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Genome-wide Association Study for Detecting Autoimmune-Disease-Associated Genetic 

Pattern Differences in Specific HLA Type Carriers  

 

Abstract:  

The HLA locus variants are one of the strongest genetic predictors for most, if not all, human 

autoimmune diseases. The HLA locus genes include the antigen-presenting cell surface peptide 

encoding genes, which form an essential component in the maturation of the T-cell population in 

the thymus, and their subsequent activation in the periphery.  

Leveraging the modern population-wide genotype information that capture even the most 

polymorphic loci, this work sets the aim to design a case-control genome-wide association study 

(GWAS), that would result in the detection of non-HLA genetic variants that have a statistically 

different effect on an autoimmune disease in the carriers of certain HLA types, in comparison to 

the non-carriers. For the purpose of this aim, study groups are assembled based on specific HLA 

allele doses, so that for 42 HLA allele types selected for this study there are 42 HLA-specific groups 

where every individual is a carrier of at least one copy of the HLA allele type. The effect sizes from 

the summary statistics of the HLA-specific GWASs are compared to a general population GWAS 

(which is done on all the participants of the Estonian Biobank in this case). The variants are 

considered relevant to this aim if their effect size is statisticallt different in the HLA-specific groups 

than they are in the general population GWAS.  
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Geneetiline assotsiatsiooniuuring tuvastamaks HLA-dega kooslevaid geene 

autoimmuunsetes haigustes     

 

Lühikokkuvõte: 

Inimese leukotsüüdi antigeeni (HLA) lookuse geenivariatsioon moodustab ühe tugevaima 

geneetilise teguri enamikes, kui mitte kõigis, teadaolevates autoimmuunsetes haigustes. HLA 

lookus hõlmab endas geene, mis toodavad antigeene-esitlevaid pinnavalke, mis moodustavad 

olulise komponendi T-raku populatsiooni kujunemisel tüümuses ja/või nende aktiveerimisel 

perifeerias.  
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Kasutades moodsat ja täpset genotüübi-informatsiooni, millel on suutlikus kaardistada isegi kõige 

muutlikemaid lookuseid, on antud uurimistöö eesmärgiks disainida geneetiline 

assotsiatsiooniuuring (GWAS), millel oleks võime tuvastada geenivariante, mille mõju 

autoimmuunhaiguse eelsoodumusele oleks oluliselt teistsugune kindla HLA-tüübi kandjates, 

võrreldes nende HLAde mittekandjatega. Ned tulemused oleksid viitavad võimalikule epistaasile 

HLA ja mitte-HLA geenide vahel, ja käesoleva uuringuga tuvastatud variante saab käsitleda 

prioriteetsetena edasistes uuringutes, millel on võime täpsemalt käsitleda geen-geen 

interaktsioonide olemasolu.  

Selle töö põhimõte seisneb selekteeritud HLA-tüüpide alleelidooside alusel koostatud rühmades, 

selliselt, et 42-le selle uuringu jaoks valitud HLA alleeli tüübile vastab 42 HLA-spetsiifilist rühma, 

kus iga inimene on vähemalt ühe alleelikoopia kandja. HLA-spetsiifiliste rühmadega tehtud 

GWASidest saadud variantide mõjude väärtuseid võrreldakse üldpopulatsiooni esindavast 

GWASist (tehtud kõigi Eesti geenivaramus osalejatega) pärinevate mõjude väärtustega. 

Potensiaalse epistaasi vaatenurgast on antud projekti raames huvipakkuvad need lookused, millel 

on statistiliselt oluliselt erinev seos haigusega HLA-spetsiifilises rühmas.   

 

Võtmesõnad: 

Geneetiline assotsiatsiooniuring, inimese leukotsüüdi antigeenid (HLA), epistaas, autoimmuunsed 

haigused 
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INTRODUCTION  

The human leukocyte antigen (HLA) system contains a series of polymorphic loci on the short arm 

of chromosome 6 that encode for surface proteins that have the function in the human adaptive 

immune system of presenting antigenic peptide fragments to the T-cell receptors (TCRs) [1]. The 

HLA correlation with autoimmune diseases has been published in the scientific literature since the 

1970’ [2] [3], yet, to this day, the exact molecular mechanisms that would provide a causal 

explanation remain elusive for many of the HLA-associated diseases. In the past, the efforts to 

investigate the HLA role in disease pathologies have been challenged by the dense clustering of 

the genes in the MHC locus, strong linkage disequilibrium and high polymorphism within the 

alleles [4]. The common feature across all HLA-associated autoimmune diseases is tissue damage 

by autoreactive T-cells, and with the advances in immunology and genomics, several hypotheses 

have emerged that could explain the generation of effector T-cells against self-motifs. Based on 

the review of the relevant literature, it is plausible to speculate that mutations in HLA or in other 

protein-encoding genes may lead to epistatic interactions in the form of TCR-self-peptide-HLA 

binding that results in the generation of autoreactive T-cells. The present research leverages the 

high-quality genomic data for the Estonian population in the Estonian Biobank (EstBB) to search 

for variants in protein-coding genomic regions that have significantly different association with 

autoimmune diseases in specific HLA type carriers compared to non-carriers, which would be 

suggestive of the presence of potential gene-gene interactions between HLA types and non-HLA 

peptides. 
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1 LITERATURE REVIEW 

