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Abstract. Supervised learning classifiers have proved to be a viable so- 

lution in the network intrusion detection field. In practice, however, it 

is difficult to obtain the required labeled data for implementing these 
approaches. An alternative approach that avoids the need of labeled 

datasets consists of using classifiers following a semi-supervised strategy. 
These classifiers use in their learning process information from labeled 
and unlabeled datapoints. One of these semi-supervised approaches, orig- 

inally applied to text classification, combines a naive Bayes (NB) clas- 
sifier with the expectation mazimization (EM) algorithm. Despite some 
differences, network intrusion detection shares many of the characteris- 

tics of the document classification problem. It is extremely hard to obtain 
labeled data whereas there are plenty of unlabeled data easily accessible. 

This work aims to determine the viability of applying semi-supervised 

techniques to network intrusion detection, with special focus on the com- 

bination of NB classifier and EM. A set of experiments conducted on the 

1998 DARPA dataset show using EM with unlabeled data can provide 
significant benefits in classification performance, reducing the size of re- 

quired labeled data by 90%. 
Keywords: Intrusion Detection Systems - Semi-supervised Learning - 

Expectation Maximization. 

1 Introduction 

The use of supervised learning classifiers for network intrusion detection has 

been applied successfully in previous works [1,2,3]. As it is known, supervised 

classifiers require a dataset containing labeled traffic instances for the learning 
process. Unfortunately, in the case of network intrusion detection, obtaining such 

labeled datasets requires considerable human effort. 

One possible solution is the use of classifiers which follows a semi-supervised 

learning strategy [4]. Algorithms following this strategy are able to learn classi- 
fication models using information not only from labeled datasets but also from 
unlabeled ones. 

A simple semi-supervised approach, usually applied to document classification 

problems [5], is introduced by Nigam et al. in [6]. The proposed algorithm is 

39JAIIO - ASAT 2010 - ISSN:1850-2784 - Página 175



based on the combination of EM [7] and a NB classifier. The algorithm first 
trains a classifier using the available labeled documents, and probabilistically 

labels the remaining unlabeled documents. It then trains a new classifier using 

the labels for all the documents, and iterates to convergence. In many document 

classification problems, only a reduced set of labeled documents are accessible 

whereas a big number of unlabeled documents are available. This situation makes 

document classification problem suitable for using a semi-supervised approach. 

Despite some differences, network intrusion detection shares many of the char- 

acteristics of the document classification problem. The available labeled dataset 

are limited, whereas there are plenty of unlabeled data easily accessible. There- 

fore, it seems a semi-supervised approach like the proposed in [6] could provide 

benefits to the network intrusion detection problem. 

In this work, an study is carried out in order to determine the viability of ap- 

plying semi-supervised techniques to network intrusion detection with special 

focus on the combination of EM and a NB classifier. A set of experiments are 

conducted on the 1998 DARPA dataset [8], a widely used dataset for testing 
network intrusion detection approaches. 

The rest of this paper is organized as follows. Best known approaches for re- 

ducing labeling efforts are mentioned in section 2. Section 3 briefly describes 

the elements involved and special considerations required, when the proposed 

Bayesian semi-supervised strategy is applied to intrusion detection. The results 

of the evaluation of the proposed approach on the 1998 DARPA dataset are pre- 

sented in section 4. Finally, in section 5, concluding remarks and future works 

are commented. 

2 Background and Related works 

A number of alternative approaches have been proposed in order to reduce or 

simply avoid the need of labeled datasets and the consequent human effort re- 

quired. 

A first approach consists of using unsupervised learning techniques. One of the 

major advantages of this approach is that it is suitable for handling unlabeled 

training data sets with not only normal traffic but also anomalies (i.e., attacks). 
Algorithms such as Support Vector Machines (SVM) [9] and clustering [10] were 
applied to the network intrusion detection field. Unfortunately, as was noticed by 

Eskin in [10], algorithms following the unsupervised strategies only works under 
the assumption that the number of normal traffic instances vastly outnumbers 

the number of anomalies. An assumption which not always holds. 

