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The Shapley value for partition function form
games1

Kim Hang Pham Do∗,+, Henk Norde∗

∗Department of Econometrics and Operations Research, and CentER,
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+Department of Economics, and CentER, Tilburg University.
Warandelaan 2, P.O.Box 90513, 5000 LE Tilburg, The Netherlands.

Abstract: Different axiomatic systems for the Shapley value can be found in the
literature. For games with a coalition structure, the Shapley value also has been
axiomatized in several ways. In this paper, we discuss a generalization of the
Shapley value to the class of partition function form games. The concepts and
axioms, related to the Shapley value, have been extended and a characterization
for the Shapley value has been provided. Finally, an application of the Shapley
value is given.

Key words: partition function form game, coalition structure, Shapley value,
unanimity game.

1 Introduction

One of the interests for those who plan to make up a cooperative relationship
is how to share their joint profits. The Shapley value (Shapley, 1953) has been
proven to be a useful solution concept for cooperative TU games as it provides
a recommendation for the division of the joint profits of the grand coalition,
which satisfies some reasonable properties. However, considering an economy
with externalities one can not easily recommend a division of the joint profits
in the same way. For example, in the context of a symmetric Cournot model
with linear cost and demand, Selten (1973) showed that the connection between
the number of competitors and the tendency to cooperate depends on specific
institutional assumptions about possibilities of cooperation. If firms are free to
form enforceable quota cartels then cartels (coalitions) may or may not include
all firms in the market. The cooperative possibilities of a coalition are derived
from equilibrium points of an associated non-cooperative game. In this situa-
tion, one can not employ the usual concept of a game in characteristic function
form (TU game) to predict the outcome (solution) as the final profits depend
on the coalition structure which has been formed. This feature, however, has
been captured in the concept of partition function form games due to Thrall
and Lucas (1963): a partition function assigns a value to each pair consisting of
a coalition and a coalition structure which includes that coalition.

1We would like to thank Stef Tijs and Irinel Dragan for useful comments.
Corresponding e-mail: kimhang@kub.nl; h.norde@kub.nl.
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Based on the axioms which characterize the Shapley value (Shapley, 1953) for
cooperative TU games, there are apparently many ways to extend the Shapley
value to games in partition function form (see, for example, Myerson (1977),
Bolger (1989), Potter (2000)). Myerson (1977) derived an efficient value which
is a natural extension of the Shapley value based on three simple axioms. Bolger
(1989) derived an efficient value which assigns zero to dummies and assigns
nonnegative values to players in monotone simple games, whereas Potter (2000)
modified the regular concept of the dummy player which allows the dummy
player to bring nonnegative worth to the game. All of them are in some way
extensions of the Shapley value for cooperative TU games.
This paper studies another extension of the Shapley value for the class of par-
tition function form games. The efficient value we define is different from pre-
vious authors. The key idea here is to construct a value which is the average
of a collection of marginal vectors. We present a simple formula for calculating
the Shapley value of partition function form games, using a decomposition in
unanimity games.
The paper is organized as follows. We first briefly recall the main basic features
of partition function form games in the next section. The Shapley value and
unanimity games are introduced in section 3 and section 4. The properties of
the solution concept are studied in section 5. Section 6 discusses an example,
demonstrating how the Shapley value can be applied.

2 Preliminaries

Let N = {1, 2..., n} be the finite set of players. Nonempty subsets of N are
called coalitions. A partition κ of N, a so-called coalition structure, is a set of
disjoint coalitions, κ = {S1, ..., Sm}, so that their union is N . Let P(N) be the
set of all partitions of N . For any subset S ⊆ N, the set of all partitions of S is
denoted by P(S). A typical element of P(S) is denoted by κS.
A pair (S,κ) which consists of a coalition S and a partition κ of N to which S
belongs is called an embedded coalition. Let E(N) denote the set of embedded
coalitions, i.e.