1.1 The Human Leukocyte Antigens (HLAs) & The Adaptive Immune System  

The function of the HLA molecules in the adaptive immune system is to present peptide fragments, 

obtained from the degradation of proteins in the cytoplasm, on the surface of all cells in the body 

(with the exception of central nervous system cells) to the TCR of T-cells. The HLA molecules can 

be viewed as the means by which the adaptive immune system scans the proteome of the organism 

to maintain a library of epitopes that are either labeled as self – and thus must be subject to 

protection; or pathogenic – which need to be eliminated (along with the cells that contain them) 

[5]. All HLA molecules share the essential functional features of having a peptide-presenting cleft 

structure, into which a peptide cargo is non-covalently loaded in the cytoplasm, before the HLA-

peptide complex is transported to the cell surface and presented to the T-cell receptor (TCR). The 

HLA system has two classes of HLA peptides: the HLA class 1 peptides are expressed on the 

surface of all nucleated cells and platelets (except central nervous system cells) and present 

peptides derived from the proteins in the cytosol to the CD8+T cell TCR. The class 2 HLAs are 

expressed on antigen presenting cells (APCs), which include B lymphocytes, dendritic cells, 

macrophages, monocytes, Langerhans cells, endothelial cells, and thymic epithelial cells [6]; the 

class 2 HLAs present peptides derived from the proteins in the intracellular vesicles, such as 

internalized by phagocytosis or pathogens living in macrophage vesicles, to the CD4+T cell TCR.  

The 3.6 megabase HLA locus on the short arm of chromosme 6 contains about 200 genes [7], of 

which 40 encode the leukocyte antigens. The class 1 genes encode for the α chain of the class 1 

HLA molecule; the class 1 β chain is encoded by the beta-2-microglobulin (B2M) gene on 

chromosome 15 [8]. The class 2 HLA genes encode for both the α and β chains of the HLA 

molecule, as designated by the third letter in the class 2 HLA name (A and B, for α and β, 

respectively; see section 1.1.1 for HLA nomenclature). The α chain of the class I molecule has two 

peptide-binding domains (α1 and α2), an immunoglobulin-like domain (α3), the transmembrane 

region (TM), and the cytoplasmic tail. Each of the class II α and β chains has four domains: the 

peptide-binding domain (α1 or β1), the immunoglobulin-like domain (α2 or β2), the 

transmembrane region (TM), and the cytoplasmic tail (Figure 1).   
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Figure 1 Structure of class 1 and class 2 HLA molecules (figure obtained from Klein, J. and Sato, 

A., 2000 [8]) 

 

The HLA molecule peptide-binding groove comprises an anti-parallel β strand floor and two α 

helices which presents a single protein fragment to the TCR (Figure 2). Most of the polymorphism 

in the HLA genes happen in defined locations within the HLA peptide-binding groove, and a single 

amino acid substitution has been shown via in silico experiments to change 20-30% of the peptide 

repertoire that the HLA can bind to [9]. This is in concordance with genomic association studies 

that have identified HLA risk alleles that differ by a single amino acid substitution. Both the 

presentation of alternative antigens as well as unconventional antigen orientations resulting from 

polymorphisms in the peptide binding groove have potential implications in the development of 
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autoimmune diseases (see section 1.2)  

 

Figure 2 a) The antigen-presenting cleft of HLA-A in top view (obtained from AlphaFold protein 

structure database; UniProt nr: A0A6N0A1S6). b) shows the atomic structure model of the Epstein 

Barr virus fragment ATIGTAMYK presented by HLA-A*11:01 (from Huan, et al., 2019 [10]; PDB 

ID: 6JOZ) 

 

 

In general terms, the two types of receptors in the adaptive immune system that can recognize 

antigens are the surface immunoglobulin of B cells and the TCR of T cells. The B cells recognize 

antigens that are outside the endogenous cells, such as extracellular bacteria, and B cells are 

primarily involved in the humoral immunity of the adaptive immune system and the release of 

antibodies in response to an antigen; the B cell receptors do not directly interact with the pHLA 

complexes. The TCR recognizes antigens generated inside the endogenous cells, which are 

presented to the TCR by HLA, such as virus peptides and peptides obtained by phagocytosis; T-

cells are involved in the cell-mediated immunity – activating their function in response to the 

interaction with pHLA complexes [11]. The T-cell types are defined by their characteristic pattern 

of cytokine production and function. The three main types of T-cells are the cytotoxic T-cells 