A second approach uses semi-supervised learning techniques. Following the promis- 

ing idea of learning from labeled and unlabeled traffic instances, some authors 

[11,12,13] have focus their work on this learning alternative applied to network 

intrusion detection. 

Among the best known semi-supervised learning techniques [4], the combination 
of NB and the EM provides a good trade off between simplicity and performance. 
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Thus, it seems important to evaluate its performance on the network intrusion 

detection field. 

3 <A Bayesian Semi-supervised Strategy for Network 

Traffic Classification 

Nigan et al. [6] proposed a semi-supervised learning algorithm based on the 
combination of EM and a NB classifier. The following subsections describes 

main characteristics of the NB and EM semi-supervised algorithm when applied 

to the network traffic classification. 

3.1 Naive Bayes 

Network traffic classification implies assigning a traffic instance to one or more 

predefined classes C = (c1..., cx). In the simplest case only two classes are con- 

sidered, attacks and normal traffic. 

Let L be a dataset containing labeled traffic instances (1;..., l¡1), classification 
can be done by just estimating the probability of each class c, given J; and a set 

of distribution parameters denoted ¢. Then, classification is done according to 

the c, € dom(C) with maximum probability. 

An estimation of the class cy probability, P(cx|l;; é), can be obtained by means 

of Bayes theorem, giving 

Plexló) PQilex; é) 

P(liló) 

Note that the numerator P(1;|@) is the same for all c, € dom(C) and can be 
removed from the equation. Whereas the class c; Prior probability estimator 

P(cxlóp) is defined as the count of instances |; belonging to class c;, in the whole 
L dataset. Equation (2) defines class Prior for class cx. 

P(call;; ó) = (1) 

L . La, 
P(crló) = Eos (2) 

According to naive Bayes independence assumption, /; attributes are mutually 

independent given the class, so that 

o
 

P(lilex; 9) = IP (I \cns d) (3) 

Due to J; traffic instances contain continuous attributes, a common approach is 

to assume that the distribution followed by attribute // given C is a Gaussian 

[14], that is P(/;|cn;) = N(1]|W3x,03,). Estimates for ju and o” are defined as 
follows 
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When NB is trained with an small set of labeled traffic instances, classification 

will suffer performance loss due to a high variance in parameter estimates ¢. 

However, when this small set is combined, by means of EM, with a large set of 

unlabeled traffic instances, it is possible to improve parameter estimates. Details 

of this process are shown in the following section. 

3.2. Expectation Maximization 

EM is an iterative algorithm for maximum likelihood or maximum a posteriori 

estimation in problems with incomplete data [7]. In this case, unlabeled data are 
considered incomplete due to missing class labels. 

The basic algorithm written in pseudo code is shown in Figure 1. EM consists 

of two steps, an Expectation step or E-step plus a Maximization step or the M- 

step. The process is initialized with the M-step, where NB classifier parameters 

@ are estimated using only labeled traffic instances from dataset L. Then, the 

cycle begins with an E-step that uses recently learned NB classifier to proba- 

bilistically label the unlabeled traffic instances in dataset U. Then, paremeters 

@ are estimated once again in a new M-step but using the union of datasets D 

and U. Algorithm iterates until estimates of the parameters é does not change. 

  

1: Learn parameter estimates à for a NB classifier f using traffic instances 

from the labeled set L 

repeat 

for each traffic instance /; in U do 

Using the current classifier f classify each |; 
end for 

Learn ¢ for a new naive Bayes classifier f using the union of 2 and U 
until the parameter estimates À converge 

Return the classifier f from the last iteration     
  

Fig. 1: naive Bayes combined with EM Algorithm 

4 Experiments 

This section aims to evaluate the performance of a simples NB classifier when 

it is combined with EM algorithm (denoted NBEM). A set of experiments are 
conducted in order to evaluate the minimum amount of labeled traffic required 

by NBEM for achieving acceptable performance. 
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4.1 Dataset description 

The experiments were conducted over five weeks of the 1998 DARPA data set, a 

dataset widely used for intrusion detection evaluation. DARPA dataset contains 

around 1.5 millions traffic instances with almost 50% of them labeled as attacks. 

