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Chapter 1

Introduction and Preliminaries

1.1 Introduction

Piecewise linear modeling has been a widely used technique in many engineering areas for
a long time. By means of piecewise linear models, nonlinear phenomena can be approxi-
mated as accurately as desired. In general, the cost is sacrificing the smoothness and/or
having large models. However, the properties offered by linearity, even in a piecewise man-
ner, still make it one of the most natural options. Other ways in which piecewise linear
systems may emerge include for instance gain scheduling type of controllers [39,58,59],
variable structure systems [66] and bang-bang control [9,43]. Of course, piecewise linear
systems form a very general class. Inevitably, one sometimes has to sacrifice generality
and consider specific subclasses in order to establish reasonably significant results. By
following this idea, our treatment will focus on a subclass which allows us to employ com-
plementarity methods of mathematical programming. With a slight abuse of terminology,
we sometimes use the term complementarity systems (see [33,38,55,56]) for this subclass
of piecewise linear systems that can be dealt with by means of complementarity methods.
It is possible to find lots of application areas in various fields such as electrical engineering,
mechanical systems, operations research, economics etc. We refer to [32,33,57| for more
detailed discussion of (potential) application areas. Since our treatment is based on com-
plementarity theory, we can roughly say that our work lies in the junction of the system
theory and the mathematical programming. To put/fit this thesis into a place within the
existing literature, we discuss related areas and approaches in what follows.

Motivated, to a great extent, by the applications in mechanical systems (see for in-
stance [42,52] for classical treatments of unilateral constraints, and see also (8] for a
survey on nonsmooth mechanics), and in circuit theory and control systems theory (see
e.g. [9,43,53,66]), discontinuous dynamical systems have been studied extensively since the
fifties and sixties. As a fundamental work in this area, we can mention Filippov [28] where
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differential equations with discontinuous right hand sides have been under consideration
with an emphasis on the existence and uniqueness of solutions in the sense of Carathéodory.
In the first part of this thesis, we will address similar questions for complementarity sys-
tems. Our development differs from Filippov’s since complementarity systems do not fit
into the framework of (28] in general. The work on differential inclusions (see e.g. [1]) is
another branch of research on discontinuous dynamical systems. The combinations of dif-
ferential equations and inequalities, and hence piecewise linear systems, can be easily cast
as differential inclusions which usually have nonunique solutions by their nature. On the
other hand, the uniqueness of solutions is of great importance from our model validation
perspective.

Another way of looking at piecewise linear systems is to consider them as a subfamily
of the huge family of hybrid systems. Indeed, piecewise linear systems can be regarded as
hybrid systems (what cannot be?) just by translating the piecewise linearity to the language
of hybrid systems. Embedding the piecewise linear nature into a hybrid automaton model
would be one of such translations. Suppose that the piecewise linear system is given in the
following explicit form

i=Az+b ifre At

for i = 1,2,...,m. For the corresponding hybrid automaton model, one can choose m
modes in the natural way. The state space partition determined by the sets X directly
indicates the invariants and guards.' It is hard to come up with tractable analysis methods
for general hybrid systems. Naturally, some researches have focused on special subclasses
of hybrid dynamical systems. In particular, the work that has been done on mixed logical
dynamical systems ( [3,4]), first order linear hybrid systems with saturation ( [24]) and
piecewise affine systems ( [60,61]) is closely related to complementarity systems. Indeed,
in a recent report [31] it has been shown for discrete systems that these subclasses and
complementarity systems are equivalent under certain assumptions.

Among the fields that stimulated the work on piecewise linear systems, circuit theory
has a special place because of the fact that the piecewise linear modeling idea comes up
rather naturally in this context. One branch of research (see e.g. [5,19-22,29,40,41,45,67])
is mainly focused on canonical representations of piecewise linear characteristics/functions.
In the cited references only analysis of static piecewise linear systems (resistive piecewise
linear circuits in network theoretical terminology) has been considered. The main goal of
those works was to represent resistive piecewise linear circuits in a canonical form and to
propose methods to find the solutions (driving points) of the circuit. The employment of
the complementarity setting separates |5, 40, 41,45, 67] from the others. The first part
of our thesis can be viewed as the continuation of this strand of work towards dynamical

!We follow the terminology used in [57].
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systems.

Another direction of research in the community of circuit theory which our work can be
connected with is the simulation of switching circuits (see e.g. [2,5,27,44,45,48,54,68]).
Roughly speaking, there are three main approaches, namely event-tracking methods, time-
stepping methods and smoothing methods.? While the papers [2,48] are examples of work on
event-tracking methods, [5,44,45,54] give examples of studies on time-stepping methods.
At this point, we should mention the work on time-stepping methods that has been done
for unilaterally constrained mechanical systems with friction phenomena [47,49,51,62-64].
It seems that the question of convergence for these methods is usually not considered in the
literature of circuit theory. With the inspiration of the cited work on mechanical systems,
we have attempted to emphasize the need of justification of the time-stepping methods
for switching circuits in the last two chapters of the second part of the thesis. The first
chapter of the second part deals with smoothing methods. As related work in the context
of mechanical systems, one can refer to [8, Chapter 2| and references therein.

After their introduction by Dupuis and Nagurney [25] (see also [50] for further de-
velopment), projected dynamical systems have been used for studying the behavior of
oligopolistic markets, urban transportation networks, traffic networks, international trade,
agricultural and energy markets. Variational inequalities have been employed to charac-
terize the stationary points of the projected dynamical systems. The well-known close
relationship (see e.g. [30]) between complementarity problems and variational inequalities
suggests that complementarity systems and projected dynamical systems are related to
each other. Indeed, this relation has been addressed in [33, Chapter 6].

In the operations research community, several variations/extensions/generalizations
of complementarity problems have been under consideration. Among all those varia-
tions/extensions/generalizations, the topological complementarity problem (TCP) (see
[6,7]) is of considerable importance for us. In the second part of the thesis, we employ TCP
as a general framework to investigate the convergence of approximations. Well-posedness
of complementarity systems can be formulated in a pure TCP framework as well. Indeed,
finding a solution of a complementarity system is nothing but finding a solution of a cer-
tain TCP. However, the available conditions which guarantee solvability of TCPs are very
restrictive and are not satisfied in general by the systems we are looking at in this thesis.
In this respect, our well-posedness results provide solvability conditions for a special class
of TCPs.

In an infinite-dimensional systems setting, the book [26] addresses well-posedness issues
as well as convergence of smoothing and time-stepping methods for partial differential
inequalities that arise from mechanics and physics. Since we work in a finite dimensional

2For the explanations of these terms see Chapters 5 and 6.
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framework here, the treatment in the cited reference is clearly more general. However, its
development has been based on some coerciveness condition and hence it has implications
for only a rather restrictive subclass of linear passive complementarity systems.

1.1.1 Outline of the thesis

The thesis is divided into two parts each containing three chapters. While Part I deals
with the well-posedness of complementarity systems, Part II investigates convergence of
approximations of complementarity systems.

In Chapter 2 we consider the well-posedness (in the sense of existence and uniqueness
of solutions) of linear complementarity systems with external inputs where the underlying
linear system is of index 1 as defined in Definition 2.3.1.

Linear passive complementarity systems (LPCS) are the objects of Chapter 3. The
properties that are offered by passivity make it possible to derive stronger well-posedness
results in the sense that the solutions are unique in larger spaces. The chapter contains
comparisons of several solution concepts for LPCS. All the results that are obtained for
LPCS will be extended to the class of systems that are passifiable by pole shifting (see
Definition 3.4.2). After investigating Zeno behavior of this newly introduced class of sys-
tems, we will pass to the discussion on nonregular initial states. Finally, the chapter will be
closed with results on well-posedness for distributional versions of two previously defined
solution concepts.

Chapter 4 is devoted to a class of piecewise systems that can be formulated in a com-
plementarity setting. Its main goal is to establish well-posedness results for this class of
systems. It will be shown that linear complementarity systems and linear relay systems
can be treated within the framework used in this chapter.

We consider some continuity properties of linear complementarity systems in Chapter 5.
The idea is to replace the non-Lipschitzian complementarity characteristic by a Lipschitzian
characteristic and investigate the convergence of the sequence of trajectories produced by
approximating systems that have Lipschitzian characteristic as the Lipschitzian character-
istic tends to the non-Lipschitzian complementarity characteristic. We will present suffi-.
cient conditions for the convergence of approximating trajectories to the trajectories of the
actual system. The chapter will be closed by a discussion on more general approximations.

In Chapter 6 we will show that a time-stepping method, namely the backward Euler
method, is consistent (in the sense that the approximations generated by the method
converge to the actual solution of the original system in a suitable sense) for LPCS. As a
side result, it will be proven that the solutions depend on the initial data continuously for
that class of systems.

By employing the general framework presented in the previous chapter, we will inves-
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tigate the consistency of the backward Euler method for relay systems in Chapter 7. This
chapter will be followed by the conclusions in Chapter 8.

1.1.2 Origins of the chapters

Chapter 2 is mainly based on [15], which has been presented at the 14th International
Symposium of Mathematical Theory of Networks and Systems in Perpignan (France), with
slight changes. The only addition is Theorem 2.3.4 which provides a necessary condition
for well-posedness of the systems under consideration.

The material of Chapter 3 is a cocktail of [10,13,34,36]. Indeed, the results on the
existence and uniqueness of solutions to LPCS were presented, for the first time, at the
38th IEEE Conference on Decision and Control in Phoenix (USA) (see [13] where one can
also find the characterization of regular initial states). The notion of passifiability by pole
shifting (PPS) has been introduced in [12] which has been presented at the 39th IEEE
Conference on Decision and Control in Sydney (Australia). The necessary and sufficient
conditions for PPS property are again due to [12]. The results on Zeno behavior can be
found in [18]. Section 3.6 is based on [10] which is an improved version of the paper
[34] that has been presented at the 4th International Conference on Automation of Mixed
Processes: Hybrid Dynamic Systems in Dortmund (Germany). _

Chapter 4 is basically based on [11] which is an outgrowth of the paper [46]. An early
attempt, with weaker results, in this direction was presented at the European Control
Conference’99 in Karlsruhe (Germany)(see [17]).

Chapter 5 is an extended version of the paper [12].

The report [16], after a minor revision, has been included as Chapter 6. It has already
been submitted to IEEE Transactions on Circuits and Systems. For a less technical (with-
out proofs) exposition, we refer to [14] which has been presented at the 4th International
Conference on Automation of Mixed Processes: Hybrid Dynamic Systems in Dortmund
(Germany).

The paper [35], which was presented at the 39th IEEE Conference on Decision and
Control in Sydney (Australia), has been appended as Chapter 7 after including the proofs.

1.2 Preliminaries

1.2.1 Notation

Every text that contains a bit of mathematics, like this thesis, is written in two languages.
One natural language, for instance English herein, is accompanied by the language of
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mathematical notations. In Mathesis Biceps vetus et nova (1670), Johann Caramuel®
writes 102 = 857 where the sign ‘=" is employed as the separatrix in decimal fractions.
Although such severe complications are very unlikely to arise, we devote this subsection to

the second language: mathematical notations.

Sets

The symbols R, R, R, ., R(s) and C denote the sets of real numbers, nonnegative real
numbers, positive real numbers, real coefficient rational functions and complex numbers,
respectively. For a given integer n, we write 7 for the set {1,2,...,n}. Let X be a set.
The notations X™*™ where n and m are integers denote the sets of n-tuples and n x m
matrices of the elements of X. The set of subsets of X will be denoted by 2¥. We write
|X| for the number of elements of X.

Matrices

Let A € A™™ be a matrix of the elements of the set X. We write A;; for the (7, )th
element of A. The transpose of A is denoted by AT. For J C 71, and K C 71, Ak denotes
the submatrix {A4;;}jeskex. If J =7 (K = m), we also write A, (As.). In order to
avoid bulky notation, we use A}, and A7} instead of (A;x)" and (A k)"

Given two matrices A € X™*™ and B € X™*™ the matrix obtained by stacking A over

, respectively.

B is denoted by col(A, B). The diagonal matrix with the diagonal element ay, ay, ..., a, is
denoted by diag(a,, as, - .., a,).

A rational matrix A(s) € R"™(s) is said to be proper if lim,_,, A(s) is finite. If
lim,_, A(s) = 0 it is said to be strictly proper. A square rational matrix A(s) € R"*™(s)
is called biproper if it is proper, invertible as a rational matrix and its inverse is also proper.

Mappings

Given a mapping f : U — V, we denote the image of f by im f := {v € V | v =
f(u) for some u € U} and the kernel of A by ker f := {u €U | f(u) = 0}. f|w will denote
the restriction of f to W C U.

Function spaces
The notation F(U, V) stands for the functions defined from U to V. When U C R, we
define the reverse operator revy o : F([t', t"], V) = F([t',t"],V) by

(revippv)(t) = v(t' +t" - t).

3Quoted from F. Cajori, A History of Mathematical Notations, Dover Pub. Inc., New York, 1993.
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The most often utilized function space will be the space of Bohl functions. A function
f R, — R is called Bohl function if it has a rational Laplace transform. Every Bohl
function is of the form He!G for some matrices F € R**", G € R**! and H € R'*", The
set of all Bohl functions will be denoted by B. As one can expect from their definition,
Bohl functions are related to linear constant coefficient homogeneous differential equations
and hence linear (time-invariant) dynamical systems. In our treatment of piecewise linear
dynamical systems, piecewise Bohl functions play a similar role to the one is played in
the study of linear systems by Bohl functions. A function f : R, — R is said to be a
piecewise Bohl function if for each t € R, there exist ¢ > 0 and a Bohl function g such
that f|(t+e) = 9ljo,- The set of all such functions is denoted by PB. Note that PB is not
closed under time reversal. Since Bohl functions are real-analytic, the corresponding Bohl
function to a piecewise Bohl function for a given (time instant) ¢ is uniquely determined
and the quantity max{e > 0 | f|i14¢) = gljo,)} is well-defined. For convenience, we define
a:PB" xR, — B" as
a(f,it)=g

and f:PB" xR, -+ R, U{oco} as
B(f,t) = max{e > 0| flit+e) = 9lj0,00}

where the Bohl function g is such that f|j; 41, = gljo,,) for some p > 0. The set of bounded
piecewise Bohl functions, denoted by PBB, consists of piecewise Bohl functions that are
bounded on [0, 7] for each T > 0.

Another class of functions that appears later is the space of one-variable real-valued
(locally) square integrable functions. In the standard way, we say a Lebesgue measurable
function f : @ — R" is square integrable if

/fT(’I')f(T) dr < oo
Q

holds where 2 C R. This class will be denoted by L,(2,R*). It is well-known that
L,(2,R") is a Hilbert space with the inner product

(f,9) = / T (7)a(r) dr

where f, g € £5(€2,R"). The norm that induced by this inner product can be given by

171l = (£, )% = ( / fT(1)f(r)dr)2.
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A sequence {f,} C L2(Q2,R™) is said to converge (strongly) to f € Ly($2, R?) if
lim [|fo = £ =0,

and it is said to converge weakly to f € L,(Q,R") if
Jim (fn, 9) = (£, 9)

for all g € L£o(Q, R™).

Two particular subspaces of distributions will be of interest. We denote the set of dis-
tributions that are supported on a point {t} by D;. It is well-known from the distributional
theory (see e.g. [65, Theorem 24.6]) that v € D; is of the form

N
v= Z vi6®
=0

where N is a natural number, v is a real number for all i € N and 6% denotes the ith
derivative of the Dirac distribution & with the convention 6(®) = §. Later on, we restrict
our attention to rather special classes of distributions, more specifically direct sums of Dy,
and some function spaces. With an abuse of terminology, we say a distribution v is a Bohl
distribution if it is of the form v = v;np + vy where the impulsive part viy, € Dj and
the regular part v,., € B. The set of all such distributions is denoted by B;. Note that
B; = Dy @ B. The leading coefficient of the impulsive part of a Bohl distribution v is
defined by

0 if v =0,

lead (vimp) = o
' OV if Uiy = SO 06 with vV £ 0.

We say that a Bohl distribution v is initially nonnegative if
(lead(vimp) > 0) or (lead(vimp) = 0 and ve-(t) > 0 for all ¢ € [0, €) for some € > 0).
It is known ( [37, Lemma 5.3|) that v is initially nonnegative if and only if 0(c) > 0 for all

sufficiently large o where 9(s) is its Laplace transform.

In parallel to the definition of piecewise Bohl distributions, we define the space £3([0, T,
R) consisting of distributions v = vim, + vy, where the impulsive part vim, € Dy and
Ureg (] LQ([O, T], R)
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Miscellaneous
The notations {z,} and [y;]5_, denotes the sequence z,, 5, ... and the ordered set of the
elements y;, s, . . . , Yk, respectively.

All inequalities involving vectors must be understood componentwise. For two vectors
z, y € R", max(z,y) and min(z,y) denote the componentwise maximum and minimum,
respectively. The nonnegative and nonpositive parts of a vector x are denoted by z* and
z~, i.e.,, z7 = max(z,0) and z= = — min(z,0). Note that z+ > 0, z~ > 0and z* L z~.
We say that a proposition P(«) holds for all sufficiently small (large) o € R, if there exists
ap € R, > 0 such that P(a) holds for all 0 < a < ap (g < @).

1.2.2 Linear complementarity problem

We briefly recall the linear complementarity problem (LCP) of mathematical programming.
For an extensive survey on the problem, the reader is referred to [23].

Problem 1.2.1 (LCP(q, M)) Given g € R™ and M € R™ ™ find z € R™ such that

220 (1.1a)
qg+Mz>0 (1.1b)
z'(g+ Mz) =0. (1.1¢)

We say that z is feasible if it satisfies (1.1a)-(1.1b). Similarly, we say z solves LCP(q, M)
if it satisfies (1.1). The set of all solutions of LCP(g, M) will be denoted by SOL(q, M).
In general, SOL(g, M) may be the empty set. The notation K (M) denotes the set {q |
SOL(q, M) # 0}. It is easy to see that R7 C K (M) for all M € R™*™. The following
fact on the closedness of K (M) will be used several times in the sequel.

Fact 1.2.2 The set K (M) (possibly empty) is closed for any matrix M.

The LCP leads to the study of a substantial number of matrix classes that relate to several
aspects of the problem such as feasibility, solvability, unique solvability. The following ones
will be of particular interest for our purposes.

Definition 1.2.3 A matrix M € R™*™ is called
e nondegenerate if all its principal matrices are nonzero.
e a P-matriz if all its principal minors are positive.

e a Py-matriz if all its principal minors are nonnegative.
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e positive (nonnegative) definite if 2" Mz > 0 (> 0) for all 0 # z € R™.
e copositive if £ Mz > 0 for all z > 0.

e copositive-plus if it is copositive and the following implication holds:

¢'Mz=0and z>0= (M+M)z=0.

For a given nonempty set S, we say that the set {v | v"w > 0 for all w € S} is the dual
cone of S. It is denoted by S*. The next lemma states some of the standard results on the
matrix classes defined above.

Lemma 1.2.4 Let M € R™™ be given. The following statements hold.

1. [23, Theorem 3.3.7] LCP(q, M) has a unique solution for all ¢ € R™ if and only if

M is a P-matriz.
2. [23, Corollary 3.8.10] If M is copositive-plus then K(M) = (SOL(0, M))*.

Note that the last implication holds in particular when M is nonnegative definite.

1.2.3 Solution concepts

It is already well-known that the selection of universum, the space where all possible
solutions live, is of great importance for the existence and uniqueness issues. We aim
to illustrate this fact by means of an example in this subsection. Consider the following
example due to Filippov [28, p. 116]

T) =SgNn T — 2sgn T,

To = 2Sgn x1 + SgN I

where sgn z is the set-valued function given by

-1 ita <
sgnz = ¢ [-1,1] ifz=0.
1 itz >0

Its time-reversed version can be given by

Y1 = —sgny; + 2sgny,
Yo = —2sgny; — sgnys,
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Solutions of the time-reversed version are spiraling towards the origin, which is an equi-

2

Figure 1.1: Trajectory with initial state (2,2)7.

librium. Since 4 (|yy(t)| + |y2(t)|) = —2 when y(t) # 0 along trajectories z of the sys-
tem, solutions reach the origin in finite time (see Figure 1.1 for a trajectory). Therefore,
time-reversals of all these trajectories qualify as a solution (starting from the origin) to
the original system in the sense of Definition 3.3.8 below for which the universum is £-
functions that are defined on a bounded interval. However, if one requires solutions to
be right continuous (as in Definition 3.3.1 below) then there is a unique solution, namely
the zero solution. As this example shows, a system might be well-posed for one solution
concept but not for another one.
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Part 1

Well-posedness



Chapter 2

Well-posedness of Linear
Complementarity Systems with Inputs:

Low Index Case

2.1 Introduction

The appropriateness of a proposed mathematical model for a given physical system can be
tested in various ways. A very basic test is the following: if the physical system that is
being modeled is deterministic in the sense that it shows identical behavior under identical
circumstances, then the mathematical model should have the same property. Model validity
would be put into serious doubt if it would turn out that the equations of the mathematical
model allow multiple solutions for some initial data. With any model formulation for a
deterministic physical system it is therefore important to establish well-posedness of the
model, i.e., existence and uniqueness of solutions for feasible initial conditions.

This chapter considers the well-posedness of a class of linear complementarity systems,
i.e., linear systems coupled to complementarity conditions. The most typical examples of
these systems are linear electrical networks with ideal diodes. In the engineering literature,
mathematical models that make use of the ideal diode characteristic are routinely used for
such networks. Remarkably enough, it seems that the well-posedness of such models has
not been rigorously established before. Although general results from the theory of ordinary
differential equations may be used to establish well-posedness of network models containing
elements with Lipschitzian characteristics (see for instance [12]) or in special cases even
for non-Lipschitzian characteristics (see for instance [2,7]), such results do not cover the
ideal diode characteristic since it cannot be reformulated as a current or voltage-controlled
resistor. Neither does it seem possible to derive general well-posedness results for network
models with ideal diodes from the theory of differential equations with discontinuous right
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hand sides [3], which in network terminology is concerned with models involving ideal relay
elements. The theory that we develop below will be based on the theory of complementarity
systems that has been worked out in a series of recent papers [4-6,9,10]; see also [11].

It is easy to come up with examples of mathematical models involving ideal diode
characteristics (which are equivalent to complementarity conditions) that are not well-
posed; see for instance [9]. Therefore, some restrictions need to be imposed. We will study
this class of models in the more general setting of complementarity conditions coupled to
linear dynamical systems with a special zero structure at infinity. Some might say that
it is “intuitively clear” that such network models are well-posed; nevertheless, ideal diodes
are only approximations to real diodes and so the fact that actual networks with diodes
behave deterministically does not make it evident that the corresponding mathematical
models with idealized elements have unique solutions. Rather, as argued above, one should
consider well-posedness as a test of model validity.

The chapter is organized as follows. In Section 2 we first of all develop a precise notion of
solution for linear complementarity systems. Then in Section 3 we briefly discuss the linear
complementarity problem (LCP) of mathematical programming that plays an important
role in our development. The main results follow in Section 4. The chapter will be closed
by conclusions in Section 5 and proofs in Section 6.

2.2 Linear Complementarity Systems

As interconnection of a continuous, time-invariant, linear system and complementarity
conditions, a linear complementarity system can be given by

i(t) = Az(t) + Bu(t) + Ew(t) (2.1a)
y(t) = Cz(t) + Du(t) (2.1b)
0 <u(t) Ly) >0 (2-1c)

where z(t) € R, u(t) € R™, y(t) € R™, w(t) € RP,and A, B, C, D and F are matrices with
appropriate sizes. We denote the above system by LCS(A, B,C, D, E). For the previous
study on this class of systems, the reader is referred to [4-6,9,10]. From a hybrid system
point of view, one can distinguish 2™ modes depending on complementarity conditions
(2.1c). Every index set K C 7 determines one of these modes by imposing the constraints
yk = 0 and um\x = 0. Associated to each mode K, there are a linear dynamics given by

z(t) = Az(t) + Bu(t) + Ew(t)
y(t) = Cz(t) + Du(t)
yK(t) = 0, um\[((t) = 0
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and a set called invariants given by
ym\k (t) > 0, uk(t) > 0. (2.2)

Starting at a given mode, the system trajectories must obey the dynamics corresponding
to this mode as long as they belong to the invariant set, i.e., satisfy the inequalities (2.2).
Time instants at which the state variables tend to leave the invariant set are called event
times. Whenever an event occurs, another mode will become active depending on the
state variables z and inputs w at the event time. Before giving a precise definition of the
solution concept, we illustrate the above features of the systems under consideration in the

Figure 2.1: RLC circuit with ideal diodes

following example.

D,

10007
™~

Example 2.2.1 Consider the linear RLC circuit (with R = 1 Ohm, L = 1 Henry and
C = 1 Farad) coupled to two ideal diodes as shown in Figure 2.1. By choosing the voltage
across the capacitor and the current through the inductor as the state variables and by
taking into account the ideal diode characteristic depicted in Figure 2.2, the governing
equations of the network can be given by

C4ve =iy —ip, +ip, (2.3a)
L&i, = —vc — Ri — Rip, (2.3b)
Up, = U¢ (2.3¢)

vp, = —v¢ — Rir — Rip, (2.3d)
0<ip, L—vp, >0 (2.3¢)
0< ip, L —tp, = 0: (2.3f)

Depending on whether the diodes are blocking or conducting, the system has 4 modes.
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ip

=UD

Figure 2.2: Ideal diode characteristic

e Mode BB: In this mode, both diodes are blocking, i.e., ip, = ip, = 0. Hence, the
conditions (2.3e)-(2.3f) yield

0=ip, —uvp, 20

0:7;1)2 _UD220~

The activities, or circuit topology (see Figure 2.3 (a)) as it is called in network theory
terminology, can be given by

d -
CEUC =1L

L%iL = —V¢c — RiL.

The corresponding invariants (the conditions that ensure the diodes to keep blocking
state) are

—vp, = —vc > 0

—Up, = V¢ + Rip > 0.

e Mode BC: The first diode is blocking while the second one is conducting, i.e., ip, =
vp, = 0 in this mode. Hence, the conditions (2.3e)-(2.3f) yield

0:1:1)1 —”UD1>O

0 = iD2 Up, = 0.
The activities can be given by

"d . .
CEUC =15 +ip,
L%il_ = —V¢c — RiL = RiD2

Up, = V¢ + RZL + RiDz =i
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The corresponding circuit topology is shown in Figure 2.3 (b). The invariants, as
being the conditions that ensure the first diode to keep blocking state and the second
conducting state, are

—vp, = —vc >0

ip, = —xvc —ig > 0.

e Mode CB: The first diode is conducting and the second one is blocking, i.e., Up, =
ip, = 0 in this mode. Hence, the conditions (2.3e)-(2.3f) yield

OSiD, ’UDIZO

0= iD2 — Up, Z 0.
The activities can be given by
C%Uc = iL = iDl

L%Zj = —vc — RiL

Up; ='0g= 0.
The corresponding circuit topology is shown in Figure 2.3 (c). The invariants are

ip, =iy >0

SWps; = R’LL Z 0.

e Mode CC: In this mode both diodes are conducting, i.e., vp, = vp, = 0. Hence, the
conditions (2.3e)-(2.3f) yield

OSiDl vD,ZO

0 S iD2 Up, = 0.

The corresponding circuit topology is depicted in Figure 2.3 (d) and the activities of
the mode can be given by

CEUC =1L —1p, + 1D,
L%lL = —=Uc — RZL = R’l‘D2
Up, =g = 0

Uhy = =g = RZL = RiD2 =0.
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The invariants can be obtained as

li =10
ip, = —tr > 0.
R R
AN AV
0= iL C=— %L
(a) Mode BB (b) Mode BC
R R

| b o= h

(c) Mode CB (d) Mode CC

Figure 2.3: Circuit topologies for the modes

We investigate the behaviour of the network for the initial condition (vc(0),.(0)) =
(—e, 1). Note that the first diode must be blocking initially since vp, (0) = vc(0) # 0 and
the second one must be conducting initially since v (0) + 4,(0) < 0. Then, the mode BC
is active at the beginning. It can be checked that the dynamics of this mode yields
1-t

ve(t) = —e
1w () =1.

The first inequality of those describing the invariants of this mode holds for all ¢ while the
second one holds only if ¢ € [0,1]. Therefore, ¢; = 1 is the first event time. At the event
time, the state of the system is given by vc(1) = —1 and i,(1) = 1. In the next mode,
the first diode still must be blocking initially since vp, (1) = ve(1) # 0 but the second
one cannot be conducting anymore. Hence, the next mode in which the system will evolve
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should be the mode BB. It can be computed that the dynamics of this mode yields

ve(t) = —¢ 2 Vfcos( Bt - 1)) — Lsin(3E(t - 1))

ir(t) = e—a<‘-”[cos(§(t — 1)) + Lsin(L(t - 1))]
for t > 1. It can be verified that ve(t) +i,(t) > 0 and ve(t) < Oforall1 <t <1+ 23 ‘/—
and also that ve(1 + 2f 7) = 0 and %2(1 + 2Tﬁ/g'/r) > 0. Consequently, the first dlode
cannot be blocking anymore and this means that the second event takes place at event

time t; =1+ %ﬁw. At the event time, the state of the system can be given by vc(to) = 0

-V3
and i (t2) = e 9 ". The next mode should be the mode CB and its dynamics result in

for t > t;. It can be easily verified that invariants of this mode are satisfied for all ¢ > ¢;,
i.e., there will be no mode change anymore. The trajectories are depicted in Figure 2.4.

2 T T T T T T T

ol S — e — e S e e

=ik «= @ ERRR T

2 i =

Figure 2.4: Trajectories for the initial state (—e, 1).

Later on, we will employ ‘hybrid system’ thinking to construct solutions to LCSs. How-
ever, the concept of solution will be clarified first. In what follows, we propose a solution
notion by keeping in mind the hybrid features of the system. Indeed, the ‘universum’ we
consider, namely the space of piecewise Bohl functions, is asymmetric in time in the sense
that the time reverse of a piecewise Bohl function is not piecewise Bohl in general.
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Definition 2.2.2 A triple (u, z,y) € PB™"*™ is a solution on [0, T) of LCS(A, B,C, D, E)
for the input w € PBBP and the initial state z, if the following conditions hold

z(t) = zp + /t[AI(s) + Bu(s) + Ew(s)] ds

y(t) = Cz(t) + Du(t)
0 <wu(t) Ly(t)>0.

for all ¢ € [0, T7.

Notice that z-trajectory is continuous by definition. In the sequel, we will derive suf-
ficient conditions under which linear complementarity systems have unique solutions. Be-
fore doing this, we will review some facts from complementarity theory in order to be
self-contained.

2.3 Main Results

In this section, we present sufficient conditions for well-posedness, in the sense of existence
and uniqueness of solutions, of linear complementarity systems. One of our main assump-
tions will be on the indez of the underlying system. The following definitions will make
clear what is meant by the index of a linear system.

Definition 2.3.1 A rational matrix H(s) € R'*!(s) is said to be of indez k if it is invertible
as a rational matrix and s~ H~!(s) is proper.

Definition 2.3.2 A rational matrix H(s) € R™™!(s) is said to be totally of indez k if all
its principal submatrices are of index k.

Now, we can state the main result concerning the well-posedness of the linear comple-
mentarity systems.

Theorem 2.3.3 Consider a matriz quintuple (A, B,C, D, E). Suppose that G(s) = D +
C(sI — A)7'B is totally of index 1 and G(o) is a P-matriz for all sufficiently large o.
Then, the following two statements are equivalent.

1. For each w € PBB?, there exists a unique solution on [0,00) of LCS(A, B,C, D, E)
for the input w and the initial state x.

2. Cry € K(D)
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Note that G(s) is totally of index 1 if and only if D + CBs~! is. Since det() is
a continuous function, if D + CBs™! is of index 1 then we have sign(det(G,;(0))) =
sign(det(Dy; + CjeBoyo~1)) for all sufficiently large o. This means that the P-matrix

~! is a P-matrix for all sufficiently

assumption on the transfer matrix holds if D + CBo
large 0. In general, there are no explicit characterizations of the set K (D). However, if D
is copositive-plus the set K(D) can be characterized explicitly as stated in Lemma 1.2.4
item 2. Note that all nonnegative definite matrices are copositive-plus.

The above theorem provides sufficient conditions for well-posedness. In the next theo-

rem we will present a necessary condition.

Theorem 2.3.4 Consider a matriz quintuple (A, B,C, D, E). Suppose that D is nonde-
generate and C' is of full row rank. If D is not a Py-matriz then for some o € R* and
T > 0, there ezist at least two different solutions on [0,T] of LCS(A, B,C, D, E) for the
zero input and the initial state xy.

2.4 Conclusions

We showed that a class of linear complementarity systems including electrical networks
with diodes as typical examples passes the validity test of well-posedness. Using comple-
mentarity theory, we were able to prove the existence and uniqueness of solution trajectories
under a condition on the zero structure of the underlying state space description. As an
additional result we gave an explicit characterization of the regular states, i.e., the ini-
tial states for which the linear complementarity systems admit solutions in the sense of
Definition 2.2.2.

2.5 Proofs

This section is devoted to the proofs of the presented results.

2.5.1 Lipschitzian properties of LCP

We begin with stating some results on Lipschitzian properties of LCP. For our purposes,
it is important to relate the index of the system and Lipschitzian properties of a series
of LCPs involving the transfer function of the system. First, we present a rather general
result on locally Lipschitz continuous functions.
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Lemma 2.5.1 Let the sets @' C R" fori =1,2,...,p be such that Q' is closed and convez,
and

p "
bo=xr.

Assume that f : R* — R™ is a continuous function which is Lipschitz on each set Q' with
a Lipschitz constant o*. Then, f is Lipschitz continuous with the Lipschitz constant max o'

1

Proof: Let z, and z, € R*. Consider the line segment [z,, 2] in R*. Since the number of
Q's is finite and they are all closed convex sets, one can find finite number of points in R,
say x, =: z',2%, ..., 2" := z, such that for each i € [ —1 the line segment [z%, 2*1] C QU

for some j;. Note that due to the continuity of f we have

I1£=") = £ < 1Y) = F@) + 1F (@) = F@) +--- + [1£(a1) = F)]
<ol||zt — 2| + a®||2? — 23| + - + o |2 - |

< (maxa)(|lz! — 2®|| + [l2? — 2| + - + [la"" — &)

Since all z's are on the line segment [', z'], it is obvious that 3"\_} [|z* — z**!|| = ||z! — 2.
Consequently, we get || f(z') — f(z')|| < (maxa?)||z! — 2!]|. [ ]
1

In the sequel, for a given nondegenerate matrix M € R**" d(M) is defined as follows:
1 — -1
M) = (e Gl

It is known (see [1, Theorem 7.3.10]) that if LCP(g, M) is uniquely solvable for each
g then the mapping ¢ — z where z is the unique solution of LCP(gq, M) is Lipschitz
continuous. However, to compute the Lipschitz constant given in [1] is not so easy. By
making use of above lemma, we will show that the quantity d(M) can be taken as Lipschitz
constant for the LCP (g, M) whenever M is a P-matrix.

Lemma 2.5.2 Assume that M € R"™" is a P-matriz. Let z' be the unique solution of
LCP(q¢', M) for i =1,2. Then, we have

2" = 2| < d(M)llg" — ¢*||-

Proof: Since M is a P-matrix, Lemma 1.2.4 item 1 implies that LCP(q, M) is uniquely
solvable for all . Consider the function ¢ — z where z is the unique solution of LCP(q, M).
For a given index set .J € 7, define the set Q’ as

QJ = {q € R | -—A\IJ_JI([.[ Z 0 and qn\J — ;"I(ﬁ\‘])‘]fu;‘]lq‘/ Z 0}
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i. Clearly, @’ is closed and convex for each J.

ii. Note that LCP(gq, M) is solvable for all ¢ € R, and if z is the unique solution of
LCP(¢q, M) and J = {j € | z; > 0} then ¢ € Q’. Thus, we have JLCJ_QJ =R".

iii. Note that if ¢ € @’ then z with z; = ~Mj /g, and zz\y = 0 is the (unique) solution
of LCP(q, M). Then, the function ¢ — 2 can be given by

z=Algifge 0’

where A}, = —Mj} and A%, =0 for JN K N L = ). Moreover, it is continuous due
to the uniqueness of the solution of the corresponding LCP and Lipschitz continuous
on Q7 with the constant || 47|

iv. Notice that ||A”|| = | Mj}|.

The facts i-iv enables us to get the required result by applying Lemma 2.5.1. |

2.5.2 Rational matrices with index 1

We will characterize the index of a rational matrix in terms of its power series expansion
around infinity in the following Lemma.

Lemma 2.5.3 Let H(s) € R*!(s) be given and let its power series ezpansion around
infinity be given by
His)=H"+ B 4.0,

Then, the following statement are equivalent.
1. H(s) is of indez 1.
2. H'+ H's! is of indez 1.
3. im H° @ H'(ker H°) = R'.
4. There exist matrices P € RP*! and Q € RE“PX! such that

PH®
QH'

P
Q

and

are both nonsingular and QH® = 0.
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Proof: We achieve the proof of this lemma in the following order.

1&x2
2=3
3=4
4=2

We denote the rational matrices H® + H's™! and H%s™2 + H3s™% + --- by Hj,y(s) and
Hhpigh(s), respectively.

1 = 2: Since H(s) is of index 1, it is invertible as a rational matrix. Thus, we have
[Hlow(s) + Hh,-gh(s)]H_l(s) =i, (2.4)

Since H(s) is of index 1, s72H~!(s) is strictly proper and so is Hpign(s)H~'(s). It follows
from (2.4) that

lim Hoy (s)H ™! (s) = I. (2.5)

§—00

Therefore, Hjp,(s)H '(s) is biproper. This means that Hj,,(s) is also invertible as a
rational matrix. On the other hand, (2.5) can be rewritten as

lim sH(s) s 'H'(s) = I. (2.6)

FeE low

Since H(s) is of index 1, lim, o, s 'H~!(s) is well-defined. Left multiplying (2.6) by

lim, o, s7'H1(5) results in

lim s H L (s) = lim s7'H™(s).

§—00 $—00

Clearly, this implies that s‘lH,_oL(s) is proper and hence H,,(s) is of index 1.
2 = 1: Note that
H(s) = Hiow(s)[I + Hy,p () Hpign(s)]- (2.7)

Since Hoy(s) is of index 1, s72H,,! (s) is strictly proper and so is Hy,. () Hpign(s). There-

fore, the second factor on the right hand side of (2.7) is biproper. Consequently, H(s) is
of index 1.
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2 = 3: Since H® + H's™" is of index 1, the power series expansion of its inverse can

be given by
(B + H's™ ) ' = N-lg NO + Nls7 T 4o, (2.8)
Note that (2.8) gives
H°N"'=0 (2.9)
N'H°=0 (2.10)
N'H' 4+ N°H® =], (2.11)

i. Suppose that u € im H° N H'(ker H®). Then, we have

u= H% (2.12)
u= H'w (2.13)
0= H (2.14)

for some v and w. It follows that
(HO + H's™V)w P2 511y @29 51, O 10,
Then, (2.8) yields

w=(N"'s+ N+ N's! ... )Hos~t %% NOgOue-1 4 ...

