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A B S T R A C T

Regulatory mechanisms range from a single level of control in simple metazoans to multi-level hierarchical
control networks in higher animals. Organismal regulation encompasses homeostatic and circadian networks
that are interconnected, with no documented exceptions. The epigenetic clock is a highly accurate biomarker of
age in humans, defined by a mathematical algorithm based on the methylation of a subset of age-related CpG
sites on DNA. Experimental evidence suggests the existence of an underlying regulatory mechanism. By analogy
with other integrative systems as the neuroendocrine-immune network and the circadian clocks, a hierarchical
organization in the control of the ticking rate of the epigenetic clock is hypothesized here. The hierarchical
organization of the neuroendocrine, immune and circadian systems is briefly reviewed. This is followed by a
brief review of the epigenetic clock at cell level. Finally, different lines of indirect evidence, consistent with the
existence of a central pacemaker controlling the ticking rate of the epigenetic clock at organismal level are
discussed. The concluding remarks put the hierarchical model proposed for the control of the clock into an
evolutionary perspective. Within this perspective, the present hypothesis is intended as a conceptual outline
based on designs consistently favored by evolution in higher animals.

1. Introductory Remarks

The multi-tissue age estimator also known as the epigenetic clock is
a highly accurate biomarker of age in mammals, defined by a mathe-
matical algorithm developed by S. Horvath (2013). Other epigenetic
clocks have been devised (Bocklandt et al., 2011, Hannum et al., 2013,
Weidner et al., 2014, Meer et al., 2018, Choi et al., 2019) but since they
are all based on DNA methylation (DNAm) profiles, the control features
to be discussed here for Horvath’s clock will apply to all of them. During
the 7 years elapsed after its publication, the validity of Horvath’s clock
has been demonstrated in humans and primates. So far, most studies on
epigenetic aging have been epidemiologic, testing and uncovering links
between pathologies, conditions, primary traits and other variables
with epigenetic age acceleration. The remainder of studies on epige-
netic aging was focused on looking into the mechanism underlying the
clock (Horvath, 2013, Horvath and Raj, 2018, Horvath et al., 2018).
Although the existence of a central synchronizer of epigenetic age in
mammals is suggested by several lines of evidence to be reviewed here,
such a central pacemaker has not, to our knowledge, been sought. The
present article hypothesizes the existence of an organismal integrator of
the rate of biological aging at peripheral level and proposes the brain as
its most likely location. By analogy with other integrative systems as the

neuroendocrine-immune network and the circadian clocks, a hier-
archical organization in the control of the rate of the epigenetic clock is
hypothesized.

2. Homeostasis In Higher Animals

Biological clocks can be considered part of the regulatory systems of
higher animals. It therefore seems appropriate to present a brief in-
troduction to another component of the regulatory systems namely, the
homeostatic network.
Unicellular organisms and simple metazoans display only one level

of homeostasis: the intracellular. In these systems, the cellular response
to environmental challenges is coordinated at the level of DNA. Each
cell functions with a great degree of autonomy in an unregulated en-
vironment. In contrast, higher organisms possess a hierarchical orga-
nization consisting of three levels of homeostasis: (a) intracellular
homeostasis, which again is under the genomic control of each cell; (b)
cell-to-cell communication, which constitutes a homeostatic me-
chanism at tissue level and represents an intermediate stage between
intracellular and systemic homeostasis, and (c) homeostasis of the ex-
tracellular milieu, controlled by groups of specialized cells. In mam-
mals, most of these specialized cells belong to the neuroendocrine and
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immune systems. As a whole, the neuroendocrine system controls the
physical and chemical characteristics of the internal milieu (Toni,
2004). On its part the immune system, perceives, through antigenic
recognition, an internal image of the macromolecular and cellular
constituents of the body and reacts to particular distortions of the
image. It can therefore be said that the immune system maintains the
"biological" homeostasis of the organism. Experimental data clearly
point to the existence of a complex immune-neuroendocrine network
involving different cell types and structures which are capable of
emitting and receiving signals bidirectionally (Besedovsky and Sorkin,
1977, Roszman and Brooks, 1988, Jankovic, 1989, Blom and Ottaviani,
2017). Under this perspective, the immune system appears not as a
separate entity but as an integral part of an organismal homeostatic
network. Epigenetics is deeply involved in the responsiveness of the
neuroendocrine network to perturbations of the internal milieu (Zhang
and Ho, 2011).

