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We study a family of frustrated antiferromagnetic spin-S systems with a fully dimerized ground state. Starting
from the simplest case of the frustrated zigzag spin ladder, we generalize the family to more complex geometries
like tetrahedral ladders and spin tubes. After presenting some numerical results about the phase diagram of these
systems, we show that the ground state is robust against the inclusion of weak disorder in the couplings as well
as several kinds of perturbations, allowing to study some other interesting models as a perturbative expansion
of the exact one. A discussion on how to determine the dimerization region in terms of quantum information
estimators is also presented. Finally, we explore the relation of these results with the case of a four-leg spin tube,
which recently was proposed as a model for the description of the compound Cu2Cl4D8C4SO2, delimiting the
region of the parameter space where this model presents dimerization in its ground state.

DOI: 10.1103/PhysRevB.92.115111 PACS number(s): 05.30.Rt, 03.65.Aa, 03.67.Ac

I. INTRODUCTION

The Majumdar-Gosh model (MGM) [1] is one of the
paradigms in the physics of one-dimensional spin chains. This
model represents one of the first examples of systems with a
gapped spectrum whose ground state (GS) is exactly known.
Although the exact result is valid only at the point J2 = J1/2,
it is representative of an extended phase, a dimerized phase.
A dimerized phase corresponds to a nonmagnetic phase
without a “classical analog,” characterized by short-range,
strong quantum correlations. Systems presenting this kind
of phases have gained interest in the quantum information
community since, from a technological point of view, this
kind of correlations could be exploited as a resource for
quantum information processing [2–4]. On the other hand,
from a conceptual perspective, models presenting this kind of
nonclassical phases provide a rich playground to explore the
relations between frustration and entanglement [5–8].

Since its discovery, lots of efforts were devoted looking for
extensions of this model to different coupling configurations
[9,10], as well as more general lattices [11,12], and larger
values of the local spin S [13]. Generalizations of the MGM
with more realistic models are also extremely important for
the theoretical description of frustrated magnets like Cs2CuCl4
[14], KCuCl3 [15], TlCuCl3 [15], NH4CuCl3 [16], etc., which
are being currently under experimental investigation.

In this paper, we present a family of antiferromagnetic spin
S models with an exact dimer product state as its ground state.
The family includes some of the aforementioned models given
a generalization to larger S without the need to include quartic
or more complex many-body terms in the Hamiltonian [13].
As in the case of the MG model, where the GS represents an
extended phase, the manifold in the parameter space where
the GS can be analytically determined is representative of an
extended dimerized phase that covers a large region of the
parameter space.

Unlike traditional phases, which can be characterized in the
framework of the Ginzburg-Landau theory, novel phases like
topological or quantum spin liquids can not be characterized in
terms of local order parameters and broken symmetries. In this

way, quantum information measures have been proved to be a
useful tool to characterize them [17], giving also information
about the structure of the state and its correlations. For this
reason, in this work, we employ both measures of likelihood
as the global and local fidelities to the fully dimerized state, as
well as pairwise and block measures of quantum entanglement.
Despite these quantities are not easily accessible from direct
measurements, they can be estimated from experimental
parameters via measurements of the structure factors [17,18]
or magnetic susceptibilities [18,19].

With these tools, we show that the fully dimerized state
can be seen as the starting point to characterize nonmagnetic
phases like the one observed in KCuCl3 [15]. This material has
a zigzag structure of Cu ions and corresponds to a particular
limit of the model studied in the present work. This kind
of quasi-one-dimensional antiferromagnet structures has been
intensively studied [10,20–23].

Later, we use this family as a building block to construct out
more complex models with a similar ground state. In particular,
we show that the ground state of a family of frustrated
four-leg spin tubes is also a product state of singlets. This
dimerized phase may appear in the strong-coupling regime in
three leg spin tubes [24]. Besides, we analyze the relationship
between these exactly solvable models and the case of frus-
trated spin tubes, which has been recently proposed as a model
for the magnetic behavior of the compound Cu2Cl4D8C4SO2.
This compound seems to present frustrating antiferromagnetic
next-nearest-neighbor exchange [25,26] and inelastic neutron
scattering experiments reveal that it presents gapped and
strongly one-dimensional excitations [27]. So far, there are
very few theoretical studies of this frustrated model. By means
of numerical analysis, we show in this work that the ground
state of this model presents similar features with those found
for the exactly solvable case.

