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(Received 10 May 1999 and in revised form 8 May 2001)

The paper considers the derivation and properties of the Fanno model for nearly
unidirectional turbulent flow of gas in a tube. The model is relevant to many industrial
processes. Approximate solutions are derived and numerically validated for evolving
flows of initially small amplitude, and these solutions reveal the prevalence of localized
large-time behaviour, which is in contrast to inviscid acoustic theory. The properties
of large-amplitude travelling waves are summarized, which are also surprising when
compared to those of inviscid theory.

1. Introduction

The classical theory of quasi-one-dimensional inviscid flow of a perfect gas in a
tube, as expounded in Liepmann & Roshko (1957), cannot be applied to situations
where the flow is turbulent and where the tube is long enough for wall drag to be
important. One industrial situation where this is the case arises in the air-jet spinning
of polymer filaments (see European Study Group 1997), where typically the tube
(in fact a two-dimensional channel) has aspect ratio 10−3. On a smaller scale the
inlets to pressure transducers sometimes have similar geometries (Jones et al. 1993)
and larger scale examples are those of a high-speed train or pneumatic-tube vehicle
travelling through a long tunnel (Ozawa & Maeda 1988; Wright & White 1974). In
such configurations, a more realistic model than that of inviscid flow is the Fanno
flow model (Knight 1998; Landau & Lifschitz 1959; Shapiro 1953), which includes a
drag term in the momentum balance while leaving the equations of mass and energy
conservation unaltered.

The Fanno model has received little mathematical attention, and the principal
objective of this paper is to describe the underlying modelling assumptions, which we
do in § 2, and to make some predictions about travelling and evolving waves, which
we do in §§ 3, 4. The mathematical theory will never be as complete as it is for inviscid
flow because, although the Fanno model comprises a hyperbolic system of partial
differential equations, it does not possess any Riemann invariants. Hence analytical
progress can only be made for flows that are either travelling waves or are of small
amplitude.

We will frame our description of Fanno flow on the lines usually adopted when a
conventional shear viscosity is used to model dissipation. In that theory, the dissipation
is strongest where the velocity gradient is greatest; this is particularly true near shock
waves, which, when they are weak, are modelled by Burgers equation. In Fanno flow,
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however, the wall drag damps flows over large times and distances but has relatively
little local effect on shock waves.

2. The Fanno model

The Fanno model for mass, momentum and energy conservation of a quasi-one-
dimensional turbulent gas flow in a tube of area S(x) is derived on physical grounds
for steady flow in Wright & White (1974), Knight (1998), Landau & Lifschitz (1959),
Shapiro (1953). The unsteady form of the equations is

∂

∂t
(ρS) +

∂

∂x
(ρuS) = 0, (1)

∂

∂t
(ρuS) +

∂

∂x
(ρu2S) + S

∂p

∂x
= −dρfu|u|, (2)

∂

∂t
(ρS(e+ 1

2
u2)) +

∂

∂x
(ρuS(e+ 1

2
u2)) +

∂

∂x
(puS) = 0, (3)

where the gas density, pressure, velocity and internal energy are ρ, p, u, e; f is a
positive constant representing the wall drag, d is the perimeter of the tube and the
tube is aligned with the x-axis. Only the right-hand side of the momentum equation
differs from the classical inviscid model, and hence there appears to be a discrepancy,
because dissipation is neglected in the energy equation.

This model can be heuristically validated if we are prepared to start from the
following model for the mean turbulent velocity (u∗, v∗), pressure p∗ and density ρ∗ in
a nearly unidirectional two-dimensional flow in a channel − 1

2
S(x) < y < 1

2
S(x) whose

length is much greater than its typical breadth, so that ∂/∂x ≪ ∂/∂y:

∂ρ∗

∂t
+

∂

∂x
(ρ∗u∗) +

∂

∂y
(ρ∗v∗) = 0, (4)

∂

∂t
(ρ∗u∗) +

∂

∂x
(ρ∗u∗2) +

∂

∂y
(ρ∗u∗v∗) +

∂p∗

∂x
=
∂τ∗

∂y
, (5)

∂

∂t
(ρ∗E∗) +

∂

∂x
(ρ∗u∗E∗) +

∂

∂y
(ρ∗v∗E∗) +

∂

∂x
(u∗p∗) +

∂

∂y
(p∗v∗) =

∂

∂y
(u∗τ∗). (6)

Here we have denoted the dominant stress component by τ∗ and set

E∗ =
p∗

(γ − 1)ρ∗
+ 1

2
u∗2

where γ is the ratio of specific heats. We have also put d = 1 for two-dimensional
flow and assumed conduction is negligible.

The two key assumptions of the Fanno model are that

(i) τ∗ changes rapidly from a small value outside the boundary layer to τw at the
wall, so that the right-hand side of (5) is effectively a delta function of strength τw at
each wall;

(ii) the flow is almost plug flow so that, except for the right-hand sides of (5), (6),
all the terms in these equations can be considered as being independent of y when
averaging across the tube.