3. Neuroendocrine Control of Circadian Clocks

Circadian clocks constitute relevant evidence for a central role of
the neuroendocrine system in the synchronization of physiology and
behavior (Astiz et al., 2019). Thus, it is well-established that 24 -h
rhythms are organized by a body-wide network of endogenous circa-
dian clocks. Mammals possess a central pacemaker located in the hy-
pothalamic suprachiasmatic nucleus (SCN) which integrates environ-
mental light information to synchronize the neuroendocrine system and
in turn all cells and tissues, to the external light-dark cycle (Mohawk
et al., 2012, Berger, 2004, Yoo et al., 2004, Brown et al., 2008, Shaar
and Sassone-Corsi, 2013). The pineal gland, which releases high levels
of melatonin at night, also plays an integrative role in synchronizing
various oscillators, especially in endocrine organs (Berger, 2004, Yoo
et al., 2004, Brown et al., 2008, Shaar and Sassone-Corsi, 2013).
At the cellular level, the core circadian clock consists of an auto-

regulatory transcriptional-translational feedback loop involving the
activators Clock and Bmal1 and their target genes Per1, Per2, Per3, Cry1,
and Cry2, whose gene products form a negative-feedback repressor
complex (Mohawk et al., 2012, Berger, 2004, Yoo et al., 2004, Brown
et al., 2008, Shaar and Sassone-Corsi, 2013).
When mouse cells are cultured, they initially retain circadian os-

cillations but the amplitude of these oscillations decreases rapidly.
Furthermore, ex vivo, cells show independent tissue-specific circadian
period and phases (Yoo et al., 2004). The same is true for human fi-
broblasts in culture (Brown et al., 2008), showing the relevance of
neuroendocrine cues for a sustained organismal synchrony.
At epigenetic level, control of clock gene expression is mediated, at

least in part, by DNA methylation and histone modifications (Shaar and
Sassone-Corsi, 2013).

4. The Epigenetic Clock

4.1. DNA methylation as an accurate biological marker of age

It would appear that cells have a built-in pacemaker of biological
age which seems to be driven by the epigenome. There is ample evi-
dence that a major component of that epigenetic pacemaker is DNA
methylation. The first clear indication that DNA methylation is a major
component of this pacemaker came with a 2013 report by S. Horvath
demonstrating that the measurement of 353 particular methylation
sites, known as cytosine-guanine dinucleotides (CpG), allows in hu-
mans, a highly accurate estimate of chronological age that applies to
virtually all human tissues and cell types (Horvath, 2013). The mea-
surement is performed by feeding a mathematical algorithm with the %
methylation (beta value) of each of the 353 age-dependent methylation
CpGs. The algorithm is known as the pan tissue epigenetic clock, also
called the Horvath clock. The correlation between the epigenetic age
estimate and chronological age exceeds 0.95 in data sets comprised of

children and old people which shows that the epigenetic clock is ar-
guably the most accurate molecular biomarker of age (Horvath, 2013,
Horvath and Raj, 2018, Raj, 2018).
Since in most, if not all, animal species biological age changes with

the passage of time so does epigenetic age (Horvath, 2013). The change
in epigenetic age per unit of time is defined as the ticking of the epi-
genetic clock and it is presently unclear what constitutes its ticking in
each tissue. It has been proposed that the ticking rate may be re-
presented by the methylation changes that accompany the differentia-
tion of tissue stem cells or that the ticking rate reflects the actions of an
epigenomic maintenance system (Horvath and Raj, 2018, Raj and
Horvath, 2020).

4.2. Control of the epigenetic clock at organismal level

Although there is evidence suggesting that the cellular epigenetic
clock possesses an intrinsic ticking rate (Hoshino et al., 2019, Weidner
et al., 2015, Søraas et al., 2019), multiple observations at organismal
level in humans and other mammals lead to the inference that in vivo,
the ticking rate of the clock in tissues is synchronized by a master pa-
cemaker.
Considering again the genesis of the epigenetic clock, it is of interest

to mention that in 2013 Horvath´s algorithm was successfully tested
using approximately 8,000 DNA methylation data sets from over 30
different tissue types (Horvath, 2013). For a given chronological age, it
was found that in DNA samples taken from whole blood, peripheral
blood mononuclear cells, buccal epithelium, colon, adipose, liver, lung,
saliva, and uterine cervix, Horvath’s algorithm read essentially the
same epigenetic age, the only exceptions being some brain regions and
very few other organs (Horvath, 2013, Horvath et al., 2018). The same
is true for mice (Meer et al., 2018; Thompson et al., 2019). Additional
evidence comes from two other studies, one showing that DNAm over
specific Polycomb Repressor Complex-2 (PRC2) promoter loci corre-
lates with age across many different tissue-types (Teschendorff et al.,
2010), and from another report in which a comprehensive statistical
analysis, including matched multi cell-type and multi-tissue DNA me-
thylation profiles from the same individuals, adjusting for cell-type
heterogeneity, showed that a substantial proportion (possibly over
70%) of epigenetic drift is shared among significant numbers of dif-
ferent tissue/cell types (Zhu et al., 2018). The observed synchronicity
that exists in the organs of mammals despite the very different pro-
liferation dynamics among certain tissues, points to the influence of a
master synchronizer.
In his 2013 paper, Horvath demonstrated that in humans, changes

