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1. INTRODUCTION 

1.1 Cancer and cancer defences in wild animals 
It was estimated by the world health organisation that worldwide, nearly 1 in 6 deaths 
in humans were caused by cancer in 2020 (WHO, 2022). Cancer is a malignant 
growth of cells that is capable of invading other tissues (WHO, 2022). Cancer 
came into existence with the evolution from unicellular to multicellular animals 
and it is widely understood that cancer can affect any multicellular animal from 
invertebrates to mammals (Aktipis et al., 2015). The evolution from unicellular 
organisms to multicellular organisms involved developing processes to ensure 
cell cooperation which reduced the risk of cells mutating and developing into 
cancer (Trigos et al., 2018). Processes such as metabolism and proliferation are 
generally considered unicellular processes, as single celled organisms did not need 
to evolve processes that would encourage cell cooperation (Trigos et al., 2018). 
However, with the evolution of multicellularity came the need to control for po-
tential ‘anti-social’ mutations and, as a result, cancer. This led to the promotion 
of genes involved in tissue maintenance, differentiation, and communication with 
the environment (Trigos et al., 2018). Connections between these unicellular and 
multicellular genes regulate homeostasis in normal tissue, however, when dis-
rupted they can contribute to malignant growth (Trigos et al, 2018). Cancer can 
occur through mutations that are either inherited through the germline or occur 
somatically, and it is estimated that approximately 90% of cancers occur from 
somatic mutations (Sondka et al., 2018). Somatic mutations can accumulate across 
an organism’s lifetime. There are numerus causes for mutations that can alter 
DNA and they can occur from either endogenous or exogenous damage (Caulin & 
Maley, 2011). Some examples of processes that can lead to endogenous damage 
are oxidation, hydrolysis and alkylation whereas exogenous sources occur for 
example from radiation or different chemicals (Hakem, 2008). To reduce the risk 
of cancer from cell mutations, all species have evolved defences that protect against 
cancer, for example, through the evolution of genes that either promote or control 
mutations. 

Proto-oncogenes and tumour suppressor genes (TSGs) are amongst the oldest 
gene classes found in multicellular organisms. These genes limit cell mutation 
rates, that could lead to neoplastic growth (Makashov et al., 2019). Oncogenes 
(OGs) are mostly derived from proto-oncogenes. This group of genes are highly 
conserved because of their important roles in encoding proteins to inhibit cell 
differentiation, halt cell death and stimulate cell division (Chial, 2008), which 
ensure growth of an organism through the maintenance of tissues and organs 
(Lodish, 2000). As a result of their important role in tissue maintenance, proto-
oncogenes have been highly conserved (Lodish, 2000). However, when proto-
oncogenes are converted into oncogenes through gain-of function mutations, they 
start to encode proteins that induce cancer (Croce, 2009). To counteract the in-
creased risk of cancer from oncogenes, species have evolved genetic controls for 
potential carcinogenic mutations, called tumour suppressor genes (Kumari et al., 
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2014). These are divided into two main categories; caretakers and gatekeepers 
based on their main functions. Caretaker genes are involved in the protection of 
genome stability by maintaining the integrity of genetic information within each 
cell through, for example, DNA repair. Gatekeepers, however, directly regulate 
tumour growth by encoding for proteins that either stimulate or inhibit prolife-
ration, differentiation, or apoptosis (Weitzman, 2001).  

Multicellular animals have evolved cancer defences such as TSGs, however, 
not all species have the same rate of cancer. According to Peto’s paradox, body size 
and lifespan are not related to cancer rate between species (Peto, 1975; Caulin & 
Maley, 2011; Tollis et al., 2017). As a result, an animal that is 1000 times larger 
than another would be expected to develop much higher rates of cancer (due to 
an increased number of cells) than actually occurs (Caulin & Maley, 2011) and 
equally, small animals such as rodents would likely not develop cancer (Litchen-
stein, 2005). Cancer mortality ranges from 0% to 57.14% across mammals 
(Vincze et al., 2022) with body size or lifespan appearing to have little influence 
on this variation. For example, cancer is responsible for approximately 17% of 
human deaths (WHO, 2022), 18.7% of deaths in equids (Miller et al., 2016), and 
4.81% in elephants (Abegglen et al., 2015). However, on the intraspecific level, 
cancer rate is related to body size which suggests different cancer defences occur 
between species compared to between individuals within a species. In humans, 
for example, a leg length of 3–4 mm above average increases non-smoking can-
cer risk by as much as 80% (Albanes, 1998). 

One important mechanism for creating genetic novelty is gene duplication 
(Magadum et al., 2013; Ohno, 1970), and the duplication of TSGs is one way of 
reducing a species cancer risk (Vazquez & Lynch, 2021). Species that are at hig-
her risk of cancer due to bigger size and longer lifespans are likely to have evolved 
increased copies of genes that, in turn, reduce their cancer risk. For example, 
elephants (Proboscidean lineage) have evolved 20 copies of the TSG TP53, 
whereas humans have only one copy (Sulak et al., 2016, Abegglen et al., 2015). 
Additionally, in blind mole rats (Spalax sp.), the duplication of genes related to 
the interferon pathway, leads to interferon-mediated concerted cell death, a stra-
tegy that has been proposed to counteract the weakened pro-apoptotic function of 
the p53 protein in this species (Gorbunova et al., 2012). 

The use of comparative analyses to determine differences in the number of 
copies of TSGs, between species, has the potential to increase our understanding 
of how different species have evolved mechanisms to reduce their cancer risk. 
However, most comparative analyses have so far, been limited to mammals (e.g. 
Abegglen et al., 2015; Seluanov et al., 2018; Tejada-Martinez et al., 2021; Tollis 
et al., 2020; Vazquez & Lynch, 2021; Yu et al., 2021). Widening the scope for 
comparative analysis to other vertebrate groups and beyond could provide novel 
understandings into the evolution of cancer defences across the tree of life (Nair 
et al., 2022; Sepp & Giraudeau, 2022). Fishes for example, and more specifically 
bony fishes, are evolutionarily older and genetically more diverse than mammals 
(Buchmann, 2014). They are a paraphyletic group, whose last common ancestor 
is also an ancestor of the tetrapod’s and, consequently, all mammals. Furthermore, 



 

9 

fishes may provide insight into novel and potentially phylogenetically older tumour 
suppression mechanisms that are not present in mammals. There is evidence that 
fish lineages have evolved increased rates of duplicated genes compared to 
mammals (Robinson-Rechavi & Laudet, 2001), suggesting a possibility that 
tumour suppression and gene duplications could be related to life-history more 
closely in fish compared to mammals. For example, all teleost fish have gone 
through three rounds of whole genome duplication (WGD), and a fourth round of 
duplication has taken place in salmonids (the salmonid-specific auto-tetra-
ploidization event), which occurred in the common ancestor of salmonids ~100 
Mya (Lien et al., 2016). Genetic cancer defences have evolved to reduce cancer 
risk from natural sources. However, anthropogenic change has the potential to 
disrupt the effectiveness of these defences, potentially leading to increased rates 
of cancer in our rapidly changing environments. 

 
 

1.2 Aquatic environment and cancer 

Whilst we know that anthropogenic environmental change can affect cancer 
occurrence in humans (Boffetta, 2006) and wild animals (Giraudeau et al., 2018), 
environmental factors are often difficult to study in the laboratory (“The global 
challenge of cancer” 2020). For example, many pollutants have been linked to 
cancer, but the interactions between various cocktails of contaminants can in-
crease cancer risk at much lower concentrations than seen in studies of individual 
pollutants (Lagunas‐Rangel et al., 2022). Due to the interconnectedness of aquatic 
ecosystems through highly effective marine, and atmospheric transport routes, 
and the persistence of many pollutants in the sediments, aquatic species face in-
creasing oncogenic pressures from anthropogenic contamination. Although there 
are some pollutants, produced by humans that also have natural sources, such as 
polycyclic aromatic hydrocarbons (PAHs), many pollutants, that have oncogenic 
potential are not naturally found in our aquatic systems and increase pressure on 
species inhabiting contaminated environments. It is estimated by the European 
Union (EU) that approximately 100,0000 new substances will become emerging 
pollutants in aquatic systems in the near future (Brack et al., 2018) and as such, 
organisms living in these environments will face an ever-increasing pressure from 
anthropogenic contamination. There is increasing evidence that anthropogenic 
contamination can cause cancer in aquatic species (e.g. Martineau et al., 2002; 
Randhawa et al., 2015; Brown et al., 1973; Black & Baumann, 1991). The majority 
of the pollutants that have been linked to cancer in aquatic animals are heavy 
metals, PAHs and pesticides but it is likely that there are other pollutants that could 
potentially increase cancer rates in aquatic systems that have yet to be studied.  

Anthropogenic pollution has put increasing pressure on aquatic systems for 
around 200 years, since the start of the industrial revolution (Quadra et al., 2019). 
This length of time therefore could provide the possibility for rapid adaptation, 
or acclimation to these new pressures in the environment and there is evidence to 
suggest that this can occur in some species. For example, brown bullheads 
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(Ameiurus nebulosus) are adapted to life in habitats with high levels of industrial 
pollution and get less cancer than fish living in cleaner environments (Baumann 
& Harshbarger, 1998) and Atlantic killifish (Fundulus heteroclitus) show evidence 
of adaptation to the exposure to PAHs through various pathways and mechanisms 
(reviewed in Di Giulio, 2015).  

The North and Baltic Seas are considered some of the most polluted marine 
areas in the world (HELCOM 2018; Lehtonen et al., 2006), because of the release 
of high levels of known oncogenic contaminants (Mathew et al., 2017; HEL-
COM, 2018) since the beginning of the industrial revolution (HELCOM, 2018). 
As a result, it is possible to use these polluted environments as ‘natural laboratories’ 
to better understand the interactions between the evolution of cancer defences and 
pollution. Both European flounder (Platichthys flesus L.) and dab (Limanda 
limanda L.), which have been regularly used in biomonitoring studies in the North 
Sea and the Baltic Sea, inhabit a gradient of relatively clean to severely polluted 
habitats in the Baltic and North Seas. These species diverged from each other 
approximately 10.9 million years ago (mean age derived from the following stu-
dies [Betancur-R.et al., 2015; Bryne et al., 2018; Rabosky et al., 2018; Ribeiro 
et al., 2018; Sanciangco et al., 2016], range is 7.3 to 15.2 million years ago). With 
a generation time of only 2–3 years, these species have been subjected to anthro-
pogenic contamination for a minimum of 50 generations. Both benthic species 
are considered marine sentinel species due to their close contact with marine 
sediments, where they are exposed to higher levels of accumulated contaminants.  

European flounders and dabs both show susceptibility to cancerous skin and 
liver lesions (Vethaak et al., 2009) and evidence suggests that dabs have almost 
10 times higher prevalence of liver neoplasms than European flounders (Cachot 
et al., 2013; Lang et al., 2006; Stentiford et al., 2003; Vethaak et al., 1996; Lyons 
et al., 2006; Stentiford et al., 2009; CEFAS report, 2004). Furthermore, flounders 
living in highly polluted sites do not seem to have higher cancer prevalence com-
pared to their conspecifics in cleaner sites (Vethaak & Jol, 1996; De Boer et al., 
2001). Whereas in dabs, cancer prevalence does vary relative to local pollution 
levels (Lerebours et al., 2014). This suggests that there are differences in cancer 
defences both when comparing flounders and dabs but also within the species, 
dependant on whether a population is living in a heavily polluted area or not. 
Exploring these potential differences in cancer defences in wild organisms could 
help to predict cancer dynamic in our changing environments, and whether a 
species has adapted to cope with pollution-induced cancer.  