Selected attributes for describing the input data consist of a number of fields 

available from a network traffic instance, as well as other high level attributes 

obtained after some network packet preprocessing. 

Table 1 shows a total of fifteen fields related to a network traffic instance. At- 

tributes such as protocol, tcp.srcport, tcp.dstport, ip.src and ip.dst are easily 

obtained from network connection. Remaining ones are higher level attributes 

which provide information related to connection time and data transferred. 

Table 1: Basic attributes of individual traffic connections. 

Feature Name Description Quantity 

connection.time Time of the connection in hours, 3 

minutes and seconds 

protocol Type of protocol, e.g ssh,http,ftp 

tcp.srcport TCP source port 

tcp.dstport TCP destination port 

ip.src IP source address 

ip.dst IP destination address 

tcp.len Number of bytes transfered 
num.pkts.src.dst Number of packets from src IP to dst 

IP 
num.pkts.dst.src Number of packets from dst IP to src 

IP 
num.ack.src.dst Number of packet with ACK flag 1 

active from src to dst 
num.ack.dst.src Number of packet with ACK flag 1 

active from src to dst 
num.syn.src.dst Number of packet with SYN flag 1 

active from src to dst 
num.syn.dst.src Number of packet with SYN flag 1 

active from dst to src 
num.bytes.src.dst Number of bytes from src to dst 1 
num.bytes.dst.src Number of bytes from dst to src 1 

  

S
e
 

BP 
P
e
e
 

pl
 

  

A second set of attributes are shown in Table 2. These attributes provide infor- 

mation about the number of connections using a five-second time windows as 

well as information related to the last 100 connections. 

Many of these fields have been used in previous works [15,16] and have provided a 
good trade off between overall performance and the computational effort needed 

for training process. Selected fields are represented according to Quantity value 

shown in tables, resulting a total of 32 attributes used for training proposed 

classifiers. 
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Table 2: Attributes involving many connections 

Feature Name Description Quantity 

Information about connections in the last five seconds 

count.time.src. Number of connections from the same 1 

address as the current connection 

source address 

count.time.dst Number of connections to the same 1 

IP address as the current connection 

destination IP address 

  

  

count.time.srv.src Number of connections from the same 1 

service as the current connection 

count.time.srv.dst Number of connections to the same 1 

service as the current connection 

Information about the last 100 connections 

count.src Number of connections from the same 1 

address as the current connection 

source address 

count.dst Number of connections from to the 1 

same address as the current 

connection destination address 

  

  

count.srv.src Number of connections from the same 1 

service as the current connection 

count.srv.dst Number of connections to the same 1 

service as the current connection 
  

4.2 Dataset sampling 

A randomly selected 1% subset of the DARPA data is used for the training 
process, whereas another 0.5% subset is used for testing purposes, following 

standard ratios used in classification problems. 

Due to the number of traffic instances containing attacks is extremely variable, no 

assumption is made about attack class distribution. Therefore, the experiments 

are conducted against datasets with attack distributions of 10%, 20%, 30%, 50%, 
60%, 70%, 80%, 90%. The 1% of the whole DARPA dataset with proportion of 
attacks of p% is sampled from the whole dataset in two steps, one that samples 

attacks from the set of all attacks, and another for sampling the normal data from 
the set of all normal traffic instances. To maintain the p% ratio of attacks in the 

resulting 1% dataset, a fraction p x 10~+ of attacks are randomly and uniformly 

sampled from the set of all attacks. Similarly, a fraction of (1 — p) x 107* is 
randomly and uniformly sampled from the set of all normal traffic instances. 
The same process is followed for sampling the 5% used for testing. 