Since the right hand side of the above equation is strictly proper, w is zero and so is
u due to (2.13). Hence, im H° N H'(ker H°) = {0}.

ii. We have

a. (2.9) = im N~ C ker H?,

b. (211) = (veker H* = v€imN-!) = ker H° C im N~

Obviously, (a) and (b) imply that ker H® = im N~'. Thus, one gets H'(ker H®) =
im H'N~'. Suppose that u € (im H° + H'(ker H°))*, i.e.,

o H =0 (2.15)
u"H'N!' = 0. (2.16)
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Then, we get

o By THO 4+ H's )N 15+ NO 4+ Nls~l 4 - )
@1 W THIS (N5 + N0+ N's~1 4 ..)
ey w HNOs ' .
The fact that the right hand side of the above equation is strictly proper implies that
u is zero. Hence, im H° + H'(ker H%) = R'.
It follows from (i) and (ii) that im H° @ H'(ker H°) = R'.

3 = 4: Let Q € R¥! be such that ker Q = imH". Take any P € R!/~9*! such that
col(P, Q) is nonsingular. Suppose that

o] =0 (27)

for some z € R!. Since ker Q@ = im H®, we have col(P, Q)H’z = 0 from (2.17). This implies
that, H°z =0, i.e., z € ker H. Hence, H'z € H'(ker H°). On the other hand, (2.17) also
yields H'z € ker @ = im H°. Therefore, H'z € imH® N H'(ker H°). It follows from the
hypothesis that H'z = 0. Note that

dim(imH®) + dim(H" (ker H°)) = | = dim(imH°) + dim(ker H).

Thus, we have dim(H'(ker H°)) = dim(ker H®). In other words, ker(H"|yer o) = {0}. It
follows from H%z = H'z = 0 that z = 0 and hence col(PH®, QH") is nonsingular.

4 = 2: Note that

o, g [P o P 0 i P - PH® (P’
H°+s'H _(Q) (Q) (H +s H)—(Q) [( i >+s (QH‘)]
P\ (1 o)\ .[pPE\ _ (PH
= (Q) (0 s“]) [<QH‘) +s ( " )] (2.18)

It follows from the hypothesis that the matrix col(PH?, QH") is nonsingular that H° +
s~ 'H' is of index 1. &)

In particular, the constant d(-) of index 1 rational matrices will be of interest.
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Lemma 2.5.4 Let H(s) € R™*!(s) be totally of index 1. Then, there exists an a > 0 such
that d(H (o)) < ao for all sufficiently large o.

Proof: Note that H,;(s) is of index 1 for each index set J C m by the definition of total
index. Hence, s™'H};(s) is proper for each J C m. Therefore, for each J C 7 there exists
ay > 0 such that

1H7; (o)l < ayo

for all sufficiently large 0. As a consequence, we have d(H(c)) < ao for all sufficiently
large o where a = maxa,. |
Cm

2.5.3 Towards to the proof of Theorem 2.3.3

In this subsection, we make necessary preparations for the Proof of Theorem 2.3.3. We
begin with defining the concept of initial solution. We say that a continuous function
v: R, — R is initially nonnegative if there exists € > 0 such that v(t) > 0 for all ¢t € [0,¢).

Definition 2.5.5 A triple (u,z,y) € B™™*™ is an initial solution of LCS(A, B,C, D, E)
for the input w € B and the initial state z; if there exists an index set K C 7 such that

& = Az + Bu+ Ew, z(0) = 2
y=Cz+ Du
yk =0
Um\K = 0
holds, and u and y are initially nonnegative.

Next, we recall the so-called the Rational Complementarity Problem (see [4] for a detailed
discussion in the case with no external inputs).

Problem 2.5.6 (RCP(z,(s), A, B,C,D, FE)) Givenz, € R* w(s) € RP(s), and (A, B, C,
D,E) with A € R"" B € R"”™, C € R™", D € R"™™ and E € R**? find a(s) € R™(s)
such that

1. a(s) L g(s) for all s € C.
2. 4(o) > 0 and g(o) > 0 for all sufficiently large o € R.

where

§(s) = C(sI — A)~'zo + C(sI — A)~'Eui(s) + D + C(sI — A)~'BJi(s).
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For brevity of notation, we denote RCP(z, w(s), A, B,C, D, E) by RCP(zg,w(s)) if (A, B,
C, D, E) is clear from the context. There is one-to-one correspondence between the strictly
proper solutions of RCP and initial solutions of LCS as described in the following lemma.

Lemma 2.5.7 Consider a given matriz quintuple (A, B,C, D, E). The following state-
ments hold.

1. Let u(s) be a strictly proper solution of RCP(xo,w(s)) for some xqy and strictly proper
w(s). Define (s) and y(s) as follows

#(s) = (sI — A)'mo + (sI — A) ' Bii(s) + (s — A)"'Ei(s),
9(s) = Cz(s) + Du(s).
Then, the inverse Laplace transform (u, z,y) of (a(s), Z(s), 4(s)) is an initial solution

of LCS(A, B,C, D, E) for the input w and the initial state zo, where w is the inverse
Laplace transform of w(s).

2. Let (u,z,y) be an initial solution of LCS(A, B,C, D, E) for the input w and the initial
state zy and let 4(s) be the Laplace transform of u. Then, 0(s) solves RCP(xq,w(s))
where W(s) is the Laplace transform of w.

Proof: Evident from the proof of [5, Theorem 5.3]. ]

The following lemma will play a key role in the proof of Theorem 2.3.3.

Lemma 2.5.8 Consider a matriz quintuple (A, B,C, D, E). Suppose that G(s) := D +
C(sI—A)7'B is totally of indez 1 and G (o) is a P-matriz for all sufficiently large . Then
the following statements hold.

1. RCP(zg,(s)) has a unique solution for all zy € R* and for all w(s) € RP(s).

2. For a given strictly proper 1(s), the unique solution of RCP(xq,w(s)) is strictly
proper if and only if Czy € K(D).

Proof:
1: Since D + C (oI — A)"'B is a P-matrix for all sufficiently large o, the statement
follows from [4, Theorem 4.1] and Lemma 1.2.4 item 1.

2: Let u(s) be the unique solution of RCP(z,w(s)). For the ‘only if’ part, suppose
that 4(s) is strictly proper. Let the power series expansion around infinity of 4(s) and
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w(s) be of the form

A(s) = ups™' +ups™+ ... (2.19a)
W(s) = wis™ +wesTE 4. ... (2.19b)

Define
9(s) = C(sI — A)'zo + C(sI — A)"'Eir(s) + [D + C(sI — A)~'Bla(s).
By substituting (2.19) into the above equation, we get
9(8) = (Czo + Duy)s™ + (CAzy + CEw; + CBuy)s™ 2+ ... .

It follows from the formulation of RCP (g, w(s)) that u; > 0, Cxo+Du; > 0 and u] (Czo+
Du,;) = 0. Consequently, LCP(Czg, D) is solvable. In other words, Czy € K (D). To show
the ‘if” part, suppose that Czo € K(D). Let @ be a solution of LCP(Czo, D). It is clear
that o~'@ solves LCP(0~'Cxg, D) for all ¢ > 0. Then, it also solves LCP(0~'Czy —
o7 'C(cl — A)~'B1,G(0)). Lemma 2.5.2 together with Lemma 2.5.4 gives

la(o) - o™"a|l < aol|C[(0] — A)™" — 07 ]z
+C(oI — A)'Ei(o) + o7 'C(al — A)~'Bal| (2.20)

for all sufficiently large 0. Note that for some 3 > 0 the final factor at the last term of
the right hand side is less than 302 for all sufficiently large o. Therefore, it follows from
(2.20) that ||i(c) — o~ 'al| < aBo! for all sufficiently large o. This implies that a(s) is
strictly proper. |

As a final ingredient of the proof of Theorem 2.3.3, we need the following lemma on
the elimination of algebraic constraints.

Lemma 2.5.9 Consider a given matriz quintuple (A, B,C, D, E). Suppose that G(s) =
D+ C(sI — A)"'B is totally of index 1. For all K C m there exist matrices FX, GX, H¥
and J¥ such that if (w,u,z,y) € F(R, RPH™+m) satisfies

z(t) = Az(t) + Bu(t) + Ew(t)
y(t) = Cz(t) + Du(t)
yk(t) =0
umk(t) =0
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for allt € (t',t") then they also satisfy

Proof: Clearly, the triple (u,z,y) satisfies

T = Az + B.gug + Fw
0 =Ckex + Dggug. (221)

Since G(s) is totally of index 1, Lemma 2.5.3 implies that there exist matrices PX and Q¥
such that col(P¥, Q¥) and col(PX Dk k, QX Ck.B.x) are both nonsingular and QX Dgx =
0. By premultiplying (2.21) by the first matrix above, we get

PKCK..'L‘ -+ PKDKKUK =10 (222)
Q¥Cker =0. (2.23)

Differentiating (2.23) with respect to time, one gets
Q¥ CkeAz + Q¥CxuB.xux + QXCxoEw = 0. (2.24)
By combining (2.22) and (2.24), one can obtain

PKDKK
QKCKOBOK

PEC,
QKCKUA

Ug = — w. (2.25)

i 0
QKCKOE

Since the factor of ug is nonsingular, the matrices HX and J¥ can be found by solving
ug from (2.25). FX and G¥ can be given as FX = A+ BHX and GK = E+ BJX. 1

2.5.4 Proofs of Theorem 2.3.3 and Theorem 2.3.4

After all these preparations, we can finally prove Theorem 2.3.3.
Proof of Theorem 2.3.3:

2 = 1: Let the input w® € PBB? and the initial state £ with CZ € K (D) be given.
Define v* = a(w?®,0). Note that we have w¥|, = v¥|jo) Whenever ¢ < f(w?,0). It
follows from Lemma 2.5.8 items 1 and 2 that RCP(Z,9%(s)) has a unique strictly proper
solution where 9% (s) is the Laplace transform of v*. Hence, Lemma 2.5.7 item 1 implies
that there exists an initial solution (u%, z%,y*) of LCS(A, B, C, D, E) for the input v* and
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the initial state z. We define « : R* x PBB? — 2™ as «(z,w®) = K where the index set
K={kem|uf#0}, 7:R* x PBB? - R, as

7(Z,w®) = sup {T | T < B(w?,0) and col(ul(t),y5(t)) > 0 for all t € [0,T]},

and k : R* x PBB? — R" as

k(Z,w") = 2%(7(Z)).

Note that t — (u®, 2% y")(t + p) forms an initial solution of LCS(A, B,C, D, E) for the
input ¢ = w*(t 4+ p) and the initial state z%(p) whenever p € [0,7(Z,w%)). Hence, we
have Cz%(p) € K(D) for all p € [0, 7(Z, w?)) due to Lemma 2.5.7 item 2 and Lemma 2.5.8
item 2. It follows from Fact 1.2.2 (i.e., the closedness of the set K (D)) and continuity of
z® that k(z,w®) € K(D).

existence: For a given input w € PBBP, define z;,1 = k(z;,w?) for i = 0,1,... where
w' = w5 wi-1),00) if § # 0 and w® = w. From the previous discussion, we know that
Czy € K(D) implies that Cz; € K(D) for all i = 0,1,.... Hence, LCS(A, B,C,D, E)
admits a unique solution for the input a(w?, 0) and the initial state z; for all i = 0,1, ...
due to Lemma 2.5.8 item 2 and Lemma 2.5.7 item 1. Let (u®,x%,y%) denote the initial
solution of LCS(A, B,C, D, E) for the input a(w?,0) and the initial state z;. Define 7, =
S T(zk_1,wk ) for k> 0 and 7o = 0 and also define

(U., z, y)lITk,Tk+1] = (uzkv zxka yIk)l[O,r(I")]-

It can be verified that (u,z,y) is a solution on [0, T’) for some 7' > 0 of LCS(A, B,C, D, E)
for the input w and the initial state zo. Suppose that 7' < oo is such that there is no
solution on [0,7") whenever T" > T. Note that (w,u, z,y) satisfies

&(t) = FUew)g(t) 4 GHor (1)

for t € (74, Tks1) due to Lemma 2.5.9. Since z and t — eF“'GL for L C 7 is continuous
[0,7) and w € PBBP, they are all bounded on [0, T), i.e., there exists a y > 0 such that
lz(t)|| < p and [|eF"* G w(t)|| < p for all t € [0,7) and for all L C 7. Then, we have

T wk t (x ,wk
12(2) — Z(p)|| < [|leF ™Rz (p) — F(p) || + | / eF = Guae )y (s)ds||  (2.26)
P
< (l + VL(zk,wk))'uIt = pl

K
for all p,t € (7x,7x+1) since the function ¢ — e =l jg bounded, say by vg. Hence,

for p,t € [0,T), we get from (2.26) ||z(t) — z(p)| < u[rl?cag (1 + vk)]|t — p|. Tt follows
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that x is Lipschitz continuous on [0,7) and thus uniformly continuous. A standard result
in mathematical analysis [8, Exercise 4.13| implies that z* := limy, z(t) exists. Since
Cz(t) € K(D) for all t € [0,T) and z is continuous, Cz* € K(D) which means one can
extend the solution (u, z,y) beyond [0, T) by using the initial solution of LCS(A, B, C, D, E)
for the input wli7,.) and the initial state z*. This contradicts the definition of 7. Thus,
we can conclude that there exists a solution on [0, 00) of LCS(A, B, C, D, E) for the input
w and the initial state x.

uniqueness: Let (u',z',y") € PB™"™*™ for i = 1,2 denote two different solutions of
LCS(A, B,C, D, E) for the input w and the initial state zo. Clearly, (u!,z',y")—(u? 22, %)
is a piecewise Bohl function as well. Ifit is not identically zero then there should exists 7 > 0
and € > 0 such that ((u!,z',y') — (u% 22, 4?))|o) = 0 and ((u', 2", y") — (u?,2%,9?))(t) #0
for all t € (7,7 + ¢€) due to the definition of piecewise Bohl functions. For (u',z*,') and
7 > 0, one can find ¢; > 0 and Bohl functions (@,z",§') such that (u',z",y")|(r,r4e) =
(@', 7", 7")|j0,«) With i = 1,2 again by the definition of piecewise Bohl functions. It is easy
to see that (a*,7',7') forms two different initial solutions of LCS(A, B,C, D, E) for the
input B(w|(,«)) and the same initial state, z'(7) = z%(7). Then, Lemma 2.5.7 item 2
implies that Laplace transforms of @' are solutions of RCP(z!(7), B(w|(r))). However, it
is known from Lemma 2.5.8 item 1 that RCP(z'(7), B(w/|(r,))) has a unique solution since
G(0) is a P-matrix for all sufficiently large o. Therefore, @' = u?. It follows that &' = z?
and g = g2 Thus, we have ((u!,z',y") — (u?,2%,y?))(t) = 0 for all t € [7, 7+ min(e;, €2)).
This contradicts the definition of 7.

1 = 2: Let the unique solution of LCS(A, B,C, D, E) for the input w and the initial
state zo be (u,z,y). Since w € PBBP and (u, z,y) € PB™"*™  there exist €, €y, €, €, and
(w’7ul7 xl’y’) € Brm+n+m such that wl[O,(.,,.) = wll[O‘(.,,)» u|[0,e.,) = UII[O,(u)a Il[O‘e,) =3 IIl[O,cz)

and ylo,,) = ¥'lj0,e,)- Define € = min(ey, €y, €z, €y). Then, (w',u', ', y') satisfies

Z'(t) = zo + /t[Ar’(s) + Bu/(s) + Ew'(s)] ds (2.27a)
y'(t) = Cz'(t) + Du'(t) (2.27b)
0<u'(t) Ly(t) >0 (2.27¢)

for all t € [0,¢). Note that (2.27) implies that there exists an index set K such that

i’ = Az’ + Bu' + Ew', 1'(0) = 2o (2.28a)
y = Cz' + D (2.28b)
Y =0 upge=0 (2.28c¢)
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since Bohl functions are real-analytic. Note also that (2.27c) implies that both u’ and 3’
are initially nonnegative. This fact together with (2.28) reveals that (u/,z',1’) is an initial
solution of LCS(A, B,C, D, E) for the input w' and the initial state x,. It follows from
Lemma 2.5.7 item 2 and Lemma 2.5.8 item 2 that C'zy € K (D). |

Proof of Theorem 2.3.4: Since D is not a Py-matrix, there exists a principal submatrix
of D, say Dyy, which has a negative eigenvalue due to [1, Theorem 3.4.2(c)]. Let A < 0
denote such an eigenvalue of Dy and let v be such that vy is an eigenvector corresponding
this eigenvalue. Define the index sets J = {j € N | v; >0}, K = {k € N | vx < 0} and
L=m\ (JUK). Then, we have

Dys- Duxc) (vs) _ 5 (). (2.29)
Dg; Dgkk) \vk VK

Since C is of full row rank, the equation

Cre =Dy
CK. Ty = DKKUK (230)
Crs max(—DLJvJ,DLKUK)+e

is solvable for z; where max is meant for componentwise maximum and e denotes the
vector consisting of ones. Take (u!,z',y') and (u?, 22, y?) as

e e(A—B.JDJ_}CJ-)tl-O (2.31a)
uY = D705 up =0 up =0 (2.31b)
yh=0 Yk = Ckex' + Dggul yi = Crez' + Dy ju} (2.31c)
2% = e(A-Bex DxkCrelt g, (2.32a)
uh = =DiyCreiz® wWi=0 ul =0 (2.32b)
Y2 =0 V2 =Cha’ + Djrus e = Cper® =+ Dpxu. (2.32¢)

Note that (u, 7', y") satisfies
i' = Az’ + Bu' (2.33a)

y' =Cx' + Du (2.33b)
0<w Ly >0 (2.33c)
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for i = 1, 2. Furthermore, we have

«}(0) 2 —p3le,.st (0) P2 —D,}CJ.zo B 0 (2.34a)

vk (0) “29 Cxuz! (0) + Dicsuh (0) *2Y Crzo — Dk s D7LCaz0 (2.34b)
. DKKUK + Dy vy -y Avg >0

y1(0) 29 C1oz (0) + Dryub(0) 2 Cpazo — DysD31Cy (2.34¢)
(2:30) ClrLeto + Dpjuy (220) e (2.34d)

and

u2(0) “ZY _pL Oxaa?(0) *E¥ —DL Crezo B —u > 0 (2.35a)

2(0) 229 ¢,.2 (0 )+DJKuK(O) B2 02ty — Dyx DL Cicaty (2.35b)
P2 Doy — Dygog 2 gy >0

2(0) #29 01.22(0) + Dixu(0) “2) Cpuzo — Dix Dk Ciato (2.35¢)
D ot o= Bnge = & (2.35d)

It follows from (2.33), (2.34) and (2.35) that (u',z',y") for i = 1,2 is an initial solution of
LCS(A, B,C, D, E) with the zero input and the initial state zo. Note that 0 < u}(0) #
u%(0) = 0. Define T; = sup{7 | u'(t) > 0 and y'(t) > O for all t € [0, 7]} for i = 1,2. Take
T = min(Ty, Ty). |
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Chapter 3

Linear Passive Complementarity

Systems

3.1 Introduction

In this chapter, we will continue to discuss the well-posedness of linear complementarity
systems with an emphasis on the case when the underlying linear system is passive. In
this case, we call the overall system a linear passive complementarity system (LPCS). The
most typical example of LPCSs are the electrical networks consisting of linear resistors,
inductors, capacitors, gyrators, transformers (RLCGT) and ideal diodes.

In circuit theory, most of the effort that has been invested in considering existence
and uniqueness of solutions to electrical networks is focused on static (DC) models of
networks [1,2,5-7,13,14,16-19]. The studies of dynamic equivalent are rare. The only
papers known to the author dealing with existence and uniqueness of solutions of (dynamic)
RLC-networks with non-Lipschitzian elements are [4,15]. Since an ideal diode cannot be
formulated as a current- or voltage-controlled resistor, the obtained results in [4,15] do
not cover the networks containing diodes.

Not surprisingly, the selection of universum, the space where all possible solutions live,
plays a key role in the study of existence and uniqueness of solutions. The universum that
was proposed in the previous chapter has been motivated from a hybrid system point of
view. Generally speaking, the solution concepts that have been developed in this context
impose a direction on time. For instance, the whole idea of hybrid automaton modeling is
based on what we call forward thinking. More precisely, the system is presumed to evolve
onward by starting from a point in time. Although it might be reasonable from a computer
science viewpoint, there are no obvious reasons to treat time asymmetrically in modeling
of physical systems. Our goals in this chapter are
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e to propose a new solution concept in which the time will be treated symmetrically,

e to compare it with the previous one,

to establish the existence and uniqueness of solutions and to characterize the set of
regular initial states of LPCSs,

to investigate the so-called Zeno behavior of LPCS,

to extend the new solution concept in order to treat nonregular initial states as well.

The outline of the chapter is as follows. We begin with recalling passivity and the Kalman-
Yakubovich-Popov lemma in Section 3.2. In Section 3.3, three different solution concepts
will be proposed and their relations will be discussed. This will be followed by the intro-
duction of a new class of systems, namely the systems that are passifiable by pole shifting
in Section 3.4. After establishing necessary and sufficient conditions for passifiability by
pole shifting, all the existing results on linear passive complementarity systems will be
generalized to this new class of systems. Section 3.5 is devoted to a brief discussion on
the so-called Zeno behavior of linear complementarity systems. We start with considering
nonregular initial states of a linear passive complementarity system in Section 3.6. Af-
ter proposing a jump rule in terms of the stored energy of the passive system, we reach
a new (distributional) solution concept for linear passive complementary systems which
treats nonregular initial states as well. Then, a number of equivalent characterizations of
the jump rule will be in order. One of those characterizations will open the possibility to
motivate a jump rule for general linear (possibly nonpassive) complementarity systems and
this section will be completed by extending the distributional framework to these systems.
As usual the chapter will be closed by conclusions in Section 3.7 and proofs in Section 3.8.

3.2 Passive Systems

Ever since it was introduced in system theory by V. M. Popov, the notion of passivity
has played an important role in various contexts such as stability issues, adaptive control,
identification etc. Particularly, the interest in stability issues led to the theory of dissipative
systems [22] due to J. C. Willems. Before going further, we will quickly recall the notion
of passivity as it is defined in [22].

Consider a continuous-time, linear and time-invariant system given by
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where z(t) € R", u(t) € R™, y(t) € R™ and A, B, C, and D are matrices with appropriate
sizes. We denote (3.1) by £(A, B, C, D).

A triple (u,z,y) € Ly((to,t:), R™"™*™) is said to be an Ly-solution on (to,t1) of
Y(A, B,C, D) with the initial state zq if it satisfies (3.1a) in the sense of Carathéodory,
i.e., for almost all t € [, t,],

z(t) =z + /t[Az(s) + Bu(s)]ds (3.2)

to

and (3.1b) holds.

Definition 3.2.1 [22] The system (A, B,C, D) given by (3.1) is said to be passive
(dissipative with respect to the supply rate u"y) if there exists a function V : R* — R, (a
storage function), such that

V(a(ts)) + / T (by(t)dt > V(e(n) (3.3)

to

holds for all ¢y and ¢, with ¢, > #o, and for all L;-solutions (u,z,y) € La((to, t,), R™H+m)
of £(4, B,C, D).

Next, we quote a very well-known characterization of passivity.

Theorem 3.2.2 (22| Assume that (A, B,C) is minimal. Let G(s) = C(sI — A)"'B+ D
be the transfer matriz of (A, B,C, D). Then the following statements are equivalent:

1. £(A, B,C, D) is passive.
2. The matriz inequalities

ATK+KA KB-CT

K =K" >0 and <
"\ B Kk-c —(+D7)|=

have a solution.

3. G(s) is positive real, i.e., G(A) + GT(X) > 0 for all A € C with Re(\) > 0.

Moreover, V(z) = %zTKx defines a quadratic storage function if and only if K satisfies

the above system of linear matriz inequalities.

The equivalence of the statements 2 and 3 is sometimes called the positive real lemma or
the Kalman-Yakubovich-Popov lemma.
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3.3 Linear Passive Complementarity Systems

As the interconnection of a continuous, time-invariant, linear system and complementarity

conditions, a linear complementarity system can be given by

z(t) = Az(t) + Bu(t) (3.4a)
y(t) = Cz(t) + Du(t) (3.4b)
0<u(t) Ly(t)=0 (3.4¢)

where z(t) € R", u(t) € R™, y(t) € R™, and A, B, C and D are matrices with appropriate
sizes. We denote the above system by LCS(A, B, C, D).

In what follows we will define several solution concepts for LCSs and investigate their
relations. The first one is the zero-input version of Definition 2.2.2.

Definition 3.3.1 The triple (u,z,y) € PB™"*™ is a PB-solution on [0, T] of LCS(A, B
C, D) with the initial state z, if the following conditions hold for all ¢ € [0, T:

z(t) = 7o + /t[Az(s) + Bu(s)] ds
0

y(t) = Cx(t) + Du(t)
0 <u(t) Ly(t)=0.

We often make the following assumption on the system matrices.

Assumption 3.3.2 (A, B,C) is minimal and col(B, D + D) is of full column rank.

We define the set Qp = SOL(0, D) = {v | v > 0, Dv > 0 and v" Dv = 0} for a given matrix
D. It is known from the complementarity theory (see Lemma 1.2.4 item 2) that the dual
cone of this set Q}, coincides with K(D) if D is nonnegative definite. Then the following
lemma follows as a direct implication of Theorem 2.3.3.

Theorem 3.3.3 Consider a matriz quadruple (A, B,C, D) satisfying Assumption 3.3.2.
Suppose that ©(A, B, C, D) is passive. Then, there ezists a unique PB-solution on [0, c0)
of LCS(A, B,C, D) with the initial state o if and only if Czo € Q.

As explained in the previous chapter, one way of looking at linear complementarity systems
is to regard them as hybrid systems. A popular model for hybrid systems is the hybrid
automaton model which combines finite automata with continuous dynamics. Basically,
a hybrid automaton consists of a number of modes, dynamics associated to these modes
and mode transition rules. Starting from a mode, the trajectories of the system evolve
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according to the dynamics of that mode until the mode transition rules trigger a mode
change (called event). After the mode change, the dynamics of the new mode shapes the
behavior of the system until the next event takes place. Our approach will put emphasis
on the solution concept rather than the hybrid automaton model. Since our interest is
focused on a rather special class of hybrid systems, our hybrid solution concept will be a
trimmed version of a solution concept one needs for more general classes of hybrid systems.
Nevertheless, our solution concept is more general than some existing ones in the sense that
it allows existence of both left and right accumulations of event times. We begin with the
definition of event times set.

Definition 3.3.4 A set £ C R, is called an admissible event times set if it is closed and
countable, and 0 € £. To each admissible event times set £, we associate a collection of
intervals between events 7¢ = {(t1,t2) C R, | t1,t2 € EU{oo} and (¢1,t2) N E = 0}.

Next, we define a hybrid solution concept which is general enough for linear complemen-
tarity systems with index 1.

Definition 3.3.5 A quintuple (£, S, u, z,y) where £ is an admissible event times set, S :
7e = 2™, and (u, z,y) € PC(R,, R™"*™) is said to be a hybrid solution of LCS(A, B, C, D)
with the initial state z if the following conditions hold.

1. z is continuous, piecewise differentiable and z(0) = .
2. For each 7 € 7¢ and for all ¢ € 7, it holds that

z(t) = Az(t) + Bu(t)
(t) (

y(t) = Cz(t) + Du(t)
Ysr)(t) =0 ums)(t) =0
usqr(t) >0 ym\s()(t) > 0.

Moreover, we say that a hybrid solution (&, -, u,z,y) is redundant if there exists ¢t € £ and
t',t" with t' < ¢t < t” such that (u,z,y) is analytic on (#',¢"). It is said to be nonredundant
otherwise.

While the first condition corresponds the continuous dynamics, the second one indicates
that the reset maps for the hybrid automaton model corresponding to linear complemen-
tarity system are identity.

An interesting phenomenon that occurs in hybrid automaton modeling methodology is
the accumulation of event times. This type of behavior is called Zeno behavior referring to
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Zeno’s paradox of Achilles and the turtle. We need to set up a language for accumulation
points of event times.

Definition 3.3.6 An element ¢ of an admissible set £ is said to be a left (right) accumu-
lation point if for all t' > ¢ (' < t) (t,¢')NE ((¢',t) N E) is not empty. An admissible
event times set &£ is said to be left (right) Zeno free if it does not contain any left (right)
accumulation points. A hybrid solution is said to be left (right) Zeno if the corresponding
event times set contains at least one left (right) accumulation point and non-Zeno if the
corresponding event times set contains no left or right accumulation points.

In the following proposition, the relation between the two solution concepts defined so far
is established.

Proposition 3.3.7 Consider a matriz quadruple (A, B,C, D). If (u, z,y) is a PB-solution
on [0,00) of LCS(A, B, C, D) with some initial state then there ezist a left Zeno free admis-
sible event times set £ and a mode indicator S such that (€,S,u,z,y) is a nonredundant
hybrid solution of LCS(A, B, C, D) with the same initial state.

Undoubtedly, the function space PB is not the most natural one to work with. Next, we
introduce a solution concept in Lo which is clearly more natural. Later on, we will state
stronger (in the sense that LCS admits unique solutions from a larger space) existence and
uniqueness results by exploiting the structure provided by passivity.

Definition 3.3.8 The triple (u,z,y) € L([0,T],R™™"*™) is an L,-solution on [0,7T] of
LCS(A, B, C, D) with the initial state z, if the following conditions hold
t
z(t) = zo +/ [Az(s) + Bu(s)] ds
0
y(t) = Cz(t) + Du(t)
0<u(t) Ly(t) 20
for almost all ¢ € [0, T].

Similar to Proposition 3.3.7, we can state the following proposition.

Proposition 3.3.9 Consider a matriz quadruple (A, B,C, D). Assume that D + C(sI —
A)™'B is totally of index 1. If (-,-,u,x,y) is a hybrid solution of LCS(A, B,C, D) with
some initial state then for any T > 0 (u, z,y) is an Lo-solution on [0,T] of LCS(A, B,C, D)
with the same initial state.
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The above proposition together with Proposition 3.3.7 and Theorem 3.3.3 implies exis-
tence of Ly-solutions for LCS(A, B, C, D). By exploiting the passivity, we can establish
uniqueness of Lo-solutions as presented in the following theorem.

Theorem 3.3.10 Consider a matriz quadruple (A, B,C, D) satisfying Assumption 3.3.2.
Suppose that (A, B,C, D) is passive. Let T > 0 be given. Then, there erists a unique
Ls-solution on [0,T] of LCS(A, B, C, D) with the initial state xo if and only if Czo € Q.

3.4 Passifiability by Pole Shifting

Consider a given system X(A, B,C, D) and its pole-shifted version (A + pI, B,C, D).
Note that if (u,z,y) is a solution of the former one then e’ (u,z,y) is a solution of the
latter one. By using this correspondence, we reach the following rather obvious fact.

Fact 3.4.1 If the triple (u, z,y) is a PB-solution (L,-solution) on some interval of LCS(A,
B, C, D) with some initial state then e (u, z,y) is a PB-solution (L;-solution) on the same
interval of LCS(A + pI, B, C, D) with the same initial state.

This fact opens the possibility of applying Theorem 3.3.10 to a class of nonpassive systems.
Indeed, one can find p such that £(A + pI, B, C, D) is passive although (A, B,C, D) is
not. In what follows, we will investigate under what conditions 2(A, B, C, D) can be made
passive by pole shifting.

Definition 3.4.2 A system (A, B,C, D) is said to be passifiable by pole shifting if there
exists p € R such that £(A + pI, B,C, D) is passive. '

Next, we give necessary and sufficient conditions for passifiability by pole shifting in the
following theorem.

Theorem 3.4.3 Consider a matriz quadruple (A, B,C, D) satisfying Assumption 3.3.2.
Let E be such that ker E = {0} and im E = ker (D + D). Then (A, B, C, D) is passifiable
by pole shifting if and only if D is nonnegative definite and ETCBE is symmetric positive
definite.

We are in a position to apply Theorem 3.3.3 and Theorem 3.3.10 to the class of systems
that are passifiable by pole shifting as stated in the following corollary.

Corollary 3.4.4 Consider a matriz quadruple (A, B, C, D) such that (A, B, C) is minimal
and col(B, D + D7) is of full column rank. Let E be such that ker E = {0} and im E =
ker (D+ D). Suppose that D is nonnegative and ETCBE is symmetric positive definite.
Then, the following statements are equivalent.
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1. There ezists a unique PB-solution on [0, 00) of LCS(A, B, C, D) with the initial state

Zg.

2. There ezists a unique La-solution on [0,T] of LCS(A, B,C, D) with the initial state
zg for any T > 0.

3. C.’Eo € Q*D

Moreover, the unique PB-solution and Ly-solution for a fized initial state o with Czy €

D are the same.

Especially, the case when D is positive definite is worth stating separately.

Corollary 3.4.5 Consider a matriz quadruple (A, B, C, D) such that (A, B, C) is minimal,
and D is positive definite. Then, the following statements hold for any T > 0. '

1. There ezists a unique PB-solution on [0,T] of LCS(A, B,C, D) for all initial states.
2. There exists a unique Lo-solution on [0,T] of LCS(A, B,C, D) for all initial states.

Moreover, the unique PB-solution and L,-solution for a fized initial state are the same.

3.5 Zeno Behavior

Ever since the linear complementarity systems were introduced (see [20,21]), Zeno behavior
has been an interesting open problem. In this section, existence of accumulation points of
the event times set will be investigated. In [10] the problem is addressed in a very general
context of hybrid systems.

Our first result rules out left accumulation points for the systems that are passifiable

by pole shifting.

Lemma 3.5.1 Consider a matriz quadruple (A, B, C, D) satisfying Assumption 3.3.2. As-
sume that ©(A, B, C, D) is passifiable by pole shifting. Then, there is no left Zeno solution
of LCS(A, B,C, D).

As an immediate consequence, we can state the following proposition.

Proposition 3.5.2 Consider a matriz quadruple (A, B, C, D) satisfying Assumption 3.3.2.
Assume that (A, B,C, D) s passifiable by pole shifting. If (£,S,u,x,y) is a hybrid so-
lution of LCS(A, B, C, D) with some initial state then (u,z,y) is a PB-solution on [0, 00)
with the same initial state.
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As another implication of the previous Lemma, the class of passifiable systems for which
the passifiability is invariant under time-reversion enjoy the non-Zenoness property. To
show this, we need to point out the following fact.

Fact 3.5.3 If (u,z,y) € L5([0,T],R™™™) is an L,-solution on [0,T] of £(A, B,C, D)
then rev(o)(u, z,y) is an Ly-solution on [0, 7] of ©(—A, —B, C, D).

Lemma 3.5.4 Consider a matriz quadruple (A, B,C, D). Suppose that (A, B,C) is min-
imal and D is positive definite. Then, there is no Zeno solution of LCS(A, B,C, D).

Note that Zeno states (i.e., the states at the accumulation points) are well-defined due to
the fact that z is continuous for a hybrid solution (-, -, -, ,-). Intuitively, the most natural
candidates for Zeno states are equilibrium states, in particular the zero state, of the system.
The following theorem indicates that the zero state cannot be a Zeno state for a class of
passifiable complementarity systems.

Theorem 3.5.5 Consider a matriz quadruple (A, B,C, D) satisfying Assumption 3.3.2.
Assume that (A, B,C, D) is passifiable by pole shifting and there ezists an indez set
J C m such that D;; is positive definite, Dy = 0, Ds\s.s = 0 and D\ ym\g 15 skew-
symmetric. Let (€,-,-,z,-) be a nonredundant hybrid solution of LCS(A,B,C,D) with
some initial state. If t* is a right accumulation point of € then x(t*) # 0.

3.6 Nonregular Initial States

Our aim is to propose a method of re-initialization for nonregular initial states in terms
of the stored energy of the underlying linear passive system. To do so, consider a passive
system X(A, B,C, D). Let the set of all positive definite matrices that generate a quadratic
storage function, i.e., {K | z — z" Kz is a storage function for ¥(A, B,C, D)} be denoted
by K. It is known from [22] that K is convex and has a minimal and a maximal element
(called required supply and available storage, respectively) with respect to the order induced
by positive definiteness. We propose the jump rule =y — z+ where z* is the solution of
the following minimization problem

minimize ||z — zo||x subject to Cz € QF,.

where K € K. In the next theorem, it will be shown that this proposal is justified in the
sense that the above minimization problem admits unique solutions regardless of the choice
of the storage function.
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Theorem 3.6.1 Consider a matriz quadruple (A, B,C, D) satisfying Assumption 3.3.2.
Suppose that (A, B, C, D) is passive. The following statements hold.

1. The minimization problem
minimize ||z — zo||x subject to Cz € Qj (3.5)

admits the same unique solution for all K € K.

2. Let this unique solution be denoted by z*. Then, there ezists a unique u® € Qp such

zt — zy = Bul.

We call z+ and u° enjoying the properties in the second item of the previous theorem as
the re-initialized state and the jump multiplier, respectively.

The second statement of the above theorem tells us that the jump occurs along imB.
In other words, the jump zo — z* can be represented by the effect of u = u%3. This fact
will be exploited to establish a solution concept that covers also nonregular initial states
in a natural way. Before passing to the introduction a new solution concept, we need some
preparations. The first thing we shall recall is the initial solution concept.

Definition 3.6.2 The triple (u,z,y) € By*""™™ is an initial solution of LCS(A, B, C, D)
with the initial state x, if there exists an index set K C m such that

= Az + Bu + z¢0
y=Cz+ Du

yk =0 umg =0

holds in the distributional sense, and u and y are initially nonnegative.

Under some index and sign conditions, it can be shown that there exist unique initial
solutions as stated in the following lemma.

Lemma 3.6.3 Consider a matriz quadruple (A, B,C, D). Let G(s) be the transfer matriz,
i.e., G(s) = D+ C(sI — A)~'B. Suppose that G(o) is a P-matriz for all sufficiently large
o. Then the following statements hold.

1. There ezists a unique initial solution of LCS(A, B,C, D) with any initial state.

2. If G(s) s totally of index 1 then the impulsive part of this unique initial solution is
of the form (u,0, Da) for some u € Qp.