E(N) = {(S,κ) ∈ 2N × P(N)| S ∈ κ}.
Definition 2.1 A mapping

w : E(N) −→ R

that assigns a real value, w(S,κ), to each embedded coalition (S,κ) is called a
partition function. The ordered pair (N,w) is called a partition function form
game. The set of partition function form games with player set N is denoted
by PFFGN .

The value w(S,κ) represents the payoff of coalition S, given that coalition struc-
ture κ forms. For a given partition κ = {S1, S2, ..., Sm} and a partition function
w, let w(S1, S2, ..., Sm) denote the m-vector (w(Si,κ))mi=1. It will be conve-
nient to economize brackets and suppress the commas between elements of the
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same coalition. Thus, we will write, for example, w({ijk}, {{ijk}, {lh}}) as
w(ijk, {ijk, lh}), and w({ikj}, {lh}) as w(ijk, lh). For a partition κ ∈ P(N)
and i ∈ N , we denote the coalition in κ to which player i belongs by S(κ, i).
The typical partition which consists of singleton coalitions only, κ = {{1}, {2}, ...,
{n}}, is denoted by [N ], whereas the partition, which consists of the grand
coalition only is denoted by {N}. For any subset S ⊆ N, let [S] denote the
typical partition which consists of the singleton elements of S, i.e.[S] = {{j}|
j ∈ S}.

Definition 2.2 A solution concept on PFFGN is a function Ψ, which asso-
ciates with each game (N,w) in PFFGN a vector Ψ(N,w) of individual payoffs
in Rn, i.e. Ψ(N,w) = (Ψi(N,w))i∈N ∈ Rn.

3 The Shapley value

The aim of this section is to generalize the Shapley value to the class of partition
function form games. In order to do so we first recall the definition of the Shapley
value for the class of TU games. A cooperative TU game is a pair (N, v), where
N is the finite set of players and v(S) ∈ R is the worth of coalition S ⊆ N , with
the convention that v(φ) = 0.
Let Π(N) be the set of all bijections σ : {1, 2, ..., n}→ N of N . For a given σ ∈
Π(N) and i ∈ {1, 2, ..., n} we define Sσi = {σ(1),σ(2), ...,σ(i)}, and Sσ0 = ∅. We
construct the vectormσ(v), which corresponds to the situation where the players
enter a room one by one in order σ(1),σ(2), ...,σ(n) and where each player is
given the marginal contribution he/she creates by entering. Formally, it is the
vector in Rn defined by mσ

σ(i)(v) = v(Sσi ) − v(Sσi−1), for any i ∈ {1, 2, ..., n}.
The Shapley value φ(v) is equal to the average of the marginal vectors, i.e.

φ(v) = (n!)−1
X

σ∈Π(N)
mσ(v). (3.1)

In order to introduce the Shapley value for partition function form games we
need some more notation. For a given σ ∈ Π(N) and i ∈ {1, 2, ..., n}, we define
the partition κσi associated with σ and i, by κ

σ
i = {Sσi }∪ [N\Sσi ]. So, in κσi the

coalition Sσi has already formed, whereas all other players still form singleton
coalitions. Furthermore, we define κσ0 = [N ].

For a game in partition function form we shall define the marginal vectors as
follows. The marginal vector mσ(w) of a partition function form game (N,w)
again corresponds to a situation, where the players enter a room one by one in
the order σ(1),σ(2), ...,σ(n). The first player according to σ, i.e. σ(1), receives
mσ
σ(1)(w) = w({σ(1)}, [N ]) = w(Sσ1 ,κσ1 ). If the second player, σ(2), joins then

the two players together can get w(Sσ2 ,κ
σ
2 ) and the marginal contribution of

player σ(2) to coalition Sσ2 is

mσ
σ(2)(w) := w(S

σ
2 ,κ

σ
2 )−w(Sσ1 ,κσ1 ).
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Similarly, the marginal contribution of the kth player σ(k), with k ≥ 3, to
coalition Sσk is

mσ
σ(k)(w) := w(S

σ
k ,κ

σ
k)−w(Sσk−1,κσk−1).

Based on these marginal vectors {mσ(w)}σ∈π(N), we define the Shapley value
Φ of the partition function form game (N ,w) as the average of the n! marginal
vectors,

Φ(w) =
1

n!

