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Abstract 

Model compression is an important topic in deep learn- 

ing research. It can be mainly divided into two direc- 

tions: model pruning and model quantization. How- 

ever, both methods will more or less affect the origi- 

nal accuracy of the model. In this paper, we propose 

a mutual learning framework for pruned and quan- 

tized networks. We regard the pruned network and the 

quantized network as two sets of features that are not 

parallel. The purpose of our mutual learning frame- 

work is to better integrate the two sets of features and 

achieve complementary advantages, which we call 

feature augmentation. To verify the effectiveness of 

our framework, we select a pairwise combination of 3 

state-of-the-art pruning algorithms and 3 state-of-the- 

art quantization algorithms. Extensive experiments on 

CIFAR-10, CIFAR-100 and Tiny-imagenet show the 

benefits of our framework: through the mutual learn- 

ing of the two networks, we obtain a pruned network 

and a quantization network with higher accuracy than 

traditional approaches. 

Keywords: Model Compression, Network Pruning, 

Quantization, mutual learning. 

Resumen 

La compresión de modelos es un tema importante en 

la investigación del aprendizaje profundo. Se puede 

dividir principalmente en dos direcciones: poda de 

modelos y cuantización de modelos. Sin embargo, 

ambos métodos afectarán más o menos la precisión 

original del modelo. En este artículo, proponemos 

un marco de aprendizaje mutuo para redes podadas y 

cuantificadas. Consideramos la red podada y la red 

quantized como dos conjuntos de características que 

no son paralelas. El propósito de nuestro marco de 

aprendizaje mutuo es integrar mejor los dos conjuntos 

de funciones y lograr ventajas complementarias, lo 

que llamamos aumento de funciones. Para verificar 

la efectividad de nuestro marco, seleccionamos una 

combinación por pares de 3 algoritmos de poda de 

última generación y 3 algoritmos de cuantificación de 

última generación. Extensos experimentos en CIFAR- 

10, CIFAR-100 y Tiny-imagenet muestran los benefi- 

cios de nuestro marco: a través del aprendizaje mutuo 

de las dos redes, obtenemos una red pruned y una red 

de cuantificación con mayor precisión que los enfo- 

ques tradicionales. 

Palabras claves: Compresión de modelo, poda de red, 

cuantificación, aprendizaje mutuo. 

1 Introduction 

Deep learning is one of the important means to realize 

artificial intelligence. However, deep learning models 

often have large parameters and are difficult to deploy, 

specifically for edge computing devices with limited 

computing power and memory. Research on compress- 

ing deep learning models is on the rise. Model pruning 

and model quantization are the two main research di- 

rections of deep learning model compression. 

A huge number of algorithms have been recently 

proposed to compress neural network in these two 

fields. In terms of model pruning, what they have in 

common is how to find and prune the weights or chan- 

nels they think are unimportant, and make sure that the 

accuracy is not affected after pruning. As for quantifi- 

cation, the key is how to design a reasonable projection 

function to minimize the loss of quantization accuracy. 

From the description above, it seems that these two 

fields of study are not related. Therefore, people tend 

to be independent researchers in both fields. However, 

we believe that the two are actually intrinsically related. 

From a linear algebra perspective, the essence of a 

neural network is to find an optimal mapping from 

input to output. This map is a representation of known 

data(training data) and can be used to predict unknown 

data(testing data). That is to say, when the data set 

is the same, the pruned network and the quantized 

network can be regarded as two different forms of 

representation. In most cases, the representational
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Figure 1: Motivation from a set-theoretical point of view.The sets P, Q, F, and U represent the representation capa- 

bilities of the pruned network, the quantitative network, the complete network, and the ideal network, respectively. 

abilities of the two are inconsistent. Since they are 

inconsistent, this prompts us to think about whether 

the advantages of the two can be combined to obtain a 

better representation. This is exactly what our paper 

aims to do. 

Perhaps our work is easier to understand from a 

set-theoretical point of view. Assuming that the repre- 

sentation capability of the pruned network is defined 

as the set P, the representation capability of the quanti- 

fied network is defined as the set Q, the representation 

capability of the complete network is defined as the 

set F, and the representation capability of the ideal 

network is defined as the complete set U. Then there 

will be three cases, P and Q has intersection but does 

not overlap, P and Q has no intersection, P and Q 

overlaps as Figure | shown. As we mentioned earlier, 

the representational capabilities of pruning networks 

and quantization networks are often inconsistent. Usu- 

ally we are faced with casel and case2. In both cases, 

pruning and quantizing networks have the potential to 

improve representational power by learning from each 

other. So the key point is how to design a reasonable 

learning paradigm to guide the two to learn from each 

other. This is exactly what our paper examines. 

In this paper, we propose MLPQ, a Mutual Learn- 

ing Framework for Pruned and Quantized Networks to 

solve this problem. In our framework, the pruned net- 

work and the quantized network are trained at the same 

time. In the training process, the learning situation of 

each network is judged by the evaluation criteria, and 

then the part of the network that has been learned well 

relative to the other network is retained, and the part 

that is poorly learned learns the other. In this way, the 

two networks not only retain the good parts of each 

other, but also learn the good parts of each other. 

In summary, our contributions are three-fold: 

e We propose MLPQ to train the pruned network 

and the quantized network at the same time. 

Through the mutual learning between the two, 

a better performance than traditional approaches 

can be obtained. 

e We design an effective evaluation criteria and a 

reasonable learning paradigm to guide the mu- 

tual learning between pruning and quantization 

networks. 

e Extensive experiments prove that the perfor- 

mance of the pruning algorithm and the quanti- 

zation algorithm has been significantly improved 

through our mutual learning framework. 