The paper is organized as follows. In Sec. II, we present
a family of antiferromagnetic frustrated ladders and show
that its ground state is a fully dimerized state. Then, a
discussion about the spectrum of these systems and the
magnetic behavior is presented. In Sec. III, the properties
of the ground state in the vicinity of the exact dimerizing
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condition are discussed in terms of some quantum information
correlation measures. Afterward, we show that the exactly
solvable model is representative of an extended manifold. In
Sec. IV, the previous model is used as a building block for
more complex systems, which also have a fully dimerized
ground state. For the particular case of frustrated spin tubes,
the manifold in the phase space with partially dimerized GS is
explored by means of numerical analysis. A numerical study
of the ground state corresponding to the effective model of the
compound Cu2Cl4D8C4SO2 and a comparison with the exact
ground state of a very similar model, which belongs to the
family where the ground state can be analytically determined,
are performed. Finally, in Sec. V, the conclusions and some
perspectives are presented.

II. EXACT GROUND STATE IN SPIN-S LADDERS

A. Exact manifold

We consider the following Heisenberg model on a two legs
spin-S ladder:

H =
NX

i=1

J (i) ES2i−1 · ES2i + J 0(i) ES2i · ES2(i+1)−1

+ J 00(i) ES2i−1 · ES2(i+1) + J2(i) ES2i · ES2(i+1)

+ J2(i) ES2i−1 · ES2(i+1)−1, (1)

where ESk represents the local spin on the site k and ESk ≡ ESk+2N ,
with N being the number of rungs. This ladder is represented in
Fig. 1(a). Let us consider the case where all the couplings are
positive (all the interactions are antiferromagnetic). Starting
from the general spin-S model without translational invariance
in Eq. (1), we can show that, imposing a simple constraint
on the couplings on each square plaquette defined by the
sites {2i − 1,2i,2(i + 1) − 1,2(i + 1)}, the ground state of the
system is the fully dimerized state |ψi = NN

i=1 |0ii , with

|0ii = 1√
2S + 1

SX
m=−S

(−1)m+S |m,−mii , (2)

where index i labels the rung in the ladder and |m,−mii
are product states such that Sz

2i−1|m,−mii = −Sz
2i |m,−mii =

m|m,−mii on the rung i. In order to show that |ψi results in an
eigenstate of H with energy E0 = −JNS(S + 1), we rewrite
the Hamiltonian in terms of local operators on each rung:

ELi = ES2i + ES2i−1, (3)

EKi = ES2i − ES2i−1 . (4)

Here, ELi is the total angular momentum of the rung i and EKi is
a set of local observables, which completes the full local Lie
algebra of observables:

[Lμ,Lν] = i²μνηLη, (5a)

[Lμ,Kν] = i²μνηKη, (5b)

[Kμ,Kν] = i²μνηLη, (5c)

J(i)
J2(i)

J (i) J (i)

J (i)+J (i−1)
2

(S + 1) J (i)/2

J (i)

J (i)+J (i−1)
2

(S + 1) J”(i)/2

J”(i)

Δ(i)

2 (i-1)-1 2 i-1 2 (i+1)-1

2 (i-1) 2 i 2 (i+1)

2 (i-1)-1 2 i-1 2 (i+1)-1

2 (i-1) 2 i 2 (i+1)

2 (i-1)-1 2 i-1 2 (i+1)-1

2 (i-1) 2 i 2 (i+1)

2 (i-1)-1 2 i-1 2 (i+1)-1

2 (i-1) 2 i 2 (i+1)

a

b
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d

J2

FIG. 1. (Color online) Tetrahedral-ladder geometry and its de-
composition in terms of three Hamiltonians with fully dimerized
GS.

where ²μνη is the fully antisymmetric Levi-Civita symbol and
i is the imaginary unit (i2 = −1). In terms of these rung
operators the Hamiltonian reads

H =
NX

i=1

J (i)

µ
L2

i

2
− S(S + 1)

¶

+
NX

i=1

J 0(i) + J 00(i) + 2J2(i)

4
ELi · ELi+1

+
NX

i=1

−J 0(i) + J 00(i)
4

( EKi · ELi+1 − ELi · EKi+1)

+
NX

i=1

−J 0(i) − J 00(i) + 2J2(i)

4
EKi · EKi+1. (6)

If J 0(i) + J 00(i) = 2J2(i), the last term in (6) vanishes and the
state |ψi is an eigenstate of the Hamiltonian due to ELi |0ii = 0.
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Noteworthy, this result is valid for any value of the local spin
magnitude S.

