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ABSTRACT

The round complexity is one of the most critical challenges in the exciting Secure
Multiparty Computation (SMC) protocols for general functionalities. SMC/MPC
is a protocol that jointly computes a function privately over private inputs while
each party knows his input and output and does not learn about others. Using
these protocols in a real-world application computation with high round complex-
ity is more crucial. This is a problem for secret-sharing based SMC protocol sets
which require interaction between computation parties for each operation. Even
though secret-sharing SMC protocols can be the most efficient protocol sets avail-
able, this efficiency only materializes for highly parallel tasks. The reduction of
round complexity will reduce the network latency in the SMC protocol, which is
a challenge to many researchers in the SMC platform. One of the most efficient
strategies to reduce the round complexity in SMC is parallel calculation; this is the
scope of this Thesis’s research. The advancement of the privacy-preserving im-
plementation of the shortest distances and minimum spanning tree algorithms has
motivated researchers to make the privacy-preserving computation of the graph
algorithms usable. Performing such a calculation for a big graph is too costly
because of the network latency in the SMC platform. In this work, we perform
privacy-preserving parallel computations for various graph algorithms that can be
utilized in real-world applications relying on shortest path and minimum spanning
tree algorithms.

In detail, we study secure multiparty computation protocol for Single-Source
Shortest Distances (SSSD), All-Pairs Shortest Distances (APSD), Minimum Span-
ning Trees (MST), and sparse-linear systems with a semiring framework. The
Single-Instruction-Multiple-Data (SIMD) approach is implemented to reduce the
round complexity of the SMC protocol, which in turn reduces the network la-
tency among the parties of the SMC platform. We present state-of-the-art privacy-
preserving parallel computations of Bellman-Ford, Dijkstra, Breadth-First search,
Radius-Stepping SSSD protocols, and Johnson APSD protocol benchmarked with
algorithms, Floyd-Warshall and transitive closure of a graph. On the other hand,
we present the state-of-the-art privacy-preserving parallel computation of Prim’s
minimum spanning tree for the dense graph. Moreover, this Thesis proposed the
first secure multiparty parallel computation of Minimum Spanning Forest (MSF)
protocol based on Prim’s algorithm for dense graphs. The fourth part of our work
presents the state-of-the-art privacy-preserving Algebraic path parallel computa-
tion protocol. The subroutines of the proposed protocol can be used to solve
different problems in sparse-linear systems with a semiring framework.

We extensively benchmark our protocols and their related functions on graphs
of different sizes in different network environments, allowing for a reasonable es-
timate of their performance, including for more extensive applications with spe-
cial shortcuts. Some of our proposed parallel protocols exhibit a speed-up of
thousands of times, making them faster than any protocol in previous works.
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1. INTRODUCTION

1.1. Justification of research

A method has been proposed to implement privacy-preserving computation—
secure multiparty computation, but this method is computationally costly [49,
153]. Privacy-preserving parallel algorithms are needed to expedite the process-
ing of large private data sets for graph algorithms and meet high-end computa-
tional demands. In contrast, privacy-preserving parallel computation of graph
algorithms has not been studied due to the novelty of the technology and the high
computational costs associated with such issues, mainly when dealing with large
data sets. Constructing real-world privacy applications based on secure multiparty
computation is challenging due to the round complexity of the Secure Multiparty
Computation (SMC) protocol [103]. The round complexity problem of SMC pro-
tocol can be solved using parallel computing [56]. This thesis is interested in
providing solutions to various graph algorithms problems.

The combinatorial and algebraic graph algorithms can model various com-
puter science applications, e.g., community detection (social media networks and
contact tracing system of COVID-19), Global Positioning System (GPS)/Google
maps, navigation systems, supply chain networks [141, 171], data mining, bioin-
formatics, numerical analysis and Hyperspectral Imaging (HSI) [52]. Moreover,
parallel graph algorithms are required, for example, to perform efficient aggregat-
ion-based coarsening techniques in parallel preconditioners [149]. Statistical meth-
ods also require the solutions of large sparse systems of linear equations without
knowing each party’s full matrix. Therefore, graph algorithms are fundamen-
tal building blocks in computer science applications, highlighting the need for
privacy-preserving parallel computation of graph algorithms to process large data
sets with varying shapes, including sparse, dense, and planar graphs, with high
computational requirements.

1.2. Research problems

The recent advances in privacy-preserving computation have opened up new pos-
sibilities for developing practical real-world applications [158]. Combinatorial
graph algorithms play a critical role in solving various research problems across
different fields. Most graph algorithms follow a greedy approach, consisting of
several stages to construct the solution. However, the complexity of graph algo-
rithms can become problematic, particularly when they require processing large
datasets. Therefore, there is a pressing need to develop efficient algorithms for
performing these computations while preserving privacy.

The usual approach to privacy-preserving combinatorial graphs algorithms is
the implementation of classical algorithms [58] on top of some SMC protocol
sets. At the same time, such algorithms contain a high number of iterations, with
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the distribution of copies of input data among several parties handled through
the standard means of this protocol set. However, such an approach for privacy-
preserving combinatorial graphs algorithms and an alternative approach [66], i.e.,
privacy-preserving algebraic graph algorithms, is made more complex by several
aspects of the problem itself. Moreover, the typical algorithms should be suitably
adapted to run on top of an SMC protocol set. This approach to privacy-preserving
combinatorial graphs has been reported in [5, 3]. The implementations are for
Bellman-Ford and Dijkstra algorithms. The permutation operation is also used to
mask the real identity of the vertices. This means an extra process will increase
overhead, the method does not show scalability, and the graphs are too small.

Generally, the computations on top of the SMC protocol have a high amount
of communication during running a task when the data input is distributed among
the computation parties of the Multi-party Computation (MPC) platform, caus-
ing network latency overhead that is computationally intensive synchronous, and
sequential. Consequently, the round complexity of a computation involving com-
plex iterations in secure multiparty computation protocols is a worthy goal to be
reduced. Only a little research has been effectively done on such problems, ei-
ther over combinatorial or algebraic graph algorithms. Moreover, algorithms have
been proven challenging to parallelize efficiently. The challenge will worsen us-
ing big graphs, which means high round complexity (High running time in tens
of minutes, hours, or days). These problems make designing real-world privacy
applications somewhat challenging.

1.3. Background of research

One of the most critical challenges in constructing privacy-preserving real appli-
cations is the round complexity of the SMC protocol. Secret-sharing based SMC
protocol sets that require communication between computation parties are the fo-
cus of this research. Although secret-sharing SMC protocols can be among the
most efficient protocol sets, their efficiency only manifests when highly parallel
tasks are addressed. Some studies were conducted to improve the round complex-
ity problem [103, 102, 44]. The problem of round complexity can be solved using
parallel computation; some research improved this problem using parallel calcu-
lation [43, 56]. Nevertheless, the gap is still significant for building real-world
applications that can operate large private data sets.

The research in this thesis focuses on studying and parallelizing different graph
algorithms on top of the secret-sharing based SMC protocols [112]. Therefore,
the work introduces novel methods in the privacy-preserving parallel computation
of some combinatorial [74] or algebraic [66] graphs algorithms. The compu-
tation of graph algorithms using privacy-preserving techniques, whether combi-
natorial or algebraic, is complex when implemented on top of SMC protocols
due to the mentioned round complexity. However, the round complexity can
be reduced if an efficient privacy-preserving parallel computation of graph al-
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gorithms can be constructed using the Single-Instruction-Multiple-Data (SIMD)
approach. Single-Instruction-Multiple-Data is a parallel computation technique
used to achieve data-level parallelism by executing the same instruction on mul-
tiple data points at the same time [72, 73]. SIMD framework is under SecreC
high-level language [145]. SecreC is language-based security for secure multi-
party computation applications. Generally, constructing efficient algorithms can
be done by Parallel computing that will be used to reduce the number of iterating
or by using alternative algorithms that solve the same task [95].

The secure multiparty computation protocols provide secure implementations
for the Arithmetic Black Box (ABB) [61] abstraction, inside which the privacy-
preserving operations are performed without leaking anything about the results
of the main and intermediate computations. The functions of the ABB use its
internal, private memory to store the data during the processing [112]. Each op-
eration incurs significant latency due to the communication between the compu-
tation parties P1, P2 and P3 of the SMC Sharemind [27] platform. Much research
has already discussed various issues in privacy preservation topics, e.g., Wearable
Technology in a review study [100], a survey on the Internet of Vehicles [77],
and data mining [2, 118, 120, 127]. Recently, several methods and techniques
have been developed for privacy-preserving computations in various fields over
the Sharemind SMC platform, such as data mining problem [28], genotyping tech-
niques [99, 134, 36], logic programming [139, 93], statistical data analysis [37,
39, 38, 33, 35, 98].

The classical graph algorithms we target in this work are the Shortest Path
(SP) and Minimum Spanning Tree (MST) over different graphs’ kinds, planar,
sparse, and dense with various sizes. The gap in the round complexity problem
will increase if we apply the protocols for computation with large graphs. Exten-
sive benchmarking results for SMC of shortest path and minimum spanning tree
algorithms have yet to be reported. Implementations of Dijkstra’s and Bellman-
Ford algorithms are documented [5], the implementations on top of Virtual Ideal
Functionality Framework (VIFF) [78] with Ben-Or, Goldwasser and Wigderson
(BGW) protocol [168] used for multiplication and Toft’s protocol [160] for com-
parison. However, the implementations only on the dense representation of small
graphs. Keller and Scholl [104] have implemented the operations of Oblivious
Random Access Machine/Oblivious RAM (ORAM) on top of the SPDZ protocol
set [63] and used them to implement a privacy-preserving version of Dijkstra’s al-
gorithm. The graph they used in the implementation is sparse and dense, and the
implementation is suitable for sparse more than dense. Another implementation
of Dijkstra’s algorithm on small graphs is produced in [3], but no result was shown
for big graphs. Using garbled circuits, an implementation for Dijkstra’s algorithm
is evaluated [50]. This parallel implementation handles 32 circuits simultaneously
on a 32-core server. The result shows that the running time for 20-vertex graphs
is 26 seconds, while for 15 minutes 100-vertex graphs, the parallel implemen-
tation is not scalable and unsuitable for running big graphs. Similarly, garbled
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circuits are used to evaluate Dijkstra’s algorithm on sparse graph [125]. To in-
crease efficiency, oblivious priority queues are employed [165]. The estimate is
that together with JustGarble [16]. Blanton et al. [25] provided data-oblivious
algorithms for the shortest path for secure computation; they theoretically intro-
duced their work without showing actual implementations. All previous works
present protocols on single-source shortest distances by applying some combi-
natorial shortest path algorithms; no such works were implemented before for
All-Pairs shortest distances. Another technique for finding the shortest distances
is Algebraic Path Computation (APC) [70], which also has no such implementa-
tion in privacy-preserving.

In the case of preserving privacy in the minimum spanning trees, previous
works have not efficiently provided solutions for various large graphs. Peeter
Laud implemented a privacy-preserving computation for minimum spanning tree
using Parallel Random Access Machine (PRAM) [114]. His work is efficient
for a sparse graph where the number of edges reaches six times more than ver-
tices, while for a dense graph, the algorithm is inefficient for big graphs. Rao
and Singh [146] presented privacy-preserving MST sequentially by implementing
two algorithms separately, Kruskal and Prim. There is no actual implementation
in their work. The minimum spanning forest, which is a minimum spanning tree
n times, has not been implemented in secure multiparty computation.

In detail, the thesis focuses on constructing a secret sharing based secure mul-
tiparty computation protocols Single-Source Shortest Distance (SSSD) based on
some shortest paths algorithms separately, Radius-Stepping [26], Dijkstra [65],
Bellman-Ford [17], Breadth-First Search (BFS) algorithms [15] in sparse and
dense graphs. As well as privacy-preserving All-Pairs Shortest Distance (APSD)
based on Johnson [96], Floyd-Warshall [71] and the transitive closure of the graph.
Including the shortest path algorithms, this thesis also studies Prim’s minimum
spanning tree [143] and forest algorithms in privacy-preserving parallel compu-
tation. The last part of the study targeted the sparse-linear solver issues, i.e.,
algebraic graph computation and their related algorithms min, sum operations in
semiring structure [81] and block diagonal matrix.

Accelerating the computations on top of SMC protocols using parallel compu-
tation is possible, but there can be significant variance between the sequential and
parallel versions of the computation. Our hypothesis is summarized below.

Efficient protocols with low round complexity for graph algorithms on top of
SMC protocols can be constructed using SIMD parallel computation. The short-
est path algorithms used to build these efficient protocols on top of SMC include
Radius-Stepping, Bellman-Ford, Dijkstra, BFS for SSSD algorithms, and John-
son’s algorithms for APSD. Prim’s algorithm also enables the construction of
minimum spanning tree and forest protocols on top of SMC. Additionally, alge-
braic path computation and related algorithms can be parallelized and efficiently
implemented on top of the SMC Sharemind platform.

23



1.4. Significance of research

The study investigated various parallel methods for graph algorithms, including
minimum spanning trees, shortest distances, and algebraic paths. These algo-
rithms are efficiently implemented on top of secret-sharing based SMC protocols,
and many parts of this intensive work have already been completed with excit-
ing results. This thesis outlines novel parallel methods, along with the results,
speed-up, evaluations, and benchmarking. It also describes the state-of-the-art
privacy-preserving implementations of the shortest distance and minimum span-
ning tree algorithms. Moreover, this is the first work to use such large datasets
in graph computations compared to previous studies. This work investigated the
first privacy-preserving computation of APSD algorithms, and the evaluation of
APSD algorithms is not similar to any prior work.

Moreover, this work proposed the first privacy-preserving computation of Min-
imum Spanning Forest (MSF) protocol, which is efficient for dense and sparse
graphs. The privacy-preserving MSF topic has never been addressed before due
to the high computational cost of finding MSF. The methods we proposed and
implemented in this work make some shortest path and minimum spanning tree
algorithms efficiently work over dense or sparse graphs (no effectiveness in the
number of edges). We evaluated and compared our privacy-preserving shortest
path protocols with each other. The privacy-preserving BFS protocol is the most
efficient protocol on sparse and dense graphs, with logn round complexity. The
unweighted version of the BFS protocols has constant round complexity O(1).
Thus, the implementations of BFS can be used as subroutines for some algorithms
on top of SMC, such as maximum flow algorithms. The speed-up in some of our
new algorithms is thousands of times compared to the others’ works. The paral-
lel methods we presented are novel. The protocols obtained running times faster
than almost all work done before. The algebraic path computation is the first such
work that has never been done before on top of SMC protocols, thereby obtaining
parallel methods for some related computations of the algebraic graphs that can
be used to build up other implementations.

1.5. Research contributions

The purpose of the research presented in this thesis is to study how to reduce
the computational cost of different computations in privacy-preserving, as well
as to identify a suitable set of privacy-preserving subroutines and the manners of
their combination, resulting in arguably as efficient as possible privacy-preserving
implementations of common SSSD, APSD, and MST algorithms. The thesis
presents the following research contributions:

1. Proposed state-of-the-art protocols in privacy-preserving parallel single short-
est paths for dense and sparse graphs.

• A new protocol for privacy-preserving parallel computation of a single-
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source shortest distance based on the radius-stepping algorithm. The
performance of this protocol is compared with the privacy-preserving
implementation of the sequential radius-stepping and ∆-stepping al-
gorithms [129]. The series of tests consider sparse and dense graphs,
as well as graphs whose number of edges (for the given number of
vertices) is similar to planar graphs, where the number of vertices and
the number of edges is public. Still, the identities of vertices, edges,
and weights are private.

• A privacy-preserving implementation of the Bellman-Ford SSSD al-
gorithm for sparse graphs, where the number of vertices and edges is
public. Still, the endpoints and lengths of edges are private. An imple-
mentation with this set of features was presented before by Keller [104],
using heavyweight constructions for oblivious RAM (ORAM) on top
of SMC protocols. Our implementation uses the parallel oblivious
reading subroutine by Laud [114], which is an excellent fit for the
Bellman-Ford algorithm.

• A novel method for a necessary privacy-preserving subroutine of the
Bellman-Ford algorithm—computing the minima of several lists of
private values, where the lengths of individual lists are private, and
only their total length is public.

• A privacy-preserving implementation of Dijkstra’s SSSD algorithm
for dense graphs, where the number of vertices is public, but the
lengths of edges are private. While implementation with this set of
features has been given before [3], we make use of state-of-the-art
subroutines for all parts of the algorithm, thereby learning its actual
performance.

• Another version of the privacy-preserving Dijkstra’s SSSD implemen-
tation is for simultaneously finding the shortest distances for multiple
graphs.

• A state-of-the-art parallel privacy-preserving shortest path protocol
for weighted and unweighted graphs. The two versions of the pro-
posed protocol are based on a breadth-first search algorithm. The
implementation of the proposed protocols was tested using different
graphs, dense and sparse, represented as the adjacency matrix. The re-
sults show that this protocol is the fastest for finding SSSD compared
to other proposed protocols.

2. A privacy-preserving implementation of the Johnson APSD algorithm, con-
verting the graph from a sparse one to a dense one in the process. The
two privacy-preserving protocols of the Dijkstra and Bellman-ford are com-
bined to produce the Johnson APSD protocols. The protocol also uses the
parallel oblivious reading and writing subroutine by Laud [114]. The proto-
col’s performance is extensively compared with the privacy-preserving im-
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plementation of the Floyd-Warshall APSD algorithm and with the private
computation of the transitive closure of the graph.

3. Proposed state-of-the-art protocols in the privacy-preserving parallel mini-
mum spanning tree and forest.

• A state-of-the-art secret-sharing based secure multiparty computation
(SMC) protocol for computing Prim’s minimum spanning trees in
dense graphs. The implementation uses the parallel oblivious read-
ing subroutine by Laud [114].

• Created the first privacy-preserving protocol of the minimum span-
ning forest for sparse and dense graphs. Two versions of the MSF
protocol have been proposed, sequential and parallel. The MSF proto-
cols use the optimized version of the privacy-preserving prims’ MST
protocol.

4. Proposed state-of-the-art protocol in privacy-preserving algebraic path par-
allel computation. The protocol uses the sparse representation of an (adja-
cency) matrix, where the locations of edges are public while their lengths
are private. We propose suitable data structures and normalizations for this
task.

• An optimized version of the privacy-preserving SSSD Bellman-Ford
protocol. The values of the edges are public, while the values of the
weights are private. This protocol is benchmarked with algebraic path
computation for different graphs.

5. An extensive benchmarking of the proposed protocols and their parts on
graphs of different sizes is widely performed, thereby obtaining a reason-
able estimate for their performance in larger applications, including those
where specific shortcuts (e.g., not running the whole number of iterations)
are justified. The proposed protocols in this work were implemented on top
of secure multiparty computation protocols over different networks.

1.6. Thesis outline

The author has designed different protocols and related algorithms to solve vari-
ous problems in graph algorithms and algebraic path computation on secure mul-
tiparty computation protocols. The author’s primary strategy is to use single-
instruction multiple data to efficiently reduce the high computational cost of such
greedy algorithms on the SMC protocol set. This can be applied to different al-
gorithms, not limited to those proposed in this work. Consequently, the proposed
protocols in this work can serve as case studies or examples for implementing
SIMD parallel computation in a privacy-preserving manner, efficiently reducing
the number of rounds in SMC protocols. This thesis is organized into different
sections or chapters and includes extensive benchmarking, experiments, and anal-
ysis showing the efficient privacy-preserving parallel computation of graph pro-
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tocols. These protocols can be used in building real-world applications in various
technology fields. This thesis is outlined as follows:

Chapter 2 gives an overview of secure multiparty computation and its related
issues. This chapter also briefly summarises graph theory and some shortest
path and minimum spanning tree algorithms. A summary is outlined for alge-
braic graph theory, specifically, Algebraic path computation and semiring frame-
work. Furthermore, we describe the essential algorithms of our proposed privacy-
preserving SSSD, APSD, MST, and MSF protocols and highlight the closer re-
lated works in the parallel and sequential calculation for graph algorithms in
privacy-preserving and non-privacy-preserving.

Chapter 3 describes and discusses the methods and related issues in perform-
ing the research, tools, and materials. An overview of the Sharemind framework,
the SecreC high-level programming language, and their parallel framework. The
chapter has subsections for presenting the empirical research and methodology,
research procedures, the methods of analyzing data, the abstraction, and the nota-
tions of the SMC protocol, as well as the experiments set up and the architecture
of the SMC platform we use in the implementation.

Chapter 4 describes the proposed protocols and their subroutines for comput-
ing the single-source shortest distances for sparse, dense, and planar graphs. The
chapter expressly represents the six protocols of privacy-preserving SSSD and
their related algorithms. First, we present the privacy-preserving Dijkstra’s pro-
tocol and the privacy-preserving Bellman-Ford versions of the protocol. These
contributions are based on the previous publication of the author [8].

• Anagreh, M., Laud, P. and Vainikko, E.: 2021. Parallel Privacy-Preserving
Shortest Path Algorithms. Cryptography, 5(4), p.27(2021).

The chapter also presents another single-source shortest distance protocol, the
privacy-preserving radius-stepping published in [12].

• Anagreh, M., Vainikko, E. and Laud, P.: Parallel Privacy-Preserving Short-
est Paths by Radius-Stepping. In: 2021 29th Euromicro International Con-
ference on Parallel, Distributed and Network-Based Processing (PDP). IEEE.
2021, pp. 276–280(2021).

Finally, the last protocol presented in this chapter is privacy-preserving BFS’s
shortest distances; the protocol has two different versions for dealing with weighted
graphs and the second for an unweighted graph. This contribution is based on the
previously published paper [10].
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• Anagreh, M., Laud, P. and Vainikko, E.: 2022. Privacy-Preserving Paral-
lel Computation of Shortest Path Algorithms with Low Round Complexity.
In Proceedings of the 8th International Conference on Information Systems
Security and Privacy - ICISSP, ISBN 978-989-758-553-1, pages 37-47.

As well as this chapter presents the round and communication complexities of
the proposed protocols and comparisons among them. Furthermore, it shows the
security and privacy of the proposed protocols. We discuss the security proof of
Bellman-Ford’s SSSD as an extending operation in ABB.

Chapter 5 presents how to use the privacy-preserving Dijkstra and Bellman-Ford
protocols to build the parallel version of the privacy-preserving Johnson All-
pairs shortest distances protocol. As well presents the privacy-preserving Floyd-
Warshall, and transitive closure of the graph on top of SMC protocols to be used in
benchmarking them with the Johnson APSD protocol. This contribution is based
on the published paper [8].

• Anagreh, M., Laud, P. and Vainikko, E.: 2021. Parallel Privacy-Preserving
Shortest Path Algorithms. Cryptography, 5(4), p.27(2021).

Chapter 6 describes the privacy-preserving parallel computation for Prim’s min-
imum spanning tree and forest protocols. In detail, the chapter presents a secret-
sharing based secure multiparty computation (SMC) protocol for computing, Prim’s
MST. This contribution is based on published publications for the author [11] in
the following:

• Anagreh, M., Vainikko, E. and Laud, P.: 2021. Parallel Privacy-preserving
Computation of Minimum Spanning Trees. In Proceedings of the 7th Inter-
national Conference on Information Systems Security and Privacy - ICISSP,
ISBN 978-989-758-491-6; ISSN 2184-4356, pages 181-190.

This chapter also presents the privacy-preserving parallel computation of the
minimum spanning forest protocol, which has two versions, sequential and paral-
lel. The creation of the MSF protocol is based on the optimized version of MST
protocol, which is also presented in this chapter. These contributions are based on
the published paper [9] in the following:

• Anagreh, M., Laud, P. and Vainikko, E.: 2022. Privacy-Preserving Parallel
Computation of Minimum Spanning Forest. SN Computer Science Journal,
3(6), pp.1-19.
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Chapter 7 describes Algebraic path computation and their related algorithms,
which are all presented for sparsely represented graphs. The main calculation of
the algebraic path, the min and sum semiring structure operations, and the block
diagonal matrix, which is presented sparsely, are all illustrated. Moreover, this
chapter presents the third version of the Bellman-Ford protocol for finding SSSD
with public edges for undirected graphs. The contributions are based on the pub-
lished paper [7] entitled:

• Anagreh, M. and Laud, P.: 2023. A Parallel Privacy-Preserving Shortest
Path Protocol from a Path Algebra Problem. In Data Privacy Manage-
ment, Cryptocurrencies and Blockchain Technology: ESORICS 2022 In-
ternational Workshops, DPM 2022 and CBT 2022, Copenhagen, Denmark,
September 26–30, 2022, Revised Selected Papers (pp. 120-135). Cham:
Springer International Publishing.

Chapter 8 describes the experiments, the data input, result testing, and analysis
for the proposed privacy-preserving SSSD protocols. The experiments are based
on the protocols’ running time and data volume. In detail, it presents the bench-
marking result in previous work, the investigations of the SSSD protocols sepa-
rately with their related algorithms, and compares all protocols. As well as present
the experiments of Johnson APSD protocols with Floyd-Warshall and transitive
closure of the graph in privacy preservation. The last section presents the evalu-
ation of the APSD protocols depending on running time, data volume, and over
different network environments.

Chapter 9 presents the benchmarking result in previous works, privacy preser-
vation versions experiments of minimum spanning tree protocols and minimum
spanning forest protocols, sequential and parallel. The experiments used various
graph sizes in different network environments. As well as the evaluation of the
privacy-preserving MST prim’s protocols with previous work is presented.

Chapter 10 describes the benchmarking result for the privacy-preserving Alge-
braic path computation with its related algorithms that are represented sparsely in
parallel. As well as describe the benchmarking result for the privacy-preserving
Bellman-Ford Version-3, which has public edges. Moreover, it presents the eval-
uation of both protocols using various graphs sizes in different network environ-
ments.

Chapter 11 describes the work’s conclusions, future work, and recommendations.
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2. BACKGROUND AND RELATED WORKS

2.1. Secure Multiparty Computation

Secure multiparty computation (SMC/MPC) is a cryptographic protocol that al-
lows n parties to compute a function (y1, . . . ,yn) = F (x1, . . . ,xn), with the party Pi

submitting xi and learning yi [60]. Moreover, the i-th party does not learn anything
beyond xi and yi, and whatever can be deduced from them, considering the public
description of the function F . More generally, there is a downwards closed set
of subsets of {1, . . . ,n}, such that for any element I of this set, the coalition of
parties {Pi}i∈I learns nothing beyond their inputs (xi)i∈I and their outputs (yi)i∈I
during the protocol computing F . Generic protocols for secure multiparty com-
putation translate a computation represented as a boolean or arithmetic circuit into
a cryptographic protocol [172, 53, 82]. There exist several different approaches to
executing the circuit or program of the function F in a privacy-preserving man-
ner, including garbled circuits [172], homomorphic encryption [61, 89], or secret
sharing [79, 46, 62], and offering security either against passive or active adver-
saries [138]. The secret sharing approach can accept an adversary who is rolling
up t of the total n computation parties {Pn}, where t varies depending on the pro-
tocol Π′ of an adversary. The secret sharing approach is secure when the number
of computation parties t < n/2 in the case of a passive adversary, while it is secure
when t < n/3 for an active adversary.

A passive adversary, which is also called Semi-honest, is the one who corrupts
computation parties {Pi} but executes the steps of the protocols honestly, which
the aim is to learn more information about the messages of other computation
parties. In the semi-honest model, we can say that a protocol Π is secure enough
if the whole computations in (y1, . . . ,yn) = F (x1, . . . ,xn) that is computed by a
party Pi in the protocol Π can be only obtained from its input xi and output yi.

A malicious adversary is an adversary who may convince corrupted parties
{Pi} to deviate arbitrarily from the prescribed protocol Π′ to violate the secu-
rity of the protocol Π. The malicious adversary has features and facilities of the
semi-honest adversary in learning some information about the messages of the
computation parties {Pi} and that he can make some actions that will threaten
the security in sachem. In other words, the malicious has more powerful techni-
cal aspects than the semi-honest ones, changing the messages and manipulating
and arbitrarily creating messages for the computation parties {Pi}. The general-
purpose model for the analysis of cryptographic protocols with strong security
properties is called the framework of universal composability of the SMC [47,
48].

2.1.1. Secret-sharing based SMC protocols

In this work, we use this approach to execute the program of the function F in a
privacy-preserving manner. Secret-shared is a cryptography technique for taking
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a secret s and splitting it into multiple shares, s1, s2, . . ., sn, and distributing the
shares among the parties Pi. For reconstructing the secret s, parties bring their
respective shares together. The secure multiparty computation uses the concept
of secret sharing, which was independently produced by Shamir [152] and Blak-
ley [24]. In detail, the handler of a secret called dealer, besides creating the n
shares of a secret, as well dealer creates the threshold t, which is the number of
secret shares {si, . . . ,s j} that require to reconstruct the secret t ⩽ n.

The secret-shared data can be processed via secure multiparty computation
protocols. These protocols take the t secret-shared as input and output a n secret-
shared result during the computation. If the privacy-preserving manner has three
computation parities P1, P2 and P3, that means 3-out-of-3 secret sharing. It sup-
ports several different SMC schemes called protection domain.

2.1.2. Universal composability

The framework of Universal Composability (UB) considers a set of interacting
Turing machines [92] running in parallel and sending data among them, including
the adversarial Turing machines. The framework states that when a set of Tur-
ing machines securely implements the other set—this happens when any behavior
observed by an environment Env machine while interacting with the first set can
be matched by the second set. The value of the framework is in the composition
theorem. A protocol Π may securely implement an ideal functionality G in the
F -hybrid model, i.e., the Turing machines constituting Π may access some ideal
functionality F . Suppose Ξ is another protocol that securely implements the func-
tionality F . In that case, the composition of Π and Ξ (i.e., for each protocol party,
we compose this party’s Turing machine in Π with this party’s Turing machine in
Ξ) securely implements G .

In the ideal world, the computation parties {Pi} privately send their private
inputs {xi} to a trusted party Tp to compute a function F , refereed to as func-
tionality FABB . Each party has its own private input xi ∈ {x1,x2, . . . ,xn}, which
is sent to trusted party Tp who securely compute the function F (x1,x2, . . . ,xn).
Then, result (y1,y2, . . . ,yn) will be returned to the parties {Pi}. The function F
is known to every party (y1, . . . ,yn) = F (x1, . . . ,xn). Each party knows his own
xi, learns his own output yi, and does not learn other parties x j and y j. When an
adversary A is trying to attack the ideal world, the adversary A has control only
in any computation parties Pi, but not against the trusted party Tp.

In the real world, the trusted party does not exist—ideal world with its trusted
party Tp is used only for benchmarking to evaluate an actual protocol’s secu-
rity. Rather than the trusted part Tp, the real world uses a protocol Π for parties
communicating with each other while performing the secure computation in func-
tion F . The computation parties run a protocol Π and send their private inputs
{x1,x2, . . . ,xn} to the function F , then getting their private output {y1,y2, . . . ,yn}.
An adversary A can corrupt the computation parties Pi may either deviate arbi-

31



trarily in their behavior or follow the protocol Π. The protocol Π is secure if an
adversary A can achieve any effect in the real world that can also be achieved in
the ideal world by a corresponding adversary A ′.

2.1.3. Arithmetic Black Box

The Arithmetic Black Box (ABB) is an ideal functionality FABB that performs
calculations with private data. It allows parties to store the private data handed
over to it, performs operations based on users’ instructions, and sends certain
values back to users if a sufficient number of them request it. Let us suppose a
party sends a command store(v) to the ideal functionality to do some calculation,
where v is some value. The functionality FABB receives and stores the value v,
then assigns a fresh handle h to that value by storing the pair (h,v). Finally, the
ideal functionality sends h to all parties. To perform the computations without
revealing any knowledge about the intermediate result, the ABB waits for a com-
mand (perform,op,h1, . . . ,hk) from all (or sufficiently many) computing parties.
It looks up the values v1, . . . ,vk stored with the handles h1, . . . ,hk, applies the oper-
ation op on them, obtaining a value v, stores it under a new handle h, and returns h
to all parties. To learn a value stored under the handle h, all (or sufficiently many)
parties send the command (declassify,h) to the ABB, which then looks up the pair
(h,v) and responds with v [112].

The ideal functionality FABB forward to the adversary the commands they re-
ceive from the parties P1, . . . , Pn, except for the sensitive input values that are
part of a command. Also, the adversary receives the fresh handles that the ABB
creates and the results of declassification.

2.1.4. Secret-sharing based parallel SMC

In the secure multiparty computation, secret shares are the parts of a secret s,
which are elements of values. Usually, the secrets’ amount n is based on the num-
ber of private values which sequentially arrived from computation on top of SMC.
In contrast, in the secure multiparty parallel computation, the computation parties
simultaneously perform operations on the multiple data using a single instruction,
which means the SIMD parallel computation on top of SMC produces vectors
transmitted by secret shares to the computation parties {Pi}. This technique will
reduce the number of round complexity; hence it will increase the communica-
tion for each round. Sequentially, the transmitted bits among computation parties
{Pi} is a single value that will be sent one by one. In parallel, the transmitted bits
among computation parties {Pi} are located in a vector that will be sent once.

The operating system will divide the vector into groups if the transmitted vec-
tor’s size is bigger than the bandwidth. Later, data groups will be sent in sepa-
rate round complexity—an extra round complexity but still less than in sequential
computation of SMC protocols. The parallel computation reduces the amount
of the secret share since the interaction required among computation parties will
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be reduced. We can summarize that the parallel computation reduces the round
complexity of SMC protocols, reducing the number of secret shares among the
computation parties. This will positively affect the speed-up of the computation;
at the same time, it will not affect privacy.

2.2. Combinatorial graph problems

2.2.1. Graph

The graph is a mathematical structure consisting of points called vertices |V | con-
nected subset of them (possibly empty) by lines called edges |E|. The edges
between vertices may have values that describe the distance of the edges called
weights |W |. The graph can be directed, which means that its edges have a partic-
ular direction between vertices and can be undirected (both sides). Let G = (V,E)
be a directed weighted graph with the set of vertices V = {0,1,2, . . . ,n−1}, and
the set of the directed weighted edges E ⊆ V ×V . Each edge e ∈ E has a weight
w(e) ∈ R.

A graph G = (V,E) can be represented in computer memory differently. The
adjacency matrix of G is a |V | × |V | matrix over Z∪{∞}, where the entry at u-
th row and v-th column is w(u,v). Such representation has |V |2 entries, and we
call it the dense representation. On the other hand, the adjacency list represen-
tation gives for each vertex u ∈ V the list of pairs (v1,w1), . . . ,(vk,wk), where
(u,v1), . . . ,(u,vk) are all edges in G that start in u, and wi = w(u,vi). Such repre-
sentation has O(|E|) entries, and we call it the sparse representation. If edges |E|
are significantly smaller than |V |2, then sparse representation takes up less space
than dense representation, and the algorithms working on sparse representation
may be faster [167].

A graph (actually, an infinite family of graphs) is sparse if its number of edges
is “proportional” to its number of vertices, |E| = O(|V |). A graph is dense if
|E| = ω(|V |). A graph is planar if it can be drawn as a plane without crossing
the edges outside vertices. If G is planar, then |E| ≤ 3|V |−6 according to Euler’s
formula relating the numbers of a planar graph’s edges, vertices, and faces of its
drawing [41].

2.2.2. Shortest path problem

A path δ(u,v) from source vertex u to target vertex v in the graph G is a finite
sequence of vertices u= v0,v1, ...,vn = v, where (vi−1,vi)∈ E for all i∈ {1, . . . ,n}.
The shortest path between two vertices δ(u,v) in a graph G is a path has the
minimum sum of the weights ∑

n
i=1 w(vi−1,vi) of the whole vertices among the

source vertex u to target vertex v, shortest distance from u to v is [59]:

w(u,v) =

{
min{w(p) : u−→ v}, if a path u−→ v
∞, otherwise.
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The shortest path problem is finding a path between two vertices in a graph
G = (V,E) such that the sum of edges weight w(e) ∈ R from vertex u to vertex
v is the minimum. It is one of the most critical problems in combinatorial and
algebraic graph theories. The tradeoffs between computation and communication
cost significantly make some algorithms optimal in different circumstances.

Finding the single-source shortest distances in a small or medium-sized graph
can be done by implementing one of the classical sequential SSSD algorithms
such as Dijkstra, Bellman-Ford, or Thorup [159]. Dijkstra works with non-negative
weights for the edges, while Bellman-Ford works over some negative weights.
The Bellman-Ford algorithm works for general graphs with time complexity O(nm)
where n is the number of vertices, and m is the number of the weighted edges in the
graph G. The time complexity of the Dijkstra algorithm is O(n2) in the adjacency
matrix representation of G, and O(m logn) in the adjacency list representation
(using a binary heap).

Some sequential algorithms’ poor worst-case bounds may perform well for
such graphs, while processing large graphs might need parallel algorithms. The
parallel single-source shortest path algorithms for solving this problem are ∆-
Stepping and Radius-Stepping algorithms. The ∆-stepping algorithm works by
correcting the tentative distances of the vertex several times during edge relax-
ations until all tentative distances are settled; it is called a label-correcting algo-
rithm. The Radius-stepping algorithm corrects the shortcoming of the ∆-stepping
algorithm: it has a provable upper bound on the number of steps. The average time
complexity of the ∆-stepping algorithm is O(n logn+m), while it is O(m logn)
for the Radius-stepping algorithm.

The shortest paths also can be calculated by applying non-classical shortest
path algorithms such as a search algorithm, i.e., Breadth-first search, and different
techniques like Algebraic path computation. The algebraic path problem has a
different approach based on a particular algebraic structure called a closed semir-
ing. Moreover, the general setting of the problem is for solving various graph
problems, not only algebraic paths [70].

The second version of the shortest path problem is the all-pairs shortest dis-
tance which involves computing the shortest path among all vertices in a graph G.
A naive approach to the computation of all-pairs shortest distance would have a
computational complexity that is n times the computational complexity of SSSD,
where n is the number of the graph’s vertices. Different algorithms for all-pairs
shortest distance, such as Johnson, Floyd-Warshall, and transitive closure. John-
son’s algorithm with O(nm+ n2 logn) time complexity is more efficient than the
Floyd-Warshall algorithm, the time complexity of the Floyd-Warshall is O(n3).
Johnson uses Bellman-Ford and Dijkstra algorithms; optimizing Bellman-Ford,
or Dijkstra will positively affect Johnson’s algorithm.
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2.2.3. Minimum spanning tree and forest

A Spanning Tree (ST) of a connected graph G is a subgraph that is a tree that
includes all of the vertices |V | of G, and every edge |E| in the tree T belongs
to the graph G. The minimum spanning tree for the graph G is a spanning tree
whose edge weights are as minimum as possible for weighted graphs. The oldest
algorithm for finding a minimum spanning tree or forest for a not connected graph
is Borůvka’s Algorithm [42]. The most well-known MST algorithms are Prim’s
minimum spanning tree algorithm for a graph and Kruskal algorithm [110], given
graph must be connected, undirected, and weighted. The general idea in MST is
to create two sets of vertices. The first set includes the vertices already in MST,
while the second contains those not included yet. Prim’s algorithm creates the
MST from any vertex in the graph G. In contrast, Kruskal builds the MST from
the vertex with the smallest weight in the graph [167].

Both Prim and Kruskal’s algorithms are a greedy approach to the MST prob-
lem, with few significant differences. Prim’s algorithm is the best option to run
over dense graphs, while Kruskal is more efficient over the sparse graph. More-
over, Prim’s algorithm traverses one vertex more than once in minimum getting,
while the traversing in Kruskal for one vertex is once. The time complexity of the
prim’s algorithms is O(n2), and in the Fibonacci heap’s structure, it can be im-
proved up to O(m logn). In contrast, the time complexity in Kruskal’s algorithm
is O(m logn) [67].

The computation of the minimum spanning forest is considered the computa-
tional squaring of the minimum spanning tree that would increase the time com-
plexity n times. Indeed, the time complexity of the minimum spanning forest is
n times prim or Kruskal’s algorithms. The high time complexity of the minimum
spanning forest can be reduced by parallelization of the unconnected components
of the graph. A parallel algorithm for finding the minimum spanning forest for an
undirected graph and minimum spanning tree for the connected components are
presented in [13]. The Boruvka algorithm for both finding MST and MSF might
be easily parallelized. The naive parallel approach for finding MSF, regardless of
the algorithm, simultaneously runs each component of the unconnected graph on
a processor, collecting the results from each component to establish the forest.

2.3. Algebraic graph theory

The approach of which algebraic methods are applied to various graph problems,
such as minimum spanning tree and shortest path called Algebraic graph theory.
It has three main branches: linear algebra, group theory, and graph invariants [20].
The algebraic properties of matrices are related to the combinatorial properties of
the graph and their applications. Various graph problems can be solved combina-
torially. Thus, it can also be solved by algebra.

