
Brief Performance Portability Analysis of a
Matrix Multiplication Kernel on Multiple

Vendor GPUs

Manuel Costanzo1 , Enzo Rucci1 �, Carlos Garćıa-Sánchez2 , and Marcelo
Naiouf1

1 III-LIDI, Facultad de Informática, UNLP – CIC.
La Plata (1900), Bs As, Argentina

{mcostanzo,erucci,mnaiouf}@lidi.info.unlp.edu.ar
2 Dpto. Arquitectura de Computadores y Automática, Universidad Complutense de

Madrid. Madrid (28040), España
garsanca@dacya.ucm.es

Abstract. The heterogeneous computing paradigm has led to the need
for portable and efficient programming solutions that can leverage the
capabilities of various hardware devices, such as NVIDIA, Intel, and
AMD GPUs. This study evaluates the performance and portability of the
SYCL and CUDA languages for a matrix multiplication (MM) applica-
tion across different GPU architectures. The experimental work showed
that, while the CUDA implementation outperforms the SYCL imple-
mentation on NVIDIA devices due to optimizations provided by the
nvcc compiler, the latter implementation demonstrated remarkable code
portability to other GPU architectures, such as AMD and Intel. Fur-
thermore, the architectural efficiency percentages obtained on AMD and
Intel GPUs showed consistency with the results observed on NVIDIA
devices.

Keywords: oneAPI · SYCL · GPU · CUDA· Performance portability

1 Introduction

In the last decade, the quest to improve the energy efficiency of computing
systems has fueled the trend toward heterogeneous computing and massively
parallel architectures [1]. Nowadays, GPUs can be considered the dominant ac-
celerator, and Nvidia, Intel, and AMD are the biggest manufacturers. In the 4th
quarter of 2022, Intel and AMD had 9% of the market, with Nvidia dominating
the discrete graphics card market at 82%. By including integrated and embedded
graphics, Intel had 71% of the market, Nvidia 17% and AMD 12% 3.

Focusing on the programming aspect, CUDA is the most popular GPU pro-
gramming language. However, CUDA codes only run on Nvidia GPUs. This fact

� Corresponding author.
3 https://www.pcgamer.com/intel-is-already-matching-amd-for-gaming-graphics-market-share/

Short Papers of the 11th Conference on Cloud Computing Conference, Big Data & Emerging Topics

- 13 -

imposes severe limitations to code portability, also affecting maintenance, ex-
tension, and development cost. One effort to face this issue is SYCL 4, a new
open standard from Khronos Group. SYCL is a royalty-free, cross-platform ab-
straction layer that allows the programmer to write single-source C++ host code
including accelerated code expressed as functors. In this sense, the same SYCL
code can run on various hardware platforms, including CPUs, GPUs, and FP-
GAs. In this way, SYCL seeks to reduce development and maintenance costs and
also improve programming productivity.

In this context, while reaching functional portability is already hard, perfor-
mance portability becomes a major challenge. In this paper, we evaluate the
functional and performance portability of two GPU-accelerated implementations
of a matrix multiplication (MM) kernel across Intel, Nvidia, and AMD GPUs
using Marowka’s method [2].

2 Background

2.1 SYCL and the oneAPI Programming Ecosystem

SYCL is a cross-platform programming model based on C++ language for
heterogeneous computing and features asynchronous task graphs, hierarchical
parallelism, buffers defining location-independent storage, automatic overlap-
ping kernels and communications, and interoperability with OpenCL, among
other characteristics [3]. Recently, Intel announced the oneAPI programming
ecosystem that provides a unified programming model for a wide range of hard-
ware architectures. At the core of the oneAPI environment is the Data-Parallel
C++ (DPC++) programming language, which can be summarized as C++
with SYCL. Additionally, DPC++ also features some vendor-provided exten-
sions that might be integrated into these standards in the future [4]. Last,
oneAPI provides different programming utilities, including a compatibility tool
(SYCLomatic) that facilitates the migration to the SYCL-based DPC++ pro-
gramming language.

2.2 Performance portability

According to Penycook [5], performance portability refers to ”A measurement of
an application’s performance efficiency for a given problem that can be executed
correctly on all platforms in a given set”. These authors define two different per-
formance efficiency metrics: architectural efficiency and application efficiency.
The former represents the ability of an application to utilize hardware efficiently
and is a fraction of “peak” theoretical hardware performance; while the latter
represents the ability of an application to use the most appropriate implemen-
tation and algorithm for each platform, and is a fraction of the best-observed
performance.