Now, provided the condition J (i) > (S+1)
2 (J

0
(i − 1) +

J
0
(i) + J

00
(i − 1) + J 00(i)), |ψi, we show that it is the only

ground state of the system. For this purpose, we rewrite the
Hamiltonian in a convenient form (see Fig. 1):

H = HB + HC + HD + ED, (7)

HB = 1

4

NX
i=1

[J
0
(i − 1)(ES2i−2 + ES2i−1 + ES2i)

2

+ J
0
(i)(ES2i−1 + ES2i + ES2i+1)2

+ (J
0
(i − 1) + J

0
(i))S (ES2i−1 + ES2i)

2

− (J
0
(i − 1) + J

0
(i))S(S + 1)], (8)

HC = 1

4

NX
i=1

[J
00
(i − 1)(ES2i−3 + ES2i−1 + ES2i)

2

+ J
00
(i)(ES2i−1 + ES2i + ES2i+2)2

+ (J
00
(i − 1) + J

00
(i))S (ES2i−1 + ES2i)

2

− (J
00
(i − 1) + J

00
(i)) S(S + 1)], (9)

HD =
NX

i=1

1(i)

2
[(ES2i−1 + ES2i)

2], (10)

where ED = −S(S + 1)
P

i J (i) is the energy for the |ψi state
and

1(i) = J (i) − S + 1

2
(J

0
(i − 1) + J

0
(i) + J

00
(i − 1) + J 00(i))

is an effective coupling constant associated to L2
i , the total

angular momentum of the pair. HB,C correspond, up to a
constant, to the Hamiltonians of two zigzag ladders [see
Figs. 1(b) and 1(c)], while HD is the Hamiltonian of a set
of uncoupled pairs [Fig. 1(d)]. Now we will show that HB and
HC are semidefinite positive operators, being |ψi its ground
state.

To see it, we observe that the minimum eigenvalue of a
sum of operators is bounded from bellow by the sum of the
minimum eigenvalues of its terms:

min
λ∈3(

P
i hi)

λ >
X

i

min
λi∈3(hi )

λi,

where 3(O) = {λ1,λ2, . . .} denotes the spectrum of
operator O. Now, we notice that for J 0(i − 1),J 0(i) > 0, due
to the theorem of addition of angular momentum, each term in
(8) and (9) is bounded from bellow by

λi > J 0(i − 1) + J 0(i)
4

min
li=∈N0

|S − li |(|S − li | + 1)

− S(S + 1) − S(li + 1)li = 0,

and hence, HB,HC > 0. Here, li is the total spin in rung i.
On the other hand, is easy to verify that HB |ψi = 0, from

which it follows that |ψi is an eigenvector of HB,C with
minimum eigenvalue. Since for each i, J (i) > S+1

2 (J
0
(i −

1) + J
0
(i) + J

00
(i − 1) + J 00(i)), HD is also positive, and

hence, H > ED . However, |ψi is an eigenstate of H that
saturates this bound, so it is a ground state of H. Because
HD is gapped, |ψi is the unique state that saturates the bound.

For the S = 1/2 case, we can improve this bound by ob-
serving that min 3((ES2i−1 + ES2i + ES2i+1)2) = min 3((ES2i−2 +
ES2i−1 + ES2i)2) = 3/4, disregarding the value of (ES2i−1 + ES2i)2.
This allows us to move the terms in (ES2i−1 + ES2i)2 in HB and
HC to HD , leading to the improved bound J (i) > 1

2 (J
0
(i −

1) + J
0
(i) + J

00
(i − 1) + J 00(i)).

Finally, for the translational invariant case, J (i) = J ,
J 0(i) = J 0, J 00(i) = J 00, the sufficient condition for the exact
dimerization is given by J 0 + J 00 = 2J2 and

J (i) >
n

(J 0+J 00)
(S+1)(J 0+J 00)

S=1/2
S>1/2 . (11)

The Majumdar-Ghosh point can be recovered from this result
as a limit. For S = 1

2 , homogeneous couplings, J → J 0 = 2J2,
and J 00 = 0, the GS is still a dimerized state but it is degenerate.

B. Localized triplons

An interesting subfamily of models corresponds to the
symmetric tetrahedral ladder, which is obtained by setting
J 0(i) = J 00(i) = J2(i) [11,12,28]. In this subfamily, those
terms in (6) containing operators EK vanish and the Hamiltonian
depends only on the total spin of each rung ELi :

H =
NX

i=1

J (i)

µ
L2

i

2
−S(S+1)

¶
+ J 0(i) ELi · ELi+1. (12)

Since [L2
i ,

ELj ] = 0, [H,L2
i ] = 0. Therefore each eigenspace of

H can be characterized by {li}, the set of total angular mo-
mentum quantum numbers (L2

i |{li}, . . .i = l(l + 1)|{li}, . . .i)
associated to each rung. Hence, on each proper subspace, the
model reduces to a spin chain with different values of the spin
at each site (li = 0,1,2, . . . ,2S) with on-site quadratic termsPN

i=1 J (i)
EL2

i

2 and exchange terms ELi · ELi+1. If the total spin in
a given rung is zero, there is no coupling with its neighboring
rungs.