(CD8+T cells), the T-helper (Th) cells and the regulatory T-cells (Treg). Upon CD8+ TCR binding 

to a complementary pHLA complex, the CD8+T cells activate to kill the target cell by the release 

of perforin and granzyme, that cause cell lysis; and granulysin, which signals the targeted cell to 

enter apoptosis [12]. The Th cells have no cytotoxic activity, but instead regulate the activity of 

other cells: macrophages, CD8+T cells and the antibody-producting B cells. Th cells have an 

important role in the humoral response, as there are only few antigens that can directly stimulate 
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B-cells, and in most cases the B-cells rely on the signals from the Th cells to start proliferating and 

producing antibodies. Treg cells are essential for the maintenance of peripheral tolerance and the 

prevention of autoimmune reactions. Treg cells suppress immune responses by four modes of action: 

producing inhibitory cytokines; cytolysis of effector T-cells by granzyme A/B and perforin 

secretion; metabolic disruption of effector T-cells; and by modulating dendritic cell maturation and 

function [13].  

The TCR comprises of two chains, TCRα and TCRβ, which are co-expressed with CD3 chains γ, 

δ, ε and ζ. TCRα and TCRβ each have a variable region and a constant region; the majority of the 

TCR interactions with the pHLA complex happens within the three complementarity-determining 

regions of the variable region of TCR. Upon TCR binding, the immunoreceptor tyrosine-based 

activation motifs (ITAMs) in CD3 chains are phosphorylated, triggering signaling cascades that 

result in T cell activation. The total number of possible unique TCRs is likely in the range of 1011-

1012, and their affinities to target motifs are not very specific - each TCR has the potential to 

recognize close to a million different peptides [14]. This inherent cross-reactivity of T-cells allows 

a limited number of T-cells to provide comprehensive immune cover, but in case of malfunction 

(likely due to genetically predisposed complications in the negative thymic selection), this 

heterologous immunity is also observed to initiate autoimmunity in response to viral infection 

through a process called molecular mimicry, where the viral proteins share target motifs with self-

peptides [15]. Epidemiological studies have identified viral infections as a significant risk factor in 

autoimmune diseases, and the molecular mimicry hypothesis has also been supported by evidence 

from animal studies (see section 1.2).   

The T-cell repertoire is audited in the thymus’ medulla and cortex, where the developing T-cells 

(thymocytes) undergo negative and positive selection, respectively. The negative selection 

removes unwanted T-cells, such as those with a potential to become autoreactive; and positive 

selection coordinates the generation of functional and self-tolerant T-cells. A crucial determinant 

in the thymocyte selection is the strength of the affinity between TCR and the self-pHLA complex 

on the APC. The thymocytes that do not interact with the APCs at all undergo death by neglect and 

a weak interaction between self-pHLA complex is required to promote the positive selection. APCs 

that are strong agonists to maturing T-cells, via self-pHLA-TCR interactions, either remove the 

autoreactive T-cells by apoptosis or divert the T-cell fate towards a regulatory T cell (Treg). There 

seemingly exists a relatively wide window of TCR-pHLA affinity stregths that lead to the 
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generation of Treg lineage, between the low and high affinity strengths that lead to the positive and 

negative selections, respectively [16].  

1.1.1 HLA nomenclature  

The current HLA nomenclature includes five standard fields (Figure 3). The first field represents 

the locus name; for class 2 HLAs the first field consists of three letters, beginning with letter D, 

and ending with a number; and for class 1 the first field consists of only one letter. In the first field 

of class 2 HLA name, after the letter D, the following two letters represent: the locus family (letters 

M, O, P, Q, or R), and whether the gene encodes the α or β chain (A or B, respectively). The four 

numeric fields, after the first field, following the asterisk delimiter are: 2) the allele or antigen 

group; 3) the specific amino acid sequence of the allele; 4) presence of synonymous 

polymorphisms; 5) and differences in non-coding regions. The numeric fields are delimited by a 

colon (“:”). For example, HLA-DRB1*13:01 represents a class 2 (letter D), family R, β-chain 

(letter B) encoding gene, together forming the DRB1 locus (the DRB loci were named DRB1, 

DRB2, DRB3, DRB4 and DRB5 [17]), allele group 13 and a specific allele 01. HLA-

DRB1*13:01:02 differs from HLA-DRB1*13:01 by a synonymous mutation. As a class 1 HLA 

name example, HLA-B*27 represents a class 1, B locus, α chain encoding gene (as all class 1 HLA 

genes only encode the α chain; the β chain of class 1 molecules comes from the B2M gene on 

chromosome 15), allele group 27. The nomenclature describes the typing of the HLA alleles in 

different levels of resolution. “Two-digit” typing provides the first field in the molecular-based 

nomenclature (example: HLA-A*01). “Four-digit” typing distinguishes alleles based on the 

sequence of the peptide-binding region of the HLA molecule, corresponding to the first two fields 

of the molecular nomenclature (example: HLA-B*57:01), and so on [18].   