Then, integrating with respect to y from −S/2 to S/2, using the no-slip condition
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and setting
∫ S/2

−S/2
u∗ dy = Su etc., we obtain (1)–(3) except that the right-hand side

of (2) is 2τw . The final ingredient for the Fanno model is the empirical result that
τw = − 1

2
fρu|u| where f = O(10−3) (see Knight 1998): this formula is similar to

wall friction laws used in hydraulics and it can be deduced by averaging turbulent
boundary layer models such as the Cebici–Smith model (Hague et al. 1992).

It is convenient to non-dimensionalize these equations by scaling x with a length
L much longer than a typical channel width S0, S with S0, u and ρ with typical
initial or boundary values u0, ρ0, and t with L/u0. We also scale p − p0 with ρ0u

2
0,

where p0 is a reference value of p, which may seem unnecessarily complicated at this
stage but it helps our subsequent investigation into the effects of changing u0 and p0

independently.
It is easy to see that if we take L = S0/f, the factor f vanishes from the model.

Thus this length scale emerges as the minimum channel length over which the effect
of wall friction enters the model to lowest order. Finally, the non-dimensional model,
which will form the basis for our analysis, is

∂

∂t
(ρS) +

∂

∂x
(ρuS) = 0, (7)

S

(

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x

)

= −u|u|, (8)

d

dt

(

p

(γ − 1)ρ
+ 1

2
u2

)

−
1

ρ2

(

1

(γ − 1)M2
0

+ p

)

dρ

dt
+
u

ρ

∂p

∂x
= 0, (9)

where

d

dt
=

∂

∂t
+ u

∂

∂x
and M2

0 =
u2

0ρ0

γp0

.

The unconventional pressure scaling has resulted in the irritating explicit appearance
of this reference Mach number.

The model for flow in a tube would be similar, with S denoting the dimensionless
cross-sectional area and the perimeter of this area appearing as a factor on the
right-hand side of (8).

As in inviscid flow, system (7)–(9) is hyperbolic with characteristics

dx

dt
= u± a and

dx

dt
= u,

where a2 = (γp/ρ) + (1/M2
0ρ). However there are no Riemann invariants. Indeed,

since (7) and (8) can be used to write (9) as

ργ
d

dt

{(

p+
1

γM2
0

)

ρ−γ

}

=
(γ − 1)ρu2|u|

S
, (10)

entropy is not conserved on a particle path. On the other hand, shocks moving with
speed V are possible in which the usual Rankine–Hugoniot conditions hold, so that

V =
[ρu]

[ρ]
=

[p+ ρu2]

[ρu]
=

[ρu(h+ 1
2
u2)]

[ρ(e+ 1
2
u2)]

, (11)

where

h =
γp

(γ − 1)ρ
+

1

(γ − 1)M2
0ρ
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1

0 X
x

M

M
0

Figure 1. Solution of (15) for constant S .

and the dimensionless internal energy is e = h/γ; uniqueness is expected as long as
expansion shocks are forbidden. Note from (8) that wall drag damps the motion both
as time increases and as we move in the direction of the flow. For example, when the
flow is spatially constant, ρ remains fixed but u decays as O(t−1) and p increases to
its ultimate value from which it differs by O(t−2) as t → ∞.

As described in Wright & White (1974), quasi-one-dimensional steady nozzle flow
is described by the ordinary differential equations

d

dx
(ρuS) = 0, (12)

ρu
du

dx
+

dp

dx
= −ρu|u|/S, (13)

d

dx
[ρuS(h+ 1

2
u2)] = 0, (14)

which can be reduced to

dM

M

(1 −M2)

1 + 1
2
(γ − 1)M2

+
dS

S
=
γM|M| dx

S
, (15)

where the Mach number is M = u/a. Thus, as far as the Mach number is concerned,
the frictional effects are similar to those resulting from a converging channel for which
dS/S is negative. However, it should be remembered that friction always increases
the entropy, whereas the shock-free flow of an inviscid fluid through a channel of
varying cross-section is isentropic.

An immediate consequence of this analysis is to enable us to see that wall drag
causes the phenomenon of choking to occur even in a constant-area nozzle as soon as
the pressure drop is large enough for the exit Mach number to reach unity (figure 1).
Any further decrease in exit pressure will leave the flow in the nozzle unaffected,
with a shock being expelled from the end of the tube. This phenomenon clearly has
important implications for the design of industrial nozzles such as those used in air-jet
spinning.

We now turn to two aspects of the Fanno model that have not been addressed
in the literature, namely the evolution of small-amplitude waves, and the possibility
of large-amplitude travelling waves. In both cases we consider a channel of constant
width and set S = 1.
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3. Small Mach number waves

The most convenient form of equations (7)–(9) from which to start is

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (16)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= −u|u|, (17)

∂p

∂t
+ u

∂p

∂x
+

(

1

M2
0

+ γp

)

∂u

∂x
= (γ − 1)ρu2|u|, (18)

and the Rankine–Hugoniot relations for a shock moving with non-dimensional speed
V are

[ρ(V − u)] = 0, [p+ ρ(V − u)2] = 0 and [h+ 1
2
(u− V )2] = 0.