For S = 1/2, the ground state of the system may correspond
to li = 0 or li = 1, that is, the elementary excitations of the
system can be seen as localized triplons. The number of these
triplons in the ground state is determined by the competition

between the terms J (i)
EL2

i

2 and J2(i)ELi · ELi+1. By setting the
condition (S + 1)(J 0(i) + J 0(i − 1)) < J (i), |ψi is the ground
state, corresponding to {li = 0}. On the other hand, large values
of J2 favor larger values of li . In Fig. 2, we show the energy per
bond for an S = 1/2 ladder as a function of J2 with J 0 = J 00
(blue circles), calculated by means of DMRG [29]. Red circles
correspond to the energy of the GS in the sector li = 1. It is
clear that for J2 > 0.7 the spin ladder behaves like a S = 1
spin chain [11,12,30].

This result is important for two reasons. On the one hand, it
gives us a picture about how the dimerization breaks when we
cross the boundaries of the exact manifold: for large enough
J 0, the system suffers a level crossing to a higher value of the
rung local spin li . On the other hand, we can take advantage
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FIG. 2. (Color online) Ground-state energy per bond correspond-
ing to the S = 1/2 ladder with J 0 = J 00 (blue) and the ground-state
energy corresponding to a S = 1 chain (red) as a function of J2

calculated with DMRG for N = 60 rungs (sites). In the blue light
region, the ladder has a dimerized ground state, whereas in the orange
region, the S = 1/2 ladder is equivalent to the S = 1 Heisenberg
chain.

of this result to gain information about the magnetic behavior
of the system.

We introduce a coupling term to a uniform external
magnetic field h:

H0 =−h
X

i

Li,z + H. (13)

For the S = 1/2 case, the magnetic process has been studied
by means of a strong coupling approach [31]. The external
magnetic field induces a competition between the one-site term
and the magnetic field term. If all J (i) are large, the GS remains
being |ψi up to a magnetic field value (lets say h1) where
there is a crossing level and the GS becomes the state with
singlets in the even/odd rungs and fully polarized spin-1 states
in the odd/even rungs. Notice that for these states the exchange
interaction does not contribute.

Then, if we increase more the magnetic field, we obtain a
second crossing level with the state containing fully polarized
spin-1 states in all the rungs. In the same way, we will find
successive crossing levels with fully polarized states with total
spin lodd and leven in odd and even rungs. Each one of these
crossing levels result in a jump in the magnetization curve
followed by a magnetization plateau. Hence the magnetization
process is given by successive jumps and plateaux. When we
slightly move away from the condition J 0(i) = J 00(i), these
plateaux may remain present in the magnetization curve,
whereas the jumps are smoothed. These frustration-induced
plateaux has been studied for S = 1/2, 1, and 3/2 ladders
[30–33]. The present analysis provides a simple theoretical
explanation for this behavior.

III. VICINITY OF THE EXACT MANIFOLD

Although we have shown that the state |ψi is the GS of the
model (6) just when the condition J 0(i) + J 00(i) = 2J2(i) is
fulfilled, this state is representative of a region in the parameter
space where it is an accurate approximation to the true ground

state. In order to characterize the region presenting dimer order,
we consider both measures of similarity between |ψi and the
GS, as well as measures of entanglement.

The Uhlmann’s quantum fidelity [2] provides a measure of
the similarity between two quantum states:

F[ρ,σ ] = Tr
q√

σρ
√

σ = F[σ,ρ],

where ρ and σ are two quantum states of the same system.
If σ corresponds to a pure state |αi, this quantity reduces to
F[ρ,|αi] = √hα|ρ|αi.

We start considering the fidelity between |ψi and the true
GS in a region close enough to the exact manifold such that
a first-order perturbative treatment would be feasible. Starting
from the Hamiltonian (6), and using the algebraic properties
of Li,μ and Ki,μ the canonical first-order perturbation theory
leads to

|GSi ≈
µ

1 − 3

64
Nγ 2

¶1/2

|ψi + 1

4

X
i

r
3

4
γi |i,i + 1i,

(14)

where |i,j i= 3/4√
3S(S+1)

EKi · EKj |ψi, γi= S(S+1)
3/4

J 0(i)+J 00(i)−2J2(i)
(J (i)+J (i+1))/2 ,

and γ 2 = 1
N

P
i γ

2
i . Notice the explicit SU (2) invariance of

the approximation, as well as its translational invariance for
the homogeneous case. In this way, the global fidelity is
given by (1 − 3

64 N γ 2)1/2, which is valid for 3
64 Nγ 2 ¿ 1.

From now on, we are going to restrict ourselves to this last
case and, hence, γi = ±γ . In this case, the previous result
seems to suggest that for large systems the dimerization is
constrained just over the exact manifold. However, to look
for high values of the fidelity in a large system is a very
demanding condition. Due to its definition, for product states
F[|αi⊗N,|α0i⊗N ] = (F[|αi,|α0i])N and hence, yet for very
similar states, the fidelity vanishes in the large N limit. On
the other hand, from (14) we can estimate the fidelity for the
state of a single rung (ρ12) against the singlet state F0[ρ12] =
F[ρ12,|singleti] ≈ (1 − 3

64γ 2)1/2. When this approximation is
valid, we can see that F[|GSi,|ψi] ≈ F0[ρ12]N , which is just
what we expect if the global state behaves like a product of
the local states of the rungs, which is an important feature of
the dimerized phase. A similar result can be obtained by the
method of variational cluster mean field + RPA discussed in
[34]. This treatment predicts that the GS is well approximated
by |ψi plus small Gaussian correlations for |γ | < 1.