X
σ∈Π(N)

mσ(w), (3.2)

just like its counterpart for TU-games (c.f. Shapley, 1953).

Example 3.1 Consider the partition function form game (N,w) defined
by w(1, 2, 3) = (0, 0, 0), w(12, 3) = (2, 0), w(23, 1) = (3, 2), w(13, 2) = (2, 1),
w(123) = 10.

The marginal vectors are:

if σ1 = (1, 2, 3) then mσ1(w) = (0, 2, 8)

if σ2 = (2, 1, 3) then mσ2(w) = (2, 0, 8)

if σ3 = (1, 3, 2) then mσ3(w) = (0, 8, 2)

if σ4 = (2, 3, 1) then mσ4(w) = (7, 0, 3)

if σ5 = (3, 1, 2) then mσ5(w) = (2, 8, 0)

if σ6 = (3, 2, 1) then mσ6(w) = (7, 3, 0).

So, the Shapley value Φ(w) = (3, 3.5, 3.5). One can verify that the value, intro-
duced by Potter (2000) as well as the value introduced by Bolger (1989), yields
the vector (3.25, 3.5, 3.25) for this game.2 The difference between our value and
Bolger’s value stems from the fact that Bolger was considering a different col-
lection of marginal vectors. The value, introduced by Potter, is obtained by
considering the sum of an ”average worth” of coalitions.

4 Unanimity games

In this section we will introduce unanimity games for the class of partition
function form games as a generalization of unanimity games for the class of TU
games. We establish a decomposition theorem, which states that every partition
function form game can be written in a unique way as a linear combination of
unanimity games. First, we recall the corresponding concepts for TU games.
For S ⊆ N the unanimity game (N,uS) is defined by

uS(T ) =

½
1,

0,

if S ⊆ T
otherwise

2For n = 3, the value introduced by Potter coincides with Bolger’s value (Potter, 2000).
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for all T ⊆ N.

The unanimity games {(N,uS)| S ∈ 2N\{φ}} form a basis for the class of all
TU games with player set N. The unique linear expansion of a characteristic
function v in terms of unanimity games is given by

v =
X

S∈2N\{φ}
cSuS, where cS =

X
T :T⊆S

(−1)|S|−|T |v(T ).

We will now extend the various notions for TU games to partition function form
games.

Let τ = (S,κ) and τ 0 = (S0,κ0) be two embedded coalitions of N. We say that
τ is a generalized subset of τ 0, denoted by τ v τ 0, if the two following conditions
hold

(i) S ⊆ S0
(ii) for every two players i, j ∈ N\S0, S(κ, i) 6= S(κ, j) if and only if
S(κ0, i) 6= S(κ0, j).

So, an embedded coalition τ = (S,κ) is a generalized subset of τ 0 = (S0,κ0) if
S ⊆ S0 and if κ0 is the partition which results from partition κ by merging the
players in S0\S with S.

Example 4.1 Let N = {1, 2, 3, 4, 5, 6}, and τ = (123, {123, 45, 6}) ∈ E(N).
Then τ is a generalized subset of τ 0 = (1234, {1234, 5, 6}) but τ is not a gener-
alized subset of τ 00 = (1234, {1234, 56}).

Now we will define unanimity games for partition function form games.

Definition 4.1 Let τ = (S,κ) ∈ E(N) be an embedded coalition. The
unanimity game wτ , corresponding to τ , is defined by

wτ (τ
0) =

½
1,
0,

if τ v τ 0

otherwise
(4.1)

for every τ 0 ∈ E(N).

Example 4.2 Let N = {1, 2, 3}. Let κ1 = [N ],κ2 = {12, 3},κ3 = {13, 2},
κ4 = {23, 1}, κ5 = {N}, and let τ1 = (1,κ1), τ2 = (2,κ1), τ3 = (3,κ1),
τ4 = (12,κ2), τ5 = (3,κ2), τ6 = (13,κ3), τ7 = (2,κ3), τ8 = (23,κ4),
τ9 = (1,κ4), τ10 = (123,κ3). The Table 1 gives the values of wτ (τ 0) for all
embedded coalitions τ and τ 0.
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Table 1. The values of unianimity games wτ .