35



2.3.1. Algebraic path computation

Let G = (V,E) be a weighted graph with a set of the vertices V = {1,2, . . . ,n},
and a set of the weighted edges E ⊆ V ×V and a weight function W : E → S,
where S is a semiring. A semiring (or dioid) is an algebraic structure with two
binary operations, ⊕ and ⊗. A path in G among any two non-neighbor vertices
is a sequence of vertices P = {v1,v2, . . . ,vn} and the weight of a path which is
defined in the semiring as W (p) = w(v1,v2)⊗w(v2,v3)⊗, . . . ,⊗w(vn−1,vn). Let
an n×n matrix A = [ai j] with graph G = G(A), where ai j = ∞ if there is no edge
between the vertices, i be associated j in graph G. The two versions of the shortest
distance problems over the algebraic structure are given as follows [86]:

• For single-source shortest distance, finding the vector X̄ = [x(i)] of distances
x(i) from vertex 1 to all vertices i in the graph G. Finding the shortest path
is iteratively given by sum +, and min operations as follows :

x(1) = min(min(x( j) + a j1), 0),
x(i) = min(min(x( j) + a ji), ∞), where i = 2, . . . ,n

The operations, min will be substituted by⊕ and sum + will substituted by
⊗. The distances in the graph using semiring structure satisfy the following:

x(1) = ⊕ ( ⊕ ( x( j) ⊗ a j1 ), 0 ),
x(i) = ⊕ ( ⊕ ( x( j) ⊗ a ji ), ∞ ), where i = 2, . . . ,n, and denoting Ī(1) =
[0,∞, . . . ,∞],

X̄ = X̄⊗A⊕ Ī(1) (2.1)

• For all-pairs shortest distance, finding the matrix X = [x(i, j)] of distances
between all pairs of the vertices in the graph G, and denoting I = [δii], δii =
0, δi j = ∞ if i ̸= j.

X = X⊗A⊕ I (2.2)

The systems (2.1) for vector and (2.2) for matrix can be used to solve vari-
ous path problems classes, existence, enumeration, counting, and optimization.
i.e., paths of maximum capacity, paths with a minimum number of arcs, paths of
maximum reliability, reliability of a network, longest paths, and shortest paths.

2.3.2. Algebraic framework for minimum spanning tree

Besides solving the shortest path problem using the semiring structure, it can also
be used to solve other graph problems, such as the minimum spanning tree. An-
other structure can be used to solve MST problem called c-semiring—a constraint-
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based semiring. We can define c-semiring as a semiring whose addition opera-
tion is disabled and described over arbitrary sets [22, 21]. This general algebraic
framework for solving minimum spanning trees is similar to the one proposed for
shortest path problems in [130].

2.4. Overview of essential algorithms

This section presents the essential algorithms of the single-source shortest dis-
tance, all-pairs shortest distance, and minimum spanning tree. Our proposed pro-
tocols are constructed by following the general structure of that classical SSSD,
APSD, MST, and MSF algorithms.

2.4.1. Overview algorithms for single-source shortest distance

Dijkstra Algorithm

The Dijkstra algorithm is a greedy approach to solve the single-source shortest
path problem in various ways, such as the Dijkstra algorithm with a list [117, 142],
with binary heap [96] and with Fibonacci heap [76]. The solution to the SSSD
problem in the Dijkstra algorithm is for both directed and undirected graphs; all
edges E must have non-negative weights, and the graph must be connected.

Algorithm 1: Dijkstra
Data: Adjacency matrix G[u,v], number of vertices n, source vertex s
Result: Distances d⃗

1 Function minDistance(d⃗,M⃗) is
2 m = ∞

3 for v = 0 to n−1 do
4 if M[v] == false && d[v] ≤ m then
5 m = d[v], u = v

6 return u

7 begin
8 for i = 0 to n−1 do
9 d[i] = ∞, M[i] = false

10 d[s] = 0
11 for j = 0 to n−1 do
12 u = minDistance(d⃗,M⃗), M[u] = true
13 for v = 0 to n−1 do
14 if [u,v] > 0 && M[v] == false && d[u] + g[u,v] < d[v] then
15 d[v] = d[u]+g[u,v]

16 return d⃗
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The bounds of the time complexity of Dijkstra’s algorithm on a graph G with
edges E and vertices V depend on the data structures used by the algorithm. The
time complexity of Dijkstra’s algorithm with a list is O(n2), where n is the number
of vertices and m is the number of edges. The time complexity with the binary
heap is O((m+n) logn). Algorithm 1 is the Dijkstra algorithm with an adjacency
matrix; the time complexity is O(n2). It also can perform better for finding SSSD
on a dense graph. Once the algorithm starts to iterate from source vertex s to target
vertices v ∈ V , the algorithm finds the minimum distance from vertex u to vertex
v until the last vertex in the graph G, and it is a blind search that will consume
much time.

Bellman-Ford Algorithm

The Bellman-Ford algorithm finds the shortest paths from a single source ver-
tex s to all other vertices {v0,v1, ...,vn−1} ∈ V in a weighted undirected graph
G. Bellman-Ford is more straightforward than the Dijkstra algorithm and suits
well for distributed systems, so it is highly recommended to be used to construct
privacy-preserving protocols. The shortcoming in the Bellman-Ford Algorithm is
that the time complexity is O(nm), where n is a number of vertices, and m is a
number of edges, which is more complex than Dijkstra.

Algorithm 2: Bellman-Ford Algorithm
Data: G = (V,E)
Data: Source vertex s
Result: Distances d⃗

1 begin
2 foreach v ∈ |V | do
3 d[v] = ∞

4 d[s] = 0

5 foreach v ∈ |V | do
6 foreach e ∈ |E| do
7 if (d[u]+w(e)< d[v]) then
8 d[v] = d[u] + w(e)

9 foreach e ∈ |E| do
10 if (d[u]+w(e)< d[v]) then
11 error : Graph contains a negative−weight cycle

12 return d⃗

In the case of the negative cycle, there is no shortest path because any path
can be made cheaper by one more walk around the negative cycle. Several graphs
have a negative cycle, so the Dijkstra algorithm is not the best option for all kinds
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of such graphs. Bellman-Ford Algorithm can detect and report where there is a
negative cycle in the graph; see Algorithm 2.

The main feature of the Bellman-Ford is relaxation, which is the approxima-
tions to the shortest distance are replaced by shorter ones until they eventually
reach the correct distance (shortest path). Bellman-Ford algorithm relaxes all the
edges E compared to the Dijkstra algorithm, which uses the priority queue. This
Bellman-Ford feature allows an application to have a larger range of inputs than
the Dijkstra algorithm.

Radius-Stepping Algorithm

Radius-stepping algorithm is a trade-off algorithm between the work and depth
bounds for the single-source shortest paths. The algorithm finds the single-source
shortest paths for the weighted undirected graph G, where the vertices V and edges
E are represented in an adjacency matrix as input to the algorithm. As well as the
source vertex s, a target radius value for every vertex is given as a function r: V
→ R+.

The Radius-Stepping algorithm is a hybrid algorithm of the Dijkstra and Bellman-
Ford algorithms. The steps of the Bellman-Ford algorithm are internal operations
in the Dijkstra algorithm. The Dijkstra part visit vertices in increasing distance
from the source s and settling each vertex v ∈V in the undirected graph G (Deter-
mining the correct distance d(s,v)).

Algorithm 3: Radius-Stepping
Data: G = (V,E), vertex radii r(·), source vertex s
Result: The graph distance δ⃗ from s

1 δ(·)←+∞, δ(s)← 0
2 foreach v ∈ N(s) do
3 δ(v)← w(s,v)
4 S0←{s}
5 i← 1

6 while |Si−1| < |V | do
7 di←minv∈V\Si−1{δ(v)+ r(v)}
8 repeat
9 foreach u ∈V \Si−1 s.t δ(u)≤ di do

10 foreach v ∈ N(u)\Si−1 do
11 δ(v)←min{δ(v),δ(u)+w(u,v)}

12 until no δ(v)≤ di was updated
13 Si = {v | δ(v)≤ di}
14 i = i+1

15 return δ⃗
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Instead of visiting one vertex v at a time, Radius-Stepping visits the vertices in
steps (inside the while-loop, from repeat to the end in Algorithm 3). The algorithm
increases the radius centered at vertex s from di−1 to di, and all vertices v ∈ V in
the annulus di−1 < d(s,v) < di will be settled. The Bellman-Ford parts (Repeat-
Until Loop) settle the vertices in sub-steps. In the ∆-stepping algorithm, the radius
will be increased by a fixed amount in each step in the round distance di = di−1 +
∆. In the worst case, this increase can require θ(n) sub-steps. As well as in some
cases, it required θ(nm) work because each sub-step will perform the computation
on the same set of vertices and their edges. The Radius-Stepping algorithm solves
this problem efficiently by proposing a new round distance di in each round.

The objective is bounding the number of sub-steps to decrease the time com-
plexity of processing the same set of vertices and their edges in each sub-step. In
general, the Radius-Stepping algorithm has efficiently optimized the shortcoming
in the ∆-Stepping algorithm, proving a bound on the number of steps. The contri-
bution of radius-stepping algorithms is optimizing the algorithm by using SIMD
to run efficiently, reducing time complexity.

Breadth-First Search Algorithm

The serial version of the Breadth-First Search algorithm is presented in Algo-
rithm 4. The main feature of this algorithm is traversing over all vertices in the
graph using two stacks, Frontier Stack (FS) and Next Frontier Stack (NS). The
stacks are to store the visited vertices; the stack FS is to store the visited vertices,
while the stack NS is to store the next frontier of the visited vertices.

Algorithm 4: Serial breadth-first search
Data: Adjacency matrix G ∈ Zn×n, source vertex s
Result: The graph distance δ⃗ from s

1 begin
2 forall v ∈V do δ(v)←+∞

3 δ[s]← 0, level← 0 FS←{},NS←{}
4 push(s,FS)
5 while FS ̸= {} do
6 foreach u ∈ FS do
7 foreach neighbour v of u do
8 if δ[v]← ∞ then
9 push(v,NS) δ[v]← level

10 FS := NS
11 NS := {}
12 level := level+1

13 return δ⃗
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The frontier has some distances for vertices from the source vertex s; distances
are called level. The neighbors of this vertex have to be explored, some of which
are not explored yet. The BFS algorithm discovers these vertices and stores them
in the next frontier, and so on, until all vertices in the graph are already stored
in the stack FS. In the outer while-loop, the number of the iterations (Iter) is
bounded by the distances of the longest shortest distance from source vertex s to
any vertex in the whole graph G. The two for-loops can be executed in parallel,
either in shared or distributed memory, using some parallel framework.

This work uses the same algorithmic structure of the breadth-first search al-
gorithm to perform the parallel calculation of the BFS using Single-instruction-
multiple-data. The elements of the two sets of vertices u,v ∈V , will be vectorized
in two private vectors J⃗vK and J⃗uK. Then, using the SIMD instructions, the algo-
rithm can traverse over all vertices in the graph simultaneously, then update the
distances, eventually finding the shortest distances in the given graph G.

2.4.2. Overview algorithms for the all-pairs shortest distance

Johnson’s algorithm

Johnson’s algorithm is a weighted directed graph G algorithm that finds the short-
est paths between all pairs of vertices V , as illustrated in Algorithm 5.

Algorithm 5: Johnson Algorithm
Data: Source vertex s, Adjacency matrix G ∈ Zn×n

Result: All-pairs shortest distances [D]
1 begin
2 Create [G′], where
3 G′.V = G.V ∪ {s}, G′.E = G.E ∪ {(s,v) : v ∈ G.V}, and
4 w(s,v) = 0 for all v ∈ G.V
5 if Bellman-Ford(G′, w ,s) = false then
6 return Negative cycle

7 else
8 foreach vertex v ∈ G′.V do
9 h(v) = δ[s,v] // computed by Bellman-Ford

10 foreach edge e(u,v) ∈G′.E do
11 w′(u,v) = w(u,v)+h(u)−h(v)

12 foreach vertex u ∈ G.V do
13 D′[u,v] = Dijkstra(G, w’, u)
14 foreach vertex v ∈ G.V do
15 D[u,v] = D′[u,v]+h(v)−h(u)

16 return [D]
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This algorithm does not allow for a negative weight cycle but for some negative-
weight edges. Dijkstra and Bellman-Ford algorithms are subroutines in the John-
son algorithm. The Bellman-Ford algorithm is used to re-weigh all negative edges
and make them all positive, and the Dijkstra algorithm is then used to compute the
shortest path among any two vertices in the graph G. The Bellman-Ford subrou-
tine calculates the minimum weight h(v) for each vertex v starting with a new
vertex s. The algorithm is ended if the iteration finds a negative cycle.

The values computed by the Bellman-Ford subroutine will be used to re-weigh
the edges in the graph G. The edge with weight w(u,v) from vertex u to vertex
v will have a new length of w(u,v) + h(u)− h(v). The Dijkstra subroutine is
then used to find the shortest path to the remaining vertices V in the graph G.
Although a Fibonacci heap is used to implement Dijkstra’s algorithm, it is the
most efficient structure for the algorithm. As a practical matter, it is unsuitable
for SIMD implementation. Rather than Fibonacci heap or queue, we employ the
adjacency matrix in Dijkstra’s algorithm. The Johnson algorithm is best for sparse
graph G, while Floyd-Warshall is best for large dense graph G.

2.4.3. Overview algorithms for minimum spanning tree

Prim’s algorithms

Prim’s algorithm is a greedy algorithm that uses the hops to build a solution step
by step. The procedure starts with an empty spanning tree that should be com-
pleted during processing, resulting in a minimum of the edges’ weights. The goal
is to keep two sets of vertices separate. The first set contains vertices that have
already been included in the MST, whereas the second set includes vertices that
have not yet been formed. It evaluates all the edges that connect the two sets at
each step and selects the minimum weighted edge from among them. After choos-
ing the edge, the algorithm moves the edge’s opposite endpoint to the MST set as
a return value. Note that spanning-tree means that all vertices in a given graph
G must be connected into one component. The vertices must be connected with
the edges with minimum weights, called the minimum spanning tree. If multiple
components exist (a group of trees or a disconnected graph), it is a spanning for-
est. Furthermore, if the minimum weight edges for all vertices are in the various
components, it is a minimum spanning forest. Prim’s minimum spanning tree al-
gorithm is presented in Algorithm 6. It is also called Jarnik’s algorithm [151] and
Prim-Dijkstra algorithm [54]. Different versions of Prim’s algorithm exist, such
as the adjacency matrix and priority queue. The priority queue must include the
vertex and the weight of the edge that led us to it. It must also order the vertex
inside it according to the passed weight. Due to their complex control flow, prior-
ity queues are challenging to implement efficiently in parallel privacy-preserving
implementations using SIMD.

The advantage of Prim’s algorithm is that it has lower complexity than similar
algorithms, making it superior to Kruskal’s method. Prim’s algorithm helps to
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deal with dense graphs with many edges. However, if numerous edges with the
same weight occur, Prim’s algorithm needs to provide us more control over the
selected edges—this shortcoming may be solved in our proposed version with the
SIMD approach.

Minimum spanning forest may be determined by applying some algorithms
such as Borůvka’s and Kruskal’s for an unconnected graph. Prim’s algorithm, in
its most basic version of the algorithm, only finds an MST in connected graphs.
However, the MSF may also be found by executing Prim’s algorithm separately
for each connected graph component [105]—this is the feature of our proposed
privacy-preserving MSF protocols.

Algorithm 6: Prim
Data: Adjacency matrix G, number of vertices n, source vertex s
Result: Minimum spanning tree P⃗

1 Function minKey(K⃗,M⃗) is
2 m = ∞

3 for v = 0 to n−1 do
4 if M[v] == false & K[v] ≤ m then
5 m = K[v]
6 idx = v

7 return idx

8 begin
9 for i = 0 to n−1 do

10 K[i] = ∞

11 M[i] = false

12 K[s] = 0
13 P[s] =−1
14 for j = 0 to n−1 do
15 u = minKey(K⃗,M⃗)
16 M[u] = true
17 for v = 0 to n−1 do
18 if G[u,v] & M[v] == false & G[u,v] < K[v] then
19 P[v] = u
20 K[v] = G[u,v]

21 return P⃗

2.5. Related work

In this section, we highlight the previous studies related to the work in this thesis.
Some of these are not directly related to privacy preservation for some combina-
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torial and algebraic graph algorithms. However, we are interested in studying the
parallelization methods for such problems, even in non-privacy-preserving. These
studies give us some features about the proper techniques for parallelization that
can help us generate some parallel algorithms sine on top of SMC protocols.

2.5.1. Parallel shortest distances

We study the implementations of shortest path algorithms on parallel architec-
tures besides existing works on privacy-preserving shortest path computation;
such implementations tackle similar issues in reducing the dependencies among
algorithm’s parts.

A new implementation of the Dijkstra Algorithm on a directed graph using a
STAR-machine is proposed by Nepomniaschaya et al. [133]. The algorithm si-
multaneously finds the shortest path and the distance between the source vertex
and all other vertices in a graph. Another implementation of Dijkstra’s algorithm
with a high degree of parallelism while reducing memory usage is proposed [157].
An Field-programmable Gate Array (FPGA)-based accelerator with SIMD archi-
tecture is used; such proposed architecture is suitable for sparse graphs only. It
does not fit with a dense graph.

Parallel SSSD algorithms have lower time complexity than any sequential al-
gorithms [109, 128, 161]. However, the creation and joining of threads in these al-
gorithms depend again on private data. The emulation of pools of private threads,
possibly similar to garbled RAM [80], will likely introduce its overheads, which
overwhelm any gains in efficiency obtained from the more complex algorithm.

There exists some proposed interesting work for the APSD problem. A vec-
torized version of the Floyd-Warshall Algorithm for finding the shortest path to
improve performance is proposed by Han et al. [87]. There is no optimal exploita-
tion for the SIMD framework. The SIMD is supposed to give more speed-up than
what is implemented in their work. The result shows that the speed-up reaches
between 2.3 to 5.2 times. Matsumoto et al. [126] used a hybrid Central Process-
ing Unit (CPU)- Graphics Processing Unit (GPU) system to run a blocked united
algorithm for the APSD problem. This algorithm simultaneously computes the
shortest-path distance matrix and the shortest-path construction matrix. To reduce
data communication between CPU and GPU, Floyd-Warshall Algorithm is used.
The method is efficient but unsuitable for the Sharemind SMC platform that we
employ in this work.

In [132], two different CPU platforms (2x Intel Xeon and Intel Core) are used
with various components (GPUs) to implement Dijkstra algorithms and Floyd-
Warshall. Three different versions are implemented in the CPU platform for the
Dijkstra algorithm—serial, parallel, and Parallel with Queue. The fastest one is
the Parallel with Queue version for both variants of Intel Hardware. In the case of
the Floyd-Warshall Algorithm, the result shows that GPU CUDA is the fastest one
in both hardware with different sizes of vertices in the graph. The SIMD version
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of the algorithm is faster than a standard case, but the CUDA version is still faster.

2.5.2. Shortest distances for planar graph

We have been looking for existing SSSD algorithms for planar graphs, of which
there exist a few, to be adapted to privacy-preserving computations. The linear-
time algorithm for single-source shortest paths in planar graphs with a non-negative
edge is proposed by Henzinger et al. [90] with time complexity O(n). Lipton et
al. [122] proposed an algorithm for finding the shortest path for a planar graph
with arbitrary real-valued edge weights; the time complexity of this algorithm is
O(n3/2). The shortest path algorithm for n-vertex planar graph with real-valued
weights [68] is proposed with time complexity O(n log3 n). A linear space recur-
sive algorithm exists with time complexity O(n log2 n) [108]. Later, the liner space
recursive algorithm proposed by Klein et al. was improved by Mozes et al. [131],
they presented a method to compute single-source shortest path distances in the
graph in O(n log2 n/ log logn) time.
The ∆-stepping algorithm [129] is a single-source shortest path algorithm for arbi-
trary directed graphs with non-negative edges. The algorithm can be implemented
efficiently in large graphs’ sequential and parallel counterparts. The average time
complexity of the ∆-Stepping algorithm is O(n logn+m). The shortcoming in
the ∆-Stepping algorithm is that the algorithm has no known theoretical bounds
on general graphs; bounds can increase n-times in each iteration. The algorithm
performs a sequence of steps, each increasing the radius. Each step treats the
vertices in the current annulus, but the time complexity of each step may include
that of n substeps. The Radius-Stepping algorithm is proposed in [26] to solve
the bounds’ problem in the ∆-Stepping algorithm. It has the best tradeoff between
work and depth bounds using a variable instead of fixed-size radius increases.
There are proven bounds on the number of steps. The time complexity of the
Radius-Stepping algorithm is O(m logn).

2.5.3. Privacy-Preserving shortest distances

The study of privacy-preserving shortest distance algorithms started with Brickell
and Shmatikov [45], who proposed protocols for privacy-preserving computation
of APSD and SSSD. Their protocols are built on top of protocols for privacy-
preserving set unions, which they also proposed. Their SSSD algorithm requires
O(|V |2 log |V |) oblivious transfers, where V is the set of vertices of the graph.
They presented their algorithm sequentially; it can be parallelized to a certain
extent.

We have already mentioned the use of the techniques of Oblivious RAM [83]
in implementing the Bellman-Ford algorithm on top of an SMC protocol set [104].
Oblivious RAM has also been used for privacy-preserving implementation of Di-
jkstra’s algorithm [124], achieving good communication usage but having O(|E|)
round complexity, where E is the set of edges of the graph. Aly and Cleemput [3]
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give another implementation of Dijkstra’s algorithm, this time for dense graphs
and with O(|V |) round complexity. This implementation has been improved in [4],
with no more use for Oblivious RAM in this protocol.

An efficient protocol for privacy-preserving shortest paths computation for
navigation is proposed in [169]. They formulated the problem of compressing
the next-hop matrices for road networks. This compressing method they devel-
oped enabled an efficient cryptographic protocol for fully private shortest-path
computation in real-time navigation on city streets. The work uses sparse graphs
as the input data modeling road network (where a node has four outgoing edges).
The work does not follow the general paradigm of implementing graph algorithms
on top of general-purpose SMC protocol sets. It is specific for this application, as
real-time navigation apps deal with a limited range of graph sparsity. It does not
claim to offer general-purpose privacy-preserving shortest path algorithms.

Blanton et al. [25] presented several data-oblivious algorithms, breadth-first
search, single-source shortest path, minimum spanning tree, and maximum flow.
Theoretically, they introduced the data-oblivious algorithms without actual imple-
mentation shown.

Ramezanian et al. [144] proposed the Extended Floyd Warshall Algorithm and
used it in a novel protocol that enables privacy-preserving path queries on directed
graphs. Extending the Floyd-Warshall algorithm aims to generate a matrix that
holds the penultimate vertices of the shortest paths between each pair of vertices.
This matrix is then queried using the techniques of private information retrieval.
Again, the method is heavily adapted for the application.

2.5.4. Parallel minimum spanning tree and forest

There have also been works on optimizing the calculation of finding a minimum
spanning tree to reduce the time complexity of the algorithms. Chung et al. [55]
proposed a parallel method for finding a minimum spanning tree based on the
sequential version of Borůvka’s algorithm. Their implementation used four dif-
ferent kinds of graphs—random, geometric, structured, and Travelling Salesman
Problem (TSP) on asynchronous, distributed-memory machines. The distributed
memory cannot run the method in privacy-preserving architecture.

A simple parallel algorithm for finding a minimum spanning tree for undi-
rected weighted graph G = (V,E) on Exclusive Read Exclusive Write (EREW)
PRAM is proposed by [97]. The time complexity of their algorithm is O(log3/2 n)
using n+m processors, where n = |V | is the number of the vertices and m = |E|
is the number of the edges. This algorithm’s significant innovation is extracting
necessary information about elements without explicitly shrinking components.
The algorithm is faster by a factor of

√
logn than any deterministic algorithm.

The algorithm is designed to be run over the EREW PRAM machine, which is
not suitable for massive graphs that occupy much memory, significantly if the
algorithm is modified to be compatible with the SIMD approach as our protocols.
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Vineet et al. [162] presented a minimum spanning tree algorithm on Nvidia
GPUs under CUDA. The proposed algorithm is a recursive formulation of Borůvka’s
algorithm for a huge undirected graph. The graphs they use in the implementation
reach 5 million vertices and 30 million edges. The result shows that the speed-up
of the algorithm is 50 times over the CPU and around nine times over the best
GPU implementation for finding the MST. An efficient algorithm gives the result
within 1 second for a huge graph. Another minimum spanning tree algorithm on
Nvidia GPU under CUDA is invented [164]. This algorithm is based on Prim’s
Algorithm using the newly developed GPU-based Min-Reduction data-parallel
primitives. The result shows that the speed-up is two times on GPU over CPU
implementation and three times on non-primitive performance. Both proposed
algorithms over GPU are not fit to be run in our Sharemind SMC platform.

Boldon et al. [40] proposed a minimum-weight degree-constraint spanning tree
algorithm. They used a massively-parallel SIMD machine, MasPar MP-1, to im-
plement the four heuristics for approximate solutions to the d-MST problem. The
parallel implementation method is designing a suitable PRAM algorithm and then
implementing it directly in the MasPar MP-1. The result shows that the graph with
5000 vertices and 12.5 million edges can be processed in less than 10 seconds.

In [156], a parallel algorithm for finding a minimum spanning tree for a weighted
undirected graph is proposed; the time complexity is O(logm). The parallel algo-
rithm in this paper is based on the modification of the sequential algorithm in [155]
and Klein’s algorithm [107]. The implementation using O(m+ n) processors is
presented for the SIMD machine where m and n are the edges and vertices, respec-
tively. The optimization in this work achieves a speed-up of O((m log logn)/ logm).

Significantly, the computation of minimum spanning forest is considered the
computational squaring of minimum spanning tree that would increase the com-
putational cost n times. The applications that use minimum spanning forest, e.g.,
hyperspectral image [51], designing Supply-Chain Network (SCN)., e.g., politi-
cal districting [170], and designing communication networks [171, 141]. Further-
more, the need to perform such high computational costs in privacy preservation
motivated the researcher to study and develop an efficient protocol. In [69], a seg-
mentation method based on Kruskal’s MST algorithm is proposed. The algorithm
output is a group of MSTs, i.e., a forest; each tree corresponds to a segment of the
given hyperspectral image. Another sequential algorithm based on Prim’s mini-
mum spanning tree is with a cutting criterion for image segmentation [19, 148].
Wassenberg et al. [166] proposed a parallel method that computes multiple inde-
pendent minimum spanning trees and then connects them to a forest. As well as
many strategies for dealing with different properties over the minimum spanning
forest-based hyperspectral image are proposed [88, 154, 140].
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2.5.5. Privacy-preserving minimum spanning tree

In our work, we are interested in optimizing the calculation of the minimum span-
ning tree using the SIMD approach in a privacy-preserving manner. The motiva-
tion is that the privacy-preserving minimum spanning tree has not been studied
yet. In [146], two privacy-preserving minimum spanning tree algorithms in the
semi-honest model are proposed. One of them is a privacy-preserving MST al-
gorithm based on Prim’s algorithm, and the other is a privacy-preserving MST
algorithm based on Kruskal’s algorithm. Both proposed privacy-preserving MST
algorithms implemented on top of Yao’s garbled circuit protocols [172, 64, 125].
The graph’s structure is public, but the weights of the edges are private. It would
be more secure if the graph’s whole structure were private, which is one of the
most significant issues in our work.

The privacy-preserving minimum spanning tree algorithm based on the Awer-
buch and Shiloach algorithm [13] is proposed by Laud [114]. He proposed privacy-
preserving protocols to perform in parallel many reads or writes of the elements
from the private vectors, according to private addresses. Implementing the privacy-
preserving minimum spanning tree algorithm with private read or write protocols
had not been investigated before. In our paper, we use the same protocols for
private reading or writing to find the privacy-preserving minimum spanning tree
based on Prim’s algorithm using the SIMD approach in the Sharemind SMC plat-
form efficiently.

2.5.6. Semiring framework for graph algorithms

The graph algorithm problems, i.e., shortest path and minimum spanning tree
and forest, also can be solved by semiring framework, not only by following the
classical graph algorithms [57, 85].

In [130], a general algebraic framework for single-source shortest distances
based on the semiring framework is proposed. The algorithm finds the shortest
distance for a weighted directed graph and the k-shortest distances in a directed
graph. The proposed general algebraic framework reduces the gap between theo-
retical computer science and actual implementation.

Pan and reif [137] proposed a parallel algorithm for the path algebra com-
putation in an n-vertex graph. More specifically, it proposed a general stream
contraction technique for speed-up of parallel algorithms through their systolic
rearrangement and showed its power by accelerating a parallel algorithm of [136].
They presented two algorithms, the first is generalizing the algorithm (for com-
puting path algebra) based on [136], and the second is the acceleration version
of the algorithm; hence both algorithms are based on a semiring framework. The
proposed work is theoretically presented, and no actual implementation has been
done.

In [135], presented a solution of linear system Ax = b in parallel with a sparse
n× n symmetric matrix A. The adjacency matrix is associated with graph G(A),
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with n vertices and edge m for each nonzero entry in matrix A. The algorithm uses
a tree-separator approach to split the graph into s(n)-separator, then computes a
special recursive factorization of A. This approach can be used with a semiring
framework for sparsely computing the algebraic path of matrix A.

Stefano and Francesco [23] proposed a general algebraic framework based on
the c-semiring framework for solving minimum spanning tree problems. The
available algorithms can solve MST problems by following different cost cri-
teria. The classical algorithms for MST. Prim’s and Kruskal’s algorithms are
blocked keys for constructing the MST algorithms based on c-semiring in this
work. The Quality of Service (QoS) [163] in the multicast communication net-
works requires minimizing the cost of tree construction for several clients simul-
taneously. The proposed algorithms, Prim’s and Kruskal’s algorithms, built based
on the c-semiring framework, reduced the time complexities to logarithmic time.

Besides different problems such as shortest distance and minimum spanning
tree problems are effectively solved by semiring framework, parallel minimum
spanning forest algorithms using linear algebra primitives are recently proposed
in [14]. The proposed MSF algorithm is based on the Awerbuch-Shiloach algo-
rithm. A multi-linear kernel operates on an adjacency matrix, and two vectors are
introduced. This proposed kernel updates graph vertices by combining informa-
tion from adjacent edges and vertices.
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3. PRIVACY-PRESERVING PARALLEL COMPUTATION
METHODOLOGY

3.1. Introduction

This chapter presents the main features of the empirical research and methodol-
ogy in constructing the graph protocols and their related algorithm on top of SMC
protocols. This thesis introduces the actual implementation of the proposed pro-
tocols on top of ABB. Therefore, this chapter presents the main points in research
procedures and designing the parallel algorithms on top of the SMC protocols and
the implementation on the SMC Sharemind platform. This chapter also discusses
the notation and abstraction of the SMC protocol and the SecreC programming
used to develop secure multiparty computation protocols. SIMD parallel is also
discussed, showing how the round complexity can be reduced.

3.2. Tools and material

This section is essential to discuss some related protocols of privacy-preserving
computation and abstractions and notations of the SMC protocol under ScereC.

3.2.1. Sharemind protocols

This work assumes that the ABB functionality is implemented through the Share-
mind protocol set [34]. We assume that the ABB’s operations include the logical
operations on private booleans, arithmetic operations on private n-bit integers for
various values of n, conversions between them, assignment of the private values,
and classifications and declassifications between public and private values. These
operations can be performed in the SIMD manner. Similar operations are avail-
able in other protocol implementations, e.g., the SPDZ protocol set with security
against active adversaries [63].

Since designing applications on top of ABB, we must consider the cost of
operations in implementing the ABB via cryptographic protocols. The addition
of private integers and the multiplication of a private integer with a public one are
assumed to have zero cost because these require no communication between the
computation parties. All other operations over private elements have significant
latency; hence operating in a SIMD manner is highly desired.

One of the efficient protocols of the Sharemind protocol set [1] is privately per-
muting vectors of private values [116]; we let the ABB give us safe access to these
protocols. There is an efficient protocol for generating a private permutation of
n elements; these protocols have zero cost round complexity. However, apply-
ing this permutation’s protocols or inverse to a private vector has O(1) rounds
and O(kn) communication, where k is the bit-length of vector elements. SPDZ
protocol set [113] gives the same a similar cost.
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Laud protocol

One can implement proper subroutines, e.g., sorting a vector of private values [31]
on top of the ABB. Later, some applications can call this subroutine, effectively
making it a part of the ABB [112]. Another useful subroutine is reading (or writ-
ing ) from a vector by a private index. Straightforward memory access by a private
address cannot be done; hence more complex protocols, often with significant
overhead, are necessary. Laud [114] has proposed the subroutines prepareRead
and performRead, such that if J⃗vK is a vector of length n, and J⃗zK is a vector
of integers of length m, all elements of which are between 0 and (n− 1), then
Jw⃗K = performRead(J⃗vK,prepareRead(n, J⃗zK)) is a vector of m elements satisfy-
ing wi = vzi for each i. The subroutine prepareRead requires O((m+ n) log(m+
n)) communication and O(log(m+n)) rounds, while performRead only requires
O(m+ n) communication in O(1) round rounds. There exist similar subroutines
for writing [114], with performWrite(J⃗vK,Jw⃗K,prepareWrite(n, J⃗zK)) writing the
element wi into the zi-th position of v⃗. Also, the communication and round com-
plexities of the two writing routines are the same as the corresponding reading
routines.

3.2.2. SecreC programming language and parallel framework

SecreC is a domain-specific language designed for implementing secure mul-
tiparty computation applications [29]. The main goals of the language are to
strengthen the protection of applications on a high level and efficiently imple-
ment an application for those non-familiar with cryptography. The language and
its compiler are not embedded in the Sharemind platform. The compiler converts
the secret code to a byte code executed over the Sharemind platform.

The SecreC integrated with a Sharemind instance running on the three par-
ties P1, P2 and P3. In Sharemind parties, three copies of the secret code will be
manually taken into the three parties of Sharemind, and each party gets a copy of
the code. The SecreC compiler compiles the codes xxx.sc to a byte-code xxx.sb.
Thereby, Sharemind has to check where the three byte codes are identical, and
there is no error before execution starts. Note that the compiler of SecreC is not
only for standard functionality, as error checking; it also checks that three codes
(one for each computation party) are identical.

The private data type is defined on module pd_shared3p protection domain
functions over three parties of Sharemind. It can be module pd_shared2p over
two parties only, such as in secure two-party computation [172, 75, 121, 119].
During computation using pd_shared3p, the SMC protocols check the private val-
ues of pd_shared3p into three parties to ensure that there are no corrupted values
by a passively corrupted party, where the messages are handled by secret-sharing.
The challenge will be more if this computation is sequentially performed inside
an iteration; often, the challenge is by producing more communication rounds.

The most critical challenge in secure multiparty computations applications is
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communication rounds, and more certain specific is a round complexity. SecreC
supports a parallel framework for multiple processing elements that simultane-
ously perform a single instruction on multiple data elements (SIMD approach).
In general, the operations that will be executed on the SIMD approach supposed
that the multiple data should be vectorized into vectors; a single instruction per-
forms multiple data. Consequently, there is no need to iterate over arrays (or any
sequence data structure) to access the elements serially to execute them n time
where n is the number of data elements. Let us look at the Listing 3.1, which
is SecreC code written sequentially. The procedure is for iterating over vectors
to perform multiplication, since multiply element Ai to the corresponding Bi and
store the result in Xi. Such a simple computation on top of SMC protocols writ-
ten sequentially has n round complexity. This function has a high computational
cost, i.e., compared with the one that can be written using the SIMD approach
for a similar problem because of the network latency of the SMC. The running
time will be highly increased when the number of iterations increases. Therefore,
using such a technique to build an efficient algorithm for real-world applications
is not beneficial.

To solve this problem, the parallel approach in SecreC can be efficiently used
to reduce the round complexity of the SMC protocols. The SIMD framework
allows multiple data to be processed by single instruction and direct access to the
memory of the whole elements without iteration, see Listing 3.2.

Listing 3.1: Sequential multiplication in SecreC
template <domain D>
D uint [[1]] Sequential_mult(D uint [[1]] A, D uint [[1]] B) {

D uint [[1]] X = 0;
for(uint i = 0; i < size(A); i++)

X[i] = A[i] * B[i];
return X;

}

This feature of the SIMD framework omitted the for-loop in the sequential
version of the code. The single round iteration for multiplication on multiple data
means a single round complexity on the SMC Sharemind platform. Accordingly,
the gap between sequential and parallel versions is noticeably different. SIMD
parallel framework efficiently reduces the round complexity, and such a technique
can efficiently be used to construct real-world privacy applications.

Listing 3.2: Parallel multiplication in SecreC
template <domain D>
D uint [[1]] Parallel_mult(D uint [[1]] A, D uint [[1]] B) {

D uint [[1]] X = 0;
X = A * B;
return X;

}
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3.2.3. Abstractions and notations for SMC

Abstractions are needed to build upon complex cryptographic protocols like
SMC and deduce the result’s functional and non-functional properties. A good ab-
straction of secure multiparty computation is the arithmetic black box (ABB) [112],
which allows more complex privacy-preserving computations to be described with-
out delving into the details of protocols for primitive operations with private data.
The ABB is an ideal functionality in the sense of Universal Composability [47],
and its corresponding real functionality consists of the implementations of the
protocols for the single operations supported on private data [115]. Its internal
state consists of private values entered into it or computed by it; these values can-
not be accessed directly by the protocol parties. Instead, the protocol parties may
instruct to take some values stored in it (pointing to them through handles), per-
form an operation with them, and return a new handle pointing to the result—the
handles of the ABB returns are always new. The set of available operations de-
pends on the SMC protocol set used to implement the ABB. The operations may
be randomized, e.g., there may be an operation to generate a new, random private
value. The ABB also supports instructions for an input party to give an input value
(making it accessible to the computing parties through a handle), for a value to be
given to a result party (referred by the handle known to the computing parties;
the result party obtains the actual value), and for a value to be declassified to the
computing parties (they learn the true value behind the handle). The ABB only
acts if it receives the same instruction from all computing parties.

In order to show that an application built on top of ABB preserves privacy, it
is sufficient to show that the declassified values do not give any novel information
to the computing parties [112]. We show this by constructing a simulator that
samples from the distribution of these declassified values while using only public
information to implement protocols for the shortest distances. The kind of adver-
sary against which protection is obtained is the same as for the underlying SMC
protocol set. Note that if an application built on top of an ABB never calls the
declassification operation, it is trivially privacy preservation.

We present our protocols as algorithms making use of the ABB. The notation
JvK denotes that the value v is stored in the ABB and accessed by the rest of the
algorithm only through a handle. E.g., J⃗vK is a vector of private values; the data
type of the values shall be clear from the context. This notation resembles some
programming languages [29] used to express privacy-preserving computations;
these have the information-flow types public and private to denote that a value
is known to the computation parties resp, that a value is stored inside the ABB.
Also, the notation JVK denotes the private adjacency matrix, which is also stored
in the ABB.

A value stored in the ABB can be made available to the rest of the algorithm as
the outcome of the operation declassify(JvK), which corresponds to the invocation

53



of a declassification protocol. We denote the invocations of other primitive pro-
tocols working on values stored in the ABB by overloading the notations for the
operations that these protocols implement—writing JuK+JvK, or c ·JvK, or JuK ·JvK
denotes calls to the addition, or constant multiplication, or multiplication proto-
col, respectively. Sharemind’s protocol set also gives us access to comparison
protocols (equality and less-than) and two protocols for operations with Boolean
values stored in the ABB. Combining them, we get the protocol for the operation
choose(JbK,JxK,JyK). The result of this operation is JxK, if JbK contains true, and
JyK, if JbK contains false. The JbK value is not leaked by the choose-operation.

One of the most important and usable operations in Sharemind protocols set in
our algorithms is min-operation, which has the same functionality but with differ-
ent shapes based on given arguments (polymorphic function). For min(JxK,JyK),
the result is minimum value in corresponding value either in JxK or JyK. If the
given argument is a vector in operation min(J⃗xK), the result is a single minimum
value among all vectors’ elements. The last shape of the operation min(J⃗xK,n),
where the vector J⃗xK is a n× n size, operation returns a minimum value for each
block, vector J⃗xK is an n-block, and each block has n-element.

All operations above can be applied to lists (and matrices) of values stored in
the ABB. The (private) arguments to the operation must have the same length,
resulting in a vector (or matrix) of equal length. As mentioned before, perform-
ing many operations in parallel is essential for reducing the round complexity of
our algorithms. Besides the SIMD notation, we also use forall-loops in our algo-
rithms to denote that all iterations of that loop may be performed in parallel. This
contrasts with the for-loops, which have to be performed sequentially.

Beside integers and booleans, our algorithms also use permutations JσK as
primitive private values. Our protocols support the operation randPerm(n) of
generating a random private permutation with public length n, the application of
the permutation of length n to a vector of private values of length n, resulting in a
new vector, where the elements have been permuted according to the permutation,
and the application of the inverse of the permutation to a vector of private values
(again, with the same length). The last two operations are denoted apply, and
unApply. They may also be applied to public vectors, but the result is still private.

As data structures, we present our algorithms using pairs, lists, and matrices
as input data. A pair of x and y is denoted (x,y), functions first and second take
the respective components of a pair. A list/vector is denoted by v⃗, and its i-th
element is denoted either by vi or v[i]. The construction of a vector from the
elements x1, . . . ,xn is denoted by [x1, . . . ,xn]. An empty list or vector is denoted
by NIL, and the concatenation of two lists by @. The notation v⃗[i : j] denotes the
slice [vi,vi+1, . . . ,v j] of the vector v⃗. Matrices are denoted by boldface letters; the
element at the i-th row and j-th column of a matrix G is denoted by G[i, j], and
the entire row and column vectors are denoted by G[i,⋆] and G[⋆, j], respectively.