We now study the evolution of small-amplitude waves in two configurations; in
each case the gas is initially at rest with pressure p0 and density ρ0 in a semi-infinite
tube x > 0. The first problem, which is relevant to transducer design, considers the
flow produced in the tube when the pressure at the end x = 0 is suddenly changed
by an amount small compared to p0; the second problem, which may give insight
into the air flow generated by high-speed trains in tunnels (Ozawa & Maeda 1988),
is the classical problem in which a piston x = 0 is moved impulsively with a constant
velocity which is small compared to a0, the speed of sound in the undisturbed gas.

We note that the Fanno model (16)–(18) was derived for dimensional times of
O(S0/fu0) and lengths of O(S0/f) over which the wall friction has an O(1) effect. In
each of the two problems now considered the Mach number will be everywhere small
and frictional effects will be unimportant until the flow has had sufficient time for
these scalings to be appropriate. Thus the initial motion is exactly that of a small
disturbance in inviscid gas flow and the flow implications of the viscous drag terms
will only become apparent for later times. In fact, we will discover that the full Fanno
model (16)–(18) will never be needed in either of these problems.

3.1. Pressure waves

We suppose that the pressure at the orifice x = 0 is changed from p0 to p0(1 + γǫ)
at t = 0 where ǫ > 0 and we can therefore assume that u > 0 throughout the flow.
This boundary condition implies that, for small times, the velocity of the gas will be
of order ǫa0 where a0 =

√

γp0/ρ0 is the speed of sound in the undisturbed gas. We
define u0 = ǫa0 and then there is no need to rescale the dimensionless velocity u but,
because the dimensional pressure variations are of O(ǫp0), we do need to rescale

p =
1

ǫ
p̃

and

ρ = 1 + ǫρ̃.

Putting these scalings into (16)–(18) leads, at lowest order, to

∂u

∂x
= 0 and

∂p̃

∂x
= 0, (19)

with p̃ = 1 at x = 0 and so the solution is just p̃ = 1. The failure of p̃ to satisfy its
initial condition of zero is because our scaling has not taken account of the acoustic
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wave which propagates ahead of the Fanno flow region. To remedy this, we must
look at shorter time scales than those relevant to Fanno flow and so we write t = ǫτ.

Equations (16)–(18) then become

∂ρ̃

∂τ
+
∂u

∂x
+ ǫ

∂

∂x
(ρ̃u) = 0, (20)

(1 + ǫρ̃)

(

∂u

∂τ
+ ǫu

∂u

∂x

)

+
∂p̃

∂x
= −ǫ(1 + ǫρ̃)u|u|, (21)

∂p̃

∂τ
+
∂u

∂x
+ ǫu

∂p̃

∂x
+ γǫp̃

∂u

∂x
= ǫ2(γ − 1)(1 + ǫρ̃)u2|u|. (22)

In scaled variables, the shock relations for a shock moving into the undisturbed region
are

ρ̃− u+ ǫρ̃(Ṽ − u) = 0,

p̃− u− ǫuṼ = 0,

2Ṽ − 1
2
(γ + 1)u+ ǫṼ (Ṽ − 1

2
(γ + 1)u) = 0















(23)

on dx/dτ = 1 + ǫṼ where V = (1 + ǫṼ )/ǫ. The initial and boundary conditions are

u = p̃ = ρ̃ = 0 when τ = 0 for x > 0, (24)

and

p̃ = 1 on x = 0 for τ > 0. (25)

For times where τ = O(1), wall drag is negligible and, to lowest order,

u = p̃ = ρ̃ = 1 when 0 < x < τ(1 + 1
4
(γ + 1)ǫ), (26)

and the shock speed is given by Ṽ = 1
4
(γ + 1).

Thereafter we encounter a sequence of time scales and over each one the wall drag
has a different effect. It turns out that the two most important regimes are when
τ = O(ǫ−1) and τ = O(ǫ−2), the region in which (19) holds being subsumed in the
former. We will use suffices 1 and 2 to refer to these two time zones.

(i) τ = O(ǫ−1)

It is only over times τ of O(ǫ−1) that wall drag can first affect the lowest-order
solution, so we set τ = τ1/ǫ. First we consider the flow near the shock, whose position
and strength we study by keeping x − τ = X of O(1) as ǫ → 0. From (20)–(22), this
gives that

∂

∂X
(u− ρ̃) + ǫ

(

∂ρ̃

∂τ1
+

∂

∂X
(ρ̃u)

)

= 0, (27)

∂

∂X
(−u+ p̃) + ǫ

(

∂u

∂τ1
+ u

∂u

∂X

)

+ ǫρ̃

(

−
∂u

∂X
+ ǫ

(

∂u

∂τ1
+ u

∂u

∂X

))

+ ǫ(1 + ǫρ̃)u2 = 0,

(28)

and
∂

∂X
(u− p̃) + ǫ

(

∂p̃

∂τ1
+ u

∂p̃

∂X
+ γp̃

∂u

∂X

)

− ǫ2(γ − 1)(1 + ǫρ̃)u3 = 0. (29)

The calculation is similar to that leading to Burgers equation (see for example
Liepmann & Roshko 1957), and it gives that, to lowest order, u = p̃ = ρ̃. The
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solvability condition for the second-order terms in the expansions of these variables
then gives

2
∂u

∂τ1
+ (1 + γ)u

∂u

∂X
= −u2. (30)

Now a simple calculation using characteristics, the Rankine–Hugoniot conditions for
a weak shock, and the matching condition with (26) as τ1 → 0 leads to

u =

{

2/(2 + τ1) if X < 1
2
(γ + 1) ln(1 + 1

2
τ1)

0 if X > 1
2
(γ + 1) ln(1 + 1

2
τ1).