τ \ τ 0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10
τ1 1 0 0 1 0 1 0 0 0 1
τ2 0 1 0 1 0 0 0 1 0 1
τ3 0 0 1 0 0 1 0 1 0 1
τ4 0 0 0 1 0 0 0 0 0 1
τ5 0 0 0 0 1 1 0 1 0 1
τ6 0 0 0 0 0 1 0 0 0 1
τ7 0 0 0 1 0 0 1 1 0 1
τ8 0 0 0 0 0 0 0 1 0 1
τ9 0 0 0 1 0 1 0 0 1 1
τ10 0 0 0 0 0 0 0 0 0 1

We can now prove, similarly to the case of TU games, that the unanimity games
form a basis for the class of partition function form games.

Lemma 4.1 If (N,w) is a partition function form game, then there exist uniquely
determined real numbers µτ , τ ∈ E(N), such that

w =
X

τ∈E(N)
µτwτ . (4.2)

These numbers are given by µτ =
P
η:ηvτ (−1)|τ|−|η|w(η), where |τ | denotes the

cardinality of coalition T in an embedded coalition τ = (T,κ).

Proof. It is suffices to show for the µτ , specified in the lemma, that w =P
τ∈E(N) µτwτ . Let τ

0 = (S0,κ0) ∈ E(N). We haveX
τ∈E(N)

µτwτ (τ
0) =

X
τ :τvτ 0

µτ

=
X
τ :τvτ 0

(
X
η:ηvτ

(−1)|τ|−|η|w(η))

=
X
η:ηvτ 0

(
X

τ :ηvτvτ 0
(−1)|τ|−|η|)w(η).

Now, let η = (S,κ) be such that η v τ 0(= (S0,κ0)) and consider the expressionP
τ :ηvτvτ 0(−1)|τ |−|η|. Note that for every S00 with S ⊆ S00 ⊆ S0 there is precisely

one partition κ00 ∈ P(N) such that for τ = (S00,κ00) we have η v τ v τ 0.
So, X

τ :ηvτvτ 0
(−1)|τ|−|η| =

X
S00:S⊆S00⊆S0

(−1)|S00|−|S|

=

|S0\S|X
k=0

µ|S0\S|
k

¶
(−1)k.
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If η = τ 0 we clearly have
P
τ :ηvτvτ 0(−1)|τ|−|η| = 1.

If η 6= τ 0, then S ⊆ S0, S 6= S0. Hence,X
τ :ηvτvτ 0

(−1)|τ|−|η| = (1− 1)|S0\S| = 0.

Therefore, we can conclude that
P
τ∈E(N) µτwτ (τ

0) = w(τ 0) for all τ 0 ∈ E(N),
which finishes the proof.

The following example shows the linear expansion of a partition function
form game (N,w) with respect to the unanimity games wτ .

Example 4.3 Consider the partition function form game (N,w) in Exam-
ple 3.1. Calculating the numbers of µτ , we have µτi = 0 for i = 1, 2, 3, 4, 6,
µτj = 1 for j = 5, 7, 8, 9, and µτ10 = 6. So, the decomposition of w is given by

w = wτ5 +wτ7 +wτ8 +wτ9 + 6wτ10 .

5 The characterization

In this section we characterize the Shapley value for partition function form
games, that we introduced in the previous section, by efficiency, additivity,
symmetry and the null player property.
For S ⊆ N, i, j /∈ S and k ∈ S, we denote S+i = S ∪ {i}, S+i,j = S ∪ {i, j}, and
S−k = S\{k}.