The number of copies of tumour suppressor genes are an important part of 
natural cancer defences however, neither flounders nor dabs have had their geno-
mes sequenced to date. Therefore, exploring other variables such as the expres-
sion of genes in cancerous and normal cells is a possible avenue for understanding 
how species reduce cancer risk (e.g. Zhang et al., 1997). Knowledge about how 
cancer defence mechanisms vary between species is limited and is mostly based 
on the study of model organisms with low genetic diversity in laboratory environ-
ments (Ducasse et al., 2015). Variation in gene expression has large functional 
consequences and is considered a key component of environmental adaptation in 
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natural populations (Oleksiak et al., 2002; Babu & Aravind, 2006). In flounders, 
for example, intraspecific variation has been shown between populations in the 
expression of genes related to osmoregulation, heme biosynthesis, and stress 
resistance (Larsen et al., 2008). For cancer-related studies in flounders, previous 
research has mostly focused on the mutations that cause cancer, as opposed to the 
genetic defences preventing it from developing (Williams et al., 2011). Exploring 
the differences in gene expression between individuals with and without cancer 
could offer a better understanding of how individuals prevent neoplastic develop-
ment.  

Additionally, focusing on specific physiological pathways is another way to 
unravel the mechanisms behind cancer defences in natural populations. One of 
these mechanisms that has been extensively linked to both cancer and anthropo-
genic contamination in humans is oxidative DNA damage (Valavanidis et al., 
2009; Singh et al., 2007; Hengstler et al., 2003). However, relatively little is known 
about how changes in oxidative stress impact the risk of cancer in wild organisms, 
particularly in pollution-exposed populations. The majority of studies have so far 
focused on the changes in antioxidant levels following exposure to a specific con-
taminant (e.g. in goldish [Carassius auratus, Liu et al., 2015], medaka [Oryzias 
latipes Tu et al., 2016], and reviewed in Isaksson, 2010). However, due to time-
lagged and hormetic upregulation of protective mechanisms, there are limitations 
in relying on antioxidants as an accurate indication of oxidative stress (Meitern 
et al., 2013). The biomarker, 8-hydroxy-2′ -deoxyguanosine (8-OHdG), quanti-
fies oxidative lesions, formed in nuclear or mitochondrial DNA, induced by free-
radicals. The levels of 8-OHdG have been used as a biomarker for measuring 
pollution-induced oxidative damage for both organic pollutants (Singh et al., 
2007) and heavy metals (Hengstler et al., 2003)  

 
 

1.3 Aims and Hypotheses  
1.  To undertake a literature review to determine whether there is evidence that 

anthropogenic pollution can increase cancer rates in aquatic animals in wild 
environments (review paper I).  

2.  To analyse and compare the number of copies of cancer-related genes across 
fish genomes to test whether there is a relationship between the number of copies 
of cancer related genes and the lifespan of fishes (comparative analysis II). 

3.  To test whether there are differences between tumour rates in wild populations 
of flounders and dabs and determine if these differences could, at least in part, 
be explained by the differences in gene expression and levels of oxidative 
damage seen between the two species (field studies III, IV). 

4.  To use a field study of wild populations of flounders and dabs caught in the 
North and Baltic Sea to test whether there is a difference between cancer rates, 
oxidative DNA damage and gene expression in populations living in more 
heavily polluted environments compared to reference sites of both species 
(field studies III, IV). 
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2. METHODS 

2.1 Literature review (I)  
In order to collate the literature on both cancer in aquatic animals and research 
linking cancer with pollution in aquatic environments (paper I), various google 
scholar searches were undertaken. Searches included a variety of terms including: 
‘cancer’, ‘histopathology’, ‘neoplasia’, ‘histology’, ‘aquatic animals’, ‘marine’, 
freshwater’, ‘pollution’, ‘contamination’, ‘PAH’, ‘pesticides’, ‘heavy metals’. Data 
was collected to determine the species affected, whether the study was done in the 
wild/laboratory, the cancer prevalence (if available), the organ affected, the type 
of cancer, the habitat of the species and whether pollution was linked to increased 
cancer prevalence. Additionally, other information such as the type of cancer 
(including transmissible and viral-induced cancers), the species migratory status 
and mechanisms (e.g. metabolic pathways and oxidative damage) that could in-
fluence cancer progression in aquatic systems were also reviewed.  
 
 

2.2 Comparative analysis (II) 

For the comparative analysis of cancer-related gene copy numbers in fish (paper II), 
the list of cancer-related genes used in our study was extracted from the COSMIC 
database. This database lists human cancer-related genes, which are categorised 
as either oncogenes (OGs) or tumour suppressor genes (TSGs). The Ensemble 
Biomart orthology database and Ensemble CAFE were used to calculate gene copy 
numbers across species. The Ensemble CAFE species trees were downloaded for 
all COSMIC genes to provide an estimation of gene gain and loss for each species 
while accounting for lineage (De Bie et al., 2006; Herrero et al., 2016). Next, the 
unique confident orthologs in each fish species were counted and represented in 
the Ensembl database, using BioMart, for each gene.  

Trait data, specifically maximum length and lifespan data was mostly col-
lected from FishBase (Froese & Pauly, 2021) and AnAge databases (Tacutu et al., 
2017) but if unavailable then it was collected from other reliable sources (e.g. 
articles or websites). Species with no maximum lifespan data were excluded from 
the dataset.  

Normalisation of the copy number counts (by dividing the sum of all gene 
copies, for all genes, with the total number of orthologous genes found for that 
species (Tollis et al., 2020)) accounted for any potentially missing orthologs from 
incomplete genome sequencing or assembly. The normalized copy number counts 
were standardized (i.e., converted to z-scores) prior to all analyses. Genes classi-
fied as both TSGs and OGs in the COSMIC database were excluded from the 
calculation of copy numbers. Additionally, the TSG/OG ratio was calculated by 
dividing the normalized TSG count with the normalized OG count.  

The longevity quotient (LQ) was calculated according to Tollis et al. (2020), 
to give an indication of how lifespan compares to other species of a similar size 
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(LQ = observed longevity/expected longevity). For each species, expected 
longevity was calculated by fitting a linear regression to log10(maximum 
longevity) and log10(body mass). 

Phylogenetic trees for each species, with branch lengths, were obtained from 
timetree.org (Kumar et al., 2017). Maximum body length and lifespan were log 
transformed prior to analysis. All statistical analysis was performed in R (version 
4.0.5, R Core Team, 2021) using the caper package (Orme et al., 2013) for phylo-
genetically informed regressions. Branch lengths were optimised using maximum 
likelihood which are provided as λ, κ and δ values which correspond to Pagel’s 
branch-length modifications (Pagel, 1997; 1999). Branch optimisation was under-
taken to confirm that the results were not heavily dependent on default λ, κ and δ 
values. For more details on λ, κ and δ, see the caper package manual (Orme et al., 
2013). Other used packages included base, utils, stats, (R Core Team, 2021) 
ggplot2 (Wickham et al., 2016), ggtree (Yu, 2020), tidytree (Yu, 2021), biomaRt 
(Durinck et al., 2009), ape (Paradis & Schliep, 2019), AnnotationDbi (Pagès 
et al., 2019), dagitty (Textor et al., 2016) and numerous dependencies within those. 

 
 

2.3 Study System and Fieldwork (III, IV) 

 
Figure 1. Map of the 10 sampling locations in the North Sea and the Baltic Sea. The 
coloured circles represent whether a site was categorised as reference (green) or polluted 
(red) based on the local anthropogenic pressures (see Table 1 for more details). Fish 
symbols represent which species were caught and therefore sampled at each location. 
Transparent fish represent locations with flounders and black fish represent locations 
with dabs. Photo shows research vessel Walter Herwig III (modified from paper III).  
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Two species, dab and flounder, were chosen to study local adaptations to onco-
genic contamination. Both species are benthic flatfish that are widely used in eco-
toxicological studies and monitoring studies (e.g. Hylland et al., 2017; Vethaak 
et al., 2009; CEFAS report, 2004; Cachot et al., 2013). The liver was focused on 
for both cancer and contaminant measurements as the liver is heavily involved in 
contaminant removal (Feist et al., 2004) and liver cancer is common in both spe-
cies (Vethaak et al., 2009), although, it appears to be less prevalent amongst 
flounders (Cachot et al., 2013; Lang et al., 2006; Stentiford et al., 2003; Lyons 
et al., 2006; Stentiford et al., 2009; CEFAS report, 2004).  

The fieldwork was conducted in collaboration with the Thünen Institute, 
Germany. A research cruise was undertaken in the North Sea and Baltic Sea in 
August 2019 onboard fishing vessel Walter Herwig III. Fish were caught using a 
trawl at 10 sites (Figure 1). 1-hour trawls were undertaken, and fish were im-
mediately sorted and placed into fresh sea water at ambient temperature and 
sampled within 1 hour. A maximum of 10 dab and 10 flounder were sampled at 
each site, where present, and a total of 128 fish were sampled consisting of 88 dab 
and 40 flounder. They were weighed (g) and length measured (mm) and then 
euthanized by a percussive blow to the head followed by the destruction of the brain 
using a surgical knife (following FELASA guidelines (EU directive 2010/63)). 
Otoliths were collected to determine the age of the fish. Livers were assessed for 
external lesions and a 3 mm slice was cut for histopathology analysis and stored in 
4% formalin for 24 hours then transferred to 70% ethanol for storage until analy-
sis (Feist et al., 2004). If external lesions were present, then healthy and tumorous 
tissue was included in the sample. Additional liver samples were collected for 
trace metal, transcriptome and oxidative DNA damage analysis. Bile samples 
were collected for PAH analysis. All samples were flash frozen in liquid nitrogen 
immediately and then stored at –80 °C until analysis.  

All study areas were categorised based on local anthropogenic pressure and 
divided into more polluted/affected (marked as ‘polluted’) and less affected areas 
(marked as ‘reference’). Site categories were based on long-term flatfish health 
monitoring data by the Thünen Institut (unpublished data), habitat disturbance 
levels, and environmental pollutant data from OSPAR (OSPAR Data and Infor-
mation Management System, https://odims.ospar.org/, see Table 1). Pollutant mea-
surements (PAH’s and trace metals) were not included to validate the definition 
of reference and polluted sites, as many other pollutants could be present.  
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A new species of flounder was recently described in the Baltic Sea (Momigliano 
et al., 2018) and we ran genetic analyses, to confirm that all flounders caught during 
this study were Platichthys flesus and not the newly described Platichthys solem-
dali. Therefore, the Purelink Genomic DNA Mini Kit (Invitrogen) was used for 
DNA extraction from liver samples. Distinguishing flounder species was per-
formed by analysing species-specific single nucleotide polymorphisms (SNPs) 
according to Momigliano et al. (2018), except that five SNP loci were analysed 
instead of the original six (886, 1882, 3556, 3599, 4474), as recommended in 
Momigliano et al. (2019). Analyses were performed at the University of Tartu, 
department of Zoology by Urmas Saarma and Egle Tammeleht.  
 