The metric for performance portability presented by Penycook [5] was later
reformulated by Marowka [2] to address some of its flaws. The latter is presented

4 https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf

Short Papers of the 11th Conference on Cloud Computing Conference, Big Data & Emerging Topics

- 14 -

next. Formally, for a given set of platforms H from the same architecture class,
the performance portability Φ̄ of a case-study application α solving problem p
is:

¯Φ(α, p,H) =

{∑
i∈H ei(α,p)

|H| if i is supported ∀i ∈ H

not applicable (NA) otherwise

where ei(α, p) is the performance efficiency of case-study application α solving
problem p on the platform i.

3 Experimental Work and Results

3.1 Case-Study Applications: Matrix Multiplication (MM)

Two GPU-accelerated implementations of matrix multiplication (MM) kernel
were considered for the performance portability evaluation:

– CUDA: this version was extracted from the CUDA Demo Suite 5. This app
computes a MM using shared memory through a tiled approach and loop
unrolling technique to increase throughput.

– SYCL: this code is based on the implementation provided in [6], which rep-
resents an SYCL-equivalent, migrated version of the previous one.

It is important to note that, according to Nvidia, the code “It has been writ-
ten for clarity of exposition to illustrate various CUDA programming principles,
not with the goal of providing the most performant generic kernel for matrix
multiplication.” 6

3.2 Experimental Results

The experiments were performed on eight systems equipped with different GPUs.
The main features of these systems are described in Table 1. A single workload
was configured for MM (nIter = 10; wA,wB, hA, hB = {16384}). Finally, to
run SYCL code on Nvidia and AMD GPUs, several modifications had to be
made to the build, as it is not supported by default 7. After these modifications,
it was possible to run DPC++ code on an Nvidia GPU, but using the Clang++
compiler (nvcc 11.7, clang 16.0).

Table 2 presents the GFLOP/s and architectural efficiencies of both CUDA and
SYCL codes on the experimental platforms. On the one hand, it becomes evident
that CUDA outperforms SYCL using all Nvidia GPUs. In particular, CUDA
version runs (on average) 1.2× faster than SYCL. This superior performance
can be primarily attributed to the fact that nvcc, performs a more efficient

5 https://docs.Nvidia.com/cuda/cuda-samples/
6 https://docs.Nvidia.com/cuda/cuda-c-programming-guide/index.html
7 https://intel.github.io/llvm-docs/GetStartedGuide.html

Short Papers of the 11th Conference on Cloud Computing Conference, Big Data & Emerging Topics

- 15 -

Table 1: Experimental platforms

CPU GPU

Processor
RAM

Memory
Vendor

Model
(Architecture)

GFLOPS
peak (SP)

Intel Xeon E5-2695 16 GB GTX 980 (Maxwell) 4980
Intel Xeon E5-2695 16 GB GTX 1080 (Pascal) 8872
Intel Core i5-7400 64 GB Nvidia RTX 2070 (Turing) 7464

Intel Core i5-10400F 64 GB RTX 3070 (Ampere) 20313
Intel Xeon Gold 6138 64 GB Tesla V100 (Volta) 14131
Intel Core i9-9900K 32 GB Intel Arc 770 (Gen 12.5) 19660
Intel Xeon iE5-1620 64 GB AMD RX 6700 XT (RDNA 2.0) 13214

Table 2: GFLOP/s and architectural efficiencies of both CUDA and SYCL codes
on the experimental platforms.

Platform CUDA SYCL

GPU
GFLOP/s

peak
GFLOP/s
achieved

Arch.
eff.

GFLOP/s
achieved

Arch.
eff.

GTX 980 4980 552 11.1% 430 8.6%
GTX 1080 8872 603 6.8% 556 6.3%
RTX 2070 7464 1011 13.6% 810 10.9%
RTX 3070 20313 1316 6.5% 1084 5.3%
Tesla V100 14131 1582 11.2% 1345 9.5%
Arc 770 19660 × NA 1836 9.3%

RX 6700 XT 13214 × NA 1553 11.8%

code translation than clang++ when it comes to shared memory accesses 8,
causing SYCL code to use more registers and perform additional computation.
On the other hand, architectural efficiencies are low for both code versions (8%
on average). This behavior is related to the educative aspect of the original code
that was detailed in Section 3.1.

Performance portability of both CUDA and SYCL codes is presented in Table 3.
First, it becomes evident that SYCL code provides higher functional portability,
successfully running on different hardware vendor platforms. Moreover, CUDA
fails to demonstrate the same level of adaptability, just being able to run on
Nvidia GPUs. Second, both codes present a similar performance efficiency when
executing on the different supported GPUs, demonstrating their performance
portability.

8 https://support.codeplay.com/t/poor-performance-on-matrix-multiplication/

575/2?u=mcostanzo

Short Papers of the 11th Conference on Cloud Computing Conference, Big Data & Emerging Topics

- 16 -

Table 3: Performance portability of both CUDA and SYCL codes on the exper-
imental platforms.