Definition 5.1 Let (N,w) be a partition function form game and i ∈ N.
We say that player i is a null player if for all κN\{i} ∈ P(N\{i}) and S ∈ κN\{i},

w(S,κN\{i} ∪ {{i}}) = w(S+i, (κN\{i}\{S}) ∪ {S+i}).
Definition 5.2 Given a partition function form game (N,w) ∈ PFFG, we
say that two players i and j are symmetric if for all κN\{i,j} ∈ P(N\{i, j}) and
S ∈ κN\{i,j},
w(S+i, (κN\{i,j}\S) ∪ {{j}} ∪ {S+i}) = w(S+j , (κN\{i,j}\S) ∪ {{i}} ∪ {S+j}).
Let Ψ : PFFGN → Rn be a solution for PFFGN . The solution concept Ψ
(i) is called efficient (EFF) if

nX
i=1

Ψi(w) = w(N, {N}) for all w ∈ PFFGN ;

(ii) is called symmetric (SYM) if for all w ∈ PFFGN , and for all symmetric
players i, j in (N,w), we have Ψi(w) = Ψj(w);

(iii) satisfies the null player property (NP) if for all w ∈ PFFGN , and for
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all i ∈ N such that player i is a null player in (N,w), we have Ψi(w) = 0;

(iv) satisfies additivity (ADD) if for any two games (N,w1) and (N,w2) in
PFFGN we have Ψ(w1 +w2) = Ψ(w1) +Ψ(w2). Here w1 +w2 is defined
by (w1 +w2)(S,κ) = w1(S,κ) +w2(S,κ) for every (S,κ) ∈ E(N).

Theorem 1 The Shapley value satisfies EFF, SYM, ADD, and NP.

Proof. (i) EFF: Let w ∈ PFFGN , then we have
nX
i=1

Ψi(w) =
nX
i=1

1

n!

X
σ∈Π(N)

mσ
i (w)

=
1

n!

X
σ∈Π(N)

nX
i=1

mσ
i (w)

=
1

n!

X
σ∈Π(N)

w(N, {N}) = w(N, {N}).

(ii) SYM : Let w ∈ PFFGN and let i, j be symmetric players in (N,w). Let σ ∈
Π(N) and let σij ∈ Π(N) be the permutation which is obtained by interchanging
in σ the positions of i and j. Since i and j are symmetric one easily finds that
mσ
i (w) = m

σij
j (w). Since σij ranges over all permutations if σ does, and the

Shapley value is the average of all marginal vectors, we get Ψi(w) = Ψj(w).
(iii) ADD : Obvious.
(iv) NP : Obtained from the fact that if player k is a null player in (N,w) then
mσ
k(w) = 0 for every σ ∈ Π(N).

Theorem 2 There is a unique solution on PFFGN satisfying EFF, ADD, SYM
and NP. This solution is the Shapley value.

Proof. (i) From Theorem 1, it follows that the Shapley value satisfies EFF,
ADD, SYM and NP.
(ii) Conversely, suppose ψ satisfies the four properties. We have to show that
ψ = Φ.
Let w be a partition function form game on N . Then

w =
X
τ

µτwτ with µτ =
X
η:ηvτ

(−1)|τ|−|η|w(η).

By the additivity property we have

ψ(w) =
X
τ

ψ(µτwτ ) and Φ(w) =
X
τ

Φ(µτwτ ).

So, it suffices to show that for all τ and µτ ∈ R we have ψ(µτwτ ) = Φ(µτwτ ).
Let τ = (S,κ) ∈ E(N) and µτ ∈ R. For i /∈ S , let κN\{i} ∈ P(N\{i})
and T ∈ κN\{i}. Let τ 0 denote the embedded coalition (T,κN\{i} ∪ {{i}}) and
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τ 00denote the embedded coalition (T+i, (κN\{i}\T ) ∪ {T+i}). One easily verifies
that τ v τ 0 if and only if τ v τ 00, so µτwτ (τ 0) = µτwτ (τ 00). Hence, i is a null
player of (N ,µτwτ ). Therefore, by the NP property, we have

ψi(µτwτ ) = Φi(µτwτ ) = 0 for all i /∈ S. (5.1)