Now, we will see that for the S = 1/2 case, the value
of F0[ρ12] determines most of the relevant features of the
dimerized phase. To see this, we observe that due to the
SU (2) symmetry, for the S = 1/2 case, the local state ρij

of a subsystem composite by the (single spin) sites (i,j ) is
completely determined by F0[ρij ]:

ρij = 1 − F2
0 [ρij ]

3
14 + 4F2

0 [ρij ] − 1

3
|0ih0| . (15)

Since ρij is the state of a subsystem associated to a pure global
state, a measure of the correlations between this subsystem and
the rest of the system is given by its entanglement entropy [2].
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FIG. 3. (Color online) Relation between entanglement and fi-
delity to the singlet state for SU(2) invariant states of pairs of S = 1/2
systems. For F0[ρ] < 1/

√
2, the internal degrees of freedom are not

entangled.

For the state (15), it is reduced to

S(ρij ) = h
¡
F2

0 [ρij ]
¢ + 3h

µ
1 − F2

0 [ρij ]

3

¶
,

where h(x) = −x log2(x). For the dimerized phase, where the
global state is well approximated by the fully dimerized state,
which is a product state, S(ρ12) should remain small, while
S(ρ1j ) ≈ 2 for j 6= 2. In order to give a more accurate idea
about the limit value ofF0[ρ12] for which it makes sense to talk
about dimerization, it is better to analyze the internal degree of
entanglement of the rung. A measure of the degree of pairwise
entanglement for mixed states is provided by the logarithmic
negativity [35,36]

EN
A|B[ρ] = log2 |ρ tA |1,

where |A|1 = tr
√

A†.A is the trace norm (or the Schatten −1
norm) of the matrix A, and ρtA represents the partial transpo-
sition of ρ with respect to the subsystem A, i.e., the linear map
defined by (|αiA|βiBhα0|Ahβ 0|B)tA = |α0iA|βiBhα|Ahβ 0|B.
This quantity is saturated by EN [|singleti] = log2(1 + 2S) and
vanishes for every separable state. For the state (15), EN is
given by

EN
i|j [ρij ] = log2

¡
1 + max

¡
0,2F2

0 [ρij ] − 1
¢¢

.

In Fig. 3, the behavior of S[ρ12] andEN
1|2[ρ12] as a function of

F0[ρ12] is depicted. Notice that for F0[ρ12] 6 1√
2
, the reduced

state is separable and, hence, the correspondent global state is
not dimerized anymore.

In Fig. 4, a landscape of the fidelity between the singlet state
and the state of the rung F0[ρ12] (A) and a nearest-neighbor
external pair F0[ρ23] (B), obtained by numerical evaluation is
shown, for the case of the symmetric ladder (J 00 = J 0). The
presented results were evaluated by means of the Lanczos
method [29]. The straight dashed line (red online) indicates
the intersection with the exactly dimerized manifold where
the fully dimerized state is the ground state of the system.
For the strong pair (A), the fidelity is symmetric regarding
the exchange between J 0 and J2. The graphic reveals a
wide dimerized region (F0[ρ12] > 0.95) around the exact line
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1.0
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0.8
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J2

J2

J

a

b

FIG. 4. (Color online) Landscape of the fidelity between the
singlet state and the state of the internal pair ρ12 (A) and state of the
nearest-neighbor external pair ρ23 (B) associated to the ground state
for the spin-1/2 ladder with J 0 = J 00 for N = 8 rungs. The straight
dashed line (red on-line) indicates the exact dimerized line J2 = J 0.
In panel (A), the dark continuous line indicates the boundary of the
region with fidelity >0.95. In both panels, the thick dashed curve
(yellow on-line) corresponds to the value 1/

√
2, limiting the region

where the correspondent local states are entangled. Insets indicate the
pair used to calculate the fidelity.