 

2.4 Sample analysis (III, IV) 

Histopathology analysis was undertaken according to Feist et al. (2004). Samples 
were dehydrated before being embedded in paraffin wax. Samples were sliced 
using a microtome to a width of 4–5 µm, floated in a water bath and embedded 
onto clean glass slides and dried. Samples were then stained with haematoxylin 
and eosin (H&E), dehydrated, cleared and mounted for analysis. Slides were 
analysed using a Nikon Eclipse 80i microscope to determine the prevalence of 
neoplastic changes. These neoplastic changes were diagnosed using the criteria 
set out by Feist et al. (2004). Both neoplastic lesions (adenomas and carcinomas) 
and pre-neoplastic lesions (foci of cellular alteration, FCA) were diagnosed. 

Pollutants were measured from bile and liver tissue samples. Firstly, poly-
cyclic aromatic hydrocarbons were measured in bile samples. Samples were diluted 
with 48% ethanol to a ratio of 1:1600 (Aas et al., 2000) and pipetted into a 96-well 
plate. Samples were analysed using a fluorescence spectrophotometer (BMG 
Omega Fluostar). Excitation and emission fixed wavelengths were measured, 
respectively for the detection of PAH metabolites: 290/380 nm representing 
naphthalene (2-ring PAH); 256/380 nm representing phenanthrene (3-ring PAH); 
341/383 nm representing pyrene (4-ring PAH); and 380/430 nm representing 
benzo(a)pyrene (5-ring PAH) (Lee & Anderson, 2005). Results were normalised 
against samples only containing 48% ethanol and presented as fluorescence units 
(FU), which were proportional to the concentration of PAH metabolites (Beyer 
et al., 2010). 

Heavy metal concentrations were measured in liver tissue. Samples that had 
been frozen and stored at –80. Liver samples were freeze-dried for 48 hours and 
ground to powder for homogenization. Total Hg concentrations were measured, 
in duplicate (ensuring relative standard deviation for aliquots was <10%), in sub-
samples of ~1 mg of homogenized liver using an advanced Hg analyser spectro-
photometer (Altec AMA 254, Bustamante et al., 2006). Remaining samples were 
analysed for trace elements arsenic (As), cadmium (Cd), and lead (Pb). Briefly, 
samples were digested with a mixture of 3 mL HNO3 and 5 mL HCl Suprapur 
quality, heated in a microwave oven and diluted to 50 ml with deionized water. 
Trace element concentrations were analysed by Inductively Coupled Plasma 
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Atomic Emission Spectrometry (Varian Vista-Pro ICP-AES) and Mass Spectro-
metry (ICP-MS II Series Thermo Fisher Scientific). All metallic trace element 
analyses were performed at the laboratory Littoral, Environnement et Société 
(LIENSs, La Rochelle).  

Oxidative damage to DNA was analysed from liver samples. The Purelink 
Genomic DNA Mini Kit (Invitrogen) was used for DNA extraction from liver 
samples stored at –80 °C. Extracted DNA was quantified using a Qubit 4 fluoro-
meter. Standards were read on the dsDNA HS setting to calibrate the machine. 
1 μL of sample was added to 199 μL of the working solution in triplicates, ana-
lysed, and the means calculated in ng/μL. The ELISA kits, for measuring oxi-
dative DNA damage (8-OHdG quantification), were purchased from Cell Biolabs 
Inc (cat number STA-320). Samples were prepared following the protocol for cell 
or tissue DNA samples by converting to single strand DNA, digesting DNA using 
nuclease P1 (M0660S, New England Biolabs), adding alkaline phosphatase (CIP, 
M0371S New England Biolabs), centrifuging at 6000g for 5 minutes and col-
lecting supernatants. The assay protocol was followed as described. Plates were 
washed using BioTek ELx50 microplate washer and absorbance (wavelength 
450 nm) measured using a spectrophotometer (Biotek Synergy 2). Results were 
normalised against the DNA concentrations, converted from 1 to 4 strand DNA, 
and presented as ‘ng oxidised DNA bases per mg DNA’. 

A total of 30 fishes were chosen for transcriptome analysis, split as 14 floun-
ders and 16 dabs which represented a subsample of fish with neoplasms (2 floun-
ders, 6 dabs) and without neoplasms (12 flounders, 10 dabs). They were caught 
from two reference (N04, B11) and 4 polluted sites (GB1, GB4, B09, B12). 
Whole transcriptome sequencing analysis (RNA-Seq) was performed to acquire 
gene expression data. Total RNA was extracted from liver samples that were 
stored in RNAlater using the RNeasy mini kit from Qiagen (cat. 47104). The 
tissue was disrupted using a pestle and mortar and then homogenised by adding 
600 μL RLT buffer with β-mercaptoethanol (10μL β-mercaptoethanol added to 
1ml RLT buffer) and 0.5mm glass beads to the sample tube and homogenised in 
Bullet Blender 24 (Next Advance Inc, USA) on speed 4 for 2 minutes. Samples 
were analysed using the mini kit protocol part 1 and the DNase digestion in part 
2 of the mini kit protocol with one final elution step. Determination of the quality 
and quantity of RNA was undertaken using TapeStation (Agilent). Samples with 
a RIN value of 7.3 and above were chosen for transcriptomic analysis. Extraction 
of mRNA and generation of cDNA was undertaken using IlluminaTruSeq Stran-
ded mRNA Library Prep Kit. Paired end 80bp sequencing was performed on an 
Illumina NextSeq500 sequencer (Sequencing kit: NextSeq HIGH150, Flowcell 
version: NextSeq HIGH) at the Institute of Genomics at the University of Tartu. 
The initial quality of the reads was then assessed using FastQC.  
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2.5 Statistical analysis (III, IV) 

Transcriptome sequencing and analysis was performed separately for both species 
as in Meitern et al. (2020). Briefly, the sequencing resulted in 1013M PE raw reads 
that were cleaned and trimmed using Trimmomatic 0.38 (Bolger et al., 2014). 
After quality control de novo transcriptome assembly was performed with Trinity 
2.8.4 (Haas et al., 2013). Downstream analyses for aligning reads for assembly 
were performed with scripts within Trinity using Salmon (Patro et al., 2017). 
Differential expression analysis between groups was conducted using both edgeR 
(McCarthy et al., 2012) and DESeq2 (Love et al., 2014). To annotate the obtained 
transcriptome, we used Dammit (Scott, 2016) using the latest orthologous genes 
database (OrthoDB) version 10.1 (Kriventseva et al., 2019). Human orthologues 
for each transcript were retrieved through OrthoDB using the cluster ID. The final 
tables and graphs were prepared in R version 4.1.3 (R Core Team, 2022). Other 
used R packages included several packages from tidyverse (Wickham et al., 
2019) and their dependencies. The raw sequencing data along with the assembled 
transcriptome is openly available in EMBL-EBI European Nucleotide Archive 
under the primary study accession number PRJEB53201. In both approaches,  
p-values were adjusted and presented: for the EdgeR method, as the false dis-
covery rate (FDR), and for the DESeq2 method, the p-value (adjusted for multiple 
testing with the Benjamini Hochberg procedure).  

Statistical analyses for oxidative DNA damage were run using R 4.0.5(R Core 
Team, 2021). Principle component analysis (PCA), using packages stats (Revelle, 
2022) and psych (Harrell, 2022), grouped 3 components splitting the variables 
into ‘size + age’ (age, weight, length), metals (As, Cd, Pb, Hg) and hydrocarbons 
(2, 3, 4, 5 ring). Generalised linear models tested whether oxidative DNA damage 
or tumours could be predicted by the PCA components, location (Baltic Sea or 
North Sea), or whether sites were polluted/reference (Table 1). Chi-squared tests 
tested for a difference between the number of fishes with or without neoplasms/ 
FCAs. Finally, ANOVA and post-hoc Tukey tests tested for differences between 
oxidative DNA damage and tumours. Other packages used for plotting and data 
reorganisation were ggplot2 (Wickham et al., 2016), tidyverse (Wickham et al., 
2019), car (Fox & Weisberg, 2019) and various dependencies within them.  
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3. RESULTS 

3.1 Cancer in aquatic animals (I) 

Throughout the literature, cancer has been diagnosed in approximately 300 aquatic 
species ranging from invertebrates to mammals. However, only around 30 of 
these species have been included in studies that link pollution to cancer preva-
lence (Figure 2). Most of these studies have been focused on fish and molluscs.  

Studies on cancer in invertebrates were relatively common and mostly focused 
on molluscs. Molluscs develop two main types of cancer, disseminated neoplasia 
and gonadal neoplasia. A few studies have found links between pollution expo-
sure and cancer prevalence. For example, polychlorinated bisphenols (PCBs) led 
to cancer rates of 90% in a population of soft-shell clams (Mya arenaria, Reinisch 
et al., 1984). Three species of planaria have been studied regarding pollution-
induced cancer due to their regeneration capabilities (Girardia tagrina, Voura 
et al., 2017; Girardia dorotocephala, Hall et al., 1986; Bdellocephala brunnea, 
Hoshina &Teshirogi, 1991). In cnidaria and crustaceans, studies have found neo-
plastic changes, but no studies have linked pollution to them. 

 

 

Figure 2. Number of studies that indicate cancer in aquatic and semi-aquatic species, 
and the number of these studies that link cancer occurrence to pollution. Groups of animals 
depicted in this figure include (from left) cnidarian, flatworms, crustaceans, amphibians, 
reptiles, birds, molluscs, mammals, and fish. Pie charts illustrate proportions of pollution-
associated studies per group, numbers in brackets indicate the number of species studied 
so far (from paper I). 
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Fish studies linking cancer and pollution have been approached with three main 
methods. Firstly, laboratory studies, exposing animals to specific types and con-
centrations of carcinogens to determine their susceptibility to neoplasia, for 
example in the zebrafish (Danio rerio, Beckwith et al., 2000; Spitsbergen et al., 
2000a; Spitsbergen et al., 2000b). Secondly, studies exploring the relationship 
between cancer in wild fish and the level of contaminants within the tissues of 
the animal (usually liver or bile) have been undertaken in a range of species in-
cluding the dab (Lerebours et al., 2014), winter flounder (Pseudopleuronectes 
americanus, Chang et al., 1998) and European eel (Anguilla Anguilla, Ribeiro 
et al., 2005). Thirdly, there have been studies testing for relationships between 
the concentrations of contaminants in the sediments and cancer prevalence in 
wild animals. One example is a study of brown bullheads following the closure 
of a coking plant which found reductions in the levels of PAHs in the sediments, 
leading to a significantly decreased prevalence of neoplasia in the local popu-
lation of fish (Baumann & Harshbarger, 1998).  

In aquatic mammals, there were two species that have been targeted for pol-
lution and cancer studies: the beluga whale (Delphinapterus leucas) and the      
Californian sea lion (Zalophus californianus). In an isolated population of beluga 
whales in the St. Lawrence estuary, Canada, higher rates of cancer resulting from 
benzopyrenes in the sediment have been found compared to Arctic populations 
(Martineau et al., 2002). In Californian sea lions, the carcinomas have a viral 
etiology, specifically the Otariine herpesvirus 1, but studies have also found a posi-
tive relationship between the concentrations of PCBs present in the sea lion 
blubber and the rate of carcinomas (Ylitalo et al., 2005). 