to the methylation rate of the 353 CpGs can be fitted to two different
phases that are separated by a nonlinear transition rate. The first linear
phase takes place from birth to about 1 year of age, where the slope of
the fitted line is exceedingly steep. Then, a nonlinear phase occurs from
about 1 year to about 20 years of age, where the rate of change in
epigenetic age decreases. A third and final linear phase starts from 20
years of age onward, but in this case the slope of the line is much lower
than that of the initial linear phase (Horvath, 2013, Raj, 2018). Since it
seems highly unlikely that body cells in culture would follow such a
three-phase long-term dynamics in the ticking rate of the epigenetic
clock, we are again led to the hypothesis that a central synchronizer is
controlling the developmental changes in the rate of epigenetic aging at
organismal level. Therefore, it seems likely that as in the case of
homeostasis and circadian clocks, epigenetic age may also be hier-
archically controlled.
By analogy with homeostasis and circadian clocks, it seems rea-

sonable to expect that organismal epigenetic aging be synchronized by
specialized groups of command cells located in the brain, more speci-
fically in the hypothalamus and higher brain centers modulating hy-
pothalamic function (Fig. 1).
In closing this section it is important to mention a recent pre-

liminary report in rats that may shed considerable light on the existence
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of a central pacemaker controlling epigenetic age. The study reports,
first, the setting up of an epigenetic clock for rats including the design
of a pan tissue epigenetic clock for this species. Using this new tool, the
rate of epigenetic aging of peripheral tissues including liver, ovary,
skin, adipose tissue and blood are shown to be similar like in humans
and mice (Horvath, 2013, Meer et al., 2018; Thompson et al., 2018).
The rate of epigenetic aging of a number of brain regions, including the
neocortex, cerebellum, hippocampus, substantia nigra, hypothalamus
and anterior pituitary were also assessed. The second part of this study
is perhaps the most significant. It reports that repeated intravenous
administration of a plasma fraction (termed Elixir) from young rats to
old counterparts during 5 months, sets back the epigenetic age of liver,
blood and heart tissue of the treated old rats (25 months old) to nearly
that of adult rats (7 months old). The effect of Elixir on the DNAm clock
was paralleled by significant functional improvements in a number of
hematological, biochemical and functional parameters. The only ex-
ception was the hypothalamus where Elixir showed a modest although
still significant, rejuvenation effect on DNAm age (Horvath et al.,
2020).
The implications of this report, if confirmed, will be highly re-

vealing. It suggests that blood-borne factors from young rats possess
strong rejuvenation effects on the epigenetic clock of both blood and
non-blood tissues from old rats. This is consistent with the idea that a
central pacemaker could control the ticking rate of the epigenetic clock

of peripheral tissues via blood-borne factors, a mechanism used by
other regulatory centers of higher animals. Furthermore, the limited
responsiveness of the DNAm clock of the hypothalamus to the reg-
ulatory factors present in Elixir is consistent with the idea that the slow
rate of epigenetic aging observed in the hypothalamus of rats may be
due to a relative insensitivity of this brain region to endogenous blood-
borne regulatory factors secreted by the central pacemaker of the ani-
mals.

5. Concluding Remarks

Evolution of biological systems is associated with an increasing
complexity at every level. Regulatory mechanisms range from a single
level of control, in very simple systems, to multi-level hierarchical
control networks in higher animals. In the latter, organismal regulation
encompasses homeostatic and pacemaker networks that are inter-
connected (Fig. 1). The epigenetic clock concept emerged from a
mathematical algorithm as a biomarker of age but experiments soon
suggested the presence of an underlying regulatory mechanism asso-
ciated to methylation of a subset of age-related CpG sites on DNA. The
search for the mechanism that drives the clock is attracting an in-
creasing number of scientists from multiple areas of biomedical re-
search who in general, focus their work on cells and tissues. The
eventual identification of a hierarchical control mechanism at

Fig. 1. Proposed organismal regulatory network in mammals. The diagram includes the autonomic nervous system (ANS, acting via neurotransmitters), the neu-
roendocrine system (NES, acting via blood-borne hormones), the immune system (acting via blood-borne cytokines and thymic hormones), the circadian clocks
(acting via blood-borne hormones and neurotransmitters) and a putative pathway connecting the neuroendocrine network to the DNAm clock in organs and cells. All
networks act on peripheral organs. Inset- Bidirectional interactions among all networks including (in red) the hypothetical DNAm network.
References: SCN, suprachiasmatic nucleus; DNAm, DNA methylation.
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organismal level would strengthen the evidence for a common evolu-
tionary pattern for the design of regulatory systems that emerged as
simpler versions in primitive animals, becoming highly sophisticated in
more evolutionarily recent animal species, particularly mammals.
The well-established regulatory systems reviewed above are ex-

pected to provide a frame of reference to guide the quest for an ana-
logous regulatory pattern for the epigenetic clock. Within this frame of
reference, the hypothesis proposed here is intended as a conceptual
outline based on designs consistently favored by evolution in higher
animals.
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