Finally, the descriptions of the protocols/algorithms in this thesis deviate some-
what from their encoding in SecreC high-level language (C-based language) be-
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cause SecreC does not support certain kinds of expressions and abstractions, e.g.,
parallel threads executing somewhat different code. In other words, SecreC has no
special directives for coding, particularly in parallel frameworks such as OpenMP,
MPI, or OpenCL. Hence, if the thesis presents larger pieces of code as running in
parallel to each other, then in SecreC it may mean that these pieces of code have
been taken apart and combined across the threads to turn them into sequences of
SIMD operations.

3.3. Research procedures

The research begins with the research proposal, including the main features of the
study and the reasons for engaging in the research project, the goal, novelty, and
expected results. This research is conducted in several stages, including studying
different cases in graph algorithms and intensive experiments based on various
graphs. Compile and classify the results from previous related works. The results
show that the gap still has a considerable variance between what is already done
and the expected results of research, which will be considered in constructing
real-world applications. We reviewed most of the research papers available in
the secure multiparty computation of graphs algorithms and many papers on non-
privacy-preserving parallel graphs. Research procedures are described as follows.

3.3.1. Data structure

The data structure of standard arrays/matrices is only sometimes suited for SIMD
instructions. For example, a vectorized adjacency matrix is fitter for SIMD than a
standard. This is why this section has been provided to illustrate re-organizing
data input into vectors. Re-organizing data in a way that can be used effec-
tively and compatible with the proposed SMC of parallel graph algorithms. The
data structure can play a significant role in constructing the proposed privacy-
preserving parallel graph algorithms. There are three main structures for input
data used in the proposed protocols.
First, re-shaping the given private adjacency matrix JAK for given graph G into
three private vectors (or lists), source vertices J⃗SK, target vertices JT⃗ K, and the
weights’ edges JW⃗ K, see Figure 1. All vectors’ sizes are the same; this data model
is used in privacy-preserving Bellman-Ford protocols in both versions 1 and 2. For
version 3, the privacy-preserving Bellman-Ford protocol uses the same structure
with one main difference, that the vertices’ vectors S⃗, T⃗ are public, while JW⃗ K is
only private.
Second, this data model vectorizes the adjacency matrix JAK into three vectors/lists,
rows R⃗, columns C⃗ and the private vector for weights’ edges JW⃗ K, see Figure 2.
The number of rows and columns of the adjacency matrix should be given, which
are denoted numR and numC whose arguments will be used on some related func-
tions of the main program. This structure is indicated by a function that trans-
fers grid graph coordinates into a private adjacency matrix. The vectors for both
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rows R⃗ and columns C⃗ are public. This data structure is used in algebraic path
computation protocol.
Third, this model is an ordinary adjacency matrix, which is a square n× n ma-
trix JAK, wherever Ai j is non-infinite when there is an edge between two vertices
in the graph G, vertex ui to vertex v j. We used this data model in Dijkstra, Prim,
Johnson, BFS, and Radius-stepping algorithms. The Johnson algorithm uses two
data structures together, three vectors for the Bellman-Ford part, and an adjacency
matrix for Dijkstra’s part since switching between both structures using private
writing in laud protocol.
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0 0 𝟐 2 ∞ 1
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[[ Ԧ𝑆]] = { 0,   0,   0,   1,   1,   1,   2,   2,   2,   3,   3,   3,   4,   4}
[[𝑇]] = { 1,   2,   4,   0,   2,   3,   0,   1,   3,   1,   2,   4,   0,   3}
[[𝑊]] = { 2,   2,   1,   2,   3,   4,   2,   3,   5,   4,   5,   2,   1,   2} 

Figure 1: Three vectors representation of the graph.

R =      { 0,  0,   1, 1,   1,   2,   2,   3,   3,   3,   4,   4,   4,   4,   5,   5,   5,   6,   6,   7,   7,   7,   8,   8}

C =      { 1,   3, 0, 2, 4,   1,   5,   0,   4,   6,   1,   3,   5,   7,   2,   4,   8,   3,   7,   4,   6,   8,   5,   7}

[[𝑊]] = { 2,   4,   2,   3,   5,   3,   6,   4,   4,   7,   5,   4,   2,   5,   6,   2,   6,   7,   5,   5,   5,   3,   6,   3}    

A =

𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖
𝟎 2 4
𝟏 2 3 5
𝟐 3 6
𝟑 4 4 7
𝟒 5 4 2 5
𝟓 6 2 6
𝟔 7 5
𝟕 5 5 3
𝟖 6 3

Sparse representation of matrix A

numR = 9
numC = 9

Figure 2: Sparse representation of the graph.

Fourth, this structure is used during computation inside the algorithm, not as
data input. It consists of x and y elements stated in vectors and denoted as (x,y).
The related algorithm uses this data structure; the algorithms are a minimal first
component pair in Prim and Dijkstra algorithms.
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3.3.2. Vectorization

The critical point in SIMD implementation is matrix vectorization, a linear trans-
formation of a m×n matrix into vectors. The vectorization is based on a column
vector or transpose of a row vector. The notation vec(A) denotes a vectorized ma-
trix, is mn×1 column vector expressed by constructing the columns of a m×n on
top of each other, one by one:

vec(A) = [a1,1, . . . ,am,1,a1,2, . . . ,am,2, . . . ,a1,n, . . . ,am,n]
T

The conversion between column-major and row-major vectorization is based on co-
mmutation matrix. This means the vectorized shape of a m× n matrix vec(A)
transformation to its vector transpose vec(AT ), as in the following example:

Let A denote the following 3×3 matrix:

A =

1 2 3
4 5 6
7 8 9


Both column-major and row-major vectorization for matrix A represented as fol-
lows, respectively:

vec(A) = [Acol] =



1
4
7
2
5
8
3
6
9


, vec(AT ) = [Arow] =



1
2
3
4
5
6
7
8
9


Re-shaping them horizontally is as follows:

vec(A) = [Acol] =
[
1 4 7 2 5 8 3 6 9

]
,

vec(AT ) = [Arow] =
[
1 2 3 4 5 6 7 8 9

]
The input data have been carefully vectorized to support their implementation on a
secret-sharing based SMC protocol set. Besides single vectorization for a matrix,
our algorithm also performs multiple vectorizations for n matrices into a single
large vector, e.g., Dijkstra, and minimum spanning forest protocols. The vector-
ization should be based on public indices of the given matrices.
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Example: Finding matrix multiplication in SIMD parallel, if A is a 3× 3 matrix
and B is a 3×3 matrix, find C = A×B:

A =

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
, B =

(
b11 b12 b13
b21 b22 b23
b31 b32 b33

)
The matrix multiplication is given by C = A×B

C =

(
a11b11 +a12b21 +a13b31 a11b12 +a12b22 +a13b32 a11b13 +a12b23 +a13b33
a21b12 +a22b22 +a23b32 a21b12 +a22b22 +a23b32 a21b12 +a22b22 +a23b32
a31b13 +a32b23 +a33b33 a31b13 +a32b23 +a33b33 a31b13 +a32b23 +a33b33

)
The indices of the vectors, vec(A) and vec(B), are obtained by calling list. 3.3.

Listing 3.3: Vectorize matrices A and B for matrix multiplication
uint [[1]] indices_vec(A)(n * n * n) = 0;
uint [[1]] indices_vec(B)(n * n * n) = 0;
uint itr = 0, con = 0;
for(uint k = 0; k < n; k++){

for(uint i = 0; i < n; i++)
for(uint j = 0; j < n; j++){

indices_vec(A)[(i * n + j) + itr] = j + con;
indices_vec(B)[(i * n + j) + itr] = j * n + i;}

itr = itr + (n * n);
con = con + n;}

indices_ vec(A) = [ a11,a12,a13,a11,a12,a13,a11,a12,a13,a21,a22,a23,a21,a22,a23,a21,a22,
a23,a31,a32,a33,a31,a32,a33,a31,a32,a33 ]

indices_ vec(B) = [ b11,b21,b31,b12,b22,b32,b13,b23,b33,b12,b22,b32,b12,b22,b32,b12,b22,
b32,b13,b23,b33,b13,b23,b33,b13,b23,b33 ]

Thus, matrix multiplication will be computed using single instruction handled by vec-
tors as illustrated in list. 3.4; the result is as follows:

Listing 3.4: Parallel SIMD Matrix multiplication
D uint [[1]] vec(A)(n * n * n) = 0;
D uint [[1]] vec(B)(n * n * n) = 0;
D uint [[1]] vec(X)(n * n * n) = 0;
D uint [[1]] vec(C)(n * n * n) = 0;
vec(A) = A[indices_vec(A)];
vec(B) = B[indices_vec(B)];
vec(X) = vec(A) * vec(B);
vec(C) = sum(vec(X),(n*n));

The matrix multiplication performance in SIMD is deeply based on the vector size. We
first compute the multiplication by multiplying each element in vector vec(A) with its cor-
responding element in vector vect(B); the result is also stored in the corresponding index
in vec(X). Later, compute summation for each n ·n value together. The two main opera-
tions in matrix multiplication are multiplication and summation; both operations will be
computed in the SIMD manner using only single instruction for all vectorized multiple
data.
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3.3.3. Parallel algorithms design

Constructing the privacy-preserving parallel graphs algorithms is based on essential com-
binatorial and algebraic graph algorithms. A group of constrictions must be considered
in designing the parallel algorithms, SecreC language and its parallel framework, Share-
mind protocol set, data structure, and vectorization. Moreover, the SIMD parallel codes of
the proposed privacy-preserving graphs algorithms in SecreC language also consider the
computational cost of implementing the ABB via cryptographic protocols. SIMD instruc-
tions set must target the arithmetic operations of private integers, and Boolean operations
are also considered; even assigning operations should be performed in SIMD. All those
operations and constrictions will be collectively integrated to construct efficient parallel
methods for the graphs on top of SMC protocols. SecreC has specific parallel directives,
notations, and protocols for functions (for more details, see Sec 3.2.3).

Topically, the SIMD framework avoids an iteration over operations that operates the
private data, and such an iteration yields communication complexity among parties of the
SMC platform. The computations occur in all parties P1, P2 and P3 of the SMC, and
computation processes are the same. In designing parallel algorithms on top of SMC that
will be securely processed through ABB, we focus on setting up the parallel instructions
on private vectors, which has communication rounds among the computation parties. In
contrast, no SIMD instructions are implemented on public vectors because such compu-
tations require no communication round.

We assume that privacy-preserving parallel protocols and their subroutines perform
computations on top of ABB without leaking data, and their input and output data are
private. The protocols have been carefully designed without declassification. Hence,
parallel directives and the essential algorithm re-writing do not generally affect declas-
sification or privacy. However, declassification has been used in some algorithms, i.e.,
Dijkstra and Prim algorithms, to get the real identities of the vertices. The permutation
has been used to mask the real identities of the vertices before performing on ABB. Note
that in Bellman-Ford protocol version 3, public edges are used to design the algorithms
while still privacy-preserving. The aim of permutation usage is that an adversary will get
permuted data (encrypted data) even when declassification has occurred, which is manda-
tory. The permutation is an extra operation since it is necessary for privacy keeping.

In algorithm designing, simplifying algorithms (producing a vectorized version of an
algorithm) as much as possible is mainly desired to reduce the round complexity. Due
to simplifying the protocols, proposed BFS protocols for finding the shortest path are
divided into two versions, weighted and unweighted graphs. The weighted version of
BFS has lower private operations than the unweighted (the justification for proposing the
two versions of BFS).

Replacing some subroutines or creating a new one is necessary (to fit with SIMD) to
use a function more efficiently, e.g., prefixMin2 in Bellman-Ford and getMin in algebraic
path computation. Moreover, using some functions that have not existed in essential
algorithms is needed because these require keeping the computation without leakage, such
as permutation as we mentioned above. The first normalization of the data is also used
for sorting elements, while the second normalization is for reducing the size of the data
elements, which will let the application perform long data vectors. Both normalizations
are used in Bellman-Ford version-3 and algebraic path computation.

Laud’s protocol has been used in designing different protocols, not just for the es-
sential functionality of the protocol, which is performing private reads and writes. The
second aim of laud’s protocol is represented in Johnson’s protocols for re-weighting.
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3.4. Theoretical framework of parallelism on top of SMC

We design the parallel graph algorithms in privacy-preserving based on the combinato-
rial and algebraic graph algorithms and Sharemind protocols set, including SIMD paral-
lel framework with vectorization. As well as we replaced some related algorithms with
other algorithms assumed to be more efficient and more compatible with parallel design-
ing. The main goal of the parallelism presented in this thesis is to identify an efficient
set of privacy-preserving protocols with their subroutines, resulting in efficient privacy-
preserving protocols of shortest distances and minimum spanning tree and forest.

The efficiency of the proposed privacy-preserving parallel computation protocols is
based on keeping the computations in the ABB via cryptographic protocols without de-
classification; compatibility of the protocols subroutines and their combination with SMC
protocols and the round complexity reduction is the most important point.

SIMD framework significantly contributes to round complexity reduction for all pro-
posed algorithms. We focus on computation that requires single, repetitive calculations
on top of ABB of massive private data sets in parallel algorithm designing. Scalar opera-
tions are the conventional sequential approach to processing each data element using one
instruction, which iterates n times, one by one, to the end, often with a significant over-
head that will produce high computational costs. The difference between the SIMD and
scalar operations at the top of ABB on the Sharemind platform is illustrated in Figure 3. It
shows the round complexities of a simple multiplication implemented on the Sharemind
platform for both operations. With scalar operations, n multiplication operations must be
sequentially executed one by one to obtain the result, as shown in Figure 3 (a). Scalar
operations process data on the principle of single data = single data ∗ single data. This
means that n multiplication instructions must be executed in sequence, producing com-
munications among the computation parties of the Sharemind handled by secret shares.
Getting the data indices is done by traversing using for-loop. In every single operation,
the three parties P1, P2 and P3 of Sharemind send messages to each other using secret
shares; the estimated round complexity during computation is O(n).

Nevertheless, the same computation result can be efficiently achieved using SIMD
operations, requiring less instruction, as shown in Figure 3 (b). SIMD operation works
based on the formula of multiple data = multiple data ∗ multiple data. Hence, it can
process a large data set using a single instruction. This means that SIMD parallel imple-
mentation does not need for-loop anymore for traversing overall indices of multiple data;
the multiple data will be launched in computation once. Consequently, the three parties
of the Sharemind platform P1, P2 and P3, will send messages to each other only once; the
round complexity is O(1).

SIMD operations implemented on top of SMC protocol yield lower round complexity
than scalar operations. Moreover, SIMD operations may utilize bandwidth usage fully
because of the full use of the multiple data of the vectors during processing. Indeed, if
the vectors’ size used in computations is larger than the bandwidth, the operating system
in each party of Sharemind will split the vector into groups. Hence, each data group will
be passed as a single message through secret shares; thus, the actual number of the round
complexity (which is already reduced) is likely to increase—round complexity will be
increased more than once as supposed to be after the reduction.
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(a) Sequential implementation.

(b) Parallel implementation.

Figure 3: Framework of algorithms on Sharemind platform.

3.5. Testing and evaluations

This thesis presents many efficient protocols that solve different problems in combinato-
rial and algebraic graph algorithms. Extensive benchmarking and evaluations of proto-
cols and their subroutines are conducted, including different circumstances of the proto-
cols (with many versions) and their kinds of graphs varying sizes over various networks.
The efficient performance in this work is based on the network latency of the SMC plat-
form. Reducing the round complexity by parallel computing means lower network latency
since an entire amount of network communication operations will be omitted because of
the effectiveness of SIMD on top of SMC protocols, e.g., reducing the round complex-
ity in some subroutines from O(n) to O(1). The performance experiments are based on
fundamental measurements that research the aspects of performance gain and its evalu-
ations. These fundamental measurements include speed-up, data volume, serial fraction
and their scalability.
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Speed-up

In general, the speed-up is the ratio of running time achieved by the best sequential al-
gorithm Ts to the running time performed by the possible parallel algorithm Tp, where p
is the number of processors or threads—both versions of the algorithms are for solving
the same problem [6]. The definition of speedup achieved by a parallel algorithm given
by S = Ts/Tp. The running time of the sequential version of the essential algorithms in
this work is too high and inaccessible for comparison; hence, we do not implement the
sequential counterpart of all algorithms. For instance, we only show the running time of
the parallel algorithms. The running time of the algorithms, either for parallel counterpart
or sequential counterpart, is the average time over the three parties P1, P2 and P3 of the
Sharemind platform given by T = (P1+P2+P3)/3. The running time of the benchmark is
reported in seconds. We also use the suffix ′′k′′ to denote the multiplication by 1000, and
the ′′M′′ to denote the multiplication by 1000000.

Data Volume

The proposed SIMD parallel algorithms have changed the amount of data transferred
among the computation parties of the SMC platform. The data amount transmitted by
the sequential algorithms is n-bit integers (or Boolean) handled by secret shares. The
transmitted data through parallel algorithms are vectors of private data, also by secret
shares. Consequently, data volume is measured in all proposed algorithms and subroutines
over different networks with different characteristics to study the trade-offs between data
volume consumption with round complexity and the scalability of the parallel algorithms
with their reduction for around complexity. The data volume of the parallel algorithms
over the SMC platform is obtained by getting the sum of the transmitted data among the
number of computation parties given by DV = (DV 1+DV 2+DV 3)/3.

Serial fraction

Some proposed protocols for finding the shortest path and minimum spanning tree can
perform parallel execution on multiple graphs of similar sizes. The performance gains
resulting from parallel execution on the n graphs are measured meaningfully. Hence,
the experiments consider the different amounts of graphs (which scalably increased), the
graph sizes, and the network environments. The serial fraction is the fundamental mea-
surement for testing the parallel algorithm that runs n graphs in parallel. To obtain the
serial fraction, which tells us about the scalability of the parallelization, we use the Karp-
Flatt metric [101]. The parallelization is noticeably limited in instances of using large-size
vectors that will be transmitted among parties of the SMC platform. Indeed, paralleliza-
tion is effectively done on parties that produce large vectors bigger than the volume of
data (that will be sent among computation parties). The operating system of the parties
cannot send such a large vector; hence the operating system splits a large vector into small
vectors (size is the capacity of the bandwidth or less) that will be sequentially sent one
by one. In such cases, serial fraction characterizes how much of the computation has not
benefited from the parallelization.

3.6. Setup experiments and Hardware architecture

The protocols described in this work are implemented on top of Sharemind’s three-party
protocol set secure against one passively corrupted party [32, 34], making use of the Se-
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creC high-level language [30] and other development tools included with the Sharemind
platform. The actual implementations used the single-instruction-multiple-data frame-
work supported by the SecreC high-level language to write the codes. The benchmarking
of all implementations is done on the Sharemind cluster of three servers connected, where
each server is 12-core 3 GHz CPUs with Hyper-Threading running Linux and 48 GB of
RAM, connected by an Ethernet local area network with a link speed of 1 Gbps. Single-
threaded setup is used in all Sharemind’s implementations; hence no usage for multiple
cores performing local operations, nor the possibility of performing computations over
distributed systems simultaneously.

Sharmind uses the additive secret-sharing scheme among the three servers over dif-
ferent rings of integers, and it has been proven that Sharemind provides strong privacy
guarantees under the honest-but-curious model [94]. The most crucial feature of Share-
mind is tolerating one passive corrupted party, and the system performs significantly bet-
ter than similar systems—based on SMC protocol—as FairplayMP [18] and VIFF. This is
the justification for using Sharemind for our implementations. Furthermore, if the Share-
mind system has four computation parties, security can be achieved if there is one actively
malicious party.

The central processing unit of the Sharemind system can execute operations sequen-
tially and in parallel (SIMD) on private or public data. Algorithms can be written some-
how to describe how the data should be processed using Sharemind. SecreC programming
language is founded for such a purpose. Furthermore, Sharemind supports vectorized op-
erations to allow the parallelization of algorithms to boost their performance, which is
the main feature of our proposed parallel protocols. Consequently, if such frameworks—
based on the secure multiparty computation—have similar features to Sharemind, our
proposed parallel protocols are also run on it.

Network environments

The proposed protocols have been constructed based on achieving the critical point of the
research: a reduction in the round complexity of SMC protocols. SIMD implementations
yield lower round complexity, increasing the amount of data transmitted simultaneously.
Thus, the protocols have many trade-offs between round complexity and communication
consumption since their relative performance over various network environments may
differ. For characterizing the variation in performance and checking the scalability, three
different network environments are used in the implementations, throttling the connection
between the servers in our Sharemind cluster.

• High-Bandwidth Low-Latency (HBLL)
In the "high-bandwidth" setting, the link speeds between servers are 1Gbps, while
in the "low-latency" setting, we have not delayed the messages between the servers.
We use these environments to run our experiments, i.e., in our local area network.

• High-Bandwidth High-Latency (HBHL)
In the "high-latency" setting, the messages are delayed by 40ms.

• Low-Bandwidth High-Latency (LBHL)
In the "low-bandwidth" setting, the speeds are 100Mbps. Thus, simulating wide-
area networks with different characteristics in both environments, HBHL and LBHL.
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4. PRIVACY-PRESERVING SINGLE-SOURCE SHORTEST
PATH PROTOCOLS

4.1. Introduction

This chapter presents the proposed single-source shortest path protocols and their related
algorithms. As well as at the end of the chapter, show the performance analysis of the
proposed protocols, round, and communication complexities. Also, present the security
and privacy of protocols.

4.2. Privacy-preserving Dijkstra’s protocols for dense graphs

4.2.1. Dijkstra’s protocol for a single graph

Dijkstra’s algorithm relaxes each edge only once, in the order of the distance of its start
vertex from the source vertex. The edges with the same starting vertex can be relaxed in
parallel. The algorithm cannot handle edges with negative weights, as described above.
As Dijkstra’s algorithm only holds a few edges in parallel, Laud’s parallel reading and
writing subroutines will be of little use here. Instead, we opt to use the dense representa-
tion of the graph, giving the weights of the edges in the adjacency matrix (weight “∞” is
used to denote the lack of an edge).

Algorithm 7: Privacy-Preserving Dijkstra
Data: Number of vertices n, starting vertex s
Data: Lengths of edges JGK ∈ (N∪{∞})n×n

Result: Private distances from the starting vertex
1 begin
2 JσK← randPerm(n)
3 forall u ∈ {0, . . . ,n−1} do
4 JG′[u,⋆]K← apply(JσK,JG[u,⋆]K)

5 forall v ∈ {0, . . . ,n−1} do
6 JG′[⋆,v]K← apply(JσK,JG′[⋆,v]K)
7 s′← declassify((unApply(JσK, [0,1, ..,n−1]))[s])
8 JD⃗K← ∞

9 JD[s′]K← 0
10 M⃗← true // length of M⃗ is n
11 for idx = 0 to n−1 do
12 J⃗LK← NIL
13 for i = 0 to n−1 do
14 if M[i] then J⃗LK← [(JD[i]K,JiK)]@ J⃗LK

15 u′← declassify(second(minLs(J⃗LK)))
16 M[u′]← false

17 JE⃗K← JG′[u′,⋆]K+ JD[u′]K
18 JD⃗K← choose(M⃗∧ (JE⃗K < JD⃗K),JE⃗K,JD⃗K)

19 return unApply(JσK,JD⃗K)

64



Our privacy-preserving implementation of Dijkstra’s protocol is presented in Algo-
rithm 7. The main body of the algorithm is its last loop (lines 11-18). It starts by finding
the unhandled vertex closest to the source vertex s. The mask vector M⃗ indicates which
vertices are still unhandled. The list J⃗LK contains all vertices not in M⃗, with their distance
from M⃗. Adding a pair to the list is by cons-function. Repeatedly, the index of an unhan-
dled vertex is found by the function minLs given in Algorithm 8, which, when applied to
a list of pairs, returns the pair with the minimal first component. We call minLs with a
list where the first components are current distances, and the second components are the
indices of vertices. Algorithm 8 works by dividing the vector into two parts and iterating
logn times. Then, it picks up the minimum values in the vectors until the minimum pair.
Moreover, it picks up the identity of the permuted vertex by second-function; the value is
the second component of the pair.

In non-privacy-preserving implementations, priority queues can find the next vertex to
quickly relax its outgoing edges. In privacy-preserving implementations, the queues are
challenging to implement efficiently due to their complex control flow. Hence the next
vertex is found by computing the minimum over the current distances for all vertices not
yet handled.

Algorithm 8: minLs: Pair of the minimal first component
Data: List of pairs of private values Jp⃗K
Result: The element of Jp⃗K with the minimal first component

1 begin
2 m← length(Jp⃗K)−1
3 if m = 0 then return Jp[0]K
4 In parallel do
5 (JeK,JiK)←minLs(Jp⃗[0 : ⌊m/2⌋]K)
6 (J f K,J jK)←minLs(Jp⃗[⌊m/2⌋+1 : m]K)

7 return if JeK≤ J f K then (JeK,JiK) else (J f K,J jK)

Algorithm 7 declassifies the index of the unhandled vertex closest to the source vertex.
This declassification greatly simplifies the computation of JE⃗K, where the current distance
of u′ is added to the length of all edges starting at u′. Without declassification, one would
need to use techniques for private reading here, which would be expensive. Note that
both the computations of JE⃗K and JD⃗K take place in a SIMD manner, applying the same
operations to JE[i]K, JG[u′, i]K, JD[i]K, and M[i] for each i ∈ {0, . . . ,n−1}.

This declassification constitutes a leak. Effectively, the last loop declassifies in which
order the vertices are handled, i.e., how they are ordered concerning their distance from
the source vertex. Such leakage can be neutralized by randomly permuting the graph’s
vertices before that last loop [3]. In this way, the indices of the vertices, when they are
declassified, are random. The declassification would output a random permutation of the
set {0, . . . ,n−1}, one element at each iteration.

The computation of this random permutation takes place at the beginning of Algo-
rithm 7 (lines 2-7). It starts by performing the given undirected graph’s permutation to
mask the vertices’ real identity and their connected edges. We first generate a private
random permutation JσK for n elements. We will then apply it to each row of JGK; the
application takes place in parallel for all rows. Similarly, we apply it to each column.
Such permutation also changes the index of the source vertex, and we have to find it. We
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find it by taking the identity vector of length n, applying to it the inverse of σ, and then
reading the position s of the resulting vector. Note that we declassify only the position
s at this time, not the entire vector. At the end of the computation, we have to apply the
inverse of σ to the computed vector of distances.

4.2.2. Vectorizing Dijkstra’s protocol

Dijkstra’s algorithm is used as a subroutine in specific APSD algorithms (Sec 5.2). Hence,
we have also implemented a vectorized version of Algorithm 7 that can simultaneously
compute the SSSD for several n-vertex graphs.

Algorithm 9: SIMD-nDijkstra
Data: Number of vertices n, starting vertices s⃗
Data: Lengths of edges JGK ∈ (N∪{∞})g×n×n

Result: Private distances from the starting vertices
1 begin
2 for i = 0 to g−1 do
3 Jσ[i,⋆]K← randPerm(n)
4 forall u ∈ {0, . . . ,n−1} do
5 JG′[i,u′,⋆]K← apply(Jσ[i,⋆]K,JG[i,u,⋆]K)

6 forall v ∈ {0, . . . ,n−1} do
7 JG′[i,⋆,v′]K← apply(Jσ[i,⋆]K,JG′[i,⋆,v]K)
8 s′[i]← declassify(unApply(Jσ[i,⋆]K, [0,1, ..,n−1]))

9 JD⃗K← ∞, [M]← false
10 for i = 0 to n−1 do
11 JD[k+ s′[i]]K← 0 // k = i ·n
12 for j = 0 to n−1 do
13 JP[k+ j]K = j
14 d[k+ j] = i

15 for i = 0 to n−1 do
16 [u′]← declassify((minLv(Ji,JP⃗KK,M⃗, d⃗))
17 start = 0,end = 0,range = 0
18 for u = 0 to g−1 do
19 range = u∗n+u′[u]
20 end = start +n
21 WsJstart : endK = JG′[u,u′[u],⋆]K
22 nD[start : range] = range
23 M[range] = true
24 start = start +n

25 forall i ∈ {0, ...,nD−1} do
26 JDs[i]K← JD⃗K

27 JE⃗K← JD⃗sK+ JW⃗ sK
28 [M] = false

29 JD⃗K← if M⃗∧ (JE⃗K < JD⃗K) then JE⃗K else JD⃗K

30 return unApply ( Jσ[⋆,⋆]K,JD⃗K )
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We call this version of the algorithm nDijkstra, presented in Algorithm 9. Dijkstra
and nDijkstra have the same round complexity. In contrast, the communication usage of
the latter is n times the former (when finding SSSD for g graphs simultaneously).

Generally, the vectorized version of the privacy-preserving Dijkstra protocol consists
of two main parts. The permutation part (lines 2-8) finds the permutation for each graph
separately. The algorithm generates a private random permutation JσK for n element for
each graph. Later, the algorithm shuffles the rows and columns for each graph using per-
mutation JσK in parallel. During permutation, permuted graphs JG′K will be stored in a
3-dimensional adjacency matrix JG′ [g,⋆,⋆]K. This permutation changes the position of
source vertices s⃗ for each graph. To find the new identity of the starting vertices s⃗, we
apply the inverse of JσK to the identity vector of length n and then read the declassified
position s

′
of the resulting vector for each graph. The part (lines 10-14) is for getting the

indices; vector d⃗ is public, while vector JP⃗K and JD⃗K are private. It would be better to
assign them all in parallel using forall-loop.

Algorithm 10: minLv: Minimal values for n-vector
Data: Vector for n graphs JK⃗K
Data: Boolean vector of unhandled vertices M⃗
Data: The private indices Jd⃗K
Result: The minimum distance J⃗uK for all graphs

1 begin
2 JK⃗K← if (M¬false) then J⃗∞K else JK⃗K
3 J⃗SK←min(JK⃗K,n)
4 forall i ∈ {0,1, ...,n−1} do
5 JViK← J⃗SK

6 Jw⃗K← if (J⃗V K = JK⃗K) then Jd⃗K else J⃗∞K
7 J⃗uK←min(Jw⃗K,n)
8 return J⃗uK

The second part of the algorithm is finding the shortest paths for all graphs simultane-
ously (lines 15-29) in Algorithm 9, all graphs JGK ∈ Zn×n will be carried and processed
only once. The main for-loop is the main body of vectorized Dijkstra algorithm, which
starts by calling the minLv-function, see Algorithm 10. This function is also vectorized
version of the minim first component procedure (Algorithm 8). It can process a group of
sets of vectors at one time and return a vector of elements; each element is a minimization
value of a graph. The return value of minLv will be declassified to get it as public, with
no threading for privacy because values are already masked in the permutation’s part.

The inner for-loop (lines 18-24) is where we perform vectorization of the given matri-
ces and the state of the visited vertices. The graphs G′ will be vectorized into vector J

−→
WsK

in each iteration. The vector has a set of rows, each from a graph, based on the value
of u

′
[u]. Furthermore, the Boolean vector M⃗ gets true-value for visited vertices. The

last operations are similar to Algorithm 7. Finally, the return value is an adjacency ma-
trix containing the shortest distances, each row for the corresponding graph, by applying
unApply-function to get the vertices’ actual identity.
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4.3. Privacy-preserving Bellman-Ford protocols for sparse graphs

The section presents the two privacy-preserving Bellman-Ford protocols on a sparse graph.
The main program of both protocols’ versions is similar, while the main difference is the
parallel algorithm of PefixMin2 subroutines.

4.3.1. Bellman-Ford protocol (Version 1)

The Bellman-Ford algorithm repeatedly relaxes all edges in parallel until the mapping JD⃗K
changes no more. In the worst case, there may be n−1 iterations. We show how to run the
Bellman-Ford algorithm in a privacy-preserving manner on top of the Sharemind-inspired
ABB described above, applying it to graphs represented sparsely. The representation that
we consider consists of two public numbers n and m of vertices and edges, and three pri-
vate vectors J⃗SK, JT⃗ K, and JW⃗ K of length m, where the elements of the first two vectors
belong to the set {0, . . . ,n−1}. In this setting, the i-th edge of the graph has the start and
end vertices JS[i]K and JT [i]K, and the weight JW [i]K. We see that our representation hides
the entire structure of the graph (besides its size given by n and m), such that even the
degrees of vertices remain private.

Algorithm 11: Privacy-preserving Bellman-Ford, main program
Data: Numbers of vertices and edges n and m
Data: Starting vertex s
Data: Sources, targets, and weights J⃗SK, JT⃗ K, and JW⃗ K
Requires: JT⃗ K is sorted
Requires: The in-degree of each vertex is at least 1
Requires: There is a loop edge of length 0 at vertex s
Result: Private distances from vertex s

1 begin
2 J⃗ZK← GenIndicesVector(JT⃗ K)
3 JRSK← prepareRead(n, J⃗SK)
4 JRZK← prepareRead(m, J⃗ZK)
5 JD⃗K← ∞

6 JD[s]K← 0
7 for i = 0 to n−1 do
8 J⃗aK← performRead(JD⃗K,JRSK)
9 J⃗bK← J⃗aK+ JW⃗ K

10 J⃗cK← prefixMin2(J⃗bK,JT⃗ K)
11 JD⃗K← performRead(J⃗cK,JRZK)

12 return JD⃗K

The algorithm for computing distances from the s-th vertex is given in Algorithm 11,
with subroutines in Algorithm 12 and Algorithm 13. Suppose the requirements stated at
the beginning of Algorithm 11 are not satisfied. In that case, this can be remedied easily
and in a privacy-preserving manner by adding extra edges to the graph (increasing the
length of the vectors J⃗SK, JT⃗ K, and JW⃗ K), and then sorting the inputs according to JT⃗ K.

The chosen setting brings with it several challenges when relaxing edges. To relax
the i-th edge, the algorithm must locate D(S[i]). However, S[i] is private. Fortunately, the
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parallel reading subroutine is applicable as we relax all edges in parallel. Moreover, as
the indices S[i] stay the same over the iterations of the algorithm, we can invoke the (rel-
atively) expensive prepareRead-routine only once and use the linear-time performRead-
routine in each iteration. This can be seen in Algorithm 11, where we call prepareRead
on J⃗SK at the beginning, and then do a performRead at the beginning of each iteration. We
will then compute J⃗bK as the sum of the current distance of the start vertex of an edge and
the length of that edge.

After computing the sums b[i] = D[S[i]] +W [i], the value D[T [i]] has to be updated
with it, if it is smaller than any other b[ j] where T [i] = T [ j]. Due to the loop edge of
length 0 at the starting vertex, we have simplified our computations by eliminating the
need to consider the old value of D[T [i]] when updating it. Such updates map straight-
forwardly to parallel writing. In parallel writing, concurrent writes to the same location
must be resolved somehow. Currently, we want the smallest value to take precedence
over others, i.e., the value is precedence. The available parallel writing routines support
such precedences. However, these precedences, which change each round, are part of the
inputs to prepareWrite, hence would introduce significant overhead to each iteration.

Algorithm 12: PrefixMin2 (version 1)

Data: Vector of values J⃗bK
Data: Vector of ranges JT⃗ K
Result: Prefix minimum for elements of b⃗, separately for each range of T⃗

1 Function min2(JxK,Jx′K,JyK,Jy′K) is
2 JqK←min(JyK,Jy′K)
3 return choose(JxK = Jx′K,JqK,Jy′K)

4 begin
5 n← length(J⃗bK)
6 if n = 1 then return J⃗bK
7 forall i ∈ {0, . . . ,⌊n/2⌋−1} do
8 JUiK← JT2i+1K
9 JdiK←min2(JT2iK,JT2i+1K,Jb2iK,Jb2i+1K)

10 J⃗eK← prefixMin2(Jd⃗K,JU⃗K)
11 Jr0K← Jb0K
12 forall i ∈ {1, . . . ,n−1} do
13 if i is odd then
14 JriK← Je(i−1)/2K
15 else
16 JriK←min2(JTi−1K,JTiK,Je(i−2)/2K,JbiK)

17 return J⃗rK

This work shows how to reduce the updates in parallel reading according to indices
that stay the same for each iteration. It requires us first to compute the minimum distances
for all vertices while being oblivious to each edge’s end vertex. Thanks to JT⃗ K being
sorted, the edges ending at the same vertex form a single segment in the vector J⃗bK. For
each such segment, we will compute its minimum, which will be stored in vector J⃗cK,
at the index corresponding to the last vertex of that segment. That element can be read
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out using another performRead. From where to read, the indices have been stored in
the vector J⃗ZK. We compute the minima for segments with private starting and ending
points through prefix computation, where the applied associative operation is similar to
the minimum. Consider the following operation:

min2((x,y),(x′,y′)) =

{
(x′,min(y,y′)), if x = x′

(x′,y′), if x ̸= x′
(4.1)

Suppose we zip the vectors T⃗ and b⃗ (obtaining a vector of pairs), and then compute the
prefix-min2 of it. We end up with a vector of pairs whose first components give us back
the vector T⃗ , and whose second components are the prefix-minima of the segments of b⃗
corresponding to the segments of equal elements in T⃗ . The second case of (4.1) ensures
that prefix minimum computation is broken at the end of segments. It is easy to verify
that min2 is associative.

We use the Ladner-Fisher parallel prefix computation method [111] to compute privacy-
preserving prefix-min2 in a round- and work-efficient manner. The computation is given
in Algorithm 12. The write-up of the computation is simplified by the T⃗ -component not
changing during the prefix computation. Hence prefixMin2 returns only the list of the
second components of pairs. Similarly, the subroutine min2 returns only a single value.
Our ABB supports all operations in Algorithm 12.

Algorithm 13: GenIndicesVector
Data: Sorted vector J⃗vK
Result: Private vector of indices of the last occurrence of each value in v⃗

1 begin
2 m← length(J⃗vK)
3 J⃗bK←

(
J⃗v[0 : m−2]K = J⃗v[1 : m−1]K

)
@ [true]

4 JσK← randPerm(m)

5 c⃗← declassify(apply(JσK, J⃗bK))
6 J⃗kK← apply(JσK, [0,1, . . . ,(m−1)])
7 J⃗lK← NIL
8 for i = 0 to m−1 do
9 if c[i] then

10 J⃗lK← [Jk[i]K]@ J⃗lK

11 return sort(J⃗lK) ; // Use oblivious quicksort [31]

The computation of the vector J⃗ZK of the indices of the ends of the segments of equal
elements in JT⃗ K in Algorithm 13 uses standard techniques. We first compute the end
position’s index vector J⃗bK. The length of that vector is m, and exactly n of its elements
are true. We randomly permute J⃗bK using apply-routine, each element of the private
vector J⃗bK located in the same content as the index i of the original sorted vector J⃗vK,
then convert the data type of the result from private to public locations using declassify-
routine. The result of declassification is a random Boolean vector of length m, where
exactly n elements are true. The distribution of this result can be sampled by knowing n
and m; there is no further dependence on J⃗bK. Hence this declassification does not break
the privacy of our SSSD algorithm. We permute the identity vector similarly, resulting in
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the private vector J⃗kK. Now the indices we are looking for are located in these elements
Jk[i]K, where c[i] is true. Hence we pick them out by applying cons-routine. They have
been shuffled by JσK; this has to be undone by sorting them.

If the graph contains negative-length cycles, there are generally no shortest paths be-
cause any path can be made cheaper by one more walk around the negative cycle. We
could amend Algorithm 11 to detect these negative cycles in the standard manner by do-
ing one more iteration of its main loop and checking whether there were any changes to
JD⃗K.

4.3.2. Bellman-Ford protocol (Version 2)

The computation of prefixMin2 is the most complex step in the main loop of Algo-
rithm 11. The Ladner-Fisher method [111] for its computation is communication- and
round-efficient—the number of rounds is logarithmic (assuming each arithmetic opera-
tion takes a constant number of rounds), and the total number of operations is only a
constant times larger than a sequential implementation would have had. Still, different
trade-offs between communication and round complexity are possible. To study these
trade-offs, we have also implemented prefixMin2 based on the Hillis-Steele parallel prefix
computation method [91]. This alternative implementation is given in Algorithm 14. Re-
placing its call in Algorithm 11 gives us our second version of the Bellman-Ford protocol.

