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Abstract:

For software design tasks involving natural language, the results of a causal investiga-

tion provide valuable and robust semantic information, especially for identifying key

variables during product (software) design and product optimization. As the interest

in analytical data science shifts from correlations to a better understanding of causal-

ity, there is an equal task focused on the accuracy of extracting causality from textual

artifacts to aid requirement engineering (RE) based decisions. This thesis focuses on

identifying, extracting, and classifying causal phrases using word and sentence labeling

based on the Bi-directional Encoder Representations from Transformers (BERT) deep

learning language model and five machine learning models. The aim is to understand

the form and degree of causality based on their impact and prevalence in RE practice.

Methodologically, our analysis is centered around RE practice, and we considered 12,438

sentences extracted from 50 requirement engineering manuscripts (REM) for training

our machine models. Our research reports that causal expressions constitute about 32%

of sentences from REM. We applied four evaluation metrics, namely recall, accuracy,

precision, and F1, to assess our machine models’ performance and accuracy to ensure

the results’ conformity with our study goal. Further, we computed the highest model

accuracy to be 85%, attributed to Naive Bayes. Finally, we noted that the applicability

and relevance of our causal analytic framework is relevant to practitioners for different

functionalities, such as generating test cases for requirement engineers and software

developers and product performance auditing for management stakeholders.

Keywords: software, causality management, causality extraction, causal effects, machine

learning, deep learning, requirement engineering, natural language processing
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CERCS: P170 Computer science, numerical analysis, systems, control

Kausaalsuse juhtimine ja analüüs nõuete juhendites tarkvara disainideks.

Lühikokkuvõte:

Tarkvara disainide ülesanneteks, mis sisaldavad loomulikku keelt, kausaalsuse uurin-

gu tulemused tagavad väärtuslikku ja kõikehõlmavat semantilist informatsiooni, eriti

peamiste muutujate identifitseerimiseks toote tarkvara disaini ja optimeerimise jooksul.

Kuna huvi analüütilise andmeteaduse vastu nihkub korrelatsioonitest kausaalsuse parema

mõistmisele, on olemas võrdne ülesanne keskendunud kausaalsuse väljavõtte täpsuse-

le tekstilistest esemetest, et abistada nõuete inseneerimise põhinevaid otsusi.Käesolev

magistritöö keskendub kausaalsete fraaside identifitseerimisele, väljavõttele ja rühmita-

misele kasutades sõna ja lause märgistamist, mis põhineb transformerite kahesuunaliste

kodeerijatele (BERT) sügava õppimise loomuliku keele mudelil ning viiel masinõppe

mudelil. Eesmärgiks on mõista kausaalsuse vormi ja astet, mis põhinevad oma mõjul ja

levimisel nõuete inseneerimise praktikal. Metodoloogiliselt, meie analüüs keskendub

nõuete inseneerimise praktikale, arvestati 12 438 lausega välja võtnud 50 nõuete insenee-

rimise juhenditest (REM), et harjutada meie masinate mudeleid. Meie uuring teatab, et

kausaalsed väljendid moodustavad umbes 32% REM lausetest. Me rakendasime nelja

hindamismõõdikut nimelt meenutamine, täpsus, kordustäpsus ja F1, et hinnata meie ma-

sina mudelite jõudlust ja täpsust, et tagada tulemuste vastavust meie uuringu eesmärgile.

Lisaks, arvutasime kõrgeima mudeli täpsus on 85%, mis omistati Naive Bayes. Lõpuks,

peab märkama, et kohaldatavus ja kausaalsuse analüütilise raamistiku asjakohasus sobiks

erinevatele praktikutele, näiteks, nõuete inseneridele ja tarkvaraarendajatele, et genereeri-

da testjuhtumeid. Samuti juhtkonna sidusrühmad võiksid kasutada seda, et tulemusauditi

paremaks teha.

Võtmesõnad: tarkvara, kausaalsuse juhtimine, kausaalsuse väljavõtte, kausaalsed ta-

gajärjed, masin, õppimine, sügav õppimine, nõuete inseneerimine, loomuliku keele
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tootmine.
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1 Introduction

Sentences incorporating causal relations, such as "A push notification shall be displayed

if the system has completely processed the data" describes the desired action of the

system. Interestingly, causal expressions are inherent in most requirement engineering

manuscripts (REM), such as software requirement specification (SRS) manuscripts. Ac-

knowledging the full scope of use and detecting and efficiently extracting the causal

relationships has significant application potential, particularly in requirements engineer-

ing (RE) practice. Some of the applications include generating automated test cases and

enhancing reasoning regarding inter-requirement components [2, 3]. Extracting causality

from text artifacts is regarded as a relation-based extraction problem which is primarily

centered on identifying causal phrases containing cause and effect

In RE, functional requirements describe a system from three major standpoints; First

is the input that is to be processed by the system, second is the action undertaken by

the system in processing the input, and lastly, the processed information that is given as

output by the system. These three procedures usually follow a causal pattern between

their links, such as if x then y. Retrieving causal relations from natural language texts

facilitates different analytical activities and is already applied for information retrieval

and prediction tasks, as highlighted in Chapter 2 of this thesis.

However, two key factors are responsible for the challenges encountered in extracting

causal relations in RE artifacts. Firstly, although the use of natural language (NL) in RE

tends to foster easy re-usability for further theoretical implementation, but unregulated

natural language is still extensively used in RE. As a result, extracting the key and relevant

information from requirement artifacts becomes complicated, primarily attributed to the

underlying ambiguity and complexity inherent in NL (textual) representation. Secondly,

causal relations are in different formats, e.g., implicit or explicit (i.e., clearly presenting

the cause and effect) and unmarked or marked (when a cue expression describes a causal
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relation). Thus, there could be difficulty in identifying and extracting cause as well as

effect. Notably, many existing approaches for extracting cause and effect from NL-based

requirement artifacts still fall short of effective and trustworthy use, especially in practice,

due to performance factors.

Making remarks to this observation, we assert that an innovative, trustworthy, and

high performance-based approach to detect and extract causal relations is required for

effective consideration and wide acceptability of causality application in RE. Therefore,

in this study, we are concerned with using a variety of machine learning algorithms

(described ion Chapter 3) and deep learning framework1 to explore the REMs that are

extracted from different sources (data described in Section 3.6 of Chapter 3). By so doing,

our experiment is able to investigate and categorize the REMs into different causality

types. In addition, the detection of causality by the machine models implemented in

this study assisted us in measuring the impact and prevalence of causality, particularly

in RE studies, as it applies to its applicability to practitioners in the field of software

engineering. Finally, we used standard evaluation techniques (recall, accuracy, precision,

and F1 described in Chapter 3) to assess the results of our machine models and the deep

learning model. By using the evaluation techniques, we can compare the performance

of the computational frameworks implemented in this study and arrive at a conclusion

based on applicability to the software RE practice.

1.1 Overview and Categorization of Causality

The notion of causality can be introduced as a relation between two proportional variables

referred to as antecedent h1 and consequence h2, which could be expressed as h1 causes

h2 [4]. However, natural language-based texts have many correlations, which appear in

different forms [3, 4]. Extracting causality in natural language texts could be difficult

because of factors of different human and grammatical-interpretation-based errors. It

1https://en.wikipedia.org/wiki/Deep_learning
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is worth noting that causality has no boundary regarding its identification in a sentence,

as it can occur in a single, multi-line, simple, and complex sentence formation [5]. To

properly convey the notion of causality, we must define the two keywords that underpin

the notion of causality: cause and effect.

A cause according to the Macmillan dictionary2 is simply defined as "the ability to

make something happen", while an effect is defined as a change produced in a thing or

object. Below, we present examples of the different forms of causalities identified in

sentences, which exemplify the variation in language constructs.

(i) Single cause to single effect: This type of causal relation exists in sentence(s)

in which there is only one cause and one effect. For example, if we examine the

statement the app crashed because of the bugs which were not fixed, it is clear

that there exists one cause, i.e., the "bugs", and one effect, i.e., the "crash". More

clearly, the position of the cause and effect in a sentence could be interchanged,

i.e., the cause can precede the effect and vise versa. In the above example, the

effect preceded the cause, while in the example below, the cause preceded the

effect, i.e., "the unfixed bugs triggered the app3 to crash".

(ii) Multiple cause to multiple effects: This type of causal relation exists where

there are more than one cause and more than one effect in a sentence. Similarly,

the position of the cause and effect in the sentence is not static as the cause can

either precede the effect and vise versa. Below is an example of multiple cause

multiple effect "the unfixed bugs, as well as application programming interface

(API) communication protocol, triggered the freezing of the app which finally

resulted in the crashing of the app".

(iii) Causal to effect Loop: This type of causal relation exists in a sentence where

the cause resulted in a series of recurring effects. For example, in the sentence
2https://www.macmillandictionary.com/
3an executable software product
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"the absence of the software testers to evaluate product upgrade resulted in long

duration of product-acceptance stage, thereby causing reduction in customers

patronage and has resulted in low revenue for the company". In this example, the

single cause is identified as "absence of the software tester", and this led to a loop of

effect identified "delayed product-acceptance stage", "reduction of customers", and

"reduction in company revenue". Therefore, the effect loop will continue as long

as the software testers are unavailable to test the product’s upgrade, which leads to

customers getting unsatisfied with the existing product functionality, which leads

to reduced customer patronage, which finally leads to a decrease in the revenue

of the company. This example can also be called a single cause to multiple effect

causal relation.

1.2 Quality Measure of Requirement Engineering Manuscripts (REM)

Low quality of REM could have severe impact during and after software development

life cycle, especially for robust or large-requirement-based projects [6]. Deficiencies

such as ambiguities or insufficient requirements in REM can be computationally costly

in terms of project duration and resources (e.g., computational and financial). Software

developers (referred to as practitioners in this study) should ensure quality requirements

to have a rich and balanced project life cycle and final deliverable.

Some of the challenges require adequate awareness of domain knowledge because,

without a proper understanding of the domain knowledge, it could be difficult to deter-

mine whether a requirements manuscript is complete and is good enough to be used as

an implementation road-map during software development process and acceptance stage

of the software product. For example, the word sufficient in a typical statement such as:

"sufficient transition should be allowed between order interface and checkout interface"

could have different connotation (in terms of motive-of-use rather than grammatical

meaning) to different requirement evaluator. To one evaluator, it could imply duration,
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while to another evaluator, it could imply quantity. The primary aim of ensuring quality

in REM is to prevent ambiguity and misinterpretation of concepts but foster clarity in

defining REM statements.

Quality control of REM primarily relies extensively on review-loop to discover any

hidden or obvious inadequacies. However, reviews of REM must involve the key, and

applicable stakeholders who will personally examine and identify the uncertainties in

the manuscripts [7]. The examination task could be difficult and rigorous to undertake,

especially if no defacto or dejure standard is put in place as a standard. However, the

reviewers should have in-depth domain knowledge and evaluation expertise for the

requirement examination task. By so doing, analysis of causalities in REM will be

uncomplicated, which thus ensures maximum benefit that could be derived from such

practice.

1.3 Research Problem Statement

Causality in REM appears in various forms (such as implicit or explicit, marked or

unmarked, ambiguous or unambiguous cue expressions [8]), and different techniques

and frameworks have been implemented for extracting causalities in REM. One of

the challenges we identified is the low performance threshold of the existing causality

extraction techniques (details given in Chapter 2). Some studies used hand-coded rule-

based techniques (e.g., Christopher et al. in [9], and Jose et al. in [10]), which implies

that their framework is restricted to the defined linguistic pattern rules and not dynamic

to fit the constantly emerging advancement in causality studies, especially, as it relates to

the field of RE. In some other studies, they considered a computational framework that is

based on cue phrases to establish the probability of causal relations from sentences (e.g.,

Sanda et al. in [11] and Chang et al. in [12]). The problem with this technique is that

using cue phrase functions at the word level may not be sufficient to establish a robust

causality structure. Therefore valuable details relating to the cause and effect of causality
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may not be adequately captured, causing less applicability to practitioners’ use cases.

Further studies were made to improve the cue phrases that are dependent on word

level. They considered using cues based on phrase level using a bi-directional Long

short-term memory framework (e.g., Zhaoning et al. in [13] and Rupsa et al. in [14]).

The challenge with this approach is that the performance of the model is based on the

domain of the corpora used for training. Hence, its application is domain-based, and

the model will be re-trained for its use per domain, especially for RE tasks. Therefore,

our study addresses these challenges by considering the extraction of a complete and

embedded causal relation in order to find a robust application in dependency detection

and test case generation in RE practice. To achieve this, we implemented an approach

that is based on machine learning and deep learning frameworks (details provided in

Chapter 3). By using these two techniques, we are able to evaluate and compare their

performance as it relates to addressing our study goals.