J 0 = J2, implying that the pertubative analysis is accurate over
this region. As we cross the critical value J 0 ≈ 0.6J , F0[ρ12]
is suddenly reduced, due to the GS now being orthogonal
to the dimerized one. For pairs of spins coupled by J 0 (B),
we observe that near the exact line, F0[ρ23] ≈ 1/2, which is
consistent with a fully mixed state. For larger J 0, these pairs
become more entangled, at the expense of the entanglement in
the rung (1 − 2). On the other hand, increasing J2 the spins on
the pair 1 − 3 tend to align, which reduces its fidelity to the
singlet below 1/2.

Further improvements can be obtained by means of a
cluster mean-field + RPA expansion as we have shown in a
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previous work [34]. This opens a way to solve some effective
models associated to certain quasi-one-dimensional materials
like KCuCl3.

IV. FRUSTRATED FOUR-LEG SPIN TUBES.

The family of ladders presented above can be used as
a “building block” to obtain more complex models with a
product state as its ground state. It is straightforward to show
that there is a family of Hamiltonians corresponding to four-leg
spin tubes that present also a dimerized ground state. These
Hamiltonians can be written as a sum of two ladders whose
Hamiltonians are given by (1) and N square plaquettes as
represented in Fig. 5:

Htube = Hladder1 + Hladder2 +
NX

j=1

Hsquare,j , (16)

where N is the number of rungs in the ladders. Hladder1 and
Hladder2 are Hamiltonians corresponding to the upper and lower
ladders in Fig. 5 and Hsquare,j is the Hamiltonian of the j th
square plaquette in the figure. These square plaquettes have
also a dimerized ground state corresponding to dimers in the
strongest bonds, as can be easily seen since the square is a
special case of ladders discussed previously with two rungs.
Let us concentrate in the homogeneous case J (i) = J , J 0(i) =

FIG. 5. (Color online) Building a spin tube family with a fully
dimerized ground state.

0.0 0.2 0.4 0.6 0.8

2.5

2.0

1.5

1.0

E
N

S
(S

+
1
)

J2

FIG. 6. (Color online) Ground-state energy per bond in units of
S(S + 1) as a function of J2 calculated with DMRG for a four-leg spin
tube with 160 spins, J 00 = 0 and J 0 = 2J2. Blue circles, red squares,
and yellow rhombi correspond to S = 1/2, 1, and 3/2, respectively.

J 0, and J 00(i) = J 00, ∀i , keeping in mind that all the conclusions
can be easily generalized for the inhomogeneous case.

Different combinations of couplings J 0, J 00, and J2 preserv-
ing the constraint J 0 + J 00 = 2J2 give different geometries of
four-leg spin tubes with a fully dimerized ground state that can
be written as |ψtubei = |ψiladder1 × |ψiladder2. Then, following
the same steps as in the previous section is easy to show that the
state |ψtubei is an eigenstate of the system and there is a range
of couplings where this state is the ground state of the system.
Besides, as in the ladder case, we can expect this exact GS to
be representative of a finite region around the exact manifold
of the parameter space.

We will consider now the particular cases of tubes with
J 0 = J 00 and J 00 = 0. For these two cases, the fully dimerized
state |ψtubei is the ground state of the system if the following
condition is satisfied:

J 0 <

½
ξJ S = 1

2
ξ J

(S+1) S > 1
, (17)

where ξ = 1/3 for J 0 = J 00 and ξ = 2/3 for J 00 = 0.
In Fig. 6, the energy per rung in units of S(S + 1) as a

function of the coupling J2, corresponding to the case J 00 = 0
and J 0 = 2J2 is depicted for different values of the spin.
The range of values where the ground state is the product
singlet state (i.e., E/Nrungs = −1) is bigger than that found
analytically. The reason is that Eq. (17) represents just a
sufficient condition, the real range being larger in general.

As we have seen for the ladders, the symmetrical case
J 0 = J 00 is special. The excited states correspond to localized
triplons and the eigenvalues of the Hamiltonian can be labeled
by the set of values of the total momentum in the rungs {li}.
This situation gives a rich magnetization profile, containing a
sequence of jumps and plateaux.

Such scenario is due by the competition between the
terms in the Hamiltonian that favor states with a minimal
total momentum in each rung, spin-exchange terms, and the
magnetic field contribution. The crossover between the ground
state |ψtubei and the state with alternation of one singlet and one
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triplet in each rung determines the jump in the magnetization
curve between the plateaux at m = 0 and m = 1

4S
.

In this case, system frustration promotes the magnetization
plateaux and the jumps in the magnetization curve but also
makes the ground state simpler (in each magnetization sector,
the ground state is a direct product of rung states). Even while
the condition J 0 + J 00 = 2J2 is hold, for J 00 6= J 0, this is not
true any more. Changing the value of J 00/J 0 the magnetization
plateaux reduce their widths and jumps between plateaux
transform into a smooth piece of the magnetization curve.