(31)

We are now in a position to study the flow between the orifice and the shock. Writing
x1 = ǫx, the first-order problem in x1 and τ1 is

∂ρ̃

∂τ1
+

∂u

∂x1

= 0, (32)

∂u

∂τ1
+
∂p̃

∂x1

= −u2, (33)

∂p̃

∂τ1
+

∂u

∂x1

= 0. (34)

Eliminating p̃, we obtain the nonlinear wave equation

∂2u

∂τ21
−
∂2u

∂x2
1

= −2u
∂u

∂τ1
, (35)

with boundary conditions

p̃ = 1 or
∂u

∂x1

= 0 on x1 = 0, (36)

and, to match with (31),

u = p̃ =
2

2 + τ1
on x1 = τ1. (37)

Although this Goursat problem is well-posed (Garabedian 1964, p. 117) it does
not appear to have an explicit analytic solution. However an important feature of
the structure of the solution is revealed by noting that we can integrate along the
characteristic x1 = τ1 where, from (35) and (37),

d

dτ1

(

2
∂u

∂τ1
+

2

(τ1 + 2)2

)

+
4

τ1 + 2

∂u

∂τ1
= 0,

and
du

dτ1
=

∂u

∂x1

+
∂u

∂τ1
= −

2

(2 + τ1)2
.

Hence on x1 = τ1,

∂u

∂τ1
=

2 ln(τ1 + 2) + c

(τ1 + 2)2
,

∂u

∂x1

=
−2 ln(τ1 + 2) − c− 2

(τ1 + 2)2
,
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where c is a constant that cannot be determined by purely local considerations. From
this we can see that not only u but also its first derivatives decay algebraically along
the shock. This result suggests that the shock has a negligible role to play in the
subsequent evolution. In any case, we can now begin to build up a map of the
asymptotic regions in the (x, τ)-plane as in figure 3 below.

(ii) τ = O(ǫ−2)

For larger values of τ, the solution becomes easier to analyse asymptotically. We first
observe that (30) remains unchanged if τ1 is scaled with ǫ−n and u with ǫn which
suggests that this equation continues to describe the solution when X = x− τ = O(1)
for all time. In particular when τ = ǫ−2τ2, x = ǫ−2x2 we get

u =
2ǫ

τ2
on x2 = τ2. (38)

Further behind the shock, when τ2, x2 are both O(1) we write u = ǫu2, p̃ = ǫp2 and
ρ̃ = ǫρ2 and find that (35) still holds for u2 as a function of x2 and τ2. However, the
boundary condition (38) now allows a similarity solution of the form

u2 =
1

τ2
g(η), p2 =

1

τ2
h(η),

where η = x2/τ2, g
′ = h+ ηh′, ′ = d/dη and

(η2 − 1)g′′ + 4ηg′ + 2g = 2g(g + ηg′), (39)

with g(1) = 2 from (38) and g → ∞ as η → 0. This last condition comes from the
fact that p̃ = 1 on X = 0 and so p2 → ∞ as x2 → 0.

We can give a heuristic argument that this two-point boundary value problem has
a unique solution for g by noting that

(a) as η → 0, either g has a regular expansion in which g ∼ α0 + ηα1 + . . . with the
constants α0, α1 providing a two-parameter family of such solutions, or g is singular
with g ∼ 3/η2 + β0 + . . . with the constant β0 providing a one-parameter family of
singular solutions;

(b) as η → 1, g has a regular expansion in powers of η − 1 unless g tends to
an integer. In particular if g → 2, g ∼ 2 + 2(η − 1) log(1 − η) + γ0(η − 1) + . . . ,
with the constant γ0 providing a one-parameter family of such solutions. Thus it is
plausible that β0 and γ0 will each be uniquely determined, and a rigorous proof of
this conjecture has recently been given by Hastings, McLeod & Troy (2001).

Assuming this to be the case we must now consider how p2 grows as η → 0 in
order to enable p̃ to satisfy the boundary condition on x = 0. Since p2 ∼ 3τ22/x

3
2, and

we require p2 = O(ǫ−1), we write x2 = ǫ1/3x̄2 and u2 = ǫ−2/3ū2, which means that
x = O(ǫ−5/3) and u = O(ǫ1/3) respectively. We then have the inner problem

∂p̃

∂x̄2

= −ū2
2, (40)

∂p̃

∂τ2
+
∂ū2

∂x̄2

= 0, (41)

with boundary conditions p̃ = 1 on x̄2 = 0 and

p̃ ∼
3τ22
x̄3

2

as x̄2 → ∞.
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1

0

p̃

x̄2

s2

1

0

x̄2

s2

u

Figure 2. Sketch of solution (42) and (43).