Algorithm 14: prefixMin2 (version 2)

Data: Vector of values J⃗bK
Data: Vector of ranges JT⃗ K
Result: Prefix minimum for elements of b⃗, separately for each range of T⃗

1 begin
2 n← length(J⃗bK)
3 for j = 1 to ⌊logn⌋ do
4 Jd⃗[0 : 2 j−1]K← J⃗b[0 : 2 j−1]K
5 JU⃗ [0 : 2 j−1]K← JT⃗ [0 : 2 j−1]K
6 Jd⃗[2 j : n−1]K← J⃗b[0 : n−2 j−1]K
7 JU⃗ [2 j : n−1]K← JT⃗ [0 : n−2 j−1]K
8 J⃗eK←min(J⃗bK,Jd⃗K) // elementwise minimum of two vectors

9 J⃗bK← choose(JT⃗ K = JU⃗K, J⃗eK, J⃗bK)

10 return J⃗bK

Algorithm 14 has a single loop that is executed logn times. Each iteration’s round
complexity equals the sum of round complexities of finding the minimum and an oblivious
choice. The first of these dominates, as the oblivious choice only requires a single round
of communication. Compared to Algorithm 12, we have reduced the round complexity by
around two times. On the other hand, we have increased data volume usage by ca. logn
times.
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4.4. Privacy-preserving radius-stepping protocol

In this section, we describe our algorithm for parallel privacy-preserving single-source
shortest distances by radius-stepping and present its performance analysis with details.
Let G = (V,E) be an edge-weighted undirected graph, where V is a set of vertices, and E
is a set of edges for the graph G. An edge e from the vertex u to the vertex v has a weight
denoted as w(e) or w(u,v). The weights w in the graph G are assumed to be non-negative
integers in a finite range in the case of the Radius-Stepping algorithm. The data of the
graph G is presented in an adjacency matrix as integers; if there is no edge e among two
vertices u and v, then the weight is w(u,v) = ∞. The algorithm for computing the short-
est paths has three main subroutines, summation, minimum, and reweighing. The query
determines the minimal cost δG(u,v) from vertex u to vertex v ∈V . The radius-Stepping
algorithm is an SSSD algorithm highly recommended for use on graphs edges like the pla-
nar and non-planar. The algorithm works efficiently with low time complexity compared
to the ∆-Stepping algorithm, while both are parallel SSSD algorithms. Our contribution
is constructing and testing a parallel privacy-preserving shortest path for different types
of graphs through SIMD in the Sharemind SMC platform. The graphs’ types are planar
graphs (or like-planar) and dense graphs. The privacy-preserving radius-stepping algo-
rithm is geared more toward dense graphs.

Algorithm 15: Privacy-Preserving Radius-Stepping
Data: Number of vertices and edges n,m
Data: Adjacency matrix JGK ∈ Zn×n

Data: Vertex radii J⃗rK ∈ Nn, source vertex s
Result: The distances J⃗δK from s

1 begin
2 J⃗SK = false // length of S⃗ is n
3 J⃗δK← JG[s,⋆]K, JS[s]K← true, Jδ[s]K← 0, JDK← 0
4 repeat
5 J⃗δ′K← Bellman-Ford-Step(n,JGK, J⃗SK, J⃗δK,JDK)
6 JBK← (J⃗δ′K ̸= J⃗δK) // a private Boolean

7 J⃗δK := J⃗δ′K
8 J⃗S′K← (J⃗δK≤ D) :∈ kind(true, false)
9 JD′K←min(choose(J⃗SK, J⃗∞K, J⃗δK+ J⃗rK))

10 J⃗SK := choose(JBK, J⃗SK, J⃗S′K)
11 JDK := choose(JBK,JDK,JD′K)
12 until declassify(

∨
¬J⃗SK)

13 return δ(·)

The privacy-preserving radius-stepping protocol is presented in Algorithm 15. In de-
tail, the algorithm works as follows: The data input is weighted, undirected graph G =
(V,E), which is presented in an adjacency matrix, source vertex s, and the value of the ra-
dius for every vertex in the graph, given as a function r: V →R+. The algorithm generally
has the same basic structure as the Radius-Stepping algorithm. Hence, we represent the
algorithm using vectors to let the algorithm perform the calculation in single instruction
multiple data with privacy-preserving. The Radius-Stepping algorithm has the same basic
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structure as the ∆-Stepping algorithm. Both algorithms are a hybrid of the Bellman-Ford
algorithm and Dijkstra’s algorithm, as we explained in Sec 2.4.1.

The set S (Algorithm 3) stored as a vector of private Boolean J⃗SK, and the current
mapping δ as a vector of private integer J⃗δK. The algorithm starts by initializing the
Boolean vector J⃗SK with false-value, and the vector of graph distance J⃗δK with weights of
the source vector s with all vertices v ∈V . As well as, the first element in vector J⃗SK and
J⃗δK is the source vertex s by true-value and by 0-value, respectively. The operations in
the two forall-loop are performed in parallel.

The algorithm has only one repeat-loop, starting by finding the shortest path for one
step by Algorithm 16, until settling all vertices with a radius less than D. The Bellman-
Ford-step algorithm starts by vectorizing the elements into the vectors for J⃗δK and J⃗SK
into the row and column vectors. Furthermore, the algorithm updates JM⃗K by finding the
minimum weights of elements in J

−→
δRK and the summation of the elements in J

−→
δCK with

edges’ weights of the graph JGTK. The updating of J
−→
δBK is either getting the elements of

JM⃗K or J
−→
δRK, which is based on satisfying the three conditions of bounding the number of

sub-steps J⃗cK as presented in Algorithm 16.
The operations of the Bellman-Ford-step algorithm are organized to be performed by

the SIMD framework, which decreases the round complexity of performing the Bellman-
Ford sub-steps. The vector J

−→
δBK consists of n-block while each block has also n-element

(same number of the vertices in JGK). The minimum value is obtained by finding the min-
imum in all elements in a block separately, then block by block. The minimum values will
be stored in J⃗δ′K, where the size is n, and the minimum value is the shortest path for each
vertex in the graph. To keep tracing over all vertices in the graph, apply the remaining
operations in Algorithm 15.

Algorithm 16: Bellman-Ford-Step
Data: Number of vertices n
Data: Adjacency matrix JGK ∈ Zn×n

Data: Current values of J⃗SK, J⃗δK, JDK in Alg. 15
Result: The updated distance Jδ⃗′K from s

1 begin
2 forall u ∈ {0,1, . . . ,n−1} do
3 forall v ∈ {0,1, . . . ,n−1} do
4 JSR[u,v]K← JS[u]K
5 JSC[u,v]K← JS[v]K
6 JδR[u,v]K← Jδ[u]K
7 JδC[u,v]K← Jδ[v]K

8 J⃗cK← (¬JSRK)&(¬JSCK)&(JδCK≤ JDK)
9 JM⃗K←min(JδRK,JδCK+ JGTK)

10 JδBK← choose(J⃗cK,JM⃗K,JδRK)
11 forall u ∈ {0, . . . ,n−1} do
12 Jδ′[u]K←min{JδB[u,⋆]K}

13 return Jδ⃗′K
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In Boolean vector JB⃗K, we store the cases of comparison the vector J⃗δK and J⃗δ
′
K.

The goal is to check whether all vertices are settled or not, the current iteration with the
previous one. Later, the delta vector J⃗δK will be replaced by the J⃗δ

′
K. The vector of

visited set J⃗S
′
K in Algorithm 15 represent the condition in the repeat-loop in Algorithm 3

(line 9). The vertices which have not been visited yet, their Boolean case will be stored
in the vector J⃗SK after finding the minimum of J⃗δK + J⃗rK. The last operations in the
algorithm are updating the vector of visited set J⃗SK and the value of D, and the updating is
based on the state of the Boolean B by applying choose-operations. The algorithm repeats
those operations until all vertices are visited (settled). The Boolean cases of (

∨
¬J⃗SK) are

declassified to satisfy the condition.

4.5. Privacy-preserving Breadth-first search protocol

This section presents a privacy-preserving single-source shortest distance protocol that
can be applied to unweighted and weighted graphs. The breadth-first search algorithm is
a basement in constructing the protocols. It is a good fit for computing the shortest dis-
tances in weighted and unweighted graphs, which is an undirected connected graph. The
algorithm and its operations have been designed to run smoothly on ABB using the cryp-
tographic protocol. The sensitivity of the private data in SMC protocols requiring several
round-trips between the computing parties for each operation affects the implementation.
It is possible to compute the shortest distance on a weighted graph by applying fewer
operations than it is to compute the shortest distance on an unweighted graph. We, there-
fore, present a version of the algorithm that computes the shortest distances faster in the
weighted graphs. In the first case, we present a privacy-preserving SSSD algorithm for
unweighted graphs, called Unweighted Breadth-First Search (UBFS), while in the sec-
ond case, we present a privacy-preserving SSSD in weighted graphs, called Weighted
Breadth-First Search (WBFS). In parallel, the algorithms use the SIMD framework and
are based on the BFS algorithm.

4.5.1. UBFS protocol for unweighted graph

The breadth-first search algorithm relaxes the edges with the same starting vertex s in
parallel. The algorithm relaxes the edges of the frontier vertices with each iteration. The
graph is represented densely. In the adjacency matrix, weights are assigned to edges with
size n×n, where the weight “∞” indicates the lack of a given edge. We use an adjacency
matrix to fit our proposed algorithm as a data structure. However, our benchmarks use dif-
ferent graphs on various network environments. The implementation of the Breadth-First
search for finding the shortest distances in an unweighted graph that preserves privacy is
presented in Algorithm 17.

In detail, the algorithm works as follows: the input data is a private unweighted undi-
rected graph G = (V,E) represented in an adjacency matrix, and the second input is the
source vertex. The return value is the distance J⃗δK, which is a private vector with size
n. The adjacency matrix’s data structure was vectorized to make it a good fit for our pro-
posed parallel technique. Two private vectors of size n2 are initialized to obtain the edges’
weights. The rows of the matrix are represented by the first vector, J

−→
δrK, and the columns

by the second vector, J
−→
δcK. The initial values are, storing the first row in the adjacency

matrix JG[s,∗]K into distance vector J⃗δK, and source vertex. It is worth noting that the
adjacency matrix has already been vectorized into a J⃗eK vector of size n2.
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The two vectors J
−→
δrK and J

−→
δcK allow traversing over vertices to relax their edges using

sets. As a result, the foreach-loops (in Algorithm 4) are not required. This new algorith-
mic structure minimizes the algorithm’s round complexity. The initial values of weight
sets are given in parallel, with the vector J

−→
δrK containing the elements of the u-row and

the vector J
−→
δcK containing the elements of the v-column, u,v ∈ V . Getting the indices

J
−→
δrK happens only once, out of the repeat-loop, while getting the indices of J

−→
δcK must

take place at each iteration inside the repeat-loop for updates. The algorithm consists of a
single repeat-loop that begins by collecting the edges’ weights of columns J

−→
δcK in SIMD

parallel.

Algorithm 17: Privacy-Preserving UBFS for unweighted graph
Data: Adjacency matrix JGK ∈ Zn×n

Data: Source vertex s
Result: The graph distance δ(·) from s

1 begin
2 J⃗δK← JG[s,∗]K
3 δ[s]← 0
4 forall u ∈ {0,1, ...,n2−1} do
5 Jδr[u]K← J⃗δK

6 repeat
7 forall v ∈ {0,1, ...,n2−1} do
8 Jδc[v]K← J⃗δK

9 JC⃗K← (J⃗δcK ̸= ∞)

10 JM⃗K← (J⃗δcK+ J⃗eK)
11 J⃗δ

′
K := choose(JC⃗K,JM⃗K, J⃗δrK)

12 J⃗δK←min(J⃗δ
′
K,n)

13 until declassify(all(JδK ̸= ∞))
14 return Jδ(·)K

Regardless of whether there is an edge or not (denoted by “∞”), all elements of column
vector J

−→
δcK will be computed. To distinguish this, the condition JC⃗K will label the indices

of existing edges with Boolean values. If its index is used in computation, the elements
in the vector are true. This index will be disregarded if the value is false. The Boolean
vector has a size of n2, the same as the adjacency matrix JGK. This adjacency matrix may
be readily vectorized, and the SIMD technology can be easily applied to the algorithm.
The elements of the columns vector J

−→
δcK and the elements of J⃗eK will then be summed

and put in the vector JM⃗K in the next step. Because all elements are summed in a single
parallel instruction, the technique uses the SIMD approach.

UBFS’s algorithm will implement the vectorized choose-operation from Sharemind’s
protocol set. The outcome of the choose-operation is stored in the J⃗δ′K. Among the values
stored in the vector, J⃗δ′K are the current shortest distances δ(·) from source vertex s to all
vertices in the given graph.

The final step is to obtain these minimum values (shortest distances) for each vertex.
The min-operation has two arguments: a vector of private values and a public integer n. It
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replaces each input vector’s n elements with a single value, the cheapest of these n values.
In other words, vector Jδ

′
K has n-block, min-operation finds the cheapest weights for each

block, which is for a vertex. Thus, repeat all operations until all vertices are settled. All of
the UBFS algorithm’s operations can be applied to vectors of values stored in the ABB.
The operation’s parameters (which are private) must all be the same length. The SIMD
method is satisfied by this aspect of the operations.

4.5.2. WBFS protocol for weighted graph

The sequential breadth-first search algorithm’s feature can be suitable for creating a par-
allel version of the BFS on top of SMC protocols. The data structure of the frontier
stores the vertices from the source vertex s simultaneously. This function can be par-
allelized, reducing the quantity of layer traversal. As a result, the shortest path can
be computed in a weighted graph with fewer operations than in an unweighted graph.
This section shows another variation of BFS’s privacy-preserving shortest path algorithm
for a weighted graph with fewer operations. This has the effect of shortening the algo-
rithm’s execution time. In Algorithm 18, the privacy-preserving BFS shortest path for the
weighted graph is shown.

Algorithm 18: Privacy-preserving WBFS for weighted graph
Data: Adjacency matrix JGK ∈ Zn×n

Data: Source vertex s
Result: The graph distance δ(·) from s

1 begin
2 J⃗δK← JG[s,∗]K
3 repeat
4 forall u ∈ {0,1, ...,n2−1} do
5 Jδr[u]K← J⃗δK

6 J⃗δ
′
K←min((J

−→
δr K+ Je(v,u)K),n)

7 JD⃗K := J⃗δK
8 J⃗δK := J⃗δ′K
9 until declassify(all(J⃗δ′K = JD⃗K))

10 return Jδ(·)K

The data input is source vertex s, and the weights of their edges and vertices, stored
in the private adjacency matrix, are also input to the algorithm. The algorithm’s output is
the shortest path from the source vertex s to all other vertices in the given graph JGK. The
algorithm’s initial step is to insert the first row of the given graph JGK (with source vertex
s) into the shortest distances vector J⃗δK, which will be updated during the algorithm’s
execution until all vertices have been processed. The algorithm includes only one repeat-
loop, which begins by allocating all rows of the provided graph JGK to the J⃗δrK rows
vector. In our algorithms, we utilize the forall-loop to signal that all assign-operation in
that loop should be executed in parallel.

Later, the adjacency matrix of the given graph JGK has already been vectorized into
vector J⃗eK, which we have vectorized column by column. The algorithm’s core operation
is the summing of the two vectors J

−→
δrK and J⃗eK, followed by the min-operation to obtain
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the minimal distance for each vertex. The algorithm’s final mission is to swap the vectors
used to make the updates. The goal is to ensure that all vertices have been handled. The
end-of-loop equality check returns a vector of Boolean values. The all-operation does not
reveal the values of J⃗δ′K and JD⃗K. The number of iterations in this algorithm is unknown.
It is based on how many related edges there are. The algorithm performs efficiently when
the number of edges is close to the maximum possible, such as in a dense graph.

4.6. Performance Analysis

Two kinds of communication-related complexities exist in secure multiparty computation
applications that might constitute bottlenecks in deployments among computation parties.
This is why secure multiparty computation applications have such high network latency.
This section discusses the performance analysis of our proposed protocols in terms of
these complexities. The number of round trips that have to be made among the SMC
computation parties is called the round complexity of the algorithms. The second com-
plexity is the communication complexity for an algorithm which refers to the number of
bits that computation parties may transport. This complexity is based on the algorithm’s
structure and the number of times the algorithm will be iterated to complete the compu-
tation. Let g denote the number of given graphs—or the number of components in an
unconnected graph JGK, while n is the number of the vertices, and m is the number of the
edges in the graph.

4.6.1. Round complexity

We start with the Privacy-preserving Radius-stepping protocol. The radius r determines
the number of steps and sub-steps in the calculation. Thereby, the Round complexity
is based on the radius r. The number of iterations is based on the number of visited
vertices. The protocol of radius-stepping has only one repeat-loop that indicates the
logarithmic complexities of the algorithm. Algorithm 15 has a subroutine, and the round
complexity of the subroutine—Bellman-Ford-step (Algorithm 16)—is constant. There
are three cases of the radii r. In the case that r(v) = 0, the round complexity of the
algorithm is O(n+ logm). If r(v) = ∞, the round complexity is O(logn). As well as, the
round complexity is O(logn+ logm) if the r(v) = δ.

We suppose m is somewhere between n and O(n2), which means n+m is O(m) and
logm is O(logn). In the privacy-preserving Bellman-Ford algorithm (Algorithm 11), the
part before the main loop requires O(logn) rounds. Indeed, both prepareRead-statements
have this complexity, while the complexity of GenIndicesVector-function is dominated
by the sorting of n private values. One iteration of the main loop of the Bellman-Ford
algorithm requires O(logn) rounds, with prefixMin2-function (Version 1) being the only
operation working in non-constant rounds. The number of iterations is (n−1), hence the
total round complexity is O(n logn). However, the number of iterations represents the
worst-case scenario, which must be used only if there is no further information. We can
reduce the number of iteration cycles by assuming that the shortest path we are concerned
which consists of at most k < n edges, where the number of iterations can be reduced.
The round complexity, in this case, is O(k logn).

In the privacy-preserving Dijkstra’s protocol (Algorithm 7) where input data is an
adjacency matrix JGK ∈ (N∪{∞})n×n, number of edges is less than n2. The main for-
loop requires O(logn) rounds for each iteration, minLs is the only operation working in
non-constant rounds. The entire loop thus requires O(n logn) rounds. The permutation
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which occurs before the main loop requires a constant number of rounds. The last part in
the algorithm, which is the private read, has O(logn).

The running in the nDijkstra’s algorithm is g time in Dijkstra’s algorithm; however,
the running in parallel, nDijkstra’s algorithm carries g graphs simultaneously. Hence, the
round complexity in the implementation of nDijkstra’s protocol (Algorithm 9) is O(n2).
Furthermore, the round complexity of the permutation part is O(n), where g = n. More-
over, the private read also requires O(n logn).

In privacy-preserving BFS protocols, Round complexity is based on how often the
algorithm has to iterate until the result is obtained. Based on empirical tests in Sec 8.2.5,
round complexity is based on the number of vertices n and the number of edges m. If
two graphs have the same number of vertices, one dense and the other sparse, then the
round complexity of the sparse graph’s algorithm is more than running on a dense graph.
In other words, the best case of the algorithm is on a dense graph, while the worst case
is on a sparse graph. The round complexity for both versions of BFS is O(logn). In the
UBFS version that uses the dense graph, the round complexity is constant O(1). The
round complexities of privacy-preserving SSSD protocols are presented in Table 1.

Table 1: Round and communication complexities for privacy-preserving SSSD protocols.

Protocol Complexities
Round Communication

r = 0 O(n+ logm) O(n2 logn)
Radius-Stepping r =∞ O(logn) O(n2 logn)

r=δ O(logn+ logm) O(n2 logn)
BFS WBFS O(logn) O(n2 logn)

UBFS O(logn) O(n2 logn)
Bellman-Ford V1 Pre-loop O(logn) O(m logn)

Loop O(n logn) O(mn)
Bellman-Ford V2 Pre-loop O(logn) O(m logn)

Loop O(n logn) O(mn)
Perm. O(1) O(n2)

Dijkstra Loop O(n logn) O(n2)
PerfR. O(logn) O(n logn)
Perm. O(n) O(n3)

nDijkstra Loop O(n2) O(n3)
PerfR. O(n logn) O(n2 logn)

4.6.2. Communication complexity

Bellman-Ford and Dijkstra’s protocols have linearithmic round complexities, while radius-
stepping and breadth-first search protocols have logarithmic rounds.

We start by discussing the communication complexities of the linearithmic protocols
based on the discussions in Sec 4.6.1. The steps of the Bellman-Ford algorithm before the
main loop of the algorithm require O(m logn) of communication. In the main for-loop
requires O(m) of communication for each iteration. The number of iterations in the main
loop is n− 1; hence, the total communication requires O(mn). In the case that shortest
paths consist of at most k < n edges, the total communication is O(m(k+ logn)).
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In privacy-preserving Dijkstra’s protocol, shuffling rows and columns in the permuta-
tion part requires O(n2) of communication. The main for-loop requires O(n2) of commu-
nication. Applying Laud’s protocols for private read thus requires O(n logn) of commu-
nication.

The communication of privacy-preserving Dijkstra’s protocol for multiple graphs (nDi-
jkstra), where g = n as follows: The shuffling of rows and columns requires O(n3) of com-
munication. The part for finding the shortest path for several graphs has two loops. The
inner for-loop requires O(n2) of communication, while each iteration in outer for-loop
also require O(n2) of communication. The entire loop thus requires O(n3) of communi-
cation.

In the radius-stepping protocol with logarithmic round complexities based on radii,
the adjacency matrix is entirely vectorized into a large vector, where the size is n× n.
Each iteration of the repeat-loop requires O(n2) of communication. The entire loop thus
requires O(n2 logn) of communication.

The versions of the privacy-preserving BFS protocol have an algorithmic structure
similar to the Radius-stepping algorithm. Hence, we assume the number of iterations
is p. The vectorization is done into a large vector with size n× n that will handle the
operations. Thus, one iteration requires O(n2) of communication. Then, the entire repeat-
loop requires O(p · n2) of communication. The communication complexities of privacy-
preserving SSSD protocols with their parts are presented in Table 1.

4.7. Security and privacy of protocols

4.7.1. Security of protocols built on top of ABB

As shown above, this chapter presents four new protocols for privacy-preserving SSSD
with their related algorithms. The input data of the protocols are privately structured
either in an adjacency matrix or in three private vectors. The proposed protocol is built
on top of a universally composable ABB. If there were no declassification operations in
the protocol, declassification means converting data type of private data from private to
public. Then, its composition with an SMC protocol set that is a secure implementation
of the ABB would inherit that protocol set’s security and privacy properties [112].

The proposed SSSD protocols contain declassification operations. We leak the num-
ber of iterations in Algorithm 15, Algorithm 17, and Algorithm 18. Also, we leak the
identity of source vertices s and start-point edges u in versions of Dijkstra’s protocol, Al-
gorithm 7 and Algorithm 9—the vertices s and u are masked as a result of permutation.
Nevertheless, we can state the following security theorem.

Theorem 1. Suppose that our SMC protocol set implements an ABB for k computing
parties that is secure against an active [resp. passive] adversary that corrupts at most t
computing parties. Then, an active [resp. passive] adversary that runs in parallel with
k parties executing the SSSD protocol and this SMC protocol set to implement private
computations, corrupting at most t parties, will not learn anything about the inputs to the
protocol besides the number of vertices and edges of the graph, and the starting vertex s
(for Bellman’s and Dijkstra’s protocols). For some protocols (the BFS kind and radius-
stepping), the adversary also learns the number of iterations.

Proof. We need to construct a simulator that takes the adversary’s view in the ideal world
and returns the adversary’s view in the real world. A copy of the ABB’s ideal functionality
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is running inside the simulator. The adversary would only receive n and s in an ideal
world. In the real world, if several computation parties are corrupted, the adversary sees
several things:

• the inputs, which are the number of the vertices n and source vertices s;

• the handles to the private values, stored in the variables marked with J·K in the
algorithm. Regardless, it is elements, vectors, or adjacent matrix.

• the declassified values. It can be an integer number, element, or vector.

• if the adversary is active: the reactions of the ABB to the attempts of the corrupted
parties to deviate from an SSSD protocol.

The composition theorem of the universal composability framework takes care of the
values the real-world adversary observes (through corrupted parties) throughout the exe-
cution of the SMC protocols implementing the ABB and the implications of any deviation
from these protocols by the corrupted parties.

Ideal-world adversary outputs the numbers n and s to the simulator. Since the handles’
values (as opposed to the values they are pointing to within the ABB) are public, the
simulator can compute those values. The simulator picks up on the commands sent to the
ABB by all k parties. The simulator learns whether a corrupted party deviates from the
SSSD protocol and its subroutines, as well as the reaction of the ABB.

In the SSSD protocols, the declassification values are either for the number of iter-
ations or the source vertices. In order to simulate the declassified values for the source
vertices, the simulator generates a random permutation of the numbers 0,1, . . . ,n− 1.
Later, release them either as a single value at the declassification in line 7 in Algorithm 7,
or release the single values one by one at declassification in line 15 in Algorithm 7. Also,
release them as vectors, vector by vector, such as at declassification in line 16 in Algo-
rithm 9.

In the algorithms where we declassified the source vertices, we randomly permuted
the vertices at the begging of the function as a prerequisite computation, keeping the
permutation itself private, hence out of the adversary’s view. Thus the order in which the
vertices are relaxed (i.e., added to the set M) in the main loop is random.

In the algorithm where we declassified the number of the iteration, the algorithms’
outcomes are not directly deduced from the public parameters of the graph. By experi-
mentally determining a reasonable upper bound of the iterations and always doing at least
this number of iterations in such algorithms, it is likely to reduce this leakage while still
obtaining the advantages of iterating only as long as something changes.

This number of iterations depends on many parameters, including the graph’s structure
(and perhaps radii in the radius-stepping algorithm) and the number of edges in graphs
such as the BFS algorithm. As a particular case, the UBFS algorithm with dense graph,
the algorithm has constant round complexity, and the computation is ended by only one
iteration, the result documented in Sec 8.2.5. Thus, the leakage of the iterations’ number
is useless and will not lead the adversary to any knowledge about computation.

4.7.2. Detailed security proof for privacy-preserving Bellman-Ford

The pure computation of finding the SSSD on top of SMC is privacy-preserving because
no private data has been declassified. However, we use declassification, which is used
only for permuted private data. The most important feature of the UC security definition
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is composability. This feature allows developers to create large privacy-preserving appli-
cations, enabling researchers to add new operations to ABB. The basic ABB operations
are arithmetical and logical, and comparisons and permutations are discussed in Sec 3.2.3.
Other researchers have extended an ABB to use new operations such as sorting [158, 31],
and private read/write discussed in Sec 3.2.1, which operates mainly in some research
contributions of this thesis.

We assume the existence of a secure implementation Ξ of an ideal functionality GABB
(for n computation parties) that supports the following operations:

• Arithmetic. The arithmetic operations, addition and multiplication, take two han-
dles to integers and return a handle to an integer because both integers are private.

• Comparison. The comparison operations, "less than" (<), "less or equal than" (≤),
"equal to" (==), "not equal to" (̸=), etc., take two handles to integers (or float) and
returns a handle to a Boolean value. In the case of operations "equal to" (==) and
"not equal to" (̸=), the data input can also be Boolean.

• Logic. We apply the logic operation for private vectors using choose (J⃗aK, J⃗xK,
J⃗yK). So, J⃗aK, J⃗xK, and J⃗yK are all vectors of handles. The operation returns a
vector of handles, either J⃗xK or J⃗yK. These new handles point to elements of J⃗xK
and J⃗yK, depending on the values that the elements of J⃗aK point to. The data type of
the vectors J⃗xK and J⃗yK can be integers, float, and Boolean accessed only through
handles, while the results of the choose-operation are only Boolean, which also
through handles.

• Declassification. This operation removes the privacy of private data and makes it
public. The input data of this operation is private integers J⃗yK—a vector of handles.
The output is a public vector of integers x.

• Sorting. The input value of this operation is private integers located into vector J⃗xK.
The operation returns sorted private integers located in private vector J⃗yK. The
sorted vector is a vector of handles to values that represents the result of sorting
the vector of values pointed to by handles in J⃗xK.

• Random permutation. This operation is for randomly generating a private permu-
tation of n elements. The input is a public integer number n and returns a private
permutation JσK through the handle. We apply the permutation for a private vector
J⃗vK using apply (JσK,J⃗vK). It results in a vector Jw⃗K through handle, where wi = vσ(i)
for all i ∈ {1, . . . ,n}. Furthermore, applying the inverse of σ to v⃗ is also possible
using unApply (JσK,J⃗vK) through handle.

• prepareRead and performRead. This operation is for reading from a vector by a
private index. We perform the reading by applying performRead-operation, which
has two arguments, integer vector J⃗vK of length n, and the second argument comes
from applying prepareRead(n, J⃗yK), where J⃗yK is indices of the m elements that
we want to read. This operation returns private vector Jw⃗K of length m through
the handle. The length of J⃗vK is equal to the first argument to prepareRead; the
second argument of performRead is the output of prepareRead. However, if these
conditions are not satisfied, then FABB can behave arbitrarily. The return value
of performRead-operation is a handle to a private vector of integers. The vector of
the return value is Jw⃗K, and each element of the vector is wi = vyi .
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We use the composition theory [48] to add a new operation, SSSD, to the set of sup-
ported ABB. The implementation of SSSD on top of ABB has been described in four
main protocols. These SSSD protocols are as follows:

• Privacy-preserving Dijkstra protocol (Algorithm 7).

• Privacy-preserving Bellman-ford protocol (Algorithm 11).

• Privacy-preserving Radius-stepping protocol (Algorithm 15).

• Privacy-preserving Breadth-first search protocol (Algorithm 18).

Those protocols have different properties in terms of the graphs’ kinds, relaxing pro-
cedures, and the structure of private input data. We give the example of detailed secu-
rity proof for the Bellman-Ford protocol because it uses the most interesting privacy-
preserving computation subroutines (perfixMin2 presented in Algorithms 12 and 14) out
of these four proposed protocols. The new operation SSSD takes the handles pointing to
the edge locations and their weights (as in the definition of Bellman-Ford) and returns the
handles pointing to the distances of vertices from the source vertex s. We are now going
to present a secure implementation of an ABB FABB (for n parties) that supports all the
same operations as GABB, but additionally supports the SSSD operation. The details of
the inputs and outputs of the SSSD operation and is executed as follows:

• On input from all honest computing parties, Pi (for i ∈{1, . . . ,n}) does not compute
anything themselves. They only give inputs to and receive outputs from either the
machines M1,...,Mn, or the ideal functionality FABB. In the SSSD operation by
Bellman-ford, as supported by FABB, when all honest parties invoke the SSSD
operation with arguments J⃗SK, JT⃗ K, JW⃗ K, s, N, where J⃗SK and JT⃗ K are the edges’
locations, JW⃗ K is their weights, and s is the source vertex, and N is the number of
vertices. Then FABB computes the SSSD and returns its result as a vector of handles
to each of the computing parties, where the handles point to the shortest distances
from s. The length of the returned vector is equal to N. The ideal functionality
FABB keeps the adversary A updated on the computations, see Sec 2.1.3.

• On output from all honest computing parties, each the computation party Pi sends
its results SSSD to the corresponding party P ′ . The result is a vector of the shortest
distances for all vertices JT⃗ K from single source s.

Theorem 2. There exists a protocol ΠSSSD that perfectly securely implements FABB in the
GABB-hybrid model.

Proof. The protocol ΠSSSD is the composition of machines M1, . . . , Mn. Whenever M1,. . . ,
Mn receive a command that is not SSSD, then they will forward that command over
to GABB, whenever M1, . . . , Mn receive an SSSD command, then they will follow Algo-
rithm 11 (with subroutines in Algorithms 12 and 13). This means that they invoke the
operations of GABB in the order specified in Algorithm 11-13.

In order to show that the composition of M1, . . . , Mn and GABB is at least as secure
as FABB, we will present a simulator that translates any actions of an adversary attacking
the real system to actions against FABB, such that the parties P1, . . . , Pn cannot see the
difference.

The simulator Sim is placed between ideal functionality FABB, and a real adversary A
that expects to be connected to Turning machines M1, . . . , Mn and GABB. The simulator
gets from FABB the commands that computation parties P1, . . . , Pn enter, and translates
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them either to messages GABB –> A (if the command was not SSSD), or to an SSSD
command from each of M1, . . . , Mn and a sequence of commands from GABB (if the
command from P1, . . . , Pn were SSSD).

The simulator effectively has to run a copy of GABB inside it. Each copy of GABB
on Turning machine Mi of the computation party Pi. The aim is to check that there is
no corrupting party by making adversary A would think it was communicating with the
components of protocol ΠSSSD. The simulator does not know the sensitive input values
that go into GABB because FABB does not forward them to the simulator. Hence the sim-
ulator executes its internal GABB with arbitrary values. However, the simulator learns the
declassified values if P1, . . . , Pn ask FABB to declassify something. At this point, the sim-
ulator can fill in the correcting values and forward them to adversary A over the GABB –>
A connection.

The declassification command allows parties to get the actual data using a handle.
There is a declassification command in step 5 of Algorithm 13. It is important to note
that FABB will only correctly react if it receives the same instructions from all computing
parties in the same GABB. A sorted vector J⃗vK is provided as input to the simulator, which
then invokes GABB for steps 2-5 of Algorithm 13. The simulator first gets the size m of the
sorted vector J⃗vK. Then, computes the end-point index vector J⃗bK. Using apply-routine,
randomly permute vector J⃗bK based on σ elements generated by step 4. Public vector c⃗
is a random 0-1 vector with a given number of entries "1". It handles declassified values,
which indicates that a vertex has an edge, but it does not matter that this value has to be
private. The declassification produces a Boolean vector with exactly n elements of “true”,
where m is the length of the vector. As a result, there is no further dependency on J⃗bK. This
declassification in Algorithm 13 will not compromise our SSSD Bellman-Ford’s privacy.
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5. PRIVACY-PRESERVING ALL-PAIRS SHORTEST PATH
PROTOCOLS

5.1. Introduction

This chapter presents our proposed protocols in All-pairs shortest distance on top of se-
cure multiparty computation protocols. We first discuss the proposed protocol of privacy-
preserving APSD’s Johnson with its versions. For benchmarking and evaluation of the
proposed privacy-preserving APSD Johnson’s protocol, we introduce an implementation
of Floyd-warshall and transitive closure of the graph in SIMD, which of on top of SMC
protocols.

5.2. Johnson protocol

Dijkstra’s algorithm is applied at each vertex via Johnson’s APSD algorithm. It will first
adjust the weights to copy with the negative-weight edges so that the shortest paths re-
main unchanged. To accomplish this, a new vertex is added to the graph, with 0-weight
edges connecting it to all existing vertices, and the shortest distances h(v) between the
new vertex and all existing vertices v are determined. The weight of an edge w(u,v) is
then updated to w̃(u,v) = w(u,v)+h(u)−h(v), resulting in a change in the lengths of all
paths from u to v of h(u)−h(v). As a result, the shortest distances in the updated graph,
when combined with h, yield the shortest distances in the original graph. The Bellman-
Ford algorithm is used to find the shortest distances from an extra vertex.

Algorithm 19: Privacy-preserving Johnson
Data: Number of vertices n and edges m
Data: Sources, targets, and weights of edges J⃗SK, JT⃗ K, and JW⃗ K
Result: Private distances of all pairs of vertices

1 begin
2 J⃗SQK← J⃗SK@ [JnK, . . . ,JnK]
3 JT⃗QK← JT⃗ K@ [J0K, . . . ,Jn−1K]
4 JW⃗QK← JW⃗ K@ [J0K, . . . ,J0K]
5 J⃗hK← Bellman-Ford(n+1,m+n,n, J⃗SQK,JT⃗QK,JW⃗QK)
6 J⃗hsK← performRead(J⃗hK,prepareRead(n, J⃗SK))
7 J⃗htK← performRead(J⃗hK,prepareRead(n,JT⃗ K))
8 JW⃗ ′K← JW⃗ K+ J⃗hsK− J⃗htK
9 JGK← ∞ // size of G is n×n

10 JGK← performWrite(JGK,JW⃗ ′K,prepareWrite(n2,n · J⃗SK+ JT⃗ K))
11 for i = 0 to n−1 do
12 JD′[i,⋆]K← Dijkstra(n, i,JGK)
13 forall j ∈ {0, . . . ,n−1} do
14 JD[i, j]K← JD′[i, j]K− J⃗h[i]K+ J⃗h[ j]K

15 return JDK

Johnson’s algorithm consists of three parts, Bellman-Ford, Dijkstra, and rewriting.
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Having a privacy-preserving version of both algorithms, Bellman-Ford and Dijkstra, will
open the door for creating a privacy-preserving version of the APSD Johnson protocol.
However, re-weighing edges is still a challenge, as the locations of the edges are private.
Laud protocol solves this problem by applying performWrite-function. We integrated the
Bellman-Ford and Dijkstra algorithms as in Johnson’s approach since we had privacy-
preserving implementations of each. Like our Bellman-Ford implementation, our John-
son protocol implementation expects the graph to be sparsely represented. Because our
implementation of Dijkstra’s method requires a dense graph representation, we must do
the conversion in the middle. Algorithm 19 is our privacy-preserving implementation of
Johnson’s protocol.

The steps of Algorithm 19 closely follow the description above. We augment the
original representation of the graph with an extra vertex and edges, the index of the added
vertex being n, as an example J⃗SQK← J⃗SK@ [JnK, . . . ,JnK], where @ represent the augment
operation. After finding the shortest paths from this vertex to all other vertices, we use the
parallel reading subroutines to find the updates for edge lengths. We then use the parallel
writing subroutines to convert from a sparse to a dense graph representation. We store the
all-pairs shortest distances in the modified graph inside the matrix JD′K, and then remove
the updates to the lengths of edges (and paths).

We see that the last loop in Algorithm 19 can be performed in parallel, as there are
no data dependencies between the iterations. At this point, we can use the nDijkstra
procedure, discussed in Sec 4.2. We use this procedure to fill in the entire matrix JD′K at
once and then compute JDK in a SIMD manner. We call the algorithm in Algorithm 19
the Version 1 of the implementation of Johnson’s protocol, while the version that uses
the nDijkstra procedure (in Algorithm 9) is called Version 2. We present benchmark
results for both versions. The main difference in Johnson versions is finding APSD using
versions of privacy-preserving Dijkstra protocols; no change has occurred in the Bellman-
Ford part, and rewriting remains.

5.3. Floyd-Warshall algorithm

The Floyd-Warshall is a greedy algorithm to solve the APSD problem. It compares all
possible paths via the graph JGK= (V,E) between each pair of vertices i and j ∈V . It has
three for-loop to find the shortest path for all pairs in a weighted graph.

Algorithm 20: Privacy-preserving Floyd-Warshall
Data: Number of vertices n
Data: Lengths of edges JGK ∈ (Z∪{∞})n×n

Result: Private distances of all pairs of vertices
1 begin
2 JDK← JGK
3 for k = 0 to n−1 do
4 forall i = 0 to n−1 do
5 forall j = 0 to n−1 do
6 JT[i, j]K← JD[i,k]K+ JD[k, j]K

7 JDK←min(JDK,JTK)

8 return JDK
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The adjacency matrix has two dimensions, i and j. The third loop is for the interme-
diate vertices k that the algorithm used to find the shortest path between any two pairs,
vertex i and j through intermediate vertex k. To compare our implementation of privacy-
preserving Johnson with previous techniques, we constructed the Floyd-Warshall algo-
rithm on top of the Sharemind-based ABB. Our implementation is standard [45, 106],
attempting to parallelize as many operations as possible. It uses the dense representation
of the graph.

Our implementation of the SIMD-Floyd-Warshall algorithm is presented in Algo-
rithm 20. The input data of the Floyd-Warshall algorithm is a private matrix JGK, which
contains the weights of the edges. The output of the algorithm is a private matrix JDK,
which has the lengths of shortest paths among all vertices in V . Although the algorithm
has three nested loops, the two inner loops are only used to rearrange the already com-
puted private values and can be performed simultaneously. The actual computations (sum-
mation and minimum) are made in a SIMD manner for all entries of JTK resp. JDK.

5.4. Transitive closure algorithm

In a given directed graph, the algorithm checks if a path from vertex i to j for all vertex
pairs (i, j) means vertex j is reachable. The reachability matrix is called the transitive clo-
sure of a given directed graph. As in Johnson’s APSD algorithms, we have implemented
the transitive closure computation on top of Sharemind-based ABB to investigate another
means for computing APSD.

The transitive closure computation presents another trade-off between communication
and round complexity. Our implementation of privacy-preserving APSD through transi-
tive closure is presented in Algorithm 21. The only sequentially-run loop of the compu-
tation has a logarithmic number of iterations, so this algorithm has low round complexity
compared to the Floyd-Warshall algorithm.

Algorithm 21: Transitive Closure
Data: Number of vertices n
Data: Lengths of edges JGK ∈ (Z∪{∞})n×n

Result: Private distances of all pairs of vertices
1 begin
2 J

−→
D K← JGK

3 for l = 1 to logn do
4 forall i ∈ {0, . . . ,n−1} do
5 forall j ∈ {0, . . . ,n−1} do
6 forall k ∈ {0, . . . ,n−1} do
7 JTi, j[k]K← JD[i,k]K+ JD[k, j]K

8 JD[i, j]K←min(J
−→
Ti, jK) // minimum element of a vector

9 return JDK
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5.5. Performance Analysis

5.5.1. Round complexity

The privacy-preserving Johnson’s protocol has around a complexity of O(n logn), which
is the same as the complexity of both the Bellman-Ford and Dijkstra algorithms. Pri-
vate reading and writing operations between them take just O(logn) rounds. The Floyd-
Warshall algorithm has a round complexity of O(n). In the transitive closure, because the
outer loop iterates logn times, the round complexity of transitive closure is O(log2 n). The
smallest elements of length vectors n can be found in O(logn) rounds at each iteration.
The round complexities of privacy-preserving APSD protocols are presented in Table 2.