This paper is organized as follows. We formulate 

the problem of Network Pruning and Quantization, and 

discuss its relationship with existing research areas in 

Section 2. Section 3 presents our approach: MLPQ. In 

Section 4, we describe experiments in detail. Finally, 

we conclude this paper in Section 5. 

2 Related Work 

2.1 Network Pruning 

Model pruning is to find out the redundant parameters 

in the network through some evaluation criteria to 

delete. There are three key elements involved, one 

is an evaluation criterion to determine the redundant 

parameters of the model, the second is the granularity 

of pruning, and the third is the strategy of pruning. 

A schematic diagram of a simple network pruning is 

shown in Figure 2. 

Problem Formulation A neural network NN f pa- 

rameterized by W can be represented as f(x; W). Neu- 
ral network pruning entails taking as input a model 

f(x; W) and producing a new model f(x;M © W’), 
where W’ is a set of new parameters that may be differ- 

ent from W, M € {0,1}!™'! is a binary mask that fixes 
certain parameters to 0, and © denotes element-wise 

production. Note that network pruning should retain 

the performance of the vanilla model (e.g., the classi- 

fication accuracy should not drop) while minimizing 

the parameter size |W’|. 

before pruning after pruning 

    pruning 

synapses 
-- > 

pruning 

neurons 

  

Figure 2: A schematic diagram of a simple network 

pruning.
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In this paper, our focus is convolutional neural nets. 

Specifically, in a CNN classification network with N 

convolutional layers, we use W; c RNXCixkixKi (1 < 

i < N) to denote the weight matrix connecting the i,p 

and i+ 1,, convolutional layers and N;,C;, Kj represent 

the number of output channels, the number of input 

channels, and the kernel size of filters, respectively. 

Similarly, the weights after pruning can be represented 

as W; € RNixC;xKxK;, Therefore, the goal of pruning 

CNN is to minimize all N; and C; while retaining the 
vanilla accuracy. 

Evaluation criteria The existing evaluation crite- 

ria are varied, and it is difficult to judge which 

method is better. The mainstream evaluation crite- 

ria are as follow: Energy-based [1], Weight-based 

[2,3], Correlation-based [4], Average Percentage of 

Zero (APoZ) [5] and Entropy-based [6-8]. Recently, 

Entropy-based methods show excellent performance. 

Pruning granularity In addition to evaluation cri- 

teria, the pruning method can be roughly divided into 

4 levels according to the pruning granularities. At 

the finest level, single weight is independently pruned 

[2,3,7,9]. As a result, the network connection is not 

regular, and the memory usage needs to be reduced 

by sparse expression, which leads to a large amount 

of conditional judgment and extra space to indicate 

the O or non-zero parameter position in the forward 

propagation, and thus is not suitable for parallel com- 

puting. The next pruning granularity is intra-kernel 

weight pruning/nuclear thinning [10-13]. It imposes 

a restriction on the update of the weights to make it 

more sparse, so that most of the weights are 0. The 

third pruning granularity is middle hidden layer prun- 

ing [14]. Layer-wise pruning affects the depth of the 

network and a deep network can be converted into 

a shallow network. The last pruning granularity is 

Convolution kernel/Feature map/Channel/Filter prun- 

ing [15-21]. Feature map pruning affects the layer 

width. It directly leads to a thinner network and no 

Sparse representation is needed. And it does not rely on 

any sparse convolution calculation library and special 

software. 

Pruning strategy As with the evaluation criteria, 

the pruning strategy is also critical for network com- 

pression. There are usually two ways to deal with it: 

one-shot [22,23] or iteratively [24,25]. For a target 

pruning ratio, the iterative process gradually increases 

sparsity and repeats the process M times. The one- 

shot pruning induces the target pruning ratio in one 

step. However, it is difficult to avoid a drop in accu- 

racy. As for iteratively pruning, the prior work [8] has 

shown that we can prune during the iteration, with no 

need for additional retraining. And it is found that 

fine-tuning after pruning can make up for the loss of 

precision caused by pruning, so many methods will do 

fine-tuning after pruning. Therefore, iterative pruning 

seems to be better. 

2.2 Quantization 

Quantization is a way of representing high-precision 

numbers with low-precision. Quantification has dif- 

ferent classification methods according to different 

criteria. Firstly, according to the number of bits after 

quantization, it can be divided into 2-bit quantization, 

3-bit quantization, 8-bit quantization, mixed-bit quan- 

tization, etc. Secondly, according to the quantization 

method, it can be divided into uniform quantization 

and non-uniform quantization. Finally, according to 

Fine-tuning Methods, it can be divided into Quantiza- 

tion Aware Training (QAT) and Post-Training Quanti- 

zation (PTQ). A schematic diagram of Quantization is 

shown in Figure 3. 

Problem Formulation Assume that the NN has 

L layers with learnable parameters, denoted as 

{W,W2,...,Wz}, with @ denoting the combination 

of all such parameters. Without loss of generality, we 

focus on the supervised learning problem, where the 

nominal goal is to optimize the following empirical 

risk minimization function: 

1 

Nj 
Mz

a 
L(0) = I (xi, vis 8) (1) 

1 

where (x,y) is the input data and the corresponding 
label, /(x,y; 0) is the loss function (e.g., Mean Squared 
Error or Cross Entropy loss), and N is the total number 

of data points. Let us also denote the input hidden 

activations of the i” layer as h; , and the corresponding 

output hidden activation as a; . We assume that we 

have the trained model parameters 0, stored in floating 

point precision. In quantization, the goal is to reduce 

the precision of both the parameters (0), as well as 
the intermediate activation maps (i.e., A; , a;) to low- 

precision, with minimal impact on the generalization 

power/accuracy of the model. To do this, we need 

weights 

(32 bit float) 
fine-tuned 

centroids 

cluster index 

(2 bit uint) centroids 

  

  