1.4 Research Justification

Our research aims to strengthen the RE practice, which in turn has a ripple effect on

software products. Practitioners, who in the sense of our study refer to the requirement

engineers, software developers, and managerial stakeholders, should be able to estimate

factors that improve or reduce the quality of the software product that they administer.

Therefore, to achieve this, one of the vital procedure is for practitioners to carefully

analyze the software requirement manuscript of their software product with regard to

the current deliverables of their application. By so doing, factors influencing the overall

capability of their application are uncovered. With this knowledge, practitioners could

formulate necessary activities that lead to restructuring and re-strategizing RE techniques

to maximize the impact of their software product on end users. In addition, the impact

of the updated restructuring can be measured with regard to previous RE techniques,

leading to improved productivity of the practitioner and a better version of the software
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product. Hence, our study is in the right direction, as we present applicable techniques

via computational frameworks that are capable of harnessing the realization of these

goals.

1.5 Research Scope

Identifying causal information in textual data is a critical language processing task with

various forms of applications [13, 15]. Causal information is present in most manuscripts,

such as documentation, articles, and social contents [16]. This implies that causality

management is a branch of scientific study that should be given utmost attention because

of its application to different domains with regard to RE. However, in this study, we are

concerned about managing causality as it applies to the specifics of software requirement

engineering. To this end, we provide computational techniques to detect causalities in

REM, estimate the degree of prevalence in the REM, and evaluate the overall impact

of causality in the deliverable of software products. These three variables explain the

notion of causality management that we considered in this study. Further, our study is

not concerned about the technology or framework that should be applied to achieve the

solution recommendation from our causality management framework. Rather, we are

more particular about investigating how causal inference affects the software product

and also guide practitioners to instigate necessary actions in their RE practice.

1.6 Research Aim and Objectives

The aim of this study is to provide a computational technique that is based on machine

learning and deep learning framework to identify causality in REM, justify the existence

of causality in REM, and evaluate the impact of causality in REM. In essence, this

study will benefit the RE structure of practitioners involved in software development

projects of different level of magnitude. Further, the applicability of our findings will

help to produce better version of software products with improved functionalities. More
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clearly, the following are the objectives of this study; (i) We retrieve REM (dataset)

from different domains (as shown in Table 2) to software engineering domain to enable

broad and robustness of our study findings to the field of RE in software development.

Secondly, we examine the dataset by performing exploratory data analysis to bring the

dataset to a standard required to fit our computational models. Thirdly, we simulate our

computational models by consolidating different parts and configuring the parameters for

optimal result. Fourthly, we presented our model result, explain our findings and evaluate

our computational frameworks to check if our study goal is satisfied, especially with

regards to the influence of causality on REM of software products to the practitioners.

1.7 Research Questions

Our study goal is to identify and analyze the prevalence of causality in REM which will

help solidify the strength of REM for software development task, which is dependent

on the scope, complexity level, and structure of causality (described in Section 3.1 of

Chapter 3. Therefore, for us to fulfill our study goal, we considered the following

research questions, the answers to which influence our research direction.

• RQ1: To what extent is causality present in REM?

• RQ2: How complex is it to identify and establish causality in REM?

• RQ3: What is the level of causal ambiguity in requirements?

• RQ4: How frequent does causal relations (such as enable, prevent, and cause)

appear when analyzing requirement manuscript?

• RQ5: What is the degree of influence of temporal relations (such as during,

overlap, and before) in REM?

The answers to these research questions are elaborated in our result analysis presented

in Chapters 4 and specifically presented in Section 4.3. Notably, answering RQ2 and RQ3
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entails addressing some other sub-questions which are key to understand the direction,

impact, and application of this study to the requirement engineers and other practitioners

in the field of software development.

1.8 Research Methodology Overview

In this section, we present the overview of our research methodology by describing the

research instruments, computational tools, evaluation techniques, and relevance of our

findings. To begin with, we retrieved our dataset from Kaggle4, a publicly available data

repository, which contains over 675 total collections of REM in which 50 random REM

were extracted (statistics of dataset is presented in Table 2). Due to the unstructured and

unorganized format of the dataset (primarily made up of natural language composition),

we performed the necessary exploratory data analysis task such as data cleaning to bring

the dataset to an acceptable format required of the machine models that were implemented

in this study (details of the exploratory data analysis is presented in Section 3.6.2 of

Chapter 3). Further, an annotation procedure was performed on the dataset by seven

individuals (who are data scientists and friends to the researcher) chosen from three

Universities (two individuals from University of Tartu (UT)5 in Estonia, three individuals

from University of Witwatersrand (WITs)6 in South Africa, and two individuals from

Obafemi Awolowo University (OAU)7 in Nigeria. The goal of the annotators is to

distribute the 12,438 extracted dataset into different categories based on the guideline

that we provided.

Next, We applied two computational frameworks namely machine learning algorithm

and deep learning technique for investigating the occurrence and impact of causality in

REM. The machine learning algorithms were trained on the aforementioned extracted

4https://www.kaggle.com/code/kmader/quickdraw-with-wavenet-classifier
5https://ut.ee/en
6https://wits.ac.za
7https://oauife.edu.ng
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dataset and are configured with the optimal hyperparameters (presented in Table 9). The

machine learning algorithms have been proven by researchers to handle classification

task efficiently (e.g. as implemented by Patel et al. [17] and Nigam et al. [18]. Hence,

we are sure about their capability for causality prediction task based on their learning

experience from their training process. The machine learning algorithms explored in this

study are listed as follows: Support Vector Machine (SVM), Naive Bayes (NB), Decision

Tree (DT), Random Forest (RF), K-Nearest Neighbor (KNN), and Adaptive Boosting

-AdaBost (AB).

In addition, we applied the deep learning framework (described in Section 3.10 of

Chapter 3) configured with optimal hyperparameters (presented in Table 9) for causality

classification task. Both the machine learning models and deep learning models used

for the prediction task were all evaluated using the standard computational evaluator

techniques namely: recall, accuracy, precision, and F1 score. By using different dif-

ferent machine learning and deep learning algorithms, we are able to identify the best

performing model and rank their performance based on our evaluation techniques. The

evaluation result of the computational models implemented in this study is presented

in Chapter 4. The details of the machine learning algorithm, deep learning framework,

annotation procedures as well as their evaluation strategies are presented in Chapter 3. In

Chapter 4, we present and discuss the results obtained from the implemented models and

how they were able to meet our research goal and answer our research questions. The

implementation and research procedures followed in this study is described by Figure 5

in Chapter 3.

1.9 Research Contribution

For every notable research, contribution to the body of knowledge is a vital part of the

research that cannot be overemphasize. Our study agree with this notion. One of the major

challenges relating to causality extraction is the ability to identify if causality exists in a

10



requirement engineering manuscript. This implies that presence of causality determines

which sentence will be extracted, hence, sentences where causality is not identified will

be not be considered from the corpus. Another key challenge in causality extraction is to

have a rich technical and theoretical know-how and understanding pertaining to extracting

the identified causality. To address these concerns, it is important to understand the scope,

complexity level, and structure of causality in RE practice. Accurate insights about

the distribution of causality is required before implementing workable and applicable

frameworks for detecting and extracting causal relations. Therefore, this study aim to

close these gaps and make applicable contributions to the domain of knowledge in the

following ways:

(i) Identifying Causalities: Our study presents an analytical description of the scope,

complexity level and structure of causality. The analytical description is based on

12,438 sentence retrieved from 50 REM with 18 distinct domains detail is presented

in Table 2. Based on our analysis, we assert that the common form of causality in

REM is the marked and explicit type. In addition, we also noted that 23% of the

sentence has information relating the predicted system behaviour. Therefore, we

are encouraged about the relevance of this study to causality management in REM.

(ii) Causality Extraction Technique: In this study, we implemented a robust frame-

work that is capable of extracting causalities from REM. Our model was trained

using the dataset described in Section 3.6. Next, we performed the model evalua-

tion where we achieved F1 score of 30%. When we compared our framework with

existing causality detection models (which majorly depends on cue expressions or

un-optimized machine learning models), our framework yielded 20% performance

improvement in recall and 22% in precision when compared vis-a-vis existing

causality extraction models. Further details relating to the evaluation of the existing

causality extraction models is presented in Chapter 2.
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(iii) Causality Impact on REM: We presented the results of a investigative scenario

by examining the relationship between causal occurrence and its influence on

implementation pipeline as highlighted on the REM. This analysis is not just

illustrating a possible application of causality awareness technique, but additionally

validated the impact of causality on RE to practitioners, particularly to the software

developers and the SRS evaluators.

(iv) Support for Framework Reproducibility and Open Dataset: We provided the

cloud-hosted uniform resource locator (URL) path which contains the implementa-

tion details of this study to foster replication of the implementation framework. In

addition, we presented the URL to the datasets that was used for training and eval-

uating the model. The path for both the implementation source code, annotation

guide and the dataset is presented in of Chapter 5.

1.10 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 1 presents an introductory

layout and summary of the different parts of this study. In Chapter 2, we highlighted

the computational frameworks, strengths, and limitations of existing studies in this

research field. Chapter 3 discusses the research instrument and computational tools

that were applied to meet our research objectives. Further, the analysis of our findings

is presented in Chapter 4, where we analyzed and evaluated our findings vis-a-vis the

study goal. The discussion of the result analysis of our study findings is presented

in Chapter 5, while Chapter 6 highlights the observed threats to validity of our study.

Finally, Chapter 7 concludes this study by giving a concise summary of our research, the

study’s contribution to the body of knowledge, and recommendations for further studies

relating to our research.
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1.11 Definition of Terms

Definition of Terms:

Practitioners: these are individuals that are in charge of the requirement management

and product (software) design

Software Requirement Specification: refers to the descriptive features of a software

Requirement Engineering Manuscript: refers to the document containing the

specification and configuration details of a software product

13



2 Literature Review

In Chapter 1, we introduced this research by presenting various aspects and components

required for consolidating this research study. This chapter will provide an overview of

existing studies related to our research. Our overview will capture the implementation

framework, the focus of the study, and the gaps that we identified in the study as it

relates to causality management in requirement engineering (RE) practice. This review

procedure will also allow us to compare the relevance of our study with regard to the

existing research that has been carried out. Identifying the occurrence and impact of

causality in requirement engineering manuscripts (REM) is one of the significant factors

for determining the efficiency and effectiveness of a good RE practice, especially for

software developers and software requirement specification (SRS) evaluators. Hence,

reviewing related studies is essential for a progressive RE practice, which was considered

in this study. Our review captured the application of causality both within and outside

the RE practice described below.

2.1 Causality Studies outside the Field of Requirement Engineering

The first study that we evaluated and which was also one of the early applications to

causality outside the RE field is the study of Roxana et al. [19] and Hideki et al. [20]

where they implemented a lexicon-based pattern that operates in a single or multiple

sentences. Their synthetic pattern consists of two noun phrases (NP) which are linked

together with a single causative verb (VP), i.e., <NPi VP NPj>. They developed their

pattern by exploring the WordNet8 dictionary to search for NP that are connected with VP

(or cause-to relationship) that are clearly defined in the WordNet corpus. They labelled

the VP connecting the NP as causative verbs. Based on the extracted VP, which was

consolidated with other WordNet features, they were able to develop lexicon-based rules

8https://en.wikipedia.org/wiki/WordNet
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that are capable of detecting causality in studies relating to question and answer. A

significant limitation of their study is that their computational framework may not be

able to capture new inventions of NP and VP. Hence, the relevance of their approach may

be limited to being applied to novel question and answering-based systems.

Another application of causality studies outside the RE field is the research undertaken

by Choi et al. [21], which was similar to the study of Marcu et al. and Kamal cite23

expand on the work of Roxana et al. [19] and Hideki et al. [20] by taking the probabilities

of the cue phrases and conceptual pairs as additional factors for identifying causalities in

a question and answer-based system. Their application focused primarily on the reason

why questions are expanded further in a question-and-answer-based system by exploring

the probabilities of the cue phrases and conceptual pairs not only at a word level (as

considered by Roxana et al. [19] and Hideki et al. [20]) but also on a sentence level. By

using this, they were able to expand on the result of Roxana et al. and Hideki et al. for

further usage and application to their field of reference.

Furthermore, another reference to one of the early methods of causal derivation and

usage beyond the RE field is the work of Kentaro et al. [22], where they explored the

field of communication and media by extracting causal relation from newspaper articles.

They primarily considered using cue phrases to extract causal relations from their dataset.

This kind of study classifies causality-based individual perception of a cue phrase in

the sentence by majorly identifying a cause and the effect. So, identifying causality in

this sense will consider four factors: means, precondition, cause, and effect. We noted

that using only cue phrases to extract causality may not be sufficient for robust analysis,

especially if there are complex and ambiguous words (or expressions) in the corpus being

considered. This notion was evidenced by Jinghang et al. [23] in their research, where

they acknowledge the limitation of the cue-phrase-based causality extraction technique

by examining and summarizing causality in the dataset.