Table 2: Round and communication complexities for privacy-preserving APSD proto-
cols.

Protocol Complexities
Round Communication

Floyd-Warshall O(n) O(n3)

Transitive Closure O(log 2n) O(n3 logn)
Johnson Alg O(n logn) O(n3)

PerformRead/-Write O(logn) O(n2 logn)

5.5.2. Communication complexity

The Communication consumption of Johnson’s protocol is dominated by n instances of
Dijkstra’s algorithm, hence being O(n3) in total. This is also the asymptotic Communi-
cation consumption of the Floyd-Warshall algorithm, but as we can see in Sec 8.3, the
constant hidden in the O-notation is less. Johnson’s algorithm, on the other hand, is more
versatile: if we are not interested in all-pairs shortest distances, but only in shortest dis-
tances from k < n vertices, then the Communication consumption of Johnson’s algorithm
is only O(mn+n2(k+ logn)), with O(mn) being the Communication use of the Bellman-
Ford algorithm and O(n2 logn) being the Communication use of the private writing into
an array of size n2. The Communication consumption used by the transitive closure is
O(n3 logn). The communication complexities of privacy-preserving APSD protocols are
presented in Table 2.

5.6. Security and privacy of protocols

As we mentioned before, the most critical feature of privacy preservation is that the ex-
ecution is done on the ABB, and the implementation has no declassification. Following
the discussion in Sections 3.2.3 and 4.7, we conclude that APSD protocols 18–20 are all
privacy-preserving, as none contain any declassification statements.
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6. PRIVACY-PRESERVING MINIMUM SPANNING TREE
AND FOREST PROTOCOLS

6.1. Introduction

Besides the shortest path problem, this thesis introduces solutions for minimum spanning
trees and forests on privacy preservation, which use big data sets. The chapter starts with
presenting the privacy-preserving Prim’s MST protocol. Furthermore, we describe the
optimized version of Prim’s protocol. We benefit from our suggested protocol for finding
a minimum spanning tree on top of the SMC protocol to create a new protocol for finding
a minimum spanning forest. As well as we present a privacy-preserving MSF protocol,
which means a minimum spanning tree n times with two versions of MSF, sequential
and parallel. Besides describing the protocols with their related algorithms, this chapter
discusses their performance, round and communication complexities, and security and
privacy.

6.2. Privacy-preserving Prim’s protocol

The privacy-preserving Prim’s MST protocol has been constructed based on the general
feature of Prim’s essential algorithm, as described above. In detail, two main sets of the
vertices V in a given private graph JGK should be defined for included vertices in the MST
and the other for not yet included ones. In the parallel implementation, the protocol was
constructed using SIMD instruction considering the Sharemind protocols set—which is
parallel implementation on top of SMC protocols.

Parallel Prim’s Algorithm maintains two sets of vertices. The first set M, which in our
privacy-preserving implementation is represented as a vector of Boolean M⃗ of length |V |,
with the value false meaning that the corresponding vertex is included in the set. This
Boolean vector M⃗ contains the vertices already included in the private MST. For reasons
shown later, the set M⃗ is public.

For the remaining vertices, we record in the vector JK⃗K the length of the shortest edge
that connects them with some vertex in M⃗. The Algorithm finds the minimum-weight
edge between the sets M and V\M at each step of Prim’s Algorithm and includes it in
the MST, updating the set M⃗. We record the tree that we created in the parent vector JP⃗K
(of length |V |)—for each vertex v, the value P[v] represents a vertex; thus (P[v],v) was
added to the tree when v was an element of V\M. The privacy-preserving computation
of Prim’s minimum spanning tree protocol is presented in Algorithm 22. The protocol
has three main parts. It starts with a permutation to mask the real identity of the vertices;
the second part is finding the MST in privacy-preserving, and the last part is returning the
original order of the vertices.

The first part (lines 2-8) hides the vertices’ identities using a random, private permu-
tation. By permuting their identities, we can mask the order in which the vertices are
added to the set M. In this way, the procedures are similar to [3], and the reasons are the
same—to avoid expensive memory accesses dependent on private data in the following
steps, this procedure is also used in privacy-preserving Dijkstra in Sec 4.2.

We generate a random private permutation JσK of length n to permute the vertices. We
use JσK to permute all rows and columns of JGK; all rows can be permuted simultane-
ously, and the same goes for columns.
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Algorithm 22: Privacy-preserving Prim’s MST
Data: Number of vertices n
Data: Starting vertex s
Data: edge weights JGK (a n×n array)
Result: Minimum Spanning Tree JT⃗ K

1 begin
2 JσK← randPerm(n)
3 forall u ∈ {0, . . . ,n−1} do
4 JG′[u′,⋆]K← apply(JσK,JG[u,⋆]K)

5 forall v ∈ {0, . . . ,n−1} do
6 JG′[⋆,v′]K← apply(JσK,JG′[⋆,v]K)

7 J⃗IK← unApply(JσK, [0,1, ..,n−1])
8 s′← declassify(JI[s]K)
9 JK⃗K← ∞

10 JK[s′]K← 0
11 JP[s′]K← s′

12 M⃗← true
13 for idx = 0 to n−1 do
14 J⃗LK← NIL
15 for i = 0 to n−1 do
16 if M[i] then
17 J⃗LK← cons((JK[i]K,JiK), J⃗LK)

18 u′← declassify(second(minL(J⃗LK)))
19 M[u′]← false

20 JD⃗K← JG′[u,⋆]K
21 JC⃗K← (JD⃗K < JK⃗K)
22 JK⃗K← if M⃗∧ JC⃗K then JD⃗K else JK⃗K
23 JP⃗K← if M⃗∧ JC⃗K then u′ else JP⃗K

24 JR⃗K← prepareRead(n, J⃗IK)
25 JT⃗ K← performRead(JP⃗K,JR⃗K)
26 return JT⃗ K

For the u-th row, we write G[u,⋆], and for the v-th column, we write G[⋆,v]. Finding
the new identity of the beginning vertex s is the final step in the permutation process.
Consequently, we apply the inverse of JσK to the identity vector [0,1, . . . ,n− 1] (which
will be classified in the process), and take its s-th element. This element is a random
number picked from the set {0, . . . ,n−1}. Thereby, this element may be declassified.

The main part of the algorithm (lines 9-23) is finding MST in parallel (using the SIMD
framework). We set up the private vectors JK⃗K and JP⃗K, and the Boolean public vector M⃗
by initial values; this can be seen in Algorithm 22. The outer for-loop has n iterations,
which are based on the number of the given vertices.

The algorithm adds one vertex to the MST in each iteration: vector JT⃗ K. The op-
erations inside this loop are suitably organized in parallel. The inner for-loop is used
to retrieve the permuted vertices one by one until the spanning is complete. Select the
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u′ ∈V\M vertex closest to M⃗ vertices. All vertices not in M⃗ are listed in the list J⃗LK, along
with their distance from M⃗. The cons-function is for adding a pair to the list. Repeatedly,
the algorithm finds the pair with the minimum first component by function calling (minL),
presented in Algorithm 23. The vector is divided into two parts and iterated logn times
in this subroutine. Then select the smallest values in the vectors, and so on, until the last
element, which is the smallest pair. The second-function detects the identity of the vertex
u′; the value is the pair’s second component.

Algorithm 23: minL: minimal first component pair
Data: List of pairs of private values Jw⃗K
Result: the element of Jw⃗K with the minimal first component

1 begin
2 m← length(Jw⃗K)
3 if m = 1 then return Jw[0]K
4 begin in parallel
5 (JeK,JiK)←minL(left⌊m/2⌋(Jw⃗K))
6 (J f K,J jK)←minL(right⌈m/2⌉(Jw⃗K))

7 if JeK≤ J f K then
8 return (JeK,JiK)
9 else

10 return (J f K,J jK)

The algorithm declassifies the return values of minL-function to utilize it later as public
since the element is private. This is the reason we perform the permutation to the given
graph. We have to declassify the vertex; however, we should keep the private data. Later,
the remaining operations in the algorithm are like the same operations in classical Prim’s
algorithm with some proper exceptions, which are done in parallel. The vertex u′ will
take place as indices in vector M⃗, and the vector JD⃗K gets the u-th row from the adjacency
matrix JGK. The condition (line 21) is that the components of JD⃗K are less than those of
JK⃗K. This condition is used in the algorithm’s following two operations (lines 22-23) to
update the two vectors JK⃗K and JP⃗K. For updating JK⃗K, the result is JD⃗K that will be stored
in JK⃗K, if the condition is “true”, else, assign JK⃗K. For updating, JP⃗K is similar.

The real identity of the vertices with their minimal edges is obtained in the final stage
of the algorithm (lines 24-25). To get the MST, Laud’s protocol for private reading is
used. The vector J⃗IK represents the original order of the vertices saved in ABB. The
prepareRead subroutine of the protocol is used to obtain the indices of the vertices using
J⃗IK and a length of n. After that, use performRead to obtain the JT⃗ K, which is the MST.

6.3. Optimized Prim’s protocol

There is a more efficient way of doing the privacy-preserving computation of MST follow-
ing Prim’s protocol. Hence, we propose our optimized version of the privacy-preserving
Prim’s MST protocol in Algorithm 24. The improved algorithm is distinguished by the
absence of a list of pairs for the vertices and their distances from M⃗. As a result, the cons-
function has been removed, and there is no longer a requirement to set up M⃗ with “true”
values. Furthermore, there is no need to use the inner for-loop. The algorithmic structure
of the optimized algorithm makes meaningful sense reducing the round complexity of the
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SMC protocols. We provide the privacy-preserving optimized Prim’s MST as a pure MST
protocol. The permutation and Laud’s parts of the optimized method have been relocated
to the main program.

Algorithm 24: Optimized-Prim
Data: Number of vertices n
Data: Starting vertex s′

Data: Edge weights JG′K (a n×n array)
Result: Masked Minimum Spanning Tree JP⃗K

1 begin
2 JK⃗K← ∞

3 JK[s′]K← 0
4 JP[s′]K← s′

5 M⃗← false
6 for i← 0 to n−1 do
7 u′← declassify(second(minLs(J⃗kK,M⃗)))
8 M[u′]← true

9 JU⃗K← u′

10 JD⃗K← JG′[u′,⋆]K
11 JC⃗K← (JD⃗K < JK⃗K)
12 JK⃗K← if M⃗∧ JC⃗K thenJD⃗K else JK⃗K
13 JP⃗K← if M⃗∧ JC⃗K thenJU⃗K else JP⃗K

14 return JP⃗K

The optimization targeted the algorithm’s operations, not the functionality. In other
words, permutation and performRead should be used in the real implementation of the
optimized version. Consequently, the permuted adjacency matrix JG′K, starting vertex s′,
and the matrix’s size n come from the main program. The algorithm starts by setting up
the vectors JK⃗K, JP⃗K, and the public vector M⃗ is by “false”-value. The optimized version
has only one for-loop. Each iteration relaxes all connected edges of a single vertex using
a single instruction.

The minLs-function carried their parameters, vectors of JK⃗K and M⃗. Algorithm 25
presents the minimal index (minLs) algorithm for each vertex. This algorithm operates
similarly to Algorithm 23, with the distinction that it returns the second element (not a
pair), which is either J jK or JiK. The return value of the algorithm will be picked up by
second-function; this function picks up the second value. Also, the private value will be
declassified to get the public vertex u′. The vertex u′ will indicate the indices of vector M⃗
that will take “true”-value. As well, assigns the vertex u′ into vector JU⃗K, and assigns the
u′-th row from permuted graph JG′K into vector JD⃗K. Lastly, the remains of the operation
are similar to a previous algorithm Algorithm 23. The iterations end up by the return
value of the vector JP⃗K, which has masked MST. Getting the real identity of MST is by
applying Laud’s protocol in the main program.
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Algorithm 25: minLs: minimal index

Data: Vectors J⃗kK and M⃗
Result: The minimal index x

1 begin
2 m← length(sum(M == false))
3 if m = 1 then return Jk[0]K
4 begin in parallel
5 (JeK,JiK)←minLs(left⌊m/2⌋(J⃗kK), left⌊m/2⌋(JM⃗K))
6 (J f K,J jK)←minLs(right⌈m/2⌉(J⃗kK), right⌊m/2⌋(JM⃗K))

7 if JeK≤ J f K then
8 return (JeK, JiK)
9 else

10 return (J f K, J jK)

6.4. Minimum spanning forest protocol

The computation of the Minimum spanning forest is called computational squaring of the
MST, which increases the computational cost n times. Greedy algorithm-based computa-
tions have a high round complexity based on the algorithm’s iterations. Prim’s Minimum
spanning tree (MST) algorithm has O(n2) in time complexity. Furthermore, Prim’s Min-
imum spanning forest has time complexity n times the Prim algorithms. The proposed
privacy-preserving MSF protocol is effective on both sparse and dense graphs. When
dealing with sparse or dense graphs, using the SIMD framework to design the protocol
makes no difference. The number of connecting edges between vertices does not affect
the entire running time. In other words, regardless of the number of edges, the running
time of dense or sparse graphs with the same number of vertices is similar.

We created two versions of the privacy-preserving MSF protocol in the implemen-
tations. The MSF’s privacy-preserving sequential computation is the first version. The
privacy-preserving parallel computation of the MSF is the second, and it is more efficient
than the first. We put them against each other to see how efficient parallel computing is.
We employ a variety of graphs of varied sizes in evaluations.

6.4.1. Sequential minimum spanning forest protocol

Our proposed privacy-preserving MSF protocol entails performing the privacy-preserving
Prim’s MST algorithm for each component in the given unconnected graph. The re-
turn value of running MST protocol for each component is the minimum total edge
weight. Consequently, the entire edges’ weights for all given components are mini-
mum. The privacy-preserving MSF is presented in Algorithm 26. The parameters are
a 3-dimensional matrix JGK ∈ (N∪{∞})g×n×n, and sources s⃗, each source for a graph.
The first two dimensions are an adjacency matrix for one component, and the last is sev-
eral components.

The algorithm has only one for-loop. The operations are similar to the functionality
of finding MST, except we utilize the optimized version of Prim’s algorithm. For each
graph, the algorithm generates a random private permutation J⃗σK of length n. Moreover,
the algorithm performs the permutation for each graph, shuffling rows and columns sep-
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arately and getting the new identity of the starting vertex s after permutation. The return
value of the optimized Prim’s algorithm is masked MST JP⃗K into JF⃗ ′K. The last part of
the algorithm applies Laud’s protocol to get the real identity of the vertices in MST for
each graph. Then, assign the MST vector to the adjacency matrix JFK. Each MST vector
will take place as a row in JFK.

Algorithm 26: MSF Algorithm, Main Program
Data: Number of vertices n
Data: Starting vertices [s]
Data: Lengths of edges JGK ∈ (N∪{∞})g×n×n

Result: Minimum Spanning Forest JFK
1 begin
2 for i = 0 to g−1 do
3 JσK← randPerm(n)
4 forall u ∈ {0, . . . ,n−1} do
5 JG′[i,u′,⋆]K← apply(JσK,JG[i,u,⋆]K)

6 forall v ∈ {0, . . . ,n−1} do
7 JG′[i,⋆,v′]K← apply(JσK,JG′[i,⋆,v]K)

8 J⃗IK← unApply(JσK, [0,1, ..,n−1])
9 s′← declassify(JI[s[i]]K)

10 JF⃗ ′K← Optimized-Prim(s′,n,JG′[i,⋆,⋆]K)
11 JR⃗K← prepareRead(n, J⃗IK)
12 JF[i,⋆]K← performRead(JF⃗ ′K,JR⃗K)

13 return JFK

6.4.2. Parallel minimum spanning forest protocol

This section presents the parallel version of the privacy-preserving MSF protocol. The
computation of the privacy-preserving MSF has multiple components to be processed
simultaneously. The large unconnected graphs can often be processed using a single
instruction, which can be solved simultaneously with fewer iterations. Such an approach
will reduce the round complexity of finding the MSF on top of the SMC protocol. The
privacy-preserving parallel computation of the minimum spanning forest is presented in
Algorithm 27. The parallel MSF protocol has three main parts.

The permutations part (lines 2-9) finds the permutation for each graph separately and
by using different randomness each time. The permuted graphs will be stored in a 3-
dimensional adjacency matrix JG′[g,⋆,⋆]K. The three parameters will be carried to the
nPrim function. The processing of this function is only one time and for all components.
In contrast, the sequential version of the protocols process Optimized-Prim function n
times separately for each component; this feature of the parallel version will reduce the
round complexity. More specifically, parallel MSF performs a single instruction to a
group of sub-vectors combined in a large vector JGK ∈ (N∪{∞})n×n. In other words, we
perform the same instruction on multiple data sets simultaneously. The large vector has n
segments of the data set, each segment for a graph. Each segment is a row in the graph
JG[i]K. Algorithm 28 is a vectorized version of Algorithm 24 that can compute the MST
for several n-vertex graphs simultaneously.
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Algorithm 27: SIMD-MSF, main program
Data: Number of vertices n
Data: Starting vertices s⃗
Data: Lengths of edges JGK ∈ (N∪{∞})g×n×n

Result: Minimum Spanning Forest JFK
1 begin
2 for i = 0 to g−1 do
3 Jσ[i,⋆]K← randPerm(n)
4 forall u ∈ {0, . . . ,n−1} do
5 JG′[i,u′,⋆]K← apply(Jσ[i,⋆]K,JG[i,u,⋆]K)

6 forall v ∈ {0, . . . ,n−1} do
7 JG′[i,⋆,v′]K← apply(Jσ[i,⋆]K,JG′[i,⋆,v]K)
8 JI[i,⋆]K← unApply(Jσ[i,⋆]K, [0,1, ..,n−1])
9 s′[i]← declassify(JI[i,s[i]]K)

10 JF⃗ ′K← nPrim([s′],n,JGK)
11 JF′K←Matrix(JF⃗ ′K)
12 for i = 0 to g−1 do
13 JR[i,⋆]K← prepareRead(n,JI[i,⋆]K)
14 JF[i,⋆]K← performRead(JF′[i,⋆]K,JR[i,⋆]K)

15 return JFK

We have designed Algorithm 28 that can simultaneously process multiple components
of an unconnected graph. The input data is a three-dimension adjacency matrix, while
each matrix contains a graph’s data (size is n× n). The second parameter is the sources
vector s⃗′, while every source is for a graph (or a component). The output is an adjacency
matrix (size is n× n), and each row is the minimum spanning tree for a component. In
other words, the n×n adjacency matrix is a minimum spanning forest for an unconnected
graph.

The algorithm begins (lines 2-3) by replacing “∞” with “false” for the vectors JD⃗K
and “false” for the Boolean public vector for unhandled vertices M⃗. The part (lines 4-8)
is for getting the sources of vector JK⃗K and JP⃗K as initial values, and the private indices
of Jd⃗K. The second for-loop is the main body of the nPrim algorithm. This portion
starts by calling the minLv-function, represented in Algorithm 10. This function is to
determine the minimum key values (from the set of vertices not yet included in MST) for
all components simultaneously in parallel. Note, Algorithm 10 is used as a subroutine in
both algorithms, nPrim for finding MST, and in nDijkstra for finding the shortest path.
The minLv-function’s parameters are private vector JK⃗K, Boolean vector M⃗ for unhandled
vertices, and the indices Jd⃗K, where the length of all vectors is n×n.

The return value of Algorithm 10 is the minimum value from the set of vertices not yet
processed for each adjacency matrix. In the for-loop (lines 9-21) calls Algorithm 10 for
each iteration. A private vector of the vertices is the return value. To make J⃗uK public, the
algorithm declassifies it. Because the algorithm runs with masked vertices, declassifying
will not affect the vertices’ privacy (not the real identity). Each element in this vector
represents the identity of a vertex in a graph. The algorithm then relaxes all neighboring
vertices in parallel for each component.

94



Algorithm 28: nPrim
Data: Number of vertices n
Data: Starting vertices s⃗
Data: Lengths of edges JGK ∈ (N∪{∞})g×n×n

Result: Private distances JP⃗K
1 begin
2 JD⃗K← ∞

3 M⃗← false
4 for i = 0 to n−1 do
5 JK[i∗n+ s[i]]K← 0
6 JP[i∗n+ s[i]]K← s[i]
7 for j = 0 to n−1 do
8 Jd[i∗n+ j]K = j

9 for i = 0 to n−1 do
10 [u′]← declassify((minLv(JK⃗K,M⃗,Jd⃗K))
11 start = 0,end = 0,range = 0
12 for u = 0 to g−1 do
13 range = u∗n+u′[u]
14 end = start +n
15 JD[start : end]K = JG′[u,u′[u],⋆]K
16 M[range] = true
17 JU [start : end]K← u′[u]
18 start = start +n

19 JC⃗K← (JD⃗K < JK⃗K)
20 JK⃗K← if M⃗∧ JC⃗K then JD⃗K else JK⃗K
21 JP⃗K← if M⃗∧ JC⃗K then JU⃗Kelse JP⃗K

22 return JP⃗K

In the for-loop (lines 12-18), the algorithm vectorizes the given adjacency matrices
and gets the state of the vertices. In detail, based on the identity of u′[u], the algorithm
receives the rows from all matrices. Then the rows will be vectorized as segments into
vector JD⃗K. Also, the Boolean vector M⃗ for visited vertices is updated by “true”. The
other operations in this section will assign the components’ real places and ranges. This
for-loop iterates g times, where g is the number of unconnected graph components. In
part (lines 19-21), the vectors JK⃗K and JP⃗K will be updated if JD⃗K is smaller than JK⃗K, and
if M⃗ is “false” for vertices not yet included in masked MSF, which is JP⃗K. This update is
for all components simultaneously.

Finally, the return value of the nPrim function is masked MSF JP⃗K that will be stored
in vector JF⃗ ′K in the main program. Line 11 in Algorithm 27 is converting the vector
JF⃗ ′K to the adjacency matrix JF′K. The last part (lines 12-14) in the Algorithm 27 applies
Laud’s protocol to get the real identity of the MSF. The number of iterations is g times
based on the number of unconnected graphs. The algorithm will end up with the private
minimum spanning forest located in an adjacency matrix JFK.
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6.5. Performance Analysis

This section presents the two communication-related complexities of our proposed MST
and MSF protocols in secure multiparty computation applications, round, and communi-
cation, as discussed in Sec 4.6.

6.5.1. Round complexity

Let us start with the privacy-preserving Prim’s protocol (Algorithm 22), where the private
data is structured in an adjacency matrix JGK ∈ (N∪{∞})n×n. The number of vertices is
n, and the number of edges is no more than n2. One iteration of the main for-loop requires
O(logn) rounds, minLs is the only operation working in non-constant rounds. The entire
loop thus requires O(n logn) rounds. The permutation which occurs before the main loop
requires a constant number of rounds. The last part in the algorithm, which is the private
read, has O(logn).

The optimized version of Prim’s MST algorithm (Algorithm 24) has only one for-loop
that requires O(n) rounds, each iteration has minLs-function which requires O(logn). The
entire algorithm thus O(n logn), but without the permutation part. The permutation part
for the Optimized-Prim’s algorithm will be processed in the main program with a constant
number of rounds. As well no change in the round complexity of the private read, which
is still O(logn), but in the main program.

For the sequential version of the MSF protocol (Algorithm 26), the data of the given
unconnected graph presented in the 3-dimensional adjacency matrix JGK∈ (N∪{∞})g×n×n.
Assume that the number of components in an unconnected graph g is comparable to the
number of vertices in a connected graph (one component) n. Thereby, each iteration re-
quires O(n) rounds for permutation parts.

The round complexity of running Optimized-Prim function is O(n2 logn). The last
part is Laud’s protocol requires O(logn) round for each graph. In the case of g compo-
nents in an unconnected graph, the private read has O(n logn) round complexity. In the
case, g ̸= n, round complexity of permutation is O(g), Optimized-Prim function requires
O(gn logn) rounds, private read is O(g logn). Note the smallest MSF can be constructed
only by two graphs (or two components in an unconnected graph.

The parallel MSF protocol is similar to sequential MSF in the main program, except
for Prim’s function. Consequently, the round complexity of the Parallel MSF’s permuta-
tion part is O(n), where g = n. Moreover, the private read also requires O(n logn). The
calling of the nPrim function is the only constant round in the main program. However,
the nPrim-function has two loops. The round complexity is O(n2), and minLv-function
is only constant round. Anyway, the entire nPrim-function thus requires O(n2) rounds.
This is the justification for why parallel MSF protocol has a low running time compared
with sequential MSF protocol. The round complexities for privacy-preserving MST and
MSF protocols with their parts are presented in Table 3.

6.5.2. Communication complexity

Besides the round complexity of the protocols, we highlight the performance in terms of
communication complexity. In privacy-preserving Prim’s protocol, each iteration of the
main for-loop has O(n) communication. The entire loop requires O(n2) communication.
The permutation part before that loop has also O(n2) communication. The last part in the
algorithm (private read) has O(n logn) communication.
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Table 3: Round and communication complexities for privacy-preserving MST and MSF
protocols.

Protocol Complexities
Round Communication

Prem. O(1) O(n2)
Prim Loop O(n logn) O(n2)

PerfR. O(logn O(n logn)
Prem. O(1) O(n2)

Optimized-Prim Loop O(n logn) O(n)
PerfR. O(logn O(n logn)
Perm. O(n) O(n3)

MSF V1 Loop O(n2 logn) O(n2)
PerfR. O(n logn) O(n2 logn)
Perm. O(n) O(n3)

MSF V2 nPrim O(n2) O(n3)
PerfR. O(n logn) O(n2 logn)

In the optimized version of the privacy-preserving Prim’s protocol, the entire for-loop
thus requires O(n) communication. We notice that Optimized-Prim algorithm has less
communication than Prim’s algorithm; the benchmark result documented in Sec 9.3 con-
firms that.

In the sequential MSF protocol, the lowest number of the components of the MSF is
only two components in an unconnected graph (or two graphs only). In this case, the
sequential MSF’s protocol requires O(n2) communication, the permutation part in the
main program requires O(n2) communication, and O(n logn) communication for the last
part of the algorithm—laud protocol.

Let us assume that the components’ number in an unconnected graph is similar to the
number of the vertices in a single component, g = n. Consequently, the communication
complexity for the sequential MSF’s protocol is as follows: the permutation is O(n3), the
Optimized-Prim is O(n2) communication, and the Laud’s protocol is O(n2 logn). In other
words, for both round and communication, complexities of the sequential MSF version
are similar to the optimized-Prim algorithm but n times.

For the parallel MSF protocol, the operations in the first and last parts are done in for-
loop, while nPrim function has the constant call. In the case that g = n, the permutation
part requires O(n3) communication, while the Laud’s protocol is O(n2 logn). The nPrim
function might be reduced the round complexity compared with running optimized-Prim
function n times. In contrast, this function increased communication. The length of the
working vectors is n×n. Moreover, the nPrim function has two for loops.

The inner for loop (lines 12-18) requires O(n2) communication, while each iteration
in the outer loop requires O(n2) communication. The outer loop runs the inner loop n
times. Consequently, the communication of the nPrim algorithm is O(n3). The commu-
nication complexities for privacy-preserving MST and MSF protocols with their parts are
presented in Table 3.
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6.6. Security and privacy of protocols

The algorithm preserves the security and privacy properties of the underlying implementa-
tion of the ABB, including its resistance against semi-honest or malicious adversaries, as
long as the algorithms constructed on top of the ABB do not declassify any information.
This chapter proposes that the privacy-preserving Prim’s protocol is a crucial building
block for other proposed protocols, including MSF.

The discussion in Sec 4.2 is presented for SSSD protocols, including Dijkstra’s al-
gorithm. As is well-known, Dijkstra’s algorithm and Prim’s algorithm have different
functionalities. However, both algorithms share the same structure of data input. Both
have the same number of iterations and the same subroutine. Our SIMD implementation
for both algorithms is also similar. The gain of parallelism as a round complexity for both
algorithms is similar, and the declassification statements with permutations are similar.
Consequently, the proposed protocol of Prim’s algorithm—which is the critical point in
constructing MSF protocol—is privacy-preserving. In addition, nDijkstra’s and nPrim’s
algorithms are similar in properties, parallelism gain, and SIMD implementation, hence
different in functionality. Following the discussion in Sections 3.2.3 and 4.7, we conclude
that MST and MSF protocols are all privacy-preserving.

98



7. PRIVACY-PRESERVING ALGEBRAIC PATH
COMPUTATION PROTOCOL

7.1. Introduction

In previous chapters, we have seen privacy-preserving shortest-path algorithms that hide
the edges’ length and the edges’ existence. However, the problem of privacy-preserving
SSSD is also interesting if the edges’ end-points are public, and only their weights are
private. Some algorithms from previous chapters cannot significantly benefit from the
knowledge of edge locations, while others can. Additionally, we can propose algorithms
with even higher parallelism if we know the location of edges. In this chapter, we pro-
pose one that achieves high parallelism for certain graphs, including planar graphs. Even
though this algorithm works only for undirected graphs. However, it also works for di-
rected graphs but needs some changes in the algorithm. This technique of finding the
shortest distances is algebraic path computation using a semiring framework in SIMD
parallel with public edges on SMC protocol. Furthermore, we present a version of the
Bellman-Ford protocol with public edges; its purpose here is to serve as a baseline.

7.2. Overview of algebraic path computation

In the algebraic path computation protocol that we propose in this chapter, we follow a
strategy for constructing this protocol in parallel. The essential algorithms and framework
in building the solution of path algebra problems through the algorithms of Pan and Reif
[136, 137, 135], and the correctness of the formulas are proven there. An efficient algo-
rithm for computing the minimum cost path for an adjacency matrix associated with an
undirected graph G(A) is proposed in [137]. Pan and Reif algorithm of computing alge-
braic paths is based on recursive factorization presented in [135], the aim is to compute
matrix A∗, by following equations, h = 0,1, . . . ,d, where d = O(logn):

Ah =

[
Xh Y T

h
Yh Zh

]
Ah+1 = Zh⊕YhX∗h Y T

h (7.1)

A∗h =
[

I X∗h Y T
h

O I

][
X∗h O
O A∗h+1

][
I O

YhX∗h I

]
(7.2)

Indeed, the special recursive factorization in [135] and Cholesky factorization in [122]
can not be extended to the case of semiring framework (dioids) because of a lack of sub-
traction and division. In [136] a particular recursive factorization of the inverse matrix
A−1 of [135] has extended to the similar factorization of the quasi-inverse A∗. This exten-
sion is sufficient in many path algebra computations, particularly the one we use in this
work. Using the concept of the inverse matrix (I-A)−1, the quasi-inverse A∗ is defined for
the case of semiring framework (or dioids). The matrix equations 7.1 and 7.2 generalize
the recursive factorization of matrix A. This recursive factorization easily solves the sys-
tem of linear equations Ax = b for any given vector b. The result of finding a single-source
shortest path is the multiplication of a unit vector b with a matrix of A∗; the SSSD is given
by x = A∗ b. The partition of the nh× nh adjacency matrix Ah is based on the separator
structure of the graph into four parts, Xh, Yh, Zh and Y T

h —the transpose of a matrix Yh.
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The adjacency matrix A of an undirected graph is symmetric, and this is the one we use
in the implementation and benchmarking—implementation and benchmarking is only for
undirected graph. For instance, of directed graphs, the algebraic path computation pro-
tocol on top of SMC can be extended to the case of a non-symmetric linear system with
directed graphs. Some changes should be made, replacing the matrix Y T

h with the matrix
Wh for all levels of h. Matrix Wh is given by Uh ·Y T

h , while matrix Uh is given by Yh ·X−1
h .

Hence, the assumption that matrix Xh in all levels of h is symmetric should be removed.
The four submatrices Xh, Yh, Zh, and Y T

h can be obtained by applying an efficient par-
allel algorithm in [135] that computes the recursive factorization of matrix A. A recursive
s(n)-factorization of an adjacency symmetric A is a sequence of sub-matrices A0, A1,. . . ,
Ad , such that A0 = PAPT , where P is an n× n permutation adjacency matrix Ah, the size
of matrix Ah is nd−h× nd−h. In any n-vertex planar graph G = (V , E), the symmetric
matrix A associated with a graph G = G(α) having an s(n)-separator family with respect
to two constants α and n0, the graph G have s(n)-separator family if either |V | ≤ n0 or
by erasing some separator set of vertices O(

√
n) [123]. The partitioning of the graph G

(which is also called separation) into two disconnected subgraphs G1 and G2 that have at
most 2n/3 with two sets of vertices |V1| and |V2|, and the Separator S which has O(

√
n)

vertices. The Separator S is a vector of vertices shared between the two partitioned new
graphs, G1 and G2, which is responsible for the algorithm’s performance. Once the sep-
aration produces three sets A, S, and B, the edges-endpoint in A belongs to subgraph G1,
and the edges-endpoint in B belongs to subgraph G2. In contrast, the edges-endpoint of
Separator S and the remaining edges are separated arbitrarily. The separator tree is the
adjacency matrix of subgroups G1 and G2 resulting from partitioning. Furthermore, each
of the two subgraphs also has an s(n)-separator family, and it is not required that G1 and
G2 have connected subgraphs of the parent graph G. The algorithm recursively keeps
portioning until obtaining both subgraphs that have at least n/3 vertices set.

Example: Consider a grid graph with n× n size, with rows numR and columns numC.
The number of the vertices in the adjacency matrix equals numR × numC. For instance,
the illustration in Figure 4, numR = 5, and numC = 5, the number of vertices N = numR×
numC = 25. The partitioning starts by selecting the central row or column in the adjacency
matrix A. Suppose rows numR is an odd number, and the single central row is separator
S. Otherwise, two rows are equally near the center. Vertically, if numC is an even number,
there are two columns near the center; otherwise, the single center column is separator S.
Choosing separator S to be any of these central rows or columns. Next, graph G will be
partitioned into two smaller connected subgraphs, G1 and G2. Consequently, the result of
partitioning graph G is two subgraphs G1, G2, and separator S, all called s(n)-separator
family. The separator S tree will be shared in the two subgraphs as connectors. We expect
the rows/columns of the adjacency matrix to be labeled with the graph’s vertices G in a
certain order based on the separator tree.

Figure 4 shows the process of the partitioning and the level of the partitioning h. In
other words, the depth of the separator tree d. The recursive factorization produces the
separator families. It also shows the arguments that will be used in the main computation
of the algebraic path. The separator trees for each level with the order of vertices are
illustrated, and the elements will be stored in public vector

−→
ST . Moreover, the size of

blocks
−→
SB and their values and indices are also obtained. In detail, the main program of

privacy-preserving algebraic path computation is presented in Algorithm 32.
It has eight arguments from the prerequisite computation—s(n)-separator tree and its
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properties. The primary prerequisite functions are separator-tree and its properties in
computing R. The set of vertices Rh,k denote the set of all vertices of separator tree Sh,k
that are not in Sh∗ for h∗ > h, for each k = 1, . . . ,Nh, for more details about R, refer to [135].
Practically, R-function returns the set of R and its properties, which are indices of R in
its s(n)-separator family, the size of separator tree

−→
ST , and the size of block-diagonal

matrices
−→
BS for all separator trees in an adjacency matrix A.

7.3. Privacy-preserving algebraic path computation protocol

In Sec 7.2, we presented the essential algorithm, definitions, and equations that end up
by proposing the algebraic path computation protocol using a semiring framework. The
algorithm in [136] is based on the extended definitions of solving sparse linear systems
from [135], then a parallel version of the algorithm has been proposed [137]. This section
presents a privacy-preserving implementation of the parallel version of the algebraic path
computation using a semiring framework. The main feature of our proposed implemen-
tation is reshaping the whole computations and data input in sparse representation. This
representation is fit to process the given private graph on SIMD parallel computation over
a secret-sharing based SMC Sharemind platform.

The sparse representation of matrices with the operations has been done based on the
prerequisite operations over a private undirected graph. Those prerequisite operations are
s(n)-separator tree and its properties that can be obtained using the public elements of the
given graph and its adjacency matrices. The graph’s edges E are assumed to be public,
while the private data consists only of the edge weights W : E → R+.

The s(n)-separator tree and its properties can be obtained using the indices of the
public edges. Due to this setting, operations of s(n)-separator tree can be done in a local
server of SMC Sharemind with no communication with other servers—there are no round
and communication complexities.

The data input is symmetric matrix JAK that has been represented sparsely associated
with an undirected graph G. We rearrange given data in the adjacency matrix into a
sparse representation of matrices. To convert from a dense to a sparse representation of
matrices, a Struct that grouped different matrix elements is defined. It has four public
elements and one private, which is weight. This data model vectorizes the matrix JAK
into three vectors/lists, rows R⃗, columns C⃗ and the vector for weights’ edges JW⃗ K. The
number of rows and columns of the matrix should be given, which are denoted numR and
numC will be used on related functions arguments of the main program. This structure is
indicated by a function that transforms graph coordinates into a sparse representation of
matrices. The vectors for both rows R⃗ and columns C⃗ are from the matrix JAK, while the
size of the sparse representation of the matrix is n×n vertices of a graph G.

Although the SIMD operations have been applied in computation, we omitted the infi-
nite edges (which means no edges between two vertices) to reduce the size of the vectors
that can only handle the meaningful edges (non-infinity). This will reduce the bottleneck
of the SMC Sharemind during communication between servers. It is important to note
that in the operations in the algebraic path computation, no processing has occurred for
the dense representation of A, all processing on the sparse representation of the matrices,
e.g., Yh. Hence we need both numR and numC to be obtained before the beginning of the
computation. This section presents the related functions and their algorithms for the main
computation of the algebraic path; these functions are constructed in parallel.
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7.3.1. Related functions

The whole related functions of the main computation carry a sparse representation of the
given graphs. First, we present the parallel version of the factorization and Block diagonal
matrix functions. Those functions can be used in the main computation of algebraic paths.
Hence it can be used in different computations in algebraic computation. As well as the
principal operations in the algebraic path, which are computing the Sum and Min in sparse
representation, both operations are also constructed in SIMD parallel.

The last two related functions are the First and Second normalization. Both functions
are also constructed in SIMD parallel and their input data-sparse representation.

Factorization

The first related function in the main program is Factorization, the Factorization for ma-
trix A—which is represented sparsely—that returns four matrices, X , Y , Z and Y T which
is the transpose of Y . Those matrices will be stored in a special Struct called sparseF, and
all matrices are sparse. The function has two arguments, the sparse representation of the
matrix A and the number of vertices in separator tree

−→
ST for level h. The function splits

the given sparse representation of A into four different-sized matrices. The given vertices’
number of

−→
ST determines the size of the matrix X . Suppose k = ST [cyc], and the size of

the matrix A is n ·n, then the size of X is k · k. The sizes of remains matrices are based on
the size of matrix X ; this can be seen in Figure 5.

𝑋𝑘,𝑘

𝑍𝑌

𝑌𝑇

𝑛

𝑘

𝑛

𝑘

𝐴𝑛,𝑛 =

Figure 5: Blocks of recursive factorization.

First-normalization

The first normalization is for sorting the elements of the matrix by rows and columns—
puts entries corresponding to the same cell next to each other. We constructed the alge-
braic path protocol with related functions to process a sparse representation of matrices
on the SIMD framework. The elements of the sparse representation of matrices need to be
sorted before applying the second normalization. To solve this problem, we propose the
first normalization of numbers for the sparse representation of the matrices’ elements—
rows, columns, and weights of a graph. Using the first normalization, numbers can be
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presented differently, bringing the sparse representation of matrices into a more canonical
form. Furthermore, in particular, it enables Second-normalization.

Second-normalization

The sparse representation of matrices increases the size of the vectors processed in parallel
SIMD. Consequently, this causes a new problem regarding the vectors’ size and the size
of a graph. We propose the second normalization for duplicate numbers of the sparse
representation of matrices to solve this problem. The aim is to remove the duplicate
occurrences of the same cell; hence vectors can carry more data, and bottleneck problems
among the servers of the SMC platform will be reduced, particularly when using big
graphs.

The adjacency matrix’s second normalization, represented in sparse representation, is
illustrated in Algorithm 29. In general, getting the indices of the R⃗ and C⃗ is based on con-
ditional expression A.R[i-1] ̸= A.R[i] or A.C[i-1] ̸= A.C[i]. The elements of private vector
A.W are based on the minimal values of A.W and t, which are obtained by applying the
getMin-function. In general, lines 4-8 compute the coordinates of the cells in the resulting
matrix. Lines 13 and 14 compute the values in these cells.