Φ(α, p,H)
Platform set (H) CUDA SYCL

Nvidia 9.8% 8.1%
Intel NA 9.3%
AMD NA 11.8%

Nvidia ∪ AMD NA 8.7%
Nvidia ∪ Intel NA 8.3%
Intel ∪ AMD NA 10.5%

Nvidia ∪ AMD ∪ Intel NA 8.8%

3.3 Discussion

While SYCL code proved to be slower than its CUDA counterpart in this study,
it showcased performance portability across a wider range of GPU vendors,
highlighting its versatility and potential. However, it is important to note that
the observed performance difference between SYCL and CUDA codes does not
occur in all cases; [7, 8, 9] show that SYCL codes can achieve the same or even
better performance than CUDA versions.

4 Conclusions and Future Work

In this paper, we have evaluated both the performance and portability of SYCL
and CUDA languages for a MM application on Nvidia, Intel, and AMD GPUs.
The main findings of this study can be summarized as follows:

– The performance comparison between the SYCL and CUDA implementa-
tions on Nvidia devices revealed that the latter outperforms the former due
to the optimizations applied by the nvcc compiler.

– We have successfully demonstrated the code portability of the SYCL imple-
mentation to other GPU architectures, such as AMD and Intel. Moreover,
the architectural efficiency percentages obtained on these GPUs were found
to be consistent with those observed on Nvidia devices.

In summary, this brief study highlights the potential of SYCL as a performance-
portable alternative to CUDA for the development of high-performance comput-
ing applications. Although the current performance of SYCL on Nvidia GPUs
may be lower than that of CUDA, this gap will decrease as SYCL compilers
continue to improve.

Future work focuses on exploring the use of SYCL in different application do-
mains. This could provide valuable insights into its performance and portability
features in a broader context, enabling a more comprehensive understanding of
its strengths and limitations.

Short Papers of the 11th Conference on Cloud Computing Conference, Big Data & Emerging Topics

- 17 -

References

[1] H. Giefers et al. “Analyzing the energy-efficiency of sparse matrix multipli-
cation on heterogeneous systems: A comparative study of GPU, Xeon Phi
and FPGA”. In: 2016 IEEE ISPASS. 2016, pp. 46–56.

[2] Ami Marowka. “Reformulation of the performance portability metric”. In:
Software: Practice and Experience 52.1 (2022), pp. 154–171. doi: https:
//doi.org/10.1002/spe.3002.

[3] Ronan Keryell and Lin-Ya Yu. “Early Experiments Using SYCL Single-
Source Modern C++ on Xilinx FPGA”. In: Proceedings of the IWOCL ’18.
Oxford, UK: ACM, 2018. doi: 10.1145/3204919.3204937.

[4] S. Christgau and T. Steinke. “Porting a Legacy CUDA Stencil Code to
oneAPI”. In: 2020 IEEE IPDPSW. May 2020, pp. 359–367. doi: 10.1109/
IPDPSW50202.2020.00070.

[5] S.J. Pennycook, J.D. Sewall, and V.W. Lee. “Implications of a metric for
performance portability”. In: Future Generation Computer Systems 92 (2019),
pp. 947–958. issn: 0167-739X. doi: https://doi.org/10.1016/j.future.
2017.08.007.

[6] Manuel Costanzo et al. “Early Experiences Migrating CUDA codes to oneAPI”.
In: IX Jornadas de Cloud Computing, Big Data & Emerging Topics. 2021.

[7] Manuel Costanzo et al. “Migrating CUDA to oneAPI: A Smith-Waterman
Case Study”. In: Bioinformatics and Biomedical Engineering. Cham: Springer
International Publishing, 2022, pp. 103–116. isbn: 978-3-031-07802-6. doi:
10.1007/978-3-031-07802-6_9.

[8] Zheming Jin and Jeffrey S. Vetter. “Performance Portability Study of Epis-
tasis Detection Using SYCL on NVIDIA GPU”. In: Proceedings of the 13th
ACM International Conference on Bioinformatics, Computational Biology
and Health Informatics. BCB ’22. Northbrook, Illinois: ACM, 2022. isbn:
9781450393867. doi: 10.1145/3535508.3545591.

[9] Goutham Kalikrishna Reddy Kuncham, Rahul Vaidya, and Mahesh Barve.
“Performance Study of GPU applications using SYCL and CUDA on Tesla
V100 GPU”. In: 2021 IEEE High Performance Extreme Computing Con-
ference (HPEC). 2021, pp. 1–7. doi: 10.1109/HPEC49654.2021.9622813.

Short Papers of the 11th Conference on Cloud Computing Conference, Big Data & Emerging Topics

- 18 -

	03-CONTENIDO
	3-A4-Costanzo-JCCBD_ET_2023