As a direct application of this lemma, we have the following corollary for the class of
passifiable systems.
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Corollary 3.6.4 Consider a matriz quadruple (A, B,C, D) satisfying Assumption 3.3.2.
Suppose that X(A, B,C, D) is passifiable by pole shifting. Then, there erists a unique
initial solution of LCS(A, B, C, D) with any initial state. Moreover, the impulsive part of
this unique initial solution is of the form (4,0, Du) for some @i € Qp.

Now, we can state the following theorem which will lead to a solution concept that covers
nonregular initial states as well.

Theorem 3.6.5 Consider a matriz quadruple (A, B,C, D) satisfying Assumption 3.5.2.
Suppose that X(A, B,C, D) 1is passive. Let N be such that pos(N) = Qp. Also let the
re-initialized state x™ be the unique solution of minimization problem (3.5) for the initial
state xo and let the jump multiplier u® be the unique vector such that + = zo+ Bu®. Then
the following statements hold.

1. The jump multiplier u® = N© where ¥ is the unique solution of the linear comple-
mentarity problem

v>0
N'Czy+ NTCBNv >0
v (N"Czo+ NTCBNwv) = 0.

2. The jump multiplier u® is the unique solution of the generalized linear complemen-
tarity problem

z€Qp
Czy+CBz € Qp
2" (Czo + CBz) = 0.

3. The jump multiplier is the common unique solution of the minimization problems
minimize (2o + Bz)" K (zo + Bz) subject to z € Qp

with K € K.

4. The impulsive part of the initial solution of LCS(A, B, C, D) with the initial state x
is (u%, 0, Du®).

Although the jump rule proposed in Theorem 3.6.1 is applicable only for passive (or pas-
sifiable) systems, we can think of providing a jump rule for general low index systems via
item 4. Indeed, such a proposition would be independent of passivity related concepts such
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as storage function. With this motivation, we introduce a new solution concept in what
follows. We denote the set of all distributions v = vipy + Vreg Where vimy € Dj and vy is
a piecewise Bohl function by PB;. They will be called piecewise Bohl distributions.

Definition 3.6.6 The triple (u,z,y) € PBy"*"*™ is a distributional PB-solution on [0, T]
of LCS(A4, B,C, D) with the initial state z, if the impulsive part of (u,z,y) coincides with
the impulsive part of an initial solution of LCS(A, B,C, D) with the initial state z, and
the regular part is a PB-solution on [0,7] of LCS(4, B, C, D) with the re-initialized state.

By merging Theorem 2.3.3 (for zero input) and Theorem 3.6.5, we reach the following
well-posedness result for low index LCSs.

Theorem 3.6.7 Consider a matriz quadruple (A, B,C, D). Suppose that G(s) = D +
C(sI — A)7'B is totally of index 1 and G(o) is a P-matriz for all sufficiently large o.
Then, there erzists a unique distributional PB-solution on [0,00) of LCS(A, B,C, D) with
all initial states.

Earlier in this chapter, stronger (in the sense that the function space in which solutions
live is larger) well-posedness results were presented for passifiable linear complementarity
systems in Corollary 3.4.4. In a similar fashion to Theorem 3.6.7, a generalization of those
results is possible.

Definition 3.6.8 The triple (u,z,y) € £3([0,T], R"*"*™) is an L3-solution on [0,T] of
LCS(A, B,C, D) with the initial state zq if the impulsive part of (u,z,y) coincides with
the impulsive part of an initial solution of LCS(A, B,C, D) with the initial state zo and
the regular part is a Lo-solution on [0,7] of LCS(A, B, C, D) with the re-initialized state.

As a natural consequence, we have the following theorem.

Theorem 3.6.9 Consider a matriz quadruple (A, B,C, D) satisfying Assumption 3.5.2.
Suppose that ©(A, B, C, D) is passifiable by pole shifting. Then, for any T > 0 there exists
a unique L3-solution on [0,T] of LCS(A, B, C, D) with all initial states.

3.7 Conclusions

We have continued to deal with the well-posedness of linear complementarity systems.
After proposing a more general solution concept than the one studied in the previous
chapter, we have proven that the linear passive complementarity systems have unique
solutions. Moreover, the characterization of regular initial states has been established.

As a generalization of passivity, the notion of passifiability by pole shifting (PPS) was
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introduced. The necessary and sufficient conditions for a system to be PPS have been
presented. We have extended all available well-posedness and regularity results to this
new class. An interesting phenomenon that can occur in hybrid systems is the so-called
Zeno behavior. The introduction of PPS systems makes it possible to show absence of
Zeno behavior for LCS under some conditions. Finally, we have proposed a jump rule for
nonregular initial states and extended the solution concept in such a way that nonregular
initial states can be treated as well.

The Lo-uniqueness of solutions is of considerable importance not only from a well-
posedness viewpoint but also because its immediate consequences for the work in the
second part of the thesis. So one of the most obvious open questions is whether the Lo-
uniqueness of solutions can be extended to the systems which are well-posed in the sense
of PB-solutions. Further study of Zeno behavior may have interesting impacts for the
convergence issues. Indeed, absence of Zeno behavior would imply convergence in stronger
senses for many cases.

3.8 Proofs

3.8.1 Some facts from matrix theory

In the sequel, we need the following technical lemmas.

Lemma 3.8.1 Let X € RP*? be given and X be defined by
T
Y- I+XX" X .
xT Y
1 1
Then, the estimates (2 + || X||2)I > X > (2 + || X||2)"' hold.

Proof: Note that X is positive definite since

=) )

Let rank(X) = r. Then, we get dim(ker(X)) = ¢ — r and dim(ker(X ")) = p — r. Note

that X Tu = 0 implies that
T4 XK"Y X u\ (u
X rfle) e
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[ 0-0)

Therefore, X has at least p + ¢ — 2r eigenvalues at A = 1. On the other hand, XX has r
nonzero eigenvalues and if p # 0 is its eigenvalue with an eigenvector u then

and Xv = 0 implies that

I+ XXT X\ (= 1u) _ L, (O -1 i
& I XTu - Xy ’
and
I+XXT X\ (M8 —1)u Y (M = 1Du (3.7)
xT I XTu "\ XTg '
where N = 2 _ VEHTE g gu 24y VORI NG that M < 1 < M and

AN = 1. Since the function g + A is an increasing function on [0, 00), it follows
from (3.6) and (3.7) that Apa(X) = M™ where pmax = Amax(XXT) and Apin(X) =
(Amax(X))~L. Therefore, we get
/\I;.max I 2 X Z (Aimax)—l I.
1
Note that 2+ p > A% whenever p > 0 and pmax = || X||2. Consequently, we get
1 1
E+[IX]2)I > X > 2+ X[2)"'].
]

Lemma 3.8.2 Consider matrices A, B, and C such that A= AT € RP*P, B € RP* | and
C =C" € R¥ and C is invertible. The following estimates hold:

I

(2 o8 “BC_IH%)max(/\max(D),/\max(C)) I ( A B) > min(/\min(D);/\min(C))

T 1
S 2+ [|BC-!||2
where the Schur complement D = A — BC™'BT.

Proof: Note that

A B\ (I BC'\ (A-BC'BT 0 I 0
BT ¢) \@ 1[I 0 & YEET
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and
A—- BC'BT
max(Amax(D), Amax(C)) I > ( : g) > min(Amin(D), Amin(C)) I.
The rest follows from Lemma 3.8.1 by taking X = BC~!. ]

Lemma 3.8.3 Let M € RP*? and N € RP*? be given. Suppose that M is nonnegative
definite and the following implication holds

1#0,2 Mzt =0=z'Nz > 0. (3.8)

Then, there ezists pn > 0 such that M + eN > e u1 for all sufficiently small e.

Proof: Let M and N denote the symmetric parts of M and N, i.e., M = $(M+MT) and
N = %(N + NT). Let Q € R™9 be such that imQ = ker M and ker Q@ = {0}. Take any
P € R™(m=9) gych that (P Q) is nonsingular. Note that

PTY _ PTMP+ePTNP ¢PTNQ
M +¢eN) (P = _ _
(QT)( +=€ )( Q) ( CQTNP EQTNQ
It follows from Lemma 3.8.2 that

il & . . —1v T .
(PT) (M 4 EN) (P Q) Z mln()\mm(X + EYll 6)/12)/22 1)/12)7 /\mm(f}/22))1 (39)
“ 2+ [Vin¥5!||2

where X := PTMP, Yy, := PTNP, Y;; := PTNQ and Yy = Q"NQ. Note that X
is positive definite due to the definition of P and @ and Y, is positive definite due to
the implication (3.8). Therefore, it follows from (3.9) that there exists x > 0 such that
M + €N > el for all sufficiently small e. |

3.8.2 Some implications of passivity

For ease of reference we list the following well-known facts.

Lemma 3.8.4 Let M = M" € R™™ be nonnegative definite. The following statements
hold.

1. NTMN=0= MN =0.

2. For any indez set J Cm, v Myv=0= M,v=0.
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Proof:
1: Evident.

2: Let the index set J C m and the vector v be such that v" M, ;v = 0. Clearly, we
have +
(2 226
0 M5y Mmams) \O

Hence, item 1 implies that
Mj;  Mmy vy _
Mezss Mmgma /) \O

Equivalently, M,;v = 0. |

Passivity of a system has some useful implications for the subsystems. In what follows,
we collect all such implications that will be employed later on.

Lemma 3.8.5 Consider a matriz quadruple (A, B, C, D) satisfying Assumption 3.3.2. Let
the matrices P’ and Q’ be such that ker P’ = ker Q’ = {0}, imQ’ = ker (D;; + DJ,)
and im P’ ©im Q’ = RV for each indez set J C m. If the system ©(A, B,C, D) is passive
then the following statements hold for each J C m.

1. Dy, is nonnegative definite.

2. (PY)"Dy P’ is positive definite.

3. (Q7)TC1eB.sQ’ is symmetric positive definite.

4. Dyj+ CjeBejo~t is positive definite for all sufficiently large o.
5. Dyj+ CyeBeys™! is of index 1.

Proof: Since the system X(A, B, C, D) is passive and (4, B, C) is minimal, Theorem 3.2.2
implies that the system of linear matrix inequalities

AT, kKA KB-=C7
K=K >0ad [4 £+ | = (3.10)
B'K-C —(D+D")
is feasible. It follows that for each index set J C 7 we have
T AT
ATK+ KA KB,y CJT, < (3.11)
Bj,K —Cja —(Dy;+ Dyy)
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1: Evident from (3.11).

2: It follows from 1 that (P?)"D;;P” is nonnegative definite. Let v be such that
v (PY)TD;;P’v = 0. Hence, we have v (P/)T(Dy; + D};)P’v = 0. It follows from
Lemma 3.8.4 item 1 that P/v € ker(Dy; + DJ,;) = im@Q’. Thus, P/v € im P/ Nim Q.
By the hypothesis, v = 0. Consequently, (P’)"D;;P” is positive definite.

3: For any real number a € R and matrix M’ € RYI*IVI| we have
T
0% aM’ ATK+KA KB,;-Cj, aM’
- Q‘] BI]K —Cj. —(DJJ 5t D}—J) Q‘I
>a* (M) (ATK + KAM’ + (M) (KB.y — CJ,)Q” + a(Q”) " (BJ,K — Cja) M.

The absence of constant term in the above nonpositive quadratic form implies that the
factor of o in the above equation must be zero for all M”. In particular, the choice
M’ = (KB,; — C],)Q’ results in (Q’)"(B];K — C;.) = 0. Hence, we have

(Q7) CreBusQ’ = (Q’)"B);KB.;Q’. (3.12)

Since K is positive definite, the right hand side of the above equation is (at least) nonneg-
ative definite. Let v be such that v'(Q7)"(B.;)"KB.;Q’v = 0. Clearly, B,;Q’v =
0. Note that v"(Q’)"(Dy; + D};)Q’v = 0 implies from Lemma 3.8.4 item 2 that
(Dey+ (DT)es)Q’v = 0. Thus, we have

B.J B.Jc QJ'U _ 0
Das (D" D4 e o)

It follows from the hypothesis that col(B, D + D) is of full column rank that Q’v = 0.
Since ker @’ = {0}, v must be zero. Consequently, (Q7)"B], K B.;Q" is positive definite
and so is (Q”)"CeB.sQ’ due to (3.12).

4: The previous item implies that the implication (v # 0 and u'D;u = 0) =
u"CjeB.yu > 0 holds. It follows from Lemma 3.8.3 that there exists p > 0 such that

Dj;;+ C‘].B.JU.—I > ,U,O'_II (313)

for all sufficiently large o. Therefore, D;;+C;,B,;0! is positive definite for all sufficiently
large o.
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5: It follows from (3.13) that D;; + CyeB,;s! is invertible as a rational matrix and
sY(Dys+ CyeBeys)7!is proper. Hence, Dy; + CjoByys~! is of index 1. [ |

3.8.3 Proofs for Section 3.3

Proof of Theorem 3.3.3: From Lemma 3.8.5 items 5 and 4, we know G(s) = D +
C(sI — A)™'B is totally of index 1 and G(o) is positive definite and hence a P-matrix
for all sufficiently large 0. Besides, K(D) = Q3, due to Lemma 3.8.5 item 1 since D is
nonnegative definite and hence is a copositive-plus matrix. Evidently, the rest follows by
applying Theorem 2.3.3 for the zero input. |

To prove Proposition 3.3.7, we need the following technical lemma.

Lemma 3.8.6 Let Z be a set of nonoverlapping intervals of real numbers with positive
length. Then, I is a countable set.

Proof: Each I € 7 must contain a rational number. Therefore, the cardinality of the set
T cannot exceed the cardinality of the rational numbers. Clearly, this means that T is a
countable set. |

Proof of Proposition 3.3.7: Assume that (u, z, y) is a PB-solution on [0, c0) of LCS(4,
B,C, D) with some initial state z;. Let the mapping 3 be as defined in 1.2.1. Define
E = {t+B((u,z,y),t) | t € R, }. Take & = £*U{0}. We first prove some properties of
the set £.

i. £ is closed and 0 € £.

ii. Consider the set 7z U £. It consists of nonoverlapping intervals of R. It follows from
Lemma 3.8.6 that it is a countable set and hence so is £.

iii. Suppose that ¢'* is a left accumulation point of £. By definition, t'*®+3((u, z, y), t'®)
=t + B((u,z,y),t) whenever ' < ¢t < #° + B((u,z,y),t"*"). In other words,
(¢t et 4 B((u,z,y),t"*") N € = 0. However, this contradicts the fact that ¢t is a
left accumulation point of £.

Clearly, i.-iii. yield that £ is a left Zeno free admissible event times set. Let 7¢ be the
associated collection of intervals. Let (#,¢") € 7¢. Define col(a,z,y) = a((u,z,y),t').
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Since (u,z,y) is a PB-solution, we get

for all t € (¢',t"). Then, (@, z,y) satisfies

for some K C 7 since they are Bohl functions. Define S((¢/,t")) = K. It can be easily
verified that (£,S,u, z,y) is a hybrid solution of LCS(A, B, C, D) with the initial state z;.
It remains to show that it is nonredundant. Suppose, on the contrary, that it is redundant,
i.e., there exist t € £ and #',¢"” with ¢ < ¢ < ¢" such that (u,z,y) is analytic on (¢,t").
Define t; = t' + B((u, z,y),t'). Clearly, we have

theig L t<il (3.14)
It is known that (u,z,y)| ) = w|08((uey).)) Where w = a((u,z,y),t'). Since w is a
Bohl function and hence analytic, we have even (u,z,y)|w sy = wlpe—v). Therefore,
t'—t, = B((u,z,y),t') > t" — t' which contradicts (3.14). |

Proof of Proposition 3.3.9: Assume that (£, S, u,z,y) is a hybrid solution of LCS(A4, B,
C, D) with some initial state zo. Let T' > 0. It follows from the continuity of z that it
is bounded on the interval [0,T]. As a hybrid solution (£,S,u,z,y) is such that for each
T € T¢ the conditions

hold for all t € 7N [0,7]. Lemma 2.5.9 implies that (by taking w = 0) there exists F5(")
such that u(t) = FS(z(t) and y(t) = (C + DFS)z(t) for all t € 7 Hence, both u and y
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are bounded on 7' := (TéJTET) N [0, 7] since S(7) assumes values in the finite set 2™. This
means that they are essentially bounded on the interval [0, 7] since 7' = ([0,7]N€)¢ and €
is a countable set hence has measure zero. Boundedness of (u,z,y) on [0,7] immediately
implies (u,z,y) € Ly([0,T],R™*™*™). It is not hard to see that (u,z,y) is an L,-solution
on [0,T] of LCS(A, B,C, D) with the initial state zo for any T > 0. |

Proof of Theorem 3.3.10:

if: Let Czy € Qp. Theorem 3.3.3, and Propositions 3.3.7 and 3.3.9 imply together that
on any interval [0, 7] there exists an Ly-solution of LCS(A, B, C, D) with the initial state z.
Suppose that (u!,z,y') for i = 1,2 are two different £y-solutions of LCS(A, B, C, D) with
the same initial state. Then, (u' — u?,z! — z%,y! — 4?) is an Ly-solution of (A, B,C, D)
with the initial state zero. Since (A, B,C, D) is passive and (A, B,C, D) satisfies As-
sumption 3.3.2, Theorem 3.2.2 implies that there exists X = KT > 0 such that

/0 [w!(s) — w?()] [y () — y*(s)] ds 2 [z () — 2*(8)] " K[z (¢) — 2*(1)] (3.15)

for all ¢t € [0,T]. Since (u’,z',y") are Lo-solutions of LCS(A, B, C, D), we have u*(t) > 0
and y'(t) > 0 for all ¢ € [0, T), and fot(ui(s))Tyi(s) ds = 0. Therefore, the left hand side of
(3.15) is nonpositive. It follows from the positive definiteness of K that '

z'(t) —2%(t) = 0 (3.16)

for all ¢t € [0,7]. Then, we get
B(u'(t) —u*(t)) =0 (3.17)
y'(t) = y*(t) = D(u'(t) — u*(t)) (3.18)

for all ¢t € [0,T] by the definition of £,-solution of a LCS. Left multiplying (3.18) by (u!(t)—
u?(t)) " results in (u!(t) —u?(t)) " D(u'(t) —u?(t)) < 0 for almost all t € [0, T]. However, D is
nonnegative definite due to Lemma 3.8.5 item 1. Therefore the above inequality holds as an
equality. Hence, we get for almost all t € [0, T, (u'(t) —u?(t)) " (D+D")(u'(t) —u?(t)) = 0
which immediately gives

(D + D7) (ul(t) — u?(t)) = 0 (3.19)

due to Lemma 3.8.4 item 1. The equations (3.17) and (3.19), together with Assump-
tion 3.3.2, imply that u!(t) — u?(t) = 0 for almost all t € [0, T]. It follows from (3.16) that
y'(t) — y*(t) = 0 for almost all ¢ € [0, T].
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only if: Let (u,z,y) be an Ly-solution on some interval [0, T] of LCS(A, B, C, D) with
some initial state zo. Suppose that Czy ¢ Q},. Since D > 0 due to Lemma 3.8.5 item 1, it
follows from Lemma 1.2.4 item 2 that K (D) = Q},. We know from Fact 1.2.2 that K (D)
is closed. Consequently, the fact that Czo ¢ Q}, implies together with the continuity of
= that for some € > 0, Cz(t) ¢ Qj, whenever t € [0,€]. In other words, LCP(Cx(t), D) is
not solvable on ¢ € [0,€]. A contradiction follows from Definition 3.3.8. [ ]

3.8.4 Proofs for Section 3.4

We begin with a technical lemma which be employed later on.

Lemma 3.8.7 Let A, B € R™" and let A be of full row rank. Then, there erists a
symmetric positive definite matriz X such that AX = B if and only if BA" is symmetric
positive definite.

Proof:
only if: Postmultiplying AX = B by AT, we get AXAT = BAT. Since X = X' >0,
BAT = ABT =0,

if: Note that A can be written as A = [I O] V' for some nonsingular V' € R"*".

Postmultiplying both sides of AX = B by V" and defining Y := VXV, we get [I 0] Y=
BVT. Clearly, finding a solution to the latter equation with ¥ = Y7 > 0 is equivalent
to finding a solution to AX = B with X = X" > 0. Let Y and BV " be partitioned as

follows:
Y Yo

Yor Yo

¥ e BYT = [Bl Bz] .

-
To satisfy [I 0] Y = BV, we can take Y;» = B, and Y1 =B, = BVT [1 O] = BAT.
Hence, by the hypothesis Y;; = YJ > 0. It remains to determine Y, and Y, in such a
way that Y = YT > 0. Choose Yy = Y} and Yz = I + Y,}Y;7'Vi2. Then, it follows from

Yy 0
0 Yo - Yi3¥ii'Ve

F Y'Y
0 1

Y =

I 0
YaYa' I
that Y =Y7 > 0. [ ]

Proof of Theorem 3.4.3:
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if: Assumption 3.3.2 guarantees that BE is of full column rank. Then, the equation
ETC = ETBTK has a symmetric positive definite solution K according to Lemma 3.8.7.
Define pt = Apnaz(K). Let F be such that ker F = {0} and im E @ im F = R™. It follows
from Lemma 3.8.5 item 2 that F'T DF is positive definite. Define @ = %‘/\ma:(ATK+ KA),
8= 3||KBF~CTF| andy = — 3 Amin(FT(D+DT)F). Note that y < 0. Take p < ‘1—2—(1
and note that [“;"f] is nonpositive definite. It can be verified that (A + pI, B,C, D) is
passive with the storage function V(z) = z" Kz. Indeed,

e

z (A+p)TK +K(A+pl) KB-CT ) |z
B'K -C —(D+DT")

=z (ATK+ KAz +2pz Kz + 22" (KB—-C )u—u"(D+ D")u

=2 (ATK + KA)z +2p2" Kz + 22" (KB — C")Fu; —u[F"(D+ D")Fu;

~

u

where 4 = Eu, + Fuy. From the Rayleigh-Ritz (see e.g. [11, Theorem 5.2.2.2]) and
ilf

H ((A +p) 'K +K(A+pl) KB-CT )

u

Cauchy-Schwarz inequalities, we get
z
B'K-C —(D+D")} |u

< Amaz(ATK + K A) 12| + 20Amae(K)||z|1* + 2| K BF — CTF||||uy |||l
= Mnin(FT(D + D7) F)|luy|?

el ] Iz
=% [nu,n} [nufn} -

Since K is positive definite and minimality of (A, B, C) implies that (A + pI, B,C) is also
minimal, we can conclude that (A + pI, B,C, D) is passive due to Lemma 3.2.2.

atp B
B v

only if: If (A, B,C, D) is passifiable by pole shifting then there exists a p such that
Y(A + pl, B,C, D) is passive. Then, it follows from Lemma 3.8.5 items 1 and 3 that D is
nonnegative definite and ETCBE is symmetric positive definite. ]

Proof of Corollary 3.4.4: It follows from Theorems 3.3.3, 3.3.10 and Fact 3.4.1. &

Proof of Corollary 3.4.5: Note that the matrix quadruple satisfies Assumption 3.3.2
and (A, B,C, D) is passifiable by pole shifting since D is positive definite. Note also
that Qp = {0} which implies Q;, = R™. Then, we get the desired result by applying
Corollary 3.4.4 . &
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3.8.5 Proofs for Section 3.5

Proof of Lemma 3.5.1: Suppose that (£'°ft Sleft yleft gleft yleft) g 3 left Zeno nonre-
dundant hybrid solution of LCS(4, B,C, D) with some initial state zo. From Proposi-
tion 3.3.9, it is known that (u'*f, z'*" y!*f)|; 71 is an L,-solution on [0, 7] with the same
initial state for any 7" > 0. Then, Corollary 3.4.4 implies that there exists a PB-solution,
say (u,z,y), on [0,00) with the same initial state. It follows from Proposition 3.3.7 that
there exists a left Zeno free event times set £ and S such that (£,S,u,z,y) is a nonre-
dundant hybrid solution with the same initial state. Due to Proposition 3.3.9, (u, z, Y)lo.)
is an Ly-solution on [0, 7] with the same initial state for any T > 0. Therefore, we get
(', ' ) o 71 = (u,z,y)|or) for all T > 0 from Theorem 3.3.10. Let 7% be a left
accumulation point of £'*®. Since (u, z,y) are piecewise Bohl functions, they are analytic
on (T, T + 3(u,y)). But, this contradicts the nonredundancy. [ |

Proof of Lemma 3.5.4: Since D > 0, col(B,D + D) is of full column rank. Hence,
Assumption 3.3.2 is satisfied by the hypotheses. Furthermore, D > 0 implies that both
¥(A,B,C,D) and £(—A, —B,C, D) are passifiable by pole shifting due to Theorem 3.4.3.
Let (£',8',u',z',y') be a hybrid solution of LCS(A, B, C, D) with some initial state zq.
Proposition 3.3.9 and Corollary 3.4.4 imply that Czy € K (D). Therefore, LCS(—A, —B,
C, D) admits a PB-solution, say (u?, z?%,y?), on [0, 00) with the initial state 24 due to Corol-
lary 3.4.4. According to Proposition 3.3.7, there exist £2 and 82 such that (2, 8%, u?, 22, ?)
is a hybrid solution of LCS(—A, —B, C, D) with the initial state z5. On the other hand,
we know from Lemma 3.5.1 that £' is left Zeno free. Suppose that it is not right Zeno
free, i.e., there exists a right accumulation point of £!. Let ¢t* € £' be such a point. Define
E= ("= (E'N[0,°])) U (t* + £2) where t + £ denotes the set {t +t' | ' € £}. Clearly, £
is an admissible event times set and 7¢ = 7. _(g1n(0,¢+)) U Ty 1¢2. Define S and (u, z,y) by

Sl(t* + T) if e Te=—(£10[0,t*])

S(r) =
St —71) ifTE Tpoygr
(U‘Ivy)ho,r] = rev[o,e'](ul~zls yl) (3.20)
(4, 2,9) | 00) = (u?, 2%, %?). (3.21)

It can be verified that (£,S,u,z,y) is a hybrid solution of LCS(—A, —B, C, D) with the
initial state z'(t*). Lemma 3.5.1 reveals that £ is left Zeno free. By construction t* is a
left accumulation point of £. Therefore, we reach a contradiction. |

Proof of Theorem 3.5.5: Let (£, S, u, z,y) be a nonredundant hybrid solution of LCS(A,
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B, C, D) with some initial state such that ¢* is a right accumulation point of £ and z(¢*) = 0.
According to Proposition 3.3.9, (u, z,y) is an Ly-solution on [0, t*] of LCS(A, B, C, D) with
the same initial state and hence

u;(t)yi(t) =0 (3-22)

for almost all ¢ and for all i € m. Define (1, z, 7]) revios)(u,z,y). From Fact 3.5.3, we
know that (@,Z,7) is an Ly-solution on [0,t*] of £(—A, —B,C, D) with the initial state
Z(0) = z(¢t*) = 0. Define z; = §; and z;c = —g e where J° =m \ J. Clearly, the triple

e ((2)(2)
Uje ZJe

is an Ly-solution on [0, t*] of the system ¥ where

Cey Dy, 0
2 =%(-A+pl,|-B,y —B.je)., 7 .
2 ( P ( g J ) (—C.jc> ( 0 —DJCJC))

On the other hand, the passifiability of 3(A, B, C, D) immediately implies that the system

! Co.] DJJ 0
v=NA (B, B, ,
( ( i ’) (C.Jc> (0 DMC))

is passifiable. This means that the system Xj is also passifiable since Djcjc is skew-
symmetric. Let p be such that ¥? is passive. It follows from Fact 3.4.1 that e (u*,z*, y")
is an Lp-solution of &7 with the zero initial state. Then, the dissipation inequality results
in for all ¢ € [0,¢*]

/ e (u(s)) Ty (s) ds 2 (e (1)) TK 2 (1) (3.23)

where z + " Kz is a storage function for the system ¥, It follows from (3.22) and the
definition of y* that

/e2ps( ( T * ds_Z/ 2ps * y1 d =)
0

Therefore, z*(t) = 0 for all ¢ € [0,¢*] due to (3.23) and the positive definiteness of K.
However, this means that z(0) = z*(¢*) = 0 and hence (u,z,y) = 0 since (u,z,y) is the
unique Ly-solution of LCS(A, B, C, D) with the zero initial state. Consequently, £ = {0}
since the hybrid solution is nonredundant. Hence, we reach a contradiction. |
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3.8.6 On quadratic programming

In this subsection, we quote some rather standard facts for the sake of completeness.

Lemma 3.8.8 Consider the quadratic program
minimize 12" Qx + bz subject to z > 0.

If Q is nonnegative definite then the Karush-Kuhn-Tucker conditions
£>0,b+Qzr >0, andz' (b+ Qz) =0

are necessary and sufficient for the vector z to be a globally optimal solution of the above
quadratic program.

For a detailed discussion on this lemma, the reader is referred to [3, Section 1.2].

Theorem 3.8.9 Consider the following two quadratic programs

QP :  minimize 3z Qz + bz subject to Az > ¢

QP,:  minimize 1z Qz — ¢ u subject to ATu — Qz = b and u > 0.

The following statements hold.

1. (Dorn’s duality theorem) [12, Theorem 8.2.4] Let Q be nonnegative definite. If T
solves QP then (z,7) solves QP, for some i, and the two extrema are equal.

2. (Strict converse duality theorem) [12, Theorem 8.2.5] Let Q be positive definite. If
(Z,u) solve QP then T solves QP,, and the two extrema are equal.

3.8.7 Proofs for Section 3.6
In the sequel, MIN(f(z), &) will denote the minimization problem
minimize f(z) subject to z € X.

The following theorem will be employed later.

Theorem 3.8.10 Consider a matriz quadruple (B,C, D, K) such that col(B,D + D7) is
of full column rank, K is positive definite and the following implication holds

veker(D+D") = KBv=C"v. (3.24)
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Let N be such that pos(N) = Qp. The following statements hold for all zo € R*, w € R™.

1. If the vector T solves MIN(||z — zo||%, {z | Cz + w € Q}}) then there ezists ¥ such
that the pair (Z,7) solves MIN(||z||% + 2w Nv, {(z,v) | v > 0 and = z9 + BNv}).

2. "If the pair (z,0) solves MIN(||z||% + 2w Nv,{(z,v) | v >0 and z = 7o + BNv})
then the vector T solves MIN(||z — zo||%, {z | Cz + w € Q}}).

3. The vector T solves MIN(||z — zo||%, {z | Cz + w € Qp}) if and only if the vector ©
solves MIN(3v" NTCBNv + (Czo + w) " Nv,{v | v > 0}) and z = zo + BN®.

4. The vector v solves MIN(3v" NTCBNv + (Czo +w)"Nv, {v | v > 0}) if and only if

it solves the linear complementarity problem

v>0
NT(Czo+w) + NTCBNv >0 } (*)
v (NT(Czo+ w) + NTCBNv) = 0.

5. The vector © solves the linear complementarity problem (x) if and only if z = Nv
solves the generalized linear complementarity problem

2€ Qp
Czo+w+ CBz € Q3 } (%)
z"(Czo +w + CBz) = 0.
6. The generalized linear complementarity problem (%) has at most one solution.
Proof: Note that pos(N) = Qp implies that @}, = {v | NTv > 0}.
1: It follows from Theorem 3.8.9 item 1.

2: It follows from Theorem 3.8.9 item 2.

3: For the ‘only if’ part suppose that the vector Z solves MIN(||z — z||%, {z | Cz+w €
Qp}. It follows from the first item that there exists o such that the pair (Z,7) solves
MIN(||z||% + 2w Nv, {(z,v) | v > 0 and z = 79 + BNv}).

i. Clearly, Z = 2o + BN®.

ii. Since Nv € Qp C ker(D+ D7) for all v > 0, we have KBNv = C" Nu for all v > 0.
Then,

Izl = llzo + BNv|% = v"NTCBNv +2(Cxo) " Nv + ||zo[% (3.25)
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whenever v > 0. So the vector @ solves MIN(1v" NTCBNwv + (Czy + w)T Nv).

Thus, i. and ii. imply the ‘only if’ part. For the ‘if’ part, suppose that the vector @ solves
MIN(3v"NTCBNv + (Czo + w) "Nv) and = zo + BNo. By using (3.25), we get that
the vector Z solves MIN(||z — zo||%, {z | Cz + w € Q}}).

4: It follows from a direct application of Lemma 3.8.8.
5: It is evident from Qp = {Nv | v > 0} and Q} = {v | NTv > 0}.

6: Suppose that z' is a solution of the generalized linear complementarity problem

z2€Qp
Czo+w+CBz € Q
2" (Czo+w+CBz) =0

for : = 1,2. Note that

(2! = 2%)TCB(2' - 2%) = (2! = 22)T[(Czo + w+ CB2') — (Cxo + w + CB2z%)
= —(2")(Czo + w + CB2?) — (2*)T(Czo + w + CB:z')]
<o. (3.26)

Since Qp C ker(D+DT), we have z' — 22 € ker(D+DT). Hence, (2! —22)TCB(z! — 22) =
(2" = 22)TBTKB(2' — 2%) > 0 by the hypothesis. Together with the above inequality, this
gives (2! — 2%)TCB(2' — 2%) = (2! — 22)"TBTK B(2' - 22) = 0. Since col(B, D + D7) is of
full column rank and K is positive definite, we get 2! = 22. |

Proof of Theorem 3.6.1: Take any K € K. It follows from [3, Theorem 2.8.1] that
the minimization problem in (3.5), i.e., MIN(||z — zo|/%, {z | Cz € @}}) is solvable since
{z | Cz € Qp} is a polyhedron and ||z — zo||% is bounded below. Let z}; denote one of its
solutions. It follows from Theorem 3.8.10 items 3-6 that 2} = 2o + Bu® where u° is the
unique solution of the generalized linear complementarity problem

z€ Qp
Czy+CBz € Q)
2" (Czo+ CBz) = 0.
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Note that u® and hence z}; is independent of K. [ |

To prove the remaining claims, we need to do some preparations. The rational comple-
mentarity problem and its relation to initial solutions will be in order.

Problem 3.8.11 (RCP(zo, A, B,C, D)) Given zo € R* and (A, B,C, D) with A € R™*",
B e R¥™, C € R™*™ and D € R™ ™ find 4(s) € R™(s) such that

1. a(s) L g(s) forall s € C
2. 4(o) > 0 and g(o) > 0 for all sufficiently large o € R

where
4(s) = C(sI — A)'zo + [D + C(sI — A)~'Bla(s).

For brevity of notation, we denote RCP(z, A, B, C, D) by RCP(z) if (A, B, C, D) is clear
from the context. There is one-to-one correspondence between the solutions of RCP and
initial solutions of LCS as described in the following lemma.

Lemma 3.8.12 Consider a matriz quadruple (A, B,C, D). The following statements hold.

1. Let u(s) be a solution of RCP(zg,w(s)) for some ¢ and strictly proper w(s). Define
z(s) and y(s) as follows

&(s) = (sI — A)'zo + (sI — A)"'Ba(s),
9(s) = Ciz(s) + Du(s).

Then, the inverse Laplace transform (u,z,y) of (i(s),(s),9(s)) is an initial solution
of LCS(A, B, C, D) with the initial state zg.

2. Let (u,z,y) be an initial solution of LCS(A, B, C, D) with the initial state zo and let
u(s) be the Laplace transform of u. Then, a(s) solves RCP(x).

Proof: Evident from [9, Theorem 5.3]. |

The following properties of RCP will be used later.

Lemma 3.8.13 Consider a matriz quadruple (A, B,C, D). Let G(s) be the transfer matriz
of the system £(A, B,C, D), i.e., G(s) = D + C(sI — A)~'B. Suppose that G(o) is a P-
matriz for all sufficiently large o. Then the following statements hold.

1. There ezists a unique solution of RCP(x) for all initial states xg.
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2. If G(s) is totally of index 1 then the solution of RCP(z) is proper for all x,.

Proof: The first claim follows from [8, Theorem 4.1 and Corollary 4.10]. For the second
one, let the solution of RCP(zy) be @(s). Then, there exists an index set K C 7 such that

Uk (s) = —G i (s)Cra(sI — A)lzg (3.27)
Uk (5) =0 (3.28)

by the formulation of RCP. According to Lemma 2.5.4, there exists & > 0 such that
Gk (0)] < ao

for all sufficiently large o since G(s) is totally of index 1. Then, the equation (3.27) implies
that i (o) is bounded for all sufficiently large o due to the fact that Cr,(sI — A)~! is
strictly proper. Consequently, 4(s) is proper. |

Proof of Lemma 3.6.3: The first claim follows from Lemma 3.8.12 and Lemma 3.8.13
item 1. It remains to prove the second one. Let (u,z,y) be the unique solution of
LCS(A, B, C, D) with some initial state zy and let (i(s),Z(s), §(s)) be the Laplace trans-
form of (u,z,y). It follows from Lemma 3.8.12 item 2 that a(s) solves RCP (). According
to Lemma 3.8.13 item 2, (s) must be proper. Let the power series expansion of i(s) be
given by

d(s)=a+uls ' +uls 24, (3.29)

Since #(s) = (sI — A)~'zo + (sI — A)"'Bi(s), &(s) is strictly proper, i.e., lim,_,o (s) =
0. Furthermore, the equation g(s) = Ci(s) + G(s)u(s) implies that 7(s) is proper and
limy_e0 §(s) = Da. [

Proof of Corollary 3.6.4: Since the system (A, B, C, D) is passifiable by pole shifting
there exists p such that ¥(A + pI, B,C, D) is passive. It follows from Lemma 3.8.5 items
5 and 4 that G(s) is totally of index 1 and G(0) is positive definite for all sufficiently large
0. Then, the claims follow by applying Lemma 3.6.3. |

Proof of Theorem 3.6.5:
1: Tt follows from Theorem 3.6.1 and application of Theorem 3.8.10 items 3 and 4 for

w =0,
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2: It follows from Theorem 3.6.1 and application of Theorem 3.8.10 items 3 and 6 for

w=0.
3: It follows from Theorem 3.6.1 and application of Theorem 3.8.10 item 1 for w = 0.

4: It is known from Corollary 3.6.4 that there exists a unique initial solution of
LCS(A, B,C, D) with the initial state zo and the impulsive part of this solution is of the
form (4,0, D). Hence, it remains to show that @ = u®. Since (u,y) is initially nonnegative
due to Definition 3.6.2, we have

@>0 Du>0 (3.30a)

Note that @ is the unique solution of RCP(zg) due to Lemma 3.8.12 item 2. The power
series expansion of u(s) around infinity is of the form

ds)=a+u's ' +u2s 240,

Then, the power series expansion of j(s), the Laplace transform of y, around infinity is of
the form

§(s) = C(sI — A) 'z + [D + C(sI — A)~'Bli(s)
= Di+ (Czg + CBu+ Du')s™' + (CAzy + CAB@ + CBu' + Du®) + -- - .