Figure 3: A schematic diagram of Quantization.
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to define a quantization operator that maps a floating 

point value to a quantized one. 

number of bits After Courbariaux proposed Bina- 

ryConnect [26], researchers begin to explore the mys- 

teries of binary networks. BinaryConnect is a method 

which consists in training a DNN with binary weights 

during the forward and backward propagations, while 

retaining precision of the stored weights in which gra- 

dients are accumulated. Following in his footsteps, 

Darabi proposed an improved binary training method 

BNN+ [27], by introducing a regularization function 

that encourages training with weights around binary 

values. Then Phan proposed a novel neural network 

architecture, namely MoBiNet [28] - Mobile Binary 

Network in which skip connections are manipulated 

to prevent information loss and vanishing gradient, 

thus facilitating the training process. Shekhovtsov pro- 

posed a new method [29] combining sampling and 

analytic approximation steps. The method has a sig- 

nificantly reduced variance in the price of a small bias. 

Then Kim proposed to search architectures for binary 

networks BNAS [30] by defining a new search space 

for binary architectures and a novel search objective. 

Bulat proposed to address the inherent information 

bottleneck [31] in binary networks by introducing an 

efficient width expansion mechanism. 

The above works are all based on binary networks. 

Later researchers found that it is difficult to improve 

the accuracy of binary networks, so some began to 

study mixed precision networks. Wang introduced the 

Hardware-Aware Automated Quantization HAQ [32] 

framework which leverages the reinforcement learn- 

ing to automatically determine the quantization policy. 

And Uhlich proposed to parameterize the quantizer 

with the step size and dynamic range [33]. The bit 

width can then be inferred from them. Liu proposed 

multipoint quantization [34], a quantization method 

that approximates a full precision weight vector using 

a linear combination of multiple vectors of low-bit 

numbers. Yang proposed a novel learning-based algo- 

rithm [35] to derive mixed precision models end-to- 

end under target computation constraints and model 

sizes. Yang proposed bit-level sparsity quantization 

BSQ [36] to tackle the mixed-precision quantization 

from a new angle of inducing bit-level sparsity. 

quantization method When the resulting quantized 

values (quantization levels) are uniformly in space, we 

call it so-called uniform quantization, otherwise Non- 

Uniform Quantization. Goncharenko proposed two 

methods to significantly optimize the training with 

the uniform quantization procedure [37]. The first 

one is introducing the trained scale factors for dis- 

cretization thresholds that are separate for each fil- 

ter. The second one is based on the mutual rescaling 

of consequent depth-wise separable convolution and 

convolution layers. Since uniform quantization has a 

larger quantization error than non-uniform quantiza- 

tion, most researches focus on the latter. Some work 

in the literature has also explored nonuniform quan- 

tization [38-44], where quantization steps as well as 

quantization levels are allowed to be non-uniformly 

spaced. 

Fine-tuning Methods Quantization Aware Training 

QAT is an approach in which the usual forward and 

backward pass is performed on the quantized model 

in floating point, but the model parameters are quan- 

tized after each gradient update (similar to projected 

gradient descent). And accumulating the gradients in 

quantized precision can result in zero gradient or gradi- 

ents that have a high error, especially in low-precision 

[26, 45-48]. An alternative to the expensive QAT 

method is Post-Training Quantization (PTQ) which 

performs the quantization and the adjustments of the 

weights, without any fine-tuning [34, 49-54]. Unlike 

QAT, which requires a sufficient amount of training 

data for retraining, PTQ has an additional advantage 

that it can be applied in situations where data is limited 

or unlabeled. However, this often comes at the cost of 

lower accuracy as compared to the QAT, especially for 

low-precision quantization. 

2.3 In-Parallel Pruning-Quantization 

In the process of studying pruning and quantification, 

some researchers try to prune and quantify at the same 

time, the so-called In-Parallel Pruning-Quantization. 

Tung combined network pruning and weight quanti- 

zation in a single learning framework [55] that per- 

forms pruning and quantization jointly, and in parallel 

with fine-tuning. Wang devised to train a quantization- 

aware accuracy predictor [56] that is fed to the evolu- 

tionary search to select the best fit. And Wang framed 

neural network compression as a joint gradient-based 

optimization problem [57], trading off between model 

pruning and quantization automatically for hardware 

efficiency. Baalen introduces Bayesian Bits [58], a 

practical method for joint mixed precision quantiza- 

tion and pruning through gradient based optimization. 

Bayesian Bits employ a novel decomposition of the 

quantization operation, which sequentially considers 

doubling the bit width. Kim proposed the position- 

based scaled gradient PSG [59] that scales the gradient 

depending on the position of a weight vector to make 

it more compression-friendly. 

It can be seen that these studies often ignore the 

inherent relationship between pruning and quantifica- 

tion, and regard them as two problems, usually using a 

joint optimization method. The difference between our 

research and the above research is that we believe that 

there is an inherent relationship between pruning and 

quantization. As long as this connection is fully uti- 

lized, we can maximize the performance of the pruned 

network and the quantization network. As Figure |
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shown, both P and Q are subsets of F, they both re- 

tain part of the information of the full network and 

also lose part of it. Specifically, the pruned network 

results in a loss of network structure complexity due 

to the deletion of some redundant parameters, while 

the quantization network results in a loss of parameter 

precision due to quantization. The two can make up 

for their shortcomings by learning from each other. 

This is exactly the starting point of our paper, and 

we'll show how this can be achieved by our proposed 

mutual learning framework. 