Fortunately this parabolic problem has an explicit solution

p̃ = 1 −
2

π

tan−1(ζ) −
2ζ

π(1 + ζ2)
, (42)

where ζ = (4/9π)1/3 x̄2/τ
2/3
2 , and the corresponding solution for u is

u =
3ǫ1/3τ2

x̄2
2 +

(

9
4
πτ22

)2/3
. (43)

Summarizing the solution when τ = O(ǫ−2), we see that when x = O(τ) both p̃ and
u are O(ǫ) but p̃ grows to O(1) and u to O(ǫ1/3) in a region nearer the orifice where
ǫ1/3x/τ2/3 = O(1) and these solutions are sketched in figure 2.

For larger times, where τ ≫ O(ǫ−2), the same structure persists; the flow becomes
increasingly weak when x = O(τ) but it is still described by the solution of (39) and
whenever ζ = ǫ1/3x/τ2/3 = O(1), (42) continues to hold. Thus the ultimate effect of
the wall drag is to restrict the wave to a region relatively close to the orifice. Thus we
can now complete the parameter map of asymptotic solutions as shown in figure 3.

The above predictions have been tested numerically using a second-order Godunov
scheme that uses an averaging function to reduce the order in the neighbourhood of
discontinuities. The details of the method are given in Falle (1991); see also Terenzi,
Mancini & Podenzani (2000). Figure 4 shows a comparison between a numerical
solution of equations (20)–(22) and the solution (42) at τ = 4518. The variable
plotted is 1 + γǫ2p where γ = 5/3 and ǫ = 0.006 and good agreement is seen as
expected when τ > O(ǫ−2).

A very similar scenario describes the flow if the inlet pressure is suddenly reduced
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p̃ =1

p̃ =1

p̃ =1

p̃ =1

Shock

x

s

p̃ =O(1)

p̃ =O(1)

p̃ =O(1)
p̃ =O(ε2)

p̃ =O(ε)

(39)

(42)

(35)

(42)

x~ε
–1/3s2/3

O(ε–3)

O(ε–2)

O(ε–1)

O (1)

O (1) O (ε–1) O (ε–2)

Figure 3. Solution of the compressive pressure problem (§ 3.1): regions of the (x, τ)-plane.

1.0

0.8

0.6

0.4

0.2

0

0 2.0 4.0 (×103)

Numerical
Asymptotic

x

p

Figure 4. Comparison of numerical solution of (20)–(22) with asymptotic solution (42) when
τ = 4518, ǫ = 0.006.
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by O(ǫ) at x = 0. We may now think of the gas in x < 0 (so that u is still always
positive) and, by replacing p̃ by −p̃ and x by −x, we are led to (39) and (42) exactly
as above. The only difference is that what was a shock near x = τ is now replaced by
a weak expansion wave near the characteristic x = −τ when x and τ are O(1).

3.2. Piston problem

We now turn to the more classical problem of gas driven by a piston and here we will
find a strong asymmetry between the compression and expansion waves for long time
scales. Also our small-Mach-number analysis will reveal regimes of large-amplitude
flow, which will motivate a more general study of travelling wave solutions of the
Fanno flow equations in § 4.

We consider a piston moved impulsively with constant velocity u0 where u0 ≪ a0

and again define ǫ = u0/a0 as a small parameter. We can then take the same scalings
as in § 3.1, and if we immediately proceed to the acoustic scale by writing t = ǫτ we
again obtain equations (20)–(22), but in this case the boundary condition is

u = 1 on x = ǫτ.

We first consider the compressive wave in x > 0.

3.2.1. Compressive motion

For x, τ of O(1) the solution (26) still holds. Similarly when x, τ are O(ǫ−1), (30) is
still valid near the shock and (35) holds between the piston and the shock with the
only difference being that the boundary condition (36) is replaced by

u = 1 on x1 = 0. (44)

When we proceed to τ = O(ǫ−2), we find that the analysis for x = O(ǫ−2) is unchanged
until we reach the scaling described before (40). Now to conform with boundary
condition (44) we find we must set x2 = ǫ1/2x̂2 (or x = ǫ−3/2x̂2) which again leads to
equations (40) and (41) so that

∂2u

∂x̂2
2

= 2u
∂u

∂τ2
, (45)

but now the boundary conditions are u = 1 on x̂2 = 0 and u ∼ 3τ2/x̂
2
2 as x̂2 → ∞.

Once again we can find a similarity solution, this time of the form

u = f(ψ) where ψ =
x̂2

τ
1/2
2

.

The equation for f is

f′′ + ψff′ = 0, (46)

with f(0) = 1 and f ∼ 3/ψ2 as ψ → ∞. This equation can be simplified by introducing
variables P = ψ2f, Q = ψ3f′ to obtain

dQ

dP
=
Q(3 − P )

Q+ 2P
.

Consideration of the phase plane (figure 5) shows that there is a unique solution to
this problem. It should be noted that p̃ and ρ̃ are of O(ǫ−1/2) here while u remains
of O(1) and there is already a stronger localization of the wave near the piston than
was the case for the open-ended tube (figure 6).