 

In the current project, the alleles were considered in two-digit resolution.      
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Figure 3 The different fields used in standard HLA nomenclature. The yellow field indicates the 

gene name or locus, A in this example. The asterisk separator indicates that this is molecular 

typing. Field one (blue) gives the allele group, field two (pink) indicates the specific HLA protein, 

field three (red) synonymous polymorphisms, and field four (green) differences in non-coding 

regions. [18] 

 

Historically, HLA typing was done by serologic assays, where serum from sensitized patients, 

typically women who were sensitized during pregnancy to paternal HLA antigens expressed by 

their fetuses, was incubated with lymphocytes from various donors in the presence of a complement 

[18]. Other established typing methods before NGS technology were oligonucleotide probe 

hybridization, PCR amplification with sequence-specific primers. HLA genotyping is made 

challenging by the high polymorphism and the high gene density in the locus [19] [20], and these 

methods were only able to produce ambiguous results. With the advent of NGS technology, 

customizable high-density genotyping chips, and the advancement of bioinformatic tools, the 

resolution and efficiency of HLA typing has got to a level that enables robust genome-wide 

population studies using accurate population-specific reference panels [21].  

 

1.2 HLA-dependent Autoimmune Disease Pathogenesis  

Current evidence from the literature allows to consider the HLA-related autoimmune disease 

mechanisms in 6 broad categories (which are not mutually exclusive), as follows:    

 

1) TCR-pHLA interactions that mediate the escape of T-cells from the negative thymic 

selection. 

The failure of the negative thymic selection to eliminate autoreactive T-cells is a key aspect in the 

development of autoimmune diseases. As mentioned in section 1.1, weak interaction between TCR 

and self-pHLA is necessary to prevent thymocytes to die from neglect and subject them to positive 

selection. There is evidence that variants in HLA peptide-binding domain, in conjunction with 

specific TCR types, could alter the affinity of TCR to self-pHLA complexes, which could help T-
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cells evade the thymic surveillance. Multiple sclerosis is a demyleating central nervous system 

disease where the immune system attacks the myelin basic protein (MBP). The HLA-DR15 

haplotype (alleles HLA-DRB1*15:01 and HLA-DRB5*01:01) is found to be a significant risk 

factor in multiple sclerosis [22]. A transgenic mouse study expressing HLA-DRB15 together with 

TCR type Ob.1A12 concluded evidence for the pathological role of self-MBP presentation in 

multiple scerosis [23]. Molecular studies have shown low affinity and off-centre binding topology 

between TCR Ob.1A12 and the pHLA complex with reduced surface area, which is could allow 

the effector cells to escape negative thymic selection [24] [25]. In another discovered multiple 

sclerosis pathway, the TCR MS2-3C8 has an affinity towards MBP epitopes presented by HLA-

DRB1*0401. In this case, the HLA-peptide complex itself is very unstable, but the strong binding 

of the TCR MS2-3C8 is thought to stabilize the complex, while still producing weak enough signal 

in the thymus to not evoke negative selection [26] [27].  

In type 1 diabetes (T1D) it is found that the TCR type 1E6 mediates pancreatic beta cell killing via 

recognition of amino acids 15–24 of preproinsulin (PPI), presented by HLA-A*0201 [28]. 

Although it’s been found that TCR 1E6 has a standard docking orientation with the HLA-A*0201-

restricted PPI epitope, the affinity is extremely low, which could also lead to the evasion of the 

autoreactive T-cells from negative thymic selection [29].   

  

2) TCR – pHLA interactions that result in cross-reactive T-cells.  

In addition to the significant heritability in multiple sclerosis, epidemiological studies have 

identified a strong risk factor being the infection with Epstein-Barr virus [30] [31]. Investigations 

into the interplay between HLA alleles and TCR types provide insights to how genetic 

predisposition can lead to low-specificity effector T-cells that can become cross-reactive in 

response to the so-called molecular mimics – proteins from pathogens that share limited structural 

homology between self-peptides. The Hy.1B11 is a T-cell clone from multiple sclerosis patients 

that binds to the HLA-DQ1 restricted MBP on amino acid positions 85-99. However, a 

crystallography study has shown that the binding of Hy.1B11 to HLA-DQ1 is tilted and the 

interaction is limited to only three peptides on MBP, which renders the T-cells less specific to MBP 

and gives them the potential to react with a much wider repertoire of peptides [32]. Hy.1B11 has 

been shown to also react with HLA-DQ1-restricted herpesvirus, adenovirus and Pseudomonas 

peptides [33]. An in vitro binding assay involving the TCR clones Ob.1A12 and Ob.2F3 detected 

cross-reactivity between several microbial proteins and the HLA-DR2 restricted MBP [34]. An in 



13 

 

vivo study with humanized Ob TCR-DR2b transgenic mice found that multiple sclerosis-like 

symptoms were evoked with the M. avium peptide almost as severely as with the MBP peptide 

[35].  