Hence, we get from the formulation of RCP that 0 = 4(s) "§(s) = @' Da+u"[Czo+CBu+
(D+D")ul]s™! +--- for all s € C. Thus, we have

@' Di=0 (3.31a)
@' [Cxo+CBa+ (D+ D")u'] =0. (3.31b)

Note that (3.31a), together with (3.30), implies that @ € Qp. Besides, (3.31a) implies that
(D+ DT)a = 0. This results in

@' (Czo+CBi) =0 (3.32)
due to (3.31b). Since u(s) is a solution of RCP(z), we get

i4+ulc! >0 (3.33a)
Dii+ (Czy + CBi+ Du')o™! (3.33b)
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for all sufficiently large o, and
(@+u'o™)"[Da+ (Cxo + CBa + Du)o™ '] =0 (3.34)

for all o € R. It follows from (3.33) and (3.34) that @ +u'o~"! is a solution of LCP((Cz¢ +
CBu)o~!, D) for all sufficiently large 0. Consequently, Czy + CBu € K(D) and even
Czo+CBu € Qj, due to Lemma 1.2.4 item 2. Finally, we can conclude that % is a solution

of the generalized linear complementarity problem

2€Qp
Czo+CBz € Q}
2" (Cz9 + CBz) = 0.

Note that it is shown in 2 that u® is a solution of this problem. However, it is already
known from Theorem 3.8.10 item 6 that the above problem has at most one solution.

Hence, @ = u®. [ |

Proof of Theorem 3.6.7: Evident from Definition 3.6.6, Theorem 2.3.3 (for the zero
input) and Theorem 3.6.5. |

Proof of Theorem 3.6.9: Evident from Definition 3.6.8, Corollary 3.4.4 and Theorem
3.6.5. |
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Chapter 4

Systems with Piecewise Linear Elements

4.1 Introduction

The consideration of dynamical systems with external variables can be motivated in several
ways. In control theory, external variables occur as actuators and sensors. In a hierarchical
modeling context, external variables arise as the variables through which subsystems may
be connected to each other. In studies of dissipative systems, inputs and outputs are used
in pairs to quantify energy exchange. Some interesting classes of systems may be obtained
by connecting inputs and outputs to each other in a particular way; for instance, letting
certain inputs and outputs be linked by a feedback with given maximal L,-gain has been
popular in recent years as a way of describing model uncertainty. The many uses that can
be made of inputs and outputs (or more generally, of external variables) shows the strength
of systems theory as it has been developed in the past decades.

In this chapter we will be concerned with yet another way of using external variables.
Similar to the way that inputs and outputs are used in the model uncertainty description
that we just mentioned, the class of systems that we discuss below is obtained by connecting
inputs and outputs in a specific way. Similar to the use of inputs and outputs in the
context of dissipativity, the links that we specify are defined for pairs of (scalar) inputs and
outputs. Below we consider the class of dynamical systems that is obtained by combining
a dynamic linear input/output system with a static piecewise linear input /output relation.
The properties of the systems that are obtained in this way are coded entirely into the usual
(A, B,C, D) parameters of the linear system and the parameters of the piecewise linear
relation. As a result, we study a class of nonlinear and nonsmooth dynamical systems
using notions from linear systems theory.

Although of course many properties of the systems considered here are of potential
interest, we concentrate on the most basic properties, namely existence and uniqueness
of solutions. As already mentioned, we consider piecewise linear relations between pairs
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of variables. These relations do not necessarily specify one variable as a function of the
other (see e.g. the characteristics shown in Figure 4.1(b) or Figure 4.3(b) below). For this
reason, standard theorems on the well-posedness of feedback connections do not apply.
Nevertheless, it will be shown below that existence and uniqueness of solutions do hold if
certain conditions are satisfied. Of course one may consider piecewise linear systems with
additional inputs and outputs that are not connected by piecewise linear relations; here
however we study the basic situation in which there are no additional external variables so
that solutions, if uniqueness holds, are parametrized by initial conditions.

The systems that we consider can also be studied in the framework of differential
inclusions, as developed for instance in [1]. Indeed this is a very general framework that
allows the study of many kinds of systems. We believe that the approach taken in this
chapter is more tailored to the specific structure of piecewise linear systems; as will be
shown below, some ideas from linear systems theory actually play an important role in the
formulation of necessary and sufficient conditions for existence and uniqueness of solutions.
The work by Filippov (see for instance [7]) is closer to the approach we take here than
the general differential inclusion framework. On the one hand discontinuous dynamical
systems in Filippov’s sense may be described in terms of relays, which are a special case
of the piecewise linear characteristics considered here; on the other hand Filippov allows
nonlinear dynamics, whereas we restrict ourselves to couplings between piecewise linear
characteristics and linear dynamics. As a result we obtain conditions for well-posedness
that are different in nature from those considered by Filippov.

Piecewise linear systems are important for several reasons:

e They form a limited class which nevertheless can approximate nonlinear phenomena
as accurately as desired.

e As quite natural extensions of linear systems, they allow already well-established
linear analysis/synthesis methods to be applied locally.

e They arise naturally in many applications ranging from circuit theory to economics
and from mechanics to control systems.

To give a quick impression of applications areas, we mention linear electrical circuits with
piecewise resistive elements [2,15,24|, systems with relays [22] and/or saturation charac-
teristics, mechanical systems with Coulomb friction [17|, variable structure systems [23],
and bang-bang control [3,14].

In many of the application areas mentioned, one encounters piecewise linear relations
between two variables that cannot be rewritten as functions from one variable to the other.
For instance, the relay characteristic is of such a type. Although it would be possible to
apply a change of coordinates so as to obtain a functional relationship (for instance, rotation
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by 45 degrees in the relay example), such a transformation will affect the feedthrough term
in the linear system component of the overall system description. As is well-known, even
Lipschitzian feedback may not be well-posed for linear systems with feedthrough terms. In
the development below, we allow piecewise linear relations of non-functional type as well
as nonzero feedthrough terms in the part of the system that is specified by parameters
(A,B,C, D).

As is well-known (see for instance |[6]), piecewise linear relations may be described
in terms of the linear complementarity problem (LCP) of mathematical programming.
The LCP is briefly described in Section 4 below, together with one of its generalizations,
the horizontal complementarity problem (HLCP). The complementarity formulation has
been used for static piecewise linear systems in [15,24]; this chapter may be viewed as an
extension of the cited work in the sense that we consider dynamic systems. The chapter can
also be viewed as a generalization of earlier work which was concerned with well-posedness
of linear systems coupled to the ideal diode (pure complementarity) characteristic [11,20]
or to the relay characteristic [16], although the approach taken here is somewhat different
from the one in [16].

The organization of the chapter is as follows. We begin with a very quick look at
motivational examples in Section 4.2. Section 4.3 is devoted to the introduction of the
piecewise linear characteristics that will be under investigation in the sequel. This will be
followed by recalling the related complementarity problems in Section 4.4. In Section 4.5,
we propose a definition of solution for the linear systems with piecewise linear character-
istics and derive sufficient conditions under which the solutions do exist and are unique.
Section 4.6 provides the connections with the previous chapters by showing that some of
the well-posedness results obtained earlier can be deduced from our new general frame-
work. It also illustrates the implications of our results on the linear systems with relays
and saturation characteristics. Finally, the conclusions in Section 4.7 will be followed by
the proofs in Section 4.8.

4.2 Motivational Examples

In circuit theory, piecewise linear modeling is a widely used technique. For instance, ideal
modeling of a diode yields a voltage-current characteristic depicted in Figure 4.1. Similar-
looking characteristics can be obtained from parallel/series connections of linear resistors,
ideal diodes and batteries. Such a circuit and its voltage-current characteristic are shown
in Figure 4.2. We can think of many other piecewise resistive elements such as satura-
tion characteristics (see Figure 4.3) or dynamical elements such as capacitors/inductors
with piecewise linear charge-voltage/flux-current characteristics. Of course, piecewise lin-
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(a) Ideal diode (b) Ideal diode characteristic

Figure 4.1: Ideal diode and its voltage-current characteristic
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Figure 4.2: A piecewise linear resistor and its voltage-current characteristic

ear elements also occur in various other engineering areas. For instance, the ideal relay
characteristic (see Figure 4.3) serves as an idealized model of Coulomb friction in me-
chanical systems and it arises as well in switching control schemes. Many other examples

1 u

(a) Saturation characteristic (b) Ideal relay characteristic

Figure 4.3: Saturation and ideal relay characteristics

and potential application areas of piecewise linear phenomena can be found. With these
wide-range application areas in our mind, we will address the well-posedness (in the sense
of existence and uniqueness of solutions) issues of models consisting of a linear (dynami-
cal) system coupled with elements that are of a piecewise linear nature. As discussed in
Chapter 2, we consider well-posedness from a model validation point of view.
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4.3 Piecewise Linear Characteristics

The main ingredients of this section are piecewise linear characteristics. We consider only
those characteristics which are piecewise affine curves in R? as it is defined in the following.

Definition 4.3.1 A set G is called a k-piecewise linear characteristic if there exist (direc-

tions) d-, d* € R? with ||d~|| = [|d*|| = 1 and (vertices) [v']*=! € (R?)* such that the two
half lines

Gi={M +v'|0< A} (4.1a)

Gr = {v*F 1+ Ad* |0 < A} (4.1b)

and k — 2 line segments
Gi={WwTT+(1-Mv'|0<A<1}fori=23,....k—1 (4.1c)
satisfy the following conditions
L. GNGiyi={vw}fori=1,2,...,k—1,

2. GNG =0if|i—j|>1,

If the above conditions hold we write G = ple(d—, [v']5_,, d*). We say that (d-, [v']5_,,d")
is a minimal description of G if G = plc(d™, [v']E.|,d") and G is not a (k — 1)-piecewise
linear characteristic. We say that the vertex v € [v']5, of ple(d™, [v'],,d") is redundant
if ple(d™, [vY]5, \ v,d*) = ple(d™, [v]L,, d*).

Remark 4.3.2 Notice that ple(d™, [v', 0%, ..., v¥],d*) = ple(d*, [vF, 0571, ... vl],d), ie.,
the d’s and v’s are not unique. Notice also that every k-piecewise linear characteristic can
be regarded as a k + p-piecewise linear characteristic by adding p artificial (redundant)

vertices. It can be verified that there are exactly two minimal descriptions for every G.

An example of a k-piecewise linear characteristic is depicted in Figure 4.4. It is known
that such piecewise linear curves can be represented by using complementarity variables.
The next definition is a first step towards introducing complementarity representations for
k-piecewise linear characteristics.

Definition 4.3.3 An ordered set [2']%_, € (R™)* is called k-horizontal complementary if
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Figure 4.4: An example of k-piecewise linear characteristic

the following conditions hold:

0< 2! (4.2)

< <efori=2,3,...,k=1 (4.3)
0< 2 (4.4)

(z")22=0 (4.5)
(e—2)T2"' =0fori=2,3,...,k (4.6)

where e denotes the vector of ones. The set of all such k-horizontal complementary ordered
sets is denoted by HC}'.

We will often use the following particular description of the set HCj.

Proposition 4.3.4 Let the sets [(']5_, be defined as

c—{[ T eR o<z, =z3=---=zk=0}, (4.7a)
CF={,eRF |0< 2K 2l =0,22=2 TS a8 (4.7b)

and for j =2,3,...,k—1,

W d=i
C={f eR|0<Z <1andz*={1 i=23,...,.i-1 } (4.7¢)
0, d=ftd oD, b

Then the following statements hold.

1. Fori=1,2,...,k—1, ("N (" is a singleton.
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2.0N¢E=0ifli-j| > 1.
B Jrt="0,

The proof of the above proposition directly follows from the definitions of the sets ¢,

There is a correspondence between k-piecewise linear characteristics and affine functions
defined on the set #Ci. To see this, consider a k-piecewise linear characteristic g =
ple(d™, [v',v?,...,v¥],d") and the affine function f : HC\ — R? given by

F[#1E) =v' +d 2 +Z e P A (4.8)

Let the sets [¢']i_; be as in Proposition 4.3.4. Note that f(C') = G;. Moreover, it can be
verified that f is a bijection. We will represent piecewise linear characteristics by exploiting
this correspondence. With this aim, consider m k-piecewise linear characteristics G2,

We associate to each characteristic G* = ple(d®~, [v™!, v*2, ..., v**], d"*) two vectors
; - 62 il ik—1 k-2 it
rt=col(=dy , v  — vy, ..., o0 — 0yt dyY) (4.9a)
1 i,— 1,2 i1 1,k—1 i,k—2 g+
st =col(—dy™,vy" —vy,...,05" " — "% dy). (4.9b)

and a function f': HCy — R? defined by

Pl ) =™ = (::) '+ (:f) 22+ (;f) FA SRR (;f) 2", (4.10)
1 2 3 k

Define ¢*,¢¥ € R™ as ¢* = col(vy"', v}, ..., v["') and ¢¥ = col(vj!, v2, ... ,vgh). Also de-
fine [RIJS_,, [S7]5_, € (R™*™)* as RI = diag(r},r2,...,r) and &7 = diag(s},s2,...,s).

Fact 4.3.5 Consider m k-piecewise linear characteristics [G'|7,. Let (¢*, ¢¥, [RIJE.;, [S71EL,)
be as defined above. Then, the following statements are equivalent.

(u) eg (4.11)
Yi

u=q¢"—R'Z2'+R?22+ R*2® + ... + Rk2* (4.12a)
y=g'—-8'2" 4+ 82 8% +...+ 84" (4.12b)

1. For each 7 € m,

2. For some [z']¥_, € HCP,
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k

Moreover, the mapping col(u, y) — [2']¥_; is a bijection.

Indeed, the assertion follows immediately from the fact that each f' is a bijection. In
the light of Fact 4.3.5, we say that (¢",¢Y, [R’]5_,,[S7]5_,) is a horizontal complementarity
representation of [G'|™ . It is clear from the discussion following Definition 4.3.1 that these

representations are not unique.

4.4 Complementarity Problems

There are a number of interesting generalizations of the linear complementarity problem
(LCP) of mathematical programming. Particularly, the (Extended) Horizontal LCP will
play a key role in representing piecewise linear characteristics.

Problem 4.4.1 (HLCP(q,[M']%,)) Given ¢ € R™ and [M']%, € R™™ find [2']%, €
HCP such that M'z' = g+ 35, MiZ'.

The HLCP was introduced in [12] with £ = 3 and M* = I, and further developed in [13]
with an eye towards piecewise linear functions. We briefly recall some facts from [21] and
state a result on solvability of the problem which is parallel to Lemma 1.2.4 item 1. To do
this we need to make some definitions.

Definition 4.4.2 A matrix R € F™*™ is called a column representative of [M']5_, €
(]mem)k if
R.i € {M}, M2

i) °ir

ME} for all i € m.
For a given [ € k", the matrix ([Mi]5_))! is defined by
‘ i _
(IMEy)e; = M, for j=1,2,...,m.
Definition 4.4.3 We say that an ordered set of matrices [M*]%_,
e is nondegenerate if all column representative matrices are nondegenerate.

o has the column W-property if the determinants of the column representative matrices
are either all positive or all negative.

For the sake of completeness, we quote the following theorem from [21].

Theorem 4.4.4 [21] HLCP(q,[M']%_,) has a unique solution for all ¢ € R" if and only
if [M']%_, has the column W-property.
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Remark 4.4.5 The LCP can be regarded as a special case of the HLCP. Indeed, LCP(q, M)
is nothing but HLCP(q, [/, M]). In this case, Lemma 1.2.4 item 1 and Theorem 4.4.4 co-
incide since M is a P-matrix if and only if the determinants of all column representative
matrices of [/, M] are positive, i.e., [I, M] has the column W-property. On the other hand,
HLCP(q, [M*]E_,) can be written as an LCP whenever M! is invertible. For this purpose,
we define

Ml Mz Njk—l
—F @) s 0
wig)= | e and N(M).):=]1 0 —-I --- 0
e 0 0 «.. =I

where M* = (M*)~"'M**! for i = k — 1. There is a one-to-one correspondence between the
solutions of HLCP(g, [M']f_) and LCP(r((M')~1q), N([M]%_,)). In fact, if [2']%_, solves

B
the former then col(2?,23,. .., z*) solves the latter and vice versa.

4.5 Piecewise Linear Systems
Consider continuous-time, linear and time-invariant systems given by

#(t) = Az(t) + Bu(t) (4.13a)
y(t) = Cx(t) + Dult) (4.13b)

where z(t) € R, u(t) € R™, y(t) € R™ and A, B, C, and D are matrices with appropriate

sizes. We denote (4.13) by ¥(A, B, C, D). Let [G']™, be a given family of k-piecewise linear
characteristics. Let the variables u and y be coupled via these characteristics as depicted

u;i(t) ;
eg (4.14)
(yi(t))
for all ¢. We denote the resulting piecewise linear system (2(A, B, C, D) together with

(4.14)) by PLS(A, B, C, D, [G']™,). The following definition will make clear what is under-
stood by a solution of PLS(4, B,C, D, [G']™)).

in Figure 4.5, i.e.,

Definition 4.5.1 A triple (u,z,y) € PB™"*™ is said to be a solution on [0,7) of
PLS(A, B,C, D, [G']™,) with the initial state x, if the following conditions hold for all
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te[0,7T)
t
#(t) = +/ [Az(s) + Bu(s)] ds, (4.15)
0
y(t) = Cz(t) + Du(t), (4.16)
w(t)) G fori=1,2,...,k. (4.17)
yi(t)
Uy .
Y1 g
—
£=Az+Bu |, G?
y=Cz+ Du L
U —
Ym g™

Figure 4.5: Overall system

In the sequel, we will be dealing with systems having low indez in the sense as it will be

defined in the following definitions.

Definition 4.5.2 A rational matrix M(s) € R™™(s) is said to be of indez k if it is
invertible as a rational matrix and s~*M ~!(s) is proper rational.

The notion of index will be generalized to families of matrices via column representatives

in what follows.

Definition 4.5.3 A family of rational matrices [M*(s)]%, is said to be of indez k if all its
column representative matrices are of index k.

We can now present the main result of this chapter.

Theorem 4.5.4 Consider a piecewise linear system PLS(A, B,C, D, [G']™,). Let (¢*,¢",
(R le, [Sj]j?:l) be a horizontal complementarity representation of the piecewise linear char-
acteristics [G7)J,. Suppose that [G(o)R’ — S7]5_, has the column W-property for all suf-

ficiently large 0. Then, the following statements hold.

1. Assume that [G(s)R? — S7)¥_, is of indezx 1. There ezists a unique solution on [0, c0)
of PLS(A, B,C, D, [GY]™,) with the initial state zq if and only if HLCP(Czo+ Dg* —
¢¥,[DR? — S7)%_, ) is solvable.
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2. If[DR'-S', DR*— S*] is nondegenerate then there ezists a unique solution on [0, c0)
of PLS(A, B,C, D, [G'|™,) for all initial states.

Notice that the horizontal complementarity representations of a family of piecewise lin-
ear characteristics are not unique in general. However, the (sufficient) condition pre-
sented above for well-posedness depend on those representations. Naturally, one might ask
whether it is possible that the condition holds for one representation but not for another
one. As stated in the following theorem, the answer of this question is negative. In other
words, the above theorem is independent of the choice of the representations.

Theorem 4.5.5 Consider a matriz pair (M, N) € R™™ x R™™ and k-piecewise lin-
ear characteristics [G']7.,. Let (-, -, [Rj]le, [S7]5_,) and (-,-, [Rj];?:l, [.S—’j]f:l) be horizontal
complementarity representations of [G7]7L,. If [MR’+ NS? k_\ has the column W-property
then so does [MR’ + NS7]%_,.

4.6 Examples

In this section we apply Theorem 4.5.4 to subclasses of piecewise linear system.

4.6.1 Linear complementarity systems

The well-posedness results for linear complementarity systems that have been presented -
earlier can be obtained as a special case of Theorem 4.5.4.

Corollary 4.6.1 Consider a piecewise linear system PLS(A, B,C, D, [G']™,) where the
piecewise linear characteristic G' is as depicted in Figure 4.6 for each i € m. Suppose that
G(s) is totally of indez 1 and G(o) is a P-matriz for all sufficiently large o. Then, there
ezists a unique solution on [0,00) of PLS(A, B,C, D, [G']™,) with the initial state zq if and

1=l
only if Czo € K(D).

Uy

Yi

Figure 4.6: Complementarity characteristic
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4.6.2 Linear relay systems

The existence and uniqueness of solutions of linear relay systems (linear systems coupled
with relay characteristics) are addressed in [16] (see also [10]). The following corollary
states a parallel result to those stated in [10,16].

Corollary 4.6.2 Consider a piecewise linear system PLS(A, B,C, D, [G'|™,) where the

piecewise linear characteristic G' is as depicted in Figure 4.7 with €5 > €\ for each i € .

Suppose that G(o) is a P-matriz for all sufficiently large o. Then, there ezists a unique

solution on [0,00) of PLS(A, B,C, D,[G']™,) for all initial states .

Uy

€
Yi

€1

Figure 4.7: Relay characteristic

We can take one step further and consider relays with dead zone. The next corollary shows
that the condition presented for relay systems is also sufficient for the well-posedness of
linear systems coupled with relays having dead zone.

Corollary 4.6.3 Consider a piecewise linear system PLS(A, B,C, D, [G|™,) where the
piecewise linear characteristic G' is as depicted in Figure 4.8 with 0 < e} > €} < 0 and
fi > fi for each i € m. Suppose that G(o) is a P-matriz for all sufficiently large o. Then,
there exists a unique solution on [0,00) of PLS(A, B,C, D, [G'|,) for all initial states zq.
Uy

€9

fli Yi

Figure 4.8: Relay with deadzone characteristic
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4.6.3 Linear systems with saturation
Consider the single-input single-output system
%= Az + Bu (4.18)
y=Crz (4.19)

where u and y restricted by the saturation characteristic G depicted in Figure 4.9. The

variable u is a piecewise linear function of the variable y, i.e., the function y + u is Lipschitz

continuous. Therefore, one can guarantee existence and uniqueness of the solutions of

PLS(A, B,C,0,G) by employing standard results from the theory of ordinary differential

equations. However, the presence of a feedthrough term D makes it impossible to employ

such Lipschitz continuity arguments. In fact, one can find ill-posed examples for this case

like the following.

Figure 4.9: Saturation characteristic

Example 4.6.4 Consider the single-input single-output system

T = 4.20)
y=z-—2u (4.21)
where u and y restricted by a saturation characteristic G with e, = —f; = —ey = f, = %

shown in Figure 4.9. Let the periodic function @ : R, — R be defined by

12 ifo<t<l
i) =4 <172 Fl1<E<S
1/2 if3<i<d

and 4(t — 4) = ua(t) whenever t > 4. By using this function define 7 : R, - Ras

i) = /Ot u(s)ds,
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and y: R, - R as

5:‘:

J=T=2
0

It can be verified that (—a, —z, —7), (0,0, 0) and (@, Z, §) are all solutions of PLS(0, 1,1, —2,
G) with the zero initial state.

As illustrated in the example, the Lipschitz continuity argument does not work in general.
The following corollary gives a sufficient condition for the well-posedness of linear systems
with saturation characteristics.

Corollary 4.6.5 Consider a piecewise linear system PLS(A, B,C, D, [G'|™,) where the
piecewise linear characteristic G' is as depicted in Figure 4.9 with €} > €} for each i €
m. Let R = diag(el — €}) and S = diag(fi — fi). Suppose that G(c)R — S is a
P-matriz for all sufficiently large 0. Then, there exists a unique solution on [0,00) of
PLS(A, B,C, D, [G'|™,) for all initial states z,.

4.7 Conclusions

In this paper we have considered linear systems with piecewise linear characteristics that
can be represented by horizontal complementarity variables. We have proposed a solution
concept for this class of systems, and we have presented sufficient conditions under which
solutions exist and are unique. In particular we have given, under some conditions, a
characterization of the set of initial states for which a solution exists.

We have worked with the class of piecewise Bohl functions, which in a sense is tailored
for piecewise linear systems without external inputs. The class of piecewise Bohl functions
may however be too small for some applications. A recent paper [18] reports existence
and uniqueness results in a larger function space for linear systems with a single relay. To
provide the same type of results for arbitrary piecewise linear characteristics is an open
problem.

The systems considered in this paper are “closed” dynamical systems (i.e. systems with-
out external variables), even though they are constructed with the aid of an “open” linear
system and in fact we made extensive use of input/output system theory. Of course it
would be of interest to consider piecewise linear systems with additional external vari-
ables, such as would be obtained by taking a linear system and connecting some but not
all of its inputs and outputs by means of a piecewise linear relation. As an example, the
i/o relation y(t) = max,<, u(7) can be realized (assuming proper initialization) by a sys-
tem that is obtained in this way. More generally, it might be asked which input/output
relationships can be realized by means of piecewise linear systems with external variables.



4. SYSTEMS WITH PIECEWISE LINEAR ELEMENTS 95

Given that one has established existence and uniqueness of solutions, a natural next
question is how to compute these solutions. Numerical procedures may be constructed
on the basis of locating the points in time where transfer to another branch of a charac-
teristic takes place, and re-starting the integration with the new data at each such time
point (“event tracking schemes”). When there are many switches between branches this
method may become awkward. There are indications that schemes may be devised that
will asymptotically (as the time step goes to zero) converge to the true solution, even
when no attempt is made to locate the switch times from one branch to another. Such a
consistency result has been recently proven under a passivity assumption for systems with
ideal diode characteristics [4], and a similar result has been obtained for relay systems in
[9]. Extensions to arbitrary piecewise linear systems are currently under investigation.

4.8 Proofs

4.8.1 Some Lipschitzian results on HLCP

This subsection is devoted to Lipschitzian properties of HLCP. It is known that the so-
lutions of LCP have the upper Lipschitzian property as shown in [5, Theorem 7.2.1].
Moreover, the solution is even a Lipschitz continuous function of the problem data under
certain assumptions (see [5, Theorem 7.3.10]). In what follows, we will extend the Lipschitz
continuity property to HLCP. We denote ||col(z', 2%, ..., 2*)|| by [|[z]5_, || for simplicity.

Theorem 4.8.1 Assume that [M']%_, C R™*™ has the column W-property. The function
g+ [2']5., where [z']E_, is the unique solution of HLCP(q,[M*]%_, ) is Lipschitz continuous

with the Lipschitz constant d([M']L_,) given by d([M*]L_,) := max]||{([M*]E,)"}71]|.
Ik

define the sets Z! C HC}* and Q' C R™ as

Z' = {[#l, e HCL | (B, &% for §=1,2;:; . ,m} (4.22)
Q' ={geR™|qg=M'2" — M22 — M32% — ... — M*2* for some [2']E, € 2!} (4.23)

where [¢']X, is as in Proposition 4.3.4. Suppose that [z']¥,

HLCP(g, [M']£_,) for some g € Q' with [ € k. Then, we have

is the unique solution of

g=M"z"' - M22% - M%7 — .- — M*ZF. (4.24)
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j=1,2,...,k It follows that

0 dfe<qandd=1,

Zg, = Qe ifi<jandi>?2, (4.25)
0 ifi>q.
By substltutmg the above eguatlons 1nt30 (4. 24 get =1 'k
g= M-K,ZKI - M-Kzsz M.K32K3 oKsz,, ZM:K]eK,- (4.26)
1=2 j=3
Consequently,
zk,
Z%{z 3=l Ik
(M.IK, _MEKZ —foa _]wokk,,) Zks | =g+ ZM:K}'eK}" (427)
¢ 1=2! =3
Zk,

Note that K;NK; = if i # j and _LleK,- = m. It follows from the fact that [M*]¥_, has the
=

column W-property that the matrix (M.IK1 -MZ, -MZ, - —Mka) is invertible.
Hence, (4.27) can be written as
zk,
D
ZK, i j-1
1

k
> Migex). (4.28)

i=2 j=3

do | = (M, —M2, ~Mi, - -Mb,) (a+
z5,

The equations (4.25) and (4.28) imply that the function ¢ — [27]5_, is affine on the set Q'.

The column W-property of [M']%_, implies from Theorem 4.4.4 that for each ¢ € R™ there

exists a solution of HLCP(q, [M']%_)), i.e., U @' = R™ and this solution is unique, i.e.,
1ek™

(Q" N Q%)° =0 if I* # [2. Furthermore, uniqueness of solutions implies that the function
q— [zj]f:1 is continuous. Then, the claim of the theorem follows from Lemma 2.5.1 since

I (Mhe, ~MZe, ~Mde, - ~Mb )= (M, M2, M - M)
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In particular, we will need to establish lower bounds for certain transfer matrices. The
lemma below gives such a bound for low index transfer matrices.

Lemma 4.8.2 Consider a piecewise linear system PLS(A, B,C, D, [G'|™,). Let (¢*,¢",

Rk [S7]%_,) be a horizontal complementarity representation of the piecewise linear char-
j=1 g=1

acteristics [G7)5_, and G(s) = D + C(sI — A)"'B. Suppose that [G(s)R! — S7]5_, is of
index 1. Then, there exists a real number a such that for all sufficiently large o

d([G(o)R! — S7)5_)) < ao. (4.29)

Proof: By hypothesis, we know that s™'{([G(s)R? — S7]%_,)'}~" is proper for all I € m*.
Hence, [[{([G(o)R’ — S7]5_)'}7!|| < oo for all sufficiently large o. Clearly, (4.29) holds

for @ = maxaqy. |
lek™

4.8.2 On the invertibility of rational matrices

In this subsection, we state the following lemma on the invertibility of rational matrices
which will be employed later on.

Lemma 4.8.3 Consider a matriz quadruple (A, B,C, D)such that G(s) = D + C(sI —
A)!B is invertible as a rational matriz. Suppose that the function pair (u, ) € F([0,T],
R™™) where x is differentiable satisfies

i=Azr+ Bu+e (4.30a)
0=Cz+Du+f (4.30b)

for some e € R* and f € R™. Then, x is uniquely determined, and there exist a matriz
K € R™" and a vector | € R™ both depending only in (A, B,C,D,e, f) such that u =
Kz +1.

Proof: It follows from [8, Theorem 3.24]. B

4.8.3 Initial solutions and their characterizations

To prove Theorem 4.5.4, we shall first define the notion of initial solution for piecewise

linear systems.

Definition 4.8.4 A triple (u,z,y) € B™*"*™ is said to be an initial solution of PLS(A4, B,
C, D,[G'|™,) with the initial state z, if the following conditions hold.
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1. The triple (u,z,y) satisfies

i = Ax+ Bu, o(0) = zo;
y=Cz+ Du

2. Foreachi=1,2,...,m,

i(t ) .
(u Et))) € G* for all sufficiently small ¢.
Yi

We shall derive sufficient conditions for existence and uniqueness of initial solutions. To
do this, we first need some preparations. There are several definitions in order.

Definition 4.8.5 The family of continuous functions [f!]"., C C™ is said to be initially
k-complementary if the following conditions hold.

1. For all sufficiently small ¢,

0< fi¢)
0 filysefori=23,...,0=1
0 < f™(t).

2. Forallte R,

(F1@) A =0
(e= i) fFHi(t)=0fori=2,3,...,n

Lemma 4.8.6 Consider a piecewise linear system PLS(A, B,C, D, [G'|™,). Let (q¢“,q¢Y,
[Rj]le, [Sj]le) be a horizontal complementarity representation of the piecewise linear char-
acteristics [GV]T-,. Assume that all column representatives of [G(s)R! —S7|5_, are invertible
as a rational matriz and the triple (u, ,y) is an initial solution of PLS(A, B, C, D, [G'|™,)
with some initial state. Then the following statements hold.

1. Let [Q}]le be as in Definition 4.3.1 for eachi = 1,2,...,m. Then, there ezistsl € k
such that

(u,((:;) € affn g;',, foreachi=1,2,... mandt €R,.
Yi

2. Letl € k" be as in the previous item.
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(a) There ezist vectors @', §* € R™ and z € B™ such that

v=a+R2
y=z]1+81z

where R = [-R', R, R3,...,R¥] and S = [-S',5?%,8%,...,5%].
(b) There ezist initially k-complementary Bohl functions [zj]f=1 C B™ such that
u=q"- R'2' + R?2 + R*2® + ... + RF2*

y=y* =8 + 5% + 8% 4 .o 4 8FF,

(c) There ezist matrices F' € R™™ and G' € R™", and vectors v' € R and

w' € R™ depending only on | such that

i = F'z + '

u=G'z +w
(d) For a given T > 0, there exists o' depending only on | and T such that
llz(t) — z(s)|| < o||t ~ ]|
for all t,s € [0,T).

To prove Lemma 4.8.6, we need the following technical proposition.

Proposition 4.8.7 Let G C R? be an affine set. There ezist real numbers o, 3, and
such that

(U) eGgEav+ pw+y=0.
w
Proof: Evident. ]

Proof of Lemma 4.8.6:

1: Since they are Bohl functions, both u; and y; are continuous. It follows from Def-
inition 4.8.4 item 2 together with continuity that for each i € 7 there exists l; € k such

that
u;(t) € G forallte [0, ¢€)
yt(t) '
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for some € > 0. Since G C affn G} , we have
w(t )
wi(t) € affng; for all t € [0,¢).
yi(t)

Then, it follows from Proposition 4.8.7 that for each i = 1,2, ..., m there exist real numbers
o', B and ' such that a‘u;(t) + #'y;(t) ++' = 0 for ¢ € [0,€). The real-analyticity of Bohl
functions implies that a'u;(t) + 'yi(t) ++* = 0 for t € R,. Hence,

i(t i ;
(u Et))) €affng), foreachi=1,2,..., mandt € R,.
Yi

2a: Define the sets [£']%_,

g={LcR|P == ==0}, (4.31a)

r={Ft, cR|2'=0,2=2=---=21=1}, (4.31b)
0, i=1

g={,cR|£={1 i=23...,5-1 } (4.31c)

0, i=j+1,j7+2,....k

Note that they are similar to (’’s as defined in (4.7) but without inequalities. Define also
the sets V' = {[/)f_, C R™ | [2i]k, € €4 for j = 1,2,...,m}. Let Z' be defined as in
(4.22). It follows from definition of horizontal complementarity representations that

i qa R - R{i j j
G, = {(q’-’> - (S}) 2t + Z (Sj) A | [Pl € 2%} (4.32)

1

Moreover, it can be verified that

k
i g Rili 1
affn G, = { - z; +
4 (qg> (Szlz) j=2 (

Then, Lemma 4.8.6 item 1 implies that there exist functions 27 : R — R™ such that

u k . :
(-0 Qe o

[27(1))5, € V' (4.34b)

BN .
o] A1 e V). (4.33)

u
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for all t € R, . Note that the functions zf with j # [; are constant functions due to the
definition of the set }'. Define the function z : R — R™, and vectors @' and ¢ as

(51 -1 pj L-1 qj
2] Zj:? Ry ijz Sty
g - . ] .
z= l,u ="+ : ,and g = ¢¥ + :
! b= 53 L=l a5
zr;zn Zj:2 Rznm Ej:2 Srj'nm

One can check that (4.34) yields that

u=a+R2 (4.35a)
y=7 +8' (4.35b)

It remains to prove that z is a Bohl function. It follows from (4.35) that the pair (z,z)
satisfies

i = Az + BR'z + B#' (4.36a)

0=Cz+ (DR' - 8"z + D' — ¢ (4.36b)

Since G(s)R! — 8" is a column representative of [G(s)R? — S7)%_,, it is invertible as a ra-

tional matrix due to the hypothesis. Consequently, Lemma 4.8.3 implies that z = Elz + o
for some E' and o'. This implies together with (4.36a) that z is Bohl and hence so is 2.

2b: It has already been shown in the proof of previous item that the function z is Bohl.
For each j € m define

z ifl:=1
2t = J J (4.37)
0  otherwise
0 if lj £
z;.: 2z fly=1 fori=2,3,...,k=1 (4.38)

1 otherwise

. ifl=k
A=dB T (4.39)
0  otherwise

where z is as in the previous item. Clearly, (4.34) holds. Since (u,z,) is an initial solu-
tion, we know col(w;(t),vi(t)) € G for each i € m and for all sufficiently small ¢. It follows

from Fact 4.3.5 that [zf(t)]le € ¢" for all sufficiently small ¢ where (s defined as in (4.7).
k

Consequently, [2']¥, is initially k-complementary.



102 4.8. PROOFS

2c: The matrices F!, G', v, and w' can be given as F! = A + BR'E!, G' = R'E',
v! = Bi! + BR'o!, and w' = @' + R'0' by substituting z into (4.35a) and (4.36a).

2d: From the previous item, it is known that z satisfies & = F'z+v* for some F! € R™"
and v' € R". Since z is continuous, it is bounded on every finite interval [0, 7). It follows
that 7 is also bounded on the interval [0, T]. Therefore, it is Lipschitz continuous on [0, 7]
with a Lipschitz constant depending on only [ and 7. |

By following the footsteps of the characterization of the initial solutions of linear com-
plementarity systems in [10,11], we define the horizontal version of the rational comple-
mentarity problem.

Problem 4.8.8 (HRCP(q(s), [M'(s)]¥_,)) Given ¢(s) € R*(s) and [M'(s)]k_, C R™"(s),
find [2'(s)]%., € R"(s) such that the following conditions hold.

1. M'(s)2'(s) = q(s) + 35, Mi(s)2%(s).
2. For all s € C,

2 (s) L 2%(s)
(s7'e=2'(s)) L 2 (s)fori=2,3,.. ..k

3. For all sufficiently large o,

0<z'(0)
0<2(0)<esclfori=23,...,k—1
0 < 2%(0).

Notice that the conditions 3 imply that z'(s) is strictly proper for 1 =2,3,...,k — 1.
The initial solutions of piecewise linear system can be characterized by the strictly
proper solutions of corresponding HRCPs as stated in the following lemma.

Lemma 4.8.9 Consider a piecewise linear system PLS(A, B,C,D,[G'|™,). Let (¢*, ¢",
[R7]5_,, [S7)E_,) be a horizontal complementarity representation of the piecewise linear char-

acteristics [gf]g":l. The following statements are equivalent:

1. PLS(A, B,C, D, [G']™,) has an initial solution with the initial state x.
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2. HRCP(C(sI — A)'zo + s7'G(s)g" — s7'¢¥, [G(s)R? — §7]%_,) has a strictly proper
solution.

To prove Lemma 4.8.9, we need the following technical lemma.

Lemma 4.8.10 The family of Bohl functwns [fY~, C B™ is initially k-complementary if
and only if their Laplace transforms [fi(s )2, C R™(s) satisfy the following conditions.

1. For all s € C,

F(s) L f2(s)
(s7te — fi(s)) L fitl(s) fori=2,3,... k.