The piston problem differs further from the open-ended tube problem in that



198 H. Ockendon, J. R. Ockendon and S. A. E. G. Falle

Q

P
3

(0,0)

(3,–6)

Figure 5. The (P ,Q) phase plane: dQ/dP = Q(3 − P )/(2P + Q). The required solution goes from
(0, 0) to (3,−6).

the solution for τ = O(ǫ−2) does not persist for longer times. When τ = O(ǫ−3)
the localization is accentuated and the region in which u is O(1) occurs when
x = O(ǫ−2) and where p̃ and ρ̃ have now grown to be of O(ǫ−1). Because the pressure
perturbations have grown to be as large as the ambient pressure, it is now convenient
to set 1 + ǫγp̃ = p3, 1 + ǫρ̃ = ρ3 and τ = ǫ−3τ3, so that

∂ρ3

∂τ3
+

∂

∂x2

(ρ3u) = 0, (47)

∂p3

∂x2

= −γρ3u
2, (48)

∂p3

∂τ3
+ γ

∂

∂x2

(p3u) = 0, (49)

with u = 1 on x2 = τ3 and u → 3τ3/x
2
2 as τ3 → 0 and x2 → ∞. The corresponding

limits for p3 and ρ3 are given by ǫp̃ ∼ ǫρ̃ → 3τ23/x
3
2 as τ3 → 0 or x2 → ∞. The pressure

has now built up to such a large value on the piston that the pressure gradient simply
balances the friction forces and the inertia terms in (21) are negligible. Although
(47)–(49) appear to be almost as hard to analyse as the full problem (20)–(22), their
large-time solution is both interesting and simple to describe.

We propose that, for τ ≫ O(ǫ−3), a nearly uniform flow with velocity u ∼ 1 is
set up in the region ǫτ < x < cǫτ, that is between the piston and a wave moving
with speed ǫc > 1, to be determined; ahead of this wave the gas is effectively at rest.
The emergence of this flow structure is suggested by writing x = cǫτ+ ǫ−2ξ, so that
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u =O(1)

(50)

Travelling wave
x = çεs

Figure 6. Solution of the compressive piston problem (§ 3.2.1): regions of the (x, τ)-plane.

ξ = x2 − cτ3; (47)–(49) then imply that

du

dξ
=
u2(γu− c)2

u− c
,

with u → 1 as ξ → −∞ and u → 0 (with ρ3 → 1, p3 → 1) as ξ → +∞. These
conditions can only be satisfied by choosing c = γ, and then

du

dξ
=

−γ2u2(1 − u)2

γ − u
; (50)

this equation always has a continuous solution, unique apart from a shift in ξ,
such that u → 0 as ξ → ∞ and u ∼ 1 + (γ − 1)/γ2ξ as ξ → −∞. Moreover
ρ3 = γ/(γ − u) ∼ γ/(γ − 1) and p3 ∼ 1/(1 − u) ∼ −γ2ξ/(γ − 1) as ξ → −∞. What has
happened is that a wave travelling at precisely γ times the speed of the piston can run
just far enough ahead for the pressure and wall drag to balance indefinitely without
further change of shape of the wave. In the region between the wave and the piston,
u and ρ3 are approximately 1 and γ/(γ − 1) respectively and it is easy to see that
p3 ∼ ǫ2γ2(ǫγτ− x)/(γ − 1), the piston pressure attaining the value γ2τ3. The situation
is indicated schematically in figure 6.

In view of the above speculations, it is now even more important to test our
predictions numerically than it was for a pressure wave. Since we are using an explicit
code for which the time step is limited by the Courant condition, the computation
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Figure 7. Numerical solution of (20)–(22) for piston problem: values of U for ǫ = 0.07746 and
(a) τ = 1.3 × 105, (b) τ = 1.55 × 105, (c) τ = 1.8 × 105, (d) τ = 2.05 × 105, (e) τ = 2.3 × 105,
(f) τ = 2.55 × 105. Note that the axes shown are measured from the piston.

time required to attain times of O(ǫ−3) becomes extremely large for small values of ǫ.
We were, however, able to integrate up to τ = O(ǫ−4) for ǫ = 0.0775.

The most convenient way to do the numerical calculation is to transform to the
piston frame X = x − ǫτ and take U = u − 1 so that we impose the conditions
U = 0 at the piston X = 0 and U = −1 as X → ∞. From figure 7, which shows the
numerical solution for the velocity in the piston frame when ǫ = 0.07746, it can be
seen that a travelling wave solution is attained by the time τ = O(105). The speed of
the wave in the piston frame is dX/dτ = 0.056 which agrees well with the predicted
value for dX/dτ = (γǫ) − ǫ = 0.052.

As expected, the pressure increases linearly with time at the piston as shown in the
plot of p3 in figure 8. When τ = 1.3 × 105, the numerical solution gives a pressure
gradient of −0.023 in comparison with a predicted value of −ǫ2γ2/(γ − 1) = −0.025.
In figure 9, the numerical solution for τ = 2.55 × 105 is compared with the travelling
wave solution given by (50).