  

3) Mutations in HLA peptide-binding groove that lead to increased self-antigen presentation 

Celiac disease is a chronic immune response to ingested gluten that results in intestinal tissue 

damage by autoreactive T-cells, with the primary antigen being the transglutaminase 2 enzyme that 

deamidates ingested gluten. The HLA-DQ2.5 haplotype (which comprises any alleles of HLA-

DQA1*05 and HLA-DQB1*02) and the HLA-DQ8 haplotype (any allele of HLA-DQA1*03; and 

the HLA-DQB1*03:02 allele) are identified as the risk HLA genotypes in celiac disease [36]. 

Furthermore, all the T-cells derived from the intestine of celiac disease patients recognize the 

gluten restricted by DQ8 and DQ2 [37] [38] [39]. Meta-analyses have determined that the HLA 

risk variants together account for 25% of the celiac disease heritability in European populations, 

and the HLA-DQ2.5 heterodimer receptor is present in 90-95% of the patients. The DQ2 and DQ8 

genotypes are strong negative predictors of celiac disease (their absence predicts the absence of the 

disease with nearly a 100% accuracy), but, due to the high prevalence of the haplotypes in the 

general population, the risk haplotypes are not strong positive predictors [40]. One particular HLA 

variant associated with celiac disease is a DQ8 with an absent canonical aspartic acid residue at 

position 57 in the β chain. A study demonstrated that this DQ8 variant has a preference to recruit 

TCRs which have a negative charge at position 3 of CDR3β loop, which could contribute to the 

pathology by stabilizing of the TCR-deamidated gluten-HLA complex [41].  

Rheumatoid arthritis is a chronic joint inflammation that causes the progressive destruction and 

deformation of joints. Most of the rheumatoid arthritis patients have antibodies against citrullinated 

peptides, termed seropositive for the anti-cyclic citrullinated peptide (anti-CCP); the patients 

lacking anti-CCP are termed seronegative. The genetic heritability of seropositive rheumatoid 

arthritis is close to 60%, most of which is accounted for by the HLA locus [42] [43]. Conditional 

and haplotype analyses identified that three amino acid positions (11, 71 and 74) in HLA-DRβ1 

and single–amino-acid polymorphisms in HLA-B (at position 9) and HLA-DPβ1 (at position 9), 

together explain 12.7% of the phenotypic variance of rheumatoid arthritis. All those variants reside 

in the peptide-binding groove, and involve class 1 and class 2 HLA genes, which suggests the role 

of both CD8+ and CD4+ TCR-HLA interactions in the disease pathology [44].   
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4) Differential HLA density leads to autoreactivity.    

It’s been found that transcriptional regulation of HLA has significance in autoimmune diseases, 

notably the XL9 cis-regulatory region between HLA-DRB1 and HLA-DQB loci that modulates 

the transcription of HLA-DQ and HLA-DR genes. A GWAS combined with high-coverage 

sequencing with 773 cases and 576 controls reported peak signal in specific XL9 haplotypes in 

association with systemic lupus erythematosus (SLE). The study’s RNA-seq expression analysis 

agreed with the quantitative flow cytometry results, which detected 2.5-fold increase in the HLA-

DR surface density on monocyte-derived dendritic cell cultures from the disease-associated XL9 

genotype individuals [45].   

 

5) HLA stability  

Unstable forms of HLAs have been associated with autoimmune diseases, while stable forms seem 

to confer protective effects. The 47α residue has been identified as a key regulator of HLA-DQ 

molecule stability, and variations in it have been found strongly associated with T1D [46]. HLA-

DM is an important chaperone that functions to stabilize the antigen-presenting HLAs and load the 

peptide cargo into the HLA groove in the lysosome [47]. The mutations on HLA-DQ could exert 

their effects by hindering the HLA-DM action of protein exchange and stabilization. The structural 

characteristics of the disease-associated HLA-DQ variants imply that the change in specific 

hydrophobic residues, capable of forming H-bonds, may render the DM activity inefficient. The 

resulting increased presentation of unstable self-peptide complexes may lead to compromised 

negative selection, or alternatively, unstable HLA may be more prone to DM-independent protein 

exchange, thus leading to increased self-antigen presentation [48].   