Algorithm 29: Second-normalization
Data: Struct sparse A
Result: Struct sparse val

1 begin
2 if size(A.R) == 0 then
3 return A

4 for i← 1 to size(A.R) do
5 if (A.R[i-1] ̸= A.R[i]) || (A.C[i-1] ̸= A.C[i]) then
6 R[c] = A.R[i-1]
7 C[c] = A.C[i-1]
8 c++

9 R[c] = A.R[size(A.R)-1]
10 C[c] = A.C[size(A.R)-1]
11 val.R = R[0 : c+1]
12 val.C = C[0 : c+1]
13 [t] = A.R × A.numC + A.C + 1
14 val.W = getMin(A.W, t)
15 val.numR = A.numR
16 val.numC = A.numC
17 return val

Block diagonal matrix

The second related function in the main program is the block diagonal matrix. It has two
arguments, the matrix Xk,k, and square blocks matrices in a level h. Both arguments are
matrices but in sparse representation—elements of the matrices stated in vectors. The
while-loop (lines 5-7) in Algorithm 32 is to feed the second argument in the block di-
agonal matrix function. It picks up indices of the blocks’ matrices from

−→
BS in a level h.
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The number of the blocks’ matrices is obtained from
−→
ST in that level h. The block diag-

onal matrix is presented in Algorithm 30. We build this algorithm in parallel to perform
the computation over vectors to reduce the iteration over private elements. The getSlice-
function is to determine the dimensions and sizes of the block matrices in the given vector
A, then determine the indices of the elements located in different locations.

Later, we transform the data from the sparse representation of matrix in A to a dense
representation in B by applying sparse-to-dense-function. The next step is to multiply
the private elements of the blocks’ matrices in parallel (line 5). This computation can
be done in the same algorithmic structure as the Floyd-Warshall algorithm with some
changes based on the semiring framework ⊕. Thereby, we use the parallel version of the
Floyd-Warshall algorithm presented in Algorithm 20 to perform this computation. It is
important to note that Algorithm 20 performs the computation on one adjacency matrix.
Hence, we run the Floyd-Warshall algorithm over n blocks matrices simultaneously.

Next, the operation in the algorithm is to get the elements of C⃗ and its rows and
columns indices. C[i] has a similar size to A, and the content of A′[i] goes to the same
place (i.e., into the same block) from where A[i] was read. We use the dense-to-sparse-
function for transforming to sparse representation before applying overlay-function. The
return value of the Block diagonal matrix is X∗h , and its data is presented in sparse repre-
sentation.

Algorithm 30: Block-Diagonal-Matrix-inv

Data: Struct sparse A,
−→
BS

Result: Struct sparse S
1 begin
2 forall i ∈ {1, ..., |BS|} do
3 A[i]← getSlice(A,0,∑i−1

j=1 BS[i],1,BS[i])
4 B[i]← sparse-to-dense(A[i])
5 B′[i]← FloydWarshall-nSIMD(B[i])
6 B[i]← dense-to-sparse(B′[i])
7 C[i]← overlay(B[i], ..., ...)

8 return overlap(C1, ...,C|BS|))

Sum-sparse operation

In the semiring framework, the main mathematical operations are sum and min, which
will be executed five times for Sum, while Min appears only once for each recursive cycle
in the main program. The sum operation is constructed sparsely as input data and pro-
cesses in parallel, which can reduce the round complexity of SMC protocol. It has two
arguments in sparse representation, Y and X∗h , in its first use in the main computation. The
parallel Sum-operation—in sparse representation—based on a semiring framework is pre-
sented in Algorithm 31. The algorithm supposes that the first argument has the same num-
ber of columns as the second argument’s number of row assert(X.numC== Y.numR),
similar to the matrix multiplication in linear algebra. The portion (lines 2-7) is to get the
elements for both sparse matrices X and Y into R⃗ and C⃗, respectively, using cons-function.
Then, apply the summation for both JW⃗ K of X and Y .
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Algorithm 31: Sum-sparse
Data: Struct sparse X , Y
Result: Struct sparse B

1 begin
2 for i← 0 to size(X .R) do
3 for j← 0 to size(Y.R) do
4 if X.C[i] == Y.R[j] then
5 S.R← cons(X .R[i],S.R)
6 S.C← cons(Y.C[ j],S.C)
7 S.W ← cons(X .W [i]+Y.W [ j],S.W )

8 S.numR = X .numR
9 S.numC = Y.numC

10 A = First-normalization(S)
11 B = Second-normalization(A)
12 return B

The double for-loop may take much running time, particularly if the matrices X and
Y are large. To optimize the portion, we assume that Y has been normalized, and then we
reorder the points in X by columns. Ordering the points of X by the columns corresponds
to transposing X and then First-normalizing it. We then do a single loop, moving forward
along the columns of X and rows of Y . Whenever we find a column index of X that equals
a row index of Y , we add things into S. This change lets the algorithm get the elements’
indices of X identically with Y to perform the sum in parallel.

The single for-loop in the algorithm is for getting the elements of the public vectors
R⃗ and C⃗, and indices of the private vector JW⃗ K. Using single instruction, a summation
operation will be performed for vectors X and Y , and save the result in new struct S. The
last operation in the sum algorithm is the First and Second normalization.

Min-sparse operation

The min operation in our algebraic path computation is used only once. The algorithm is
represented sparsely to deal with the sparse representation of the adjacency matrix located
in Struct sparse. The data input is two arguments in sparse representation X and Y . The
algorithm starts by checking that the first argument X rows have the same number as
the second argument rows Y —assert(X.numR== Y.numR). As well as checking the
number of columns in both arguments X and Y —assert(X.numC== Y.numC). When
both conditional expressions in an assert statement are true, the algorithm indicates the
concatenation for three elements of the two arguments, the public vectors R⃗ and C⃗, and
the private vector JW⃗ K. The next step is assigning the three vectors with their sizes in a
Struct sparse XY , finding the first normalization of the XY . Later on, finding the second
normalization, which has the getMin-function that will find the minimum values for both
concatenated arguments.

7.3.2. Main computation

We begin with the input to Algorithm 32, and the given adjacency matrix should be rep-
resented in a sparse representation A, as mentioned above. All elements in Struct A are
pubic except weights A.W is private. The arguments

−→
ST and

−→
BS comes from prerequisite
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computation (R-function). In obtaining
−→
ST , the set of R should be obtained by the ver-

tices of separator tree Sh,k that their vertices are not in that level of h. Later, obtaining the
indices of the R elements. Finally, accounting for the number of the elements with the
same indices of a level h, we obtain the

−→
ST . In the case of

−→
BS, given the list of separator

trees, the R-function accounts for the number of vertices S in each separator tree that their
vertices are not in R to determine the blocks of diagonal matrices.

For the three arguments whose initial value is zero, cyc is a counter for the recursive
iteration, M indicates the range of Block diagonal matrices for each iteration, and cont1
indicates the indices of the Block diagonal matrices. The argument of Level (h) represents
the number of iterations in the main program and the number of portioning levels in the
prerequisite computation of the separator tree. The last argument is a Struct of v1

′′
, which

carries the graph’s algebraic shortest path that will be updated in each iteration.
The return value of the main computation of the algebraic path is the shortest distance

for all vertices from the source vertex. In general, the algorithm provides a solution of a
linear system Ax = b with a sparse n×n symmetric positive matrix A. We replace vector
b in the equation by the initial value for the shortest distances vector v, and the solution
is x = A−1v, ending up by shortest distances located in Struct v. The main computation
of the algebraic path has a recursive (lines 1-28) and contains different related functions.
Performing the recursion is while the condition is satisfied, which is the value of level h,
thus requiring O(log2 n) time.

The algorithm computes the recursive factorization in each recursive cycle that will
return four matrices. The first matrix, X , will be used as an argument to find the block
diagonal matrix of X with its matrices blocks; it computes X∗h . The next step is the sum-
mation of two matrices, Y and X∗h , obtaining the Wh matrix. The components of Struct
Wh will be swapped into res2, the vector columns Wh.C into res2.R, the vector rows into
res2.C, number of rows into several columns, and number of columns into several rows,
res2.numR = Wh.numC, res2.numC = Wh.numR, respectively. No change in weights pri-
vate vector, res2.W = Wh.W .

The algorithm performs a First-normalization for Struct res2. Another summation
will be performed to the StructWh with a transpose matrix of Y ; it returns res3. To obtain
the matrix Ah that will be used in the next recursive cycle, the minimum of two Struct Z
and res3 will be performed by Min-sparse.

The algorithm builds two matrices, U and L, based on the size of matrix A in each
recursive cycle. The matrix U localizes the matrix res2 in its upper right quadrant, While
matrix L localizes the matrix Wh in its lower left quadrant. The remaining elements in
matrices U and L are “∞”, while the diagonals are 0’s; matrices are represented in sparse
representation.

One of the secondary related functions is getSlice; this function is to reshape the struct
of the shortest path v1

′
and v1

′′
that will be used in next operations. The first argument v1

is the struct of the shortest path that will be reshaped. The second and third arguments
are rows-to-remove and cols-to-remove, respectively. The fourth and fifth arguments are
rows-to-keep and cols-to-keep, respectively.

The new elements of rows R⃗ is A.Ri - rows-to-remove, while the vector C⃗ is A.Ci -
cols-to-remove. The private vector JW⃗ K gets its elements based on indices’ values of i.
Those three vectors will be constructed if the conditional expression is set to true; the con-
dition is two parts, over rows and columns. In detail, A.Ri ⩾ rows-to-remove & A.Ri <
rows-to-remove + rows-to-keep, the second part of the condition is over columns, similar
to the rows. The getSlice-function provides v1

′
and v1

′′
, the Struct v1

′
will be summed
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with Xh∗ to get v2
′
. Those intermediate shortest paths v1

′′
will be used as an argument

in the recursive call, and v2
′

will be used as an argument in the overlap-function after the
recursive call.

Algorithm 32: Main computation of Algebraic paths

Data: Struct sparse A,
−→
ST ,
−→
BS

Data: level(h), struct v1
′′

Data: cyc = 0, M = 0, cont1 = 0
Result: shortest paths Struct sparse v

1 Function Algebraic-paths(A,
−→
ST ,
−→
BS,cyc,M,cont1, level,v1

′′
) is

2 if cyc ! = level-1 then
3 rang = 0
4 Struct sparseF F = Factorization(A,ST [cyc])
5 while ST [cyc] ! = rang do
6 rang = rang + BS[cont1++]
7 cont2++

8 sparse Xh∗ = Block-Diagonal-Matrix-inv(F.X ,BS[M : M+ cont2])
9 M = M + cont2

10 cont2 = 0
11 Wh = Sum-sparse(F.Y,Xh∗)
12 sparse res2 = Wh; // res2.R = Wh.C & res2.C = Wh.R
13 res2 = First-normalization(res2)
14 sparse res3 = Sum-sparse(Wh,F.Y T )
15 sparse Ah = Min-sparse(F.Z,res3)
16 sparse U = getUpper(A.numR,res2)
17 sparse L = getLower(A.numR,Wh)
18 sparse v1 = Sum-sparse(v1

′′
,U)

19 row = F.X .numR
20 col = F.X .numC
21 sparse v1

′
= getSlice(v1,0,0,1,col)

22 sparse v1
′′

= getSlice(v1,0,col,1,v1.numC-col)
23 sparse v2

′
= Sum-sparse(v1

′
,Xh∗)

24 cyc++
25 sparse v2

′′
= Algebraic-paths(Ah, [ST ], [BS],cyc,M,cont1, level,v1

′′
)

26 sparse v2 = overlap(overlay(v2
′
,0,v1.numC - col),overlay(v2

′′
,col,0))

27 sparse v = Sum-sparse(v2,L)
28 return v

29 [B] = A.numR
30 sparse A∗ = Block-Diagonal-Matrix-inv(A, [B])
31 sparse v = Sum-sparse(v1

′′
,A∗)

32 return v

The overlap-function has the same functionality and structure as Min-sparse. The
difference is that it has no Second-normalization and assumes that no position X and Y
have non-INF simultaneously. This function has two arguments, which are the interme-
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diate shortest paths. The two arguments must be modified before being carried out to the
overlap-function.

The third secondary related function is overlay that increases the size of the interme-
diate shortest paths v2

′
and v2

′′
in terms of the columns C⃗ and the number of columns

.numC. The aim of increasing the size is to make it the same as the other arguments in the
overlap function. In detail, the second and third arguments in the overlap function will be
summed with v2.numC, and the second argument will be summed with v2.C. No change
in rows R⃗ and weights JW⃗ K.

The shortest path v is returned value of the last Sum-sparse inside the conditional
expression that summed Struct L and the intermediate shortest path v. If the conditional
expression is set to false, we define a single block (line 29) which will be carried to the
Block-diagonal-matrix function to find the A∗. The shortest path v is returned value of the
Sum-sparse which is out of conditional expression, the sum is v1

′′
with A∗.

7.4. Optimized Bellman-Ford public edges protocol

Chapter 4 presented the privacy-preserving single-source shortest distances protocols on
private dense and sparse graphs. The three elements of the given graphs, vertices V ,
edges E, and weight W , are private. The operations over private elements, either integer
and Boolean values or vectors, have high computational costs. In most applications that
use shortest paths algorithms, the application is privacy-preserving if the weights—the
most critical elements in a given graph—are private as input and output to the arithmetic
black box.

Algorithm 33: Bellman-Ford (Version 3)
Data: Number of vertices and edges n and m
Data: Public Sources S⃗ and targets T⃗
Data: Private weights JW⃗ K
Data: starting vertex s
Requires: [T ] is sorted
Result: Private distances JD⃗K from vertex s

1 begin
2 JD⃗K← ∞

3 J⃗aK← JW⃗ K
4 for i← 0 to n−1 do
5 forall j ∈ {S} do
6 J⃗aK[ j]← JD⃗K;

7 J⃗bK = J⃗aK + JW⃗ K
8 JD⃗K = getMin(J⃗bK, [T ])

9 return JD⃗K

The vertices and edges can be public elements in a privately given graph. For example,
the navigation on city streets and the layout of the streets is available to the public [169],
and in shortest paths and distances with differential privacy [150], weights are only pri-
vate. Even if the given edges and vertices are public, the computation is still privacy
preservation, with low running time than the same private computation using complete
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private graphs—edges, vertices, and weights are private. To use an efficient protocol in
solving such a problem, we propose a version of the privacy-preserving Bellman-Ford
protocol with public edges, presented in Algorithm 33.

In general, Version 3 of the Bellman-Ford protocol has the same algorithmic structure
and functionality as Algorithm 11. The difference between them is that we replaced
PrefixMin2 by getMin, both functions have the same functionality with a difference that
getMin-function deals with public edges m and vertices n. This is the reason why getMin-
function is faster than the two versions of the prefixMin2-function (Algorithm 12 and
Algorithm 14). The second difference is that there is no use for Laud’s protocol with its
functions, prepareRead and performRead; this will reduce the round complexity a bit and
provide more detail about the reduction in round complexity of the Version 3 in Sec 7.5.
The data input is three vectors of a graph JGK, the source S⃗ and target T⃗ vertices are public,
while weights JW⃗ K of edges is private. The vector T⃗ should be sorted, and then the input
of all vectors should be sorted according to T⃗ . Then, continue regularly performing the
computation, such as in the Algorithm 11.

7.5. Complexity of algorithms

This section discusses the protocol’s performance for finding the shortest paths in the
algebraic path computation technique and related algorithms. The complexity of the al-
gorithms has two sides, round and communication complexities. Let n denote the number
of vertices in the given graph, while m is the number of edges.

7.5.1. Round complexity

The main computation of the algebraic path has no iteration control structure, while it
has recursive iterations, and the related algorithms call in each iteration. First, the round
complexity of the main computation requires O(log2 n). Second, the related functions will
be executed during each iteration, while each has round complexities separately. Some
of these secondary functions have zero round complexities, getSlice, overlap and overlay.
As well as, the getUpper and getLower functions require zero round complexities. Each
iteration in a recursive call has the following round complexities:

The first related function is recursive factorization which has zero round complexity.
The algorithm splits the Struct A into four matrices in sparse representation. The public
operations have zero round complexity, and assigning the private vector weights JW⃗ K into
four sub-vectors is done in parallel, with zero round complexity.

The Block-diagonal-matrix-inv function has zero round complexity for all for-loops.
The function also has a subroutine of FloydWarshall-nSIMD, which processes t block
matrices simultaneously; hence the number of blocks does not influence the round com-
plexity because all blocks are handled in parallel. We suppose k is the size of the largest
block. Thus, total round complexity of FloydWarshall-nSIMD function is O(k).

It is important to present the complexities of First- and Second-normalization func-
tions before the Min-sparse and Sum-sparse functions. The round complexity of the First-
normalization is zero, the whole operations are public, and assigning the private vector
has zero round complexity. The Second-normalization has getMin-function as subrou-
tine, which has O(logn) round complexity. Thus, each Second-normalization call has
O(logn) round complexity.

The Sum-sparse function has assigning operations for private vectors, which requires
zero round complexity, and it has Second-normalization that requires O(logn) round
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complexity. Thereby, each Sum-sparse in one recursive cycle in the main computation
has O(logn) round complexity. The Min-sparse requires the same round complexity as
in Sum-sparse, which is O(logn). Both have the same algorithmic structure regarding
public and private operations and subroutines. The round complexities for each iteration
of privacy-preserving APC and Bellman-Ford V3 protocols are presented in Table 4.

Table 4: Round and communication complexities for each iteration of privacy-preserving
APC, and Bellman-Ford V3 protocols.

Protocol Complexity
Round Communication

getSlice Zero Zero
overlap Zero Zero
overlay Zero zero

getUpper Zero Zero
getLower Zero Zero

recursive factorisation Zero Zero
APC Block diagonal-matrix-inv Zero Zero

Floyd-Warshall-nSIMD O(k) O(k3t)
First-normalization Zero Zero

Second-normalization O(logn) O(m)
Sum-sparse O(logn) O(m2)
Min-sparse O(logn) O(m)

Bellman-Ford V3 O(logn) O(n3)

7.5.2. Communication complexity

Let n denote the number of the vertices in the given graph JGK, and m is the number
of edges. In the algebraic path computation, we use the First-normalization to sort the
elements. We also use Second-normalization to remove the occurrence of the duplicate
cells; this reduction can help the implementation carry a big graph. We consider e the
number of edges in a graph used in algebraic path computation protocol, and v is the
number of vertices.

The functions that require zero round complexity also require zero communication—
no communication had occurred among the computation parties of the SMC platform.
These functions are Recursive-factorization, First-normalization, getSlice, overlap and
overlay, getUpper, getLower and Block-diagonal-matrix-inv.

Initially, the size of the given adjacency matrix is n× n, which is represented sparsely
into vectors; the size of each vector is m. The communications of the main computation
(Algorithm 32) requires O(m log2 n). Each iteration in a recursive call has the following
communication complexities:

The Block-diagonal-matrix-inv function has FloydWarshall-nSIMD function, which
processes t blocks matrices simultaneously, the size of the largest Block is also k. The
total communication is O(k3t). The Second-normalization function has getMin as a sub-
routine, the communication requires O(m). The Sum-sparse in one recursive cycle in the
main computation requires O(m2) communication. The Min-sparse function has O(m)
communication. The communication complexities for each iteration in the main compu-
tation of privacy-preserving APC protocol are presented in Table 4.
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7.6. Security and privacy of protocols

As we mentioned in Sec 4.7, the protocol is built on top of a universally composable ABB.
It inherits the same security properties against various adversaries as the underlying se-
cure computation protocol. The privacy-preserving algebraic path parallel computation
protocol and its related functions are privacy-preserving since they do not contain any de-
classification statements. The given graph in the implementation has public edges, while
the weights are only private. The private result is no longer determined by the private
values of all elements in a graph; some can be public (edges and vertices) and hence do
not leak the privacy preservation. The private values in the algebraic path computation
protocol have no declassification statements. Therefore our implementations are privacy-
preserving.
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8. EXPERIMENTS OF SHORTEST PATH PROTOCOLS

8.1. Introduction

This chapter presents the benchmarking results and empirical analysis of the shortest
path protocols. Firstly, it shows the investigations and analysis of all privacy-preserving
single-source shortest path protocols. Secondly, presenting the experiments and analysis
of the privacy-preserving All-pairs shortest path protocols. Benchmarking the results with
previous works is also given. We perform the tests and experiments on the Sharemind
system over different network environments. The set-up experiments for all protocols,
hardware, and network architectures can be seen in Sec 3.6.

8.2. Single-source shortest paths experiments

8.2.1. Benchmarking results for single-source shortest path

There have been no extensive benchmarking studies of privacy-preserving shortest-path
protocols. The outcomes still need to be stronger because the proposed protocols are se-
quentially constructed, which requires high round complexities among the computational
parties; such protocols do not lead to building efficient real-world applications.

Aly et al. [5] have benchmarked their implementations of Dijkstra’s and Bellman-Ford
algorithms on dense representations of small graphs. They implemented the algorithms
on top of VIFF [78] with BGW protocol [84] used for multiplication and Toft’s proto-
col [160] for comparison. They claim a runtime of little more than an hour for Dijkstra’s
algorithm on 128 vertices and more than 8 hours for the Bellman-Ford algorithm on 64
vertices.

Aly and Cleemput [3] benchmark their implementation of Dijkstra’s algorithm on
graphs of up to 64 vertices, reporting running times in a range of 20 seconds. On a 32-
vertex graph, the running duration is roughly 5 seconds. The permutation procedure is
also employed to disguise the vertices’ true identities, increasing the total running time. It
is an excellent technique to maintain privacy but also an extra operation that will lengthen
the computation’s overall run time.

Keller and Scholl [104] have implemented the operations of oblivious RAM (ORAM)
on top of the SPDZ protocol set [63] and used them to implement a privacy-preserving
version of Dijkstra’s algorithm. Cycle graphs of ca. 2000 vertices that are represented
sparsely report the running times in a few minutes. Their implementation requires a cou-
ple of hours for graphs with 500 vertices represented densely.

Carter et al. [50] use garbled circuits (hence removing considerations about round
complexity but consuming more communication) to evaluate Dijkstra’s algorithm pri-
vately. They report a running time of 26 seconds for a 20-vertex graph and ca. 15 minutes
for 100-vertex graphs—their parallel implementation handles 32 circuits simultaneously
on a 32-core server. The 64-circuit evaluation requires almost 50 seconds for the 20-vertex
graph and nearly 22 minutes for a 100-vertex graph.

Similarly, Liu et al. [125] make use of garbled circuits to evaluate Dijkstra’s algorithm
on sparse graphs, employing oblivious priority queues [165] to increase efficiency. The
estimate is that together with JustGarble [16], their running time on a 1000-vertex, 3000-
edge graph is maybe 20 minutes. In [25], theoretical work has been proposed, but no
evaluation is reported.
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8.2.2. Dijkstra’s protocol experiments

Dijkstra’s protocol for single graph

The running time of our privacy-preserving Dijkstra’s protocol depends only on the num-
ber n of the vertices of the input graph, while there is no influence on the number of edges
m. We report the running times in Table 5 for various values of vertices n—different sizes
of graphs. For interest and similarly to [3], for some of the instances, we report separately
the time it takes to permute the vertices and the time it takes to execute the main loop of
Alg 7. This split is only informative for most use cases because all main loop iterations
have to be executed to find the shortest distances to all vertices. It may be helpful only if
we are interested in the shortest path from the source vertex s to some target vertex t, and
we somehow know that t is one of the closest vertices to s. Again, the running times are
given for the HBLL environment.

In different network environments, we expect Dijkstra’s protocol to behave similarly
to the Bellman-Ford algorithm—it will also be latency-bound to an even greater extent.

Table 5: Running times (in seconds) of privacy-preserving Dijkstra’s protocol.

Graph Dijkstra
n m Perm. Loop Total
10 25 0.01 0.08 0.09
20 100 0.02 0.016 0.18

700 3k 8.2 29.0 37.2

Sp
ar

se

900 244k 13.3 40.2 53.5
8.5k 200k 1176 3230 4406
9.5k 200k 1441 4014 5456
50 1225 0.09 0.48 0.57
64 2016 0.12 0.69 0.81
85 3500 0.19 1.02 1.2

150 11k 0.5 2.5 3.0
300 44.8k 1.63 6.42 8.1
450 100k 3.43 13.7 17.1
700 244k 7.94 29.3 37.2
2k 1.9M 57.5 196 253

D
en

se

3k 4.4M 137 479 617
4.5k 10M 312 1006 1319
5k 12.4M 380 1196 1577
7k 24M 745 2266 3012

10k 49.9M 1572 4488 6061
15K 112M 3601 9807 13.4k

In Figure 6, we establish the baseline for our experiments by measuring the running
time of Dijkstra’s protocol on graphs of various sizes in different network environments.
For the benchmark, we use both small and relatively large graphs, and the number of
edges in the graph is not a determining factor. These running times are for finding the
privacy-preserving SSSD in a single graph. We observe that the performance is highly
latency-bound, meaning that the available data volume does not significantly affect the
performance on most graphs in high-latency environments.
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Figure 6: Performance of Dijkstra’s algorithm on graphs with given numbers of vertices
in different network environments (red: HBLL, green: HBHL, blue: LBHL).

Dijkstra’s protocol for multiple graphs

Sequentially, we can run version 1 of privacy-preserving Dijkstra’s protocol several times
over graphs of the same size. In contrast, version 2 of the privacy-preserving SSSD Dijk-
stra’s protocol executes several graphs of the same size in parallel.

The running times of privacy-preserving nDijkstra’s protocol (version 2) using dif-
ferent Networks are presented in Table 6. In the benchmark, we run different kinds of
graphs: dense and sparse, with different sizes: big and small. The preferable network
case (High-Bandwidth, Low-Latency) is presented in Table 6 with other network environ-
ments.

The performance gains resulting from parallel execution over multiple graphs should
be meaningful and comparable over various graph sizes, several graphs, and network
environments. We mean in different graph sizes is the number of the vertices n regardless
of their connected edges m.

To estimate how scalable the parallelization is, we use the Karp-Flatt metric, consider-
ing the number of graphs k, the graph size n, and network environments. Suppose the time
to execute the parallel nDijkstra’s protocol on one graph is T1. The time to execute the
same algorithm on k graphs is Tk. In that case, both implementations have the same graph
size on the same network environment. Consequently, the parallel gains are maximal if
Tk ≈ T1, while it is minimal if Tk ≈ k.T1. We then map the gains to the segment [0,1].

Then, the serial f raction is given by Fk = (Tk/T1− 1) / (k− 1). It presents the mea-
surement of the serial fraction when running the parallel nDijkstra’s protocol for different
numbers of the graphs k and different sizes of the graphs n and over different network
environments, see Figure 7. The parallelization is perfectly scalable if the number of
graphs k grows at a rate no more than the number of vertices n in a graph. In contrast,
parallelization is not scalable if the number of graphs k grows more than the number of
vertices n in a graph. The data underlying this Figure 7 comes from Table 6.
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Table 6: Benchmarking results for the parallel execution of nDijkstra’s protocol on sev-
eral graphs of the same size in different network environments.

Num. of Size of Running time (s)
graphs graph HBLL HBHL LBHL

1 10 0.09 21.6 29.3
10 10 0.2 54.1 54.1
1 25 0.23 73.4 100
25 25 1.0 158 160
1 50 0.53 166 228
5 50 1.6 326 326
10 50 2.6 329 331
25 50 3.9 336 341
50 50 6.3 371 388
1 100 1.29 373 513
10 100 7.5 745 755
25 100 16.1 764 792
50 100 28.6 793 852
75 100 42.6 834 920
100 100 42.3 898 1019
1 200 3.37 828 1144
20 200 46.0 1699 1792
50 200 104 1800 2075
100 200 189 2138 2787
200 200 337 2657 3669
1 500 12.5 2884 4042

100 500 1049 7524 10.8k
500 500 3715 17.2k 34.6k
1 1000 46.1 6356 8933
50 1000 2129 15.7k 21.0k
500 1000 21.1k 62.2k 125k
1000 1000 42.5k 109k 235k

1 5000 853 40.8k 61.2k
100 5000 230k 390k 648.9k

We have not tested the parallel execution for several graphs larger than the number
of vertices in a graph because this case will not be needed in any sensible executions
of Johnson’s protocol. As expected, we see the most significant gains for the HBHL
environment. Interestingly, the largest gains are obtained for graphs with ca. 200 vertices,
at least for high-latency environments. This may mean that the parallelization possibilities
for computations with a single graph for larger graphs are already significant.
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Figure 7: Dijkstra’s algorithm performance (as a serial fraction; lower is better) on mul-
tiple graphs of various sizes (number of vertices given on the graph) in different network
environments (red: HBLL, green: HBHL, blue: LBHL).

8.2.3. Bellman-Ford protocol experiments

We ran the codes for the two versions of the Bellman-Ford protocol and used different
graphs with different sizes in both versions. The execution time of our privacy-preserving
Bellman-Ford protocols depends only on its public inputs, i.e., the number of vertices
n and the number of edges m of the given graph JGK. The given vertices, edges, and
weights are private in both versions of Bellman-Ford. The main difference between the
two versions of Bellman-Ford protocols is a subroutine which is prefixMin2. Version 1
of the algorithm uses the implementation of prefixMin2 shown in Algorithm 12, while
Version 2 uses the implementation shown in Algorithm 14. The algorithm executions are
made in the high-bandwidth low-latency environment. The running times for various
sizes of the input graph are in Table 7.
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Table 7: Running times (in seconds) of privacy-preserving Bellman-Ford protocol.

Graph BF Version 2 BF Version 1
n m Pre. Loop Total Loop Total

10 25 0.18 0.27
20 100 0.53 0.70
50 400 2.68 2.70
85 1.2k 11.3 8.10
170 2.5k 37.8 25.8
350 1050 9.4 42.7 52.1 27.5 36.9
350 2k 9.4 68.9 78.3 41.6 51.0
500 1.5k 18.9 87.3 106 54.1 73.0
500 5k 19.7 195 214 121 140
700 2.1k 37.3 165 202 109 146
700 10k 38.2 476 514 291 329
3k 9k 663 2541 3204 1545 2208
3k 50k 676 10511 11187 5415 6091

4.5k 13.5k 1515 5830 7345 3239 4754
4.5k 100k 1.5k 16.2k 17.7k
7k 21k 3.6k 7.7k 11.3k
7k 200k 3.6k 46.6k 50.2k

8.5k 25.5k 5.2k 11.2k 16.4k
8.5k 300k 5.3k 81.7k 87k
9.5k 28.5k 6.6k 12.9k 19.4k
9.5k 500k 6.6k 144k 151k

The execution of the Bellman-Ford protocols consists of preparatory steps for subse-
quent array accesses according to private indices, followed by the algorithm’s main loop
executed at most (n-1) times. In Table 7, we report separately the time it took to run the
preparatory steps of Algorithm 11 (everything up to the main loop), as well as the main
loop (all (n-1) iterations). Moreover, the total execution time for every version is reported.
The preparatory steps (the part before the main loop) is similar for both versions.

As part of more extensive applications, we may be interested in executing the Bellman-
Ford protocol for less than (n-1) iterations. We know from the context that fewer iterations
are sufficient, or it is acceptable to leak either the precise number of iterations or some
padded version. Given the number of vertices and edges and the expected number of
iterations, Table 7 can be used to find the scheduled running time. The running time of
the preprocessing must be added to the running time of the main loop, where the fraction
is equal to the proportion of iterations to vertices.

Both dense and sparse graphs were taken into consideration when benchmarking. Pla-
nar graphs are expected to appear in various applications as a class of sparse graphs.
Hence half of our tests have been run with graphs whose number of edges matches that
of typical planar graphs having mostly triangles as faces—we let the number of edges be
thrice its number of vertices.

Version 1 of our implementation of the Bellman-Ford protocols consumes less com-
munication, while Version 2 has better round complexity. This difference can be seen in
Table 7, where either implementation may have a shorter running time for certain sizes
of inputs. We have benchmarked both versions of the Bellman-Ford protocol in different
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network environments for graphs of various sizes. We give both the running time and data
volume consumption in Table 8. We also depict the running time in Figure 8.
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Figure 8: Bellman-Ford algorithm performance (time in seconds) in different networks
for different (n, m) (red: HBLL, green: HBHL, blue: LBHL, dark: Version 1, light:
Version 2).

In particular, we have focused primarily on the functional aspects of networks for
running our privacy-preserving Bellman-Ford protocols. We tested our work over differ-
ent networks considering the two fundamental measuring tools, data volume and running
time. In Table 8, we have implemented the two versions of privacy-preserving Bellman-
Ford protocols over three main networks. In the implementations, we run different graphs:
sparse and dense, with different sizes. We documented the results for Bandwidth and La-
tency over the three servers of the SMC Sharemind system for the versions of Bellman-
Ford. Note that the running time of the three servers is similar; they start and finish
together.

Table 8: Benchmarking results (data volume for a single computing server) for Bellman-
Ford algorithms in different network environments.

Size of Version 1 (with Alg. 12) Version 2 (with Alg. 14)
graph Data Running time (s) Data Running time (s)

n m volume HBLL HBHL LBHL volume HBLL HBHL LBHL
50 400 32 MB 2.8 799 799.5 65 MB 2.8 448 451
50 1225 74 MB 5.2 1155 1145 206 MB 7.2 550 559
200 600 165 MB 17.9 3270 3261 465 MB 22.2 1823 1841
200 19.9k 2900 MB 162 5626 5806 15.8 GB 356.2 3122 4219
700 2100 1570 MB 147 15.4k 15.4k 6.3 GB 237.7 7529 7956
700 10k 5 GB 348 18.5k 18.7k 27 GB 661.7 9158 11.1k
700 244k 110 GB 5823 35.9k 42.9k 810 GB 16.4k 54.2k 111k
1k 3k 4 GB 288 22k 22.2k 12.7 GB 435.8 10.8k 13.5k
1k 20k 13 GB 917 25.9k 26.7k 90 GB 1879 14.8k 20.6k
1k 499k 320 GB 16.6k 63.4k 81.7k 2.4 TB 49.8k 156k 318k
3k 9k 65 GB 2318 79.6k 81.1k 145 GB 3889 39.8k 49.3k
3k 50k 133 GB 6675 93.3k 100k 630 GB 15k 56.3k 104k

As we explained in Sec 4.3, privacy-preserving Bellman-Ford Version 1 is efficient
in terms of running time, while Version 2 is efficient in terms of communication. In
Table 8, the running time for all graphs in Version 1 is lower than Version 2 of Bellman-
Ford (in the preferable case HBLL), while the communication for Version 2 is higher
than Version 1. We notice the change in latency and Bandwidth for different graphs over
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different instances of the networks. Those results are practical proof of our methodology
in implementing different parallel algorithms in finding the prefix minimum.

The timing results clearly show that the two versions of the protocol behave very
differently in various network environments. While Version 1 of the protocol is always
better in the HBLL environment, it depends on the number of edges of the graph for
the environments with high latency. Indeed, the number of edges essentially determines
the parallelism available for the algorithm; a small number of edges makes Version 2
preferable because of its smaller round complexity.

The timing results also show that for all sizes of the graph shown in Figure 8, the
algorithm’s performance is essentially bounded by the latency of the network. Indeed,
for smaller examples, we see very little difference between the HBHL and LBHL envi-
ronments. Also, even for the largest examples, there is still a very significant difference
between the HBLL and HBHL environments.

8.2.4. Radius-stepping protocol experiments

We have implemented the shortest path algorithm on the SMC Sharemind platform for
both versions of the protocol, sequential and parallel SIMD. We use speed-up to mea-
sure the relative performance of parallel and sequential versions of the proposed proto-
col [147]. We find the speed-up of our parallel radius-stepping protocols on top of SMC
protocols by dividing the standard version of the radius-stepping by the execution time
of the parallel version (SIMD). The formula is Speed-up = TS/TP , where TS is the ex-
ecution time of the sequential protocol, and TP is the execution time of parallel SIMD
version of the radius-stepping protocol.

Table 9: Running times (in seconds) of privacy-preserving Radius-Stepping protocols
for sparse and dense graphs.

Graph Radius-Stepping
n m Serial Parallel Speed-up

200 1500 914.7 20.5 44x
400 4k 6786 97.2 69x
500 6k 13062 203 64x
500 10k 35346 186 189x

Sp
ar

se

900 20k 77580 825 94x
1k 40k – 920 –
2k 40k – 10206 –
10 45 0.8 0.1 8x
35 400 20.6 0.5 41x
50 1225 74.6 0.6 124x
75 2775 247 1.2 206x
100 4950 593 1.5 395x

D
en

se

300 44850 16059 19.4 827x
500 124.7k 74453 78.6 947x
1000 499.5k – 188.4 –

We use different weighted undirected graphs in our implementation, sparse and dense,
with varying sizes. We also used unweighted graphs with different sizes in the implemen-
tation. The execution time of our privacy-preserving SIMD-Radius-Stepping protocol
depends on the number of vertices and the edges of the input graph. We report the run-
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ning time in Table 9 for several sparse and dense graphs of different sizes for the “∞”-radii
case.

We ran two versions of codes, sequential and parallel (SIMD), while both used a pri-
vate access memory for privacy preservation. The speed-up of the first graph JG1K is
around 44 times—the parallel version is faster than the sequential version. The speed-up
of the others graphs JG2K, JG3K, JG4K, and JG5K are 69x, 64x, 189x, 94x, respectively.
The result shows that the speed-up is increased by increasing the input graph size, and the
SIMD-Radius-stepping algorithm’s speed-up is scalable. The aim of presenting a sequen-
tial version of radius-stepping in privacy preservation is to analyze the parallel method we
use and how much it makes a difference in the latency of the network. One of the most
impressive uses of our proposed protocol is finding the privacy-preserving shortest path
for dense graphs. The results show that the speed-up for parallel implementation of the
dense graph may be hundreds of times. The graph with 300-vertex and 44850-Edge has a
speed of 827 times faster than the sequential version of the algorithm. It is also important
to note that reporting the speed-up for a huge graph is difficult because the running time
of the sequential version of the protocol is too high. We estimate the running time of the
sequential version of the protocol to be in a few days or weeks on the SMC platform.
This is the motivation of our work; by using our SIMD-Radius-Stepping, we can find the
shortest path for vast graphs in privacy-preserving parallel computation in less running
time compared with the running time of the sequential version of the protocol.

Table 10: Running times of SIMD-radius-stepping for planar-like graphs.

Graph Radius-Stepping (planar-like)
n m Delta Stand SIMD

20 40 2.28 1.62 0.24
40 80 6.84 8.4 0.54

E
=

2V

80 160 89.2 54.6 4.6
120 240 254 170 13.4
20 50 5.28 1.74 0.24
40 100 20.7 9.42 0.84
80 200 113 56.7 5.6

E
=

2.
5V

120 300 296 178 9.48
20 80 10.1 2.28 0.24
40 160 30.9 10.7 0.9

E
=

4V

80 320 109 66.8 3.78
120 480 360 192 9.5

Another series of tests that we report in Table 10 considers graphs whose number
of edges (for the given number of vertices) is similar to planar graphs. This series im-
plemented three privacy-preserving single-source shortest path protocols: the Radius-
Stepping and ∆-Stepping, and our SIMD-Radius-Stepping. There are three groups of
graphs that have been benchmarked. The groups are based on the ratio between the num-
ber of edges and the number of vertices of the graph. In the first group, the number of
edges is two times the number of vertices. In the second group, the number of edges is
2.5 times the number of vertices, being close to the maximum number of edges a planar
graph may have. The graphs of the last group are denser than planar graphs. The running
times of the standard Radius-Stepping protocol are more minor than the running times of
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the ∆-Stepping protocol, while the SIMD-Radius-Stepping protocol is less than both.
We tested our protocol also for unweighted graphs with “∞”-radii case. Table 11

shows the running times for SIMD-Radius-Stepping protocols on several unweighted
graphs of different sizes. The result shows our protocol has an enormous increase in
speed-up for finding the shortest paths in unweighted graphs compared with the speed-up
for finding shortest paths in weighted graphs. For example, the graph with 50 vertices
and 1225 edges has a 124x speed-up for the weighted graph and a 359x speed-up for the
unweighted graph.

Table 11: Running times (in seconds ) of privacy-preserving Radius-Stepping algorithms
for unweighted graphs.

Graph Radius-Stepping (unweighted)
n m Serial Parallel Speed-up

25 100 5.1 0.15 34x
25 300 8.7 0.1 87x
50 1225 71.8 0.2 359x
100 2k 357 0.7 510x
200 19.9k 4769 4.3 1109x
500 20k 26372 14.8 1781x
1k 20k – 75.9 –
5k 12.4M – 2304 –
10k 49.9M – 9087 –

Table 12: Running times (in seconds) of SIMD-Radius-Stepping with radii cases.

Graph Radius-Stepping (radii cases)
r = ∞ r = 0 r = rnd

k n m Iter Time Iter Time Iter Time
25 100 6 0.17 24 0.78 7 0.25
50 400 6 0.5 44 3.9 8 0.66
100 2k 5 1.3 41 9.8 9 2.1
200 2k 9 8.1 100 94.5 20 17.3

Sp
ar

se

500 20k 6 29.4 121 597 27 134
1k 200k 6 106 69 1266 19 451
50 1225 5 0.4 24 2.1 6 0.5
100 4950 5 1.1 25 6.1 8 1.9
200 19.9k 5 4.5 27 22.8 8 8.1

D
en

se

500 124.7k 5 23.6 31 153 10 49.1
1k 499.5k 5 87.8 38 690 15 256
50 100 8 0.75 78 6.9 11 0.9
50 150 8 0.7 70 6.2 10 0.8
100 200 9 2.3 165 40.1 23 5.8
100 300 9 2.1 155 38.9 21 5.0
200 400 13 11.1 380 276 40 43.6

Pl
an

ar
-l

ik
e

200 600 11 9.8 251 260 41 35.1
500 1500 13 63.5 691 3420 100 489

Algorithm 15 has a declassification statement in a location that causes some graph
details to be leaked through the algorithm’s running. The running time is characterized
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by the time it takes to run a single iteration of that algorithm (which only depends on
the number of vertices and edges of the graph) and the number of iterations the algorithm
does (which depends on the structure of the graph, as well as on the radius r). In Table 12,
we report the average number of iterations for random weighted graphs with a given
number of vertices and edges for three possible choices of the radii—either infinite, zero,
or randomly generated. The average execution time has been reported, too. We see that
the first choice consistently beats the other for these choices.