3.2.2. Expansion waves

As in the case of the open-ended tube, we can study the structure of the solution to
the piston-withdrawal problem by reversing the sign of x, p̃ and ρ̃ and considering gas
in the region x < ǫτ driven in the positive x-direction by a piston at x = t = ǫτ. For
times up to τ = O(ǫ−3) the scenario is more or less as in § 3.2.1 except that, instead
of a shock near x = τ, there is an expansion fan near x = −τ. The variation of u
across this fan is of O(ǫ−1τ−1) and this again becomes insignificant for τ > O(ǫ−2).
However, we see a dramatic contrast with the compressive flow when τ3 → ∞. Instead
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Figure 8. Numerical solution of (20)–(22) for piston problem: values of p3 for ǫ = 0.07746 and the
same values of τ as in figure 7.

of a travelling wave emerging near x = γετ, we propose a scenario in which the flow
variations are most noticeable in a region relatively close to the initial piston position,
with more gradual variations occurring on either side of this region.

To make this specific, suppose τ = ǫ−4τ4. The intractable equations (47)–(49) can
be rescaled by setting x2 = ǫ−2/3x4, u = ǫ1/3u4. This means that we are in a region in
which x = O(ǫ−8/3), and we retrieve (47)–(49), namely

∂ρ3

∂τ4
+

∂

∂x4

(ρ3u4) = 0, (51)

∂p3

∂x4

= −γρ3u
2
4, (52)

∂p3

∂τ4
+ γ

∂

∂x4

(p3u4) = 0. (53)

However, anticipating quiescence as x4 → −∞, the boundary conditions are

p3 ∼ 1, ρ3 ∼ 1, u4 ∼ 3τ4/x
2
4 as x4 → −∞,

and, in order to pave the way for u to be of O(1) near the piston,

u4 → ∞ as x4 → +∞.

Note that the piston is at x4 = ǫ−1/3τ4, and the fact that (51)–(53) are to be solved in
−∞ < x4 < ∞ means that we can seek a similarity solution in which

p3 = p3(χ), ρ3 = ρ3(χ), u4 = τ
−1/3
4 ū4(χ)
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Figure 9. Comparison of the full numerical solution for τ = 2.55 × 105 (solid line) and the
travelling wave solution (50) (+++).

where χ = x4τ
−2/3
4 . Letting ′ = d/dχ, we find

p′
3 + γρ3ū

2
4 = 0, − 2

3
χρ′

3 + (ρ3ū4)
′ = 0, − 2

3
χp′

3 + γ(p3ū4)
′ = 0, (54)

with

p3 ∼ 1, ρ3 ∼ 1, ū4 ∼ 3χ−2 as χ → −∞,

and

ū4 → ∞ as χ → +∞. (55)

This is a complicated two-point boundary value problem, but asymptotically there
are solutions in which

ū4 = O(χ), p3 = O(χ−λ), ρ3 = O(χ−λ−3) (56)

as χ → +∞, with λ =
√

(4γ − 1)/(γ − 1) − 1, and the existence of these solutions has
been confirmed by Hastings et al. (2001).

Supposing that (54), (55) are indeed capable of initiating such a motion we can
rescale behind the piston by setting x4 = ǫ−1/3x3 (i.e. x = ǫ−3x3), ū4 = ǫ−1/3u to derive
(47)–(49) or (51)–(53) yet again. Now however we can apply the piston boundary
condition

u = 1 on x3 = τ4

and the matching condition

u ∼ const. x3/τ4 as x3 → 0;

this means that this transition region between the piston and its initial position can be
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Figure 10. Solution of the expanding piston problem (§ 3.2.2): regions of the (x, τ)-plane.

described by a final similarity solution in which u, p3τ
λ/3
4 and ρ3τ

1+λ/3
4 are all functions

of x3/τ4. Thus a Fanno ‘expansion fan’ describes most of the flow in 0 < x < ǫτ, and
we expect this scenario to be uniformly valid for all τ > O(ǫ−3) (see figure 10).

In summary, our analysis of waves of small Mach number ǫ has revealed that on
a dimensional time scale L/a0, where L is the Fanno length S0/f, wall friction has
negligible effect on acoustic waves. However, on time scales of O(L/a0ǫ) to O(L/a0ǫ

3),
friction can build up appreciable pressures, leading to several nonlinear models that
are awkward mathematically. Although in no small-ǫ flow have we been forced to
study the full Fanno model (16)–(18), the analysis of § 3.2.1 provides strong motivation
for a more general study of travelling compressive waves, which we expect to travel
at a speed which is γ times the piston speed. The results of § 4 will confirm this, but
also some unexpected properties of the waves will be revealed which even admit the
possibility of travelling waves of expansion.

4. Travelling waves

We consider a wave of permanent form propagating with dimensional velocity V0

into a stationary gas in which the sound speed is a0 with velocity u0 far behind the
wave. Non-dimensionalizing as before and setting V0/u0 = V and x − Vt = ξ in
equations (16)–(18) we find that

ρ(V − u) = V , (57)

p(γu− V ) +
u

M2
0

− (γ − 1)
Vu2

2
= 0, (58)

and

du

dξ
=

2γu2(γu− V )2

(γ + 1)(u− V )(K − (γu− V )2)
, (59)

where

K =
2γ

(γ + 1)M2
0

−
γ − 1

γ + 1
V 2, M0 =

u0

a0

and we have assumed that ahead of the wave u → 0, p → 0 and ρ → 1.
We can study both compression and expansion waves by assuming V > 0 if we

consider the boundary conditions

u → 1 as ξ → −∞, u → 0 as ξ → +∞ for compression (60)

and

u → 1 as ξ → +∞, u → 0 as ξ → −∞ for expansion. (61)
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Figure 11. Travelling wave solutions: (a) Mw < 1, V = γ; (b) 1 < Mw <
√

2γ/(γ − 1), V = γ;

(c)
√

2γ/(γ − 1) < Mw , V = γ; (d) M0 =
√

2γ/[(γ − 1)V 2].