In other vertebrates, cancer and pollution studies are limited to date. The main 
reptile studied is the green turtle (Chelonia mydas) which develops fibropapil-
lomas. For example, dos Santos et al. (2010) used an ecological index to deter-
mine water quality and showed an increase in fibropapillomas prevalence from 
0% in clean waters to 58.8% at polluted sites. In amphibians, one laboratory study 
explored how exposure to the carcinogenic PAH, 3-methylcholanthren induces 
sarcomas in leopard frogs (Rana pipiens) (Outzen et al., 1976). Additionally, a 
study in marsh frog (Rana ridibunda) found histopathological alterations, diag-
nosed as the early stages of holangiofibroma, from a polluted river in northern 
Greece. No histopathological alterations were observed in frogs from a clean river 
(Loumbourdis, 2007). Currently, aquatic birds are known to accumulate contami-
nants but there are no studies linking increased cancer prevalence to pollution 
exposure in this taxon.  

Of the 30 species studied in publications linking pollutants and aquatic wild-
life cancer, the choice of contaminants investigated is limited. Heavy metals and 
PAHs dominate, with few studies focusing on PCB’s, pesticides, chlorine or 
general industrial or sewage pollution. Additionally, the main organs studied in 
wildlife cancer studies are the skin and liver, with other organs being largely 
ignored or unstudied. 
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Understanding the mechanistic causes of pollution induced cancer is another 
area that is understudied in aquatic species. The studies that have investigated the 
physiological mechanisms linking cancer and pollution have suggested mecha-
nisms such as ethoxyresorufin-O-deethylase (EROD) activity and mitochondrial 
DNA damage (Wills et al., 2010), the activation of K-ras oncogene (Wirgin et al., 
1989) or the inactivation of Rb genes (Lerebours et al., 2014), immunosuppres-
sion and DNA adducts (Martineu et al., 1994) and genotoxicity (Baumann, 1998). 

 
 

3.2 Comparative analysis of cancer gene copy  
numbers in fishes (II) 

The duplication of cancer-related genes is known to be associated with varying 
levels of cancer prevalence’s in different species (e.g. Seluanov et al., 2018; 
Tejada-Martinez et al., 2021; Tollis et al., 2020). In order to explore this topic on 
a taxon not studied before, a comparative analysis was run to determine 
differences in the number of copies of cancer-related genes in fish species. 

A total of 69 fish genome assemblies were available from a total of 3 clades 
(65 species from Actinopterygii (ray-finned fish), 3 species from Cyclostomata 
(jawless fish) and 1 species from Sarcopterygii (fringe-finned fish, Figure 3). Of 
these species, lifespan data was available for 54 Actinopterygii, 2 Cyclostomata 
and 1 Sarcopterygii. Most lifespan data was from reliable sources (23 from 
Anage, 11 from Fishbase, 10 from articles). Analysis was completed on all spe-
cies with lifespan data. Maximum lifespan was related to maximum body size 
when branch lengths were optimised using maximum likelihood (R2 = 0.34, p = 
0.00001). However, at fixed branch lengths this relationship only holds for 
reliably sourced maximum lifespan data.  
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From all queried human cancer genes, an average of 218 (±11 SD) TSG and  
192 (±12 SD) OG orthologs were identified using the CAFE approach and  
170 (±31 SD) TSG and 152 (±27 SD) OG orthologs for the homolog approach. 
Using phylogenetically adjusted regressions, there was a strong positive corre-
lation between the number of copies of OGs and TSGs (all TSGs: R2 = 0.93, 
p< 0.00001, gatekeeper genes: R2 = 0.93, p< 0.00001 and caretaker genes:  
R2 = 0.43, p< 0.00001). Removing the two fish families that have undergone an 
extra round of whole genome duplication (Salmonidae and Cyprinidae) from the 
analysis did not remove the significant correlation between OGs and TSGs.  

Lifespan is positively related to the total number of TSGs and negatively to 
the total number of OGs, irrespective of branch length optimization (Figure 5, for 
optimised branch lengths p < 0.00001 R2 = 0.37, at fixed p< 0.00001 R2 = 0.36), 
the inclusion or exclusion of body size, or low-quality data points (maximum 
lifespan data from less reliable sources) in the model. However, the relationship 
was significant only when both OG and TSG counts, or their ratio were included 
in the model.  
 

 
Figure 4. Linear regression between maximum lifespan and the normalized count of 
tumour suppressor genes (TSG), divided by the normalized count of oncogenes (OG) ob-
tained from the CAFE approach and including only COSMIC Tier 1 genes. Each point in 
the plot represents a species in the dataset. The line and the confidence intervals depicted 
in the plot come from a log linked general linear model (i.e. not adjusted phylogenetically), 
the values R2, p and N are from phylogenetically adjusted linear regression where the 
maximum lifespan is log transformed. The λ, κ and δ values are fixed at 1 (from paper II). 
 
We also found that many human cancer genes were duplicated in fish genomes. 
The number of copies of genes that were duplicated varied between species, as 
did the ratio TSGs/OGs. As expected, the species from the fish families that had 
undergone an extra round of whole genome duplication (Salmonidae and 
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Cyprinidae) stand out as species with the highest copy numbers of TSGs and 
OGs. However, even within the fish species with smaller genomes, the number 
of copies of TSGs and OGs ranged from 1.5 to 2.2. When looking separately at fish 
species outside the salmonid and cyprinid families, species with highest number 
of copies of TSGs are two tropical fish, Asian arowana (Scleropages formosus) 
and mormyrid electric fish (Paramormyrops kingsleyae), and one temperate fish, 
the ballan wrasse (Labrus bergylta; based on COSMIC tier 1 gene list, which is 
more reliable in regards of links of genes with cancer compared to the full list). 
As the number of copies of TSGs and OGs are correlated (R2 = 0.93, p< 0.00001), 
we also calculated the TSG/OG ratio for all studied species (Figure 3), with the 
suggestion that species with the highest ratio invest more into cancer defences 
compared to species with the lowest ratio. According to this calculation, the three 
species with the highest TSG/OG copy number ratios were blind cave tetra 
(Astyanax mexicanus, TSG/OG copy number ratio 1.017), Asian arowana (0.985), 
and the red-bellied piranha (Pygocentrus nattereri, 0.982). The three species with 
the lowest TSG/OG copy number ratio were zebrafish (0.843), Atlantic salmon 
(Salmo salar, 0.842), and reedfish (known also as ropefish, Erpetoichthys 
calabaricus, 0.837). 
 
 
     3.3 Cancer and oncogenic pollution in two flatfish (III, IV) 

3.3.1 Differences between species 

Many anthropogenic pollutants are persistent in the environment, therefore under-
standing how pollution affects different biological mechanisms that can lead to 
increased cancer prevalence’s, such as changes in gene expression and levels of 
oxidative DNA damage, could provide insights into how pollution affects cancer 
at a mechanistic level. From 10 sites across the Baltic Sea and North Sea (Figure 1), 
flounders were present at 4 sites (GB1, B09, B11, B12) and dabs were present at 9 
(all except B09). We collected 40 flounders and 88 dabs (only 8 dabs were caught 
at site N01). Genetic analysis of the flounder samples showed that all 40 fishes 
were indeed Platichthys flesus and not Platichthys solemdali. Histopathology 
analysis of the livers of these 128 fishes found that 28 had pre-neoplastic lesions 
(foci of cellular alteration (FCAs)) and 14 fishes had liver neoplasms (Table 2). 
Neoplasms were diagnosed as either hepatocellular adenoma or hepatocellular 
carcinoma (Figure 5) and there was no significant difference in the prevalence of 
neoplasms or pre-neoplastic lesions between flounders and dabs (Chi-squared 
=2.81, df=2, p=0.2). A subsample of these fishes (14 flounders and 16 dabs, from 
both polluted and reference sites) was selected for gene expression analysis; of 
these, 2 flounders and 6 dabs had neoplasms. Pre-neoplastic (FCAs) and other 
histopathological changes were not included in the transcriptome analysis as the 
focus was to explore differences in gene expression between fish with and with-
out neoplasms and between fish living in polluted and reference sites.  
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Figure 5. Histology images of two hepatic adenomas found in dab (Limanda limanda). 
More intensely coloured areas are tumorous tissue and black arrows indicate the edge of 
the tumour. 
 
Table 2. Histopathology results by species where total number of flounders sampled was 
40 and total dabs was 88. Brackets indicate the percentage of each species that had 
neoplastic or foci of cellular alterations (FCA) of the liver.  

Species Histopathology diagnosis Number of Individuals (% of fish) 
Flounder FCA 6(15)
 Neoplasm 3(7.5)
Dab FCA 22(25)
 Neoplasm 11(12.5)

 
For the transcriptome study, analysis was run to explore the differences in gene 
expression between fishes with and without neoplasms, using two methods, the 
EdgeR and DESeq2. These methods perform the differential expression analysis 
slightly differently. Of the 25378 genes for flounder, the DESeq2 method recovered 
449 genes that were significantly differently expressed between fish with and with-
out neoplasms (p-value adjusted <0.05), whilst the EdgeR method recovered 123 
significantly differently expressed genes (FDR<0.05). For dabs, of the 23311 
genes, 86 were significantly differently expressed between fish with neoplasms 
and those with no neoplasms detected using the DESeq2 method (p-value adjus-
ted <0.05), whereas using the EdgeR approach, there were 42 significant diffe-
rences (FDR<0.05) (differentially expressed transcripts listed in Supplementary 
data file). We categorized the annotated transcripts according to GO biological 
processes (if available) or GO molecular functions (Figure 6, Ashburner et al., 
2000; Bryant et al., 2017; The Gene Ontology Consortium, 2021). In dabs, we 
mostly observed the upregulation of genes in fishes with neoplasms. The only 
transcripts that were downregulated in dabs with neoplasms were related to fatty 
acid binding proteins. In flounders, we could also see downregulation of different 
categories of genes in fishes with neoplasms, although upregulation was still more 
common. 
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In addition to sites being described as either reference or polluted based on 
environmental data (Table 1), pollutant levels (PAH metabolites and trace metals) 
were measured in the bile and liver of the 128 fishes sampled. A principal com-
ponent analysis was run to group different variables within the data set. These 
components were hydrocarbons (2-, 3-, 4-, 5- ring hydrocarbons), trace metals 
(Cd, Pb, As, Hg) and ‘size + age’ (age, length, weight). According to the logistic 
regression model, flounders were bigger/older and had higher levels of oxidative 
DNA damage than dabs. In regard to pollutant levels, dabs had significantly higher 
levels of organic pollutants (PAHs) in the bile than flounders but there was no 
significant difference between species in the levels of trace metals in the liver. 
There was significantly greater variation (F-test) in the levels of contaminants in 
dabs than flounders (metals: F=6.2909, num df= 72, p<0.001 and hydrocarbons: 
F=2.1857, num df=72, p=0.0115). There was no significant variation in the size 
(length, age, weight, F= 0.899, num df= 72, p=0.689) or levels of oxidative DNA 
damage (F=0.560, num df=87, p=0.555) between flounders and dabs. 
 