The existence of the exact result for tubes also leads us
to ask, in which conditions two ladders that present dimer
order in its ground state conserve it when they become weakly
coupled, assembling a tube. From a perturbative argument, for
small enough interladder couplings, we expect that the global
state stays dimerized. However, due to the exact result (17),
despite of it becoming more frustrated for larger couplings, the
system approaches another exact dimerized configuration. As a
result, the region presenting dimer order would be enlarged. As
an example, we will consider the case in which the interaction
between ladders is given between correspondent spins on each
ladder and on one of the diagonals of each plaquette (see the
inset of Fig. 7), calling J⊥ and Jd the respective coupling
constants. This case is interesting since, recently, a similar
topology was proposed (but for Jd = 0) as the appropriate
model describing the compound Cu2Cl4D8C4SO2 [25,26].
Although this case does not satisfy the exact dimerization
condition for tubes, it is interesting to find out if it could
support dimer order. In Fig. 7, the behavior of the fidelity
between the state of a rung and the singlet state, as well as the
entanglement entropy of this subsystem with the rest of the tube
is depicted, for weakly coupled zigzag ladders, as a function
of the interchain couplings. Notice that the dimerization over
the lateral ladders is not broken for quite large values of J⊥
and Jd near the exact dimerization condition. It would suggest
that we can expect the presence of dimer order in the model
proposed for Cu2Cl4D8C4SO2. In the next sections, we extend
this result for a more realistic case, when the ladders do not
satisfy the exact dimerizing condition. For it, we take ad-
vantage of the exact result for the four-leg frustrated tube
discussed above starting from a highly frustrated system but
with a separable GS.

A. Effective Hamiltonian of the four-leg spin tube material
Cu2Cl4D8C4SO2

In a recent experiment, inelastic neutron scattering has been
used to investigate the magnetic excitations in the quantum
spin-liquid system Cu2Cl4D8C4SO2 [25,26]. In that work, it
was suggested that the appropriate Heisenberg Hamiltonian is
a S = 1/2 four-leg spin tube with no bond alternation as the
one shown in Fig. 8(a). A scarce number of theoretical results
exists on this kind of prototypical models on the spin tubes
[37,38]. We study numerically the frustrated four-leg spin tube
model proposed to describe the compound Cu2Cl4D8C4SO2.

The proposed model is closely related to the family of spin
tubes presented in the previous sections. Consider a member
of the family of spin tubes with a fully dimerized ground state
schematized in Fig. 8(b). This model can be obtained from
the Hamiltonian proposed for the material adding an extra

J⊥

J⊥

Jd

a

b

Jd

J⊥

J

J

J2 0
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1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8
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0.0
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FIG. 7. (Color online) Dimerization in the case of weakly cou-
pled ladders as a function of inter-ladder couplings calculated by
using the Lanczos method with L = 4, J2 = 0.5J 0, and J 0 = 0.95J

(see the inset). (a) Entanglement entropy of a strong coupled pair
with the rest of the tube. (b) Fidelity of the local state with the singlet
state. The region in which the fidelity is over 0.99 matches with such
that the entanglement entropy is lower that 0.2. The dashed thick line
(red) corresponds to the exact dimerization condition J⊥ = 2Jd .

diagonal coupling in each square. This modified Hamiltonian
belongs to the family of spin tubes presenting a dimer product
ground state. If the ground-state properties of these two models
are similar, the effective model for Cu2Cl4D8C4SO2 may
be studied starting from the exactly known ground state,
taking the diagonal couplings in the squares as a perturbation.
Although this perturbative study is out of the scope of the
present paper, we can see that the dimerized state is robust in
the exact model. This robustness suggests that we can make
an expansion around the dimer ground state, incorporating
triplon excitations. In the rest of this section, we are going
to analyze numerically the proposed model for the material
Cu2Cl4D8C4SO2, looking for fingerprints on the properties
predicted for the exactly solvable case, leaving the analytical
study of the corrections for a future work.
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(a)

(b)

J J2 J

FIG. 8. Different spin tube geometries.

B. The model for the material and the exactly solvable model

Above, we have analyzed the behavior of the ground state
in tubes near the dimerization condition. Now, we are going
to discuss which are the common features between these
results and the behavior of a more realistic family of tubes.
In particular, we consider the model proposed by Garlea et al.
in Refs. [25,26] for the Cu2Cl4D8C4SO2 compound. In order
to see what features are shared between our exactly solvable
model and the model proposed in Refs. [25,26], we explore
numerically the ground state of Hamiltonians on the family
J > J2,J

0, corresponding to the tube in Fig. 8(a), looking for
common features.