Let T be a randomly and uniformly selected 1% subset sampled for training as 

described in previous paragraph, a percentage of T is considered as labeled (de- 

noted L) whereas the remaining instances are considered as unlabeled (denoted 
U). 
As usual, for the supervised strategy, only L is used for learning the naive Bayes 

classifier. On the other hand, for the semi-supervised strategy, the union of L 
and U datasets is used for EM algorithm as shown in Figure 1. As in real life 

situation L would be a dataset labeled by experts, the random sample of L 

is forced to maintain equally distributed classes while U sample keeps proper 
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dataset attack distribution. The classification performance of both classifiers, 

NB on L and NBEM on L and U, are evaluated on a test dataset. 

For statistical significance a total of 40 repetitions of the experiments are con- 

ducted using different randomly and uniformly selected subsets for each attack 

distribution. 

4.3 Performance Metrics for Network Intrusion Evaluation 

Standard performance metrics for network intrusion evaluation are used for com- 

paring the different approaches discussed. These metrics correspond to Attack 

Detection rate (DR) and False Alarm rate (FA). 
DR is computed as the ratio between the number of correctly detected attacks 

and the total number of attacks. While FA rate is computed as the ratio between 

the number of normal connections that are incorrectly classified as attacks and 

the total number of normal connections. 

4.4 Evaluation of Naive Bayes classifier 

Before evaluating the NBEM approach it is important to evaluate performance 

of a simple NB classifier. 

Figure 2 shows performance of a NB classifier trained with the whole sample 
labeled dataset 7’. 
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Fig.2: DR and FR for NB trained with T 

This training process corresponds to the traditional supervised strategy. A simple 

NB classifier assuming a Gaussian distribution for continuous features was using 
as discussed in section 3. 

Despite the Gaussian distribution assumption can be considered rather strong, 

results shows NB seems to be very accurate, showing a very high average DR, 

(above 98%) together with a low average FA (beyond 2.0%) over all the attack 
distribution datasets. 
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Behaviour presented by NB on DARPA 1998 dataset may be favored due to some 

unrealistic procedures observed during dataset generation. For a more detailed 

explanation, the reader is referred to [17]. 

4.5 Evaluation of Naive Bayes with EM 

Experiments in this section aim to evaluate the performance of the NB and EM 

combined approach. 

Figure 3 shows average DR and FA values for NB and NBEM along datasets 

with different attacks distributions, following training processes as mentioned in 

subsection 4.2. 

As can be observed major benefits provided by EM are observed when labeled 

dataset L takes values up to 10% of the training set T. Beyond this point, 

no significant appreciable differences between NB and NBEM are observed. 

Therefore, EM seems to be unnecessary and could be avoided. 

As can be seen in Figure 3 (a), in the case of DR, NBEM shows values from 
95% to 99% while in the case of NB values shown are from 88% to 98%. 
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(a) Average DR values for NB and NBEM (b) Average FA for NB and NBEM 

Fig. 3: Average DR and FA values for NB and NBEM along datasets with different 
attacks distributions for selected L sizes. 

Although not as remarkable as in the case of DR, the NBEM approach also 

provides benefits in the case of FA. Figure 3 (b) shows FA values from 0.4% to 
3% for NBEM while for NB values are from 0.5% to 5%. 
Following figures show in details different size for L which provides a good trade 
off between the labeled dataset size and the benefits obtained when NBEM is 

used. 

Figure 4 shows DR and FA performance for both algorithms. A L labeled dataset 

with 0.2% of T is used for training NB whereas NBEM is trained with L and 

U = T —L. As can be seen, DR values for NB vary from 85% to 90% under 
different attacks distributions, which is considerable worse than performance 

shown in Figure 2 when NB is trained using the complete labeled dataset 7’. In 

the case of FA, an increment can be also observed, however values do not exceed 
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5%. On the other hand, for NBEM, DR ranges between 93% to 97% for all of the 
attack distributions. In the case of FA, significant performance improvements are 

observed for dataset distributions beyond 30% of attacks. 