It is interesting also to note that apart from the field of software engineering, causality

15



has also been studied in the medical field. This was evidenced by Christopher et al.

[24] in their study, where they implemented a graphical-based pattern to extract causal

information from a medical database containing health diagnoses of individuals. In their

study, they structured causality attributes and roles using a template built on three-layer

computational architecture for manually detecting patterns graphically. They reported

that a significant limitation of their study is the inability of their causality-detection

framework to be dynamic to trend updated reporting medical information. Hence, they

have to code new structures for every new trend published in the medical line. A similar

study to that of Christopher et al. [24] is that of Manabu et al. [25] where they explored

tweets from twitter9 (a social network platform) database by using dependency tree

and part-of-speech (PoS) tags to retrieve causal relations that is manually coded. Their

implementation was built to function on the word level, not the sentence level. They

reported that their study goal was to identify why users tweet more about some topics or

hashtags than others.

Another interesting application of causality is in the field of economics, where they

were able to use causality to detect the relations between factors, items, and policy that

influences the market structure and market value of goods and services, as evidenced

by the work of Kentaro et al. [26]. Their causality identification framework was built

on analyzing the semantic relation in noun phrases. They reported how causality study

provided insight into market research analysis for economic advantage by examining

factors that lead to economic spikes or recession. Finally, we would like to note that

causality has a wide range of applications beyond RE application (as proven by the

studies mentioned earlier), as it can be applied in most fields of study. Knowing what to

do and the "how" is essential in causality study, and this largely depends on the insights

drawn from such research.
9https://twitter.com/
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2.2 Causality Studies in the Field of Requirement Engineering

There has not been much study of causality in the field of RE, but the interest is growing

and promising in the nearest future. One of the reasons for the lack of interest in studying

causality in RE, especially in natural language requirements, can be attributed to a poor

understanding of the concept due to the cumbersome tasks involved in detecting reliable

causal relations [27]. As observed by Frattini et al., [27], the causal relations express

powerful and meaningful (semantic) information, which, when extracted, can be used to

generate more test cases to aid the software design and testing process.

However, one of the key motivations for studying causality is to be aware of some of

the benefits of causality and how it can influence the goal of a RE practice. Below, we

highlighted some existing studies in this line of research as well as presented an overview

of their implementation and findings. First, based on the insight of Nabiha et al. [28],

causality detection in natural language manuscripts can be categorized into two forms,

namely: (i) rule-based; and (ii) feature-based method. The rule-based approach is based

on a defined pattern formulated by the researcher based on their domain knowledge,

research expertise, or intuition. An example of the rule-based approach is the work of

Joanne et al. [29] and Phillip et al. [30]. One of the major disadvantages of the rule-based

approach is the low performance threshold which is attributed to the inability of the

defined rules to be applied to extended and novel innovations. Hence, the rule-based is

lowlily applied in RE practice.

Similarly, in contrast to the rule-based approach, some studies applied the concept

of the feature-based method by using the technique of transfer learning inherent in

Bidirectional Encoder Representations from Transformers models (BERT)10. An example

of the feature-based technique is the research conducted by Manolis et al. [31] where

they applied a transfer learning technique by using Embeddings from Language Model

10https://en.wikipedia.org/wiki/BERT_(languagemodel)
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(ELMO)11 and BERT model and were able to overcome the challenge of identifying

causal inference using a bi-directional gated recurrent units (GRU) configured with

self-attention. They used a publicly available dataset for their experiment. They reported

that transfer learning could perform well only in a small amount of dataset. At the same

time, GRU configured with self-attention performed well with large datasets during the

causality extraction task.

Another interesting study which explores causality was carried out by Frattini et al.

[27], where they developed CiRA for detecting causality in software requirement docu-

ments. One of the major limitations of their study approach is that they generalized their

results and its practical use based on the outcome of one dataset (from a single domain).

Relating to their study findings, the impact of causality in one domain could be totally

different from its impact in another domain, especially considering the market size of the

product’s end users. Another limitation to the study of Frattini et al. [27] is the duration

of dataset that was used for their modeling process. They only considered six (6) years

(2010 to 2015), which may not be sufficient to adequately capture model requirement for

an optimal output. Converse to this, our study explored dataset for eighteen (18) years

(2005 to 2022) in order to have a robust understanding and development of causality over

different years. The findings from the long range of the datasets allowed us to study and

analyze how causality in software designs evolve from year to year and from one decade

to another. Empirically, we did not generalize the impact of our causality tool to one

domain

Reklos et al. [32] explored a different approach in their study as they tackled the

entity identification sub-tasks that are inherent in causal relations during the RE process.

Therefore, they implemented an ontological BERT model to detect entities involved

in causal relations. They trained their model and validated it against a novel dataset

where they achieved an F1-score of 0.8. Theirs was instrumental in entity detection

11https://en.wikipedia.org/wiki/Elmo
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in causal relations, and with their framework, they could extract causal relations from

new collections of the dataset for a RE task. Gupta et al. [33] also conducted research

by implementing a domain-based BERT model to identify whether causality exists in

a financial-based manuscript. Their study was used to identify and predict probable

risk and its cause in developing a financial analysis framework. They noted that one

of the major challenges in their study is the imbalanced dataset used for training their

BERT model. However, they used techniques like data augmentation, under sampling,

and cost-sensitive learning to train their model, and they attained an F1-score of 96.9

during their model evaluation. Lastly, we examined the study of Kern et al. [34],

where they performed an investigation on the mobility dynamics during corona virus-19

disease (COVID-19). They developed a computational framework for their investigation

to evaluate the factors influencing the acceptability of government policies in society

toward mitigating the spread of COVID-19. They explored the tweets from Sweden

and United Kingdom (UK) as their data source and case study. Their implementation

focus was based on mediating causal scenarios by using natural language processing

techniques (specifically, sentiment analysis and Latent Dirichlet allocation (LDA) topic

modeling were used) consolidated with social science and economic methods. Based

on the tweets extracted, they conducted numerous causal inference investigations by

segmenting the impact of government regulation on society with regard to mobility

during COVID-19. Based on the causal-impact experiment, their framework predicted

that mobility dynamics during COVID-19 is not totally influenced by government policy

during the COVID-19 pandemic. Secondly, their implementation presented to them that

texts gleaned from social media could be trusted for examining the concern of society at

large. Differently, we identified some notable gaps by carefully examining these existing

works, especially concerning RE practice.
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2.3 Gaps Identified in Existing Studies

By carefully investigating existing studies in this line of research, we identified the

present state of research gaps which are highlighted as follows:

* Extraction Methodology: One of the major gaps we identified was the strategy

undertaken to extract the causes and effect. For instance, given the requirement

(R1) defined as follows: if X is true and Y is false, then Z must occur. Based on

this, some studies (e.g., in [11] and [12] derived their cause and effect on the word

level of sentence structure, i.e., cause(c1): X, cause(c2): Y, effect(e1): Z. Using

this direct relation implies that important information about the causal relation is

omitted, i.e., the conditions of X, Y, and Z are disregarded. Similarly, based on R1,

other studies (e.g in [13] and [14]) derived their cause and effect on the phrase level

of sentence structure, i.e., cause(c1): X is true, cause(c2): Y is false, effect(e1): Z

must occur. However, the cause-and-effect fragment should be further decomposed

beyond the word and phrasal level to ensure an extensive use case. To achieve

this, (i) the cause and effect should be segmented into variable and condition such

that cause_variable(i): X, cause_condition(i): is true. (ii) there must be a proper

understanding of the relation between the cause and effect because R1 states that

X and Y must occur before C occurs.

* Manual Extraction of Features: Extracting useful features manually (e.g., in

[15], and [2]) from raw text is another gap that we identified. An automated

extraction technique will be more advantageous than manual feature extraction,

especially when dealing with complex, unstructured, and large corpora. In addition,

the manual extraction through defined rules enables limited features extraction

because the defined linguistic pattern is hand-coded, thus, resulting in bounded

extraction results (e.g., the work of Christopher et al. in [9], and Jose et al. in

[10]).
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* Dataset Domain: In some existing studies (e.g., in [35, 16, 36]), they explored

datasets outside the software engineering domain (such as the news from Cable

News Network - CNN [37])). Thus, their framework may not be efficiently

functional and applicable for software requirement engineering purposes because

some vocabularies and grammatical constructs are only applicable in the field

of RE. Hence, building a framework on a generalized dataset could lead to less

accuracy when applied in the RE field. We took this into consideration by ensuring

that our datasets were retrieved from sources that are related to the field of RE.

* Implementation Link: Result reproducibility link for implementing most of the

existing studies were not specified (e.g., as seen in Cristina et al. [10], Roxana et

al. [19], and Christopher et al. [9]). Hence, their framework could only be applied

with much re-implementation effort. We ensured that we provided the link to the

source code and dataset used in this study as presented in Section 5.5 of Chapter 5.

Overall, in this chapter, we highlighted the key findings that were identified in

existing and related studies. In addition, we identified the computation framework that

was explored by the researchers as well as the limitations of their study. The next chapter

(3) describes the computational instruments used in this study and the approach by which

they were applied to answer our research question.
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3 Methodology

This chapter discusses in detail the implementation tools explored to achieve our study

goals. We begin by describing the different components of the computational frame-

work we explored and their configuration modalities. Finally, this chapter concludes

by describing the evaluation metrics used to assess the strength and capabilities of our

computational frameworks, especially as it relates to the objective of our study. Before

we describe the implementation tools explored, we presented an overview of causality

management as it relates to RE practice in the following section. This will assist in un-

derstanding the "why" behind our research and the rationale behind the research question

highlighted in Section 1.7. After establishing the notion of causality management, we

then describe the implementation tools and computational instruments explored in this

study.

3.1 Causality Management in Requirement Engineering Practice

Causality study has received significant attention in several fields, including psychology

[38] and health [25] (others presented in Chapter 2). As described in Section 1.1,

the overview of causality has been presented, especially concerning the requirement

engineering practice. Hence, in this section, we shall extend the overview of our causality

definition in a broader term by describing the required aspects of causality study.

3.1.1 Causality

Causality refers to a relation that exists between two or more events in which one of

the events is the causing event (cause), while the other represents the effect. Generally,

an event is regarded as a scenario (such as a state or process) that occurs in a definite

period or instantaneously [39]. It is worth noting that the relation that exists between a

cause and an effect is hypothetical, meaning if a cause ci does not exist, then an effect
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ei is not likely to occur [38, 39]. Therefore, this implies that an effect only happens

when the cause happens; else, the relation could be regarded as a constrained relation,

implying that they are not causal. The relation could be represented with boolean algebra

notations and defined as an equivalence that exists between a cause ci and an effect ei,

i.e., ci ⇐⇒ ei. The notation implies that an effect is true as long as the cause remains

true. Similarly, an effect remains false as long as the cause is false.

The logical equivalence representation of causality is not an absolute description

of the form of the relation, particularly regarding its chronological sequence. One of

the challenges of formal representation of causal relation w.r.t notation and ambiguity,

identified in their interpretation, is considered. We simply refer to logical simplicity to

mean causal relation. In this study, we categorized the causal relation into three forms,

namely: cause, enable, and prevent relation.

* Cause Relation: This type of relation is a direct relation between two events where

an event ci causes the effect for another event ei, i.e., ci causes ei (ci ⇐⇒ ei);

meaning if ci occurs, then, ei also occurs. For instance, in the statement "If a user

inputs the wrong password, then, a pop-up error window shall be displayed". In

this example, the error window will only be displayed or triggered whenever a user

supplies the wrong password into the system.

* Enable Relation: In this type of causal relation, if an event ci does not occur, then

another event ei cannot occur. Simply stating, ci enables ei, i.e. ¬ci ⇐⇒ ¬ei.

For instance, in the statement "given that you are a registered student, you can

have access to the University library", the valid student status in the institution

is the determining factor that enables an individual has access to the University

library and its facilities.

* Prevent Relation: This type of causal relation between two or more events

describes a scenario where the occurrence of an event ci prevents the occurrence
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of another event cj , i.e., ci ⇐⇒ ̸= cj . For instance, in the statement "data

redundancy ensures that failure of one component does not imply absolute data

loss", data redundancy prevents complete data loss in case of failure of one system

component.

3.1.2 Sequential Order of Cause and Effect Phrase

In any given sentence or expression that is verified to contain cause and effect, there are

three major orders in which the cause and effect could be related [39, 27]. In the first

order, the cause happens before the effect (e.g., a system user enters the wrong pin before

an error window is triggered). In the second order, both the cause and effect intersect

each other (e.g., a fire burns down a building - a fire is burning and a building is being

consumed), while for the third order, the cause and effect happen at the same time (e.g.,

a student has access to a University library as long as he is legitimately registered with

an institution).