 

3.3.2 Differences between populations 

A generalised linear model was run to test whether the effects of the PCA com-
ponents (metals, hydrocarbons or ‘size + age’), the levels of oxidative DNA 
damage, the location (Baltic Sea or North Sea) and whether a site was categorised 
as polluted or reference, influenced the likelihood of the fish developing neo-
plasms. The model tested both species combined and then flounder and dabs indi-
vidually. The generalised linear model suggested that neither size/age, contami-
nant levels, oxidative DNA damage, or location (North Sea vs Baltic Sea) influen-
ced the likelihood of a fishes developing neoplastic/pre-neoplastic tumours (both 
species and dabs, p>0.05). However, larger/older flounders had more tumours than 
smaller/younger ones (p=0.0284). Additionally, there was significantly higher 
proportion of tumours in fishes living in reference sites compared to more pol-
luted sites (both species p=0.007; flounders p=0.0419; dabs, p=0.0322).  

A second generalised linear model was run to determine which variables af-
fected the levels of oxidative DNA damage. The models tested both species com-
bined and then flounder and dabs individually. There was a significantly higher 
level of oxidative damage in the fishes from the Baltic Sea than the North Sea 
(p<0.001) but ‘size + age’, contaminant levels or whether a site was categorised 
as polluted/reference did not affect oxidative damage levels (p>0.05). In dabs, 
there was significantly higher oxidative damage in the Baltic than the North Sea 
(p<0.001). In flounders, oxidative damage was significantly higher in the Baltic 
Sea (p<0.001) and in flounders with lower trace metal concentrations (p=0.03). 

An ANOVA model indicated that oxidative damage was significantly higher 
in dabs with no alterations detected compared to those with an FCA (p=0.027) but 
not different between fishes with no alterations detected and those with neo-
plasms, or between individuals with neoplasms and those with an FCA (Figure 7). 
There were no significant differences for flounders. 
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Figure 7. Mean (log-transformed) oxidative DNA damage between fish with neoplasms, 
foci of cellular alterations (FCA) or no abnormalities detected. Asterix (*) represents 
p<0.05. Bars represent mean +/– standard deviation. Dots are individual data points 
(from paper IV).  
 
Looking further into the possibility of local adaptation, fishes without liver neo-
plasms from polluted and reference sites were compared, using gene expression 
analysis, to find possible signs of local adaptations in defence mechanisms against 
pollution exposure. Using the DESeq2 approach, 43 of transcripts were signifi-
cantly differently expressed between polluted and reference sites in flounders 
(adjusted p-value <0.05), whilst using the EdgeR method, only 13 of these tran-
scripts were significantly differently expressed between reference and polluted 
sites (FDR<0.05). In dabs, the DESeq2 approach found 67 genes that were 
significantly different between polluted and reference sites (p-value adjusted 
<0.05), whereas the EdgeR approach recovered only 12 genes that were signifi-
cantly different between polluted and reference sites (FDR<0.05).  

Using the OrthoDB to search for the best protein match for each significant gene 
ID, for both species, GO categories for molecular processes were added, if avail-
able. There was greater diversity in the best protein matches for flounders than 
dabs, and different molecular functions for transcripts were indicated. In flounders, 
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the available GO categories suggested changes in processes linked with immune 
response, apoptosis, and cell cycle regulation, whilst in dabs, metal ion binding 
processes and peptidase activity regulation were indicated. In flounders, most of 
the transcripts could be linked with potential oncogenes or tumour suppressor 
genes, however, in dabs only links with immune suppression could be made based 
on best protein match analysis.  
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4. DISCUSSION 

As cancer is a disease that can impact all multicellular organisms, studies focused 
on a wider range of wildlife species could develop our understand of the ecology 
and evolution of the disease, especially when considered alongside the increasing 
anthropogenic pressures that are likely to be increasing cancer rates across the tree 
of life. It could therefore be surprising that only 300 aquatic species have had some 
form of cancer diagnosed in them, and only around 30 species have been included 
in studies linking pollution to increased cancer rate, either in a laboratory setting 
or in the wild (I). Most of these studies have been on fish. This could well be 
because of the ease of sampling fish in comparison to other vertebrate groups such 
as mammals, birds and reptiles which are often protected by law. Another possi-
bility is there is less interest or disease monitoring in species that are not com-
monly used as a source of food for humans.  

The next best studied group of aquatic animals, regarding cancer studies, are 
molluscs (I). Again, this focus could be due to their use as a source of human 
food, but additionally, bivalves develop a form of transmissible cancer, known as 
disseminated neoplasia (DN), that has attracted the attention of evolutionary 
biologists. Of the nine known transmissible cancers, the majority are found in the 
marine environment in species such as soft-shell clams (M. arenaria), mussels 
(Mytilus trossulus, M. edulis, M. chilensis), cockles (Cerastoderma edule, re-
viewed in Carballal et al., 2015), with cross-species contagion observed in golden 
carpet shell clams (Polititapes aureus), derived from the pullet shell clam (Vener-
upis corrugate, Metzger et al., 2016). However, the effect of pollution on DN 
outbreaks, that can cause high mortality in mollusc populations is not well studied 
and understood. The impact of several chemical pollutants on DN in several host 
species has been assessed, mostly through correlative studies where sample sizes 
and/or chemical measurements are not sufficient to draw firm conclusions (re-
viewed in Carballal et al., 2015).  

Despite the high number of potential emerging pollutants (Brack et al., 2018), 
only a handful of them have been studied with regards to their effects on wildlife 
cancer. Heavy metals and PAHs have been the main focus of studies to date (I). 
The lack of literature, focusing on a wider range of contaminants, and their effect 
on cancer needs to be addressed. However, the wide spectrum and low concent-
rations of these substances in the environment presents challenges for under-
standing their effects on the health of aquatic organisms. Especially, when such 
linkages between tumour prevalence and presence of potentially mutagenic toxi-
cants are not always causal. The additive, synergistic and/or antagonistic effects 
of pollutant ‘cocktails’ (Laetz et al., 2009; Ansari et al., 2004) presents challenges 
in studies on wild animals and their effects on cancer. Particularly when these 
interactions between different contaminants can be impacted by other environ-
mental stressors, such as climate change and the bioavailability of contaminants 
(Crain et al., 2008; Parmesan & Yohe, 2003). Additionally, marine debris such 
as microplastics which can form biofilms have the potential to act as vectors for 
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oncogenic viral transmission. As much as 15–20% of human cancers are esti-
mated to have a viral aetiology and it is therefore unsurprising that viruses can 
cause cancer in wild animals too. The papilloma virus is responsible for cancers 
in sperm whales (Physeter macrocephalus, Lambertsen et al., 1987), Burmeister’s 
porpoise (Phocoena spinipinnis, Van Bressem et al., 2007) and beluga whale (De 
Guise et al., 1994), herpes virus in California sea lions (King et al., 2002) and 
green turtles (Lu et al., 2000) and retrovirus in walleye fish, (Sander vitreus, 
Martineau et al., 1992) and Atlantic salmon (Salmo salar, Paul et al., 2006). 
Pollution has the potential to exacerbate the effects of oncogenic viruses, for 
example in Californian sea lions where a relationship between PCB’s and cancer 
prevalence was found (Ylitalo et al., 2005). Other pollutants have been shown to 
have effects such as altering biological pathways, for example, endocrine dis-
ruptors (Schug et al., 2016; Soho & Sonnenschein, 2010), changes in the 
expression of aryl hydrocarbon receptors (Zhou et al., 2010) or the induction of 
heat shock proteins (Rajeshkumar & Munuswamy, 2011). Some of these changes 
to biological pathways could potentially increase the risk of diseases, such as 
cancer, in aquatic animals.  

Studying pollution and cancer in wild organisms presents a range of issues. 
For example, many species migrate long distances, therefore it is difficult to 
determine the exposure of an organism to pollutants (I). For example, European 
flounders can undertake migrations up to 80–95 km with the longest recorded 
migration reaching approximately 700 km (Ojaveer & Drevs, 2003). However, 
there are also benefits to using wild animals as they provide a more realistic 
understanding of natural cancer rates in a population that is subjected to all its 
natural and introduced stressors. Dependant on the location a species migrates to, 
it could increase or decrease their risk of accumulating contaminants that are 
carcinogenic. For example, great skuas (Stercorarius skua), breeding in the 
pristine Arctic, overwinter along industrialized coasts of Europe, North Africa 
and North America where accumulated concentrations of persistent organic pol-
lutants (POPs) might affect some populations (Leat et al., 2013).  

A focus on natural habitats that have been subjected to human contamination, 
and particularly remediation projects, could provide insight into the effect of 
contamination on cancer prevalence’s in natural populations. For example, a study 
on brown bullheads found reduced neoplasia following the closure of a coking 
plant (Baumann & Harshbarger, 1995). These restoration projects have the 
potential to act as natural laboratories to better explore the physiological and 
genetic mechanisms that increase both a species and an individual animal’s risk 
of cancer. Understanding these processes could improve our understanding of the 
evolution of cancer defences and the adaptation or acclimation processes of 
species exposed to anthropogenic oncogenic pressures. 

The small and biased selection of species studied in the context of cancer and 
pollution so far hints that species could be differently vulnerable to pollution-
induced cancer. This could be due to varying pollutant vulnerability, but also due 
to variation in cancer defences. As comparative studies (e.g. Tejada-Martinez et 
al., 2021; Tollis et al., 2020; Vazquez & Lynch, 2021) have shown before, cancer 
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defences vary between species, depending on their life-history. Studying a wider 
range of species in the context of cancer and pollution could also provide valuable 
information about the differing vulnerabilities to environmental change between 
species, and to the evolution of cancer defences in general. 

Different species have evolved different cancer defences, in the form of tumour 
suppressor genes depending on their evolutionary pressures and trade-offs. This 
has mostly been studied using mammalian genomes to date (Tejada-Martinez 
et al., 2021; Tollis et al., 2020; Vazquez & Lynch, 2021). However, in my thesis, 
I focused on a phylogenetically older, and genetically more diverse group, fishes, 
to determine whether there is a link between body size or lifespan and cancer 
related genes (II). I aimed to determine how the number of copies of 715 genes, 
that have been linked to cancer in humans, varied across the spectrum of fishes. 
Since there is no current database on cancer genes in wildlife, and OGs and TSGs 
are amongst the oldest gene classes, it is reasonable to use human cancer genes 
as a proxy for wildlife cancer genes. Additionally, as the evolutionary distance 
between fishes and humans is much larger than that of mammals with humans, it 
should not influence the results as much as a similar comparative analysis on 
mammals. However, it should be noted that until there is experimental verifi-
cation that human cancer genes do have the same function in fishes as in humans, 
these results should be taken with caution.  

Interestingly, the results (II) suggest that there is a masked relationship between 
the number of copies of OGs and TSGs with lifespan that is only visible when 
using the OG/TSG ratio in the model. When we include these variables separately, 
this relationship is not significant. The evolutionary pressure of this increased risk 
of oncogenic mutations, because of a higher number of copies of OGs, appears 
therefore to be counteracted by the evolution of higher numbers of copies of TSGs 
(Figure 4). However, this relationship does not hold for mammals (Tollis et al., 
2020), unless only using genomes sequenced in Ensembl (II). One possible 
explanation is that the genomes sequenced in Ensembl are considered of better 
quality (Kinsella et al., 2011). Additionally, it is possible that the relatively larger 
phylogenetic distances between different fish species genomes compared to that 
of mammals contributes to this relationship holding in fishes but not mammals. 
It might be that such a relationship emerges only on a larger phylogenetic scale. 
Additionally, it could be speculated that this masked relationship holds for fishes 
and not mammals because only the most important human cancer genes, in terms 
of lifespan, are conserved in fishes. It is possible that other less relevant cancer-
related genes are present in mammals that weaken this relationship, but this remains 
to be studied. 