2. For all sufficiently large o,

0< f(o)
0< fi(o)<es' fori=2,3,....,k—1
0 < f¥(o).
Proof: It follows directly from the initial value theorem of Laplace transformation. ]

Proof of Lemma 4.8.9:
1 = 2: Let (u,,y) be an initial solution of PLS. It follows from Lemma 4.8.6 item 2b
that there exist initially k-complementary Bohl functions [27]5_, such that

u=¢"—R'2'+ R?2*+ R*2% + .. + R*2* (4.40a)
Y=g — 82" + 5222 + BB 4 - 4 Sk, (4.40D)

Lemma 4.8.10 implies that the Laplace transforms of [27]5_,, [27(s)]%_, satisfy items 2 and 3
of Problem 4.8.8. On the other hand, the Laplace transform of (u,y), (4(s),§(s)), satisfies
9(s) = C(sI—A)'zo+G(s)a(s). This equation together with the Laplace domain versions
of (4.40) results in

[G(s)R' — §)3'(s) = C(sI — A)'zo + s~ G(s)q* — s7'¢¥ + Z[G — §7]33(s)
Hence, [2/(s)]5_, is a solution of HRCP(C(sI — A)~'z + s7'G(s)g" — s7¢¥, [G(s)R? —
S7)5_;). Tt is clear that [27(s)]5_, is strictly proper since these functions are Laplace trans-

forms of Bohl functions.
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2 =x1r Let [éf (s)]5-, be astrictly proper solution of HRCP(C(sI —A)'zo+5~'G(s)g"~
s71q¥, [G(s)R? — S7]k_,). Let [2?]k_, denote the inverse Laplace transform of [2/(s)]}_,.
Define u = ¢ —Rlzl+R222+R3z3+ -+ RF2F and y = ¢¥ — S'2' + 5222+ 5323+ - -+ SF2F.
Since [27(s)]5_, satisfies

[G(s)R* — 83 (s) = C(sI — A)'mp + s 'G(s)g* — s ¢ +Z — §9)39(s),

the Laplace transform of (u,y), (@, 9) satisfies §(s) = C(sI — A)™'zg + G(s)a(s). Define
2(s) = (sI — A)~'zo + (sI — A)~'Ba(s). It can be easily checked that (u,z,y) is an initial
solution of PLS(A, B, C, D, [G']™,) with the initial state o where z denotes the inverse
Laplace transform of z(s). &

Based on the results of [10], we can make a connection between HRCPs and parametrized
families of HLCPs.

Theorem 4.8.11 Consider a piecewise linear system PLS(A, B,C, D, [G'|™,). Let (¢*, ¢,
[RJ]] o [Sj]le) be a horizontal complementarity representation of the piecewise linear char-
acteristics [G')7-,. Then the statements 1 and 3 are equivalent, and so are the statements
2 and 4.

1. HRCP(C(sI — A)™'zo + s7'G(s)q" — s7'¢%, [G(s)R? — S7]5_,) is solvable.
2. HRCP(C(sI — A) 'zo + s7'G(s)q" — s7'¢¥,[G(s)R? — S7]5_, ) is uniquely solvable.

3. HLCP(oC (ol —A)'zo+G(0)q" —¢¥, [G(0)R? — S7]%_, ) is solvable for all sufficiently
large o.

4. HLCP(oC (oI — A)~'zo + G(0)g* — ¢¥,[G(0)R? — S7]5_, ) is uniquely solvable for all
sufficiently large o.

Proof:
1 < 3: It follows from Remark 4.4.5 and [10, Theorem 4.1].

2 & 4: It follows from Remark 4.4.5 and [10, Corollary 4.10]. [ |

It is already known from Lemma 4.8.9 that strictly proper solutions of HRCP play a
key role in the analysis of initial solutions. The following theorem establishes an equiva-
lence between strictly proper solvability of a HRCP and solvability of a HLCP under the
assumption that HRCP is uniquely solvable.
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Theorem 4.8.12 Consider a piecewise linear system PLS(A, B,C, D, [G']™,). Let (¢*, ¢,
[R7)5_,, [S7]5_,) be a horizontal complementarity representation of the piecewise linear char-
acteristics [G']7L,. Suppose that [G(0)R’ — S?)¥_, has the column W-property for all suf-
ficiently large 0. Then the following statements hold.

1. Assume that [G(s)R? — S7)%_, is of index 1. The following two statements are equiv-
alent.

(a) HRCP(C(sI—A)'zo+s7'G(s)q"~s7"¢",[G(s)R? = S7)¥_, ) has a strictly proper
solution.

(b) HLCP(Czo + Dq" — ¢¥,[DR? — S)5_, ) has a solution.

2. If[DR' — S', DR* — S*] is nondegenerate then HRCP(C (sI — A)~'zo+ s~ 'G(s)q" —
s7'q%,[G(s)R! — S7)k_,) has a strictly proper solution for all initial states x,.

Proof:

la = 1b: Let [2%(s)]5_, be a strictly proper solution of HRCP(C(sI — A)~'z, +
sT'G(s)g" —57'¢%, [G(s)R) — S7]5_)), ie., [27(s)]5_, satisfies the items 2 and 3 of Problem
4.8.8, and

(G(s)R' — 82! (s) = C(sI — A)'zo + s7'G(s)g" — s~'¢¥ +Z — 892 (s)
(4.41)

for all s € C. Define [Z]5_; = lim,_,o[s27(s)]5_,. It follows from the items 2 and 3 of
Definition 4.8.8 that [z’ ]521 is k-horizontal complementary. By multiplying (4.41) by s and
letting s tend to oo, we get

(DR' - $Yz' = Czo + Dg* — ¢¥ +Z (DR’ — §7).

J=2

Consequently, [2/]5_, is a solution of HLCP(Czo + Dq* — ¢¥, [DR’ — S7]5_)).

1b = 1Ia: Observe that we have the following two facts.

i. Since [G(o) R7—S7]5_, has the column W-property for all sufficiently large 7, HLCP(C
(01— A)'zo+07'G(0)g" —07'¢%, [G(0) R? — S7]%_,) is uniquely solvable for all suf-
ficiently large o. Hence, it follows from Lemma 4.8.11 that HRCP(C(sI — A)“J:o +

s7'G(s)g" — s7'¢, [G(s)R! — S7]5_,) has a umque solution, say [27(s ] . Clearly,
[027(0)]5-, is a solution of HLCP(0C(a1 — A) 'z + G(0)¢" — ¢¥, [G(o — S7k)
for all sufficiently large o.
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ii. Let [27)f_, be a solution of HLCP(Czo + Dg* - ¢¥,[DR’ — S]]] 1) Clearly, it is
also a solutlon of HLCP(Czo + Dg* — ¢¥ + E H(0)#,[G(o)R? — §7]5_,) where
H'(s) = (G(s) — D)R" and H’(s) = (D — G(s ))R’ forJ—2,3,...,k.

By using Lemma 4.8.2, Theorem 4.8.1 and the triangle inequality, we get
l[lo2?(0)=2]51 || < ao([loC (o] — A)“zo — 07 Cuxy|

+|G(0)g" — Dg" ||+Z||Hf )

j=2

for all sufficiently large 0. Note that the right hand side of this inequality converges to a
constant term as o tends to infinity. This implies that [zj(s)];?=1 is strictly proper.

2: Suppose that [DR'—S', DR¥—S¥] is nondegenerate but the solution of HRCP(C(sI—
A) 'z +57'G(s)g" —s7'q¥, [G(s)R? — S7]E_,), [27(s)]%-, is not strictly proper for some zo.
This means that [z!(s), z(s)] is not strictly proper since [27 (s k'% is strictly proper by defi-
nition of Problem 4.8.8. Let [ be an integer such that lim,_, o, s7/[z!(s), 2*(s)] = [2!, 2] # 0.
Clearly, | > O Note that [2!(s), 2¥(s)] is a solution of HRCP(C(sI — A)~'zo+ s~ 1G(s)q"
sTlgv + Z s)RI — §9)2(s), [G(s)R' — S*,G(s)RF — S*]). Hence, a“[zl(a),z"(a)]
is a solution of HLCP(U“C(UI - A)lzg + 07" 1G(0)g* — 07 1gY + 07 Z;;;(G(U)Rj -
§7)23(0), [G(o)R* — S*,G(0)R¥ — S¥]). Since [27(s)]%23 is strictly proper, it follows that

j
(2!, 2¥] is a solution of HLCP(0, [DR' — S*, DR* — S*¥]). Then, we have

(DR* —SY)z' = (DR* — §¥)z*. (4.42)

Note that (z')"z* = 0. Define the index sets J, K as J = {j |z} # 0} and K = {j | j & J}.
The equation (4.42) can be written as

((DR' - $").; (DR - $%)ux) ( Z}k) =10,

Note that the matrix on the left hand side is a column representative of [DR'—S', DR*—S*]
and hence nonsingular by the hypothesis. Then, z! = z?> = 0 which contradicts the
definition of the integer [. |

4.8.4 Proof of Theorem 4.5.4

We begin with the following lemma which is the last piece of preparations to prove the

main result.
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Lemma 4.8.13 Consider a piecewise linear system PLS(A, B,C, D, [G'™,). Let (¢*,¢*,
[R7)_,, [S7]_,) be a horizontal complementarity representation of the piecewise linear char-
acteristics [G7]7%,. Suppose that [G(o)R? — S7)5_, has the column W-property for all suf-
ficiently large o. Suppose also that the set

R = {z9 € R* | HRCP(g4,(3), [G(s)R' — S'|£_,) has a strictly proper solution}

is closed where q,(s) = C(sI — A)'zg + s 'G(s)q" — s7'q¥. Then, there ezists a unique
solution on [0,00) of PLS(A, B, C, D, [G']™,) with the initial state xo if and only if Ty € R.

Proof:

if: Let the initial state Z be given such that Z € R. Hence, it follows from Theorem
4.8.12 and Lemma 4.8.9 that PLS(A, B, C, D, [G']™,) has an initial solution with the initial
state 7. Let (u%, 2%, y%) denote this initial solution. We define ¢ : R* — k" as

ilz) =1
where [ is as in Lemma 4.8.6 item 1 for the initial solution (u?, z%,3%), 7 : R* — R as

(1)

7(z) = sup {T | ( ) € Gyz), forall j em and t € [0,T7]},
y 7
and kK : R* - R" as
K(Z) = =¥ (7(2)).
Note that t — (u®, 2%, y*)(t + p) forms an initial solution of PLS(A, B,C, D, [G']™,) with

i
the initial state z%(p) whenever p € [0, 7(z)). Hence, we have 2%(p) € R for all p € [0, 7(Z)).
It follows from the closedness of the set R and continuity of z* that x(z) € R.

existence: Define z,,; = k(xz;) for ¢ = 0,1,.... From the previous discussion, we know
that z; € R and hence PLS(A, B,C, D, [G']™,) admits initial solutions for all initial states
z; due to Lemma 4.8.9. Let (u™,z", y*) denote an initial solution with the initial state

z;. Define 7, = Zle 7(x)_1) for k > 0 and 79 = 0. Also define

(u, z, y)l[fk,TH_l] = (urkv e ) yzk) |[0,T(1")]-

It can be verified that (u,z,y) is a solution on [0,7) for some T" > 0 of PLS(A, B,C, D,
[G']™,) with the initial state o. Suppose that T is such that there is no solution on [0, T")
whenever 7" > T. However, Lemma 4.8.6 item 2c implies that z is Lipschitz continuous

l

with the Lipschitz constant max, g= o! where o is as in the same item. Hence, z is

uniformly continuous on [0,7) and z* := lim, - z(t) exists due to [19, exercise 4.13].
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Since z(t) € R for all t € [0,T) and z is continuous, z* € R which means one can extend
the solution (u, r,y) beyond [0, T) by using the initial solution of PLS(A, B,C, D, [G'|™)
with the initial state z*. This contradicts the definition of T. Thus, we can conclude that
there exists a solution on [0, 00) of PLS(A, B, C, D, [G'|™,) with the initial state z,.

uniqueness: Let (u', 2, y') € PB™"*™ for i = 1,2 denote two solutions of PLS(A, B, C,
D, [G']™,) with the initial state z,. Clearly, (u!,z',y') — (u? z2,9?) is a piecewise Bohl
function as well. If it is not identically zero then there should exist ¢ > 0 and € > 0
such that ((u',z',y') — (u? 2% 4%))|jg = 0 and ((u', 2", y") — (u?,22,9%))(s) # O for all
s € (t,t+¢€) due to the definition of piecewise Bohl functions. For (!, z',y') and t > 0, one
can find ¢ > 0 and Bohl functions (@', z*,7') such that (u', 2%, y")|te4e) = (2,2, §')|[0,60)
with ¢ = 1,2 again by the definition of piecewise Bohl functions. It is easy to see
that (a',z',7') form two different initial solutions of PLS(A, B,C, D, [G'™,) with the
same initial state, z'(t) = 2%(¢). Then, Lemma 4.8.9 and Theorem 4.8.12 imply that
HLCP(C(oI-A)"'z'(t)+57'G(0)q" —s7'¢¥, [G(0) R?— S7]%_,) has at least two different so-
lutions for all sufficiently large o which is ruled out by Theorem 4.4.4 since [G(0) R/ — S7]5_,
has the column W-property for all sufficiently large o.

only if: Let (u,z,y) € PB™™*™ be the unique solution of PLS(A, B, C, D, [G'|™,) with
the initial state zo. By the definition of piecewise Bohl functions, we know that there exists
€ >0 and (@,1,y) € B™"*™ such that (u,z,y)|j0,0 = (@, Z, 7)|jo,). Obviously, (a,z,7) is
an initial solution of PLS(A, B,C, D, [G'|™,) with the initial state z,. Hence, 7o € R due
to Lemma 4.8.9. |

Proof of Theorem 4.5.4:

1: Let R be defined as in Lemma 4.8.13. It follows from Theorem 4.8.12 item 1 that
R = {zo | HLCP(Cxo + Dg" — ¢, [DR’ — S7]%_,) has a strictly proper solution}. Since
the set {¢ € R* | HLCP(q,[M']%,) is solvable} is closed, R is closed. Then, Lemma
4.8.13 proves the statement.

2: Let R be defined as in Lemma 4.8.13. It follows from Theorem 4.8.12 item 2 that
R = R". Then, Lemma 4.8.13 proves the statement. ]

4.8.5 Proof of Theorem 4.5.5

To devise a proof of Theorem 4.5.5, we need some preparations. Three rather technical
lemmas on piecewise linear characteristics are in order. The first one presents equivalent
conditions for redundancy of a vertex.
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Lemma 4.8.14 Let G = ple(d—, [v']%= “!,d*) be a k-piecewise linear characteristic and G;

be as in Definition 4.8.1 for i € k. Also let the vectors r and s be defined for the piecewise
characteristic G in accordance with (4.9). The following statements are equivalent.

1. The vertez v is redundant.
2. The set G; UG, is convez.
3. There exists a > 0 such that r; = arjy, and 8; = @Sj41.

Proof:
1< 2: Evident.

2 = 3: We prove the statement only for 1 # ¢ # k — 1. The other two cases can be
proven in a similar fashion. Note that v* = GiNG;1; and G; = { A1 +(1-\)v* | 0 < A < 1}.
Since G; UG, is convex, we can conclude that G;UG; ;1 = { A" 14+ (1-A)v"*! [0 < A < 1}
By writing v* as a convex combination of v'~! and v**!, we get

o =X 4 (1 — At

Hence,

vt — ,Uz—l = 1;‘,\ (,UH—I — Ul).
= — N~
e Tit1
Si+1

3= 2: It is enough to show that v' can be written as the convex combination of v'~!

and v**!. Since there exists @ > 0 such that rj = arj; and s; = as;ji, we get
v — vl = a (vt — o).
It follows that
i 1 i+l _a il
U= 1+a ¥+ T l+a
1
Note that 0 < =21 |

By utilizing these properties of redundant vertices, it can be shown that arbitrary
descriptions of a piecewise linear characteristic must have some common properties in
terms of minimal descriptions as stated in the following lemma.

Lemma 4.8.15 Let G = ple(d™, [v']52},d*) be a k-piecewise linear characteristic and

=1

=, [WN]ESY, d) be one of its minimal descriptions. Also let the vector pairs (r,s) and
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(rmin, smin) e defined for ple(d~, [v']*2!,d*) and ple(d-, [v4]¥5',d*) in accordance with
(4.9), respectively. Then, the following statements hold.

1. For each j € k there ezist > 0 and p € K such that rj = ar™™ and s; = asP™.

2. For each p € K there ezist a > 0 and j € k such that ™™ = ar; and sp™™ = as;.

Proof: All the statements that will be made for the vectors 7 and r™" are equally valid
for the vectors s and s™" in the rest of this proof.

1: We distinguish four cases.

e Case 1: j € {1,k}. Obviously,

1 ifj=1,
K oifj =k

p:

and a =1 do the job.

e Case 2: j€{2,3,...,1;}. Note that v*' is redundant for all j' € {1,2,...,; —1}. It
follows from Lemma 4.8.14 that there exists o such that 74, = aj7r;. Therefore,
Py = (]_[;,':11 aj)r1. Consequently, p=1 and a = H;;‘l o do the job.

e Case 8: j € {lp-1 +1,l,-1 +2,...,1,}. Note that v/ is redundant for all j' €
{lp—1+1,0,_1+2,...,1,—1}. It follows from Lemma 4.8.14 that there exists o such
that 74, = ajrj. Thus, we get

TEZ )™ i 5" € (-1, lpa + 1,...,5 — 1},
T‘ju = T 1f j" = j’ (443)

J
TL5 ap)r; "€ {i+1,5+2,....}

On the other hand, we have

min _ _ lp lp—1
T‘p =Y =t
S -1 lp—1 lp—2 b1+l lpy
=v; —v; +un — @ ey =it
| R L
Tip Tip—1 Tlp_1+1

By using (4.43), we get r;,“i" = fr; for some 3 > 0. Therefore, p and a = 1/ do the

job.

e Case 4: j € {ly—y + L,y +2,...,k — 1}. Note that v/ is redundant for all
je{lyy+ 1Ll +2,...,k—1}. It follows from Lemma 4.8.14 that there exists
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oy such that 7 = ayry,y. Therefore, r; = (Hf,_:lj aj)rg. Consequently, p = k and
o= Hf,_] aj do the job.
2: The proof of the previous item shows that one can find positive a’s for the following
choices of j’s.

e Case I: pe {1,k'}. Take j=1ifp=1land j=kifp=Fk.
o Case 2: pe {2,3,...,k' —1}. Takeany j € {l,-1+1,0,-1 +2,...,0}. [ |

As indicated in Remark 4.3.2, there are exactly two minimal descriptions. The following
lemma depicts how those descriptions are related to each other.

Lemma 4.8.16 Let (d~,v',v?,...,v*¥"!, d*¥) be a minimal description of a k-piecewise lin-
ear characteristic G. Also let the vector pairs (r™®, s™®) and (r™" s™"') be defined for
ple(d=, v}, 02, ..., vkt d%) and ple(d*,vF~1,vF=2,. .. v!,d") in accordance with (4.9), re-

spectively. Then, r;“"‘ = r,‘:ﬂﬁ and s""“ = sﬂ'} _; for each j € k.

Proof: Evident. |
Finally, we can proof Theorem 4.5.5 by employing the above lemmas.

Proof of Theorem 4.5.5: Let plc(d"~, [v"/];Z{,d"*) and ple(d~, [0"9)52}, d*) for i €
mm be the descriptions of the piecewise linear characteristics [G!]™, corresponding to the
horizontal complementarity representations (-, -, [R/]5_,[S7]¥_,) and (-, -, [RI]%_,, [S7]5_)),
respectively.

i. Assume that for each ¢ € m the minimal descriptions of ple(d! [v”]" !, d"*) and
ple(d~ [v‘»’]" 1,d"*) are the same and (d"~, [v" ]jz_ll, d"*). Note that every column
representative matrix of [M R’ + NS7]%_, is of the form

(MR+NSL,) = ((MR’* + N§4) - (MR 4 NSm),,,)
= Mdiag(#,72,...,7™) + Ndiag(s},32,...,5m) (4.44)

for some | € k. However, (4.44) and Lemma 4.8.15 imply that for each column
representative matrix of [M R/ + N S'j]f:, one can find a column representative matrix
of [ MRI + N Sj]";:l such that the determinants of these two representative matrices
have the same sign. Since [MR’ + NS’ le enjoys the column W-property, so does
[MR + NSIJ%_,.
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ii. As already noted in Remark 4.3.2, there are exactly two minimal descriptions of a k-
piecewise linear characteristic. Let ¢ of the minimal descriptions of ple(d~, [v ’]]J i
d"*) and ple(d>~ [v”]’c |, d"*) be different. The equation (4.44), Lemma 4.8.16 and
Lemma 4.8.15 imply that for each column representative matrix of [M R’ + NS'J’];?:1
one can find a column representative matrix of [M R’ + N.S'j];?=1 such that the sign
of the determinant of the former is equal to (—1)? times the sign of the determinant
of the latter. Since [M R + NS]] _1 enjoys the column W-property, so does [M R’ +
N Sf]]: ; [ ]

4.8.6 Proofs for Section 4.6

Proof of Corollary 4.6.1: Note that G' = plc(d”~, v*!, d"*) where

d~ = g it = . , and &t = : !
1 0 0
rt= 2 and s' = =4 .
1 0

A horizontal complementarity representation (¢“, ¢V, [R, R?],[S',S?) of [G']™, can be

Therefore,

given by
"=¢=0,R'=0,R2=1,5"= -1, and S =0

Hence [G(s)R' — S',G(s)R? — S?] = [I,G(s)]. Note that there is a natural correspondence
between the column representation matrices of [/, G(s)] and the submatrices of G(s ). This
fact results in

e The ordered matrix set [I, G(s)] is of index 1 if and only if G(s) is totally of index 1.

¢ The ordered matrix set [I, G(c)] has the column W-property for all sufficiently large
o if and only if G(o) is a P-matrix for all sufficiently large o.

Note also that [DR'—S*, DR*~S%] = [I, D]. Hence, due to Remark 4.4.5, HLCP(Co, [1, D))
is solvable if and only if LCP(Czy, D) is solvable. The assertion follows immediately from
the facts listed above together with Theorem 4.5.4 item 1. L

Proof of Corollary 4.6.2: Note that G' = plc(d"~, v"!, v*2, d*) where

== ¢ ot = [ & cvi? = [2) | and &t = ¢ .
ll 0 0 =l
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Therefore,

r* = col(0, e} — €},0) and s* = col(—1,0,—1).
A horizontal complementarity representation (¢*, ¢, [R', R?, R3], [S', S, S°%]) of [G|™, can
be given by

W s L 2 m =
q _COI(elvel"'-161 )7qy—01
1 _ p3 _ v S 1 L 2 2 m m
R =R’ =0, R® = diag(e; — ej, €5 —€1,...,€5" — e*),

S'=85%= I, §%=0¢.

Hence [G(s)R’ — S7]}_, = [I,G(s)R?I]. Since R’ is a diagonal matrix with positive

elements on the diagonal and [DR' — S', DR® — S%] = [I, 1], the following facts can be
inferred.

e The ordered matrix set [I,G(s)R?, I] has the column W-property for all sufficiently
large o if and only if G(0) is a P-matrix for all sufficiently large o.

e The ordered matrix set [DR' — S', DR® — S?] is nondegenerate.

The assertion follows immediately from the facts listed above together with Theorem 4.5.4
item 2. |

Proof of Corollary 4.6.3: Note that G* = plc(d"~, vb!, v"2 v*% v¥% d>F) where

dh— = ‘ ol =[G , v = 0. , v = 0. ot = [ @ , and d"* = 0 .
1 fi fi f3 f2 =]

Therefore,
r* = col(0, —e}, 0, €5,0) and s* = col(—1,0, fi — f,0,—1).

A horizontal complementarity representation (¢*,q¥,[R', R?,..., R°],[S,S?,...,5°]) of
[G']™, can be given by

¢* = eol(ey, e 5o ;€0 ¢ = eol(FL, 47, ... . I,
R'= R’ =R’ =0, R* = —diag(e},€2,...,e"), R* = diag(e}, €2, .. 51600 )5
=8 =1, P == 0, & =dinglf} — . B~ Frre . B~ 7.

Hence [G(s)R? — S7]5_, = [I,G(s)R?, S*,G(s)R*, I]. Since R?, S* and R* are all diagonal
matrices with positive elements on the diagonal and [DR! — S', DR® — S°) = (I, I], the
following facts can be inferred.
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o The ordered matrix set [I,G(s)R%, S% G(s)R*, I| has the column W-property for all
sufficiently large o if and only if G(o) is a P-matrix for all sufficiently large o.

e The ordered matrix set [DR! — S, DR® — S°] is nondegenerate.

The assertion follows immediately from the facts listed above together with Theorem 4.5.4
item 2. =

Proof of Corollary 4.6.5: Note that G = ple(d"~, v"!, v"2, d**) where

=) = (), 2= (2], anaa = ° ).
1 fi f2 -1

r* = col(0, e} — €},0) and s* = col(—1, fi — fi,—1).

Therefore,

A horizontal complementarity representation (q%, ¢¥, [R!, R?, R3], [S*, 5%, S3]) of [G']™, can
be given by

2 2
q" = col(ej, €3,...,eM), ¢¥ = col(f}, f,..-, ™),
R'= R* =0, R* = diag(ej — e}, €3 —€3,..., €)' — "),

St=8=—1, P =diag(f - fl,F— - B — ).

Hence [G(s)R? — S7]3_, = [I,G(s)R — S,I]. Note that [DR' — §*, DR® — S%] = [, I].
Then, the following facts can be inferred.

e The ordered matrix set [, G(s)R—S, I] has the column W-property for all sufficiently
large o if and only if G(o)R — S is a P-matrix for all sufficiently large o.

e The ordered matrix set [DR' — S', DR? — S?] is nondegenerate.

The assertion follows immediately from the facts listed above together with Theorem 4.5.4
item 2. B
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Part 11

Approximations



Chapter 5

From Lipschitzian to non-Lipschitzian

characteristics: convergence of solutions

5.1 Introduction

Modeling process can be viewed as a mapping which assigns models to physical systems.
Reasonably, close physical systems should be associated to close models. Stated differently,
the modeling process should depend on physical systems continuously. We aim to address
the question of continuity of linear complementarity models in this chapter.

The approach that is taken in this chapter has certain parallelism with the work that has
been done in the context of singular perturbations. For an extensive survey on the subject,
we refer to [3] (see also [6, Sections 4.3 and 5.5] for a quick review). Our treatment differs
from this vein of research considerably since the systems under investigation are nonsmooth
in general.

In mechanics, the smoothing methods have been extensively studied. Roughly speaking,
the aim of the smoothing methods is to consider the nonsmooth system as the limit of (in a
suitable sense) a sequence of smooth systems for which strong properties such as existence
and uniqueness of solutions, continuous dependence on parameters etc. are known. For an
encyclopedic survey, we refer to [1]. A comparison of smoothing methods, time stepping
methods and event-tracking methods (in the context of mechanics again) can be found in
[4]. The framework that is used in this chapter is very close the framework used in that
context. However, the systems under investigation here, namely linear complementarity
systems, are not completely covered by the work in nonsmooth mechanical systems.

Continuity of linear dynamical models is addressed for instance in [2,8]. While conti-
nuity is defined via pointwise convergence of trajectories in [8], [2] considers continuity
in the graph topology. Similar to what has been done in [8], we will look at convergence

of trajectories.
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We will mainly focus on the linear complementarity systems given by

z = Az + Bu (5.1a)
y =Cz+ Du (5.1b)
0< .l y2>0. (5.1c)

Notice that the so-called complementarity conditions (5.1c) as depicted in Figure 5.1 do
not define a function between u and y. However, a slight perturbation of the piece with

<

Figure 5.1: Complementarity characteristic and one of its possible approximations

infinite slope allows to express u as a piecewise-linear (and hence Lipschitz continuous)
function of y. Naturally, one might expect/desire that this approximated characteristic
generates trajectories close to ones of the complementarity system (5.1). However, if the
complementarity system is ill-posed it is not hard to find examples for which this property
does not hold . The main objective of the present chapter is to prove the convergence
of the trajectories generated by the Lipschitzian characteristics to those generated by the
(non-Lipschitzian) complementarity characteristic for a class of well-posed complementarity
systems including linear passive ones.

In the sequel, we distinguish two types of approximations, namely structured and un-
structured approximations. As an example of structured approximations, consider the
linear system (5.1a)-(5.1b) with the approximating characteristic of Figure 5.1. It can be
verified that the overall approximating system is equivalent to the complementarity system

given by
if = A2 + Bt (5.2a)
= Cax*+ Dt (5.2b)
b=sw Ly =20 (5.2¢)

with (A, B.,Ce, D) = (A, B,C, D +¢€l) in the sense that there is a one-to-one correspon-
dence between the state trajectories of the two systems. We call this type of approximations
structured because of the explicit dependence of (A, B, Ce, D.) on (A, B,C,D). When
such an explicit dependence is absent, we call the approximations unstructured.
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The outline of the chapter is as follows. In Section 5.2, we recall several facts such
as Carathéodory solution of a differential equation, and the notions of passivity and pas-
sifiability by pole shifting. The well-posedness results on linear passive complementarity
systems will be summarized in Section 5.3 for the sake of completeness. Section 5.4 con-
tains the main contributions of the chapter. It consists of two subsections in which the
continuity of the solutions of structured and unstructured approximations are investigated,
respectively. This will be followed by Section 5.5 where convergence of approximating tra-
Jectories for nonregular initial states of the original system is considered. The chapter will
be closed by conclusions in Section 5.6 and proofs in Section 5.7.

5.2 Preliminaries

Consider the continuous-time, linear and time-invariant system

(t) = Az(t) + Bu(t) (5.3a)
y(t) = Cz(t) + Du(t) (5.3b)

where z(t) € R, u(t) € R™, y(t) € R™ and A, B, C, and D are matrices with appropriate
sizes. We denote (5.3) by (A, B,C, D).

A triple (u,z,y) € Ly((to,t1), R™"*™) is said to be an Ly-solution on (to, 1) of
(A, B,C, D) with the initial state z, if it satisfies (5.3a) in the sense of Carathéodory,
i.e., for almost all ¢ € [tg, #],

z(t) = zo + t[Aa:(s) + Bu(s)]ds. (5.4)

and (5.3b) holds.
Next, we recall the definition of the passivity notion.

Definition 5.2.1 [7] The system £(A, B,C, D) given by (5.3) is said to be passive (dis-
sipative with respect to the supply rate u'y) if there exists a function V : R* — R, (a
storage function), such that

t

Vialt) + [ 0T Ou(o)de > V(a(w)) (5.5)
to

holds for all ¢y and ¢, with ¢, > t,, and all £,-solutions (u, z,y) € La((to, t1), R™tntm) of

$(A,B,C, D).

We state a well-known result on passive systems which characterizes passivity in terms of
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linear matrix inequalities.

Lemma 5.2.2 (7] Assume that (A, B,C) is minimal. Then $(A, B,C, D) is passive if
and only if the matriz inequalities

s K =
E=f pbund | T SRSE |
B'K-C -(D+D")
have a solution. Moreover, V(z) = %ITK.T is a quadratic storage function if and only if
K s a solution of the above matriz inequalities.

The notion of passifiability by pole shifting is of interest in the context of linear complemen-
tarity systems. For the sake of completeness, we recall this notion which was introduced
in Chapter 3.

Definition 5.2.3 The quadruple (A4, B, C, D) is said to be passifiable by pole shifting if
there exists p € R such that (A + pI, B, C, D) is passive.

The following theorem is quoted from Chapter 3. It provides necessary and sufficient
conditions for passifiability by pole shifting.

Theorem 5.2.4 Consider a matriz quadruple (A, B,C, D) such that (A, B,C) is a min-
imal representation and col(B,D + DT) is of full column rank. Let E be such that
ker E = {0} and im E = ker (D + D"). Then (A, B,C,D) is passifiable by pole shift-
ing if and only if D is nonnegative definite and E'CBE is symmetric positive definite.

5.3 Linear Complementarity Systems

The main objects of study will be the linear complementarity systems, that is to say, linear
systems with complementarity conditions given by

= Az + Bu (5.6a)
y=Cz+ Du (5.6b)
0< uwly>0. (5.6¢)

We denote the linear complementarity system (5.6) by LCS(A, B,C, D). Next, we shall
define what is meant by a solution of a linear complementarity system by clarifying the
meaning of the complementarity conditions in (5.6¢).

Definition 5.3.1 The triple (u,z,y) € L((0,7), R™™"*™) is a L-solution of LCS(A, B,
C, D) on [0, 7] with initial state z, if the following conditions hold.



5. FROM LIPSCHITZIAN TO NON-LIPSCHITZIAN CHARACTERISTICS 123

1. (u,,y) is a Ly-solution of on [0, 7] of £(A, B, C, D) with the initial state z,.
2. For almost all ¢t € [0,7], 0 < u(t) L y(t) > 0.

The initial state is said to be regular if there exists a solution with this initial state and

nonregular otherwise.

As it is shown in Chapter 3, the passifiability of the system $(A4, B, C, D) guarantees the
existence and uniqueness of solutions (in the sense of Definition 5.3.1) to LCS(4, B, C, D)
for suitable initial conditions. Indeed, the following lemma has been proven in Chapter 3.

Lemma 5.3.2 Consider a matriz quadruple (A, B,C, D) such that (A, B,C) is a minimal
representation and col(B,D + D) is of full column rank. Suppose that £(A, B, C, D) is
passifiable by pole-shifting. Let T > 0 be given. Then, there exists a unique Lo-solution on
[0, 7] of LCS(A, B,C, D) with the initial state zq if and only if Czy € Q3.

Here the dual cone of the set Qp =SOL(0,D) = {v |v >0, Dv >0, and v" Dv = 0} (as
defined in Chapter 1) is denoted by Q.

5.4 Continuity of Solutions

In this section we investigate continuity of behaviors of linear complementarity systems.
First, some specific approximation schemes will be under consideration. These approxima-
tions will be obtained by approximating only the complementarity characteristic. In this
respect, they are structured approximations. Later on, the investigation will be carried out
for more general approximations. Those approximations will be obtained by approximat-
ing linear complementarity system as a whole. For this reason, we call them unstructured
approximations.

5.4.1 Structured approximations

For a given LCS(A, B, C, D), we consider the following systems

& = Az + By (5.7a)
2=Cz+ Dv (5.7b)
—(e)'z(t) ifz(t) <0
vi(t) = (€)7=() i) < for all ¢ and for each i € ™ (5.7c)

—e?z(t) if z;(t) >0
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where €, € € R™ and col(e”, €*) > 0. The piecewise linear relation (5.7c) between v; and z;
is depicted in Figure 5.2. Note that these characteristics converge to the complementarity
ones as col(e”, €*) tends to zero. We denote (5.7) by App(A, B,C, D, €",€*).

Figure 5.2: Approximation of the complementarity characteristic

We say that a triple (v,z,2) € L2((0,7), R"*"+™) is a solution on [0, 7] of App(A, B, C,
D, €, €* with the initial state xq if (v,z,2) is an Lo-solution of (A4, B,C, D) with the
initial state zo and (5.7c) holds.

With a change of variables, every App(A, B,C, D,¢",€*) can be rewritten as a linear
complementarity system. Next, we state this equivalence in the following proposition. To
do this, we need to introduce some nomenclature. Let two positive vectors €’ € R™ and
€ € R™ be given. We denote col(€’, €?), diag(e”) and diag(e®) by €, A” and A?, respectively.
For each matrix quadruple (A, B,C, D), we associate a matrix quadruple (A, Be, C¢, D;)
where

A;=A—- BA*(I + DAY)™'C
B = B(I + A'D)™"!
Ce = (1 — A°A%)(I + DAY)™'C
D, = (A* + D)(I + A"D)%.

Note that (A, Be, Cr, D¢) converges to (A, B,C, D) as € tends to zero.

Proposition 5.4.1 Consider a matriz quadruple (A, B,C, D) and two positive m-vectors
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€’ and € . Let the pairs (v, z) and (u,y) satisfy

©)-(-5)0): o

Then, the following two statements are equivalent for all sufficiently small € and €.
1. The triple (v, z, z) is a solution of App(A, B,C, D, ", €*) with the initial state x.

2. The triple (u,z,y) is an Ly-solution of LCS(Ag, Be, Ce, D) with the initial state zo.

notion, as introduced in the following definition, plays an important role.

Definition 5.4.2 The sequence of systems X(A”, BY,C¥, D") is said to be uniformly pas-
sifiable by pole shifting in a neighborhood of zero if there exist a real number p and a
positive definite matrix K such that for all sufficiently small v S(A” + pI, BY,C¥, D") is
passive with the storage function z + 2" Kz.

For ease of reference, we state the following rather obvious fact which will be used later.

Fact 5.4.3 Suppose that the sequence of systems X(A”, BY,C¥, D) is uniformly passifi-
able by pole shifting for all sufficiently small v and (A, BY, C", D) converges to (A, B, C,
D) as v tends to zero. Then, (A, B,C, D) is passifiable by pole shifting.

Now, we can state our first convergence result.

Theorem 5.4.4 Consider a matriz quadruple (A, B,C, D) such that (A, B,C) is a mini-
mal representation and B is of full column rank. Suppose that (Ag, Be, Ce, D¢) is uniformly
passifiable by pole shifting for all sufficiently small €. Let 7 > 0 and a regular initial state
xy of LCS(A, B,C, D) be given. Assume that Czxq € Qp, for all sufficiently small €. Let
(Uggs Tzo, Yzo) and (V5,75 , 25,) denote the unique solutions on [0,7] of LCS(A, B,C, D)

and App(A, B,C, D, €', €*) with the initial state xq, respectively. Then, the following state-
ments hold as € tends to zero.

1. The sequence of state trajectories {z5 } converges uniformly to x, on [0,7].

2. If {vg,} is bounded for all sufficiently small € then {(v )} converges weakly to

(uxov ylo) "

€ €
7
o’ “T0

Next, we will show that the uniform passifiability hypothesis holds for two specific approx-

imations.
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Lemma 5.4.5 Consider a matriz quadruple (A, B,C, D) such that (A, B, C) is a minimal
representation and B s of full column rank. Suppose that (A, B,C, D) is passifiable by
pole shifting. Let p be such that £(A + pl, B,C, D) is passive with the storage function
T %zTKx. Then, the following statements hold.

1. The system L(A+ pI, B,C, D +€l) is passive with the storage function x — %xTKr
for all e > 0, i.e., £(A, B,C, D + €l) 1s uniformly passifiable by pole shifting for all

sufficiently small €.

2. For all p < p and for all sufficiently small €, the system Z(A. + p'I, B, Ce, D,) 1is
passive with the storage function x — Jz" Kz where

A.=A—¢eB(I +eD)™'C
B.= B(I +eD)™
Cc=(1-&)(I+eD)"'C
D, = (I +eD)™ (D +¢l).