3.1.3 Structure of Causality

According to Blanco et al., there are three structures in which causality could be cat-

egorized, namely: (i) implicit and explicit causal relation, (ii) unmarked and marked

causality; and (iii) unambiguous and ambiguous cue causality. Cue refers to a linguistic

terminology associated with causality study [12, 40] and is defined as an expression

that links one event to the other with a defined or non-defined relation [12]. In practice,

cue has been regarded as a strong lexical indicator for identifying causal relations in

statements [40].

* Implicit and Explicit Causality: In an implicit causal relation, the effect clause

is not clearly stated in the sentence. In REM, implicit causal relations could

be difficult to process and interpret, thereby leading to ambiguity due to their

indeterminate form. For instance, a statement that reads "a parent computational
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process stops a child computational process" could be termed implicit owing to the

fact that cause and effect are not properly defined. On the other hand, an explicit

causal relation refers to a statement that contains causal details of cause and effect.

For instance, a statement such as "a wrong password triggers the error window"

has a cause (wrong password) and an effect (error window).

* Marked and Unmarked Causality: For a statement to be regarded as a marked

causality, then a cue expression must be present to indicate the causal relation. For

instance, the statement "if the wrong password is supplied, then the error alert

window should be triggered" is regarded as a marked causal relation because of

the cue phrase "if ". A cue expression may not be explicitly stated for an unmarked

causal relation. For instance, a statement that reads "the user cannot open the

folder because he has no admin right" is an unmarked causal relation because of

the absence of the cue expression.

* Ambiguous and unambiguous Cue Causality: As mentioned earlier in marked

causality, the presence of some cue expression makes it easier to determine if a

statement contains causality or not. However, some cue phrases such as "since"

could indicate that causality exists in a sentence and, depending on the context

being used, could also mean time limitation. Therefore, we refer to such cue

expressions as ambiguous. Conversely, some cue expressions such as "because"

that mainly indicate causality in statements are regarded as unambiguous cue

causality.

3.2 Estimating the Complexity of Causal Relation

Some of the examples presented in this thesis contain a simple level of causality, usually

containing both cause and effect. However, because of the introduction of complex

computational systems, a complex level of causality is observed where a statement could

25



contain multiple causes and effects. Therefore, a conjunction ci ∧ cj ∧ ck... ⇐⇒ ei or a

disjunction ci ∨ cj ∨ ck... ⇐⇒ ei, or a combination of both conjunction and disjunction

could be used to connect the causal relation together (e.g., ci ∧ cj ∨ ck... ⇐⇒ ei).

Furthermore, the components of causal relations can be found in many sentences, which

presents a notable challenge for causality extraction because it broadens the scope of

causality identification beyond a single statement. Hence, in this study, n-sentence

causality is also considered where n ∈ [1, 2]. We noted that the complexity of causality

increases with an increase in n, especially for a relation that connects multiple causal

instances together. For example, if an effect of relation ri indicate a cause in separate

relation rj , then the causal relation where rj is dependent on ri is regarded as event link

i.e. ri : ci ⇐⇒ ei and ri : ei ⇐⇒ ej .

3.3 Importance of Causality in Requirement Engineering Practice

The main focus of this study is to explore how causality in REM can improve the RE

practice of the software development process by assisting the practitioners in gleaning

applicable insight for an optimal product in the RE phase. Therefore, some of the key

benefits of causality study to the RE practice in software engineering are highlighted

below.

(i) Causality management helps practitioners to identify the rationale behind some

certain conditions and outcomes during the software evaluation

(ii) The descriptive nature of causality management helps to evaluate the relationship

between different variables or parameters that constitute a system, especially where

the independent variable has occurred.

(iii) Causality study in RE practice helps to understand the modalities of each process

or software development phase. Hence, this understanding helps practitioners to

resolve theoretical and computational issues that may be encountered at any stage
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of the software development life cycle (SDLC) and also helps to optimize product

development strategies.

(iv) Many iterative RE process can be implemented and used in different contexts

because there is an informed understanding of different components of the systems,

making it easy to configure any part of the system component to achieve an

excellent software product.

(v) In order to achieve an effective software product, causality study can be instrumen-

tal to practitioners to estimate the importance and relevance of a particular process

or event during product (software) implementation, testing, and acceptance stage.

(vi) Causal management helps estimate a variable’s historical effect on another variable

during system design and implementation. By so doing, recurrent design and

implementation errors would be reduced to a minimal level.

3.4 Modeling Causality Categorization

To answer our research question and to ensure that our implementation process aligns

with our study goal, we must formulate categories of causality based on the definitions

presented in Section 3.1.3. Making reference to Stubbs et al. [41], the initial stage

of category formation for a NL-based task is to define a theoretical and hypothetical

standard for each category. Therefore, relating this notion to our study, we define a

functional model K with vocabulary V and the relation R0 between each term and

their interpretation J . In essence, the category annotation formation task is modeled as

follows:

* V = {sentence is "causal" or "not causal"}

* R0 = {sentence is "causal" | "not causal"}

* J = {causal definition:: regard a sentence to be causal if there is a relation between two or more events, i.e., event ev1 causes another event ev2. Similarly, a non-causal sentence

¬ causal implies a non-causal sentence if and only if it has an independent event state}
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Based on the theoretical standard evaluated for the categorization and annotation

task, the following are the nine categories that was formulated in this study, and they are:

causality, marked, explicit, unit cause, unit effect, single sentence, event link, temporal

feature, and relationship feature12. Notably, because of the inter-domain unbalanced

dataset, a general rule-of-thumb was formulated for each of the nine categories, which

states that "In a domain Q, sentences originating from other domain other than Q has

similar distribution of values as the domain Q". This notion was also helpful and relevant

in our category annotation task.

3.5 Research Design

For a good research practice, it is imperative to formulate a good implementation design.

Hence, in this section, we discuss the dataset (i.e., the source, form, and exploratory

analysis performed) and the implementation tools considered in this study.

3.6 Dataset Exploration

To fully meet the objectives of this study, it is imperative that we explore datasets that

can fit our machine models. In this section, we present the description of the dataset

explored in this study, such as the source and exploratory analysis, as well as how we fit

them into our machine learning and deep learning models.

3.6.1 Data Source

For us to assert the option regarding the degree to which causality is considered in

REM for practical application, it is expedient that a large collection of REM is extracted.

Therefore, we extracted our dataset based on two key factors: (i) the dataset will not be

centered around a single domain, as multiple domains of interest will be considered. (ii)

12Definition details can be accessed here

28

https://github.com/timzzy/causality_management


the dataset will be REM that has practical applicability (i.e., either currently in use or

has been used in the past). Using these criteria to extract our dataset affords us to have a

generalized and extended notion of causality in RE practice. Our extensive collection of

the dataset was extracted from the collection on kaggle13 containing 675 requirement

documents. We randomly selected 50 documents from the 675 collections spanning

different domains for our analysis. The 50 documents extracted has 12,438 sentences

with statistics presented in Table 2 (and features presented in Table 1) showing the

domain and year distribution. In addition, the percentage of each domain with regards to

the overall dataset is represented in Figure 2. The pre-processing steps and exploratory

analysis performed on the dataset is presented in the section below.

Table 1. Dataset Feature

Feature Explanation Data Type
Id A unique identifier of a requirement

record
Numeric

Description An explanation of a record Text
Log Past record of state changes Classification

List
Creation Date Date of document’s inception Datetime

3.6.2 Exploratory Data Analysis

Our dataset contains RE-sentences that originate from different sources and contains

different degree of error. Training the machine models on an incomplete sentence and

structure-based phrase (such as heading) is not a good practice as we may not get the best

model performance. Therefore, to tune the dataset to conform with training our machine

models, we engaged the following data analysis procedures:

(i) We retrieved the raw texts from the documents by applying the getPage() and

extractText() python function. Further, the extracted texts are put into structure
13https://www.kaggle.com/code/kmader/quickdraw-with-wavenet-classifier
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Table 2. Statistics of Dataset Showing Domain and Year Distribution

Domain
Distribution

Sentence
Count

Year
Distribution

Document
Count

Aeronautical 214 2005 3
Banking 1082 2006 3
Defence 405 2007 1

Smart Society 721 2008 2
Healthcare 1064 2009 4
Insurance 385 2010 4

Science 602 2011 3
Astronomy 407 2012 2
Agriculture 1305 2013 2

e-society 497 2014 1
e-library 136 2015 2
e-analytic 669 2016 4

Automotive 648 2017 6
Communications 1832 2018 1

Energy 1014 2019 2
Sustainability 201 2020 5
Infrastructure 795 2021 2

Regulatory 461 2022 3
Total: 12,438 Total 50

using python’s dataframe object. In addition, we removed both the trailing and

leading white spaces.

(ii) We filter lines that contain irrelevant contents or satisfy at least one of the following

conditions:

(a) If the text begins with the either chapter, figure or table, and/or contains a

page character.

(b) The text has less than 45 characters and does not end with a "!", "." or "?".

(c) The text contains consecutive characters with no grammatical or contextual

meaning. For example, characters such as "..., ???, aaaaa", and "***".

(iii) Enumerate symbols such as "(I) and (a)" are removed.
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(iv) We constructed paragraphs by removing empty lines and combining successive

lines of text. Next, we divided every paragraph into sentences by using the

following rules:

(a) Every line of text that ends with the characters "!", "." or "?" is considered a

sentence.

(b) Every line of text ending with notations such as "e.g., i.e., " is combined with

the successive line.

3.7 Implementation Tools

In this study, we explored the machine learning (ML) classification framework as well

as the deep learning framework as our implementation tools. Specifically, Naive Bayes

(NB), K-Nearest Neighbor (KNN), Ada Boost (AB), Support Vector Machine (SVM), and

Random Forest (RF) are the ML classification algorithms that was explored. In addition,

to have an optimal performance of the algorithms, we applied a 10-fold cross validation
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to harness the selection of optimal hyperparameters for the best model performance.

In Table 9, we highlighted the hyperparameter configurations used for training the

ML models. By applying five ML classification models, we were able to compare the

results obtained from these models and identify the best performing model based on

evaluation criteria. In addition, we applied BERT (Bidirectional Encoder Representations

from Transformers) model as the deep learning (DL) model for training the dataset for

identifying the form of causality in the REM that was explored. This enabled us to extend,

evaluate and compare the results of the ML and DL models as our study is concerned

with obtaining an optimal standard of computational result. In the sub-sections below,

details about the ML (NB, KNN, AB, SVM, and RF) and DL (BERT) models explored

in this study are presented.

3.8 Machine Learning Models

Machine learning is an engineering technique where computer systems observe patterns

and learn from past occurrences [42]. The learning function of a system represents its

ability to improve on a task Ti based on an experience Ei, with respect to a performance

metric Pi to present intelligent predictions about the observed pattern [42, 43]. An

example of a task can be software sales prediction, a crime rate forecast, or anything

else measured using prediction accuracy like the F1-score or root mean square error

and the experience denoted by a historical dataset [43]. More specifically, the ML field

focuses on answering two key questions: (i) How can computer systems be engineered

and configured to optimize their functionality through experience? and (2) What are

the fundamental computational and statistical information rules governing the learning

system? An analytical study of the ML approach is required to answer these ques-

tions. The sub-sections below presents the machine learning frameworks explored in

this study. We used grid search (a 10-fold cross validation) technique to identify the

optimal hyperparameters for each machine classifier by fitting the model on different
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hyperparameter combinations where the best hyperparameter combination is selected.

The hyperparameter configuration of the machine learning algorithms is presented in

Table 9 of Chapter 4. Additionally, for word embedding of our dataset, we explored the

Bag-of-word (BoW) technique, with details presented below.

3.9 Word Embedding Using Bag-of-Word

A bag-of-words model, known as BoW, is a means of extracting text features for modeling

tasks. A BoW is a text representation that clearly defines the appearance of words in a

document based on the glossary of known words [44]. The term bag of words relates

to the fact that any information on the structure or sequence of words in the document

is removed. However, the model is solely concerned with whether recognized terms

appear in the sentence or corpus and not the position it appear. It has been applied to

different natural language tasks over the years (as evidenced by Miller et al. [45]). The

steps undertaken in implementing BoW in NLP tasks involve data collection, vocabulary

designing, and creating document vectors. In this study, we used BoW for our word

embedding task for the natural language models by using the CountVectorizer() in-built

python function.

3.9.1 Naive Bayes

The Naive Bayes (NB) algorithm is a type of ML classification framework that is based

on Bayes’ principle, which proposes that "each class feature contributes independently

and equally to a particular target class" [46]. The primary purpose of the classification

task is to identify the optimal mapping between a given piece of data and a collection

of classes within a certain area of investigation. In order to make the mapping com-

putable probabilistic-wise, given mathematical procedures are engaged to change joint

probabilities into multiplier operations of conditional and prior probabilities.