For any two players i, j ∈ S, i 6= j, let κN\{i,j} ∈ P(N\{i, j}), and T ∈ κN\{i,j}.
Denote by τ 0 the embedded coalition (T+i, (κN\{i,j}\T ) ∪ {{j}} ∪ {T+i} and
by τ 00 the embedded coalition (T+j , (κN\{i,j}\T ) ∪ {{i}} ∪ {T+j}. One can see
that τ is not a generalized subset of τ 0 and not a generalized subset of τ 00.
So, µτwτ (τ

0) = 0 = µτwτ (τ
00). Therefore, i and j are symmetric players in

(N ,µτwτ ). Thus, by SYM,

Φi(µτwτ ) = Φj(µτwτ ) for all i, j ∈ S (5.2)

and similarly
ψi(µτwτ ) = ψj(µτwτ ) for all i, j ∈ S (5.3)

Therefore, EFF and (5.1)-(5.3) imply that
Φi(µτwτ ) = fi(µτwτ ) = |S|−1µτ for all i ∈ S.

As a corollary of Theorem 2 we get an alternative description of the Shapley
value for partition function form games.

Corollary 5.1 The Shapley value of a partition function form game (N,w) can
be written as

Φi(w) =
X

τ=(S,κ):i∈S
|S|−1µτ for all i ∈ N.

6 An illustrative example

In this section we will apply the Shapley value to oligopoly games in partition
function form. Particularly, we focus our attention on a linear oligopoly market
of a homogeneous good with asymmetric costs, no fixed costs and no capacity
constraints. Such an oligopoly is defined by the vector (b; c) ∈ Rn+1+ , where
b > 0 is the intercept of the inverse demand function, c = (c1, c2, ..., cn) ≥ 0 is
the marginal cost vector. Without loss of generality, assume c1 ≤ c2 ≤ ... ≤ cn.
We also assume that an equilibrium price always exceeds the largest marginal
cost, i.e.

b+
Pn

j=1 cj
n+1 > cn.

3 For each supply (input) vector x = (x1, x2, ..xn),

the price is p(x) = b −Pn
i=1 xi, whereas player i ’s cost and profit (payoff) are

Ci(xi) = cixi and

πi(x) = p(x)xi −Ci(xi) = (b−
nX
i=1

xi)xi − cixi. (6.1)

3This assumption is equivalent to the requirement of positive market shares at the equilib-
rium for all players (Zhao, 2001).
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Player i’s reaction curve is implicitly defined by the first order condition:

∂πi(x)

∂xi
= p(x)− ci − xi = 0, or 2xi = b− ci −

X
j 6=i
xj . (6.2)

A Cournot-Nash equilibrium is a vector such that each player’s action xi is a
best response to the complementary choice x−i = (x1, ..., xi−1, xi+1,..., xn). This
equilibrium is graphically the intersection point of all reaction curves and alge-
braically the solution of the system of equations (6.2). The unique equilibrium,
x∗ = (x∗1, x∗2,..., x∗n), is determined by

x∗i =
b− (n+ 1)ci +

Pn
j=1 cj

n+ 1

and the payoff of player i at this equilibrium is

πi(x
∗) = (x∗i )

2 =
[b− (n+ 1)ci +

Pn
j=1 cj ]

2

(n+ 1)2
. (6.3)

Now suppose that after sufficient communication, some players may agree to
cooperate (for example, players intend to adjust negative externalities which
are caused by decreasing returns to inputs). In such a situation a coalition
structure might form, in which, however, the payoff of coalition S depends on
the behaviour of the players outside S. Notice that the payoff for coalition
S under one coalition structure is different from that under another coalition
structure if the number of coalitions is different. Assume that the marginal cost
of coalition S is cS = mini∈S ci (i.e. a coalition’s most efficient technology can
be costlessly adopted by all players in S). Moreover, if a coalition structure
κ = {S1, S2,..., Sk} is formed, then in equilibrium each coalition S in κ will
choose the total (input) quantity levels to maximize the sum of its members’
profits, given the total inputs of the other coalitions in κ.
Let xSj =

P
i∈Sj xi denote the total input level for a coalition Sj and πSj (x)

denote the profit of coalition Sj under structure κ,

πSj (x) = p(x)xSj −CS(xSj ) = (b−
kX
i=1

xSi)xSj − cSjxSj .