In other words, (A, Be, Ce, D) 1s uniformly passifiable by pole shifting for all suf-

ficiently small €.

Therefore, the following corollary can be stated as an application of Theorem 5.4.4.

Corollary 5.4.6 Consider a matriz quadruple (A, B, C, D) such that (A, B,C) is a mini-
mal representation and B is of full column rank. Suppose that ©(A, B,C, D) is passifiable
by pole shifting. Let (Uzy, Tz, Yzo) be the unique solution on [0, 7] of LCS(A, B, C, D) with
the initial state xg.

1. Let (v ,x€ , 25 ) denote the unique solution on [0,7] of App(A,B,C,D,0,e1). As e

To)"xo? Yo

tends to zero,

(a) the sequence of state trajectories =% converges uniformly to z., on [0,7], and

(b) if v5, is bounded for all sufficiently small € then {(v5,, 25,)} converges weakly to

2. Let (v5,, 75, 25,) denote the unique solution on [0, 7] of App(A, B,C,D,et,e1). Ase

tends to zero,

(a) the sequence of state trajectories x5, converges uniformly to 2., on [0, 7], and
(b) if v5, is bounded for all sufficiently small € then {(v5,25,)} converges weakly to

(Uzos Yzo)-

Here ¢« denotes the vector of ones.
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5.4.2 Unstructured approximations

Having established results on the convergence of structured approximations, we pass to the
investigation of the convergence of more general approximating systems. The introduction
of the class of approximating systems that will be under consideration is in order.

Definition 5.4.7 The sequence {(Ae, Be, Ce, D)} is said to be an admissible approzima-
tion of (A, B, C, D) if the following conditions hold.

1. D, is positive definite for all sufficiently small positive e.
2. {(A., B;,C,, D)} converges to (A, B,C, D) as € tends to zero.

Note that the positive definiteness of D, implies passifiability by pole shifting. Therefore,
for all sufficiently small € the system X(A,, B, C,, D.) admits unique solutions for all initial
states.

Now, we can present the main result of this subsection.

Theorem 5.4.8 Consider a matriz quadruple (A, B,C, D) such that (A, B,C) is a min-
imal representation and B is of full column rank. Suppose that ¥(A, B,C,D) is passi-
fiable by pole shifting. Let 7 > 0 and a regular initial state of LCS(A, B,C,D) zq be
given. Also let {(Ae, Be, Ce, D)} be an admissible approzimation of (A, B,C, D), and let
(Uszgs Tzgy Yzo) and (ug,, T5,,Ys,) be the unique solutions on [0,7] of LCS(A,B,C, D) and
LCS(A., B, C, D.) with the initial state xo, respectively. If {ug } is bounded then {z¢ }
converges (strongly) to x., and {(u$,,ys,)} converges to (uzy,Yz,) weakly in Lo-sense as €
tends to zero.

As illustrated in the following example, not all admissible approximations produce bounded
u-trajectories.

Example 5.4.9 Consider the linear complementarity system LCS(A, B, C, D) given by

ilzul
j:2:u2
Y1=1
Y2 = T2

0L Ly>0



128 5.5. NONREGULAR INITIAL STATES

and the approximating systems LCS(A,, B, C., D) given by

5 = u§

5 =l
ys = x5 — exs + e ul
s = —eat + 2 + ebus

0L u Lyt >0

It is easy to see that the above approximations are admissible. The unique solution
T
(uf, z¢,y°) of LCS(A,, B, C, D) with the initial state zo = [0 1] can be computed

as
e o [leF et [—eem Tt 1€ i 0
(o) = 0 ' 1 o= } =g g

One can check that |[u§||? = ‘_;H (1—e2"7) on a given interval [0,7]. Consequently, {u¢}

is not bounded if £ > 2. An interesting observation is that the sequence of approximating
systems is not uniformly passifiable by pole shifting in a neighborhood of zero if k£ > 2.

5.5 Nonregular Initial States

So far, what has been done is to investigate the convergence of the solutions, only those
with a regular initial state of the limit system, of approximating systems. Although the
limit system does not have solutions with the nonregular initial states, the admissible
approximations have. Then, it is natural to raise the question if and in what sense the
approximating solutions with nonregular initial states converge. By means of the following
example, we will illustrate that different approximations may yield different limits in this
case.

Example 5.5.1 Consider the LCS(A, B, C, D) given by

il = 2211 + U9
Ty = uy + 2us
Y=o
Y2 = T2

0Lulyz=0,
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the approximating systems LCS(A, B, C,, D,) given by

25 = 2ui +u
SIE o €
Ty = uy + 2uy
Y; =z} + euj
Ys = T5 + €us

0<u® Ly >0
and LCS(A,, B,,C,, D,) given by

T = 2uf +ub

&y = uf + 2ub
yy = ah + 2puf + pub
ys = T4 + puf + 2puuf

0L ut L gt > 0.

Evidently, both {(A, B, C,, D)} and {(A,, B,,C,, D,)} qualify as admissible approxima-
tions of (A, B,C, D). Let (u®, 2, y¢) and (u”, z#, y*) denote the solutions of LCS(A,, B., C., D,)
and LCS(A,, B,,C,, D,) with the initial state zo = [—5 —I]T. It can be checked that
both {u‘} and {u”} are convergent in the distributional sense. Indeed, they converge to

T T
[3 - % ‘;—% - 1] 0 and [g O] 0, respectively. The fact that these approximations
converge to different limits naturally weakens the power of ideal modeling in this context.

In fact, it shows that the ideal model cannot capture the fast dynamics of the actual system.

5.6 Conclusions

We have considered linear complementarity systems described by linear time invariant sys-
tems coupled to complementarity characteristics. It is known that these systems possess
unique solutions if the underlying linear system is passifiable by pole shifting. For the
uniformly passifiable structured approximations of these systems, it has been shown that
the approximating state trajectories converge uniformly on each finite interval to the state
trajectory of the original one. However, only weak convergence (in Ly-sense) of approxi-
mating u-trajectories to the original u-trajectory could be established provided that they
are uniformly bounded. As a side result, we proved that the uniform passifiability as-
sumption holds for two particular approximations. Not surprisingly, stronger conditions
were needed to prove convergence of approximating trajectories for unstructured approx-
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imations. Indeed, what has been shown is that the approximating state trajectories and
u-trajectories converge, respectively, strongly and weakly in L,-sense to the corresponding
original ones if u-trajectories are uniformly bounded. Moreover, by means of an example,
it has been illustrated that the limit of the approximating trajectories for nonregular initial
states of the original system depends in general on the approximation scheme.

We believe that the uniform passifiability property, both for structured and unstruc-
tured approximations, needs to be studied further. Another interesting research topic
might be the characterization of the class of approximations for which the approximating
trajectories for a given nonregular initial state converge to the same limit.

5.7 Proofs

This section contains the proofs of previously stated results in this chapter. We start with
two preliminary subsections. First of them is devoted to the topological complementarity
problem which will play a key role in proving the main results. The second one collects
some basic facts from matrix theory. These subsections are followed by the proofs.

5.7.1 Topological complementarity problem

To prove Theorem 5.4.4 and Theorem 5.4.8, we employ a result, which was established in
Chapter 6, on the convergence of solutions to the topological complementarity problem.
For the sake of completeness, we quote TCP and related facts from Chapter 6.

TCP for the function space £,([0,7],R) can be formulated as follows.

Problem 5.7.1 (TCP(q,T)) Given ¢ € L5([0,7],R™) and T : L5([0, 7], R™) = L,([0, 7],
R™), find z € £5([0, 7], R™) such that

2(t) >0 (5.9a)
q(t) + (T2)(t) > 0 (5.9b)

for almost all t € [0, 7] and
(2,g+Tz) =0. (5.9¢)

If 2 satisfies (5.9), we say that z solves TCP(q,T).
Note that the conditions given in item 2 of Definition 5.3.1 may be equivalently written
as u(t) > 0, y(t) > 0 for almost all t € [0,7] and (u,y) = 0. Hence, by associating the
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operator T(4 g ¢ py defined by
t
(Tia,B,c,0)u)(t) = Du(t) +/ CeAt=%) Bu(s)ds
0

to the matrix quadruple (A, B, C, D), the solutions of LCS(A, B,C, D) can be identified
with the solutions of certain TCPs in the following manner.

Proposition 5.7.2 The following statements hold.

1. If (u,z,y) € Lo([0, 7], R™ ™) 45 a solution on [0, 7] of LCS(A, B, C, D) with initial
state o, then u is a solution of TCP(CeA‘xO|[0’T], Tia,B,c,0))-

2. If u € Ly([0,7],R™) is a solution of TCP(Ce*zo|(0,r}, T(a,B,c,p)), then (u,z,y) is a
solution on [0,7] of LCS(A, B,C, D) with initial state zo where

z = e*zo|j0,1) + Ta,,1,0)t

y= Cx+Du.

Before stating the theorem concerning convergence of solutions to TCP we need to intro-
duce some nomenclature. Let &/ be a normed space. A sequence of operators Sy : U — U
is said to be uniformly convergent to S if ||Sx — S|| converges to zero where || - || denotes
the norm induced by the norm defined on U. An operator T : i/ — U will be said to
be a compact operator if it maps every weakly convergent sequence of U to a strongly
convergent one.

Theorem 5.7.3 Let T : Ly([0,7],R™) — L([0,7],R™) be a compact operator and let
S Ly([0,7],R™) — L5([0,7],R™) be a linear continuous operator. Suppose that there
exist sequences {qc}, {Sk} and {Ty} such that {qv} converges to q, Sk is linear continuous
nonnegative definite (i.e. (v, Sxv) > 0 for allv € L5([0,7],R™)) for all sufficiently large
k, and TCP(qx, Sk + Ty) is solvable for all k. Let z be a solution of TCP(qx, Sk + Ty ). If
{2k} converges weakly to z, Sy converges uniformly to S and {Tyzx — Tz} converges to
zero then z solves TCP(q, S+ T).
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5.7.2 Proofs for Section 5.4

Proof of Proposition 5.4.1: Note that all the inverses mentioned in the statement of
the proposition and below exist for all sufficiently small € and €*. One can check that

Be —41+4; 0\ (I —BA°(I+DAY)™!
s D:; =T} A0 = AAR(T + DAY
I 0 A
_d
x(g d'ID+A 01) 0 I 0 (5.10)
AT 0 I

by using the identities [I — A*(I + DA®)~Y(D + A?)](I — A'A*)"! = (I — A*D)™! and
(I — A*A*)(I + DAY)"Y(D + A*)(I — A*A*)"! = (D + A*)(I + AYD)~'. The equations
(5.8a) and (5.10) imply that (v,z,2) is a solution of £(A, B, C, D) if and only if (u, z,y) is
a solution of ©(A¢, Be, Ce, D¢). On the other hand, the equation (5.8a) and the condition
(5.7c) imply for each 7 € @ and for all ¢

i. z(t) <0 if and only if y;(t) = 0 and wu;(¢) > 0 for all sufficiently small €” and €*.
ii. 2;(t) > 0 if and only if u;(¢) = 0 and y;(t) > 0 for all sufficiently small €’ and €.
Therefore, the equivalence of the statements 1 and 2 follews from Definitions 5.3.1. |

Proof of Theorem 5.4.4: We denote the system (A + pI, Be, Cz, D¢) by £f in the rest
of this proof. Let (u ,z ,y5,) be defined by

o, I 9 AY %,
=01 of]|s]. (5.11)
Uss Ao I ol

Proposition 5.4.1 implies that (u ,z¢ , S ) is the unique solution on [0, 7] of LCS(Ae, B,
Ce, D) with the initial state zy in light of Fact 5.4.3 and Lemma 5.3.2.

1: Note that (uzy + A"Yzy, Tzg Yzo + AVUz,) is an Lo-solution of £f with the initial state

€
zo. Hence, (ug,

— Ugy = Ao, T, — Tag, YS, — Yzo — AVUg,) is an Ly-solution of T with
the zero initial state. Since If is uniformly passifiable for all sufficiently small €, there
exist a real number p and a positive matrix K such that ¥f is passive with the storage
function z +— " Kz for all sufficiently small & On the other hand, Fact 3.4.1 reveals that

e (US, — Uzy — A"Yzg, TG, — Tzo, Y, — Yzo — AVUs,) is an Ly-solution of Xf with the zero
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initial state. Then, the dissipation inequality yields

/0 ezps[uio(s)_uzo(s) = Auyro(s)]-r[yio(s) a yzo(s) - AZU‘IO(S)] ds
> [0t (t) = 22y (8)] K2 (t) = 22y (1) (512)

Zo

for all ¢ € [0,7]. Note that

/0‘ e [u (5)] Ty, (s) ds = 0
/Ot e°[u (5)) Yy (5) ds > 0
/Ot €2 [, ()] Afugy(5) ds > 0
/0‘ €[ty ()] 45, (s) ds > 0
/ot €27tz (5)] Tz (5) ds = 0
/Ot € [AYay ()] 5, () ds 2 0
/0: [Ny, (8)]T Atay () ds = 0

for all t € [0, 7] due to the complementarity conditions and the diagonality of A and A®.
As a consequence of above inequalities, (5.12) yields

€2, (1) — o (1)] T K [25, () = 22y (1)) (5.13)

o
t

< / €75t (5)] T APt () ds + / ()] AYmp(s)ds  (5.14)

for all ¢ € [0,7]. Note that without any loss of generality p can be taken negative. Thus,
e?7 < %' < 1 for all t € [0, 7]. Therefore, we get

(25 (8) = 220 ()] T K (25, () = a5 (£)] < 0tryz ()

for all t € [0, 7] where o, ,(€) converges to zero as € tends to zero. The above inequality
together with the positive definiteness of K immediately implies that =5 converges to z.,

uniformly on [0, 7].

2: Consider the TCP(q, S + T') where
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o g=Ce'zolpo,,

e S=D, and

o (Tv)(t) = [, Ce*™9)Bu(s)ds.
Consider also the TCP(gz, S; + 1) where

o g: = Cee™'zol,1),

e S; = D;, and

o (Tw)(t) = [, Cee® =9 Bov(s) ds.

Proposition 5.7.2 item 1 implies that u,, and ug  are the unique solutions of TCP(q, S +
T) and TCP(ge, Se + T¢), respectively. Since v is bounded by hypothesis, so is u5 .
Therefore, Lemma 6.6.1 item 1 implies that there exists a subsequence, say €, such that
{ug: } converges weakly. Let @ denote this limit. On the other hand, it can be checked that

o T: Ly([0,7]),R™) — L5([0, 7], R™) is compact (see [5, Exercise 4.15])
o S: Ly([0,7],R™) — L5([0, 7], R™) is linear continuous,
® g; converges to g,

e S: is linear continuous and moreover is nonnegative definite for all sufficiently small
€ due to uniform passifiability,

TCP(ge, Se + T¢) is solvable for all sufficiently small € (by u$, ), and

e S; and T; converge uniformly to S and T respectively.

Theorem 5.7.3 implies, in light of the facts listed above, that @ solves TCP(q, S + T).
Hence, (u, Z, ) is a solution of LCS(A, B, C, D) for some Z and 7 due to Proposition 5.7.2
item 2. We know already that LCS(A, B, C, D) admits unique solutions. Therefore, every
weakly convergent subsequence of {uf } has the same limit, namely u,,. This implies
that the sequence {u } itself converges to u,, weakly according to Lemma 6.6.1 item 2.

50r 20) } CODVerges

Evidently, {y¢ } converges to y,, weakly. It follows from (5.11) that {(v
t0 (Uzy, Yz,) Weakly. [ |

We introduce the following notation for the sake of brevity.

Notation 5.7.4 For a given matrix quadruple (4, B,C, D) and K, K(2 8) denotes the

matrix
ATK+KA KB-CT
BTEK =C —(D+DT)
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Proof of Lemma 5.4.5 Note that if the matrix triple (A, B, C) is minimal then so is
(A+ pI,B,C) for all p.

1: Since X(A + pI, B,C, D) is passive and (A + pI, B,C) is minimal, Lemma 5.2.2

implies that K(###' B) is nonpositive definite. Note that

0 0
e )= D () 3.

As the sum of two nonpositive matrices, IC( AE"’ Dfe ,) is nonpositive too. It follows from

Lemma 5.2.2 that (A + pI, B,C, D +¢l) is passive with the storage function z — -21-11:TK:B
for all € > 0.

2: Note that

A. = A—eBC +0(?)
B. =B —¢BD + O(¢?)
C.=C -€eDC + O(é?)
D= D +¢(I — D?) + O(é%). (5.15)

Hence, we get

K(4&T5) =K(YE1 D) + k(o6 12h2) + O().

WEEIWE

: L (2001 0
k(g =)+ (0 D).

Let col(z, u) be such that

Note that

Since ¥(A + pI, B,C, D) is passive and p — p' < 0, the two summands on the right hand
side of above equation are both nonpositive definite. Therefore, we get

() =z () -
() (o) () -
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The latter equation implies z = 0 and hence we get " Du = 0 from the former one. Since
D is nonnegative definite due to the passifiability of £(A, B,C, D), u" Du = 0 implies that
(D + D")u = 0. Therefore, u" D?>u = —||Du||> whenever »” Du = 0. This means that we
have the following implication

u#0,u'Du=0=u"(I —D*u>0. (5.16)

Hence, we can apply Lemma 3.8.3 by taking M = —K (447 B) and N = —-K( s ,°D2).
Indeed, M is nonnegative definite and v # 0, v' Mv = 0 implies v' Nv > 0. Then, we know
that there exists 4 < 0 such that (4477 B) + ek (5 ,°P:) < uel for all sufficiently
small e. Since € — IC(A““" [B;) is continuous and K(“* +:‘ . E‘) < pe + O(€?), we can
conclude that IC( e g" . gi ) is nonpositive definite for all sufficiently large . Note that the
set of all minimal matrix triples is open. Hence, (A,, B, C.) is minimal due to the continuity
of the mappings € — A, € — B,e — C. and € — D,.. Consequently, Lemma 5.2.2 implies

that ©(A + p'I, B, C, D,) is passive with the storage function z — 1z" Kz. -]
Proof of Corollary 5.4.6:

1: Note that € = col(0,e¢) and hence A, = 0 and A, = el for this case. Then,
(Ae, B, Ce, De) = (A, B,C, D+ ¢€l). 1t follows from Lemma 5.4.5 item 1 that the sequence
of systems X(Ag, Be, Ce, D¢) is uniformly passifiable for all sufficiently small e. Clearly, D
is positive definite for all € > 0. Hence, @, = R™ for all sufficiently small e. Then, the
rest follows from the application of Theorem 5.4.4.

2: Note that € = col(e¢, e1) and hence A, = A, = eI for this case. Then, (A, Be, Ce, D;)
= (A, B,C, D). It follows from Lemma 5.4.5 item 2 that the sequence of systems
Y(Ag, B, Ce, D¢) is uniformly passifiable for all sufficiently small e. On the other hand, it
follows from (5.16) and Lemma 3.8.3 that D +¢(I — D?) > pel for some positive . Then,
(5.15) and the fact that € — D; is continuous imply that D is positive definite for all
sufficiently small e. Hence, Qp. = R™ for all sufficiently small e. Then, the rest follows
from the application of Theorem 5.4.4. |

Proof of Theorem 5.4.8: Consider the TCP(q, S + CT') where
&8 g= CeAtIOI[O,‘r]y
e S=D, and

o (Tw)(t) = [, €At~ By(s)ds.
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Consider also the TCP(g,, S. + CT.) where
® g = Ceete'zy|(g,1),
e S.= D., and
o (Tw)(t) = [ et B.y(s)ds.

Proposition 5.7.2 item 1 implies that u,, and ug, are solutions of TCP(q,S + CT) and
TCP(ge, Se + C.T,), respectively. Since {ug,} is bounded, it is known from Lemma 6.6.1
item 1 that {ug } has a weakly convergent subsequence, say {u}. Let @ denote the weak
limit of this subsequence. Note that

o T': L5([0,7],R™) = L5([0,7],R™) is compact (see [5, Exercise 4.15])

S : Ly([0,7],R™) — L,([0, 7], R™) is linear continuous,
® g. converges to g,

e S, is linear continuous and moreover is positive definite for all sufficiently small ¢ by
the hypothesis,

TCP(ge, Se + C.T.) is solvable for all sufficiently small € (by ug, ), and
e Sc and T, converge uniformly to S and T respectively.

Therefore Theorem 5.7.3 implies, in light of the facts listed above, that @ solves TCP(q, S+
CT). Hence, (u,,7) is a solution of LCS(A, B,C, D) for some Z and § due to Proposi-
tion 5.7.2 item 2. We know already that LCS(A, B, C, D) admits unique solutions due to
Lemma 5.3.2 since ¥(A, B, C, D) is passifiable by pole shifting. Therefore, every weakly
convergent subsequence of {uf } has the same limit, namely u,,. This implies that the
sequence {ug } itself converges to u,, weakly according to Lemma 6.6.1 item 2. Evidently,
{ys,} converges to y,, weakly. It remains to show that {5, } converges (strongly) to z,.
Indeed, we have

€ __ LAt €
T3, = e""zo|po,r + Teus,

according to Proposition 5.7.2 item 2. Note that {e"<'z|jo,)} converges to ez, as
€ tends to zero. Since {T.} converges uniformly to T, we know that {T.u — TuS }
converges to zero. It follows from the compactness of T" and the weak convergence of {u o
that {Tu } converges (strongly) to T'u,,. Hence, {z5,} converges strongly to ezl +
Tugz,. Since ug, is a solution of TCP(¢q,CT), we have z,, = e*xo|j0,r] + Tug, due to
Proposition 5.7.2 item 2. [ ]
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Chapter 6

Consistency of Backward Euler Method
for Linear Networks with Ideal Diodes

6.1 Introduction

Simulation of switching networks is a problem that has been studied extensively in circuit
theory [1,2,7,14,15,19,24,31]. Roughly speaking, there are two main approaches, namely
event-tracking (see e.g. [1,19]) and time-stepping methods (see [2,14,15,24] for electrical
networks and [17,20,21,28,30| for unilaterally constrained mechanical systems with friction
phenomena). Representing a hybrid systems point of view (see for instance [27]), event-
tracking methods are based on the idea of solving corresponding DAEs of the current circuit
topology (called ‘mode’ in the hybrid systems terminology), monitoring possible changes
of circuit topology (mode transition), and (if necessary) determining the exact time (event
time) instant of the change of topology and the next topology. Time-stepping methods
differ from this scheme by putting aside the hybrid features, and by regarding the whole
system as a collection of differential equations with constraints and trying to approximate
the solutions of these differential equations with constraints. As a consequence of this
point of view, there is no need to locate exact event times. However, the convergence of
the approximations in a suitable sense has to be guaranteed. Since the methods seem to
work well in practice, the question of convergence is usually neglected in the literature.
It is the objective of this chapter to provide a rigorous basis for the use of time-stepping
methods in the simulation of circuits with state events.

In Chapters 2 and 3 (see also [4,5,9]) the meaning of a transient true solution to linear
dynamical network models with ideal diodes has already been established. Using techniques
borrowed from the theory of linear complementarity systems (LCS) (10,11, 16, 25, 26,
existence and uniqueness of solutions have been proven under mild conditions. Moreover,
several regularity properties have been shown from which this chapter will benefit.



140 6.1. INTRODUCTION

The particular time-stepping method that we will study here is based on the well-known
backward Euler scheme and has been described, for instance, in [2,14, 15| for electrical
networks. Similar methods have been used in a mechanical context in [17,20,21,28,30]. The
advantage of the method is that it is straightforward to implement and many algorithms
(e.g. Lemke’s algorithm [6], Katzenelson’s algorithm [13] and others [15]) are available
to solve the one-step problems consisting of linear complementarity problems (LCPs).

In [14] the use of a time-stepping method based on the backward Euler scheme (or
higher order linear multistep integration methods (8] like the trapezoidal rule) has already
been proposed for the class of linear complementarity systems, i.e., linear time-invariant
dynamical systems coupled with ideal diode characteristics (complementarity conditions).
By an example (cf. Example 6.3.3 below), it will be shown that the method is not suited
for the general class of linear complementarity systems. This example indicates also that,
although the method has proven itself in practice, one should not indiscriminately apply
it to general discontinuous dynamical systems.

Convergence problems of time-stepping methods for mechanical systems subject to uni-
lateral constraints or friction have been studied by Stewart [28,29]. He shows that for a
broad class of nonlinear constrained mechanical systems there always exists a subsequence
of approximating time functions that converge to a real solution of the mechanical model.
However, the convergence of the complete sequence has not been shown in [28,29]. The
conditions used in [28,29] do not cover electrical networks containing ideal diodes, which
form the subject of this paper. Specifically, we will show that for the class of discontinuous
dynamical systems consisting of linear electrical passive circuits with ideal diodes the back-
ward Euler time-stepping method is consistent. To be specific, we prove that the whole
sequence (and not only a subsequence) of the approximating time functions converges to
the real transient solution of the network model, when the step size decreases to zero. Al-
though the results are written down here for networks containing ideal diodes (internally
controlled switches) only, externally controlled switches can easily be included without
destroying the convergence proof. The results presented here form a justification of the
backward Euler time-stepping scheme in the field of switched electrical networks. Such
a justification seems required considering the problems that might occur due to changing
configurations of the network, the possibility of Dirac impulses and the discontinuities of
the system’s variables.

The outline of the chapter is as follows. In Section 6.2 preliminaries on linear comple-
mentarity systems and passivity are stated. The time-stepping method that will be studied
is considered in Section 6.3. Moreover, a result on consistency of the numerical method is
formulated for a general class of linear complementarity systems. In the next section, this
result is applied to linear passive complementarity systems. The continuous dependence of
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solution trajectories on the initial states is also mentioned in section 6.4. The conclusions
follow in Section 6.5. The proofs of the main results can be found in Section 6.6.

6.2 Preliminaries

As discussed in [5,9], linear networks with ideal diodes can be modeled as linear comple-
mentarity systems (see [10,11,25,26] for detailed discussion), which are dynamical versions
of the linear complementarity problem. They are of the form

#(t) = Az(t) + Bu(t) (6.1a)
y(t) = Cz(t) + Du(t) (6.1b)
0<u(t) Ly >0 (6.1c)

where u(t) € R™, z(t) € R*, y(t) € R™ and A, B, C, and D are matrices of appropriate
dimensions. We denote (6.1a)-(6.1b) by (A, B,C, D) and (6.1) by LCS(A, B, C, D).

Next, we recall (see [10,11]) the notion of initial solution which is of considerable
importance in the analysis of linear complementarity systems. Notice that the following
definition is slightly more general than the ones we have worked with in Chapters 2 and 3
in the sense that it allows the presence of Dirac distributions.

Definition 6.2.1 The triple (u,x,y)' € Bf*""*™ is an initial solution of LCS(A, B,C, D)
with initial state z, if there exists an index set K C 7 such that

x = Ax+ Bu+ 246

y=Cx+ Du
u=0ifie K
yi=0ifi ¢ K

hold in the distributional sense, and u and y are initially nonnegative.

It can be shown (see for instance [10,26]) that there is a one-to-one relation between the
initial solutions to LCS(A, B, C, D) with initial state zo and the proper solutions of the
so-called rational complementarity problem.

Problem 6.2.2 (RCP(zy, A4, B,C, D)) Given 75 € R" and (A, B,C, D) with A € RV |

!Throughout this chapter, we use typewriter font for the distributions.
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B e R*™*™, (C € R™" and D € R™*™, find i(s) € R™(s) and g(s) € R™(s) such that

§(s) = C(sI — A)~'zo + [C(sI — A)"' B + DJa(s)
u(s) L g(s)

for all s € C and 4(0) > 0 and g(o) > 0 for all sufficiently large o € R.

We say that 4(s) is a solution of (or 4(s) solves) RCP if it satisfies above conditions. In a
similar fashion, we sometimes also write (4(s), 9(s)) is a solution of (or solves) RCP.

The following proposition states the above mentioned one-to-one relation which is given
by the Laplace transform and its inverse. This connection indicates the relevance of the
rational complementarity problem to the study of LCS.

Proposition 6.2.3 [10] The triple (u,x,y) is an initial solution of LCS(A, B,C, D) with
initial state xy if and only if its Laplace transform (u(s),z(s), y(s)) is such that (4(s),y(s))
is a proper solution of RCP(zy, A, B,C, D) and z(s) = (sI — A) "'z + (s — A)~'Ba(s).

Now, we can give a precise definition of what is meant by solution of LCS(A, B, C, D). For
a more detailed discussion see Chapter 3.

Definition 6.2.4 The triple (u,x,y) € £5([0, 7], R"*"*™) is a (global) solution on [0, 7] of
LCS(A, B,C, D) with initial state z if the following conditions hold.

1. There exists an initial solution (g, X, y) such that

(uimp7 ximp* Yimp) = (uimp? iimp’ yimp)‘
2. The equations

x = Ax+ Bu+ x40
y=Cx+ Du

hold in the distributional sense.

3. For almost all ¢ € [0,7], 0 < Ureg(t) L yreg(t) > 0.

In the sequel, we are mainly concerned with linear passive complementarity systems. For
ease of readability, we shall quickly review the notion of passivity and its characterizations
in terms of the state representation and the transfer matrix of the system.

Definition 6.2.5 [32] The system $(A, B, C, D) given by (6.1a)-(6.1b) is said to be pas-
sive (dissipative with respect to the supply rate u"y) if there exists a function V : R* — R,
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(called a storage function), such that
t
Vo) + [ uT Ot > V(a(e)
to

holds for all ¢y and ¢, with ¢, > t,, and all (u,z,y) € Ls([to, 1], R™*"+™) satisfying (6.1a)-
(6.1Db).

We repeat a well-known theorem on passive systems which is sometimes called the positive
real lemma.

Lemma 6.2.6 [32] Assume that (A, B, C) is minimal. Then the following statements are
equivalent:

1. (A, B,C, D) is passive.

2. The matriz inequalities

i T
K=K 200 |V EHEA KB-0T]
B'K-C —(D+D")

have a solution.

3. G(s) is positive real, i.e., G(A) + GT(X) > 0 for all A\ € C with \ ¢ o(A) and
Re(\) > 0.

Moreover, if £(A, B, C, D) is passive all solutions of the matriz inequalities in item 2 are
positive definite.

Throughout the paper, we will frequently use the following assumption.

Assumption 6.2.7 (A, B,C) is a minimal representation and B is of full column rank.

The following theorem is quoted from Chapter 3 and deals with the existence and unique-
ness of solutions to linear passive complementarity systems.

Theorem 6.2.8 Consider a matriz quadruple (A,B,C, D) such that Assumption 6.2.7
holds and ¥(A, B, C, D) is passive. Let T > 0 be given. For each zy, there ezists a unique
solution (u,x,y) € L3([0, 7], R™+7+m) op (0,7] of LCS(A, B, C, D) with initial state x,.

6.3 The Backward Euler Time-stepping Method

For the numerical approximation of the solutions of switched electrical networks the fol-
lowing time-stepping scheme has frequently been used [2,14,15,24]. For LCS the method
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consists of discretizing the system description by applying the well known backward Eu-
ler integration routine and imposing the complementarity conditions at every time step.
This comes down to the computation of ujt,,, y ,, and x!,, given x} through the linear
complementarity problem given by

xfcl+1 - xg h h

e = Axy ., + Bug,, (6.2a)
YZH = CXZH E) D“2+1 (6.2b)
D<yly Lub, 20 (6.2c)

Here o} denotes the value at the kth step of the corresponding variable for the step size
h > 0. Based on this scheme, one can construct approximations of the transient response
of a LCS by applying the algorithm below.

Algorithm 6.3.1 ({u}}, {x}}, {y"}) = Approximation(4, B,C, D, 7, h, z)
L Ny=|Z)

ho._
2. Xty =g

4. solve the one-step problem

yi. = C(I — hA)~'x} + [D + hC(I — hA) ' Blu},,
0 ufy Ly 20

5. Xty o= (I — hA)'x + h(I — hA)'Bul,
6. k:=k+1
7. if K < N, goto 4

8. stop.

The one-step problem is given by a linear complementarity problem in step 4. In general
a linear complementarity problem may have multiple solutions or have no solutions at
all. We shall proceed by assuming unique solvability of the problem. The assumption is
introduced here for reasons of generality; later on we will prove that the assumption is
implied by passivity.

Assumption 6.3.2 For all sufficiently small A > 0, LCP(C(I — hA)'z,G(h™")) has a
unique solution for all Z, where G(s) is given by D+ C(sI — A)~'B.
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This assumption implies that for all sufficiently small ~ > 0, Algorithm 6.3.1 generates an
output, which is unique. Hence, for a given step size h > 0 (sufficiently small), we can
define the approximations (u*,x", y") € £5([0, 7], R™*"*™) given by

ui"nnp = hufé (6.3a)
xf’mp = hx}é (6.3b)
Yimp = h¥00 (6.3¢)
g (6) = !
Knpli) == } whenever (I — 1)h < t < lh, (6.3d)
Vreg(t) =1
where u}t, x} and y}, k = 0,1,..., Nj have been obtained from Algorithm 6.3.1. One of

the main goals of the paper is to prove that for a passive system these piecewise constant
approximations converge in a suitable sense to the actual solution of the system. This
property is called consistency of the numerical method. In the following example, we
illustrate that Algorithm 6.3.1 is not always consistent even if Assumption 6.3.2 holds.

Example 6.3.3 Consider the linear complementarity system (consisting of a triple inte-
grator with complementarity conditions)

T) = Iy
Iy = I3
I3 =1u
Y=o
O<uly>=0

with the initial state z, = (0 -1 O)T. As we have already mentioned before, Def-
inition 6.2.4 is a simplified version of the general one given in [11] for linear passive
complementarity systems. Since the triple integrator is not a passive system, we must
utilize the general definition rather than the simplified one. Indeed, it can be checked that
(u,x,y) = (4,0,0), which does not qualify as a solution in the sense of Definition 6.2.4,
is the ‘true’ global solution of the system with the given initial state. Here é denotes the
distributional derivative of the Dirac impulse §. Algorithm 6.3.1 gives

(h~2,0) if k=0

(ug,y}) =
FIRT) (0,5 ) if £ £ 0.
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B0l = h=0.05
h=0.025 - \ =
B = - —
6 ki P
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Figure 6.1: Nonconvergence of backward Euler approximations for the triple integrator
with diode.

It follows from (6.3d) that

(M=) Ny — 1)N, B
“yfeg” > (/ i ”y?N,,—l)”2 dt)l/2 - (h—z)".h3/2 = O(h 1/2)

h—2

whenever N, > 2. Therefore, yfeg is far from being convergent as it is not bounded as
h converges to zero. For three different values of h, the trajectories of yfeg on [0,1] are
depicted in Figure 6.1.

This example indicates that one should be cautious in applying a time-stepping method to a
general LCS. As a consequence, verification of the numerical scheme in the sense of showing
consistency is needed. Before passing the following theorem which states conditions that
imply consistency, we need to introduce some nomenclature. We say that the sequence of

distributions {ufd + uf, } C L3(Q,R) converges (weakly) to ugd + Ure, if {uk} converges

k

to ug and {ug,

} converges (weakly) to ureg in Lo-sense.

Theorem 6.3.4 Consider LCS(A, B,C, D) such that Assumption 6.5.2 holds. Let T > 0
and zo € R* be given. Also let (u®, x",y") be given by (6.3) via Algorithm 6.3.1. Suppose
that there exists a > 0 such that for all sufficiently small h

Ihug|| < @ and |lugg|| < o
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Then, we have the following statements:

1. There exists a unique initial solution of LCS(A, B,C, D) with initial state zo in
the sense of Definition 6.2.1 and the impulsive part of this solution is of the form
(Uo(s, 0, y()(S) with Up, Yo € R™.

2. As h tends to zero, {(uf,, i, yi0)} converges to (Gimp, 0, Yimp) where (Wimp, Yimp) =

(U‘Oéa yoé)

3. Let {hy} converge to zero. Suppose that D is nonnegative definite. Then the following
holds.

(a) There erists a subsequence {hy,} C {hi} such that ({u"}, {y"™}) converges
weakly to some (u,y) and {x"*} converges to some x.

(b) (u,x,y) is a solution of LCS(A, B,C, D) on [0, 7] with the initial state .

(c) If the solution (u,x,y) is unique for the initial state zy in the sense of Defini-
tion 6.2.4, then the complete sequence ({u"*}, {y"}) converges weakly to (u,y)
and {x"*} converges to x.

6.4 Main Results for LPCS

In Section 6, we shall show that the conditions of Theorem 6.3.4 are satisfied in the case
of passive complementarity systems so that the following result holds.

Theorem 6.4.1 Consider a matriz quadruple (A, B,C, D) such that Assumption 6.2.7
holds and ¥(A, B,C, D) is passive. Let 7 > 0 and zo € R" be given. Let (u,x,y) be
the solution of LCS(A, B,C, D) on [0, 7] with the initial state zo. Also let (u*,x",y") be
given by (6.3) via Algorithm 6.3.1. Then, ({u"}, {y"}) converges weakly to (u,y) and {x"}
converges to x as the step size h tends to zero.

The above theorem assumes exact computations. In implementing the backward Euler
time-stepping method numerical errors will of course be introduced. To give some justi-
fication that also in the case of (small) numerical errors the method is still suitable, we
study the issue of the dependence of the solution trajectories on the initial conditions. For
general LCS such a property does not hold. However, in the special case of linear passive
complementarity systems, the continuous dependence holds. To formulate this in a mathe-
matically precise way, we have to introduce some nomenclature. Let H be a Hilbert space.
We say that T : R* — H is continuous (weakly continuous), if continuity is considered
with respect to the strong (weak) topology on H. In other words, T is continuous (weakly
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continuous), if for all convergent (weakly convergent) sequences {z}, {Tzx} converges

(converges weakly) to Tz* where z* = limg_, o z.

Theorem 6.4.2 Consider a matriz quadruple (A, B,C, D) such that Assumption 6.2.7
holds and ©(A, B,C, D) is passive. Let T > 0 be given. Define the operators zo — (u,y)
and o — x, where (u,x,y) is the solution of LCS(A, B,C, D) on (0,7] with the initial
state Tg. The operators zo — (u,y) and o — x are weakly continuous and continuous,

respectively.

Note that Theorem 6.4.2 is not a property of the numerical scheme, but of the class of
LCS satisfying a passivity assumption. Of course one may look for schemes that perform
particularly well in coping with numerical errors, but this is outside the scope of the present

paper.