 

6) HLA interaction with microbiome  

The microbiome has important implications in immune function [49] and the proper colonization 

of the infant colon at an early age is a requirement for the development of a healthy adult immune 

system [50]. The HLA molecules prime the immune response against pathogenic microbes, as well 

as regulate the tolerance to symbiotic bacteria, that in turn influences a diverse set of processes. In 

a rat model study of gastrointestinal inflammation, the HLA-B27 transgenic rats with the colon 

bacteria Bacteroides vulgatus showed spontaneous occurrence of inflammation, whereas the HLA-

B27 population lacking the CD4+T cells did not show disease response to B. vulgatus in their colon. 

No development of disease was found in germ-free environments or other tested common colon 
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bacteria [51] [52], which indicates that the HLA-B27 presenting peptides from otherwise non-

pathogenic bacteria to CD4+T cells could play a major role in the pathology. In celiac disease, 

multiple studies have shown that the infants with higher genetic risk to celiac disease (the DQ2 and 

DQ8 HLA haplotypes) had an altered microbiome composition regardless of the feeding type [53]. 

A microbiome analysis using next generation sequencing concluded that the specific HLA-DQ 

genotype was likely causal in shaping the microbiome [54] [40]. 

 

1.3 Genome-wide Association Testing  

Genome-wide association study (GWAS) is a study design that is aimed at discovering associations 

between genotypes and phenotypes by comparing the allele frequencies of genetic variants between 

cohorts. The statistical power to detect associations between DNA variants and a trait determined 

by the experimental sample size, the distribution of effect sizes of (unknown) causal genetic 

variants, the frequency of those variants, and the linkage disequilibrium (LD) between observed 

genotyped DNA variants and the unknown causal variants [55] [56] 

A GWAS consists of a series of association tests for each variant studied, where the variant is 

considered the explanatory variable (as the number of copies of the allele), and the phenotype status 

is considered as the dependent variable. Depending on whether the phenotype is continuous or 

binary, linear mixed models (LMM) or mixed logistic regression (MLR) models are used in GWAS 

respectively [56] [57]. In general terms, the “mixed” effects model refers to the fact that 

confounding effects on the explanatory variables are accounted for in the regression model (such 

as population stratification in GWAS). Chen, et al. showed in 2016 that fitting LMM to binary 

traits fails to account for population stratification and inflates type 1 error rate [58]. The linear 

mixed model BOLT-LMM [59] has still demonstrated decent performance with binary cohorts but 

only when cases and controls are balanced, while loss of power occurs with imbalanced cohorts. 

Mixed logistic regression models, such as SAIGE [60] and REGENIE [61] are able to perform very 

well with imbalanced case-control ratios.  

The controlling for population stratification in GWAS cohorts can be done with either individual-

level data, where the principal components of the genomic relatedness matrix are taken as 

covariables in the mixed effects model; or the stratification control can be done on the association 

test results (summary statistics) to correct for the “p-value inflation”. A popular summary-statistics 

approach has been Genomic Control [62], where the p-value at each variant is adjusted by a 
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common inflation factor. More recently it’s been shown that in majority of the GWASs, the 

inflation is not due to population stratification, but instead caused by the legitimate polygenic 

nature of most traits [63]. Genomic control fails to differentiate between the inflation caused by 

bias and polygenicity, and it’s been suggested that LD-score regression should be preferred over 

genomic control to correct for p-value inflation in GWAS summary statistics.  

Testing millions of variants in a GWAS creates a multiple testing challenge, which calls for a 

method to control for the large number of false positives with minimal trade-off in statistical power. 

If the tests were independent, the Bonferroni correction would control at level α for n tests with a 

significance level of α/n. Since in GWAS the linkage disequilibrium renders the tests on genomic 

variants non-independent, a Bonferroni correction would result in a great loss of power. In 2005 

the HapMap Consortium used permutation testing of high-density genotypes in 10 genomic regions 

to obtain the so-called “effective number of independent tests” [64], which allows for a Bonferroni 

corrected significance level that better accounts for linkage disequilibrium. This effective number 

of independent tests was found to be 150 per 500 kb, scaling it up to 3 Gb gets a significance level 

of 5.5×10-8, which has since become a standard for common-variant (MAF≥5%) GWAS. This 

number, or close to this number, of independent tests has been separately obtained in significance 

level calculations for European ancestry common variant GWASs [65].  

One factor to take into account with GWASs done on any biobank data is that the biobanks have 

shown difficulty in having a sample that is representative of the true population. This bias is 

thoroughly assessed in the case of UK biobank, that invited about 9 million people to participate, 

of which only about 500,000 (5.5%) participated. The resulting sample was found to be biased to 

be generally more healthy and having a higher socioeconomic status, which, in turn, has been 

shown to distort GWAS results, especially with lifestyle- and behaviour-related traits [66]. This 

voluntary participation bias is likely to extend to all the biobanks in the world, at least to some 

degree.  