Coalition Sj ’s reaction curve under coalition structure κ is also implicitly defined
by the first order condition:

∂πSj (x)

∂xSj
= p(x)− cSj − xSj = 0, or 2xSj = b− cSj −

X
i 6=j

xSi .

The unique equilibrium under the structure κ, (x∗S1 , x
∗
S2
..., x∗Sk), and the equi-

librium profit πSj (x
∗) of coalition Sj are defined by

x∗Sj =
b− (k + 1)cSj +

Pk
i=1 cSi

k + 1
,
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and

πSj (x
∗) =

[b− (k + 1)cSj +
Pk
i=1 cSi ]

2

(k + 1)2
.

The oligopoly game in partition function form (N,w) is determined for every
(Sj ,κ) by w(Sj ,κ) = πSj (x

∗), where x∗ is the equilibrium vector under structure
κ.
To get further illustration of how the Shapley value can be used we specify the 3-
person oligopoly game in partition function form (N,w). The partition function
form game is given by w(1, 2, 3) = (α,β,γ), w(12, 3) = (a1, b1), w(13, 2) =
(a2, b2), w(23, 1) = (b2, a2), w(123) = g, where

α =
1

16
(b− 3c1 + c2 + c3)2, (6.4)

β =
1

16
(b− 3c2 + c1 + c3)2,

γ =
1

16
(b− 3c3 + c1 + c2)2,

a1 =
1

9
(b− 2c1 + c3)2, b1 = 1

9
(b− 2c3 + c1)2

a2 =
1

9
(b− 2c1 + c2)2, b2 = 1

9
(b− 2c2 + c1)2

g =
1

4
(b− c1)2.

Given the ordering of marginal costs, one can easily see that α ≥ β ≥ γ, and
a1 ≥ a2 ≥ b2 ≥ b1. The Shapley value of this game, Φ(w) = (Φi(w))i=1,2,3, can
be computed as follows:

Φ1(w) =
g

3
+ 2g1 + g2 (6.5)

Φ2(w) =
g

3
− g1 + g2

Φ3(w) =
g

3
− g1 − 2g2

where

g1 =
1

6
(a2 − b2 + α− β) ≥ 0, (6.6)

g2 =
1

6
(a1 − a2 + β − γ) ≥ 0.

From (6.4) one can see that if players have identical costs, then α = β = γ,
a1 = a2 = b1 = b2 so g1 = g2 = 0. The Shapley value gives an equal payoff to all
players, i.e. Φi(w) =

g
3 . Now increase the marginal costs of players 2 and 3 by

the same amount, i.e. c1 ≤ c2 = c3. Then a1 = a2, β = γ so g2 = 0. Thus, due
to this increase of costs, the Shapley value reduces the payoff for player 2 and 3
by g1, whereas the payoff of player 1 is increased by 2g1. A further increase of

11



the marginal cost of player 3 alone reduces, according to the Shapley value, the
payoff of player 3 by 2g2, whereas the payoffs of players 1 and 2 are increased
by g2.

Example 6.1 The game in partition function form (N,w) associated with
a linear oligopoly market (b; c), where b = 20, c = (1, 3, 4), given by
w(1, 2, 3) = (36, 16, 9), w(12, 3) = (53.78, 18.78),
w(13, 2) = (49, 25), w(23, 1) = (25, 49), w(123) = (90.25).

The Shapley value for this game is Φ(w) = (46.70, 24.71, 18.83). This value
indicates the different payoffs due to the different costs of players. If players
have identical costs, i.e. c = (1, 1, 1), then Φ(w) = (30.08, 30.08, 30.08). If the
cost of players 2 and 3 increase by 2 units, i.e. c = (1, 3, 3), then Φ(w) =
(40.42, 24.92, 24.92). Hereby, g = 90.25, g1 = 7.33, g2 = 1.96.

For n-person oligopoly games in partition function form, the generalization of
the observations above is straightforward.
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