bidder 1 prefers not to bid according to this bid function. Intuitively,
this can be seen as follows. Suppose that the price approaches the bid at
which the other bidders would step out given that they have the same value
as bidder 1. Bidder 1 knows that if one of the other bidders steps out earlier
than her, then there is a high probability that she enters stage 2 having the
lowest value. As also the bid function in the second stage is strictly increasing
in value, with high probability, bidder 1 is the second highest bidder. In that
case, she wins only one chopstick for a positive price, so that she makes a loss.
Therefore, bidder 1 prefers to deviate to a lower bid, which is a contradiction

to the assumption that the equilibrium is symmetric.

Proposition 4 Let n = 3. Then CSA has no symmetric Bayesian Nash
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equilibrium.

Proof. Suppose, in contrast, that a symmetric equilibrium exists. Then,
for both stages, the equilibrium bid function must be strictly increasing. It
must be weakly increasing by the same argument as used in the proof of
Proposition 1. Also, no pooling can occur in equilibrium. (Suppose instead
that there is some pooling at a price p. Then at least one of the two following
situations occur. Either the bidder at the lower end of the interval of bidders
who bid p makes a loss at p, so that she is better off by deviating to a lower
price. Or the winner at the upper end of the interval gets a strictly positive
expected utility, but then she can strictly improve by bidding slightly higher.)

However, in the first stage, bidder 1 prefers to deviate if both other bidders
submit bids according to a strictly increasing bid function. Let B; denote
the equilibrium bid function in the first stage. Suppose that the auction
reaches a price B;(v; — €) before anybody quits. Then, bidder 1 gets zero
utility when she quits at this point. In the event that one and only one of
the other bidders has a signal in the interval [v; — €,v;], bidder 1 has the
second highest signal, and she will win 1 (worthless) chopstick for a price of
at least B1(vi—¢). In the event that both bidders have a signal in the interval
[v1 — €,v1], bidder 1 wins both chopsticks. The first event happens with a
probability which is of the order €, and the second event with a probability
of the order €2, so that bidder 1 strictly prefers not to bid Bj(v;), but to step

out earlier. Therefore, a symmetric equilibrium does not exist. =

In the case that all bidders are risk neutral, and draw their signals from

the same distribution, Proposition 4 can also be derived with the Revenue
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Equivalence Theorem. Suppose a symmetric equilibrium exists. It is shown
in the proof of Proposition 4 that this equilibrium is necessarily efficient,
implying that the expected payment by the bidders with the two highest
signals in stage 2 is equal to the expected payment in SPSB, namely the
expectation of the second-highest signal, v(). When two bidders enter stage
2, they are already sure that they have to pay at least the price reached
in stage 1, so that this payment can be considered as sunk costs. Stage 2,
with the bidders who have the two highest signals, is also revenue equivalent
with SPSB with these two bidders, so that the expected payment by the
two highest bidders above the sunk costs is again given by the expectation
of the second highest value, i.e., v(o). Hence, the costs the bidders commit
themselves to in stage 1 should be equal to 0. This implies that an efficient
equilibrium will be characterized by an immediate drop-out of the bidder
with the lowest signal. Therefore, in stage 1, equilibrium bids should be
equal to 0. But this cannot happen in equilibrium, as any bidder is better
off by waiting a bit longer.

An asymmetric equilibrium of CSA is easily found, namely when one
bidder decides to always stay in the auction, no matter what the other bidders

22 If these strategies are

do, and the other bidders step out immediately.
played, the auction outcome will be very inefficient, and the revenue will be
zero. However, this type of equilibrium involves a dominated strategy, so
that it is very unlikely to be played.

The impossibility result of Proposition 4 suggests that the seller is better

off when he replaces CSA with SPSB. The nonexistence of symmetric equi-

22 Also the second-price sealed-bid auction has such equilibria.

22



libria indicates that CSA probably has no efficient equilibrium either. This
conjecture is based on the following consideration. Asymmetry implies that
if three bidders have the same type, one of them steps out strictly earlier
than the other two. Assuming continuous bid functions, this implies that the
bidder who steps out first, also steps out earlier than the other two bidders
when they have slightly lower values, so that the outcome is inefficient. This
reasoning justifies the conjecture that SPSB is strictly better according to

the seller’s goals.

Conjecture 5 Let n = 3. The seller who aims at fulfilling the criteria

Efficiency and Revenue is strictly better off replacing CSA with SPSB.

5 Concluding remarks

In this paper, we have studied the exposure problem in multiple object auc-
tions. We have found in all the investigated settings that a seller who aims at
efficiency and high auction revenues (weakly) prefers to sell the three chop-
sticks as one package in the second-price sealed-bid auction (in which the
exposure problem is not present) over selling them using the Chopstick Auc-
tion (in which bidders face an exposure problem). We conclude that avoiding
the exposure problem is an important issue in auction design.

The results for the Chopstick Auction can be straightforwardly general-
ized to allow for L > 3 objects being sold to n > 3 bidders who need M > 2
objects. Let W = Lﬁj < n be the maximal number of “winners” in the

auction. Assume there is a strictly positive number S of superfluous objects,
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ie,S=L—-M|£| > 0. The outcome of the auction is such that the W
highest bidders get the M objects they need, and (n + 1)th highest bidder
has to buy and pay for the S superfluous lots, which are of no value to her.
For the case W = n + 1 results analogous to Propositions 1 and 3 can be
derived using similar arguments. If W > n+1, i.e., if there is more than one
bidder who does not win in the auction, then, analogous to Proposition 4,
the auction has no symmetric equilibria.

Loss aversion, which we assumed for Proposition 3, seems to be a reason-
able assumption for bidders in the Dutch DCS-1800 auction. In this auction,
the bidders are “agents” trying to win valuable licenses for their “principals”,
the shareholders of the firms they represent. For the agents, leaving the auc-
tion with an expensive, but worthless, set of channels has more impact on
the negative side (as they may lose their jobs), than has winning a valuable
set on the positive side.

In the introduction of this paper, we have argued that in the presence
of the exposure problem, bidders rather play the war of attrition than a
standard auction game. In fact, Bulow and Klemperer (1999) found a result
analogous to Proposition 4 for the generalized war of attrition. The gener-
alized war of attrition is a game in which n bidders are bidding for m(<n)
prizes in a multiple object button auction. In this auction, bidders drop out
while the price is rising, until m bidders are left. Those bidders win a prize,
and pay the current price. Each bidder who drops out earlier, pays her bid
plus ¢ times the difference between the final price and her bid. In the limit
(¢ — 0) of the unique efficient equilibrium, all but the m+ 1 bidders with the

highest signals drop out immediately. However, this cannot be an equilib-
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rium in the game with ¢ = 0, as bidders have an incentive to deviate, and bid
just above 0. Therefore, the generalized war of attrition has no symmetric
equilibrium.

Several issues related to our model need further investigation. For in-
stance, the effect of all remaining bidders being informed when one of the
bidders quit is not well understood. More specifically, does the Chopstick
Auction have symmetric equilibria if bidders would not observe each other
leave the auction? Moreover, we have assumed that a bidder does not acquire
any value when she wins only one chopstick. A question that may be inter-
esting for further research is how the analysis would change if the marginal
value of the first and the third chopstick are strictly positive. Finally, the
impossibility result in the case of three bidders is not very informative about
equilibrium bidding. A further study is needed to get a better understand-
ing about how bidders behave in the Chopstick Auction in the case of three
bidders.
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