Focusing on the ratio of OGs/TSGs is potentially more informative when con-
sidering the susceptibility or resistance of a species to cancer, compared to focusing 
solely on which species have the highest numbers of TSGs (II). One reason for 
this could be that by compensating for increased copies of (proto)oncogenes by 
increasing the copies of TSGs, lifespan could increase, without increasing the 
susceptibility of a species to cancer. The three species with the highest ratio of OGs 
to TSGs are the blind cave tetra, Asian arowana and red-bellied piranha. The blind 
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cave tetra has undergone recent rapid evolutionary change, dividing into two sub-
species. One of these subspecies has undergone extreme morphological evolution 
through cave colonisation, losing eyes and pigmentation, and living in permanent 
darkness whilst the other is an ‘ancestral’ multi-coloured tropical freshwater fish 
(Torres-Paz et al., 2018). This species could be used to better understand the evo-
lution of specific traits and genetic mechanisms that support rapid habitat-based 
evolutionary change (Torres-Paz et al., 2018) and the trade-offs that could lead 
to increased tumour resistance. The Asian arowana and red-bellied piranha are two 
fish species for which parental care is described (Queiroz et al., 2010, Scott & 
Fuller, 1976). Additionally, the Asian arowana is a highly valuable ornamental 
species with a late sexual maturation. It is understood that having a slow life 
history is a trait that leads to increased tumour resistance (Boddy et al., 2020). 

The species with the lowest OG/TSG ratio were zebrafish, Atlantic salmon 
and reedfish (II). Zebrafish is a well-established model organism for cancer studies 
due to the similarities in tumorigenesis with the human species (Stoletov & 
Klemke, 2008). However, as this species has a fast life history, it may have more 
similarities to mice than humans particularly regarding lifespan (Hu & Brunet, 
2018). Many other salmon species, in addition to the Atlantic salmon, had low ratio 
of OG/TSG. These semelparous species, which only reproduce once, may priori-
tise growth/reproduction over the evolution of increased tumour suppression 
mechanisms. Reproduction in semelparous species can lead to severe, rapid patho-
logy known as reproductive death due to lower investment in self-maintenance to 
compensate for an increase in reproductive effort (Gems et al., 2021). The species 
with the lowest ratio was the reedfish, a facultative airbreather that can move 
between aquatic and terrestrial environments (Sacca & Burggren, 1982). Changes 
in oxygen pressure could be one reason for the lower investment in TSGs in this 
species. It has been shown in humans that hyperbaric oxygenation has the poten-
tial to inhibit the proliferation of tumour cells (Granowitz et al., 2005). However, 
whether this lower investment in genome level tumour suppression mechanisms 
is a result of reduced cancer risk from changes to oxygen pressures in the environ-
ment has yet to be studied. Gathering more information on natural cancer preve-
nances from a wider range of wild organisms would be one way to better under-
stand how cancer defences vary between species dependant on their environment. 

The study of wildlife cancer genetics is still in its infancy and as cancer is a 
complex disease, impacted by both genetic and environmental factors, devel-
oping our understanding of the evolution of cancer defences in a wider range of 
species could be valuable. Relatively few fish genomes, compared to mammals, 
have been sequenced, and often the ones that have, have been done so because 
they are of specific interest. For example, the mormyrid electric fish has been 
sequenced to explore the evolution of electric organs. Unfortunately to date, 
although both species have been used as ecotoxicological models for decades, 
neither flounders nor dabs have had their genomes sequenced. Therefore, we could 
not explore the differences in genetic cancer defences between these two species. 
However, understanding how different species have evolved to reduce their 
cancer risk is only one step in the process of understanding the evolution of cancer 
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defences across the tree of life. In addition, understanding whether there are dif-
ferences in gene expression or mechanisms such as oxidative DNA damage 
between species, and how environmental pressures, particularly novel anthropo-
genic change, affects this could provide insight into differences in cancer preva-
lence between different populations. 

I conducted field studies (III, IV) to explore the differences in cancer defence 
mechanisms between two flatfish species and how oncogenic contamination in-
fluences the expression of these defences and the initiation of oncogenic pro-
cesses. We explored the differences in neoplasm prevalence, oxidative DNA 
damage and gene expression between these two species exposed to different 
levels of oncogenic contamination. When the genomes of these species will be 
sequenced, it would be interesting to see if the evolution of the numbers of copies 
of cancer related genes differs between the two species, which would suggest that 
there is a genetic difference in cancer susceptibility or resistance between floun-
ders and dabs. 

We did not find any significant difference in the prevalence of neoplasms 
between dabs and flounders (IV). This result contradicted that seen throughout 
the literature, which has generally found liver neoplasm prevalence’s of around 
8–10% in dab (Lyons et al., 2006; Stentiford et al., 2009; CEFAS report, 2004) 
compared to between 0.7–1.5% in flounder (Cachot et al., 2013; Lang et al., 2006; 
Stentiford et al., 2003; Vethaak et al., 1996). This decreasing trend in liver neo-
plasms in dab could be due to the successful international regulation on marine 
pollution. However, information from sediments (OSPAR Data and Information 
Management System, https://odims.ospar.org/) and historic tumour prevalence 
data still support the possibility of locally differing selection pressures by the 
oncogenic effects of pollutants. It should also be noted that these results did have 
the same downward trend of less neoplasms in flounders than dabs seen through-
out the literature, even though it was not significant. It is possible that as these 
results only covered 1 sampling year there could have been biases that could not 
be accounted for, either from sample size or environmental conditions that were 
present in that year.  

We detected differences in gene expression patterns between the two species. 
Dabs with neoplasms showed a general upregulation of different cancer related 
genes. The only transcripts which were downregulated were related to fatty-acid 
binding proteins. In flounders with neoplasms, we found a downregulation of 
various other genes linked to immune responses that could potentially act as 
cancer defence mechanisms, such as inflammatory responses and complement 
activation. Other downregulated processes in flounders included cell differen-
tiation, chloride transport, iron homeostasis, regulation of translation, and endo-
peptidase inhibition. However, in flounders with neoplasms, there were more 
genes upregulated than downregulated. This was expected considering that, in 
liver cancer transcriptome studies in humans, around 90% of differently expres-
sed genes were upregulated (Jin et al., 2019). In both flounders and dabs, endo-
peptidase activity was the process with the highest number of linked transcripts 
and the highest transcript abundance. These proteases were involved in breaking 
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down proteins that promote angiogenesis, invasion and metastasis in cancerous 
tissues (Lopez-Otin & Overall, 2002). Interestingly, endopeptidase inhibiting 
processes were downregulated in flounders with neoplasms, suggesting that these 
processes need to be actively suppressed in healthy individuals for neoplasia to 
occur. This is not actively observable in dabs which suggests the possibility that 
less efficient cancer defence mechanisms occur in dabs. 

The link between cancer and oxidative stress is well studied in humans. 
Oxidative stress is defined as imbalance of oxidants to antioxidants leading to 
oxidative damage to tissues. Measuring antioxidant/oxidant levels in an organism 
as an accurate representative of oxidative stress presents challenges due to time-
lagged and hormetic upregulation of protective mechanisms (Meitern et al., 2013). 
Focusing on a biomarker that measures damage to DNA, reduces the risk of mis-
interpreting high antioxidant levels that could have been upregulated to prevent 
oxidative stress. In my study (IV), the levels of oxidative DNA damage in an 
individual could not predict neoplasm occurrence. However, flounders had higher 
levels of oxidative damage than dabs. This suggests that there are biological pro-
cesses or mechanisms, other than oxidative DNA damage, that are more impor-
tant or more reliable for determining whether these fishes develop neoplasms or 
not. Interestingly though, dabs with no detected abnormalities appear to have 
higher levels of oxidative DNA damage compared to individuals showing signs 
of preneoplastic changes (FCA). This relationship did not hold for dabs with neo-
plasms suggesting the possibility that DNA repair mechanisms are upregulated 
in dabs with neoplasms, following pre-neoplastic liver changes.  

The links between increased oxidative DNA damage and exposure to environ-
mental contamination (e.g. PAH’s and metals) are well studied (e.g. Machella 
et al., 2004; El-Agri et al., 2022), hence it could be assumed that there would be 
a link between pollution and oxidative damage to DNA in flounder and dab (IV). 
However, this was only the case for flounders, not dabs, where individuals with 
lower metal concentrations in the liver had higher levels of oxidative damage. 
This suggests that flounders upregulate DNA repair processes when exposed to 
higher contaminant burdens. The lack of relationship between contaminants and 
oxidative DNA damage in dabs could potentially be because dabs are able to 
regulate their antioxidant processes to reduce the effect on DNA following expo-
sure to contamination. Additionally, it suggests both species have either accli-
mated and/or adapted to cope with the ongoing pressure from anthropogenic 
contamination in marine ecosystems. The most significant factor affecting 
oxidative DNA damage levels was which sea the fishes were caught in, either the 
Baltic Sea or the North Sea. Oxidative damage was significantly higher in the 
Baltic Sea for both flounders and dabs. Whilst hyposaline conditions have been 
found to increase oxidative stress in olive flounders (Paralichthys olivaceus, Lee 
et al., 2022) it is worth also noting that a larger proportion of the Baltic (96%) 
was considered polluted compared to the North Sea area (75%, European 
Environment Agency, 2019). It is possible that this difference in other present 
contaminants, that were not measured in this study, could be influencing the 
levels of oxidative DNA damage in flounders and dabs.  
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The North Sea and the Baltic Sea have been subjected to ongoing anthropo-
genic pollution since the industrial revolution. In my thesis (IV), the focus on 
PAH’s and oncogenic trace metals, specifically As, Pb, Hg and Cd, was chosen 
because these are the two types of contaminants focused on in cancer and pollu-
tion studies (I). It is interesting to note however, that the levels of these con-
taminants, in the fish’s tissue, did not vary significantly between sites. However, 
there were differences between the two species in the levels of contaminants 
present in the tissues. The variation in the levels of contaminants was higher in 
dabs than flounders and PAH levels were significantly lower in flounders which 
suggests potentially better pollutant metabolism in flounders than dabs. In other 
words, physiological mechanisms that either remove pollutants or metabolise 
them can vary between species, populations, and individuals, resulting in similar 
levels of tissue pollutants despite differing exposure levels. Organic pollutant 
metabolism can have implications for increased cancer development (Stegeman 
& Lech, 1991; Willett et al., 2006). For example, cytochrome p450 (CYP) enzymes 
have been linked to oncogenic pollutant metabolism in a range of species from 
humans to fish (Kwon et al., 2021; Uno et al., 2012). One example is the 
benzo(a)pyrene metabolite, benzo(a)pyrene-diol-epoxide that becomes carcino-
genic following CYP metabolism rather than in its original form (Newbold & 
Brookes, 1976; Kim et al., 1998). The transcriptomic analysis (III) indicates in-
creased CYP activity in flounders with neoplasms compared to dabs with neo-
plasms. However, this increased pollutant metabolism does not appear to increase 
neoplasm rates in flounders. It is possible that in flounders this increased pollutant 
metabolism triggers cancer defence mechanisms to be activated in the liver. This 
could be described as a potential hormesis effect, which is defined as an adaptive 
response of biological systems to moderate environmental challenges through 
which the system improves its functionality and/or tolerance to more severe 
challenges (Calabrese & Mattson, 2017). 