8.2.5. Breadth-first search protocol experiments

Similar to the implementations above, we have implemented our proposed protocol of
the privacy-preserving breadth-first search with its two versions—Weighted Breadth-First
Search (WBFS) and Unweighted Breadth-First Search (UBFS)—on the Sharemind SMC
platform. Although our algorithm fits dense graphs, we use different types of graphs in
the implementations on the top of the SMC protocol set, sparse and dense ones, with
varying sizes. Among the sparse graphs, we consider graphs whose number of edges is
similar to planar graphs, i.e., two or three times the number of vertices. Using different
kinds of graphs is for the benchmarking of the two versions of our privacy-preserving
BFS protocol. We reported the running time of our experiments in seconds. The parallel
codes of the implementation are written using the SIMD framework; after vectorization
of the given adjacency matrices. Besides the running time as a measurement tool for
our benchmarks, we report the data volume for running the two versions of the proposed
protocol.

Privacy-preserving WBFS protocol

We report the running times of the privacy-preserving WBFS’s protocol for various weighted
graphs, sparse, dense, and planar-like, with various sizes in Table 13. This table presents
the benchmark for the privacy-preserving parallel versions of the WBFS and Radius-
stepping protocols. In the implementations of the radius-stepping, we use the best two
cases of the radii, which are random (rnd) and infinity (“∞”). The table shows the number
of possible iterations (Iter) for each algorithm with their total running time. A function is
used to generate random private graphs.

Therefore, the number of iterations in all implementations can differ based on the
weights of edges and which vertices are connected by edges. The number of iterations
in WBFS’s protocol is smaller than in both versions of the radius-stepping protocol in
all experiments. The empirical test clearly shows that WBFS’s protocol is faster than the
radius-stepping protocol in two cases of radii.

Moreover, Table 13 shows how much WBFS’s protocol is faster than the best radii case
(“∞”) between 3 and 5 times. Although, the number of iterations in WBFS is one time less
than that in the ∞-radii version (with some exceptions). For rnd-radii, the Improvement
of WBFS’s protocol is 50 times or more.

Lastly, the number of iterations running the protocol with dense graphs (regardless
of size) is less than that running the protocol with sparse graphs. The number of itera-
tions is decreased by increasing the number of edges in the given graphs JGK. Thus, the
privacy-preserving BFS protocols are efficient over dense graphs with low running time.
The protocol is still more efficient for other graphs than radius-stepping and different
algorithms in previous works—Bellman-Ford, and Dijkstra protocols.
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Table 13: Running times (in seconds) of privacy-preserving WBFS and radius-stepping
protocols for various graphs.

Graphs Parallel Radius Parallel WBFS Improvement
Radii = rnd Radii = ∞ BFS vs.

k n m Iter. Time Iter. Time Iter. Time rnd ∞

25 100 8 0.33 6 0.24 5 0.07 5.0x 3.6x
50 400 7 0.78 5 0.52 4 0.13 6.1x 4.1x
100 900 14 4.67 6 2.05 5 0.47 10.0x 4.4x
200 1k 33 41.4 11 13.8 10 2.98 13.9x 4.6x
500 5k 38 275 12 86.9 11 21.5 12.8x 4.1x
750 10k 58 916 9 142 8 35.4 25.9x 4.0x
1k 10k 94 2620 14 392 13 98.9 26.5x 4.0x
1k 40k 41 1141 8 224 7 56.6 20.2x 4.0x

Sp
ar

se

3k 100k 147 36.4k 11 2724 10 685 53.0x 4.0x
3k 1M 44 10.9k 7 1733 6 429 25.4x 4.0x
5k 1M 95 41.8k 7 4778 6 1198 34.8x 4.0x
5k 5M 31 14.1k 5 3459 4 852 16.5x 4.1x
10k 15M 51 91.3k 6 16.5k 5 4090 22.2x 4.0x
50 1225 5 0.56 4 0.43 3 0.11 5.0x 3.8x
100 4950 8 2.67 6 1.99 5 0.44 6.0x 4.5x
200 19.9k 9 11.3 5 6.35 4 1.45 7.8x 4.4x
750 280k 16 254 6 94.9 5 23.5 10.8x 4.0x
1k 499k 20 560 5 140 4 35.3 15.9x 4.0x

D
en

se

5k 12.4M 21 14.4k 5 3419 4 852 16.9x 4.4x
6k 17.9M 28 17.7k 6 5953 5 1465 12.0x 4.1x
10k 49.9M 27 48.9k 5 13.7k 4 3377 11.9x 4.1x
50 100 11 1.14 9 1.01 8 0.24 4.8x 4.3x
50 150 11 0.98 7 0.69 5 0.16 6.2x 4.4x
100 200 21 6.93 10 3.31 9 0.72 9.6x 4.6x
100 300 21 7.08 8 2.72 7 0.61 11.7x 4.5x
500 1k 146 1056 11 79.9 10 19.8 53.0x 4.0x

Pl
an

ar
-l

ik
e

500 1500 105 759 15 108 14 26.9 28.2x 4.0x
1k 2k 245 6834 14 271 13 61.5 111x 4.4x
1k 3K 169 4713 15 285 13 61.6 77.3x 4.6x

Privacy-preserving UBFS protocol

The implementations of our proposed privacy-preserving parallel computation of UBFS’s
protocol for an unweighted graph are presented in Table 14. We have benchmarked the
privacy-preserving UBFS protocol with a privacy-preserving radius-stepping protocol for
unweighted graphs. Different kinds of graphs were used in the implementations, sparse,
dense, and planar-like, with various sizes.

The running time in seconds is reported for both protocols. The benchmark of the
radius-stepping protocol is noted for the ∞-radii case, which is considered the most effi-
cient case of radii. In both protocols, the result shows the possible iterations (Iter) based
on the number of given edges. The results also show the number of vertices with the exact
distances (levels) for both protocols. The results generally indicate the running times of
the UBFS’s protocol and its improvement compared to the radius-stepping protocol. This
speed-up is between 4 and 5.6 times.

The UBFS protocol has the lowest possible number of iterations in experiments with
dense graphs, regardless of the size. The number of iterations is decreased by increasing
the number of edges in the given graph. In the case of the maximal possible number of
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edges in the dense graph, the number of iterations will be only one. This is the significance
of our work; for the maximum possible number of edges for a given graph on the UBFS
protocol, the round complexity is constant.

Table 14: Running times (in seconds) of privacy-preserving radius-stepping and UBFS
protocols over Sharemind.

Size Parallel Radius Parallel UBFS Level Improvement
k n m Iter Time Iter Time

50 400 3 0.32 1 0.07 3 4.8x
100 2k 3 1.02 1 0.21 3 4.9x
150 750 5 3.59 3 0.71 4 5.1x
200 1k 5 6.28 3 1.25 4 5.0x
500 20k 3 21.9 1 4.02 3 5.5x

Sp
ar

se

750 10k 4 63.5 2 13.1 4 4.8x
1k 20k 4 113 2 23.5 4 4.8x
1k 100k 3 84.9 1 15.5 3 5.5x
3k 5k 3 762 1 136 3 5.6x

10K 15M 3 8425 1 1524 3 5.5x
50 1225 3 0.33 1 0.06 3 5.2x
100 4950 3 1.04 1 0.21 3 5.5x
200 19.9k 3 3.78 1 0.69 3 5.5x
500 124k 3 22.1 1 3.96 3 5.6x
750 280k 3 48.5 1 9.01 3 5.4x

D
en

se

1k 499k 3 85.1 1 15.7 3 5.4x
3k 4.49M 3 758 1 135 3 5.6x
5k 12.4M 3 2091 1 374 3 5.6x
10k 49.9M 3 8312 1 1490 3 5.6x
50 100 6 0.62 4 0.15 6 4.2x
50 150 5 0.55 3 0.11 5 5.0x
100 200 6 1.95 4 0.41 6 4.7x
100 300 5 1.72 3 0.36 6 4.8x
500 1k 10 72.6 8 18.1 10 4.0x

Pl
an

ar
-l

ik
e

500 1.5k 6 43.5 4 10.0 6 4.0x
1k 2k 9 250 7 62.4 9 4.0x
1k 3k 7 195 5 49.9 7 4.2x

The performance of the secure multiparty computation protocols feature is measured
by two parameters—the round complexity and the data volume. Table 15 presents the
running time and the data volume for two versions of the privacy-preserving BFS protocol
with different data inputs. We performed the computation over the preferred network with
high bandwidth and low latency. It gives the running time, data volume for each round
(r), and the number of possible iterations for the entire computation, indicated by r/Iter.

The number of Iter is generally slightly higher. These cause a higher running time
and communication. The data volume and running time for first-round r = 1 are similar
in both sparse and dense graphs (those have the same number of vertices). The number
of rounds r will increase running time and data volume. Thus, until the last round of
computation takes place (r = Iter). Computation in dense graphs finishes early, while
in sparse and planar-like graphs, iterating until the last round. This causes higher round
complexity and communication for a given graph.
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Table 15: Running times (in seconds) and data volume of different rounds for the privacy-
preserving versions of BFS.

Size WBFS UBFS
k n m r / Iter. Time Data volume r / Iter Time Data volume

50 400 1/4 0.07 0.8 MB 1/1 0.08 0.7 MB
50 400 2/4 0.09 1.3 MB - - -
50 400 3/4 0.12 1.7 MB - - -
50 400 4/4 0.14 2.1 MB - - -
500 5k 1/11 3.9 43.9 MB 1/3 4.20 49.3 MB
500 5k 2/11 5.7 83.3 MB 2/3 6.11 102.7 MB
500 5k 3/11 7.42 109.0 MB 3/3 8.31 146.2 MB

Sp
ar

se

500 5k 7/11 14.4 277.9 MB - - -
500 5k 11/11 21.5 429.4 MB - - -
1k 40k 1/7 14.9 176.1 MB 1/2 16.2 197.7 MB
1k 40k 2/7 22.0 319.2 MB 2/2 24.5 399.1 MB
1k 40k 3/7 28.9 492.0 MB - - -
100 4950 1/4 0.20 2.0 MB 1/1 0.21 2.6 MB
100 4950 4/4 0.41 7.2 MB - - -
500 124k 1/4 3.87 49.7 MB 1/1 4.24 55.8 MB
500 124k 2/4 5.73 90.7 MB - - -
500 124k 4/4 9.32 164.4 MB - - -

D
en

se

1k 499k 1/5 14.7 190.8 MB 1/1 15.6 226 MB
1k 499k 5/5 43.4 562.7 MB - - -
2k 1.9M 1/5 56.9 753 MB 1/1 61.2 899 MB
2k 1.9M 5/5 164 3.2 GB - - -
5k 12.4M 1/4 362 4.5 GB 1/1 391 5.6 GB
5k 12.4M 4/4 868 16.0 GB - - -
50 100 1/7 0.07 0.5 MB 1/4 0.07 0.8 MB
50 100 2/7 0.10 1.0 MB 2/4 0.10 1.2 MB
50 100 7/7 0.22 3.1 MB 4/4 0.16 2.3 MB
50 150 1/5 0.07 0.8 MB 1/3 0.07 0.8 MB
100 200 1/9 0.21 1.9 MB 1/4 0.22 2.0 MB

L
ik

e-
Pl

an
ar

100 300 1/7 0.21 2.2 MB 1/3 0.22 2.2 MB
500 1k 1/12 3.84 44.7 MB 1/8 4.04 50.5 MB
500 1k 12/12 23.1 471.8 MB 8/8 17.9 391 MB
1k 2k 1/12 14.7 158.8 MB 1/9 15.8 200 MB
1k 2k 12/12 91.6 1.8 GB 9/9 76.4 1.7 GB

8.2.6. Evaluation of the privacy-preserving SSSD protocols

The previous section presented the Breadth first-search protocol benchmarked with the
radius-steeping protocol. Both protocols have partially similar algorithmic structures and
have O(logn) round complexities. The privacy-preserving breadth first-search protocol is
more efficient than radius-stepping protocols over sparse and dense graphs.

In Bellman-Ford and Dijkstra protocols, both have partially similar algorithmic struc-
tures and have linearithmic round complexities. By comparing Table 7 and Table 5, we
see that, generally, Dijkstra’s protocol performs faster than the Bellman-Ford protocol.
This is expected because the main loop of both algorithms makes n iterations. Still, the
amount of work done in one iteration of the Bellman-Ford protocol is O(m), while the
amount of work done in one iteration of Dijkstra’s protocol is O(n). On the other hand,
the Bellman-Ford protocol works on the sparse representation of the graph, while Dijk-
stra’s algorithm requires a dense representation. Hence the memory consumption of the

126



latter may be significantly higher for sparse graphs. Dijkstra’s protocol can work on a
sparse graph representation, using oblivious RAM and loop coalescing [125]. However,
this will increase the number of iterations to O(m), which is undesirable when the actual
performance of the algorithm is latency-bound.
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(a) Sparse graphs.

 0.1

 1

 10

 100

 1000

 10000

 10  100  1000

(b) Dense graphs.

Figure 9: Performance (in seconds) comparison of Dijkstra’s (blue) and Bellman-Ford
(red) algorithms on sparse and dense graphs.

On a set of small and medium-sized graphs, we compare the performance of Dijkstra’s
and Bellman-Ford protocols in the HBLL environment, which can be seen in Figure 9 and
Figure 10. We have evaluated the performance for specific pairs (n,m) of the number of
vertices and edges for sparse graphs. For dense graphs, the horizontal axis shows the
number of vertices n, while the number of edges is n(n− 1)/2—the maximal possible
number of edges in a graph. For graphs with several edges similar to planar graphs, we
picked two or three times the number of vertices n as the number of edges m. Dijkstra’s
approach is more efficient in all circumstances, but the difference is less pronounced for
sparse graphs.
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Figure 10: Performance comparison of Dijkstra’s (blue) and Bellman-Ford (light red:
m = 3n; dark red: m = 2n) algorithms on planar-like graphs.

Sec 8.2 presents experiments for the privacy-preserving single-source shortest dis-
tances protocols with their different versions using small and big graphs, sparse and dense.
It is crucial to evaluate all privacy-preserving SSSD protocols together over sparse and
dense graphs. Figure 11 illustrates the benchmark results for the four SSSD algorithms in
privacy-preserving over dense graphs. In this evaluation, we benchmarked the most effi-
cient version of the Radius-stepping protocol (∞), the Version 1 of Bellman-ford, Dijkstra,
WBFS, and the most efficient protocol is WBFS, as can be seen in Figure 11.

Figure 11: Running time of the privacy-preserving SSSD protocols over the dense graphs
in different sizes.

In contrast, the privacy-preserving SSSD protocols for the sparse graph are presented
in Figure 12. The number of edges m in the sparse graphs is three times the number
of the vertices n. Dijkstra’s protocol competes with the BFS protocol in a relatively big

128



graph. In the graphs, which have 2000-vertex and more, Dijkstra protocols become more
efficient, as shown in Figure 12. There is no effect on the number of edges m in the
Dijkstra protocol, but it affects the BFS protocol. Increasing the number of edges in the
given graph makes the BFS protocol more efficient than Dijkstra.

Figure 12: Running time of the privacy-preserving SSSD protocols over the sparse
graphs in different sizes.

8.3. All pairs shortest paths experiments

8.3.1. Privacy-preserving Johnson’s protocols experiments

The data input to the privacy-preserving Johnson’s protocols starts from the sparse rep-
resentation. Its running time depends on the number n of vertices and the number m of
edges of the input graph. We report the running times for certain dense graphs in Table 16.
The protocol consists of three identifiable stages—the execution of the Bellman-Ford al-
gorithm (which has sparse representation), updating the lengths of edges, and execution
of n copies of Dijkstra’s algorithm. We report the running time of each stage for two
versions of Johnson’s protocol. Recall that in Version 1, n copies of Dijkstra’s algorithm
are executed—we use the privacy-preserving Dijkstra protocol presented in Algorithm 7.
In Version 2, they are all performed in parallel—we use the privacy-preserving nDijkstra
protocol presented in Algorithm 9. The benchmarking is done in the HBLL environment.
The parallelization gains are smaller for small graphs due to the first non-parallelism steps
taking relatively more time. We also see the parallelization gains drop for larger graphs,
similar to the benchmarking outcomes shown in Figure 7 (HBLL plots, right edge of the
figure).

As well as Table. 16 presents the speed-up, which is the difference between the two
versions of Johnson’s protocols. In other words, the speed-up is how often Version 2 is
faster than Version 1. The versions of privacy-preserving Johnson’s protocols are con-
structed based on the third stage, which is the privacy-preserving Dijkstra’s protocols.
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There is no change in the first stage—the Bellman-Ford’s execution nor updating the
edges’ lengths in the second stage.

Table 16: Running Time (in seconds) of privacy-preserving APSD protocol.

Graph Privacy-Preserving Johnson V1 Privacy-Preserving Johnson V2 V1 , V2
n m BF. upd. Dijk. Total BF. upd. Dijk. Total Speed-up
5 10 0.18 0.03 0.10 0.31 0.18 0.03 0.06 0.27 1.2x
10 45 0.45 0.45 0.51 1.41 0.45 0.45 0.18 1.08 1.3x
20 190 1.04 0.07 2.22 3.33 1.04 0.07 0.55 1.66 2.0x
50 1225 5.28 0.23 20.7 26.2 5.28 0.23 6.19 11.7 2.2x

100 4950 27.2 1.0 109 138 27.2 1.0 43.6 71.8 1.9x
200 19.9k 166 3.55 583 752 166 3.55 339 508 1.5x
500 124k 2282 26.9 6644 8954 2282 26.9 5015 7324 1.2x
1k 499k 16392 117 48582 65477 16392 117 43599 60494 1.08x

8.3.2. Floyd-Warshall and transitive closure experiments

The main goal of implementing the Floyd-Warshall and transitive closure in privacy
preservation on the SMC Sharemind platform is to benchmark it with the privacy-preserving
APSD Johnson protocols. The execution time of our privacy-preserving Floyd-Warshall
algorithm and transitive closure computation also depends only on the number n of the
vertices of the input graph JGK. We report the running times and data volume in Table 17
for various values of vertices n for different network environments.

Table 17: Benchmarking results (data volume for a single computing server) for Floyd-
Warshall and transitive closure algorithms in different network environments.

Size Floyd-Warshall Transitive closure
of Data Running time (s) Data Running time (s)

graph volume HBLL HBHL LBHL volume HBLL HBHL LBHL
5 0.08 MB 0.01 2.22 2.22 0.46 MB 0.02 4.01 4.01

10 0.48 MB 0.03 4.44 4.46 1.64 MB 0.05 7.37 7.53
20 3.52 MB 0.1 9.1 9.35 16.4 MB 0.29 12.9 14.2
50 54.1 MB 0.92 23.6 28.6 318 MB 5.56 26.9 66.3
100 402 MB 6.91 52.9 90.5 3019 MB 51.1 157 426
200 3417 MB 62.4 153 526 27.3 GB 460 1336 2529
500 53.3 GB 934 2753 7469 490 GB 7987 23.5k –
1k 426 GB 7268 21.5k 57.4k – – – –

In Figure 13, we compare Floyd-Warshall and transitive closure algorithms for differ-
ent network environments. Despite the lower round complexity, transitive closure is still
slower in high-latency environments. We have not included Johnson’s protocol in this
comparison due to the significant number of tunable parameters. The previous bench-
marking results allow one to estimate the performance of different stages of Johnson’s
protocol for various values of these parameters and in other networking environments.

8.3.3. Evaluation of the protocols

The running times of all privacy-preserving APSD protocols on HBLL are illustrated in
Table 18. It shows that transitive closure is not competitive with Floyd-Warshall regarding
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Figure 13: Performance (time in seconds) of Floyd-Warshall and transitive closure algo-
rithms on graphs of different sizes in different network environments (red: HBLL, green:
HBHL, blue: LBHL, dark: Floyd-Warshall, light: transitive closure).

running time, even though its round complexity is smaller. It also indicates Johnson’s pro-
tocols (both versions) require significantly more time than Floyd-Warshall and transitive
closure.

Table 18: Running times (in seconds ) of privacy-preserving APSD protocols.

Graphs Privacy-preserving APSD
n m Johnson V1 Johnson V2 Floyd-Warshall Transitive Closure
5 10 0.31 0.27 0.01 0.02
10 45 1.41 1.08 0.03 0.05
20 190 3.33 1.66 0.10 0.29
50 1225 26.2 11.7 0.92 5.56
100 4950 138 71.8 6.91 51.1
200 19.9k 752 508 62.4 460
500 124k 8954 7324 933 7987
1k 499k 65477 60494 7268 –

However, the latter is not a good comparison, as Table 18 only presents the worst-case
running time for Johnson’s protocol for graphs with a given number of vertices n. Indeed,
the following aspects may improve the running time:

• If the number of edges is smaller, then the execution of the Bellman-Ford step
needs less time. We also use Bellman-Ford Version 1, which has low running time
than Version 2.

• The execution time of the Bellman-Ford step may be shorter if it is run for a smaller
number of iterations (see discussion in Sec 8.2.3).

• If the shortest distances have to be found only from a subset of vertices, then a
smaller number of instances of Dijkstra’s algorithm has to be executed.
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• It’s highly recommended to use Version 2, which is more parallel than Version 1.

None of these aspects applies to the Floyd-Warshall algorithm. The consequences of
running time from all of these aspects have been covered in our benchmarks in Table 7
and Figure 7.

The Floyd-Warshall and Transitive Closure benchmarks show lower running time than
the versions of Johnson’s protocols because both have a simple structure. The running
time in the privacy-preserving Floyd-Warshall algorithm is lower than in the privacy-
preserving Transitive Closure algorithm. In contrast, the Transitive Closure has O(logn)-
round complexity lower than the O(n)-round complexity of the Floyd-Warshall. This
exciting result shows how the time complexity can significantly affect the total running
time of the algorithm. In such a case, high time complexity considers an obstacle to
reducing the latency.

The communication among computation parties takes place in Transitive closure after
performing the three for-loops (time complexity is O(n3)), while in Floyd-Warshall only
takes place after running two for-loops (time complexity is O(n2)). At the same time,
the Transitive Closure algorithm has more communication than the Floyd-Warshall algo-
rithm. In general, the privacy-preserving Floyd-Warshall is the most efficient method in
terms of latency in comparison with other algorithms. The privacy-preserving Transitive
Closure algorithm is the most efficient method in terms of communication in comparison
with other algorithms. The importance of privacy-preserving Johnson’s protocol is that it
can also be efficient for finding the All-pairs shortest Distance for a subset of the vertices
in the given graph, while Floyd-Warshall and transitive closure run the whole graph.

132



9. EXPERIMENTS OF MINIMUM SPANNING TREE AND
FOREST PROTOCOLS

9.1. Benchmarking results for minimum spanning tree

Some benchmarking results for privacy-preserving minimum spanning tree protocols have
already been documented. Implementation of the Awerbuch and Shiloach algorithm for
computing the minimum spanning tree in privacy-preserving computation is proposed
in [114]. The private read and write protocol (Laud’s protocol) is used in the privacy-
preserving MST’s implementation—the same protocol used in some implementations in
this thesis. The proposed algorithm has a logarithmic time on different graph sizes. The
number of processors is based on the number of given edges in the private graph JGK. In
detail, a dense graph with 2k vertices (and 1999k edges) is benchmarked in his work, and
the running time is more than 104 seconds, while the running in our implementation is
around 475 seconds. More details about benchmarking for this proposed protocol with
our work are presented in Sec 9.4. In the sparse graphs used on his benchmark, the edges
are only six times the number of vertices. This means the algorithm is inefficient for using
more edges, and thereby, the algorithm is inefficient on a dense graph.

In [146], sequential implementations of the privacy-preserving minimum spanning
tree are proposed by separately implementing two classical MST algorithms, Prim and
Kruskal. There is no actual implementation in their work; the time complexity for both
algorithms is O(m logn).

9.2. Privacy-preserving Prim’s protocol experiments

This section presents the experiments of the parallel Prim’s minimum spanning tree pro-
tocol on the Sharemind secure multiparty computation platform, shown in Sec 6.2. The
running time of our parallel privacy-preserving Prim’s MST protocol depends on the num-
ber of vertices in the graph, while the number of edges does not influence the running
time. More specifically, each row in the adjacency matrix will be taken in computation
in each iteration using single instruction, regardless of the contents of the row. If there
is an edge, then the record in the row has a weight. If there is no edge, the record will
be “∞”. We report the execution time (in seconds) for running on several graphs with
different sizes in Table 19. Note that our algorithm uses the adjacency matrix to represent
the private data of the graphs, i.e., the data structure of the dense graph is used, but for
the different kinds of graphs depends on the number of vertices and edges. We used three
types of graphs in our implementation: sparse, dense, and planar. We also use the fourth
set of big graphs with tens of thousands of vertices with millions of edges. This is the first
implementation with an enormous number of edges and vertices, particularly for dense
graphs. We split the running time into three calculation groups to analyze the algorithm’s
actual behavior. The three groups are Permutation-operation which is shuffling the rows
and columns in the given graphs before finding the MST—called Perm, the entire loop-
operation is for finding MST—Loop, and the last part performRead-operation for reading
the private array—PerfR. Then, the last column in the table is the total running time.

In the first group of graphs, we used the data of the sparse graph with dense represen-
tation in the implementation. The smallest graph is a graph with 20 vertices and 75 edges.
The number of edges is around 3x times the number of vertices.
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Table 19: Running time (in seconds) of privacy-preserving Prim’s algorithm

Graph Privacy-preserving MST’s Prim
n m Perm. Loop PerfR. Total
20 75 0.02 0.2 0.02 0.24
50 150 0.08 0.7 0.02 0.81
50 250 0.09 0.71 0.02 0.81
50 1k 0.08 0.72 0.02 0.83
200 1k 0.81 6.07 0.04 6.91
200 5k 0.85 6.05 0.04 6.93
1k 5k 15.3 110 0.1 126

Sp
ar

se

3k 10k 136 920 0.2 1056
3k 15k 137 914 0.2 1052
3k 50k 133 920 0.3 1053
3k 100k 136 910 0.2 1046
5k 20k 375 2478 0.4 2854
5k 50k 371 2516 0.4 2887
5k 100k 375 2466 0.4 2814
50 1225 0.09 0.75 0.02 0.86
100 4950 0.23 1.9 0.02 2.18
250 31.1k 1.2 8.9 0.04 10.1
500 124.7k 4.3 31.3 0.07 35.7

D
en

se

1k 499.5k 14.5 107 0.1 121
2k 1999k 61.3 413 0.2 475
5k 12497k 375 2502 0.4 2879
10k 49.9M 1573 10069 0.9 11642
100 200 0.3 2.1 0.03 2.43
100 300 0.25 2.3 0.03 2.58
500 1000 4.1 32.2 0.06 36.36
500 1500 4.1 32.1 0.06 36.3
1k 2k 16.6 111 0.1 128
1k 3k 15.5 109 0.1 125

Pl
an

ar
-l

ik
e

2k 4k 58.4 418 0.2 476
2k 6k 57.4 416 0.2 473
3k 6k 133 913 0.2 1047
3k 9k 136 909 0.3 1046

8500 300k 1.1k 7.1k 0.6 8.2k
9500 500k 1.4k 8.8k 0.8 10.2k
10k 1M 1.5k 9.8k 0.7 11.3k

B
ig

20k 5M 5.9k 39.1k 2.1 45.0k
20k 10M 6.1k 39.6k 2.3 45.7k
30K 5M 13.4k 89.8k 3.6 103.2k

The graphs in the group are based on the number of edges which is given by m=xn.
The biggest graphs we processed are the graphs where the number of edges is around 20x
and 33x times the number of vertices. The result shows that the number of edges does
not influence the algorithm’s running time using the SIMD. In the group of dense graphs,
the number of edges is given by n(n− 1)/2, where n is the number of vertices. The
result shows that our protocol for finding MST is more efficient than the one presented in
Sec 9.1. The third group of the graphs is a planar graph, where the edges are 2 or 3 times
the number of the vertices. Big graphs are also implemented in our algorithm, and the
result shows how our algorithm is efficient for finding MST in the private calculation for
big graphs with up to ten million edges.

134



9.3. Privacy-preserving optimized-Prim’s protocol

The optimized version of the privacy-preserving Prim’s MST protocol is also bench-
marked with one in previous Sec 9.2. The benchmark is also performed over the SMC
Sharemind platform. The data input is different graphs represented in adjacency matri-
ces of various sizes. Although the given graph is described in an adjacency matrix, the
algorithm will vectorize the adjacency matrix into vectors and fit with the SIMD. We use
a function to generate random graphs with a specific size as vertices with their possible
number of edges. Moreover, the benchmark is not just appointed towards the running
time. The communication among the cluster’s machines is also represented in secret-
shared manners for inputs and outputs.

The feature of the privacy-preserving optimized Prim and Prim’s algorithms is that
there is no effect on the number of connected edges with vertices in the running time. The
algorithm relaxes its edges for all possible connected edges with the vertices. Regardless
if there are edges connected to some vertices or there is no “∞”. The maximal possible
number of the edges for each vertex is n-1. So, all the elements in the row will be taken
in a relaxing operation in parallel (SIMD) regardless of how many non “∞” elements
are in the u-th row. Consequently, the running time for privacy-preserving Prim’s and
optimized Prim’s algorithms over sparse and dense graphs is similar. Optimizing Prim’s
algorithm might be a little done (no significant change between optimized Prim and Prim’s
algorithms). Hence the results show how much such optimization effect the total running
time of the algorithm. This is because of the sensitivity of the private data and reducing
the round complexities that positively affect in reducing the running time in the optimized
Prim’s algorithm.

In detail, the privacy-preserving optimized Prim’s protocol has three main parts, per-
mutation, finding the MST, and applying Laud’s protocol for the private read. The opti-
mization in the algorithm targeted the finding of MST, neither permutation nor Laud’s pro-
tocol. The running time and data volume for the privacy-preserving optimized prim pro-
tocol with their parts are presented in Table 20, which is benchmarked with the privacy-
preserving Prim algorithm with their parts. The empirical test shows the running time for
the algorithms’ parts with speed-up and data volume.

Table 20: Running time (in seconds) and data volume of privacy-preserving prim’s pro-
tocols.

Graph Prim’s MST Optimized Prim’s MST Speed-up
k n m Data volume Perm. Loop PerfR. Total Data volume Perm. Loop PerfR. Total x-time

20 75 0.1 MB 0.02 0.16 0.02 0.24 0.2 MB 0.02 0.2 0.02 0.2 1.2x
50 250 1.2 MB 0.09 0.71 0.02 0.81 0.7 MB 0.1 0.5 0.02 0.56 1.4x

200 1k 15.2 MB 0.81 6.07 0.04 6.91 6.0 MB 0.8 2.5 0.04 3.36 2.0x

Sp
ar

se

1k 5k 350 MB 15.3 110 0.1 126 129 MB 15.6 36.7 0.17 52.4 2.4x
3k 100k 2.95 GB 136 910 0.2 1046 963 MB 145.7 237 0.53 383 2.7x
5k 20k 8.38 GB 375 2478 0.4 2854 2.56 GB 363 632 0.88 997 2.8x
50 1225 1.4 MB 0.09 0.75 0.02 0.86 0.7 MB 0.1 0.4 0.03 0.56 1.5x

100 4950 4.2 MB 0.23 1.9 0.02 2.18 2.1 MB 0.2 1.2 0.04 1.47 1.4x
250 31k 23.2 MB 1.2 8.9 0.04 10.1 8.7 MB 1.3 3.7 0.06 5.15 1.9x
500 124k 89.2 MB 4.3 32.3 0.07 36.7 31.0 MB 4.2 8.9 0.1 13.1 2.8x

D
en

se

1k 499k 344 MB 14.5 107 0.1 121 120 MB 15.7 30.7 0.16 46.6 2.6x
2k 1.9M 1.3 GB 61.3 413.6 0.2 475 436 MB 58.2 123 0.32 181 2.6x
5k 12.4M 8.2 GB 375 2502 0.4 2879 2.59 GB 386 880 0.89 1267 2.3x

10k 49.9M 32.8 GB 1573 10069 0.9 11642 10.2 GB 1616 2280 1.74 3897 2.9x

The result shows how often the optimized Prim is more efficient than Prim’s. The
optimized Prim protocol’s total speed-up is between 1.2 and 3 times more, including the
permutation and laud’s protocol parts. In both protocols, the running time of both parts,
permutation and Laud protocol, is less than the loop. For finding MST only without
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permutation and Laud’s protocol, the result shows that the speed-up of the optimized
Prim’s protocol is 4.5 times faster than the same part in Prim’s protocol.

In the case of network communication, we reported the data volume benchmarking
for the optimized Prim algorithm and Prim’s algorithm over the Sharemind SMC clus-
ter. These tests were conducted using sparse and dense graphs of different sizes. It is
important to note that the running time was reported as an average of three cluster ma-
chines. As well as the data volume, the average total maximum data transfer rate across
the computation parties is taken. The tests are done over the preferable network case, a
high-bandwidth and low-latency setting. In the high-bandwidth setting, the link speed
between the cluster machines is 1 Gbps, while in low-latency, there is no delay in trans-
ferring, which is 0 ms. The result appears that the optimized Prim protocol has low data
volume compared with Prim’s protocol. The difference is around 2 to 3 times less. This
is because of the optimized prim protocol’s reduction in the round complexity.

9.4. Evaluation of the protocols

In this section, we present the benchmark of our privacy-preserving prim’s MST proto-
cols, with the previous work, privacy-preserving Awerbuch-Shiloach’s MST algorithm [114].
The benchmark results for the three MST protocols in privacy preservation over dense
graphs are presented in Figure 14. The algorithms have been implemented on top of the
SMC protocol and built using Laud’s protocol for the private read. The optimized-prim
protocol is more efficient than the other cases of dense graphs with various sizes.
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Figure 14: Running time of the privacy-preserving MST protocols over dense graphs.

Figure. 15 shows the running time for the sparse graphs over the three protocols.
The sparsity is that the number of connected edges is three times the number of vertices
(m = 3n). Prim’s protocols (the prim and the optimized) are more efficient than Awer-
Shil’s for small graphs. Although the prim’s protocols fit the dense graph (and Like-
dense), the result shows that it is efficient for the small sizes of the sparse graphs.
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Figure 15: Running time of the privacy-preserving MST protocols over sparse graphs

9.5. Minimum spanning forest experiments

This section presents the empirical tests and the sequential and parallel effect of the
privacy-preserving MSF protocols. Intuitively, parallel MSF is faster than sequential MSF
protocols. However, we created the sequential version of the MSF protocol to evaluate
it and benchmark it with the parallel MSF protocol. In the test, we use different graphs,
sparse and dense, with various sizes. We used the optimized Prim’s protocol as a sub-
routine in MSF computing in both versions of the privacy-preserving MSF protocol. The
running time of the privacy-preserving MSF protocols using various graphs of different
sizes is presented in Table 21. The graphs we used in this test have different sizes: the
number of vertices n and the number of components g. The table shows the running time
of the three parts of the MSF protocol separately and the total running time for both ver-
sions. As well the speed-up of the parallel MSF protocol is presented. The speed-up is
how much time the parallel MSF version is faster than the sequential.

There is no effect for the number of edges in the running time, and we used the max-
imal possible number of the edges m in the test, which is given by n(n-1)/2. We use a
function to generate random graphs with specific sizes in all implementations. Each graph
has g components, with n vertices with their maximal connected weighted edges m. Then,
the number of components is similar to the number of the vertices g = n. The sequential
MSF protocol is implemented by calling the three parts sequentially g times in for-loop.
There is no running for the permutation and laud parts in parallel, calling the optimized-
prim a subroutine of the MSF g times. Hence, the operations in the optimized Prim are
in parallel. The parallel MSF protocol is implemented by calling nPrim only once but
using g graphs. So, both versions run the same g graphs, but each one is based on its
structure. While running, the permutation and Laud parts are also sequential. Precisely,
the speed-up gain in parallel MSF protocol is because of running the nPrim.

The results show the running time of both versions of MSF protocol with speed up,
which reached three times. The running time of the laud’s protocol in both versions is
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Table 21: Running Time (in seconds) of privacy-preserving computation of minimum
spanning forest protocols.

Graphs Privacy-Preserving MSF V1 Privacy-Preserving MSF V2 V1 vs. V2
g n m Perm. Loop PerfR. Total Perm. Loop PerfR. Total Speed-up
16 16 120 0.17 1.37 0.25 1.79 0.19 0.19 0.23 0.61 2.9x
32 32 496 0.76 6.53 0.7 7.99 0.72 1.21 0.72 2.65 3.0x
50 50 150 3.2 20.3 1.4 24.9 3.2 5.9 1.3 10.5 2.4x
50 50 1225 2.80 18.3 1.33 22.4 2.60 3.42 1.33 7.33 3.1x
64 64 200 5.9 34.8 1.7 42.4 5.9 11.1 1.9 18.8 2.2x
64 64 2016 5.70 33.3 1.82 40.9 6.40 6.66 1.70 14.8 2.8x
100 100 300 20.2 100 3.2 123 20.2 35.6 3.1 58.9 2.1x
100 100 4950 21.1 94.1 4.50 119 18.8 22.8 3.26 44.8 2.7x
128 128 8128 40.8 206 4.48 251 48.1 47.4 4.65 100 2.5x
250 250 2000 244 1145 16.1 1406 298 539 18.1 856 1.6x
250 250 31k 244 964 18.5 1227 280 378 14.9 674 1.8x
500 500 124k 1980 5069 55.7 7105 2241 3049 54.8 5346 1.3x

1000 1000 499k 15205 32061 210 47476 17952 24670 198 42821 1.11x

similar. In contrast, the running of the permutation part is different, especially in big
graphs. This is because of running the assign-operation for the graphs into 3-dimensional
matrix JGK and assigning the sources as well. The assign is an extra operation that does
not exist in the sequential version. Additionally, we benchmark the parallel MSF with the
sequential version using different graphs that might be less than the number of vertices (g
≤ n) in various network specifications. We consider three network environments as we
described them in Sec 3.6. We also run different dense graphs: big and small, with various
components. Figure 16 presents the running time for the privacy-preserving parallel MSF
protocol over different network environments.
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Figure 16: Running time (in seconds) of the privacy-preserving parallel MSF protocol
(Version 2) over different networks.

It shows the number of the graphs with the size of the graph, and it does not matter
the number of their connected edges. The running time for both versions of the privacy-
preserving MSF protocols on different network environments is presented in Table 22. In
general, the running time for the parallel MSF protocol is less than the running time of
the sequential version. In contrast, the sequential version of the algorithm has less com-
munication than the parallel version of the MSF protocol. In particular, we have focused
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primarily on the functional aspects of networks for running our privacy-preserving MSF
protocols in terms of latency. Those results are a practical proof of our methodology in
implementing parallel computing for finding MSF. Moreover, the speed-up in the second
and third networks reached hundreds of times. It shows how much parallel strategy is
efficient and scalable. Hence, the challenge is using a higher bandwidth link to transfer
the whole big vector without splitting. Applying a single instruction yields less round
complexity, while vectorization of the data into a vector (in case the vector size is bigger
than bandwidth) yields round complexity again.

Notably, the size of the working vectors in the nPrim in parallel MSF is n2, which is
larger than in the Optimized-Prim in sequential MSF protocol. The computation parties
may only send part of the vector in a single trip between them, particularly when executing
a big vector that has a size larger than the bandwidth. The large vector will be divided
into small vectors by the platforms. Then each small vector will be sent one at a time.
This suggests that the round’s complexity will rise. As a result, the parallel version of the
MSF protocol still runs faster.

Table 22: Running Time (in seconds) of privacy-preserving computation MSF’s proto-
cols on different networks.