3 Methodology 

For ease of understanding, we first define some con- 

cepts. Firstly, what we need to define is how good 

or bad the learning results of the pruned network and 

the quantized network is. Here we focus on the image 

classification task, assuming that the training data xh 

is divided into L classes with label yc, where C is the 

number of samples. For the neural network NN, the 

training data xt. enters the network to obtain the output 

Yc. If the output classification result y/. is consistent 

with the training data label yc, the classification is cor- 

rect. At this time, we think that the result learned is 

good. Conversely, we consider the learned results to 

be bad. Suppose the i_th output is y’, We define y'* 

to indicate that the output is consistent with the label, 

that is, a good result. And y” indicate the output is 

not consistent with the label. In our mutual learning 

framework, we define yi*, vi, y and y similarly. 
The slight difference is that ’+’ and ’—’ here are rela- 

tive concepts, which indicates closer or further away 

from the label. 

3.1 Motivation 

As Figure 1 shown, both P and Q are subsets of F, they 

retain part of the information of the full network and 

also lose part of it. Specifically, the pruned network 

results in a loss of network structure complexity due 

to the deletion of some redundant parameters, while 

the quantization network results in a loss of parameter 

precision due to quantization. Thus, we proposed a 

Mutual Learning Framework for Pruned and Quan- 

tized Networks, as Figure 4 shown. Training a pruned 

network and a quantized network with the same data 

yields different results, both good and bad, due to the 

respective limitations of the two networks. Our frame- 

work strives to make each other’s good results correct 

the other’s bad results so that the performance of each 

can be improved. 

3.2 Our approach: MLPQ 

Evaluation criteria In order for the two networks 

to learn their respective advantages from each other, 

the first and most critical point is to design a reason- 

able standard to judge the quality of network learning. 

Since our training data is image classification data, 

such as cifarl10 and cifar100, the most intuitive way 

to judge whether it is good or bad is the accuracy of 

its classification results. To this end, we designed two 

kinds of candidates, one is the probability of the class 

with the highest probability, and the other is the ratio 

of the probability of the class with the highest prob- 

ability of the second class. We find that it is better 

to directly use the probability maximum as the crite- 

rion. Therefore, we use it as a score to judge whether 

the network is good or bad so that the network output 

results are divided into two parts, good and bad. As 

Figure 4 shown, the pruned network (Np), we define 

good results as y”, and bad results as yo. Similarly, 

for quantized networks(N9), we define good results as 

vies and bad results as yi After this division, you can 

find those learnable parts (bad parts) for learning to 

enhance the performance of the network. 

Mutual learning In order to implement our mutual 

learning framework, some modifications to the origi- 

nal pruning algorithm and quantization algorithm are 

required. 

For the pruned network, we assume that the loss 

function of the original pruning algorithm is expressed 

as follows: 

L(P) = Lee(P,Y) + aLpc(P) (2) 

where Lcp(P,Y) is the cross entropy loss function, 
Lpc(P) is the loss function related to pruning con- 
straints, and @ is used to balance the network accuracy 

and pruning strength. Then we revise the loss function 

by score in the following form: 

L(P) = ApceLce(P*,Y)+Apce Loe (P- ,O*)+aLpc(P) 
(3) 

where Lcg(Pt,Y) is the cross entropy loss func- 
tion of yt, Lcg(P~,Q*) is the revised cross entropy 

function of yo which replaces the label with the clas- 

sification result of y to calculate the cross entropy. 

For the quantization network, we assume that the 

loss function of the original quantization algorithm is 

expressed as follows: 

L(Q) = Lc(Q,Y) + PLoc(0) (4) 

where Lce(Q,Y) is the cross entropy loss function, 

Loc(0) is the loss function related to quantization con- 
straints, and B is used to balance the network accuracy 

and QUANTIZATION strength. Then we revise the 

loss function by score in the following form: 

L(Q) = AgceLcr(O™,Y)+AgceLcr (Q7,P*) + BLoc(Q) 
(5) 

where Lcg(Q*,Y) is the cross entropy loss func- 
tion of y,*, Lcn(Q” ,P*) is the revised cross entropy
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Figure 4: MLPQ Framework. 

function of Yo > which replaces the label with the clas- 

sification result of y” to calculate the cross entropy. 

Aoce» Aocer, Aoce and Aocgr are the coefficients 
that control the learning strength of the good and bad 

parts of the two networks respectively. 

We believe that the mutual learning process of the 

two networks has gone through three stages. The first 

stage 1s that the learning capabilities of the two net- 

works themselves converge, the second stage 1s that 

the two networks learn from each other, and the third 

stage is that the two networks cooperate in Learning 

ability convergence. There is an overlap between the 

three stages. At different stages, the learning strength 

of the two parts of the two networks should be differ- 

ent. So these four coefficients we called the learning 

coefficient (LC) are continuously changed during the 

training of the two networks in our mutual learning 

framework. The LC adjusts the learning intensity ac- 

cording to the current learning situation of the two 

networks. In the process of mutual learning between 

two networks, the part to be learned can be divided 

into two cases, according to the output results, one 

is that the classification results of the two networks 

are the same, and the other is that the classification 

results of the two networks are different. For the for- 

mer, we think that the two networks are already in the 

third stage of mutual learning, and for the latter, we 

think it may still be in the first or second stage. We 

assume that the number of training samples with the 

same classification result in the part to be learned is 

Npeq aNd Neg respectively, and the number of samples 

with different classification results 18 Npyneg aNd Nguneg 

respectively. Then LC is related to three factors, which 

we call Convergence factor(F.,), Contrast factor(F.) 

and Self-feedback factor(F; ,). The F,, should satisfy 

the following form: 

(6) Fev (P) — Npeg/Npuneg 

FvlQO) — Ngeq | Nquneq (7) 

For pnet, the larger the ratio n peg /n puneg» the closer 

to the third stage, the greater the strength of the learn- 

ing part can be set. On the contrary, the smaller the ra- 

tio N pega /Npuneg» the closer to the first stage, the smaller 
the intensity of the learning part can be set. For qnet 1t 

is similar. 