When testing to see if there was a difference in the proportions of fish with 
neoplasms (IV), based on whether they were living in sites categorised as 
polluted or reference, there was a significantly higher proportion of fish with neo-
plasms in reference sites compared to polluted. The number of fish sampled from 
reference sites was lower than that of polluted sites. However, assuming that the 
sample size used in the study gave a representative screen of the population, fish 
living in areas considered polluted could have acclimated or adapted to cope with 
oncogenic contamination pressures. This hypothesis is supported also by the gene 
expression analysis, at least in flounders (III). Our transcriptome results, com-
paring flounders without neoplasms living in polluted vs reference sites, found 
12 differently expressed transcripts. The transcripts that were upregulated in 
flounders living in polluted sites include aldolase genes, ubiquitin/proteasome 
system and DNA damage-regulated autophagy modulator protein 2 (DRAM2). 
All of these three can be linked to tumour formation or suppression mechanisms. 
Aldolase genes can regulate proliferation, apoptosis and metastasis in human 
liver cancer (Bu et al., 2018; Li et al., 2019). Ubiquitin/proteasome systems lead 
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to the degradation of abnormal proteins generated under normal and stress con-
ditions (Peters et al., 1998). It remains controversial whether this gene is a tumour 
promoter or suppressor (Fang & Shen, 2017; Yu et al., 2008). DRAM2 can be 
activated by the TP53 gene, a well-known tumour suppressor with links to apop-
tosis, autophagy, and programmed cell death (Crighton et al., 2006). Additio-
nally, some of the genes that were upregulated in flounders from reference sites 
have been linked to mechanisms promoting tumour development. Dabs however, 
showed fewer differences in gene expression between reference and polluted sites, 
suggesting that adaptation to polluted habitats is more likely to occur in flounders 
compared to dabs, potentially due to stronger selection pressures caused by more 
active pollutant metabolism (III).  

The study of these two species in this thesis (III, IV) suggests potential dif-
ferences in natural cancer defences both between the species and between areas 
considered polluted when compared to ‘reference’ sites. Wildlife cancer studies 
are limited, and studying a wider range of species could provide novel insights 
into both the ecology and evolution of cancer defences but also how species are 
able to adapt or acclimate to survive in environments with long-term anthropo-
genic pressures, such as marine contamination. 
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5. CONCLUSIONS 

My thesis explores cancer ecology and evolution in aquatic wild animals, with a 
focus on fish and oncogenic pollution. The main conclusions of my work are as 
follows: 

i. Whilst cancer in wild aquatic ecosystems is unquestionably under-researched 
within the literature, studies in 30 species have linked increased cancer 
prevalence with pollution exposure. Links between cancer and pollution are 
mainly studied in fish, in addition to a few studies in marine mammals, and 
several transmissible cancer studies in molluscs.  

ii. Using restoration projects could be a useful tool for better understanding the 
effects of contaminants on cancer prevalence in exposed populations, but 
there is a need for developing less invasive methods to detect cancer in wild 
species than necropsies, so that a wider range of species could be studied.  

iii. In this thesis, I undertook the first comparative study on the duplication of 
cancer-related genes in fishes. Whilst all studies have to date been done on 
mammals, fishes are phylogenetically older, more diverse, and have the 
potential to have evolved previously unknown cancer defences. There was 
a masked relationship between cancer related genes and lifespan which sug-
gests that higher ratio of copies of tumour suppressor genes to oncogenes 
could be associated with the evolution of longer lifespans in some species. 

iv. Oxidative DNA damage was not related to pollutant levels and cancer 
occurrence in either flounders or dabs. However, DNA damage differed 
between large and small fishes, and was higher in the Baltic Sea fish com-
pared to North Sea fishes. Pollutant levels did vary less in flounders com-
pared to dabs, suggesting that flounders are better able to control their pol-
lutant metabolism.  

v. Gene expression analysis suggests potential mechanisms that protect floun-
ders from developing pollution-induced cancer. More active pollutant meta-
bolism shown in transcriptome results for flounders compared to dabs could 
protect flounders from high levels of pollution. Additionally, it could con-
tribute to stronger selection pressure for locally evolved cancer defences, as 
pollutant metabolites are known to be oncogenic within tissues. This sug-
gests variation in tumour suppression mechanisms both between the two 
species but also within a species. This variation indicates that some species 
can be more resistant to pollution-induced cancer, but also that there could 
be potential for local adaptation for stronger cancer defences. 

vi. Understanding both the genetic differences between species and the bio-
logical processes that increase/decrease cancer risk is important in under-
standing the effect of anthropogenic contamination on the long-term health 
of wild populations.  
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6. SUMMARY 

Multicellular species have evolved natural cancer defences and understanding 
how cancer defences in wild animals differs between species can expand our 
understanding of cancer evolution across the tree of life. Additionally, wild 
animals now face ever-increasing threats from anthropogenic change and one of 
biggest threats is the ever-increasing types and quantities of contaminants 
released into natural environments. It is well known that some of the contami-
nants in aquatic systems are associated with an increased cancer risk in humans 
and studying the effect of contamination on cancer rates in wild organisms can, 
not only improve our understanding of physiological mechanisms that cause 
cancer in wild animals, but also improve our understanding of the long-term 
impacts of anthropogenic pollution on our aquatic systems.  

In my thesis, I explored different aspects of cancer evolution and adaptation 
in aquatic species. Firstly, I explored the extent of current knowledge on the 
pollution induced cancer in aquatic organisms. Cancer studies in aquatic animals 
have linked pollution exposure to cancer prevalence in around 30 species to date, 
incorporating the influence of various additional factors such as viral aetiology in 
green turtles and Californian sea lions and transmissible cancers in bivalves. 
However, most studies only looked at a limited number of contaminants: heavy 
metals and polycyclic aromatic hydrocarbons. There are numerous other con-
taminants that affect biological mechanisms that may directly or indirectly 
increase the risk of cancer in a population.  

I also investigated the difference in the number of copies of both oncogenes 
(OGs) and tumour suppressor genes (TSGs) in fish genomes. We discovered a 
masked relationship with the ratio of OGs to TSGs with lifespan. This suggests 
that a higher number of copies of OGs leads to the selection of more copies of 
TSGs to potentially compensate for the increased cancer risk that comes with 
longer life.  

In addition to the evolution of different copy numbers of cancer related genes, 
other biological mechanisms can influence cancer risk within a population. 
Therefore, the next stages of my thesis involved a field study of two flatfish 
species, European flounder, and dab. I explored whether gene expression and 
oxidative DNA damage levels could explain differences in cancer prevalence’s 
in fish from polluted or reference sites, to investigate whether fish living in 
polluted areas could adapt or acclimate to reduce their cancer risk. This seems to 
be the case as tumours were significantly more prevalent in populations living at 
sites categorised as reference rather than polluted. We found that oxidative DNA 
damage did not appear to act as a mediator between tumours and contamination 
for either species. This suggests that mechanisms other than oxidative damage 
play a more significant role in determining the likelihood of cancer in these two 
species. I hypothesized that there would be differences between flounders and 
dabs living in polluted areas and gene expression. I found this to be the case and 
that flounders appear to have stronger pollutant metabolism. This is evident both 
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by the smaller variation in pollutants within the tissues of flounders compared to 
dabs, but also in the upregulated expression of cytochrome p450 genes that play 
a role in pollutant metabolism. However, in dabs there were fewer differences in 
gene expression between populations living in polluted or reference sites. It is 
possible that these differences in gene expression seen between flounders and 
dabs living in polluted/reference sites is a sign of adaptation of flounders due to 
stronger selection pressures caused by more active pollutant metabolism. 
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7. SUMMARY IN ESTONIAN 

Kohastumine onkogeense reostusega ja looduslikud 
vähikaitsemehhanismid veekeskkonnas 

Vähk on hulkraksete organismide evolutsiooniline pärand ajast, mil toimus üle-
minek üherakulisuselt hulkraksusele. Vähirakkudes toimuvad protsessid, muu-
hulgas kontrollimatu paljunemine ja energiatootmine, sarnanevad ainuraksete 
organismide omaga. Hulkraksuse evolutsiooni käigus tuli ehitada ainuraksetele 
omaseid protsesse kontrollivate mehhanismide süsteem, mis surub alla rakkude 
iseka, kontrollimatu jagunemise ning suunab rakud omavahel koostööd tegema. 
See süsteem pole aga veatu, ja nii ongi leitud, et vähihaigus võib ohustada kõiki 
hulkrakseid organisme, alates selgrootutest ja lõpetades imetajatega. Ka inimestel 
on Maailma Tervishoiuorganisatsiooni andmetel pea iga kuuenda surmajuhtumi 
taga vähk. 

Eelnevast lähtub, et kõik hulkraksed organismid peavad pidevalt tegelema 
rakkude „isekate“ huvide kontrollimise ehk vähikaitsega. Selleks on evolutsiooni 
käigus kujunenud välja kindlate ülesannetega geenid. Osa neist kaitseb genoomi 
stabiilsust, näiteks parandades DNA-d. Teised aga takistavad vähirakkude teket, 
tootes valke, mis takistavad rakkude jagunemist või suunavad vigaseid rakke 
programmeeritud rakusurma. Kui sellistes vähikaitsegeenides tekivad mutat-
sioonid, mis takistavad nende toimimist, suureneb organismi vähirisk. Vähki 
soodustavad ka mutatsioonid rakkude kasvu ja kudede uuenemist soodustavates 
geenides, mida nimetatakse proto-onkogeenideks. Need geenid on organismile 
vajalikud, sest aitavad organismil kasvada ja paraneda, kuid oma töö iseloomu 
tõttu võivad need kontrolli alt väljudes kutsuda esile vähitekke. 

Kuigi kõik hulkraksed organismid peavad vähitekke ohuga arvestama, pole 
liikide võime vähki alla suruda sarnane. Kuna suuremaks kasvamine ja kauem 
elamine on suurema hulga rakkude ja rakujagunemiste tõttu ohutegurid, mis 
suurendavad organismide vähiriski, on just suurekasvulistes ja pikaealistel 
liikidel kõige tugevamad kaitsemehhanismid vähi vastu. Imetajatel tehtud uurin-
gud on näidanud, et vähki suremus varieerub liigiti 0–60% ulatuses. Näiteks kui 
inimeste vähkisuremus on umbes 17%, siis hobustel on see umbes 19% ja elevan-
tidel alla 5%. Vähirisk võib varieeruda ka liigisiseselt. Inimeste puhul on leitud 
näiteks, et pikem kasv on vähi riskiteguriks. 