As a ML approach, it transforms a simple division into a long sequence of numerators
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divided by another long sequence of denominators. The mathematical transformation in

NB computation is required because conditional and prior probabilities are less difficult

to summarize from the dataset. This is done by estimating the number of instances that

satisfies a given condition. To express the operation of the NB classifier, if we consider

our classification problem to consist of g attributes and h classifications, then NB will

compute the mapping accuracy of the attributes (R1, R2, R3, ..., Rn) and classification

set (S1, S2, S3, ..., Sn). Therefore, the accuracy of fitting the vector R1 = w1, R2 =

w2, R3 = w3, ..., Rn = wn into the classification Si is estimated by Bayesian supposition

for computing the maximum probability as represented in the equation below:

P (Si|(R1 = w1 ∩R2 = w2 ∩ . . . ∩Rn = wn))

=
P (Si ∩ (R1 = w1 ∩R2 = w2 ∩ . . . ∩Rn = wn))

P (R1 = w1 ∩R2 = w2 ∩ ∩Rn = wn)

=
P ((R1 = w1 ∩R2 = w2 ∩ . . . ∩Rn = wn) ∩ Si)

P (R1 = w1 ∩R2 = w2 ∩ ∩Rn = wn)

=
P ((R1 = w1 ∩R2 = w2 ∩ . . . ∩Rn = wn)|Si)× P (Si)

P (R1 = w1 ∩R2 = w2 ∩ ∩Rn = wn)

where 1 ≤ i ≤ h

Following the computation of this probabilistic series, next, the fitness variable

between a vector and the possible classification will be quantitatively defined, which

determines the class an attribute is allocated.

3.9.2 K-Nearest Neighbor

The k-Nearest Neighbors (KNN) algorithm is a supervised, non-parametric learning

classifier that employs proximity to predict, classify or predict the grouping of an

observation. The algorithm primarily functions on the notion that similar observations

can be found close to one another. For our classification task, a class label is assigned

34



based on the most frequent label around an observation xi. KNN retains its training

dataset vis-a-vis undergoing training process, which causes it to consume large memory

space. The primary objective of the KNN is to identify the nearest observations of a

given query point for us to assign a class label to such observation. Therefore, for us to

achieve this, we need to define the distance metrics by estimating the closest observation

to a given query observation. The distance metrics assist us in formulating decision

boundaries that divide the query observation into various regions. The distance metrics

considered in this study is the euclidean distance which is limited to vectors that are

real-valued. By applying Equation 1, KNN estimates a parallel line between the query

observations (Ui) and other observation (Vi) in the dataset.

d(u, v) =

√√√√ N∑
i=1

(Ui − Vi)2 (1)

In the KNN algorithm, the value of K defines how many neighbor will be evaluated to

determine the classification of an observation point. For example, if K=1, the observation

in this scenario will be allocated to the same class as the nearest neighbor. Defining the

value of K in KNN significantly determines model output, as the value of K can influence

underfitting or overfitting of the model. However, low values of K could imply high

variance with low bias, while a large value of K could result to low variance with high

bias. Based on Taunk et al. [47], it is recommended that odd number is assigned for K to

prevent classification ties [47]. In addition, data with high noise or variance will likely

perform better with a high value of K. Cross validation technique using grid search is

used to select the best value of K.

3.9.3 Adaptive Boosting

The Adaptive Boosting (AdaBoost) framework is a known approach for constructing an

ensemble classifier by choosing weak component classifiers. The AdaBoost framework
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creates a strong classifier from multiple weak classifiers by discovering combination

of weak classifiers with weight adjustment via a recurrent process, with the original

training dataset remaining unchanged [48]. The core idea of AdaBoost is to establish the

weights of classifiers and train the data in each iteration to ensure accurate predictions of

new observations. Before we implemented AdaBoost, two key actions were engaged to

ensure accurate prediction: (i) we proactively trained the classifier on different weighted

training instances. (ii) For each iteration, we ensured adequate model fit for the dataset,

and this was done by minimizing the training error. The structural implementation idea

of AdaBoost in our study is supported by Figure 2. In this study, we followed seven key

steps during the implementation process of AdaBoost. They are highlighted below:

(i) We assigned equal weight to all our observation

(ii) We built the model on the training dataset, which is (75%) of the total dataset,

while 25% of the dataset was used for testing the model

(iii) We made prediction on the whole dataset with the model developed in (ii)

(iv) We computed model error by comparing the predicted and actual values

(v) When we are developing the succeeding model, we allocated higher weights to

data points that the preceding model does not correctly predict

(vi) We estimated the weight using the error value, which implies that an observation

with higher error implies higher weight allocation to such observation

(vii) We repeated the process (i) - (vi) until we achieved a constant error function or

when we attained the maximum number of an estimator
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Figure 2. Implementation Procedure of AdaBoost Machine Algorithm

3.9.4 Support Vector Machine

Support Vector Machines (SVM) are supervised machine learning algorithms that have

demonstrated success in classification (using pattern recognition) and related tasks over

the years of implementation [49]. In the past, using SVMs for computational tasks was

enabled by factors such as (i) Whilst other machine learning techniques, such as Artificial

Neural Network (ANN), converges to local minima, SVM solutions converge to global

optima. (ii) Rather than minimizing the training error, SVM will minimize the upper

limit of its model’s performance, which thus enables efficient and good generalization

results. (iii) SVM contains a convex optimization feature to attain optimal results [50],

and (iv) The prediction result of SVM is less influenced by outliers in the dataset, which

enables its high degree of efficiency in dealing with high dimensional dataset [49, 50].

SVM functions by partitioning data into two separate groups using a hyperplane, as

shown in Figure 3. The data points in the training set can be classified as belonging to

either of the two partitions. Specifically, SVM splits data points into classes to construct

an optimum hyperplane that maximizes the distance between the data points and the

hyperplane.
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Figure 3. Schematic diagram of Support Vector Machine

3.9.5 Random Forest

Random forest (RF) is one of the recent machine models that have been applied for

classification analysis [51]. RF addresses classification problems by generating multiple

decision tree branches during model training and uses an internal metric to determine

the value of best tree branch. We are implementing an optimized RF in our research

experiment as one of the ML models resulted in high performance. In Equation 2, we

present the mathematical expression responsible for the formation and operation of the

RF machine learning algorithm.

y(xi) =
1

H

H∑
n=1

Tnxi (2)

where H represents the number of trees in the forest, and Tn indicates individual

trees in the forest (computational field).
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3.10 Deep Learning Technique

Relating to the emergence of Deep Learning (DL) in recent decade, an increasing

number of research activities are employing DL models to solve problems involving

natural language. Our study explored the Bidirectional Encoder Representations from

Transformers (BERT) model, which represents a branch of deep learning framework,

especially for NLP tasks. The operation of BERT is notable and has been applied to

different NLP-based research, such as the study of Devlin et al. [52] in which it was

considered for solutions to question and NER (i.e., named entity recognition). BERT

model is architectured on a 12 layer transformer-based ML encoding framework for

natural language processing (NLP) pre-training [53]. It is intended to pre-train deep

bidirectional representations from an unlabeled dataset by relying on both left, and right

context simultaneously in all levels [52]. As a result, the pre-trained BERT model could

be fine-tuned with just one extra output layer in its implementation structure to provide

cutting-edge model results. In this study, we employ BERT’s fine-tuning approach to

assess its ability to identify causality in REM.

For our implementation, first, the token for each sentence is generated because

BERT necessitates input sequence length (usually, the maximum acceptable length is

512). Therefore, we applied padding tokens to sentences that are less than the fixed

length to bring all the sentences to a uniform length. In addition to the padding tokens,

classification tokens were added to give additional details (of the sentence) as model

input. The classification token was configured and represented as the sentence sequence’s

first token to evaluate the sentence as valid model input. Next, the whole sentence token

was transmitted to the single layer feed forward neural network configured with softmax

(activation layer) for calculating the probability of determining causality in a sentence. In

our implementation, we configured the BERT model in three varieties, and we evaluated

their performance. The three forms are Base-BERT, PoS-BERT, and Dep-BERT.
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In the Base-BERT architecture, we tokenize sentences as described above and feed

them into the classifier. To estimate the length of the input sequence, we performed an

analysis on our dataset, and we decided to use 128 as the fixed length of our token to

satisfy the minimum acceptable length required by the BERT algorithm. Secondly, for

the PoS-BERT architecture that was considered in this study, existing studies reported

and proved that supplying precise previous representation of syntactic schemas to the

model can increase its performance (Dinghan et al. [54]). Therefore, we considered this

in our implementation by adding the associated part-of-speech (PoS) identifier to the

tokens (this functionality was handled by the spaCy library14). An approach that was

used for input sequence encoding and their respective identifier (tags) is by concatenating

the tokens using PoS tags (i.e., hot encoded vector). But due to the high dimensional

requirement of the BERT token [52], the effect of the PoS tag is minimal. Therefore, we

concluded that syntactic knowledge would have a better influence, especially if the input

(i.e., sentences) are annotated using PoS identifiers. Next, the annotated sentences are

transmitted to the BERT model. The work of Stephan et al. [55] proves the validity of

this method. In Figure 4, we presented the pictorial representation of our BERT PoS tag

embedding into the input sequence. Owing to the extension of the input sequence, the

fixed BERT model’s length was adjusted accordingly to 368 as opposed to 128 token

that we used in Base-BERT.

Figure 4. Input sequence showing configuration of the BERT model. PoS identifiers are
highlighted in red, while Dep identifiers are highlighted in green

14https://spacy.io/
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It typically involves an adverbial phrase. Lastly, the Dep-BERT implementation

was similar to the configuration of PoS-BERT. Still, in this case, we used dependency

tags (Dep), which are linguistic features (such as grammatical and lexical class) instead

of PoS tags (as shown in Figure 4). Therefore, more details about the grammatical

formation of the sentence is provided. In this Dep-BERT, we concluded that the model

performance could be improved by adding the dependency features, as causal relation

follows a grammatical structure, i.e., it typically involves an adverbial phrase. With this,

the classifier would be able to learn certain grammatical patterns during the training

process. In this architecture, we also used 368 as the fixed length of the input sentence

tokens into the model.

3.10.1 Tokenization

In Natural Language Processing (NLP), tokenization is a typical task. It is a crucial

component in both classic NLP approaches, such as advanced deep learning designs,

and count vectorizer, such as transformers [53, 56]. Tokenization involves splitting a

piece of text into smaller components known as tokens (converted to bit representation).

In this context, tokens can be letters, sub-words, or words. In this study, we used

the sentence and word tokenizer function from the natural language tool kit (NLTK)15.

Tokenization choices considerably impact future evaluation of the sentence (or word)

that is splitted. Although tokenization is language sensitive and could be computationally

costly, especially for big corpora, as considered in this study, we are able to manage and

implement it adequately for training our language models.

3.11 Evaluation Metrics

Using human annotators for the dataset application of ML and DL models as classi-

fication algorithms equally requires an efficient evaluation technique to monitor their

15https://www.nltk.org/
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performance. Therefore, in this study, we explored Cohen Kappa technique for evaluat-

ing the annotator’s activity, while recall, accuracy, precision, and F1 score are used to

evaluate the ML and DL classification model. Details of the evaluation frameworks are

presented in the sections below.

First, we will define the hypothetical representation of the evaluation metrics which

formulates their inference. They are: (i) True Positive (TP), (ii) True Negative (TN),

(iii) False Positive (FP); and (iv) False Negative (FN). While TP is the situation where a

classification model accurately predicts the positive class, TN is the situation where a

classification model accurately predicts the negative class. Conversely, FP refers to an

instance where a classification model incorrectly predicts positive class, and FN refers to

an instance where a classification machine model incorrectly predicts the negative class

from a set of observation [43].

3.11.1 Cohen Kappa Measurement

In the annotator task, the Cohen Kappa statistic is a measure of inter-rater agreement (or

precision) when categorical data items are annotated [57]. In this study, we explored

the Cohen Kappa statistic to assess the degree to which our annotators present the same

predictions for each annotation category. Cohen Kappa was considered in this study

because of its wide usage for annotation tasks and evaluating inter-rater’s dependabil-

ity in different research fields. For example, the Cohen Kappa measure was used by

Blackman et al. [58] and Alyse et al.[59] in their study to compute inter-rater reliability

for their annotation tasks. In Table 3, we present the Cohen Kappa’s standard score

rating and how the values are interpreted. Cohen Kappa’s score is within the range

of 0 to 1, with 0 showing less agreement between the annotators and 1 showing high

agreement between the annotators. To implement Cohen Kappa score, we considered the

cohen_kappa_score() inbuilt python function from the sklearn library to estimate the

Cohen Kappa’s value for our annotators, and the result obtained is presented in Table 4.
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The mathematical formulae for estimating Cohen Kappa’s measurement is presented by

Equation 3.