6.5 Conclusions

In this chapter, we studied the consistency of a time-stepping method based on the back-
ward Euler integration routine. The method has proven itself already in practice for the
transient simulation of piecewise linear electrical circuits and constrained mechanical sys-
tems. However, one cannot indiscriminately apply this method for general classes of discon-
tinuous systems as shown by an example in this paper. The main result of the chapter has
presented a rigorous proof of the consistency of the backward Euler time-stepping method
when applied to the class of linear passive electrical networks with ideal diodes. In spite of
the mixed continuous and discrete behaviour of the circuit and the possibility of Dirac im-
pulses occurring at the initial time, we have shown the convergence of the approximations
to the actual transient solution of the network model. Using almost the same arguments,
we have also proven the continuous dependence of the transient solutions on the initial
state. For simulation of linear passive networks with ideal diodes, this has the important
consequence that numerical errors do not have a large influence on the outcomes of the
approximation method. These results provide a justification for the use of time-stepping
methods.

Of course, it would be interesting to generalize these results to other systems of a mixed
continuous and discrete nature. In particular, we are currently studying the consistency
of the backward Euler method for dynamical systems with relays and for other linear
complementarity systems. For many systems where the backward Euler time-stepping
scheme does not generate proper output (like the triple integrator), it is useful to consider
extensions of the time-stepping algorithm that are consistent.
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6.6 Proofs

The outline of this section, in which we give the proofs of the results presented in the
previous sections, is as follows. We begin with some preliminaries that will be employed
in the sequel. The proofs of items 1 and 2 of Theorem 3.4 will be followed by a recall of
the so-called topological complementarity problem (TCP) which is the main tool used in
proving item 3 of Theorem 3.4, Theorem 4.1 and Theorem 4.2. After fitting the solution
concept as well as the approximations into a TCP framework, we present a general result
(Theorem 6.9) concerning the convergence of the solutions to TCPs and deduce the proof
of item 3 of Theorem 3.4 from this result. Finally, the section ends with some technical
lemmas on LCPs and the proofs of Theorem 4.1 and Theorem 4.2 as inferred from these
lemmas and the result on the convergence of the solutions to TCPs.

6.6.1 Preliminaries

For ease of reference, we recall some standard results on weakly convergent sequences.

Lemma 6.6.1 The following statements hold in every real Hilbert space H with inner
product (-, -).

1. Bvery bounded sequence has a weakly convergent subsequence.

2. If all weakly convergent subsequences of a bounded sequence have the same weak limit,
then the sequence itself converges weakly to this limit.

3. Assume that {vi} C H converges weakly to v and {wi} C H converges to w. Then

(a) There exists o > 0 such that ||vi|| < « for all k and ||v]| < a.

(b) {Swk} converges weakly to Sv whenever S : H — H is a continuous linear

operator.
(c) {{vk,wk)} converges to (v, w).

Proof: For the proofs of the statements 1, 3a, 3b, and 3¢ see Theorem 3.7, Exercise 3.3.10a
and Proposition 3.6, Proposition 3.8, and Exercise 3.3.10b of [12], respectively. For the
proof of the statement 2, let {vx} € H be such a sequence. Without loss of generality, we
may assume that the limit of all its weakly convergent subsequences is zero. If the sequence
itself is weakly convergent then its weak limit is zero since every sequence is a subsequence
of itself. Suppose that the sequence does not weakly converge to zero. Then there exist
€ >0, w € H and a subsequence, say {v, }, such that for all [

(v w)| > €. (6.4)
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for a given e. Since the sequence {uvx} is bounded, this subsequence is also bounded and
hence has a weakly convergent subsequence. By the hypothesis, it must converge weakly
to zero. Clearly, this contradicts (6.4). |

We recall the notion of a compact operator for ease of reference.

Definition 6.6.2 Let H be a Hilbert space. T': H — H is said to be a compact operator
if for any weakly convergent sequence {uy} C H, {T'u;} is a convergent sequence.

In the following lemma, we state some results for the matrix inverse (I — hA)~1.

Lemma 6.6.3 Let A € R**". The following statements hold:

1= hrA)H <
LA+ AT).

T for all h with A\h < 1 where X is the largest eigenvalue of

2. There exists an a > 0 such that ||(I — hA)™!|| < a for all sufficiently small h.

8. If {rxhi} converges to t then {(I — hyA)™"} converges to e**. Moreover, the conver-
gence is uniform in t on any bounded interval.

Proof:

1: By the Wazewski inequality (see e.g. [33, Theorem 8.1]), [|e*|| < e for all ¢t where
A is the largest eigenvalue of (A + AT). Theorem 1.5.3 in [22] gives now the desired
inequality.

1
2: It can easily be verified by using item 1 that ||(I — hA)7!|| < 13 whenever
ML pF<1.

3: This follows from [22, Theorem 3.5.3]|. |

6.6.2 Proof of Theorem 6.3.4 items 1 and 2

For proving Theorem 6.3.4, we start by considering items 1 and 2, which are concerned with
the existence/uniqueness of the initial solution and the convergence of the impulsive parts
of the approximations to the impulsive part of this initial solution. Note that the latter
is needed to show that the limit of the approximations exists and satisfies Definition 6.2.4
item 1.

We shall use the following proposition which establishes the relation between the solu-
tions of the one-step problem and the solutions of the rational complementarity problem.
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Proposition 6.6.4 Consider a matriz quadruple satisfying Assumption 6.3.2. We have
the following statements for all z, € R™.

1. RCP(xy, A, B,C, D) has a unique solution.
2. For all sufficiently small h,
a(h™') = hug, &(h7") = hxg, §(h7") = hyk

where (i(s), §(s)) is the solution of RCP(x,, A, B,C, D), &(s) = (sI — A)~‘zg+ (s] —
A)~'Ba(s) and (uf,xf, yh) is the solution of the one-step problem of Algorithm 6.3.1
for k=0.

Proof:

1: Observe the basic fact that if LCP(g, M) is solvable then LCP(aqg, M) is also solvable
provided that & > 0. As a consequence, Assumption 6.3.2 implies together with the identity
h(I-hA)~" = (h~'I—A)~" that for all sufficiently small h, LCP(C/(h=11 — A)~1z,, G(h™))
has a unique solution. From [10, Theorem 4.1 and Corollary 4.10], we can conclude that
RCP(z¢, A, B, C, D) has a unique solution.

2: Let (i(s),§(s)) be the solution of RCP(zg, A, B,C, D). It can be easily seen that
a(h™") solves LCP(C(h~'I — A)~'zy, G(h™1)) for all sufficiently small h. Note that if z is
a solution of LCP(g, M) then az is a solution of LCP(ag, M) provided a > 0. Therefore,
h~'a(h™") solves LCP(C(I — hA)~'zo, G(h™1)) for all sufficiently small h. In other words,
for all sufficiently small h

a(h™') = hu! (6.5a)
) = bl (6.5b)
§(h™") = hyg (6.5¢)
where 2(s) = (s — A)~'zg + (sI — A)~'Bi(s). [ ]

Proof of Theorem 6.3.4 items 1 and 2:

1: From Proposition 6.6.4 item 1, it is known that RCP(z,, A4, B, C, D) is uniquely solv-
able. Let (4(s), §(s)) denote this unique solution and &(s) = (s/—A)'zo+(sI—A)~'Ba(s).
Since ||hug|| is bounded for sufficiently small A by the hypothesis of the theorem, a(s)
is proper due to Proposition 6.6.4 item 2. It follows that Z(s) is strictly proper and
y(s) is proper. Clearly, Proposition 6.2.3 implies that the inverse Laplace transform of
(i(s),2(s),9(s)) is the unique initial solution of LCS(A, B,C, D) with initial state z,.
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The impulsive part of this solution is of the form (ugd, 0, yod) with ug = lim,_, %(s) and
Yo = lim,_,» 7(s) since u(s), 2(s) and y(s) are proper, strictly proper and proper, respec-
tively.

2: It is clear from (6.3) and Proposition 6.6.4 item 2 that (uf ,x! . y& ) converges to

(Ymp» 0, Yimp) as h tends to zero. |

6.6.3 Topological complementarity problem

In this subsection, an infinite dimensional version of the LCP will be considered. This
so-called topological complementarity problem has strong relations to (the regular parts of)
the solutions of LCS. Moreover, it is possible to embed the discretizations obtained from
the backward Euler time-stepping method in the TCP as well.

To be specific, we briefly recall the TCP for the function space L2([0,7],R). More
details on the TCP can be found in [3] and the references therein.

Problem 6.6.5 (TCP(q,T)) Given q € £5([0,7],R™) and T : £,([0, 7], R™) — L([0, 7],
R™), find z € £,([0, 7], R™) such that

z2(t) >0 (6.6a)
q(t) + (T=)(t) 2 0 (6.6b)

for almost all ¢ € [0, 7] and
(2,g+T=z) =0. (6.6¢)

If z satisfies (6.6), we say that z solves TCP(q,T).

Note that the conditions given in item 3 of Definition 6.2.4 may be equivalently written
a5 Upeg (1) > 0, ¥yeq(t) > 0 for almost all ¢ € [0, 7] and (Uyeq, Yreg) = 0. Hence, by associating
the operator T4 p,c,p) defined by

t
(T(A,B,C,D)u)(t) = Du(t) + / CEA(t_s)B’u(S)dS
0

to LCS(A, B,C, D), the solutions of LCS(A, B, C, D) can be identified with the solutions
of certain TCPs in the following manner.

Proposition 6.6.6 The following statements hold.
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1. If (u,x,y) € £3([0, 7], R™"+™) s a solution of LCS(A, B, C, D) on [0, 7] with initial
state o, then u., is a solution of TCP(Ce*zf |0, Tia,p,c,p)), where z§ = xo+ Bug

and u;p,, = ugd.

2. If u € L5([0,7]),R™) is a solution of TCP(CeA'zoho,,],T(A,B,C,D)), then (u,z,y) is a
solution of LCS(A, B, C, D) on [0, 7] with initial state T, where

z = e*ojo,r + Ta 5,101

y = Cz + Du.

6.6.4 The time-stepping method in a TCP formulation

The approximations of (6.3) by the backward Euler time-stepping scheme can also be
formulated as the solutions of certain TCPs. To do so, we introduce the operators C), :
R*: — R™k, Dy : R — R™Me | Ry, : £5([0, 7], R™) — R™ Q, : R™ — R"M and
P} : RN — £,([0, 7], R?) for given 7 > 0 and h with N, = L7/h].

C 0 - 0 Do - 3 u(s)ds
. 0 & s G . 0 O - 0 1 " u(s)ds
Chi=|. | | D=, . | Bawi=< 0 .()
b : 3 3 : N h =
00 --- C 0 0 -~ D f(;vh_l)hu(s)ds
(I - hA)'B 0 0
(I-hA)2B  (I-hA)™'B ... 0
Qh ::h N s S
(I-ha)™™B (I-hA)"™™+'B ... (I-hA)"'B

(Plw)(t) := Wi ft € [l = Dk, lh) for 1 =1,2,... , Np.

For ease of reference, we summarize some of the properties of these operators, which will
be needed in the sequel. Without loss of generality, we can assume that Nyh = 7.

Proposition 6.6.7 Let v, w € R™+ and x € R"*. The following statements hold.
1. RyP™v =v.
2. v 20 4f and only if P"v(t) > 0 for (almost) all t € [0, )
3. AP, PPw) = hiv w.
4 DBEPv=PrDyy.

5. CPfx = BNCi=.
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Proof: Evident from the definitions of P,{, Ry, Ch and Dy,. |

It can be easily seen that Gy solves LCP(Chan, Dy, + CyQs), where

uh (I — hA)~'xk
i uj i (I - hA)2xg
U= . |» and qp = )

ul, (I — hA)~Naxh

Indeed, LCP(Chan, Dy, + ChQp) is pieced together from Nj, one-step problems of Algo-
rithm 6.3.1 step 4. The following lemma will complete the TCP formulation of the time-
stepping method by expressing the approximations as solutions of TCPs as well as by
establishing the requirements of Theorem 6.6.9 below.

Lemma 6.6.8 Let T, = PFQy Ry and g, = P;'an. The following statements hold.
1. For all sufficiently small h, ufeg solves TCP(Cqy,,D + CT},).

2. {q,(-)} converges to e*(zo + Bug) with ug as in item 2 of Theorem 6.3.4 as h tends

to zero.

3. {Thul, — Ta,B.10) kg } converges to 0 as h tends to zero.

Proof:
1: Since i, solves LCP(Chdn, Dn + ChQp), we have

i >0 (6.8a)
n := Chin + (Dn + ChQn)iin > 0 (6.8b)
i)y, =0. (6.8¢)

Note that ul,, = P, and yl, = Py, due to (6.3) and the definition of F;". Hence,

reg

(6.8a) and (6.8b) together with Proposition 6.6.7 item 2 imply that
u? () > 0 and yh,(t) > 0 for (almost) all ¢ € [0,7]. (6.9)

reg

Moreover, we have

<u:leg7y:}eg> = <P;1nﬁhPI:nyh>

(6.10)
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from Proposition 6.6.7 item 3, and (6.8¢c). On the other hand, we have

Vieg = Pr'n = P"[Chdn + (Dh + CaQn)]it, (from (6.8b))
=CPan+ (D + CP;Qn) Py (from items 4 and 5 of Proposition 6.6.7)
=Cq, + (D + CT))u" U, (from item 1 of Proposition 6.6.7). (6.11)

Clearly, (6.9), (6.10) and (6.11) imply that uy,,, solves TCP(Cgj, D + CT}).

2: Note that from Algorithm 6.3.1 step 5 we have
=(I-hA)zg+h(I - hA)~'Bul. (6.12)

Let 4(s) be the solution of RCP(zy, A, B, C, D) and uy = lim,_,0 4(s). As shown in the
proof of Theorem 6.3.4 item 2, hul! converges to ug as h tends to zero. Then, (6.12) implies
that

{x&} converges to zo + Bug (6.13)

as h tends to zero. Note that g} (t) = (I — hA)~\/*x%. Hence, from the triangle inequality
we get

I6h() = € (ao + Buo) < (1 = h) /M — X< + ok — ez + B
<(f nu—hA)-W"J—ef“||2dt>”2||x3n+(/ e eyl = (20 + Buo).
0 0

Since {[t/h|h} converges to t as h tends to zero, Lemma 6.6.3 item 3 and (6.13) reveal
that the right hand side converges to zero.

3: Note that
l
(T,iureg)() Zh(l hA)~ = ”+1)Bu —Z/ (I — hA) ("”“)Bu;‘ds
p=1 (p-1)h
and also that
=1

ph t
(TiaB.1,0)reg) () = / eI Bulds + / e*=%) Bulds
(

p=1"(p—1)h ~1)h
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for I = [t/h]. By exploiting the triangle inequality, we get

||(Tr’lufeg)(t) = (T(A,B,I,O)ufeg)(t)” <

t/h] o
Y [ I~ hay e — MO Bds (.14

p=1 (p—1)h

since (p—1)h < s < ph gives p = |s/h]. Clearly, {(|t/h] — [s/h] +1)h} converges to t—s
as h tends to zero. We already know from the hypothesis that ||u1',}|| is bounded for p # 0.
Therefore, from Lemma 6.6.3 item 3 we can conclude that the right hand side converges
to zero uniformly in ¢ on any bounded interval. It follows that {T,’tufeg — i A,B,I,o)u:‘eg}
converges in Ly-sense to zero as h tends to zero. =

6.6.5 Convergence of solutions to TCPs

From the previous subsection, it is obvious that the convergence problem for the time-
stepping method can be reduced to convergence of the solutions of a sequence of TCPs. The
following theorem provides a general framework in which we shall prove the convergence
of the regular parts of the approximation obtained by the backward Euler time-stepping
method.

Let U be a normed space. A sequence of operators Sk : U — U is said to be uniformly
convergent to S if ||Sk — S|| converges to zero where || - || denotes the norm induced by the
norm defined on U.

Theorem 6.6.9 Let T : Ly([0,7],R™) — L5([0,7],R™) be a compact operator and let
S : Ly([0,7],R™) — L4([0,7],R™) be a linear continuous operator. Suppose that there
ezist sequences {qi}, {Sk} and {Ti} such that {qi} converges to q, S is linear continuous
nonnegative definite (i.e. (v,Syv) > 0 for allv € La([0,7],R™)) for all sufficiently large
k, and TCP(q, Sk + Tx) is solvable for all k. Let z be a solution of TCP(qx, Sk + Tk). If
{2z} converges weakly to z, Sy converges uniformly to S and {Tyzx — Tz} converges to
zero then z solves TCP(q,S +T).

Proof: In order to prove the theorem, one should show that z, the weak limit of {zx},
satisfies

2(t) >0 (6.15a)
q(t) + ((S+T)z)(t) 20 (6.15b)
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for almost all ¢ € [0, 7] and
(2,¢+(S+T)z) =0. (6.15¢)

Since zj solves TCP(gy, S + T}), we have

z(t) >0 (6.16a)
ak(t) + ((Sk + Te)2k)(t) > 0 (6.16b)

for almost all ¢ € [0, 7] and
(2, @ + (Sk + Ti)zi) = 0 (6.16¢)

forall k. Let K be the nonnegative cone of £5([0, 7], R™), i.e., {v | v(t) > 0 for almost all t €
[0,7]}. Note that K is weakly closed (i.e., the weak limit of every weakly convergent se-
quence in K is in K) by Theorem 3.12 of [23]. Then, (6.15a) follows from (6.16a) and the
fact that K is weakly closed. Lemma 6.6.1 item 3b, the fact that {||Sx — S||} converges to
the zero and Definition 6.6.2 imply that

{Skzk} converges weakly to Sz, (6.17a)
{Tz} converges to T'z. (6.17b)

As a consequence of (6.17b), we have
{Tyx2x} converges to Tz (6.17¢)

since {Tk2x — Tz} converges to zero by the hypothesis. The equations (6.17a), (6.17c) and
the convergence of {gx} imply that {gx + (S + Ti)z} converges weakly to ¢ + (S + T)z.
Hence, (6.15b) follows from (6.16b) and the fact that K is weakly closed. Now, it remains
to show that (6.15c) holds. Equation (6.16c) gives (zx, Skzk) = —(2k,qx + Tkzx). The
convergence of {gy} and the weak convergence of {2}, together with (6.17¢) and Lemma
6.6.1 item 3c, imply that limy_,e0(2k, Sk2k) = — limk—yo0 (26, @k + Thzk) = —(2,q + T'z). We
also have from (6.15a) and (6.15b) that (z,q + (S +T)z) > 0. Thus,

(2,82) > —(2,q+Tz) = klim (2K, Sk2x)- (6.18)
The nonnegative definiteness of Sy for sufficiently large & implies that

<Z/c ==&y Sk(zk == Z)) > 0. (619)
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Since limg_00(2, Sk2x) = limg_00(2k, Skz) = (z,S2) due to the facts that {2z} converges
weakly to z, {Si} converges uniformly to S and Lemma 6.6.1 items 3b and 3c, we get

kli_>m (%k, Skzi) = (2,52) (6.20)

by letting k tend to infinity in (6.19). Together with (6.18), this yields limy_, {2k, Sk2x) =
(2, Sz). Combining this equation, (6.17c), the convergence of {gx} to ¢ and Lemma 6.6.1
item 3c results in lim_,0(zk, gk + (Sk + Tk)2x) = (2,9 + (S +T)z). Finally, (6.15c) follows
from the last equation and (6.16c). m

6.6.6 Completing the proof of Theorem 6.3.4

The proofs of item 1 and 2 in Theorem 6.3.4 have already been shown. The remaining
items will be proven in this subsection.

Proof of item 3 of Theorem 6.3.4:

3a: The convergence of the impulsive parts has already been shown in the proof of item

2. Hence, it remains to show that the claim on the regular parts holds. By the hypoth-

h

reg|| is bounded for sufficiently small h. According

esis of the theorem, we know that ||u
to Lemma 6.6.1 item 1, the existence of a weakly convergent subsequence of {uf;g}, say
{uf:é}, is clear. Let u,, denote the weak limit of this subsequence, and also let g;, and
T}, be defined as in Lemma 6.6.8. Since T( 4,1, is a compact operator (see e.g. [23, Ex-
ercise 4.15]), it follows from Definition 6.6.2 that {T(A,B,,)O)uf:é} converges (strongly) to

T(A,B,1,0)Ureg- Then, Lemma 6.6.8 item 3 implies that

{Tfluq uf:é} converges t0 T(4,5,1,0)Ureq- (6.21)
Note that
h h
Xreg = dy, + T, Ured (6.22a)
G h
yreg = Cay, + (D + CT;, Jureg. (6.22b)

It is clear from Lemma 6.6.8 item 2, (6.21) and (6.22a) that {xf:é} converges to X, =

e (xo+Buo)|io,r1+T(4,8,1,0)Ureg- Since {Duﬁfé} converges weakly to Du,,, due to Lemma 6.6.1
item 3b, it follows from Lemma 6.6.8 item 2, (6.21) and (6.22b) that {y?eké} converges weakly
t0 Yyeq 1= Ce (x0 + Buo)lo,r + T(a,B,c,0)0

reg”
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3b: Item 2 of Theorem 6.3.4 states the convergence of (ui",;p, xih,;p, yi",;p) to

(uimpy O, Yimp) = (U05, 0» yod) = (ﬁimpv iimpy yimp)a (623)

where (1, %,y) € By"*"*™ is the unique initial solution for initial state z. Hence, we also
have y; . = Duy,,, due to Ximp = 0. Let us define in the framework of Theorem 6.6.9

o T= T(A,B,c,o),
e S=D,

* @ =Cg,,

e S, =D, and
o T = CT;u,‘

It can be checked that
e T is compact ( [23, Exercise 4.15]),
e S is linear and continuous,

e {q} converges to Ce” (zo + Buy)|o,7) (from Lemma 6.6.8 item 2),

Sy is linear continuous and nonnegative definite for all [ (by Lemma 6.6.11 item 1),

TCP(q, S+ Tp) is solvable for all sufficiently large ! (from Lemma 6.6.8 item 1),
e 5; converges uniformly to S, and
° {T,ufe"é - Tu;"leké} converges to zero (from Lemma 6.6.8 item 3).

Then, Theorem 6.6.9 implies that U, solves TCP(Ce* (zo + Buy)|0,7, T(4,8,c,p)). Due to
Proposition 6.6.6 item 2, (Uregs Xregs Yreg) 18 a solution of LCS(A, B, C, D) on [0, 7] with the
initial state 2o + Bug (with ug as in (6.23)), where

xreg = eA'(IO + B’U.o)l[oy-,—] 4 /T(A,B,I,O)ureg

Yreg = ereg £ Dureg'
Equivalently,

*"98 = Axreg 23 Bureg * (IO + BUO)(S (6248.)
Yreg = C‘xreg + Dureg (624b)
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holds in the distributional sense and

0 < upe(t) L yreglt) 20 (6.24c)
for almost all t € [0, 7]. Since Wimp = wed, Yimp = Dilimp and Ximp = 0, (6.24a) and (6.24b)
yield

Xreg = AX + Bu + z00 (6.25a)
y=Cx+ Du (6.25b)

Clearly, (6.23), (6.24c) and (6.25) imply that (u,x,y) is a solution of LCS(A, B,C, D) on
[0, 7] with the initial state zq.

hi

3c: We have already proven that the complete sequence of impulsive parts (ufr;p, 2 iy

yf';,p) converges. Note that the sequence of regular parts (ulk, x}%,

yit) is bounded by
assumption. Moreover, following the proof of item 3a above, it is clear that every converging
subsequence (um, xrt, yred) converges to a solution of the LCS(A, B,C, D) with initial
state zo + Bug. Since this solution is unique, every converging subsequence of the bounded
sequence of regular parts has the same limit. Applying Theorem 6.6.1 item 2 completes

the proof. |

6.6.7 Some results on LCPs

We will present in this subsection some results on LCPs, that will be needed to prove the
main result (Theorem 6.4.1) for linear passive complementarity systems.

Proposition 6.6.10 Let M € R be a positive definite matriz and z; the unique solution
of LCP(q;, M) for i =1,2. Then,

3/2

n
2 -2l € ——la —
|| 1 22“ = M(A{)HQI ‘h”

where (M) denotes the smallest eigenvalue of the symmetric part of M, i.e., %(M+ MT).

Proof: By Lemma 7.3.10 and Proposition 5.10.10 in [6], we have

n
|21 = 22|00 < m”l]l — @2l oo (6.26)
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3/2
Since ||z]] < n!/2z]|o and ||z]jo < ||2|| for all z € R™, (6.26) yields ||z1 — 2| < huq1 -
|-

Using the passivity property, we can compute a lower bound on u(G(h™!)) with G(s) :=
C(sI — A)"'B+ D, that will be useful for the application of Proposition 6.6.10.

Lemma 6.6.11 Consider a matriz quadruple (A, B,C, D) such that Assumption 6.2.7
holds and £(A, B,C, D) is passive. Let u(N) denote the smallest eigenvalue of the sym-
metric part of a matriz N and define G(s) = D+C(sI — A)~'B. The following statements
hold.

1. D> 0.

2. u# 0 and u" Du = 0 imply that u"CBu > 0.

3. There exists o > 0 such that u(D + hCB) > ah for all sufficiently small h.
4. There ezists B > 0 such that p(G(h™')) > Bh for all sufficiently small h.

Proof:

1: It follows from Lemma 3.8.5 item 1.
2: It follows from Lemma 3.8.5 item 3.
3: It follows from the previous item and Lemma 3.8.3.

4: It is known from matrix theory (see e.g. [18, Property 9.13.4.9]) that
W(N1 + N2) > p(Ny) + p(Ns)
for all square matrices N; and N,. Hence, we get

u(G(h™)) > u(D + hCB) + K2u(CA(I — hA)~'B)
> Bh (from item 3)

for some 8 > 0 and all sufficiently small h. i

The following auxiliary lemma will be needed in the sequel.
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Lemma 6.6.12 Let P = {z € R* | Az > b} be a given nonempty polyhedron with A €
R™™ and b € R™ and let z* be equal to argmingep ||z||. There ezists an indez set J C T
such that * = argming, ;= ||z

Proof: Consider the convex quadratic optimization problem

min %xTx.
Az>b

The well-known Kuhn-Tucker conditions are necessary and sufficient for this problem be-

*

cause of its convexity (see for instance [6, Chapter 1.2]), i.e., z* is the solution of the

optimization problem above if and only if there exists a u € R™ such that

zr=A"u
Az* > b
u>0
u' (Az* —b) = 0.

Take such a vector u. Let J = {i | u; > 0} and v = u;. Then, z* satisfies

z* = (As) v (6.27a)
AJ..’L‘* = bJ. (627b)

Note that (6.27) are necessary and sufficient (Kuhn-Tucker) conditions for the convex
quadratic minimization problem ming;, s, %xTx. |

The next lemma establishes bounds on the solutions of linear complementarity problems
with nonnegative definite matrices.

Lemma 6.6.13 Let M € R™" be nonnegative definite and Q@ = SOL(0, M). Also let
Q* denote the dual cone of the set Q as defined in Chapter 1. We have the following

statements.
1. LCP(q,M ) is solvable if and only if ¢ € Q*.

2. For each q € Q*, there erists a unique least-norm solution z* € SOL(q, M) such that
llz*|| < ||z|| for all z € SOL(q, M).

3. There exists o > 0 such that for all ¢ € Q*

llz*(g)ll < ellgl],
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where 2*(q) denotes the least-norm solution (see item 2) of LCP(q, M ).

Proof:
1: Tt follows from [6, Exercise 3.12.1] and Lemma 2.

2: This follows from the fact that SOL(g, M) is a nonempty polyhedron whenever
g € Q° [6, Theorem 3.1.7(c)].

3: Define

0 ifA=0

a(A) = { max min lz|| ifA#0
y€im A Az=y
[lyll=1

Note that
max min ||z|| = max min ||z — 2|
y€im A Az=y ||Az||=1 Az'=0

llyll=1
The mapping z — /‘{nin(J ||z — z'|| achieves its maximum on the set {z | ||Az|| = 1}. Hence,
z' =l
the quantity a(A) is well-defined for all A. Take

1
a = /2 max max af =i )
JCR KC3n M
-Mj.

Ke

where J¢ =7\ J. For any ¢ € Q*, we know from the items 1 and 2 that LCP(q, M) is
solvable and that there exists a unique least-norm solution 2*(¢). Let J = {1 | 27(q) > 0}.
Clearly, P = {v |v; > 0, vye =0, g; + M;yv; =0, and gyc + Myc vy >0} C SOL(q, M)
and 2*(¢) € P. Note that P is a polyhedron, since P = {v | Av > b} where

7 0
—1I e
A= y and b =
—q
—Mj, qJ

Moreover, it is obvious that z*(q) = argmina,ss||v||. Then, according to Lemma 6.6.12
there exists K C 3n such that 2*(q) = argmina,,,s, ||v|]|. Thus, we have [z*(q)|| <
a(Ax.)|lbx |- Note that [lbx[* < [Ib]* < [lgl* + llgs[I* < 2llgl* and V2a(Ak.) < @
Consequently, [|2*(q)|| < alq|. u
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6.6.8 Proof of Theorem 6.4.1

After these results on LCPs, the proof of the main result on linear passive complemen-
tarity systems is in order. The proof will be based on showing that the requirements of
Theorem 6.3.4 are fulfilled for this class of linear complementarity systems.

Lemma 6.6.14 Consider a matriz quadruple (A, B,C, D) such that Assumption 6.2.7
holds and ©(A, B, C, D) is passive. Then, for all sufficiently small h, LCP(hC(I —hA)™'z,
G(h™')) has a unique solution for each T € R™.

Proof: The statement follows from the positive definiteness of G(h™!) for all sufficiently
small h (Lemma 6.6.11 item 4 together with Theorem 3.1.6 of [6]). |

Lemma 6.6.15 Consider a matriz quadruple (A, B,C, D) such that Assumption 6.2.7
holds and (A, B, C, D) is passive. Let T >0 and @ =SOL(0, D). Also let ({ul}, {x}}, {vi})
be produced by Algorithm 6.3.1. The following statements hold for all sufficiently small h.

1. Cxh € Q* for all k # —1.

2. There ezists an o > 0 independent of o such that ||[u}|| < al|zo|| for all k # 0.

Proof:
1: Tt is evident from (6.2b) and (6.2c) that u} solves LCP(Cx}, D) when k # —1. Since
D is nonnegative definite (Lemma 6.6.11 item 1), Cx! € Q* due to Lemma 6.6.13 item 1.

2: All inequalities involving h are meant to hold for all sufficiently small h, and
@1, (s, . . ., g are suitably chosen positive constants in this proof. Note that LCP(Cx}, D)
is solvable for all kK # —1 due to item 1 and Lemma 6.6.13 item 1. Let u* be the least-norm
solution of LCP(Cx}, D). Clearly, u* solves also LCP(Cx} — hC(I — hA)~'Bu*,G(h™")).
According to Proposition 6.6.10, we have

m3/2
HUZH —u'|| <

S emy e - hA)~'xt — Oxt + hC(I — hA)™'Bu’|

since u},, solves LCP(C(I — hA)~'x}, G(h™')) and G(h™') is positive definite for all suf-
ficiently small h. By using the triangle inequality and Lemma 6.6.11 item 4, we obtain

* a = — *
gy — 'l < #IIC[(1~ hA)™' = Ixi|| + ai|[C(T — hA) ™ Bu’|].

Note that (I —hA)~' —I = hA(I — hA)~!. It can be easily verified that Lemma 6.6.3 item
2 and Lemma 6.6.13 item 3 result in

luf sy = u’ll < aallxgll- (6.28)
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Consequently, we get
k] < flull + lui s = wl] < aslixg]] (6.29)

by applying the triangle inequality and employing Lemma 6.6.13 item 3 and (6.28). It
follows that

[l ll < Il + llxkr — x|
< I+ (T = BA)™ = I}t + h(T — hAY Buby||  (from (6.22))
< (1+ aqh)||xt||. (from Lemma 6.6.3 item 2) (6.30)

Since limj (1 + agh)™» = " (Lemma 6.6.3 item 3), (6.30) implies that ||x}|| < as][x}|]

for some a5 > 0. Here N, = |7]. Note that we have
lIxoll = [Ix2, + hBug|| = ||zo + hBug|| < asllzoll
from Proposition 6.3. Finally, (6.29) and (6.6.8) establish the desired inequality. | |

After all these preliminaries, we can prove Theorem 6.4.1.

Proof of Theorem 6.4.1 According to Lemma 6.6.14, Assumption 6.3.2 holds. Then,
Proposition 6.6.4 item 1 implies that RCP(zo, A, B, C, D) has a unique solution, say
(a(s),y(s)). It is known from Lemma 3.8.13 item 2 that 4(s) is proper. Therefore, bound-
edness of ||hul|| for all sufficiently small A follows from Proposition 6.6.4 item 2. On the
other hand, D is nonnegative definite due to item 1 of Lemma 6.6.11 and

|l = ( / k(0| dt) 2 < ar'/2||z| (6.31)

due to (6.3) and Lemma 6.6.15 item 2. Finally, it is known from Theorem 6.2.8 that (u, x, y)
is the unique solution on [0, 7] with the initial state zo. As a consequence of Theorem 6.3.4
item 3c, {(u”,y")} converges weakly to (u,y) and {x"*} converges to z for any sequence
{hx} that converges to zero. In other words, {(u”, y*)} converges weakly to (u,y) and {x"}
converges to x as h tends to zero. ]

6.6.9 Proof of Theorem 6.4.2

In this subsection, the continuous dependence of solution trajectories on the initial states
will be proven as formulated in Theorem 6.4.2.
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Proof of Theorem 6.4.2 Let the sequence {Z,}C R™ converge to Z € R*. Denote the
solution of LCS(A, B,C, D) on [0, 7] with the initial states Z; and Z by (u*,x*, y*) and
(u, x,y), respectively. Then, it should be shown that

L. {(uikmw xikmp7 Y:cmp)} converges to (uimpy ximp1 yimp)!

2. {(uh,g,yke)} converges weakly to (Uyeq, ¥eq) and {xk, } converges to Xreg.

1: Let (uf,,, %k, v5,) = (ufd,z60,y56). Also let uf(h) and ug(h) be the solutions
of the one-step problems LCP(C(I — hA)™'zy, hC(I — hA)"'B + D) and LCP(C(I —
hA)~'z, hC(I — hA)~'B + D), respectively. From Proposition 6.6.10 and Lemma 6.6.11
item 4, we get

(k) = wo(W)]| < FNCU - hA)| 12 - 2

for sufficiently small h. By multiplying the inequality above by h and using Lemma 6.6.3
item 2, we obtain

[hug(h) — huo(h)|| < o||Zx — Z|| (6.32)

for sufficiently small A. On the other hand, it is already known from the proof of Theorem
6.3.4 item 2 that limy_, huf(h) = uf and limy,_,o hug(h) = uo. Thus, (6.32) yields

|[u§ — uol| < o[|2x — z|I- (6.33)

Clearly, {uf} converges to uy. Consequently, {ulmp} converges to u;
Duf

imp>

imp: Since x,mp =0 and

ylmp = we can conclude that {(uf Uimps ,mp, y,mp)} converges t0 (Wimps Ximps Yimp)-

2: Observe that (uf are the solutions of LCS(A4, B, C, D)
on [0, 7] with the initial states Z; + Buf and Z + Buy, respectively. Moreover, {Zx + Bu}

reg? reg’ Yreg) and (ureg7 reg’ Yreg)

converges to T + Bug as shown in the proof of item 1 above. Lemma 6.6.15 item 2 together
with (6.31) implies that for some 3 > 0 independent of Zj + Buf, [[uk|l < Bl|Zx + Bug||
for all k. This means that the sequence {ureg} is bounded since the sequence {Z; + Buf}
is convergent. Hence, there exists at least one weakly convergent subsequence of {ureg}
according to Lemma 6.6.1 item 3a. Take any such subsequence of {uf,}, say {ufl}.
Define

o T =T,B,co)
e S=D,

o g = Ce* (T, + Buf!), and
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e T, =T.

It can be checked that
e T is compact ( [23, Exercise 4.15]),
e S is linear continuous,

e {q} converges to Ce*(z + Bug)|jo,-j (since ||g — Ce?(z + Bug)|| < ||Ce™ | ||(zx, +
Bug') - (2 + Buo)|))

e TCP(q, S+ T;) is solvable (from Proposition 6.6.6 item 1),
e S, is linear continuous nonnegative definite (by Lemma 6.6.11 item 1), and

o {Tjukt —Tuf } =0.

reg reg

Therefore, {uf,} converges weakly to the solution uyeg of TCP(Ce? (z+Buo)| (0.1}, T(4,5,¢,0))
according to Theorem 6.6.9. Since U, is unique due to Proposition 6.6.6 item 2 and The-
orem 6.2.8, the reasoning above shows that any weakly convergent subsequence of {ufeg}
has the same limit. Lemma 6.6.1 item 2 implies now that the whole sequence {ufeg} con-
verges weakly to u,,. Note that Proposition 6.6.6 item 2 and uniqueness of the solutions
of LCS(A, B, C, D) yield that

Xreg = €V (Zk + Bu)|j0,r] + T(a,8.1,0)0fsg (6.34a)
he =0k + Dk, (6.34b)
and
xreg = 8A'(i‘ “+ BUO)I[O,T] —+ T(A,B‘Iyg)ureg (6340)
YTeg = Cx!'eg + Dureg (6'34d)
Then, convergence of {xf,} to x,., and weak convergence of {yheg} t0 Yyo follow from
(6.34), the convergence of {Z) + Bug} to Z + Bug and the compactness of T(a pr0). B
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Chapter 7

A Time-stepping Method for Relay
Systems

7.1 Introduction

Simulation is a common tool (and final escape) when analytical solutions or properties
of model equations cannot be derived. It is recognized that new techniques are required
for approximating the solution trajectories of hybrid systems. Simulators and languages
like Chi (x) [2], Matlab/Simulink/Stateflow, Modelica [20], Omola/Omsim [1], Psi [4]
and SHIFT ([8] have recently been developed or added hybrid features to their existing
simulation environments. Most of the mentioned hybrid simulators can be categorized as
event-driven methods according to a classification made by Moreau [21] in the context of
unilaterally constrained mechanical systems.

Event-driven methods are based on considering the simulation interval as a union of
disjoint subintervals on which the mode (active constraint set) remains unchanged. On
each of these subintervals we are dealing in general with differential and algebraic equa-
tions (DAE), which can be solved by standard integration routines (DAE simulation). As
integration proceeds, one has to monitor certain indicators (invariants) to determine when
the subinterval ends (event detection). At this event time a mode transition occurs, which
means that one has to determine what the new mode will be on the next subinterval (mode
selection). If the state at the event time is not consistent with the selected mode, a jump is
necessary (re-initialization). The complete numerical method is based on repetitive cycles
consisting of DAE simulation, event detection, mode selection and re-initialization.