A standard procedure for any GWAS to increase the reliability of the associations, as well as to 

increase the power to discover new associations, is to replicate the study on mutliple cohorts, and 

to conduct meta-analyses accross multiple GWAS summary statistics. For example, the 

generalized-method-of-moments-estimator-based meta-analysis tool MTAG has been 

demonstrated to increase the discovery of trait-associated loci several-fold, compared to single 
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GWASs, and it performs especially well when the polygenic traits share some, or all, of the causal 

loci [67].  

Since the completion of the HapMap project and the advancement of sequencing technologies, 

GWASs have identified many novel genetic variants that provide preliminary information about 

the underlying mechanisms in autoimmune diseases such as celiac disease, T1D, multiple sclerosis, 

rheumatoid arthritis, Crohn’s disease and systemic lupus erythematosus [68]. The novel loci 

discovered by GWASs can guide the more expensive molecular studies needed to eventually map 

the genetic architecture and detect the functional consequences in the cells/molecules involved.  

One of the characteristics of GWAS findings is that, due to LD, GWASs usually give many 

significant hits in one locus and it’s not clear from just the summary statistics which ones of them 

are relevant to the disease pathology, especially since most (>90%) of the variants are in the non-

coding DNA regions. Several strategies are being actively developed for the efficient and rapid 

fine-mapping of the causal variants in the associated loci. For example, the massively parallel 

reporter assay (MPRAs) has been successfully used test thousands of loci and tens of thousands of 

variants to pin-point causal variants, in both protein-coding- and non-protein-coding DNA regions, 

whose precise function can be subsequently determined by genetically editing cell lines and model 

organisms [69] [70]. Genome-wide association studies have been also successfully utilized as a 

part of a strategy to re-purpose drugs. [71] [72] and determining candidate genes that enable better 

informed treatment strategies and guide drug development processes [73].  

 

1.4 Imputation  

The power of a GWAS is also affected by the reliability of the genotype data which depends the 

method by which the genotype was obtained. Whole-genome sequencing (WGS) provides the most 

reliable genotype information, but considering the need to scale this to hundreds of thousands of 

individuals, a more cost-effective solution is to leverage the linkage-disequilibrium (LD) pattern 

in a population to predict the genetic variants based on marker loci. In genotype imputation, a 

population-specific reference panel is created from the whole-genome sequences of a population 

sample, and the complete set of variants can be predicted by genotyping only for a relatively small 

subset of markers [74].  
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It is also important to consider the information about which set of the inherited chromosomes the 

haplotype originates from, because the nucleotide content and the gene copy number differ between 

the two sets. This is referred to as the phase information between the maternally- and paternally-

derived sequences, and specialized phasing software, using algorithms such as the hidden Markov 

model, have been developed and widely-utilized as a standard procedure in imputation [75] [76].  

WGS is still exclusively used for rare-variant association studies, but for variants even as infrequent 

as 1/1000, it’s been demonstrated that there is practically no gain in statistical power when WGS 

is used over imputation [55].  

 

1.5 Principal Component Analysis (PCA)  

Population stratification is the systemic difference in allele frequencies in population (dividing the 

population into strata), which can generate spurious associations in regression models. The idea to 

use PCA on genomic data was first published by Menozzi, et al. in 1978 [77] and it’s been since 

shown that PCA can be effectively used to account for population stratification in GWASs, by 

including the principal components of a population genomic covariance matrix as covariates in 

mixed effects models [78].  

In individual-level genomics data, the principal component analysis is based on the 

eigendecomposition of the genomic covariance matrix, where the rows represent individuals and 

the columns represent the marker allele doses (0, 1, 2 for biallelic variants) [79]. Technically, PCA 

itself is not dimensionality reduction, but instead it’s a data transformation technique that makes 

the data amendable to dimesnionality reduction. Principle component analysis finds new axis 

(dimensions) to the data space, that are ordered hierarchically according to the amount of variance 

they describe in the data. The first axis (the first principal component) describes the most amount 

of variance, meaning, the mean squared error from all the data points to that axis is minimized; the 

second axis describes less amount of variance than the first one, and the third one less still, etc. The 

PCA allows to perform dimensionality reduction by choosing the number of principal components 

that describe the amount of variance in the data to a degree that we are satisfied with [80] [81].  

For individual-level genomic data, it’s recommended that the genomic markers subject to PCA are 

not in strong LD with one another – on one hand so that the principal components would not capture 

too much correlation between markers in individual loci, and it is also computationally efficient to 

include only the SNPs most relevant to the stratification modeling. Pairwise LD pruning of SNPs 
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above some LD threshold is recommended before conducting PCA on genomic data [82]. 