Vähikaitse (ja vähirisk) on seega seotud liikide elukäigustrateegiatega. Pikema-
ealised liigid peavad vähikaitsesse rohkem investeerima. Looduslikul valikul on 
mitmeid võimalusi tugevamat vähikaitset tekitada, kuid ehk üks kiiremaid ja 
lihtsamaid võimalusi on duplitseerida olemasolevaid vähikaitsegeene. Nii on näi-
teks leitud, et elevantidel on ühte tuntuimat vähikaitsegeeni nimega TSG genoo-
mis tervelt 20 koopiat. 

Organismide risk haigestuda vähki ei sõltu mitte ainult nende elukäigustra-
teegiast, vaid ka keskkonnast, milles nad elavad. Vähitekkeni viivaid mutatsioone 
võivad põhjustada näiteks erinevad keskkonnas leiduvad kemikaalid või kiirgus. 
Inimtekkelised keskkonnamuutused on seega nii inimeste kui ka teiste loomade 
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vähki haigestumise riski suurendanud. Selliseid seoseid on aga raske uurida labori-
tingimustes ja klassikaliste, madala geneetilise mitmekesisusega mudelorganis-
midega. Looduses esinevad vähki tekitavad tegurid, näiteks reoained, erinevates 
kombinatsioonides, mille täpse koostise kopeerimine laboris ei pruugi olla või-
malik. Ka on loomad looduslikes tingimustes mõjutatud korraga paljudest stressi-
tegurtitest, sh piiratud ressursid või haigustekitajad (nt viirused), mis võivad kesk-
konnamuutustega koosmõjus vähiriski suurendada. 

Veekeskkonnas elavad loomad on reostuse vähki tekitava mõju osas eriti haava-
tavad, kuna reostus levib veekeskkonnas kiiresti ning akumuleerub veekogude 
setetes pika aja jooksul. Veekogudes leidub seega nii vanu, nn pärandreostusega 
seotud aineid kui ka uusi, veel tundmatu keskkonna- ja tervisemõjudega reo-
aineid. Mitmed uuringud on kinnitanud, et reoained põhjustavad veeloomadel vähi 
esinemissageduse tõusu. Peamisteks ohuteguriteks on seniste andmete põhjal 
raskmetallide ning orgaaniliste reoainete esinemine. 

Põhjameri ja Läänemeri on ühed maailma reostunuimad merealad, kuna nen-
desse veekogudesse on reoained kuhjunud juba tööstusrevolutsiooni algusest 
saadik. Selle aja jooksul on nendes meredes elanud palju mereloomade põlv-
kondi. Seega on olemas eeldused, et mõnede liikidel/populatsioonidel on toiminud 
looduslik valik, mis on soosinud kas tugevamate vähikaitsemehhanismide kuju-
nemist või siis paremate vähikaitsemehhanismidega isendite eelistatud ellu-
jäämist. Nii võib Põhja- ja Läänemerd vaadelda kui „looduslikke laboreid“, kus 
vähikaitsemehhanisme ja nende evolutsiooni on võimalik uurida. 

Reoainete akumulatsiooni tõttu setetes on nende mõjule kõige haavatavamad 
veekogu põhjas elavad liigid. Kuigi Põhja- ja Läänemeres elab mitmeid põhja-
eluviisiga liike, on reoainete mõju uurimisel peamisteks mudelliikideks kujunenud 
jõelest (Platichthys flesus L.) ja soomuslest (Limanda limanda L.). Nende kahe 
liigi põhjal on juba eelmise sajandi keskpaigast saadik läbi viidud ökotoksiko-
loogilisi monitoorimisprogramme, kus vähi esinemine on üheks reostuse mõju 
hindamise markeriks. Seega on nende liikide puhul olemas nii metoodika vähi 
diagnoosimiseks kui ka kui pikaajalised ja geograafiliselt laiaulatuslikud andmed 
vähi esinemissageduse kohta. Mõlemal liigil on leitud, et reostuse toimel kujuneb 
neil välja naha- ja maksavähk. Varasemate uuringute põhjal on soomuslestade 
vähi esinemissagedus kümme korda kõrgem kui jõelestadel, kuid selle erinevuse 
põhjus pole teada. 

Oma doktoritöös uurisingi reostuse ja vähitekke seoseid veekeskkonnas ela-
vatel liikidel, seades eesmärgiks ka vähikaitsega seotud kohastumuste uurimise. 
Alustasin oma tööd laiaulatusliku ülevaate tegemisest varasematest uuringutest, 
et mõista, kui palju üldse veeloomadel reostuse ja vähi vahelisi seoseid on uuri-
tud. Leidsin, et praeguseks on umbes 30 liigi puhul seda seost näidatud. Reostuse 
ja vähi vahelist seost võivad mõjutada ja vahendada ka muud tegurid, näiteks vähki 
esile kutsuvad viirused, mille mõju on uuritud veekilpkonnadel ja California 
merilõvidel, aga ka nakkavate vähivormide esinemine, nagu on leitud mitmel 
karbiliigil. Oma ülevaates leidsin, et kõige paremini on reostuse ja vähi vaheline 
seos tõestatud aga kaladel. 
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Kuna siiani on võrdlevaid uuringuid vähikaitsemehhanismidest tehtud pea-
miselt vaid imetajatel, seadsingi endale järgmiseks ülesandeks uurida vähikaitse-
geene kaladel. Sarnaselt varasemalt avaldatud uuringutega keskendusin vähiga 
seotud geenide koopiate arvule. Minu artikkel, mis on esimene võrdlev uuring 
vähigeenidest kaladel, näitas, et kaladel on tasakaalustatud vähki tekitavate geenide 
(onkogeenide) ja vähki alla suruvate geenide koopiate arv genoomis. Kalad, kes 
kasvavad suureks ja elavad kaua, peavad suureks kasvamiseks vajalike proto-onko-
geenide koopiate suuremat arvu kompenseerima ka vähikaitsegeenide koopiate 
arvu suurendamisega. Võrdlev uuring võimaldas ka ennustada, millised kalaliigid 
on kõige tugevama vähikaitsega (suhteliselt rohkem koopiaid vähikaitsegeenidest 
võrreldes onkogeenidega) ja millised, vastupidi, kõige nõrgema vähikaitsega. 
Seda teadmist saab edaspidi kasutada, hindamaks erinevate liikide ja populat-
sioonide ohustatust näiteks reostuse või muude vähki esile kutsuvate keskkonna-
tegurite tõttu. 

Jõe- ja soomuslestade mudelsüsteemis sain küsida aga uurimisküsimusi teiste 
bioloogiliste mehhanismide kohta, mis lisaks geenikoopiate arvule võiksid vähi 
allasurumisega looduslikus keskkonnas seotud olla. Kuna kummagi liigi genoom 
pole sekveneeritud, saab nende geene uurida avaldumise kaudu, ehk siis geeni-
ekspresiooni tasemeid võrreldes. Uurisin, kas geeniekspressioon erineb jõelestade 
ja soomuslestade vahel, lähtudes teadmisest, et soomuslestadel esineb vähki 
rohkem kui jõelestadel. Samuti uurisin võimalust, et üsna lokaalse iseloomuga 
lestapopulatsioonides võivad sõltuvalt kohalikest reostusoludest tekkida kohastu-
mused, mis aitavad neil populatsioonidel reostuse vähki tekitava mõjuga toime 
tulla. 

Geeniekspressiooni analüüsid viitasid, et vähi tekkeks peab jõelestadel olema 
alla surutud mitmete geenide avaldumise tase, mis võib viidata sellele, et need 
geenid on seotud vähikaitsega. Sama ei ole näha soomuslestadel. See viitab 
võimalusele, et jõelestadel on tõepoolest olemas vähikaitsemehhanismid, mis eri-
nevad soomuslestade omadest ja aitavad neil reostunud keskkonnas elades hoida 
madalamat vähitaset kui soomuslestade populatsioonides täheldada võib. Samal 
ajal leidsin, et jõelestadel avalduvad kõrgel tasemel mitmed reoainete ainevahe-
tusega seotud geenid. Varasemates uuringutes on aktiivset reoainete ainevahetust 
peetud pigem vähki soodustavaks teguriks, sest reoainete metabolismi vahe-
produktid on veelgi tugevamad onkogeenid kui reoained ise. Seega võib speku-
leerida, et just aktiivne reoainete metabolism on jõelestade puhul valikusurveks, 
mille tulemusena on populatsioonidest kadunud vähile vastuvõtlikumad isendid 
ning alles jäänud vaid need, kellel on tugevam vähikaitse. 

Kohaliku kohastumise mustrid olid vähem selged. Leidsin küll rea geene, mis 
avaldusid reostunud keskkonnas, aga mitte puhtas keskkonnas, kuid ei ole selge, 
kas need on seotud erinevustega vähivastases kaitses. Lisaks ei olnud neid geene 
kuigi palju. Need tulemused viitavad, et liikide vahelisel võrdlusel on tõenäoliselt 
rohkem perspektiivi kui liigisisesel lähenemisel, asurkondade võrdlemisel.  

Kuna ei ole täpselt teada, mis mehhanismide kaudu reostus rakkudes vähi-
tekkeni viib, testisin jõe- ja soomuslesta mudelsüsteemi peal ka võimalust, et 
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selleks vahendajaks on oksüdatiivsed kahjustused lestade DNA-s. Reoained põh-
justavad teadaolevalt vabade hapniku radikaalide teket organismis ning need 
omakorda lõhuvad DNA-d. Vead DNA-s võivad rivist välja viia näiteks geenid, 
mis vastutavad vähikaitse eest. Selle hüpoteesi testimiseks mõõtsin lisaks reostus-
tasemele ja vähi esinemise hindamisele maksarakkudest oksüdatiivseid kahjus-
tusi. Minu andmetel aga oksüdatiivsed kahjustused DNA-s see rakusisene mehha-
nism ei ole – DNA kahjustused ei olnud seotud vähi esinemise või puudumisega. 
Mõned huvitavad mustrid siiski leidsin. Suurematel ja vanematel kaladel oli 
rohkem DNA kahjustusi ning Läänemeres oli kaladel kõrgem DNA kahjustuste 
tase võrreldes Põhjamerega. Läänemerd peetakse võrreldes Põhjamerega veelgi 
kehvemas seisus olevaks veekoguks ning tundub, et jälgi sellest võib näha ka 
kalade DNA-s. 

Hulkraksetel liikidel on välja kujunenud looduslikud vähikaitsemehhanismid, 
mis liikide vahel erinevad. Nende erinevuste uurimine aitab mõista vähi evolut-
sioonilist rolli ning vähikaitse arenemist erinevates fülogeneesipuu harudes. 
Tänapäevases maailmas on looduslike vähikaitsemehhanismide ja vähikaitsega 
seotud kohastumuste mõistmine muutunud eriti oluliseks, kuna inimtekkelised 
keskkonnamuutused on suurendanud vähi esinemissagedust nii inimestel, ini-
mesega koos elavatel loomadel kui ka looduslikel liikidel. Looduslike vähikaitse-
mehhanismide ja liikide erineva haavatavuse mõistmine vähitekke kontekstis 
võib tulevikus aidata paremini mõista reostuse mõju looduslikele liikidele. See 
võib panustada ka parematesse regulatsioonimehhanismidesse ning võima-
lustesse kaitsta looduslikke liike ja populatsioone väljasuremise eest. 
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