Table 3. Cohen Kappa Interpretation of Score Distribution [1]

Cohen Kappa Value Interpretation
0 No agreement

0.10 - 0.20 Little agreement
0.21 - 0.40 Moderate agreement
0.41 - 0.60 Average agreement
0.61 - 0.80 Considerable agreement
0.81 - 0.99 Significant agreement

1.0 Absolute agreement

CK =
X0 −Xe

1−Xe

(3)

Where X0 represents the observed agreement between raters, while Xe is the theo-

retical probability of agreement. For example, consider two input sets containing the

annotation from two different annotators A and B, such that A = (0, 0, 1, 0, 1, 1, 0, 0,

1, 1, 0, 1, 0, 1, 0) and B = (1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0). Then applying the

cohen_kappa_score(A,B) function estimates the Cohen Kappa value to be 0.32. Hence,

based on the interpretation highlighted in Table 3, the annotators have moderate level of

agreement.

3.11.2 Recall

In ML classification task, recall refers to the number of correctly identified instances that

are predicted correctly out of the total applicable instances [60]. It measures the ratio of

identified TP from an observation. Mathematically, recall, otherwise referred to as the

true positive rate is computed by applying Equation 4 below.

Recall =
TP

TP + FN
(4)
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3.11.3 Accuracy

Accuracy is defined as the measure of model performance across all prediction class

[60]. In essence, accuracy is the fraction of the correct model prediction, which is

mathematically expressed as the ratio of total correct predictions to the total predictions

as shown in Equation 5.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

3.11.4 Precision

Precision metrics in classification task refers to the ability of a classification model

to correctly identify the suitable and relevant data points [43]. Mathematically, it is

computed by dividing the summation of TP and FP by TP, as presented in Equation 6.

Precision =
TP

TP + FP
(6)

3.11.5 F1-Score

The F1-score in machine classification task is the harmonic mean (or the weighted

average) of the recall (completeness) and precision (exactness) which measures the

overall accuracy of a model prediction [60]. Equation 7 describes the mathematical

formulae explored to compute the F1-score of the models explored in this study.

F1− score = 2 ∗ Recall ∗ Precision

Recall + Precision
(7)

In Figure 5, we summarized the implementation procedures that was explored for

satisfying our study goal.
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Figure 5. Summary of Implementation Procedure

3.12 Annotation of Dataset

The annotation process involves labeling the dataset by humans based on the directives

and guides given to them. The annotation task is a major part of the study, as sentences

were studied and labeled accordingly to their respective categories. To aid the annotation

process, we developed a database of cue phrases.

3.12.1 Annotation Rules

Prior to the labeling procedure, we held a training with all annotators to establish a shared

knowledge of both causality and the associated categories. The annotation task was

performed by seven annotators, two from UT in Estonia, three from WITs University

in South Africa, and two from OAU in Nigeria. The annotators are comprised of both

honors and masters student in the computer science and information technology field.
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These are the candidate that showed interest in the data annotation procedure as part

of exercise to improve their research insight. The annotation task also allowed them

to explore natural language analysis in research. Notably, we conducted three training

session via google meet where the modus operandi and the rules governing the efficiency

of the annotation task was discussed. A major instruction to the annotators is to adhere

to the annotation rules and guides to maximize the result of the annotation process. The

distribution of the 12,438 sentences are as follows: each of the annotators from UT,

OAU, and WITS University were allocated 1000, 2000, and 2146 dataset, respectively.

Although we specified an expected duration to complete the annotation task as 30 days,

we got the last annotation batch from one of our annotators at WITS university after 47

days due to unforeseen logistic concerns.

One important guideline for annotators is to avoid labeling sentences as causal only

based on cue phrases. This is so because this strategy is prone to an excessive number of

False Positives. Therefore, we proposed that instead of focusing on the sentence’s syntac-

tic or lexical features, the annotation process must begin with a thorough comprehension

of the phrase, especially on semantic level. For instance, one of the sentences reads "if the

dashboard’s functionality is connected to the application programming interface (API),

then, recent data from is supplied to the dashboard on a frequent basis". In this case,

the presence of the cue phrase "if " does not imply a causal sentence; hence, annotators

need a proper understanding of the sentence semantics. Another major instruction to the

annotator was to assert if the effect is totally dependent on the cause before a sentence is

referred to as causal. Thus, it is important that an artifact containing annotation guide is

given to the annotators to ensure an efficient annotation process. The annotation guide

can be found here, while the annotation result of this study is presented in Section 4.1 of

Chapter 4.
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3.13 Implementation Environment

The programming language used for modeling the machine learning and deep learning

algorithms is python version 3.9.1516, which was deployed via jupyter notebook17. All

our codes were deployed using Linux operating system machine powered by a graphic

processing unit (GPU) processor. On average, the execution time per code run is between

thirty minutes because of the natural language being processed.

16https://www.python.org/
17https://jupyter.org/
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4 Result Analysis

This study is concerned with causality management as it relates to requirement engineer-

ing (RE) and its applicability to practitioners, particularly by considering the causality’s

scope, complexity level, and structure. In Chapter 3, we described the machine algo-

rithms used for the implementation phase and the dataset exploration. In this chapter,

we present our study results, ranging from the data analysis to annotation guides and

causality distribution by the machine algorithms. Lastly, we showed how we have been

able to answer our research question based on our implementation analysis.

4.1 Annotation Assessment

The annotation guidelines are presented in Section 3.12, which describes the procedures

taken for the annotation task. We considered evaluating the degree of agreement of

the annotations to measure our annotation reliability. To distribute the dataset, a total

of 12438 sentences was allocated to the annotators comprising at least 1000 distinct

sentences and 1200 overlapping sentences. The overlapping sentence was used to evaluate

the inter-annotator agreement by applying the Cohen Kappa (CK) measure described in

Section 3.11.1 to measure the correlation of annotators in classifying sentences to the

same category. In Table 4, we present the overview of the measure of inter-annotator

agreement, accuracy, and confusion matrix based on each category. For the causality

category, the annotator agreement was estimated based on the 1200 overlapping sentences

because other categories depict the other causality types. Only sentences labeled as causal

were used to estimate the inter-rater agreement. From our analysis and evaluation, we

are able to ascertain the reliability of the agreement of our inter-rater annotations.

By observing all the categories based on Table 4, we noticed that an average of 79%

was achieved as inter-annotator agreement, excluding the unit cause and unit effect,

all the categories presented has an agreement of at least 81%. We concluded that the
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low values of 77% for the two categories was attributed to the annotator’s experience

and intuition. For instance, an annotator A could decompose a sentence into different

sub-causes and effects while another annotator B does not; hence, this influenced the

difference in the inter-annotator’s annotation agreement.

The Cohen Kappa’s measure is particularly prominent for the event link and marked

categories because, irrespective of the high degree of agreement of over 97.4%, CK

resulted in a very low value, which implies a minimal degree of agreement. In addition,

we observed that the mean value for all the categories is around 0.7, which suggests a

close range of agreement. Hence, we concluded that our dataset is suitable and reliable

for additional analysis as well as the development of our causality detection framework.

In addition, this was evidenced by the descriptive analysis performed on the dataset to

align with answering our research questions. Based on this, we formulated that, for

every category, We evaluated the independent relationship between the distribution of

requirements to a category and their connection with a specific domain. The detailed

result obtained from the annotation process is presented in Figure 6, showing the category

distribution and causality-type labeling. Further, in Tables, we present the percentage

of cue phrases per domain and the most accurate and least accurate cue phrases. By so

doing, we are able to evaluate the impact of these cue phrases on RE practice through the

analysis of the REM.

Table 4. Statistics of Inter-annotator Labeling per Category

Causality Marked Explicit
Unit

Cause
Unit

Effect
Unit

Sentence
Event
Link Average

0 1 0 1 0 1 0 1 0 1 0 1 0 1
Confusion

Matrix 0 2149 213 15 104 74 136 82 239 94 162 328 105 728 184
1 382 741 23 612 58 516 132 293 53 204 47 492 83 28

Annotation
Agreement 73.3% 84.5% 91.6% 83.3% 73.1% 97.4% 70.3% 80.5%

Kappa’s
Factor 0.64 0.71 0.68 0.59 0.48 0.76 0.64 0.64

In Figure 6, we show the annotation results obtained for all the causality categories.

Further, we present the label distribution values in Table 5, showing the result obtained
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from allocating the annotation into different causal groups for all domains considered.

However, it is worth noting that our analysis covered all the functional and non-functional

requirements because they are the ones relevant to this study. For example, some of the

non-functional requirements identified in the study include expressions that focus on

product objectives, content arrangement, etc.

Figure 6. Category Distribution of Annotation Result

From our implementation analysis, we deduced and concluded that using only the

cue phrases as a key (or only) determinant to detect and classify a sentence as causal or

non-causal is not sufficient. Using the five machine learning language (explored in this

thesis) and the variation of BERT models showed the strength of applying a ML-based

model for detecting and extracting causality in REM based on their performance, as

evidenced in the results presented in Tables 8, 4, 9, and 5.

Based on the evaluation of the ML models used for classification, the performance

ranking of the models showed that Naive Bayes (NB) was the best performing model with
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an accuracy of 84%. Similarly, Dep-BERT performed best from the variation of BERT

models considered in this study with an accuracy of 89%. Based on this, it is clear that

the overall best performing model is the DL approach. Interestingly, all three variants of

the BERT model performed excellently with an f1 score greater than 78% (i.e., f1 > 75%)

for both causal and non-causal sentences. Interestingly, we observed that adding syntactic

details to the input sequence does not improve model performance. Conversely, one of

the BERT variations, i.e., PoS-BERT, performed low when the syntactic information was

added with an accuracy of 73%, which differs by 3% when compared with base-BERT.

However, there was an increase in performance for Dep-BERT owing to the highest f1

and accuracy score of 86% for the causal and non-causal class.

Furthermore, when compared with the machine learning algorithms, Dep-BERT has

an improvement of about 7.1% increase in recall and about 12.4% increase in precision.

Interestingly, Dep-BERT outperforms both Base-BERT and PoS-BERT across all the

evaluation metrics with a small difference. Based on this, we noted that Base-BERT has

an understanding of the deep learning language, which can be attributed to the rigorous

pretraining process, which could be configured to detect causality without many input

configurations. Lastly, it is worth noting that applying dependency tags (showing the

relation between words in a sentence) has a relatively small but significant effect on the

overall performance of the model. In essence, our findings have been able to uncover

the key features and concept of causality in the RE practice. The scope, complexity,

and structure of causality in REM, which determines its impact on RE practice, have

been studied and analyzed. Hence, we can make a remark that causal analysis in RE

contributes immensely to the quality of the computational product in view (based on

domain and architecture type).

We extracted the causal cue expression from our annotation analysis and categorized

them into their grammatical class as shown in Table 6. Next, we present the cue phrases

in Table 7 to indicate their focus as a prevent, cause, or enable relationship. Furthermore,
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to evaluate the degree of ambiguity of a cue phrase J , a binary classification task was

formulated regarding all the extracted sentences as the sample space. To compute the

precision of a cue phrase J in the sample space, we considered a conditional probability

(as shown in Equation 8) of a causal sentence as the presence of cue phrase J , thus

indicating the degree of ambiguity of the cue phrase. If the distribution that a sentence

is causal is given as Ci, and Di represents the distribution that a sentence contains cue

phrase J , then the conditional probability is expressed as:

p(Ci | Di) =
p(Ci) ∩ p(Di)

p(Di)
(8)

The precision with high values signifies a cue phrase that is not ambiguous. That is,

the sentence is regarded as causal owing to the identified cue phrase. Conversely, a low

precision value signifies an ambiguous cue phrase. From the analysis presented in Table 6,

it is clear that various cue expressions could signify causality in REM. Interestingly, we

observed that cue phrases such as therefore, if and because has a very high precision with

minimum value of 86%. However, we equally observed that some cue phrases indicating

causality in sentences also find expression in some non-causal scenarios, especially for

cue phrases that are pronouns and verbs. But in general, the presence of verbs and

pronouns as cue phrases in a sentence does not imply a causal sentence.