Num. of Size of Sequential MSF V1 Parallel MSF V2
graphs graph HBLL HBHL LBHL HBLL HBHL LBHL

8 16 0.98 427 365 0.32 99.6 120
16 16 1.71 881 730 0.51 215 224
32 32 8.82 4001 820 2.87 524 611
2 50 1.16 415 365 0.76 40.5 43.9
10 50 5.13 2477 1826 2.42 192 210
25 50 11.6 6194 4565 4.49 457 476
50 50 22.6 12388 9130 7.8 1118 1167
2 64 1.49 407 562 0.95 42.6 38.0
64 64 45.0 13030 17984 14.1 1181 1263
2 100 2.70 790 1085 1.80 50.4 44.3
10 100 12.3 3954 5427 6.84 212 262
25 100 31.9 9886 13569 13.1 532 586
50 100 66.6 19772 27139 23.5 1127 1444

100 100 116 39454 54278 45.1 2400 2579
2 250 12.7 2749 2802 11.1 52.3 61.7

125 250 653 171k 237k 335 3968 4440
250 250 1227 343k 475k 674 8890 11947

5 500 70.9 14822 20419 62.8 172 193
10 500 141 29644 40839 110 338 404

100 500 1423 296k 408k 1067 3907 4916
500 500 7105 1482k 2041k 5346 38114 46608

2 1000 98.5 12906 18138 105 118 136
10 1000 478 64534 90694 409 402 651

1000 1000 47476 6453k 9069k 42821 134k 264k
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10. EXPERIMENTS OF ALGEBRAIC PATH COMPUTATION
PROTOCOL

This chapter presents the extensive benchmarks and analysis of the secret-shared based
secure multiparty computation of the Algebraic path computation protocol. The imple-
mentation and benchmarking of this protocol are done on various graph sizes, providing
an overview of how they stack up on top of secure multiparty computation protocols in
different deployments. For analyzing and evaluation, the experiments and analysis of the
privacy-preserving public edges’ version of the Bellman-Ford protocol (version 3) are
also done over the SMC Sharemind platform. The different sizes of graphs used in these
experiments are generated using a random generating function.

10.1. Algebraic path computation experiments

We have implemented our privacy-preserving algebraic path computation protocol and its
related algorithms presented in Sec 7.3 and have tested them on different sizes of graphs
obtained from a random generating function. The generated gird graphs are given by
G(A), where A is a R ·C adjacency matrix, while R and C are the numbers of rows and
columns in the grid graph, respectively. The number of edges in the graph is given by
2RC - R - C, where R and C are the numbers of rows and columns in a graph, respectively.
Furthermore, the depth of tree is given by d = 2 ·k, where k ∈ {2,3,. . .,∞}. In the algebraic
path computation protocol, we use only grid graphs (with different sizes); the construction
of a separator tree is a task that is at the same time non-trivial and peripheral to the goal
of secure computation; hence we do not want to put significant effort into programming
it—construction of a separator tree is public computation.

The protocol is designed to perform the computation sparsely (which means perform-
ing the computation on a sparse representation of matrices), and we use sparse graphs.
Nevertheless, the running time of the privacy-preserving algebraic path computation pro-
tocol depends on the number of vertices n and edges m. Note that the number of edges in

Table 23: Running times (in seconds) and data volume of privacy-preserving algebraic
path computation protocol.

Graph Recursive- Algebraic Path Computation
G(A) A×A cycle Data volume Time

5 25 4 0.16 MB 0.1
9 81 6 0.30 MB 0.3

17 289 8 2.31 MB 1.2
33 1089 10 27.3 MB 8.2
50 2500 12 90.3 MB 30.1
65 4225 12 366 MB 66.4
100 10000 14 874 MB 244
129 16641 14 1972 MB 522
150 22500 16 3136 MB 838
200 40000 16 7792 MB 2029
257 44049 16 16.4 GB 4280
513 263169 18 138.3 GB 35341
600 360000 20 224.6 GB 58082
1025 1050625 – – –
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a given graph also depends on the number of vertices n. The running times and data vol-
ume of the secret-sharing based security multiparty computation protocol of the algebraic
path computation are illustrated in Table 23. Running times and data volume are given
in the HBLL environment. The total running times are recorded to the main computation
of the Algebraic path (Algorithm 32) with its related functions. We did not record the
preparatory step, a public operation with no round complexities. The data volume among
the computation parties of the SMC Sharemind platform will be reduced.
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Figure 17: Relation of running time and graph size for the privacy-preserving APC
protocol.
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Figure 18: Relation of data volume and graph size for the privacy-preserving APC pro-
tocol.

The parallelization targets not only the main computation but also the related functions
of the proposed protocol. Those related functions are constructed to deal with the sparse
representation of matrices in privacy preservation. Furthermore, some of those related
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functions have no private operations over private data, which means they have no round
complexity, see Sec 7.5.1. It is important to note that such parallel functions can be
used as a subroutine in constructing other protocols in the sparse-linear system on top of
secure multiparty computation. Note that each Sum-sparse-function may have a different
execution time depending on the size of the matrices (which are represented sparsely),
while the size of matrices is based on the separator-tree.

In Figure 17, we show the relationship between the grid graph size and the compu-
tation parties’ average running time. Furthermore, we present in Figure 18 the relation
between the data volume and size of the grid graph. The data volume is the average
transferred data for the three computation parties of the SMC Sharemind platform. In
Figure 19, we establish the baseline for our experiments, measuring the running time of
privacy-preserving Algebraic path computation protocol on graphs of different sizes in
different network environments. The performance is very much latency-bound, such that
the available bandwidth (even without First- and Second- normalization) even does not
affect the performance on most graphs in high-latency environments.
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Figure 19: Performance of algebraic path computation protocol on graphs with given
numbers of vertices in different network environments (red: HBLL, green: HBHL, blue:
LBHL).

10.2. Bellman-Ford public edges (Version3)

The performance of the privacy-preserving Bellman-Ford version 3 protocol depends on
the number of vertices n and edges m of the given private JGK. Increasing the number of
edges in a graph will increase the running time. This version of the Bellman-Ford protocol
has public elements, the number of the vertices n, edges m, and both vectors of vertices R⃗
and edges C⃗, while weights JW⃗ K are private. The lonely preparatory step in Version 3 is
the sorted vector T⃗ , followed by the main loop of the proposed algorithm, also executed
at most (n−1) times. The running time and data volume of the Bellman-Ford Version 3
protocol are presented in Table 24. Various graph sizes are used in this implementation,
and the running time is given in the HBLL environment. The Bellman-Ford protocol with
its versions is fitter for sparse representation than dense, as shown in Table 24. Although
Bellman-Ford is suitable for sparse graphs, the benchmarking is done over sparse and
dense graphs. The lowest running time of the Bellman-Ford protocols (version 1, 2, and
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3) is when the edges are minimum—in like-planar graphs, running time is lowest than in
graphs with the same number of vertices for sparse and dense graphs.

Table 24: Running times (in seconds) and data volume of privacy-preserving Bellman-
Ford version 3 protocol.

Graph Bellman-Ford V3
k n m Data volume Time

10 25 0.3 MB 0.04
20 100 0.5 MB 0.11
50 400 1.6 MB 0.55
100 400 2.9 MB 1.14
200 900 11.0 MB 3.31

Sp
ar

se

500 5k 140 MB 24.4
1k 10k 538 MB 74.2
2k 50k 5.44 GB 688
10 45 0.2 MB 0.04
25 300 1.0 MB 0.23
50 1225 4.6 MB 1.07
100 4950 32.4 MB 4.55

D
en

se

200 19.9k 237 MB 27.1
500 124k 3.4 GB 434
1k 499k 28.4 GB 3368
2k 1999k 232 GB 26325

We also benchmarked Version 3 using two fundamental tools in measure, data volume
and running time, as shown in Table 24. We benchmarked our work over different net-
work environments, HBLL, HBHL, and LBHL. The running times of the Bellman-Ford
Version 3 over different network environments are presented in Figure 20. In benchmark-
ing in this test, the edges of the given graph depend on the maximum possible number of
the edges in the n×n grid graph (see Sec 10.1), where n is the number of the vertices.
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Figure 20: Performance of Bellman-Ford Version-3 protocol on graphs with given num-
bers of vertices in different network environments (red: HBLL, green: HBHL, blue:
LBHL).

Version 3 is more efficient than Version 1 and Version 2 on the SMC Sharemind plat-
form. The computation of Version 3 is the lowest round complexity among the compu-
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tation parties of Sharemind because of using the public edges. The benchmarking of the
privacy-preserving Bellman-Ford protocol versions is presented in Table 25. It shows the
running times and data volume for different graph sizes in sparse and dense graphs. In the
sparse graphs, the edges are four times the number of the vertices in the given graphs—m
= 4n. In terms of running time, Version 3 is more efficient than other versions.

Table 25: Running time (in seconds) and data volume for privacy-preserving Bellman-
Ford protocol versions.

Graph Bellman-Ford V1 Bellman-Ford V2 Bellman-Ford V3 Speed-up V3
K n m Data volume Time Data volume Time Data volume Time vs.V2 vs.V1

20 80 0.85 MB 0.66 0.98 MB 0.47 0.38 MB 0.15 3.1x 4.4x
50 200 3.1 MB 1.97 4.41 MB 1.50 0.88 MB 0.41 3.6x 4.8x
100 400 8.1 MB 4.72 17.3 MB 5.12 3.12 MB 1.25 4.0x 3.7x

Sp
ar

se

500 2k 177 MB 67.2 502 MB 101 56.1 MB 13.2 7.6x 5.1x
1k 4k 449 MB 250 2.1 GB 351 216 MB 38.6 9.1x 6.5x
20 190 1.37 MB 0.76 2.1 MB 0.59 0.7 MB 0.17 3.4x 4.4x
50 1225 9.58 MB 3.88 26.3 MB 5.57 4.7 MB 1.20 4.6x 3.2x
100 4950 53.9 MB 15.9 224 MB 30.9 32 MB 4.38 7.1x 3.6x

D
en

se

500 124k 4.96 GB 1391 33.1 GB 3895 3.3 GB 435 8.9x 3.2x
1k 499k 239 GB 9237 456 GB 28618 26 GB 3004 9.5x 3.1x

Figure 21 presents the benchmark results for the three versions of the Bellman-Ford
privacy preservation protocol over sparse graphs. The edges in the sparse graphs are four
times the number of the vertices, given by m = 4n. The result shows the influence of
using public edges in computation and replacing prefixMin2 shown in Algorithm 12 and
Algorithm 14 by getMin-function, which is constructed sparsely based on the publicity of
the edges and vertices. In contrast, the privacy-preserving SSSD Bellman-Ford protocol
versions for the dense graphs are presented in Figure 22.
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Figure 21: Running time (in seconds) of the privacy-preserving Bellman-Ford protocol
versions on sparse graphs.
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Figure 22: Running time (in seconds) of the privacy-preserving Bellman-Ford protocol
versions on dense graphs.

10.3. Evaluation of the protocols

The running times of both privacy-preserving SSSD protocols that use public edges—
Bellman-Ford and Algebraic path computation—for the sparse representation of the graphs
are illustrated in Table 26. The experiments also show data volume in different network
environments. The running times of all graphs in various network environments for Al-
gebraic path computation are lower than the running times of the Bellman-Ford protocol
Version 3. As well as, the data volume in Algebraic path computation is less than the data
volume in Bellman-Ford protocol Version 3 despite both protocols having a similar input
data structure. Both have been designed to be fit for sparse representation of a graph.
Also, both protocols have been constructed in the parallel SIMD framework.

Table 26: Estimated running time (data volume for a single computing server) for
Bellman-Ford Version 3 and Algebraic path protocol in different network environments.

Bellman-Ford Version 3 (BF-v3) Algebraic Path Computation (APC) Improvement
Data Running time (s) Data Running time (s) BF-v3 vs. APC

G(A) volume HBLL HBHL LBHL volume HBLL HBHL LBHL HBLL HBHL LBHL
5 0.4 MB 0.33 33.3 33.3 0.09 MB 0.1 18.2 18.2 3.3x 1.8x 1.8X
9 2.64 MB 2.74 108 108 0.28 MB 0.3 38.0 38.0 9.1x 2.8x 2.8x
17 22.3 MB 18.4 388 399 2.33 MB 1.2 69.4 71.4 15.3x 5.6x 5.6x
33 324 MB 214 1509 1684 24.1 MB 8.2 146 165 26.1x 10.3x 10.2
65 4.4 GB 819 6542 9205 273 MB 66.4 522 670 12.3x 12.5x 13.7x

129 173 GB 13395 36835 81346 2005 MB 522 1355 2669 25.6x 27.1x 30.5x
257 2.86 TB 203428 521491 1154261 17.2 GB 4280 9182 20276 47.5x 56.8x 56.9x
513 37.3 TB 3092314 7147049 17883699 144 GB 35341 73215 166643 87.4x 97.6x 107.3x
1025 349 TB 46914854 116623074 273458923 – – – – – – –

In Table 26, the largest execution time is already measured for the Bellman-Ford Ver-
sion 3, which is more than eight years. We benchmarked the larger examples by running
only a few iterations, estimated the running time of a single iteration, and then multi-
plied with the total number of iterations, given by (k · k), where k is several rows/column
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in a grid graph. Moreover, in Table 26, we documented the improvements of privacy-
preserving APC protocol in different network environments compared with the running
time of the Bellman-Ford Version 3. The APC protocol is faster than Bellman-Ford Ver-
sion 3 tens of time, in particular, using big graphs.

In Figure 23, we present the comparison of Algebraic path computation and Version 3
of the Bellman-Ford protocol for different network environments. We see that despite the
simple structure of the Bellman-Ford Version 3, Algebraic path computation is still faster
also in high-latency settings. The running times that we measured are given in Appendix
C.1.
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Figure 23: Performance (time in seconds) of Bellman-Ford Version 3 and Algebraic
path computation protocols on graphs of different sizes in different network environments
(red: HBLL, green: HBHL, blue: LBHL, dark: Bellman-Ford, light: Algebraic path
computation).
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11. CONCLUSIONS AND FUTURE WORK

This work presented how to use state-of-the-art algorithmic techniques of private par-
allel computation to implement privacy-preserving versions of some combinatorial and
algebraic graph algorithms. These classical algorithms are SSSD and APSD, minimum
spanning tree and forest, and finding the shortest path by the sparse linear system with a
semiring framework. The SIMD parallel framework under the SecreC language has been
used to implement those our new proposed protocols. In addition to securing SMC proto-
cols in different deployments, we have implemented and benchmarked these protocols to
understand their efficiency better. Extensive experiments have been conducted using dif-
ferent sizes and types of graphs for different purposes. Benchmarks are also conducted in
different network environments to test the performance and analyze the proposed parallel
methods.

We constructed different SSSD protocols based on essential algorithms on top of SMC
protocols. The performance of these protocols depends on the size of the input graph and
the number of edges. For example, Dijkstra’s protocol for dense graphs is more efficient
than Bellman-Ford’s protocol for sparse graphs. If the shortest path is known to have only
a few edges, the running time of the latter can be significantly reduced, often to much less
than the total number of vertices in the graph. The SIMD parallel methods we proposed
for constructing the SSSD protocols made changes to the main features of the SSSD
algorithms. Some of the proposed algorithms are no longer greedy algorithms, in terms
of round complexity. For example, the Radius-stepping and BFS protocols generally
have logarithmic round complexities. This optimization reduced the round complexity
of SMC protocols. Benchmark results show that the BFS protocol is more efficient than
other protocols for dense graphs, and even for sparse graphs, it is still more efficient than
others for more than the possible minimal number of edges in a graph. The running
times we achieved are orders of magnitude faster than earlier studies in similar settings.
The proposed SSSD protocols solved different problems for sparse, dense, like-planar,
weighted, and unweighted graphs.

By exploiting parallel optimization for Dijkstra and Bellman-Ford protocols, we were
able to construct the APSD Johnson protocol on top of secure multiparty computation
protocols. Similar considerations apply to APSD and the choice between Floyd-Warshall,
transitive closure, and Johnson protocols. Based on our benchmark results, we can gain
insight into the possible running times of our protocols as subroutines for various ap-
plications with different network settings. No previous compilations and evaluations of
privacy-preserving shortest paths have been performed. In particular, our extensive bench-
mark of APSD algorithms is unlike any previous work.

n addition to constructing shortest path protocols on top of secure multiparty com-
putation protocols, we also developed minimum spanning tree and forest protocols on
SMC protocols. We created a privacy-preserving protocol for finding MST using parallel
SIMD, which is suitable for dense graph representation. Its running time has never been
achieved before, especially for large dense graphs. To further optimize the protocol, we
presented an optimized version of the privacy-preserving Prim’s MST protocol, which
can be faster with low round complexity. Additionally, we introduced a new protocol
for simultaneously finding a minimum spanning tree for groups of graphs on top of se-
cure multiparty computation protocols, which is called a minimum spanning forest. The
proposed secure multiparty parallel computation of MSF protocol is noticeably double
parallel, resulting in low running time. A privacy-preserving minimum spanning forest
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protocol of this caliber has not been developed before. This state-of-the-art protocol can
perform computations on big graphs that contain the maximum possible number of edges.
These computations were previously avoided due to the high computational cost, such as
for applications like hyperspectral images. We extensively benchmarked the proposed
protocols using different graph sizes and types on various network settings. Moreover, in
this thesis, we tried to construct and study another protocol for solving some problems in
graph algorithms using different techniques. We exploited the solver of the sparse-linear
system with a semiring framework to build a secure multiparty parallel computation of
algebraic path protocol. We constructed the protocol and its related function sparsely, and
its data input is also the sparse representation of a graph. The structure of the protocol
and its related algorithm built sparsely to be fit with the efficiency of applying the parallel
SIMD framework. This protocol has a different feature: using public edges of a graph
with only private data for weights. We evaluated and benchmarked the algebraic path
parallel computation with a proposed third version of the Bellman-Ford protocol with a
similar feature, which is also the public edges of a given graph.

The variety of features offered by the proposed shortest path protocols provides a foun-
dation for developing real-world applications. Shortest path protocols with public edges
can be used to create navigation applications that do not require privacy over vertices and
edges (locations). Our privacy-preserving parallel graph protocols contain novel essential
details, particularly in adapting the Bellman-Ford algorithm to privacy-preserving com-
putations. In this regard, the number of edges has no effect on running the minimum
spanning tree and forest protocols
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Appendix A. SINGLE-SOURCE SHORTEST DISTANCE
PROTOCOLS

A.1. Running time (in second) and data volume (in MB) for
Privacy-preserving Bellman-Ford Protocols via Sharemind Cluster

Table 27: Privacy-preserving Bellman-Ford version 1 and 2 in HB-LL environment.
Privacy-Preserving Bellman-Ford V.2 Privacy-Preserving Bellman-Ford V.1

Graph Server-1 Server-2 Server-3 Server-1 Server-2 Server-3
n m Time DV 1 Time DV 2 Time DV 3 Time DV 1 Time DV 2 Time DV 3

50 400 2.8 36 2.8 35 2.8 34.2 2.8 34.3 2.8 34.0 2.8 31.3
50 1225 7.2 206 7.2 193.4 7.2 203 5.2 74.5 5.2 71.4 5.2 74.1
200 600 22.2 462 22.2 434 22.2 455 17.9 162 17.9 155 17.9 160
200 19.9k 356 15922 356 14889 356 15761 162 2921 162 2773 162 2905
700 2100 237 6320 237 5981 237 6324 147 1531 147 1481 147 1548
700 10k 661 27438 661 25647 661 27155 348 5045 348 4783 348 5011
700 244k 16.4k 821826 16.4k 756706 16.4k 800287 5823 136308 5823 117524 5823 212601
1k 3k 435 12845 435 12015 435 12709 287 2970 287 2861 287 2989
1k 20k 1879 81816 1879 76432 1879 80938 916.5 13576 916.5 12880 916.5 13506
1k 499k 49.8k 2328681 49.8k 2152942 49.8k 2266266 16.6k 647408 16.6k 591950 16.6k 585171
3k 9k 3889 132470 3889 123805 3889 131038 2318 24707 2318 23793 2318 24892
3k 50k 15k 656517 15k 613129 15k 649490 6675 99518 6675 94588 6675 99221

Table 28: Privacy-preserving Bellman-Ford version 1 and 2 in LB-HL environment.
Privacy-Preserving Bellman-Ford V.2 Privacy-Preserving Bellman-Ford V.1

Graph Server-1 Server-2 Server-3 Server-1 Server-2 Server-3
n m Time DV 1 Time DV 2 Time DV 3 Time DV 1 Time DV 2 Time DV 3

50 400 451 66.5 451 62.9 451 66.0 799 32.7 799 31.6 799 32.5
50 1225 558 210 558 197 558 208 1145 77.0 1144 74.2 1145 76.7
200 600 1841 470 1841 442 1841 465 3260 169 3260 162 3261 167
200 19.9k 4219 15883 4219 14967 4219 15996 5806 2941 5806 2791 5806 2924
700 2100 7956 13651 7956 12920 7956 13538 15.4k 1580 15.4k 1506 15.4k 1565
700 10k 11.1k 25824 11.1k 27611 11.1k 25824 18.7k 5112 18.7k 4849 18.7k 5073
700 244k 42.5k 819421 42.5k 778308 42.5k 820166 42.9k 110443 42.9k 104449 42.8k 109567
1k 3k 13.5k 13375 13.5k 45433 13.5k 45617 22.2k 5112 22.2k 4849 22.2k 5074
1k 20k 20.6k 82711 20.6k 84188 20.6k 81755 26.7k 13759 26.7k 12980 26.7k 13608
1k 499k 318k 2504753 318k 2321886 318k 2461767 81.7k 295402 81.7k 296271 81.7k 300797
3k 9k 49.3k 177412 49.3k 229888 49.3k 221851 81.1k 31449 81.1k 172817 81.1k 175074
3k 50k 104k 665504 104k 571230 104k 608287 100k 157142 100k 229054 100k 235415

Table 29: Privacy-preserving Bellman-Ford version 1 and 2 in HB-HL environment.
Privacy-Preserving Bellman-Ford V.2 Privacy-Preserving Bellman-Ford V.1

Graph Server-1 Server-2 Server-3 Server-1 Server-2 Server-3
n m Time DV 1 Time DV 2 Time DV 3 Time DV 1 Time DV 2 Time DV 3

50 400 448 65.9 448 62.2 448 65.3 799 32.5 799 31.5 799 32.4
50 1225 550 207.6 550 195.2 550 205.8 1155 77.6 1155 74.7 1155 77.3
200 600 1823 466.5 1823 437.9 1823 461.3 3270 169.8 3270 163.1 3270 168.5
200 19.9k 3122 15960 3122 14927 3122 15799 5626 2945.1 5262 2797.3 5626 2926.8
700 2100 7529 6365.0 7529 5958.8 7529 6299.8 15.4k 1577.9 15.4k 1711.1 15.4k 1774.0
700 10k 9158 27513 9158 25701 9158 27212 18.5k 5086.2 18.5k 4816.9 18.5k 5042.5
700 244k 54.8k 422087 54.8k 368673 54.8k 368673 35.9k 110857 35.9k 104008 35.9k 109986
1k 3k 10.8k 12727 10.8k 8544.9 10.8k 11749 22.0k 3274.3 22.0k 3670.4 22.0k 4070.9
1k 20k 14.8k 100221 14.8k 92452 14.8k 100096 25.9k 11918 25.9k 3958.8 25.9k 9522.2
1k 499k 156k 2508184 156k 2398777 156k 2544635 63.4k 325231 63.4k 302641 63.4k 320396
3k 9k 39.8k 151334 39.8k 144723 39.8k 160039 79.6k 48175 79.6k 70630 79.6k 65083
3k 50k 56.3k 620549 56.3k 433511 56.3k 468711 93.3k 131648 93.3k 133118 93.3k 131361
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A.2. Running time (in second) and data volume (in MB) for
Privacy-preserving Dijkstra Protocols via Sharemind Cluster.

Table 30: Privacy-preserving Dijkstra version 1 and 2 in HB-LL environment.
Sequential SIMD-Dijkstra (V1) SIMD nDijkstra (V2)

Graph S1 S2 S3 Time S1 S2 S3 Time Speed-up
G n m DV 1 DV 2 DV 3 Sec. DV 1 DV 2 DV 3 Sec. x-time
10 10 25 3.14 2.48 3.41 0.57 3.8 3.3 2.1 0.22 2.6x
10 10 45 3.1 2.97 3.4 0.56 3.0 2.9 2.1 0.21 2.6x
25 25 300 34.6 33.4 34.9 4.40 25.6 24.1 25.1 1.5 2.9x
50 50 400 215 206 207 24.2 195 184 189 8.1 3.0x
50 50 1225 211 204 207 24.7 196 185 191 8.3 2.9x
100 100 1500 1329 1274 1301 137 1550 1458 1517 52.9 2.6x
100 100 4950 1335 1281 1310 138 1550 1459 1520 54.1 2.6x
200 200 19.9k 8802 8401 8638 847 12133 11727 12587 638 1.3x
500 500 1500 116368 110496 113907 10.2k 193497 178121 189132 8319 1.2x
500 500 124k 138050 134935 156069 10.4k 230800 2000093 207747 8560 1.2x
1k 1k 499k 873140 853441 819238 77.3k 1600555 1473759 1568905 49.5k 1.5x

Table 31: Privacy-preserving Dijkstra version 1 and 2 in LB-HL environment.
Sequential SIMD-Dijkstra (V1) SIMD nDijkstra (V2)

Graph S1 S2 S3 Time S1 S2 S3 Time Speed-up
G n m DV 1 DV 2 DV 3 Sec. DV 1 DV 2 DV 3 Sec. x-time
10 10 25 3.8 3.6 3.8 214 2.17 2.08 2.16 54.1 3.9x
10 10 45 3.8 3.6 3.7 214 2.18 2.08 2.16 54.1 3.9x
25 25 300 38.6 36.7 37.8 1895 26.1 24.6 25.1 159 11.8x
50 50 400 223 226 216 9445 198 185 194 382 24.7x
50 50 1225 226 214 221 9446 198 186 194 382 24.7x

100 100 1500 2970 2808 2911 45.7k 1564 1470 1530 1083 42.1x
100 100 4950 2971 2858 2903 45.7k 1615 1520 1581 1061 43.1x
200 200 19.9k 9171 8702 8981 216k 12485 11724 12207 3826 56.5x
500 500 1500 119694 113771 117458 1643k 193728 188411 195987 37.3k 44.0x
500 500 124k 119870 113938 117625 1642k 202755 199403 207053 37.1k 44.2x
1k 1k 499k 886069 841861 869319 7473k 1619544 1579515 1657197 253k 29.4x

Table 32: Privacy-preserving Dijkstra version 1 and 2 in HB-HL environment.
Sequential SIMD-Dijkstra (V1) SIMD nDijkstra (V2)

Graph S1 S2 S3 Time S1 S2 S3 Time Speed-up
G n m DV 1 DV 2 DV 3 Sec. DV 1 DV 2 DV 3 Sec. x-time
10 10 25 3.7 3.6 3.7 214 2.18 2.08 2.17 54.1 3.9x
10 10 45 3.7 3.6 3.7 214 2.18 2.08 2.16 54.1 3.9x
25 25 300 38.5 36.6 37.7 1894 25.8 24.3 25.3 158 11.9x
50 50 400 226 215 221 9444 197 185 193 368 25.6x
50 50 1225 228 217 224 9446 197 185 193 368 25.6x

100 100 1500 294 295 304 45.7k 1558 1464 1525 946 48.3x
100 100 4950 1398 1332 1373 45.7k 1558 1464 1525 932 49.1x
200 200 19.9k 9144 8671 8957 215k 12423 11672 12161 2835 75.8x
500 500 1500 118664 112755 116390 1637k 199324 192945 205934 20.9k 78.3x
500 500 124k 119263 113845 117131 1636k 198790 195059 208614 20.9k 78.2x
1k 1k 499k 904772 852524 884220 7421k 1619420 1566238 1675519 126k 58.5x
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A.3. Privacy-preserving SIMD-nDijkstra via Shremind Cluster

Table 33: Running time (in second) of nDijkstra via various Networks environments.
Graphs High Band.- Low Latency Low Band.- High Latency High Band.- High Latency

G n m Perm. Loop Total Perm. Loop Total Perm. Loop Total
5 50 1225 0.39 1.21 1.6 3.20 323 326 3.2 322 326

10 50 1225 0.71 1.87 2.60 6.40 325 331 6.4 323 329
25 50 1225 0.15 2.48 2.60 12.9 329 341 12.7 324 336
10 100 4950 2.30 5.30 7.50 8.90 746 755 8.7 736 745
25 100 4950 5.70 10.3 16.1 22.5 769 792 21.7 742 764
50 100 4950 10.5 18.2 28.6 44.8 807 852 43.3 750 793
75 100 4950 16.2 26.4 42.6 70.3 850 920 68.9 765 834
20 200 19k 16.2 29.6 46.0 35.1 1757 1792 34.7 1664 1698
50 200 19k 38.1 66.7 104 90.3 1985 2075 83.0 1717 1800
100 200 19k 75.1 122 189 194 2592 2787 181 1956 2138
100 500 5k 496 800 1296 940 9892 10832 922 6724 7647
100 500 124k 456 592 1049 927 9907 10835 900 6624 7524
50 1k 5k 967 2078 3045 1535 21296 22832 1189 14221 15410
50 1k 499k 961 2088 3049 1530 19460 20990 1234 14474 15708
500 1k 499k 9477 17.6k 27.1k 16239 109093 125332 12547 49632 62179
100 5k 12.4M 48.7k 181.3k 230k 59.2k 589.7k 648.9k 50983 338632 389616
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Appendix C. ALGEBRAIC PATH COMPUTATION VS.
BELLMAN-FORD VERSION-3

C.1. Running time (in second) and data volume (in MB) for
Privacy-preserving Bellman-Ford and Algebraic path Protocols via

Sharemind Cluster

Table 37: Bellman-Ford and Algebraic path protocols on HB-LL environment.
Bellman-Ford Version-3 Algebraic path computation

Graph S1 S2 S3 Time S1 S2 S3 Time Improvement
G(A) A×A DV 1 DV 2 DV 3 Sec. DV 1 DV 2 DV 3 Sec. x-time

5 25 0.6 MB 0.5 MB 0.3 MB 0.2 0.33 MB 0.2 MB 0.1 MB 0.1 3.3x
9 81 1.8 MB 1.7 MB 1.7 MB 2.74 0.3 MB 0.3 MB 0.3 MB 0.3 9.1x
17 289 31 MB 30 MB 21 MB 18.4 2.4 MB 2.2 MB 2.3 MB 1.2 15.3x
33 1089 212 MB 212 MB 219 MB 214 22.9 MB 29.1 MB 29.9 MB 8.2 26.1x
65 4225 5762 MB 5665 MB 5755 MB 819 276 MB 376 MB 445 MB 66.4 12.3x

129 16641 126 GB 144 GB 131 GB 13395 1972 MB 1857 MB 1955 MB 522 25.6x
257 44049 4005 GB 4064 GB 3954 GB 203428 16.7 GB 15.7 GB 16.7 GB 4280 47.5x
513 263169 27.9 TB 25.6 TB 29.5 TB 3092314 141.0 GB 133.0 GB 138.3 GB 35341 87.4x
1025 1050625 691.5 TB 750.0 TB 593.3 TB 46914854 – – – – –

Table 38: Bellman-Ford and Algebraic path protocols on LB-HL environment.
Bellman-Ford Version-3 Algebraic path computation

Graph S1 S2 S3 Time S1 S2 S3 Time Improvement
G(A) A×A DV 1 DV 2 DV 3 Sec. DV 1 DV 2 DV 3 Sec. x-time

5 25 0.4 MB 0.4 MB 0.4 MB 33.3 0.1 MB 0.1MB 0.1 MB 18.2 1.8x
9 81 3.5 MB 3.4 MB 3.5 MB 108 0.3 MB 0.3 MB 0.3 MB 38.0 2.8x
17 289 36 MB 35 MB 36 MB 399 2.4 MB 2.3 MB 2.4 MB 71.4 5.5x
33 1089 306 MB 291 MB 304 MB 1684 23.1 MB 22.0 MB 22.8 MB 165 10.2x
65 4225 2646 MB 2490 MB 2692 MB 9205 217 MB 214 MB 222 MB 670 13.7x
129 16641 269 GB 284 GB 270 GB 81346 1960 MB 1968 MB 2046 MB 2669 30.4x
257 44049 3854 GB 3728 GB 3949 GB 1154261 16.5 GB 16.7 GB 17.3 GB 20276 56.9x
513 263169 50.3 TB 49.7 TB 52.1 TB 17883699 139.2 GB 141.7 GB 147.1 GB 166643 107.3x
1025 1050625 500.0 TB 504.5 TB 524.8 TB 273458923 – – – – –

Table 39: Bellman-Ford and Algebraic path protocols on HB-HL environment.
Bellman-Ford Version-3 Algebraic path computation

Graph S1 S2 S3 Time S1 S2 S3 Time Improvement
G(A) A×A DV 1 DV 2 DV 3 Sec. DV 1 DV 2 DV 3 Sec. x-time

5 25 0.37 MB 0.36 MB 0.37 MB 33.3 0.1 MB 0.1 MB 0.1 MB 18.2 1.8x
9 81 2.8 MB 2.61 MB 2.77 MB 108 0.3 MB 0.3 MB 0.3 MB 38.0 2.8x
17 289 5.71 MB 5.24 MB 5.44MB 388 2.4 MB 2.3 MB 2.4 MB 69.4 5.6x
33 1089 428 MB 410 MB 425 MB 1509 23.0 MB 21.8 MB 22.7 MB 146 10.3x
65 4225 7731 MB 7397 MB 7703 MB 6542 223 MB 234 MB 249 MB 522 12.5x
129 16641 117 GB 117 GB 110 GB 36835 2026 MB 2057 MB 2204 MB 1355 27.1 x
257 44049 2843 GB 2557 GB 2767 GB 521491 17.0 GB 17.6 GB 18.8 GB 9182 53.1x
513 263169 32.5 TB 32.5 TB 34.9 TB 7147049 143.9 GB 149.6 GB 159.9 GB 73215 97.6x
1025 1050625 238.1 TB 285.9 TB 303.7 TB 116623074 – – – – –
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C.2. Privacy-preserving MST prim via Sharemind Cluster

Table 40: High-Bandwidth (in MB) Low-Latency (in second)

Privacy-Preserving MST Prim
Graph Server-1 Server-2 Server-3

n m Time DV 1 Time DV 2 Time DV 3

50 300 0.81 10.0 0.81 9.7 0.81 9.9
50 1225 0.84 12.1 0.84 11.9 0.84 10.1
100 1K 2.21 35.9 2.27 35.0 2.21 34.2
200 5K 7.10 129 7.10 123 7.10 124
200 19.9K 7.10 128 7.10 124 7.10 127
1k 2K 129 3554 129 3075 129 3183
1k 3K 130 2820 130 2733 130 2799
1k 40K 129 2973 129 2809 129 2880
1k 499K 131 2887 131 2798 131 2863
3k 6K 1065 37064 1065 31230 1065 29723
3k 9K 1069 24983 1069 24000 1069 24770
5k 1M 2944 71666 2944 67993 2945 69664
5k 12.4M 2982 72636 2981 69055 2983 71023
10k 49.9M 11745 346330 11745 304688 11750 312186
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SISUKOKKUVÕTE

Privaatsust säilitavad paralleelarvutused graafiülesannete jaoks

Turvalise ühisarvutuse protokollide abil reaaleluliste rakenduste koostamine on keeruli-
ne nende protokollide raundikeerukuse tõttu. See on üks kõige olulisemaid väljakutseid
üldiste funktsionaalsuste jaoks turvalise ühisarvutuse protokollide konstrueerimisel. Eriti
oluline on see probleem ühissalastusel põhinevate protokollistike juures, kus arvutusosa-
pooled peavad üksteisega iga operatsiooni juures suhtlema. Ühissalastusel põhinevad pro-
tokollid võivad olla kõikvõimalikest turvalise ühisarvutuse protokollidest kõige efektiiv-
semad, kuid see efektiivsus materjaliseerub ainult suure paralleelsusega ülesannete juures.
Raundikeerukuse vähendamisega saavutatav võrgulatentsi vähenemine on teaduslik väl-
jakutse, millele me oma töös keskendume, arendades ja optimeerides uudseid turvalise
ühisarvutuse protokolle. Me püstitasime hüpoteesi, et paralleelarvutustest pärit tehnika-
te kasutamine aitab turvalise ühisarvutuse protokollide raundikeerukust vähendada, sel-
le hüpoteesi uurimine on käesoleva doktoritöö sisu. Privaatsust säilitavate tehnoloogiate
uudsuse ja nendega seotud arvutuste suure keerukuse tõttu pole paralleelseid privaatsust
säilitavaid graafialgoritme veel olulisel määral uuritud. Graafialgoritmid on paljude arvu-
titeaduse rakenduste aluseks, nagu näiteks navigatsioonisüsteemid, gruppide tuvastamine,
tarneahelate optimeerimine, hüperspektraalsete kujutiste töötlus, hõredate lineaarvõrran-
disüsteemide lahendamine. Suurte privaatsete andmekogumite töötlemise hõlbustamiseks
vajame me privaatsust säilitavaid graafialgoritme. Käesolevas doktoritöös me esitame pri-
vaatsust säilitava paralleelarvutuse tehnikaid mitmesuguste graafialgoritmide jaoks, mis
võivad olla lühimaid teid ja minimaalse kaaluga aluspuid vajavate päriselurakenduste alu-
seks.

Ma pakume välja paralleelsed turvalise ühisarvutuse protokollid graafi tippude kau-
guste leidmiseks ühest konkreetsest tipust (SSSD), graafi kõigitipupaaride omavaheliste
kauguste leidmiseks (APSD), minimaalse kaaluge aluspuude (MST) ja -metsade (MSF)
leidmiseks ning hõredate graafide töötlemiseks poolringiraamistikus. Turvalise ühisar-
vutuse raundikeerukuse vähendamiseks kasutame ühe käsuvoo ja mitme andmevooga
(SIMD) lähenemist, mis vähendab turvalise ühisarvutuse arvutusplatvormi osapoolte va-
helist võrgulatentsi. Me esitame parimad teadaolevad privaatsust säilitavad protokollid
Bellman-Fordi, Dijkstra, laiuti otsimise, raadiussammumise SSSD algoritmide jaoks ning
Johnsoni APSD algoritmi jaoks, võrreldes viimase jõudlust Floyd-Warshalli ja transitiivse
sulundi leidmise algoritmidega. Samuti esitame me parimad teadaolevad protokollid mini-
maalse kaaluga alusmetsa jaoks kasutades Primi algoritmi, seda nii tihedate kui hõredate
graafide jaoks. Doktoritöö kolmas osa esitab privaatsust säilitava algoritmi algebraliseks
teeleidmiseks koos seotud funktsioonidega. Need funktsioonid on kasutatavad hõreda-
te lineaarsüsteemidega seotud erinevate ülesannete lahendamiseks poolringiraamistikus.
Käesolevas doktoritöös me hindame väljapakutud algoritmide jõudlust ja järeldame, mil-
lised neist on eri tüüpi graafide jaoks efektiivsemad, võttes arvesse servade arvu suhet
tippude arvu, servade asukoha privaatsust, kaalude olemasolu servadel, jne.

Detailsemalt: me pakume välja kaks eri varianti privaatsust säilitavast Bellman-Fordi
algoritmist hõredate graafide jaoks, nende variantide põhiline erinevus on paralleelse pre-
fiksmiinimumi leidmise alamprogrammi detailides. Privaatsust säilitavast Dijkstra algo-
ritmist esitame samuti kaks eri varianti, kus teine variant töötab mitme graafi jaoks sa-
maaegselt. Ka privaatsust säilitavast laiutiläbimise algoritmist esitame me kaks versiooni,
kus üks on kaalutud ja teine kaaludeta servadega graafide jaoks. Privaatsust säilitava John-
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soni algoritmi komponeerime Bellman-Fordi ja paralleelsest Dijkstra algoritmist. Sellest-
ki algoritmist on meil kaks versiooni, vastavalt Dijkstra algoritmi versioonidele. Kahe
komponendi vahelise, servade ümberkaalumisel põhineva ühenduse loome Laua mälu-
pöördusprotokolli abil. Minimaalse alusmetsa jaokski esitame kaks algoritmi: järjestiku
ja paralleelse.

SIMD-põhimõtet kasutavad paralleelalgoritmid ei ole ainult klassikaliste ja algebralis-
te graafiülesannete jaoks. Küll aga on nad heaks näiteks, kuidas seda tehnikat kasuta-
da erinevate keerukate probleemide lahendamiseks. Kuna turvalise ühisarvutuste proto-
kollistike defineeritud arvutusplatvormide jõudlusprofiil erineb olulisel määral tavaliste
protsessorite omast, siis tuli meil vastuvõetava jõudluse saavutamiseks lahendusalgoritme
olulisel määral muuta, kaasa arvatud nende kontrollivoogu ja mälupöördusmustreid. Me
realiseerisime oma protokollid ühissalastusel põhineva Sharemind MPC platvormi peal,
kasutades selle platvormiga kaasasolevat SecreC-programmeerimiskeelt ja arendusvahen-
deid. Me viisime läbi oma protokollide ja nende oluliste alamosade põhjalikud jõudlus-
testid eri suurusega graafidel ja eri võrgukeskkondades. Kui eeldada, et turvalise ühisar-
vutuse protokollistikke realiseerivad osapooled on eri geograafilistes punktides, siis saab
meie jõudlustestide abil teha mõistlikke oletusi nii meie protokollide kui ka suuremate
privaatsust säilitavate rakenduste jõudluse kohta sellise juurutuse korral. Mõnede meie
väljapakutud paralleelprotokollide kiirus on eelmiste tööde ja neis esitatud standardse-
te realisatsioonidega võrreldes tuhandekordne. Lisaks sellele ei ole minimaalse kaaluga
alusmetsa ja algebralise teeleidmise protokolle kunagi varem välja pakutud.
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