The idea of smoothing methods is to approximately replace the nonsmooth relationships by
some regularized ones [21] (see also [13] in which the term “regularization” is used). As
an example in a mechanical setting, a non-interpenetrability constraint will be replaced by
some stiff repulsion laws and damping actions which are effective as soon as two bodies of
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the mechanical system come close to each other. The dynamics of the resulting approximate
system is then governed by differential equations with sufficient smoothness to be handled
through standard numerical techniques. Discrete modes do not really exist anymore, so
event detection and mode selection are not necessary. Instantaneous jumps are replaced by
(finitely) fast motions, so also the problem of re-initialization disappears. A drawback of
this method is that an accurate simulation requires the use of very stiff approximate laws.
The time-stepping procedures have to resort to very small step-length and possibly also
have to enforce numerical stability by introducing artificial terms in the equations [21].
This results in long simulation times and the effect of the artificial modifications may blur
the simulation results.

Time-stepping methods replace the describing equations directly by some “discretized”
equivalent. Numerical integration routines are applied to approximate the system equations
involving derivatives and all algebraic relations are enforced to hold at each time-step. In
this way, one has to solve at each time-step an algebraic problem (sometimes called the “one-
step problem”) involving information obtained from previous time-steps. In contrast with
event-driven methods, time-stepping methods do not determine the event times accurately,
but “overstep” them, which puts the consistency of the method into question.

In this chapter we will study linear dynamical systems coupled to relay switches. Such
relay systems attract a lot of attention as they are used in many control schemes and are
suitable for modeling friction in mechanical systems. In relay systems one may observe
chattering and even when the sliding mode is modeled explicitly (as described by Filippov
[10]), the system may display an infinite number of relay switches (mode transitions) in a
finite interval (see the example in Section 7.3 below). This so-called “Zeno behavior” causes
difficulties for simulation methods, especially if one uses an event-driven methodology.
In [13] one proposed several techniques to extend simulations beyond the Zeno time:
regularization (called smoothing in the discussion above), averaging and Filippov extension
(suggested in the context of relay systems also in [19]). The example in Section 7.3 will
show that Filippov extension does not always yield a feasible option as Zeno behavior
is still present in spite of introducing additional modes corresponding to sliding regimes.
Arriving at the Zeno point still requires simulation with an infinite number of mode (relay)
switches, which leads to numerical difficulties. Smoothing of the non-Lipschitzian relay
characteristic may be an option. However, this route is not taken here. A related paper
5] investigates this method for electrical networks with ideal diodes. The connection to the
work described in this paper lies in the fact that linear complementarity systems [11,23],
a subclass of hybrid dynamical systems, form a superclass of both linear electrical circuits

with diodes and linear relay systems.

In this chapter we will study an alternative method based on time-stepping that can



7. A TIME-STEPPING METHOD FOR RELAY SYSTEMS 173

handle Zeno behavior for (linear) relay systems. In particular, the question of consistency
will be of interest: Will the approximations converge to the solution of the original relay
system and in what sense? For linear complementarity systems the answer to this question
is in general “no” (see Example 6.3.3). However, in the case of linear relay systems con-
sistency can be proven under certain additional assumptions. Moreover, the example in
Section 7.3 will be discussed in some detail to show how the proposed method deals with

Zeno behavior.

7.2 Linear Relay Systems

Consider the systems given by

(t) = Az(t) + Bu(t) (7.1a)
y(t) = Cz(t) + Du(t) (7.1b)
uq(t) = sgn(—#i(t)) (7.1¢c)

witha € R™, 2z € R", j € R™ and A, B, C and D matrices of appropriate dimensions. Each
pair (—7;, u;) satisfies an ideal relay characteristic @; = sgn(—7,), where “sgn” denotes the
signum relation as depicted in Figure 7.1. Sometimes, we will also write (—;, ;) € Frepag.

7.3 Example

A time reversed version of a system studied by Filippov [10, p. 116] (also mentioned in
[11,18,24]) is given by

I

I —sgn(z;) + 2sgn(z) (7.2a)

—2sgn(z;) — sgn(zs). (7.2b)

To

Solutions of this piecewise constant system are spiraling towards the origin, which is an
equilibrium. Since %([zl(t)l + |z2(t)]) = —2 when z(t) # 0 along trajectories = of the
system, solutions reach the origin in finite time (see Figure 7.2 for a trajectory). However,
solutions cannot arrive at the origin without going through an infinite number of relay
switches (mode transitions). Since these mode switches occur in a finite time interval,
the event times contain an accumulation point (i.e. the time that the solution reaches
the origin) after which the solution stays at zero. It may be clear that an event-driven
methodology will not produce a good approximation, since the method can in principle not
simulate beyond the accumulation point. Hence, one has to take recourse to some other
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Figure 7.1: Ideal relay characteristic

Figure 7.2: Trajectory with initial state (2,2) .

techniques.

7.4 The Backward Euler Time-stepping Method

For the numerical simulation of a (linear) relay system we propose the use of time-stepping
methods as used in a mechanical context in [22,25] and for electrical circuits in [15,16].
The particular method considered here is based on applying the well-known backward
Euler scheme to the differential equations and imposing the relay characteristic on every

time-step. This converts (7.1) into

l‘. — N

%.T]. = Al‘j+1 + Bﬂj+l (73a)
§j+1 = CI]+1 + Dﬁj_H (73b)
(_gj+1,i7 ﬂj+l,i) € Fre]aya (73(3)

where h is the chosen step-size (assumed to be constant for ease of notation) and #;, z; and
y; denote the approximations at time instant t; = jh, j = 0,1,2,.... The relations (7.3)
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result in the following algebraic one-step problem, that must be solved for every time-step:

:;GQ
Jiv1 =C(I — Ah)'z; + [rC(%I -A)'B+ 1;]11]-+1 (7.4a)
(=Fj+1,i> Uj+1i) € Fretay- (7.4b)
The update for the state variable follows now from
o = (F = AWyt 4 (%1 ;o (7.5)

Given an initial state z(0) = o, the scheme starts by setting z, := 7o and j := 0. Solving
the one-step problem for j as given in (7.4) results in @;4, and §;;,. Next we can determine
Tj41 from (7.5) as z; and @4, are known. The counter j can be increased resulting in a new
one-step problem (j := j +1). This cycle is repeated till the desired end time T is reached
(i.e. jh > T'). For a given step-size h this procedure results in a sequence of approximations
(provided the one-step problems are solvable) {a}}, {z}}, {g}} for j = 1,2,...,[E] with
f%] denoting the smallest integer larger than or equal to % Hence, we can define a family
of approximations as a function of the step-size h. The functions (@",z", 7") are defined
on [0, 7] as the piecewise constant functions defined by

(@(t), (1), 7"(t)) := (ah,zh, g%) if t € [jh, (j + 1)h). (7.6)

7.5 Complementarity Framework

Next we discuss two methods to rewrite the one-step problem (7.4) as a so-called linear
complementarity problem. It is well-known that a relay characteristic can be reformulated
in terms of LCPs (see e.g. [14,18,22]). In this section we will discuss two methods. One
method will be used to prove unique solvability of the one-step problem (under suitable
conditions). The other will be utilized for showing consistency and for numerical imple-
mentation.

7.5.1 Solvability of the one-step problem
The first method is described in e.g. [18]. There it is stated that (—;,4;) € Freay (or

@; = sgn(—;)) for all i is equivalent to

Ya— Y=Y (7.7a)
U, =e+1u (7.7b)
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up=€e—1 (7:7¢)
0Lu, Ly, >0 (7.7d)
0<wu,Ly,>0 (7.7e)

where e denotes the vector (of any dimension) with all components being equal to one.
Combining (7.3) and (7.7), defining ¢ := C(I — Ah)~'z; and G := C(h"'I1-A)"'B+D,
and finally assuming that G(h~!) is invertible, we obtain the LCP (omitting the subscripts

for brevity)
-l -1 _p-l
ua) _ (€ G g " G G Ya (7.82)
wp e+G g -G G7! Up
0< ("") 1 (y> > 0. (7.8b)
Up Yb

Theorem 7.5.1 If G is a P-matriz, then the linear complementarity problem (7.8) is
uniquely solvable for arbitrary q.

The corresponding corollary for the time-stepping scheme is the following.

Corollary 7.5.2 Consider the relay system (7.1) and suppose that G(s) := C(sI—A)"'B+
D is a P-matriz for all sufficiently large s € R. The one-step problem (7.8) (or equiva-
lently (7.8)) resulting from applying the time-stepping method based on backward Euler is
uniquely solvable for arbitrary x; and all h sufficiently small.

7.5.2 Numerical scheme

To approximate the solution to the relay system, one could recursively solve (7.4) by
just trying all possibilities of the relay characteristic (exhaustive search) at each time-
step. Since each relay has three branches, this amounts to 3% possibilities that have to be
checked. An alternative is the use of LCPs. Although the LCP is NP-hard, which indicates
an exponential growth of computing time as a function of the size of the problem (k) (in
worst case), the available algorithms have proven to work well in practice and are used for
a wide range of applications for simulation of electrical circuits [3,15,16] and rigid body
dynamics [22,25].

The reformulation of the one-step problem (7.4) into an LCP of the form (7.8) is
only valid under the assumption of invertibility of G(h~!) for sufficiently small h > 0.
In this subsection we will show an alternative modeling method due to Van der Schaft
and Schumacher [24] that has two advantages. Firstly, the condition of invertibility is not
needed. Secondly, it avoids inclusion of algebraic constraints in the system equations, which
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would complicate the use of the consistency results of Chapter 6 needed in Section 7.7.
The statement (—7;,%;) € Frelay for all 7 is equivalent to

u' = }(e — 1) (7.9a)
¥’ = j(e+a) (7.9b)
—g=y*—ub (7.9¢)
0L u® Ly* >0 (7.9d)
0<u®Lyt>o0. (7.9¢)

Note that u{ = 0 and y? = 0 cannot occur simultaneously because of (7.9a)-(7.9b). This
implies due to the complementarity (7.9e) that either y° = 0 or u? = 0 must be true. As a
consequence of (7.9c), we obtain that y? = max(0, —;) and u? = max(0, 7;). Moreover, it
follows that @ = e —2u® and y* = e —u®. The one-step problem (7.4) can thus be rewritten

W) _ (~CU —Ah)'z; + G(h™e) | (26(h™) 1 U (7.10a)
Yja € = . s
u. Yix
'j+1 J+1

and the update of the state is given by

as

1
Tj41 = ([ = Ah)_ll'j + (EI = A)_IB[C = 2’U._‘;+1]. (71].)

Note that solvability of (7.4) and (7.10) are equivalent. Due to the relation between (7.4)
and (7.8) Corollary 7.5.2 also applies to (7.10) under the conditions stated.

7.6 Linear Complementarity Systems

The modeling of (7.9) can be directly applied (before any discussion on approximation
schemes) to the relay system (7.1) to obtain the following dynamical extension of the LCP:

T = Az + Be — 2Bu*® (7.12a)
vt _ —Cz — De 3 2D I u (7.12b)
T e =T Q u?

0<u*Ly*>0 (7.12¢)

0<u’ Lyb>o0. (7.12d)
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The general form of such system descriptidns is given by

#(t) = Az(t) + Bu(t) + f (7.13a)
y(t) = Cxz(t) + Du(t) + § (7.13b)
0<y(t)y Lu(t)>0 (7.13¢)

and called a linear complementarity system (LCS). Systems of this form have been intro-
duced in [23] and were studied further in e.g. [6,11,18].

7.7 Consistency of Time-stepping for Relay Systems

By applying backward Euler to the LCS (7.13), we obtain the one-step problem

g = s = = i
x]—+1h—1 = A.Z'J'_H + BUj.H + f (7143.)
Yi+1 = Zj1 + Dujy1 + (7.14b)

0 < Yj+1 i Uj+1 > 0, (714C)

which is equivalent to the LCP

i1 =3+ (I — hA) " {z; + hf} + [D + h(I — hA) " Blujs (7.15a)
and
g1 = (I — hA){z; + hf} + h(I — hA) ' Bu;,. (7.16)

Applying this backward Euler time-stepping scheme to the LCS (7.12) obtained from
the complementarity reformulation of (7.1) yields the approximation scheme from sub-
section 7.5.2, i.e. the one given by (7.10) and (7.11). Hence, the order of complementarity
reformulation and application of the time-stepping scheme to (7.1) is irrelevant for the
resulting approximation scheme.

In Chapter 6 the consistency — indicating the existence of a sequence of approximations
that converges to an actual solution trajectory of the original system description with the
same initial condition — of time-stepping methods has been investigated for linear electrical
networks with ideal diodes. One should be cautious in applying a time-stepping method to
a general LCS (or other multimodal or hybrid systems). This is illustrated by an example
of a triple integrator connected to complementarity conditions for which it has been shown
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that the approximations are not even bounded (see Example 6.3.3). As a consequence,
verification of the numerical scheme in the sense of showing consistency is needed.

For the backward Euler time-stepping method the following fairly general result has
been proven for LCS in Chapter 6'.

Theorem 7.7.1 Consider the LCS given by (7.13) such that the one-step problems given
by (7.15) are uniquely solvable for all sufficiently small h. Let T > 0 and zo € R* be
given. Also let (uh,z",y") € L5([0,T], R™"+™) be the piecewise constant approzimations
obtained for step-size h and initial state zo as in (7.6). Suppose that there exists an o > 0
such that ||u"|| < « for all sufficiently small h, where || - || denotes the Ly-norm. Suppose
that D is nonnegative definite (not necessarily symmetric). Then the following holds for
any sequence {hk} of step-sizes that converges to zero.

1. There ezists a subsequence {hx,} C {hi} such that (u",y" ) converges weakly in L,
to some (u,y) and " converges in L, to some .

2. The triple (u,z,y) is a solution to the LCS (7.13) on [0, T)] for initial state zq in the
sense that for almost all t € (0,T)

z(t) = zo + /t[fix(f) + Bu(7)ldr + ft (7.17a)
0

y(t) = Cz(t) + Du(t) + § (7.17b)

0 <u(t) Ly(t) >o0. (7.17¢)

3. If the solution (u,z,y) is unique for the initial state zo in the sense of (7.17), then

hi
b

the sequence (u”*,y") as such converges weakly to (u,y) and z"* converges to z.

This theorem will be applied to the relay system (7.1) by converting it to the LCS in (7.12).

Theorem 7.7.2 Consider the relay system (7.1) and suppose that G(s) := C(sI—A)~"'B+
D s a P-matriz for all sufficiently large s € R and D is nonnegative definite*. Let T > 0
and o € R* be given. Let {hy} converge to zero and consider the piecewise constant
approzimations (ah*, zM*, gh*) given by (7.6). Then the following holds for any sequence
{he} of step-sizes that converges to zero.

1. There ezists a subsequence {hy,} C {hi} such that (", §") converges weakly in Ly
to some (@,7) and ™ converges in L, to some z.

The result stated in Chapter 6 is more general in the sense that it even includes the possibility of
impulsive motions, i.e. Dirac delta distributions, and the corresponding re-initializations in the solution
trajectories.

2If D is symmetric the last condition can be dropped, since it is then implied by the first. See page 147
in [7].
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2. The triple (i, 7,7) € Lo([0,T],R™"™) 4s a solution to the relay system (7.1) on
[0, T) with initial state zo in the sense that for almost all t € [0,T)

z(t) = zo + /t[Az(T) + Bu(r)]dr (7.18a)
0

4(t) = Cz(t) + Da(t) (7.18b)

a;(t) = sgn(—yi(t)). (7.18¢)

3. If the solution (i, z, ) € L2([0,T], R™ ™) is unique for the initial state T, in the
sense of (7.18), then the complete sequence (u*,y") converges weakly to (u,y) and

xM* converges to .

Note that the theorem also guarantees the global existence of a solution to the linear relay

system under the assumptions stated.

7.8 Example

The example of Section 7.3 can be written in the form (7.1) with

a=p=l® Nep={t o=t 9.
00 2 1 01

Note that G(s) = C (s — A)"'B+ D = CBs™! is a P-matrix for all s > 0. Hence, the the-
orem above guarantees the existence of a sequence of step sizes for which the corresponding
approximations converge to an actual solution of the relay system given an initial state.
Although in [18] the uniqueness of solutions has been proven for relay systems under
the condition that G(s) is a P-matrix for sufficiently large s, the kind of uniqueness does
not correspond to the L£o-uniqueness as formulated by (7.18). The reason is that in [18]
left-accumulations (see [12]) of events are excluded in the solution concept (which we will
denote by “forward sense”). Hence, convergence of any arbitrary sequence of approxima-
tions cannot be concluded in general from Theorem 7.7.2 item 3.

The difference between the L,- and the forward sense uniqueness can be illustrated
best by considering the time-reversed version of the system in Section 7.3 (which is then
the original example in [10, p. 116]) given by

T, = sgn(x;) — 2sgn(zq) (7.19a)
Ty = 2sgn(x;) + sgn(z2). (7.19b)

This system has (infinitely many) solutions in the sense of (7.18) corresponding to initial
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state o = 0. To see this, observe that infinitely many solution trajectories in (7.2) reach
the origin in finite time (e.g. the trajectory depicted in Figure 7.2). The time-reversed
trajectories satisfy (7.19) in the Ly-sense of (7.18) with the origin as initial state. These
trajectories start with a left-accumulation point of events at the initial time (see [12] for
more details). Note that the zero trajectory satisfies (7.19) in L,-sense as well. However,
the solution concept in “forward sense” as used in [18] allows only the zero-trajectory for
initial state o = 0°. These phenomena might obstruct the uniqueness needed to apply
Theorem 7.2 item 3, which would guarantee the convergence of any arbitrary sequence of
approximations. However, for the example at hand (7.2) £;-uniqueness can be proven and
consequently, convergence of any sequence of approximations is guaranteed.

We return now to the simulation of (7.2) by the backward Euler time-stepping scheme.
The discretization (7.3) results for (7.2) in

T1j+1 — Z15
h
T2,j+1 — T2

h

= —sgn(z1,j+1) + 25gn(22,j+1) (7.20a)

—2sgn(z1,j+1) — sgn(za,5+1)- (7.20b)

I

This problem has to be solved for given z;; and Ty in the unknowns x4, and z; ;.
Considering the three possibilities for each relay characteristic yields nine (discrete) pos-
sibilities. Since the problem is uniquely solvable for each combination of z,; and Ty
according to Corollary 7.5.2, the nine areas lead to a partiticning of the state space (see
also (24, p. 30]). One of the nine possibilities is the case where z;,,; = 0 and 294, = 0
(both relays will be in the middle branches (“sliding modes”)). We can derive necessary and
sufficient conditions on zj, z5; for this being the right mode. The conditions follow from
(7.20) by realizing that the values of @ ;11 := —sgn(z1,,41) and g ;41 = —sgn(z2,;+1) must
be contained in [—1,1]. These conditions correspond to the central area in Figure 7.3.
Hence, if the previous state z,;, z,; lies in this central area, the new state will be the
origin. The figure shows that the discretized system behaves like the original continuous
system except in the vertical and horizontal strips that do not have much influence on
the solution trajectory. Only in the central area the behavior of the discretized and the
original system differ considerably. The discretized solution “jumps” to the origin in one
discrete step, while the continuous solution continues to go through (infinitely many) mode
changes at an increasing speed. After the discretized system jumps to the origin, it stays
there. Hence, the discretized system reaches the origin in finitely many steps. The theory
presented above guarantees that each sequence of approximations converges to the unique
solution of the original system.

3Interestingly, the backward Euler time-stepping scheme applied to this F: ilippov example generates
only zero-trajectories as approximations starting from the origin. Hence, this discretization method might
inherently use some “forward sense” as well.
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Figure 7.3: Partitioning of plane by relay system.

We simulated the above system for the step-sizes h = 1, h = 0.1 and A = 0.01 and
initial state (2,2)". The simulation results can be found in Figure 7.4. For h = 1 the
origin is reached within two steps. For h = 0.1 the system is at time 1.8 exactly in the
origin, while for A = 0.01 this occurs at time 1.9. For decreasing step sizes this value gets
closer and closer to the exact accurmulation point 2 for the original system. Note that the
simulation is exact beyond time 2 for all step sizes. The time-stepping method is able to
deal with the Zeno behavior in this example satisfactorily. Moreover, the convergence of

the approximations has been guaranteed.

7.9 Lemke’s Method

The most well-known algorithm to solve an LCP is the complementary pivoting scheme
due to C.E. Lemke [17]. Under the condition that M is a £L-matrix, Eaves has proven that
Lemke’s method produce a solution to LCP (g, M), provided a solution exists [9].

Definition 7.9.1 A matrix M € R*** is an L-matrix, if
1. For all w > 0, w # 0 there exists a j such that wy > 0 and (Mw); > 0.

2. There exist diagonal matrices A > 0 and Q > 0 satisfying Qw # 0 and (AM +
MTQ)w = 0 for all nonzero w € SOL(0, M).
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Figure 7.4: Simulation of the z, and z, trajectories for h = 1 (top), h = 0.1 (middle) and
h =0.01 (bottom).

The following result claims that Lemke’s algorithm will process the one-step problem (7.10)
successfully under the condition that G(h™!) is a P-matrix for all sufficiently small A.

G

Theorem 7.9.2 If G is a P-matriz, then the matriz M := ( 7

I
0) 1s an L-matriz.

7.10 Conclusions

In this paper we proposed and analyzed a time-stepping method for simulating a class of
hybrid dynamical systems, to wit linear relay systems. One motivation for considering a
time-stepping method instead of an event-driven method, as is more usual in the context of
hybrid systems, is the possible occurrence of Zeno behavior. A relay system exhibiting this
kind of phenomena was presented in Section 3. In spite of the possible presence of Zeno
trajectories and the fact that event times are overstepped, a formal proof of the convergence
of the approximations to an actual solution of the linear relay systems was given under
certain additional assumptions (which guarantee well-posedness in “forward sense”). This
justifies the use of the method and shows that it is an alternative technique for simulating
systems exhibiting Zeno behavior. This has been demonstrated by an example as well.
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The consistency that we showed in the paper guaranteed the existence of a sequence of step-
sizes such that the corresponding approximations converge to the actual solution trajectory.
To obtain that any arbitrary sequence of approximations converges, it is sufficient to prove
Ls-uniqueness of the solutions to the relay system. Unfortunately, uniqueness in the sense
of £, does not necessarily hold when uniqueness in the “forward sense” is true as shown by
Filippov’s example (7.19). Under conditions related to passivity, £,-uniqueness of solutions
to linear complementarity systems has been proven in Chapter 3.

7.11 Proofs

7.11.1 Proof of Theorem 7.5.1

In order to prove Theorem 7.5.1, we need some preparations. The following two lemmas,
which have a rather technical nature, will be employed later.

Lemma 7.11.1 If M € R™™ is a P-matriz then so is M~'.
Proof: According to (7, Theorem 3.3.4], the following two statements are equivalent:
1. M is a P-matrix.
2. (z(Mz); <0foralli em)= 2=0.
Let 2 € R™ and define y by y = M~!'z then
z(M™'z); = (My)i(M™ My); = y:(My);. (7.21)

Since M is a P-matrix, the implication (y;(My); < 0foralli € m) = y = 0 holds. It

follows from (7.21) that M~! is a P-matrix. i

Lemma 7.11.2 Let M € R™*™ be P-matriz and
i
N=(r -I) M(I —1).
Then, the following implication holds:

(2i(Nz); £0 for alli e n) = Nz =0.
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Proof: Assume that 2;(Nz); < 0 for all i € 2m for some z € R?™. Let z = col(u, v) where
u, v € R™. then, we get

ve= (1 =) (s =) (1) = (e ),

Hence, we have

wi(M(u — v)); iti=1,2,...,m,

z(Nz); =
—Vik(M(u—v))i—x fi=m+1,m+2,...,2m.
So, for all i e m

ui(M(u—v)); <0 (7.22)
—U,‘(M(U = v)),- S 0. (723)

Therefore, we get (u; — v;)(M(u—v)); <0 for all i € 7. Since M is a P-matrix, it follows
from (7, Theorem 3.3.4] that u — v = 0. Consequently, Nz = 0. |

Next, we recall the notion of row sufficient matrix from [7].

Definition 7.11.3 A matrix N € R™" is said to be row sufficient if the implication
(zi(NTz); < 0forall i € 1) = (zi(NTz); = 0 for all 5 € @) holds.

Lemma 7.11.4 If G is a P-matriz then the matriz
G! —g-!
__G——l G-l

Proof: It follows from a direct application of Lemma 7.11.2 with M = G~ . |

15 row sufficient.

As shown in the following lemma, the LCP (7.8) is feasible. This fact will be used to show
its solvability later.

Lemma 7.11.5 If G is a P-matriz then the linear complementarity problem (7.8) is fea-
sible for all q.

Proof: Let y* = ¢* and y* = ¢~ where ¢* and ¢~ are the nonnegative and nonpositive
parts of the vector g. It is clear that both y® and y° are nonnegative. Substituting the
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vector col(y?,y®) into (7.8a), we get

uW=e—Glq+Gq" -G l¢g=e20 7.24)
wW=e+Glq-G¢t+G ¢ =e>0. 7.25)
So the LCP (7.8) is feasible. ]

Now, we are in a position that we can prove Theorem 7.5.1.

Proof of Theorem 7.5.1:

solvability: It follows from |7, Corollary 3.5.5] and Lemmas 7.11.4 and 7.11.5 that LCP
(7.8) is solvable.

uniqueness: Suppose that col(u®*, u®*) and col(y**, y**) for i = 1,2 are two solutions of
the LCP (7.8). It follows from Lemma 7.11.2 and (7, Theorem 3.4.4] that col(y**, y**) for

1 = 1, 2 satisfies
G-—l __G—-l ya,l o ya,2 =i
¢l G yol — b2 :

So, G~1((y*' — y*?) — (y»' — y*?)) = 0. Since G is a P-matrix, so is G~ due to
Lemma 7.11.1. Therefore, y®! — y®2 = y»' — y®2. Now, define the vector A € R™ by
A =yl — y»? = > — 52 This results in

¥t =y + (% + PA + A (7.26)

for alli € m. It follows from (7.7a) that y®* and y** are both nonnegative and (y**) "y** = 0
for i = 1,2. Then, from (7.26) we get (3% +y>?)A; + A2, s0 A; = —(y*?+y*?); or A; =0.
Both possibilities result in A; = 0 for i € m. Consequently, we can conclude that %l =
us?, bl = b2, yorl — o and Yo = b2, u

7.11.2 The remaining proofs

Proof of Theorem 7.7.1: It follows from Theorem 6.3.4 by considering the extended
state Z := col(z, f, ). |

Proof of Theorem 7.7.2: From Corollary 7.5.2 we obtain that the one-step problems are
uniquely solvable for sufficiently small h. Moreover, if D is nonnegative definite, then the
D-matrix of the corresponding LCS (7.12) is also nonnegative definite. Hence, we only have
to show the uniform boundedness of the approximations u®” and ub" as appearing in (7.10)
and (7.12) in the sense of L,. It is clear that there exists an M, such that |a"| e < M, for
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all h as all components of @ are contained in [=1,1]. Here @" denotes the approximation
of @ for step-size h and || - ||« is the Lo-norm. The equations (7.9a)-(7.9b) yield now that
also [[u*"|| < M, and ||y®"*|| < M, for all h. Since there exist @ > 0 and 3 > 0 such
that ||(I — Ah)™'|| < 1+ ah < f for all sufficiently small h, we obtain from (7.11) that
there exists a constant ¥ > 0 such that ||z?,,[| < (1 + yh)||z?|| for all sufficiently small h.

This yields the existence of an Mj such that ||z}|| < M; for all sufficiently small h and all

J=1,2,...,[E] (see the proof of Lemma 6.6.15 item 2). Since g = Czl + Dul? and z*,
@" are uniformly bounded in h, it follows that the approximations satisfy ||7*|| < Mj for all

sufficiently small h and all j = 1,2,..., [L]. From the discussion after (7.9) it follows that
y* = max(0, —y) and u* = max(0, y) (interpret “max” componentwise), so these quantities
are uniformly bounded in h. Hence, we showed boundedness of ||u®"||, and ||u®"|, for
all sufficiently small & and consequently the required £,-boundedness. This completes the
proof, since we can apply Theorem 7.7.1 and immediately translate all results from the
LCS to the original relay system. |

Proof of Theorem 7.9.2: Note that

=w

In case u = 0, it is clear that there exists a j such that wj;x = v; > 0 and (Mw);+x = 0.
So, for this case statement I holds. In case u # 0 and u > 0, there must exist a j such
that u; > 0 and (Gu); > 0. The reason is that a P-matrix G does not reverse the sign of
any nonzero vector u [7, Thm. 3.3.4]. Hence, w; = u; > 0 and (Mw); = (Gu); + v; > 0,

because vg > 0. It can easily be verified that SOL(0, M) = {<0) | v € R¥}. Take
v

Q:OOandA:IO.
0 I 00

The first part of statement 2 follows from Qu = u for all u € SOL(0, M). The second part
is obtained from computing AM + M T which is equal to

(00

If we combine this with the special form that elements in SOL(0, M) have, the proof is
complete. |
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Chapter 8
Conclusions

A class of piecewise linear systems that we call complementarity systems has been under
consideration. The two main themes were well-posedness and continuity problems.

8.1 Contributions

The contributions of the thesis can be summarized as follows.

e Sufficient conditions for the existence and uniqueness of solutions, in PB-sense, to
(low index) linear complementarity systems (LCS), which are subjected to PB-like
inputs, have been established.

e It has been shown that the solutions of linear passive complementarity systems
(LPCS) do exist and are unique in Lo-sense which is more general than PB-sense.

e As a generalization of linear passive systems, a new class of systems that are pas-
sifiable by pole shifting (PPS) has been introduced. After providing necessary and
sufficient conditions for a system to be PPS, it has been proven that all the results
that were presented for LPCS hold for linear PPS complementarity system.

e For both senses of solutions, the regular initial states, the initial states for which
there is a solution, have been characterized in terms of solvability of some linear
complementarity problems. In fact, it has been shown that the set of regular initial
states is the same for both cases.

e As a side result of the study of linear PPS complementarity systems, we have shown
that Zeno behavior cannot occur for certain LCSs. For a larger class of LCSs, we
also proved that the zero state (which is the most natural candidate) cannot be a

Zeno state.
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e Based on a motivation from mechanical systems, a jump rule in terms of stored energy
for nonregular initial states of LPCS has been introduced. Several different charac-
terizations of this jump rule have been established. Particularly, the one with the
so-called rational complementarity problem has been used to define a distributional
solution concept which treats nonregular initial states as well. Previously presented
well-posedness results have been reformulated in this distributional framework.

e By following the footsteps of the work has been done for LCS, a class of piecewise
linear systems, which can be formulated with the help of complementarity methods,
has been considered with an eye towards the existence and uniqueness of solutions.
It has been shown that similar sign conditions as in the case of LCS are sufficient for
well-posedness in PB-sense.

e We presented some sufficient conditions for the convergence of the approximations
that are obtained by replacing the non-Lipschitzian complementarity characteristic
with close Lipschitzian characteristics. More precisely, it has been shown that for a
given regular initial state of a linear PPS complementarity system the state trajec-
tories of such approximations converge in suitable senses to the state trajectory of
the original system if the approximating systems satisfy uniform passifiability con-
dition. The convergence of (u,y)-trajectories in L£o-weak-sense has also been proven
under the additional condition of uniform £,-boundedness of u-trajectories of ap-
proximating systems. For more general approximations, what we could reach was to
show L,-strong-sense convergence of the state trajectories and Lo-weak-sense conver-
gence of (u, y)-trajectories if the u-trajectories of approximating systems is uniformly
L>-bounded.

e For LPCS and linear relay systems, the Backward Euler method was proven to be
consistent as a time-stepping method in the sense that the approximating trajectories
obtained by the Backward Euler method do convergence to the actual solution of the
original system in a suitable sense. Another achievement for LPCS was the continuous
dependence of the solutions to the initial states.

8.2 Further Research Topics

As the completion/extension of our work, the following points can be considered for further
study.

® Ly-uniqueness of the solutions to general LCS, with its potential implications for
consistency of time-stepping methods, deserves to be studied further.
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e The study of Zeno behavior is of considerable importance not only from a hybrid
systems point of view but also for continuity problems. Indeed, absence of Zeno
would yield stronger convergence results.

e We believe that uniformly passifiable families of systems can be exploited further
than we have done in Chapter 5. So, study of uniformly passifiable systems is on our
near-future research programme.

e Generalization of time-stepping methods to piecewise linear systems can be done by
following the footsteps of Chapter 6 and 7.

e In the treatment of well-posedness problems, one of the standing assumptions was
the low indez assumption. Systems with higher index may arise from the context of
optimal control problems with state constraints in particular. Only this particular
application area provides enough motivation for future work in this direction.

e In Chapter 2, only PB-like inputs have been allowed. Although from a modular-
ity point of view this class of inputs is enough to cover interconnections of LCSs,
such a restriction on the inputs is not a quite natural one. Therefore, the possible
generalization to larger classes of inputs is of interest.

As items of a long-term programme, we might think of the following research direc-
tions/subjects.

e The well-posedness of nonlinear complementarity systems can be dealt with by using
time-stepping methods. Indeed, these methods have been employed for showing

existence of solutions in mechanical systems context.

e Having studied well-posedness, stability issues are naturally in order. One may take
the extensions of Lyapunov theory to hybrid systems as a starting point. For linear
passive complementarity systems, we know that there exists a common quadratic
Lyapunov function for all modes. However, our impression is that even the additional
structure offered by complementarity systems does not help too much and stability
issues are very far from being trivial for general LCSs.

e With an aim to develop control theory for complementarity systems, we should first
address controllability and observability issues. Again existing literature for hybrid
systems gives some hints.



Summary

The main object of this thesis is a class of piecewise linear dynamical systems that lie in
the realm of the intersection of system theory and mathematical programming. We call
them complementarity systems. For these nonlinear and nonsmooth dynamical systems,
our research is concentrated on two themes: well-posedness and approzimations.

The well-posedness issue, in the sense of existence and uniqueness of solutions, is of
considerable importance from a model validation point of view. If the physical system
that is being modeled is deterministic in the sense that it shows identical behavior under
identical circumstances, then the mathematical model should have the same property.
Model validity would be put into serious doubt if it would turn out that the equations of
the mathematical model allow multiple solutions for some initial data. With any model
formulation for a deterministic physical system it is therefore important to establish well-
posedness of the model. The first part of the thesis is devoted to well-posedness issue.
We provide sufficient conditions in order for the solutions of a complementarity system
do exist and are unique. Comparisons of several solution concepts are made, regularity of
solutions is studied and characterizations of the initial states that yield regular solutions
(in the sense that they do not contain impulses) are established.

If one considers the modeling process as a mapping which assigns models to physical
systems, it is rather natural to ask whether this mapping is continuous or not. Stated
differently, one may ask whether the modeling process associates close physical systems to
close models. The second part of the thesis opens with an investigation on the behavior
of the complementarity systems subject to small parameter changes. It is shown that the
modeling process is continuous for a class of complementarity systems.

Simulation of complementarity systems is another source of motivation to consider ap-
proximations. Since they are members of the family of nonsmooth systems, the classical
numerical methods cannot be indiscriminately applied to complementarity systems. We
illustrate this fact by means of examples in which the well-known backward Euler method
fails to approximate the actual solution when it is applied to general complementarity sys-
tems. We say that a numerical method is consistent if the approximating trajectories that
are produced by the method converge to the actual ones. The last two chapters of the sec-
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ond part are concerned with the consistency of time-stepping methods for complementarity
systems. It is shown that under certain conditions (such as passivity of the underlying sys-
tem) the consistency of the backward Euler time-stepping method for complementarity

systems can be guaranteed.



Samenvatting

Het voornaamste object van studie in dit proefschrift is een klasse van stuksgewijs lineaire
dynamische systemen die gerelateerd zijn zowel aan de systeemtheorie als aan de math-
ematische programmering. De systemen in deze klasse worden aangeduid met de term
complementariteitssystemen. Het onderzoek met betrekking tot deze niet-lineaire en niet-
gladde dynamische systemen dat in dit proefschrift wordt beschreven is toegespitst op twee
thema’s: goedgesteldheid en benaderingen.

Goedgesteldheid, opgevat als existentie en uniciteit van oplossingen, is belangrijk onder
meer vanuit het oogpunt van modelvalidatie. Fysische systemen kunnen dikwijls als deter-
ministisch worden opgevat, in de zin dat identieke omstandigheden steeds hetzelfde gedrag
zullen teweegbrengen, en als regel wordt dan van een wiskundig model van een dergelijk
systeem dezelfde eigenschap verwacht. De geldigheid van een model zou ernstig in twijfel
worden getrokken als dan zou blijken dat er voor sommige beginvoorwaarden verschillende
oplossingen mogelijk zijn. Het verifiéren van goedgesteldheid is daarom een wezenlijk
onderdeel van modelformulering. Het eerste deel van het proefschrift heeft betrekking
op goedgesteldheid. Voldoende voorwaarden worden gegeven waaronder de oplossingen
van een complementariteitssysteem bestaan en eenduidig zijn bepaald door de beginvoor-
waarden. Verschillende oplossingsconcepten worden met elkaar vergeleken; de mate van
regulariteit van oplossingen wordt beschreven, en karakteriseringen worden gegeven van be-
gintoestanden die leiden tot reguliere oplossingen (in de zin dat geen impulsen voorkomen).

Als we een modelleringsproces beschouwen als een afbeelding die modellen toevoegt
aan fysische systemen, dan ligt het voor de hand te vragen of deze afbeelding continu is of
niet. In andere woorden, de vraag is of dichtbijzijnde fysische systemen aanleiding geven
tot dichtbijzijnde modellen. Het tweede deel van het proefschrift begint met een onderzoek
van het gedrag van complementariteitssystemen die aan kleine parameterveranderingen
worden onderworpen. Aangetoond wordt dat het modelleringsproces inderdaad continu is
voor een klasse van complementariteitssystemen.

Een tweede motivering voor het onderzoek van benaderingen ligt in de simulatie van
complementariteitssystemen. Aangezien deze systemen niet glad zijn kunnen klassieke nu-
merieke methoden niet zonder meer worden toegepast. In het proefschrift wordt getoond
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dat bij sommige complementariteitssystemen de welbekende impliciete Euler-methode geen
benadering oplevert van de werkelijke oplossing. We noemen een numerieke methode “con-
sistent” als de benaderende trajekten die worden geproduceerd door de methode converg-
eren naar de werkelijke oplossing. De laatste twee hoofdstukken van het tweede deel hebben
betrekking op de consistentie van zogenaamde time-stepping methoden voor complementa-
riteitssystemen. Aangetoond wordt dat onder bepaalde voorwaarden (zoals passiviteit van
het onderliggende systeem) de consistentie van de impliciete Euler time-stepping methode
voor complementariteitssystemen kan worden gegarandeerd.
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