Also notice that NB results show a significant variance which in many cases is 

considerable reduced when the NBEM approach is used. 
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(a) DR for NB and NBEM (b) FA for NB and NBEM 

Fig. 4: NB trained with L = 0.2% of T and NBEM trained with L = 0.2% of T and 
U=T-L 

Figure 5 shows results when a dataset L containing 0.5% of T is used for training. 

DR values for NB are around 92% whereas FA values remain below 4%. On the 

other hand, for this size of L, the semi-supervised approach holds above 98% 

for DR, in all of the attacks distributions, with the exception of a 10% attack 

distribution where DR decreases to 88%. In the case of FA, NBEM benefits 

appear for dataset with more than 20% attacks. For those cases, FA values drop 

down to 1%. Here, NBEM also helps in reducing the high variance presented by 

NB. 

When L = 2% of T, NB begins to exhibit appreciable performance improve- 

ments. As can be observed in Figure 6, DR values vary from 94% to 96% for 
every attack distribution, whereas FA drop down to a 3.5%. NB trained with 
L = 2% shows a performance closer to the values when the complete training 

dataset is used. However, even in this case, the use of the EM approach shows 

some benefits. DR values remain above 98% for every attack distribution. And 

in the case of FA, they keep being lower than the ones exhibited by NB. Except 

for dataset containing 10% and 20% of attacks. 

Finally, Figure 7 shows results for L = 10%. In this case, NB exhibits DR values 

around 98% for every attack distribution while FA slightly varies from 1.5% to 

2.2%. Due to near-optimal performance shown by NB, benefits provided by EM 

are less appreciable. In the case of DR, EM shows a performance very similar 

to NB. Although, for datasets under some attack distributions, EM slightly 
degrades DR value. On the other hand, although small in proportion, FA values 
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Fig. 5: NB trained with L = 0.5% of T and NBEM trained with L = 0.5% of T and 

U=T-L 
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Fig.6: NB trained with L = 2% of T and NBEM trained with L = 2% of T and 

U=T-L 

are reduced by NBEM in all attack distribution except for dataset with 10% of 

attacks 

Beyond this point, as already suggested by averages shown in Figure 3 the use 

of EM does not improve NB performance. 

5 Conclusions and Future Work 

Classification performance exhibited on datasets under different attack distri- 

butions shows the use of the proposed semi-supervised strategy is suitable for 

intrusion detection systems. 

Standalone Naive Bayes classifier shows extremely accurate results but requires 

fully labeled datasets. 

The use of the EM algorithm provides results comparable to the obtained with 

a Naive Bayes classifier with considerable less labelling effort. Results for the 
1998 DARPA dataset indicate that with only a 0.5% of the training set used by 
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Fig. 7: NB trained with L = 10% of T and NBEM trained with L = 10% of T and 

U=T-L 

a standalone NB classifier, NBEM exhibits similar performance for DR and FA 

under most of the attack distributions. 

The use of EM continues to exhibit performance improvements when the num- 

ber of labeled instances grows up to 10% of the subset sampled. Beyond this 

size EM does not exhibit appreciable benefits and in some cases some minor 

degradation in classifier performance is observed. NBEM seems to be suscep- 

tible to dataset distribution. For datasets with around 10% of attacks, NBEM 

has shown significant performance loss regardless the size of L. 
Experiments suggest the viability of the NB and EM semi-supervised approach, 

however it is important to mention that NB high accuracy and consequent EM 

improvements could be favored by some artificial issues present in the DARPA 

1998 dataset. Therefore, a number of experiments must be conducted on more 

realistic datasets in order to confirm these results. 
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