Since u → 1 as |ξ| → ∞ in both cases we must take V = γ and we can then see that
there are three possible regimes. It is convenient to classify them according to the
value of the Mach number of the wave defined as Mw = γM0 = V0/a0.

(i) When Mw < 1, a continuous compression wave is possible, whose small-
amplitude limit is, of course, the case considered in § 3.2.1 and this is shown in
figure 10(a). The Mach number u/a is below unity throughout this wave.

(ii) For 1 < Mw <
√

2γ/(γ − 1), it is still possible to find a steady travelling wave
of compression but it is now necessary to introduce a shock moving with speed γ as
shown in figure 11(b). Two of the Rankine–Hugoniot shock relations will be satisfied
automatically across this shock since the equations (57) and (58) conserve mass and
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energy and then conservation of momentum determines u behind the shock as

us =
2γ

γ + 1

(

1 −
1

γ2M2
0

)

.

(iii) For even larger values of Mw >
√

2γ/(γ − 1), a compressive wave can still
be found but as shown in figure 11(c), the velocity will increase as the shock is
approached from the downstream side.

In this case we can also see that it appears to be possible to have a continuous
expansion wave satisfying (61) and indicated by the dotted curve in figure 11(c).
However closer inspection shows that the dimensional pressure as used in the gas law

becomes negative for
√

2/[γ(γ − 1)M2
0 ] < u < 1 and so this is not a realistic solution.

Nonetheless, because u = γ at the vertical tangent in figure 11(c), an expansion wave
can exist in which a piston at A moves with speed γ and the gas moves with speed
u = 1 at ξ = −∞.

A special case arises when, and only when, M0 =
√

2γ/(γ − 1)V 2 or Mw =
√

2γ/(γ − 1). In this situation the (γU − V )2 factors in (59) cancel and there is
no reason to take V = γ. We can also see from (59) that the pressure can remain
finite as u → V/γ whereas for other values of Mw , p tends to infinity in this limit.
Then equations (58) and (59) simplify to

p =
(γ − 1)uV

2γ
and

du

dξ
=

2γu2

(γ + 1)(V − u)
.

Although the solution cannot extend over the whole line −∞ < ξ < ∞, it is possible
to fit an expansion wave behind a piston at x = Vt as shown in figure 11(d). The
dimensional speed of the piston and the wave must be

√

2γ/(γ − 1)a0 for this solution,
which is probably unstable, to be possible.

5. Conclusion

We have presented a self-contained derivation of the Fanno model for fully de-
veloped compressible perfect gas flow in a straight tube, the principal effect of the
turbulence being to exert wall drag via the boundary layers. Our analysis of flow
at small Mach number has revealed that even in problems that would be uniformly
described by acoustic theory in laminar inviscid flow, the wall friction, which typically
modifies the laminar model by a factor of O(10−3), can engender significant nonlin-
earity over long enough times and distances. Although our mathematical analysis is
far from complete, it suggests that flows driven by an initial release of energy, such as
a ‘blip’ in a transducer, are localized in a region of O(t2/3) near the source for large
times, whereas piston motion can ultimately produce compressive flows in which the
gas moves appreciably in an expanding region between the piston and a precursor
wave moving with speed γ times the piston velocity. Expansions behind a piston can
also occur in which the structure is quite different from the usual simple wave flow.

The solution of the fully nonlinear Fanno model must be undertaken numerically
except for travelling-wave solutions. These differ from classical inviscid shocks in
that continuous compressive waves are possible, with speed γu0 if the Mach number
γu0/a0 of the flow downstream of the wave relative to the wave is less than unity,
but, for higher values of this Mach number, discontinuities are necessary in com-
pressive travelling waves. Interestingly, there is only one type of travelling expansion
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wave behind a constant-velocity piston and that occurs when the piston velocity is
√

2γ/(γ − 1) times the speed of sound in the undisturbed gas.
From the computational viewpoint, the evidence in Ozawa & Maeda (1988), Terenzi

et al. (2000), Hague et al. (1992), suggests that it is difficult to discern general rules for
the long-time propagation of waves obeying the Fanno model. However, the small-
amplitude theory both admits a consistent synthesis of the different spatio-temporal
asymptotic regions and is amenable to treatment by a Godunov-type algorithm when
the time step is taken sufficiently small. The agreement between the numerical and
analytic approaches gives us confidence that the asymptotic results can be used to
check computations in cases where nonlinearity is important from the start.

We would like to thank Mr H. Bendafi of Jaguar Cars, whose MSc thesis started
this investigation and Dr M. Jones for his many helpful comments.
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