Table 6. Cue Phrases used for Identifying Causality Based on Grammar Features

Grammatical

Group

Cue Phrase Causal Non

Causal

Precision

Adverbs As a result 16 9 0.64

Due to 93 28 0.77

Since 60 27 0.69

Whenever 11 2 0.85

Continued on next page
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Table 6 – Continued from previous page

Grammatical

Group

Cue Phrase Causal Non

Causal

Precision

Then 121 80 0.60

Therefore 72 17 0.81

Consequently 6 10 0.34

Rather 36 53 0.40

To this (or that) end 18 2 0.90

Thus 56 7 0.89

Where 223 124 0.64

When 343 68 0.83

Based on this 4 2 0.67

Hence 31 10 0.76

Conjunctions In order to 164 24 0.87

As long as 32 2 0.94

Unless 12 3 0.80

Except 4 6 0.4

Because 82 12 0.87

Once 58 25 0.69

So that 184 43 0.81

If 497 142 0.78

As 597 12 0.98

But 203 318 0.39

Prepositions After 234 86 0.73

During 439 106 0.80

With 690 1230 0.36

Continued on next page
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Table 6 – Continued from previous page

Grammatical

Group

Cue Phrase Causal Non

Causal

Precision

As far as 6 50 0.10

Around 219 103 0.68

Upon 402 324 0.55

Through 193 493 0.28

Upon 35 58 0.38

In response to 13 18 0.42

In case of 725 638 0.53

Until 69 32 0.68

As part of 49 44 0.52

From 869 1432 0.37

Based on 51 165 0.23

In both cases 4 1 0.80

Before 72 31 0.69

In the event of 26 9 0.74

According to 44 53 0.45

For 2672 3046 0.47

Adjectives Prior to 181 29 0.86

Given 78 146 0.34

Only 176 101 0.64

Imperative 6 11 0.35

Necessary 34 16 0.68

Pronouns Who 48 126 0.28

Which 388 916 0.29

Continued on next page
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Table 6 – Continued from previous page

Grammatical

Group

Cue Phrase Causal Non

Causal

Precision

Whose 49 23 0.68

That 933 173 0.89

Table 7. Cue Phrases used for Identifying Causality in REM Based on Causal Features

Causal Feature Cue Phrase Causal Non

Causal

Precision

Cause Imply 28 49 0.36

Result 149 93 0.62

Lead 16 3 0.84

Force 201 153 0.57

Reduce 37 83 0.31

Attain 8 45 0.15

Perform 382 724 0.35

Create 84 210 0.29

Eliminate 12 84 0.13

Impose 27 82 0.25

Imply 91 219 0.29

Trigger 492 239 0.67

Maximize 399 639 0.38

Minimize 628 493 0.56

Degrade 372 38 0.91

Enable Necessitate 14 4 0.78

Achieve 389 183 0.68

Continued on next page
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Table 7 – Continued from previous page

Causal Feature Cue Phrase Causal Non

Causal

Precision

Rely on 18 22 0.45

Need 198 262 0.43

Allow 284 192 0.59

Depend on 429 320 0.57

Meet 73 69 0.51

Provide 193 421 0.31

Support 938 369 0.72

Ensure 634 227 0.74

Permit 320 294 0.52

Enhance 92 39 0.70

Enable 328 284 0.53

Require 931 729 0.56

Get 614 409 0.60

Prevent Avoid 74 183 0.29

Hinder 14 1 0.93

Mitigate 19 104 0.15

Prevent 249 14 0.95

Figure 7 illustrates the causality distribution in sentences across different domains

(highlighted in Table 5). We ensured that a minimum of 120 sentences were extracted

from each domain for a valid implementation analysis. Empirically, we observed that the

percentage of a causal sentence in the REM is between 1.3% to 19.6% across all domains,

which shows the importance and relevance of causality to all domains of interest but

with a different statistical level of significance. The domain with the lowest and highest
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percentage of causal relations based on all the sentences extracted from the 50 REM

are infrastructure and science, respectively. Based on these findings, we can conclude

that, to a certain degree, the distribution of causal values for all the categories is not

dependent on the domain but on the influence of requirement goals, practitioner interest,

and requirement developers. This is evidenced by the information provided in Table 8

showing the accuracy of the cue phrases across all the domains from the dataset.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Value in Percentage (%)

Aeronautical
Banking
Defence

Smart Society
Healthcare
Insurance

Science
Astronomy
Agriculture

e-Society
e-library

e-analytics
Automobile

Telecommunications
Energy

Sustainability
Infrastructure

Regulatory

Do
m

ai
n 

Di
st

rib
ut

io
n

2.3
5.1

2.6
2.9

7.5
5.2

19.6
2.5

4.6
8.3

12.3
1.5

7.4
7.2

3.2
2.8

1.3
3.7

Figure 7. Causality Distribution Across Domain

Based on the information provided in Table 8, the cue phrase "if, when, where" was

observed to be the three most used cue phrases across all the domains. The percentage

distribution presented in Table 8 aligns with the evaluation reported in Tables 6 and 7,

which also support our analysis that distribution of cue phrases is not associated with any

domain. Evaluating the percentage of cue phrases for each dataset domain as presented

in Table 8 helps us to aggregate our findings regarding identifying causal sentences in

REM. Particularly by analyzing the impact of the cue phrases in causality detection in

REM.
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Table 8. Percentage of Cue Phrases per Dataset Domain

Domain
Most

Recurring
2nd Most
Recurring

3rd Most
Recurring

Aeronautical therefore (11.4%) if (5.2%) in order to (4.8%)
Banking during (9.1%) so that (5.6%) when (2.4%)
Defence to ensure (13.6%) if (4.8%) for (2.7%)
Smart City result to (12.4%) lead to (32.9%) enables (22.5%)
Healthcare allows (16.1%) when (8.4%) as far as (2.4%)
Insurance increase (11.7%) while (10.3%) to provide (3.7%)
Science based on (8.2%) if (3.2%) through (2.5%)
Astronomy enables (14.5%) allows (12.2%) ensure (5.7%)
Agriculture will require

(6.2%)
therefore (5.2%) if (2.1%)

e-society allows (8.4%) during (4.7%) when (2.8%)
e-library if (4.2%) requires (3.2%) where (2.3%)
e-analytics therefore (12.4%) if(32.9%) in order to

(22.5%)
Automobile cause (5.3%) reduce (3.4%) since (2.9%)
Telecommunication through (5.4%) unless (4.3%) allows (3.8%)
Energy where (15.8%) enable (4.3%) within (3.1%)
Sustainability during (9.5%) when (7.3%) once (5.2%)
Infrastructure to get (7.2%) which (6.9%) so that (2.7%)
Regulatory when (12.4%) during (32.9%) through (22.5%)

4.2 Hyperparameter Selection and Configuration

In order to ensure the optimal performance of our language and machine learning

models, we performed a tuning operation on all the models by implementing a 10-fold

cross validation technique. This method evaluated the search space for each model and

presented the parameter combinations with the best model result based on the training

dataset. Hence, each parameter value was noted and used to configure the model for the

final classification task. The optimal parameter values with the best performance for all

the models considered in this study is presented in Table 9.
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Table 9. Model Hyperparameter Selection

Model
Optimal

Hyperparameter Precision Recall F1 Accuracy

Machine
Learning

Algorithm

NB Kernel: rbf, Estimator: Gaus-
sianNB(), Verbose: 1, Num-
ber of Jobs: -1

0.75 0.62 0.82 0.85

KNN Leaf size: 40, Number
of neighbor: 20, Distance
method: Manhattan

0.84 0.71 0.77 0.84

AB embed: Learning rate: 1,
Number of Estimator: 80,
Base estimator: Decision
tree classifier, Estimator
weight: 100

0.62 0.71 0.88 0.60

SVM embed: Kernel: rbf,
Gamma:100, Cache size:250,
Shrinking: true, Verbose:
false, Maximum Iteration: 1

0.87 0.75 0.68 0.81

RF Max features: 15, Max depth:
8, Min split: 4, estimator: 35,
Bootstrapping: True, Min
leaf: 14

0.81 0.71 0.69 0.79

Deep
Learning

Algorithm

Base-
BERT

Learning: 2e-4, Batch size:
32, Optimizer: adam, Train-
ing epochs: 4, Maximun se-
quence length: 128, Random
state split: 42

0.69 0.72 0.61 0.70

PoS-
BERT

0.80 0.72 0.83 0.74

Dep-
BERT

0.66 0.72 0.74 0.69

4.3 Answers to Our Research Questions

We present the descriptive summary of our research questions in this section. The answer

to these research questions assisted us in unpacking the measures needed to achieve our

study goal and giving direction to our research activity.
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• RQ1: To what extent is causality present in REM?

Making remarks to Figure 6, we can ascertain that causality does occur in REM

to a notable extent. From our analysis, about 31% of the sentences are causal.

Hence, we can aggregate our findings to prove that causality is a major linguistic

component or REM because of its ratio in the total sentences explored for this

study

• RQ2: How complex is it to identify and establish causality in REM?

As illustrated by Figure 6, many causal relation in REM has only one cause (of

about 14.3%) and about 85.7% multiple cause. The presence of some complex

causal relation accounted for the high number of multiple causal relation in sen-

tences extracted from REM. We also noted a similarity in the sentence’s distribution

of effect and cause. But a single effect has more occurrence than multiple effects,

and this could be attributed to limited number of effects (between two and three)

even for complex relations. Based on the analysis, many of the single sentences

have causal relation. Conversely, approximately 22% of the sentences has cause

and effect deployed in at least two sentences. Also, by evaluating sentences with

marked type, we observed that cue phrases before and thus has the highest number

of usage. For the category labeled as event link, we observed a very low occurrence

in sentences extracted from the REM. Furthermore, our findings show that many of

the causal sentences are made of a separate causal relation, and about 13% contains

event link category.

• RQ3: What is the level of causal ambiguity in requirements?

We noted that one (or more) cue phrases are present in many of the causal sentences

as shown in Figure 6, which represents the clear existence of causal relation

between some particular events. From the annotation task, we noted that about

18% of the sentences are regarded as an unmarked causal relation. Further, we
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observed that about 13% of the causal sentences are implicit. Similarly, many of

the sentences that are categorized as causal are explicit, implying that they contain

adequate information relating to the cause and effect (as defined in Section 3.1).

• RQ4: How frequent does causal relations (such as enable, prevent, and cause)

appear when analyzing requirement manuscript?

From the REM, we observed that many of the causal sentences (about 49%) refer

to enable causal relation between some activities. Notably, about 19% of the causal

sentences identified are regarded to have a prevent causal relation. Further, 32% of

the causal sentences contain cause relation from the REM explored in this study.

• RQ5: What is the degree of influence of temporal relations (such as during,

overlap, and before) in a REM?

Empirically, we identified an approximate occurrence of cause and effect in a

during and before relation. The before relation constitutes the most re-occurring

temporal relation from the REM that was considered in this study with a margin of

about 7% when compared with the during relation. Then, we observed that only

about 5% of the sentences contain an overlap relation.

Overall, we attributed the strength of the causality detection and classification models

to be significant when dataset from multiple domain is considered as it aids the model

training capabilities, hence, robust functionality and applicability of the models can be

guaranteed. In the next chapter, further discussion about our results as well as the use

cases of causality is presented.
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5 Discussion of Result

We presented the results obtained from this study in Chapter 4 of this thesis and the

impact of different components of the conflict detection and resolution framework. In

this chapter, we will expand more on the results presented in Chapter 4.

5.1 Significance of Causality Detection and Extraction

Making remarks on our study findings, we were able to deduce the following regarding

causality management; (i) Causality is dominance in REM, hence, its relevance in RE

practice. Based on this, researchers are inspired to implement applicable and novel

frameworks for detecting and extracting causal relations and causal requirement for

different analytical and research purposes, as well as identifying the impact of causality

in REM. Although causality may tend to be complex to identify in some cases, the

complexity could still be managed efficiently based on the researcher’s understanding

of the research direction. However, suppose the causality detection and extraction

approach is aimed at being applied in practice. In that case, a proper understanding of

conditions powered by multiple cause and effects is required for justifiable applicability.

To this end, high degree of lexical and grammatical knowledge should be attained. They

include proper comprehension of grammar elements such as conjunctions, negations,

and disjunctions, as it will be required effectively to manage cause and effect relations

for practical application.

However, we noted that event link and two-sentence-based causality have rare oc-

currences in REM. Similarly, explicit causal relation dominates implicit causal relation

reducing the causality detection and extraction process. Furthermore, we observed that

by analyzing the precision variable, many of the cue expressions used are indefinite

(claim also evidenced by Stouby et al. [61]). In general, causal detection and extraction

demand a high level of understanding of grammatical structures, as cue phrases are
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insufficient to determine causal sentences, especially as new terms surface in RE practice.

Hence, it is imperative for researchers to understand grammar, syntax, and semantics

accurately to ensure the reliability of findings.

5.2 Effect of Causal Relation in Engineering Practice

Leveraging on the assertion of our findings regarding the scope, complexity, and structure

of causality, it interests us to substantiate the effect of causality in RE practice. Hence,

our investigation involves identifying the effect of causality in RE features. Based on

this, we regard the features to mean factors that are particular to each requirement, such

as span time. Two main goals motivated us to engage in the exploratory procedure.

First, we presented an independent case study of the causality identification technique

(e.g., as presented in Section 5.3) with the methods described in Chapter 3. Based on

this, we considered causal occurrence as part of the factors for determining requirement

competence which is evaluated by the capability of the causal detection technique. Using

a computation approach for detecting and extracting causality for NL requirements (as

considered in this study) fosters causality eligibility as a significant part of determining

requirement performance. Secondly, combining and analyzing evidences of the factor

as mentioned earlier by evaluating the relationship between causality requirements and

features of the requirement.