In addition to the number of learning samples, the 

training loss can also reflect the learning situation of 

the network. Assume that the cross-entropy losses and 

revised the cross-entropy losses of pnet and qnet at the 

is, epoch are Lcg,(P), Lck,(P*), Log (P"), Lor, (0), 

Lee; (07) and Ecgr(Q7), respectively. Then F. and
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Fsy at the i+ 1,» epoch should satisfy the following 

form: 

F.(P) = fce(P)/Lce(Q") (8) 

F.(Q) = Lce(Q)/Lce(P*) (9) 

Fsp(P) = Lor (P)/Lon(P*) (10) 

ESsf(Q) = Le (Q)/LcE(0”) (11) 

For pnet, the larger the ratio Lce(P)/Lce(Q*), the 
better qnet learns than pnet, the greater the strength 

of the learning part can be set. On the contrary, the 

smaller the ratio Lce(P)/Lce(Q”), the smaller the 
intensity of the learning part can be set. And the 

larger the ratio Lee(P)/Lce(P*), the closer to the 
third stage, the greater the strength of the learning 

part can be set. On the contrary, the smaller the ra- 

tio Lce(P)/Lce(P*), the closer to the first stage, the 
smaller the intensity of the learning part can be set. 

For qnet it is similar. 

Therefore, we control the learning intensity at differ- 

ent stages by dynamically adjusting the LC, to achieve 

the purpose of mutual learning between the two net- 

works. 

yo — ME 
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Figure 5: Mutual learning. 
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Training Process Our proposed mutual learning 

framework requires training both pruned and quan- 

tized networks. In the training process, according 

to their respective learning situations, they learn the 

other’s good results in time to update themselves, to 

obtain a pruning network and a quantization network 

with better performance at the same time. To avoid 

convergence failures, we include an initial warm-up 

phase where the two networks are trained separately 

without mutual learning. Algorithms are shown as 

Algorithm 1. 

  

Algorithm 1 Algorithm of MLPQ 

Input: pret, gnet, epoch m,n. 

Output: pret’, gnet’. 

  

Initialize pnet, qnet. 

For epoch k in [1,...,m] do > warm up 

two networks are trained by Eq (2) and Eq (4). 

End For 

For k in [m,...,n] do > mutual learning 

calculate the score of pnet, qnet. 

calculate the LC by egs. (6) to (11). 

mutual learning by Eq (3) and Eq (5). 

End For 

return pret’, gnet’ 

o
o
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In the first stage of training, we use the original 

loss functions Eq (2) and Eq (4) to train two networks. 

This is to avoid interfering with each other when the 

two networks have not learned well, resulting in diffi- 

culty in convergence or falling into a local optimum. 

We call this phase the warm-up. Next is the so-called 

mutual learning phase. At this stage, for each epoch 

of training, we use the previously mentioned score 

to judge the relative learning of the two networks ac- 

cording to the network output. Then LC is calculated 

according to the relevant formula, and finally, the two 

networks are trained according to our proposed revised 

loss function Eq (3) and Eq (5). 

4 Experiments 

We conduct extensive experiments using different net- 

work architectures and various pruning and quantiza- 

tion algorithms to evaluate the performance of MLPQ. 

4.1 Setup 

Datasets CIFAR-10 and CIFAR-100 datasets consist 

of colored natural images with a size of 32 x 32 drawn 

from 10 and 100 classes, respectively. In each dataset, 

the train and test sets contain 50,000 and 10,000 im- 

ages. Tiny-imagenet classification challenge is similar 

to the classification challenge in the full ImageNet 

ILSVRC. Tiny-imagenet contains 200 classes for train- 

ing. Each class has 500 images. The test set contains 

10,000 images. All images are 64x64 colored ones.
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Baselines We implement our MLPQ with different 

network architectures: Resnet18, Resnet34, resnet20, 

resnet20+, resnet56. A network at the beginning of 

a capital letter indicates that the normal number of 

channels has not been reduced. The number of chan- 

nels for Resnet18 and Resnet34 is [64,128,256,512], 

the values in parentheses are the number of chan- 

nels in different layers. The number of channels for 

resnet20 and resnet56 is [16,32,64], and for resnet20+ 

is [80,160,320]. 

We compare MLPQ with various state-of-the- 

art pruning methods including Directional pruning 

(gRDA) [60], Towards Compact CNNs(Towards) [61] 

and Regularization-Pruning(Regu) [62]. Among them, 

gRDA and Towards are pruning while training, and 

Regu is pruning first and then finetuning. And gRDA 

is dynamic pruning according to the pruning strength, 

the parameter compression ratio is not fixed, while 

Towards and Regu are fixed-parameter compression 

ratios 

And we compare MLPQ with various state-of-the- 

art Quantization methods including Reviving the Dead 

Weights (Re) [63], Any-Precision (Any) [64] and 

Element-wise Gradient Scaling (EW) [65]. Among 

them, Re is 1bit quantization, Any can achieve any bit 

quantization. In our experiment, for the convenience 

of comparison, we use | bit and 2bit quantization with 

Any. EW is also 2bit quantized. And all three algo- 

rithms are Quantization Aware Training. 

We put these algorithms in pairs in our mutual 

learning framework, and experiments have shown that 

through our framework, the performance of these algo- 

rithms has been improved. In the tables, the baseline 

row represents the result of the original algorithm, and 

the ours row represents the result of the original algo- 

rithm with our mutual learning framework. 

Evaluation metrics 

rics: 

We adopt two evaluation met- 

e Classification accuracy (%) on test sets for two 

networks. 

* parameter compression ratio (p,): The ratio of 

number of non zero weights in the original model 

against the compressed network only for pruning 

network. 