In Fig. 9, a landscape of several entanglement observables,
corresponding to the ground state of a tube with couplings
as in Fig. 8(a) are depicted. In the top panels, the fidelity
between the local state of a single rung and the singlet state
(panel a) and the entanglement entropy of a rung (panel b) are
shown. Due to the SU(2) symmetry, for local states of a single
rung, the entanglement entropy is a function of the fidelity
to the singlet state. As we could expect from a composite
mean-field treatment [34,39], the local state of a single rung
can be accurately approximated by a pure singlet state in a
relatively wide region around the condition J 0 = 2J2, even if
J2 is moderately large.

On the bottom panels we can appreciate the entanglement
of a plaquette composed by two parallel rungs with the rest
of the tube (panel c) and the internal entanglement between
two rungs in the same plaquette, measure by its logarithmic
negativity [36] (panel d). For large J2 and J 0, we observe
that both the entanglement between the state of a square and
the rest of the tube becomes larger, which is compatible with
a symmetry broken phase. In fact, the limit J → 0 with J 0
and J2 fixed corresponds to a nonfrustrated tube, for which a
Neél-like phase is expected. We can also notice that the region
where the squares are not entangled is larger than the dimerized

region. In particular, near J2 ≈ 0.5J and J 0 ≈ 0.9J , we can
observe a region where the entanglement of the square with
the rest of the tube is small, but the internal entanglement
between rungs is nearly 1. This seems to indicate that such
a region corresponds to a resonant plaquette order, where the
GS is well approximated by |GSi ≈ |αiNsquare, |αisquare being
a four-spin singlet state (J2

square|αisquare = 0), which is not a
product state of the rung states |αisquare 6= |singlei|singleti.

In summary, we saw that although the exact dimerization
condition for this model is only possible in the trivial
limit J 0 = J2 = 0, the phase diagram looks quite similar to
that associated to the family containing the solvable model.
This can be understood by considering the removal of the
extra bond on the square Hamiltonian as a perturbation
over the Hamiltonian of the solvable tube. However, near
the crossover point, the perturbation theory is no longer
valid, which can give place to new features in the phase
diagram.

V. DISCUSSION AND PERSPECTIVES

In the present paper, a general SU(2) invariant quantum
spin-S Heisenberg ladder was investigated. A sufficient con-
dition for the existence of a fully dimerized exact ground state
was shown for a wide subfamily of such systems. Besides,
by means of a combination of numerical and analytical
techniques, the existence of this phase for a general value of the
local spin was proved, showing that the region in the parameter
space corresponding to the dimerized phase is reduced as the
magnitude of the local spin grows.

For the case of symmetrical frustration, the excitations
were also exactly determined and a discussion about the
magnetization process [30–33] was presented. The ground-
state properties around the exact manifold in the parameter
space were explored by means of numerical analysis, showing
that these remain close to the exact case over a finite region.
Due to the large stability of this phase against external
perturbations, a quantum simulator that could reproduce this
kind of couplings would be able to prepare a large number of
fully entangled pairs in a robust way. In the last years, several
proposals for the experimental simulations of spin systems in
ion trap experiments [40–43] suggest that this kind of setup
could be readily available in the near future.

Besides, we have shown how the family of Hamiltonians
with a fully dimerized ground state can be extended from the
family of ladders to more complex models. As an example,
a family of frustrated four-leg spin tubes with a dimerized
ground state was built. Afterward, common features found in
the ground state of the solvable family and those obtained
for more realistic models were analyzed. In particular, a
comparison to the model proposed for the Cu2Cl4D8C4SO2

compound [25,26] was discussed.
We hope this study can be taken as a starting point for

a more systematic study of the ground-state properties and
excitations around the lines on the parameter space where
the ground state was exactly determined, for example, the
study of the hole dynamics on a background of dimers in
one-dimensional systems [11]. In higher dimensions, there is
an important number of results on dimerized ground states [44–
48] that can be used as a starting point to study hole dynamics.
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FIG. 9. (Color online) Local structure of the ground state for the tube as a function of couplings J2 and J 0, evaluated through exact
diagonalization (Lanczos method) for the case of L = 4 plaquetes (16 sites) and S = 1/2. (a) Fidelity of the local state associated to a single
rung with respect to the singlet state. (b) Entanglement entropy of a rung with the rest of the tube. (c) Entanglement of a plaquette. (d) Internal
entanglement, measured by its logarithmic negativity between two pairs in the same plaquette. The dashed (red) straight line represents the
condition J 0 = 2J2; the dark continuous curve bounds the region where F0[ρ12] > 0.95, while the dashed light curve (yellow) bounds the
region where the pair ρ12 is entangled (F0[ρ12] > 1/

√
2).

In 2D, it has been recently proved that the quantum statistics of
holes in a dimer background can be changed without affecting
the energy dispersion [49], and the density of holes has an
impact on the magnetization plateaux [32]. As we start from
these families of models where the ground state is a dimer
covering, introducing holes in the system may result in a very
interesting phase diagram.
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