5.3 Use Case of Causality in Requirement Engineering

To demonstrate the applicability of this study in the requirement engineering practice, we

present two key use case where our findings is relevant and applied. They are presented

below:

1. Generating Test Cases: In software testing, generating test cases is one of the

major tasks, and in most cases, it could be strenuous [62]. According to Garousi
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et al. [63], the lack of appropriate computational tools is a major limitation to

generating test cases by practitioners. Most test case derivation relies on formal or

semi-formal representation of test cases, evidenced by the ambiguity of interpreting

NL [64]. However, practitioners must be well informed about the formation and

system behavior of the product requirement in view to support their argument. In

essence, the causal relations that determine the combination of the cases (covering

both positive and negative cases) must be understood.

For instance, if we consider this scenario: if the user exceeds 21 years and has a

proper driver’s licence, then the system should not levy an extra charge during

checkout. We can extract two causes in this case: C1 - user is older than 21 years;

and C2 - user provides valid driver’s licence. This implies that effect depends

on the cause, which are linked by a conjunction, which can be represented as

C1 ∧ C2 ⇐⇒ e1. In current practice, practitioners manually extract causal

relations and identify the cause(s) and effect scenarios relevant to the test case.

This practice is not overwhelming but could also imply low level of accuracy,

especially for large and complex requirements, because, generally, in practice, the

potential test cases identify grows by 2n, where n represents the number of causes

[64].

Therefore, for software testing and RE practice, extraction of test cases together

with automated derivation of test cases needs to align to ensure an efficient propo-

sition by practitioners. This is advantageous because the proposed system behavior

is automatically interpreted, and there is an extended test scenario because they

are determined and identified by heuristic factors. Therefore, there is a need for

a high degree of precision for this use case because false positives could cause

invalid test cases, and a low estimate of recall could lead to omitted test cases,

which depicts inaccuracy. In essence, a thorough evaluation and monitoring of the

recall and precision is important because, due to human factors, human error in
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false positives is inevitable.

2. Detection of Dependencies in Requirements: The level of increase and complexity

of modern computational systems equally implies complex requirements [63].

Also, managing relations that exist in complex requirements could be tedious due

to the unrestricted use of NL in requirements, resulting in a faulty system design.

Additionally, solid system requirement knowledge is necessary to articulate the

resultant effect of the modular updates (or reconfiguration) on the entire system’s

functionality. Our study submits that automated extraction of causality from REM

can assist semantic comparison by careful analysis of causal relations empirically.

Therefore, we assert that Causality detection and analysis contribute largely to the

detection of dependencies as well as their types in requirement engineering. This

claim was also evidenced by the study of Anne et al. in [61]. To illustrate this

claim, four major requirement categories are considered and are described below:

∗ Redundancy in Requirements: This describes a situation where one or more

requirement depicts similar behavior of the system. In this case, practitioners

or requirement engineers should consider only one of the requirements and

exclude the others to constrain the requirement collection. This could be

denoted by: c1 ⇐⇒ e1 is coherent to c1 ⇐⇒ e1.

∗ Inter-Requirement Dependency: This type of requirement describes how one

requirement is linked with another requirement. For instance, if an effect in a

causal relation r1 is a cause in another causal relation r2, then there is high

probability that r2 is dependent on r1. In this requirement type, requirement

traceability is easy for the practitioners, such that if there is change in r1,

they could accurately predict the requirements that could be affected by this

change. Hence, this notion boosts the efficiency of their RE practice during

product design and product modification, i.e., c1 ⇐⇒ e1 depends on
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e1 ⇐⇒ e2.

∗ Contrasting Requirements: In this requirement category, there is contradiction

in causal relations; requirement content conflicts with each other. This is

disadvantageous because it could result in instability in product design. In this

requirement type, practitioners remediate this issue by proper investigation

practice from end users, i.e., c1 ⇐⇒ e1 contrast c1 ⇐⇒ ¬e1.

∗ Requirement Modification: When the system functionality defined in a re-

quirement is precisely defined in another requirement. For example, if a

causal relation r1 defines a subset of another relation r2, then this type

of requirement implies that r1 modifies r2. The computation formation is

represented as: C1 ⇐⇒ e1 modifies C1 ∧ C2 ⇐⇒ e1.

5.4 Relevance of Causality Detection

The exploratory findings of this study w.r.t causality study show the degree of relevance of

causality in RE practice. The small degree of feature correlation and their effect affirms

that causality is not just significant but definitely a major variable during requirement

feature analysis. This notion is important and relevant in practice, especially during

product auditing and product performance feedback for practitioners. In general, proper

investigation and insight into causality management can improve the efficiency and

effectiveness of a product deliverable, especially when the behavioral analysis of the

product’s end user is of utmost importance to practitioners.

One of the key findings of this study is how we have been able to ascertain that

there is the correlation between features of REM and the occurrence of causal relations.

Based on these findings, it is worth noting that causality is a major component when

evaluating the quality of requirements, especially in RE practice. From our analysis,

we note that causality slightly correlates with the requirement’s time. Hence, we can

consider causality a key factor in estimating the requirement’s life cycle. Notably, a firm
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semantic structure of the causal relation could affect the degree of comprehension of a

requirement, implying an easy representation and disintegration of complex scenarios

into sub-components like test cases or programming code.

5.5 Reproducibility of Study Findings

To reproduce our study’s framework and obtain similar results, our implementation

details can be accessed by clicking here.
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6 Threats to Validity

The threats to validity of our study is presented to demonstrate the area where computa-

tional and theoretical adjustments (and improvement) can be effected for an augmented

result. Hence, we have highlighted three major threats to the validity of this study, they

are:

* Analytical Mapping Constraint: To ascertain that the correlation of requirements

from inception to completion and the presence of causality is not discomposed

but causal, it is recommended that an extended qualitative assessment beyond the

dataset explored should be performed. This could be achieved by considering

the other supporting documents’ requirement history of the product in view. In

addition, this should be managed effectively because the analyzed data may have

incomplete or incorrect information, which could result from low diligence or

oversight during the requirements gathering process.

* Data Annotation: Our annotation process poses a threat to validity because

many annotation tasks could be arbitrary due to different human factors, especially

regarding representation and interpretation. For instance, implicit causality cate-

gory could be difficult to manually identify due to its features as highlighted in

Chapter 3. However, we performed the following activities to minimize the human-

based annotation error. First, we performed a training (details in Section 3.12) for

the annotators about the annotation structural modalities and guidelines. Secondly,

we applied the Cohen kappa assessment technique (highlighted in Section 3.11.1

of Chapter 3) to evaluate and measure the degree of inter-rater annotation agree-

ment. However, we noted that all excluding causality categories rely on associated

sentence classification, which could affect the annotator’s agreement for other

categories. The computation of inter rater arrangement provides evidence to this
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claim where all categories (excluding causality) are estimated w.r.t the identified

causal sentence.

Hence, we conclude that the remaining categories are less relevant for identifying

sentences that are not causal because they refer to the causal relation in the sentence.

In addition, the coherence of the inter rater is not measured based on the same

(or similar) domain. Hence, it could be difficult to estimate if some domains are

responsible for the disagreement of notions among the annotators. As reported in

Table 4, our result analysis was justifiable. Still, we recommend that a domain-

based annotation should be encouraged, which would also improve the accuracy

of the inter-rater agreement.

Additionally, considering only two consecutive sentences for manual causality

detection could imply limited scope because the causal relation in more than two

sentences would not be captured. Although, this effect may be minimal because

one-sentence-based and two-sentenced-based causal relations could be used as

leverage to determine causality in successive sentences. But for further studies,

multiple-sentence-based (between two and five sentences) could be considered to

have a more robust causal analysis.

* Data Extraction: In order for us to achieve general applicability to the RE practice

irrespective of domain, the dataset from different domains are considered, as

presented in Figure 2. Referencing Figure 5, the domains smart city, data analytics,

and aerospace are the major sentence contributors with over 10, 000 sentences.

All other domains also contribute sentences to the causality management models

through machine models. This threat to validity was reduced by incorporating

domain-specific analysis. To this end, we recommend that the dataset from more

domains that could contribute meaningfully to the causal analysis technique should

be considered for future studies.
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7 Conclusion and Future Work

The system behavior is usually established with respect to causal relations in REM

made up of natural language. If the causal information in REM are efficiently extracted,

then downstream activities in product (software) development is enhanced, especially

for those that rely on causal analysis (e.g., test case derivation and other requirement

dependencies) [25, 27]. However, some contemporary causality analysis methods do

not perform satisfactorily according to the findings and survey of Ruocheng et al. [65].

Therefore, in this study, we addressed the notable gaps identified in contemporary

methods of causality analysis, both highlighted in Chapter 2 and identified by Ruocheng

et al. [65].

We have used machine learning and deep learning models configured with optimal

hyperparameters to perform our causality extraction and classification task. In this study,

we noted that causality identification and extraction follow two steps. First, we need to

assert if REM contains causal features. Second, we must identify and extract the causal

relationships found in these REM. However, we may be unable to decode the degree of

complexity and form of causality in the REM, which determines the best methodology

for solving these issues.

This study focuses on how the prevalence of causal relations in natural language

requirements affects important aspects of the REM. Having an empirical fact to evidence

the prevalence of causality on the features identified in the REM (especially as it relates

to scope, complexity level, and structure) supports the notion that the application of

causality in natural language requirements contributes positively to the quality and

standard of the requirement. Interestingly, determining a definite causality relation based

on correlation assessment alone may not be feasible, but the exploratory and descriptive

case study focuses on giving a better understanding of the strength of applying causal

management as one of the reliable aspects of RE. In our empirical analysis of causality
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management, the following under-listed features were selected to evaluate the influence

of requirement features on the formation of requirement artifacts by practitioners.

* Modification Activity: which points to the number of configuration changes of the

requirement

* Conclusive State: which refers to the final state of the requirement

* Span Time: this refers to the duration between the inception of the requirement

till it is finalized and ready to guide the implementation phase of the product

development

7.1 Contribution to Body of Knowledge

To show the relevance of our implementation analysis to RE practice, we closed the

gaps identified in current research. We implemented a computational framework that can

assist software design practitioners in improving deliverables through an analytical study

of causality in RE practice. This is achieved particularly by considering the extent, form,

and prevalence of causality in REM, as these factors largely influence the requirement

specification of software products. Our research contributions are summarized as follows:

Contribution 1: We performed an exploratory case study where 12,438 sentences

were extracted from 50 REM which originated from different domains (as presented

in Table 2. The use cases showing the applicability of our study are also presented in

Section 5.3. Our feasibility research found that causality is a regularly utilized language

pattern to describe system functionalities, and it is most often used in a marked and

explicit form.

Contribution 2: We are motivated to implement machine models capable of identify-

ing and detecting causality in REM to address the challenges identified in the aforemen-

tioned use cases. Empirically, we evaluated our machine models with evaluation metrics

with detailed results presented in Table 9. Overall, all our machine models performed
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excellently after an adequate configuration process. Still, Naive Bayes was the best

performing model as we achieved an accuracy of 0.88%, F1 score of 0.69, recall of 0.75,

and precision of 0.86.

Contribution 3: We publicly disclosed the dataset and the source code used for

our implementation analysis to foster result reproducibility, easy comprehension, and

improvement of our study by other researchers who have interest in this research line.

In addition, we noted that as a norm in the scientific community, giving access to the

dataset and source code also demonstrates the credibility of our research. Hence, we

provided the path to access this information by clicking this link here.

7.2 Direction for Further Studies

Further study could be performed to expand on the findings from our research. Below

are some recommendations that could be considered for further study by researchers in

this line of research.

1. The sentences extracted from the REM could be analyzed in a granular manner

by grouping them accordingly to their respective class before they are modeled

into the machine language. For instance, functional and non-functional-based

requirements could improve insight into causality analysis in REM. They would

be more effective for each category instead of their application to the general REM.

This process would involve investigating the features that are particular to each

category.

2. The process of extracting causal relations from causal sentences provides the

required basis that can fit into different use cases and applications of causality.

In this sense, further research could be performed by extensively considering the

relationship between the requirement features vis-a-vis the presence and effect

of causality in a broader notion. Therefore, the limitations in the current intra-

73

https://github.com/timzzy/causality_management


sentential approach that is considered in this study could be mitigated with a more

robust computational framework by holistically exploring the relationship between

requirement features and requirement dependencies.
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I. Glossary

Acronym Description
AB Adaptive Boost
AI Artificial Intelligence
BERT Machine Learning
DL Deep Learning
ELMO Embedding from Language Model
GRU Gated Recurrent Units
KNN K-Nearest Neighbors
ML Machine Learning
NL Natural Language
RE Requirements Engineering
REM Requirement Engineering Manuscript
RF Random Forest
SRS Software Requirement Specification
SVM Support Vector Machine
LDA Latent Dirichlet allocation
SDLC Software Development Life Cycle
NLTK Natural Language Tool Kit
W.R.T with respect to
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