4.2 Results on Cifar10 

The results of mutual learning on cifarl0 are shown 

in Table 1. The three quantization algorithms are all 

QAT, with little difference. However, among the three 

pruning algorithms, gRDA pruned with a variable pa- 

rameter compression ratio during training, Towards 

pruned with a fixed parameter compression ratio dur- 

ing training, and Regu pruned with a fixed parameter 

compression ratio and finetune. So we analyze the 

experimental results according to different pruning 

algorithms. 

gRDA results As shown in Table 1, for gRDA & 

Re, we use two large networks Resnet 18 and Resnet34. 

For Resnet18, with our mutual learning framework, 

the parameter compression ratio of the pruned network 

improves by about 2 times while maintaining the same 

accuracy. And the accuracy of the quantization algo- 

rithm has also improved, although not significantly. 

For Resnet34, The pruned network performed simi- 

larly, but the quantized network showed little improve- 

ment. This phenomenon shows that when the network 

is large enough, the performance of the quantization 

network has been compared with the full-precision net- 

work, so it is difficult to learn useful information from 

the pruned network. However, the network structure 

loss caused by pruning in the pruned network can be 

well compensated from the quantized network. 

gRDA & EW and gRDA & Any used resnet20 and 

resnet20+ respectively. resnet20+ has 5 times as many 

channels as resnet20. From the experimental results, 

we can see that the pruned network can still improve 

the parameter compression ratio by about 2 times while 

keeping the accuracy unchanged. Even for small net- 

work structures, resnet20, the accuracy of the pruning 

algorithm is improved. And compared with the large 

model Resnet18 and Resnet34, the accuracy of the 

quantization algorithm is more obvious. This shows 

that when the network is small, the mutual learning 

potential of the pruned network and the quantization 

network is greater. 

In general, when using gRDA and different quanti- 

zation algorithms for mutual learning, the performance 

(parameter compression ratio) of gRDA is improved by 

2 times, regardless of whether it is a small model or a 

large model. The performance gain of the quantization 

algorithm decreases with the size of the model. The 

experimental results are consistent with our motivation 

as Figure 1 shown. 

Towards results As shown in Table 1, for Towards, 

We adopted 3 network structures, resnet56, resnet20 

and resnet20+. From the experimental results, we can 

see that the performance improvement of pruning is 

limited in the case of the fixed parameter compression 

ratio. Comparing the two different parameter com- 

pression ratio settings with resnet20+, we can see that 

when the pruned network parameter compression ratio 

is larger, the accuracy is improved more, obviously. 

This shows that when the accuracy is not close to the 

complete network, the greater the network pruning, 

the greater the mutual learning potential. 

For the quantitative network, the accuracy has been 

improved. The improvement effect of resnet56 is more 

obvious than that of resnet20. When the network is 

too small, the expressive ability of the quantitative 

network will be limited, thus affecting the effect of 

mutual learning. In resnet20+, when the parameter 

compression ratio is 4, the accuracy improvement of 

the quantization network is higher than that when it
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Table 1: mutual learning on cifar10 
  

  

  

  

  

  

  

  

  

  

mutual learning Net method  Paccuracy  Qaccuracy  PParam(compressed /original) Pr 

(M) 

gRDA & Re Resnetl8 baseline 93.03 92.59 0.145/11.2 77x 

ours 93.1310.10 93.067 0.47 0.069/11.2 162x + 85 

Resnet34 _ baseline 93.50 93.70 0.151/21.3 140x 

ours 93.50 93.70 0.073/21.3 289x? 149x 

gRDA & EW resnet20 _ baseline 89.56 84.27 0.065/0.270 4.1x 

ours 90.2310.67 85.191 0.92 0.028/0.270 9.6xt 5.5x 

gRDA & Any _ resnet20+ _ baseline 93.42 92.26 0.14/6.7 47.9x 

ours 93.42 93.061 0.80 0.08/6.7 83.8xt 35.9x 

Towards & Re resnet56  baseline 92.50 84.44 0.416/0.832 2x 

ours 92.8210.32 86.057 1.61 0.416/0.832 2x 

Towards £ EW  resnet20  baseline 89.25 84.27 0.123/0.246 2x 

ours 89.4440.19 85.117 0.83 0.123/0.246 2x 

Towards & Any resnet20+  baseline 94.75 92.47 3.1/6.2 2x 

ours 94.7710.02 92.6070.13 3.1/6.2 2x 

baseline 93.7770.17 92.4710.58 1.55/6.2 4x 

ours 93.94 93.05 1.55/6.2 4x 

Regu & Re resnet56  baseline 92.50 84.61 0.488/0.488 1x 

ours 92.6710.17 85.2210.61 0.488/0.488 lx 

resnet20 baseline 90.99 81.54 0.154/0.154 1x 

ours 91.34710.35 82.2910.75 0.154/0.154 lx 

Regu & EW resnet56  baseline 92.58 83.84 0.488/0.488 1x 

ours 92.75t0.17 86.9713.07 0.488/0.488 lx 

resnet20 baseline 90.96 82.16 0.154/0.154 1x 

ours 91.2110.25 83.78T1.62 0.154/0.154 lx 

Regu & Any resnet56  baseline 92.61 86.45 0.488/0.488 Ix 

ours 93.0210.41  87.1070.65 0.488/0.488 lx 

resnet20 baseline 91.00 81.41 0.154/0.154 1x 

ours 91.2510.25  81.9010.49 0.154/0.154 lx 
  

is 2. This shows that when the expressive ability of 

the two networks has a large gap, it will also affect the 

effect of mutual learning. 

In general, when Towards is adopted with MLPQ, 

the performance (accuracy) of the pruned network ob- 

tained a limited improvement while keeping the pa- 

rameter compression ratio the same. This shows that 

the fixed parameter ratio limits the effect of mutual 

learning, and the gradual dynamic pruning can better 

utilize the information of the quantized network in the 

training process to make up for the loss of accuracy 

caused by the loss of network structure. For example, 

in Towards & Any, when the parameter compression 

ratio is increased from 2 to 4, the accuracy is reduced 

from 94.77 to 93.94. In gRDA & Any, the param- 

eter compression ratio is almost improved, and the 

accuracy is 93.42 almost unchanged. 

Regu results As shown in Table 1, for Regu, We 

adopted 2 network structures, resnet56, resnet20. Note 

that Regu pruned with fixed parameters and then fine- 

tune. So the p, is always equal to 1. For the pruned 

network, whether in resnet56 or resnet20, the perfor- 

mance (accuracy) has been improved, but it is limited. 

This is similar to Towards’ result. For quantitative 

networks, the accuracy of both network structures is 

improved. And the accuracy of 2bit quantization EW 

is higher than that of 1bit (Re and Any). Compar- 

ing the two Ibit quantization algorithms, on resnet56, 

the result of Any is significantly better than that of 

Re, and on resnet20, the results of the two are similar. 

Note that here Any uses |bit quantization to achieve 

the same accuracy as EW uses 2bit quantization on 

resnet56. This shows that when the network structure 

is not large enough, the improvement provided by our 

MLPQ is limited by the network structure and affected 

by quantization algorithms. 

4.3 Results on Cifar100 

The results of mutual learning on cifar100 are shown 

in Table 2. For cifar100, we did 4 sets of experiments, 

gRDA & Re, Regu & Re, Regu & EW and Regu & Any. 

We divide the experimental results into two groups 

according to the different pruning algorithms. 

gRDA results For gRDA & Re, we adopted 2 net- 

work structures, Resnet18 and Resnet34. From the 

experimental results, it can be seen that the accuracy 

of the pruned network with our MLPQ is still improved
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Table 2: mutual learning on cifar100 
  

  

  

  

  

mutual learning Net method Paccuracy Qaccuracy PParam(compressed /original) Pr 

(M) 

gRDA & Re Resnet18 baseline 74.60 71.67 0.56/11.3 20x 

ours 75.57¢0.97 73.5211.85 0.23/11.3 49xt29x 

Resnet34 _ baseline 75.03 73.38 0.54/21.4 40x 

ours 75,350.32 75.0611.68 0.25/21.4 86x146x 

Regu & Re resnet56  baseline 70.47 50.69 0.494/0.494 Ix 

ours 71.2210.75 52.8912.20 0.494/0.494 1x 

resnet20 baseline 65.95 43.74 0.160/0.160 1x 

ours 66.2110.26  46.2172.47 0.160/0.160 1x 

Regu & EW resnet56  baseline 70.50 57.23 0.494/0.494 Ix 

ours 71.6741.17 60.3573.12 0.494/0.494 1x 

resnet20 baseline 65.84 52.09 0.160/0.160 1x 

ours 66.1510.31  52.9070.82 0.160/0.160 1x 

Regu & Any resnet56  baseline 70.24 56.65 0.494/0.494 Ix 

ours 71.6141.37  57.7871.13 0.494/0.494 1x 

resnet20 baseline 66.23 59.35 0.160/0.160 1x 

ours 66.4470.21 61.1711.82 0.160/0.160 1x 
  

when the parameter compression ratio is increased by 

more than 2 times. The improvement on Resnet18 is 

more obvious than that of Resnet34. And the improve- 

ment of quantization network accuracy is also more 

obvious than that of cifar10. This shows that when 

the complexity of the training data set is increased, 

the network expression ability is not enough to fully 

express the data. At this time, the potential of the two 

networks to learn from each other is even greater. 

Regu results For Regu, we adopted 2 network struc- 

tures, resnet56 and resnet20, with 3 kinds of quantiza- 

tion algorithms. Note that in this group of experiments, 

Re uses 1bit quantization, EW uses 2bit quantization, 

Any uses 2bit quantization on resnet20, and 1bit on 

resnet56. It can be seen from the experimental re- 

sults that the accuracy of the pruned network is im- 

proved more obvious on resnet56 than on resnet20. 

This shows that when the network is too small and 

the training data is complex, the pruned network will 

have limited expression ability due to severe struc- 

tural loss, thereby reducing the potential for mutual 

learning. For the quantitative network, there is no ob- 

vious rule, some have more obvious improvement on 

resnet20, and some have more obvious improvement 

on resnet56. This shows that the mutual learning effect 

of the quantization network is affected by the adopted 

quantization algorithm. 

4.4 Results on Tiny-imagenet 

The results of mutual learning on Tiny-imagenet are 

shown in Table 3. 

For Tiny-imagenet, we did 3 sets of experiments on 

resnet20 and resnet56, Regu & Re, Regu & EW and 

Regu & Any. Note that in this group of experiments, 

-10- 

Re and Any uses Ibit quantization, EW uses 2bit quan- 

tization. It can be seen from the experimental results 

that the improvement on resnet20 is not very obvious 

for the pruned network. This is because the training 

data is too complex, and the network structure is too 

simple, resulting in insufficient expression ability and 

low mutual learning potential. On resnet56, the im- 

provement of Regu & EW is more obvious than that 

of Regu & Any and Regu & Any, because Regu & EW 

learns a quantitative network with higher accuracy and 

stronger expression ability. 

For quantitative networks, the pattern is not very 

obvious. But comparing the results of cifar100, it is 

found that the two have similarities. First, for Regu & 

Re, the accuracy improvement of the quantization net- 

work on resnet56 and resnet20 are both obvious. Sec- 

ond, for Regu & EW, only the accuracy improvement 

of the quantization network on resnet56 is obvious. 

Finally, for Regu & Any, the accuracy improvement 

of the quantization network on resnet56 and resnet20 

are both not obvious. The reasons for this may be the 

following. The reasons for this situation may be as 

follows. First, the algorithm design of Any is more 

reasonable and effective, so there is not much room for 

improvement through mutual learning. It can be seen 

that its [bit quantization on resnet56 for cifarl0 can 

reach 2bit quantization of EW. Second, the algorithm 

design of Re is poor, so the room for improvement 

through mutual learning is larger. Third, the network 

structure resnet20 is too small, and the expressive abil- 

ity is limited, so the improvement is not obvious for 

Regu & EW. 

4.5 Analysis of LC 

Since there are too many experimental results, we 

only select the results of the two groups of algorithms
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Table 3: mutual learning on Tiny-imagenet 
  

  

  

  

  

  

  

            
  

  

  

  

            
  

  

    
            

mutual learning Net method Paccuracy Qaccuracy PParam(compressed/original) pr, 

(M) 

Regu & Re resnet56 _ baseline 57.47 32.98 0.50/0.50 1x 

ours 57.6870.21 39.9716.99 0.50/0.50 1x 

resnet20 baseline 49.36 22.70 0.167/0.167 1x 

ours 49.5610.20  28.0615.36 0.167/0.167 1x 

Regu % EW resnet56  baseline 57.16 50.77 0.50/0.50 1x 

ours 58.1570.99 54.1773.40 0.50/0.50 1x 

resnet20 baseline 49.18 37.06 0.167/0.167 1x 

ours 49.4010.22 37.6410.58 0.167/0.167 1x 

Regu & Any  resnetS6  baseline 57.25 44.52 0.50/0.50 1x 

ours 57.421 0.17  45.0970.57 0.50/0.50 1x 

resnet20 baseline 49.20 35.20 0.167/0.167 1x 

ours 49.4410.24 35.4810.28 0.167/0.167 1x 
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Figure 6: Regu & Any: Trends in accuracy and LC factor during training on resnet56 for cifar100. 

related to Regu on resnet56 on cifar100 and Tiny- 

imagenet for analysis. 

Regu & Any _ As Figure 6 and Figure 7 shown, the 

trends of Convergence factor(F;,,) and Self-feedback 

factor(F;) on pnet are similar to qnet on both datasets. 

Convergence factor(F..,), Contrast factor(F.), and Self- 

feedback factor(F;f) all eventually flatten out. Note 

that the final convergence value of F,, and Fy¢ is differ- 

ent on cifar100 and Tiny-imagenet. On cifar100, the 

final values of F, and Fy are larger, both for pnet and 

qnet. This shows that they are more likely to enter the 

convergence stage of mutual learning(stage 3). There- 

fore, the improvement obtained by the mutual learning 

framework is more obvious. Comparing the accuracy 

curves of pnet on cifar100 and Tiny-imagenet can have 

a very intuitive feeling. F, reflects the gap with the net- 

work to be learned. When it is too large, it will cause 

learning difficulties and affect performance improve- 

ment. This is why for gnet, the accuracy improvement 

on cifar100 is about the same as it on Tiny-imagenet. 

Regu & EW As Figure 8 and Figure 9 shown, the 

trends of Convergence factor(F.,) and Self-feedback 

factor(F,) on pnet are also similar to qnet on both 

datasets. The same as the previous experiment, F. and 

Fy¢ gradually level off as the training progresses, the 

difference is that Fo, still maintains an upward trend. 

This shows that the speed of mutual learning entering 

the convergence is faster, so the accuracy improvement 

is more obvious. Comparing Figure 9 and Figure 7, 

it can be seen that when 3 is larger, the improvement 

obtained by the mutual learning framework is more 

obvious. Comparing Figure 8 and Figure 6, it can be 

found that when F; is large, it will affect the effect 

of mutual learning, but when F;,,, is large enough, this 

effect will be weakened. 

-ll-
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Figure 8: Regu & EW: Trends in accuracy and LC factor during training on resnet56 for cifar100. 

4.6 lessons learned 

In general, it can be seen from the above experiments 

that through our mutual learning framework MLPQ, 

the performance of the pruning algorithm and the quan- 

tization algorithm can be improved. The degree of 

performance improvement is affected by the following 

factors, network structure complexity, training data 

complexity, pruning algorithm strategy and quantifi- 

cation algorithm effectiveness. Specifically, when the 

complexity of the network structure is not enough 

to support the perfect expression of the training data 

complexity, the pruned network and the quantization 

network cannot significantly improve the performance 

through the mutual learning framework. In addition, 

the results of dynamic pruning are better than that of 

-12- 

finetune after one shot. The former can take advantage 

of the mutual learning framework to make up for the 

loss of accuracy caused by the pruning process. Fi- 

nally, when the performance of the two networks is 

close and the mutual learning potential is large (neither 

limited by the network structure and training data com- 

plexity, nor far from the optimal expression, such as 

gRDA & Re on Resnet18 and Resnet34 for cifar100), 

the performance can be effectively improved through 

our mutual learning framework. 

5 Conclusions 

In this paper, we propose a mutual learning framework 

for pruned and quantized networks. We regard the 

pruned network and the quantized network as two sets
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Figure 9: Regu & EW: Trends in accuracy and LC factor during training on resnet56 for Tiny-imagenet. 

of features that are not parallel. Our mutual learning 

framework can better integrate the two sets of features 

and achieve complementary advantages, which we call 

feature augmentation. The core of our mutual learning 

framework is how to judge the training situation of 

the two networks and how to use the better features of 

the two networks to learn from each other according 

to the current training situation. To this end, we de- 

signed the score to determine the learning situation of 

the network and LC coefficient to dynamically adjust 

the learning strategies of the two networks. Extensive 

experiments prove that the performance of pruning and 

quantization algorithms can be improved by our mu- 

tual learning framework. When certain conditions are 

met, the improvement effect is particularly obvious. 
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