 

1.6 Variant Effect Prediction  

Variant effect prediction aims to prioritize the genomic variants according to the severity of the 

effect they have on the phenotype of interest. In the early days, the identification of influential 

variants was done by literature search of the most statistically robust findings, and this laborious 

work was usually limited to only a handful of variants [83]. The 1000 Genomes Consortium 

published findings in 2015 that a typical human genome differs at 4.1-5.0 million variant sites from 

the global variant reference of over 88 million variants [84]. Many of those variants have benign 

effects that are not likely relevant to the phenotype studied, and rapid methods for prioritizing and 

providing biological context to variants are essential tools in areas such as modern sequence-based 

clinical diagnostics and genome-wide association studies.  

Variant effect prediction can be performed ad-hoc or post-hoc according to when it is performed 

relative to the genomic analysis. The ad-hoc approach is commonly used in association tests for 

rare variants to increase the statistical power by „collapsing“ a set of rare variants into groups based 

on their functional annotation [85]. In genome-wide association studies that perform agnostic tests 

on common variants, post-hoc variant annotation is done on the significant associations in the 

summary statistics of the test. Several bioinformatics tools have been developed for variant 

annotation; their general principle is to provide references to public databases, that contain 

aggregated information on known variants, and provide computationally-derived impact scores that 

reflect how deleterious the mutation is. Most of the variant tools focus on the annotation of SNPs; 

INDELs are also covered by some tools, however, structural variant (SV) calling is currently 

limited to copy number variants, and this is performed only by some of the latest tools [86] [87]. 

Among the widely-used annotation tools are ANNOVAR [88], SNPeffect [89] and the Ensembl 

Variant Effect Predictor (VEP) [90].  

SNPeffect predicts the effects of variants only in protein-coding genes. It uses computational 

algortihms that rely on the data from the UniProt human variation database to predict protein 

aggregation and amyloid formation (TANGO and WALTZ, respectively), also chaperone binding 

(LIMBO) and structural stability (FoldX). The annotation tools VEP and ANNOVAR predict 

variant effects in protein-coding as well as non-coding regions. They rely on several gene 

annotation databases, such as GENCODE [91] and Ref-Seq [92]. GENCODE combines 
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experimental molecular studies and transcriptome analysis with the Ensembl automatic annotation 

pipeline to annotate coding- and non-coding regions. The experimental information for the variants 

in GENCODE has been collected from different studies that have collectively mapped the variant 

characteristics to the human genome; these studies have included DNase hypersensitivity assays 

for chromatin openness, transcription factor binding assays to identify promoter sites, and the 

identification of polymerase-bound genomic regions to locate enhancer elements. Transcriptome 

analysis is used to identify protein-coding regions, and regulatory regions that, for example, encode 

miRNA. There is some inconsistency between the major databases (GENCODE, Ref-Seq, UCSC, 

CCDS and AceView) in terms of the number of loci identified as protein-coding. This is largely 

due to different methods of how the mRNA transcript data is interpreted [91]. In addition, all of 

the databases are subject to constant updates; mostly, the number of known transcript isoforms per 

loci increases as experimental data continues to accumulate.  

In addition to database references, variant annotation tools can give several computationally-

derived scores that predict the severity of the variant. Annotation tools, such as ANNOVAR and 

VEP, harbor pre-calculated scores for variants in the updated databases, and these can be included 

in the annotation output by the user. Some of the computational scores are highlighted here. 

PolyPhen2 (Polymorphism Phenotyping v2, [93]) predicts how an amino acid substitution (a 

missense mutation) affects the function of the gene product. It’s machine learning model is trained 

on a set of annotated protein sequences of healthy and disease-associated sequences from UniProt, 

incorporating also information about the protein structure, and whether the mutation has occurred 

in a polymorphic or evolutionarily conserved site. ClinVar [94] is a variant severity score that 

specifically considers disease-causing mutations, and it gives a prediction of disease significance 

based on a public archive of annotated alleles, which is maintained at the National Center for 

Biotechnology Information (NCBI). The Combined Annotation Dependent Depletion (CADD) 

[95] framework combines the diverse set of developed annotations into one single score; it contains 

60 different annotations in categories of epigenetic modifications, functional prediction (which 

includes PolyPhen2), evolutionary conservation, and the gene sequence context (indel length, CpG 

content, etc.). CADD’s machine-learning model is trained on a set of alleles which have not been 

annotated based on experimental data, but instead the healthy reference variants are taken to be the 

variants in the human genome that have persisted since the split with the human-ape common 

ancestor (that is, their current observed allele frequency is 95-100%), as millions of years of 

purifying selection has presumably kept only the non-deleterious ones in the population.      
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3 AIMS OF THE THESIS  

It is well dodumented that certain HLA alleles are correlated with autoimmune diseases and 

numerous studies have provided evidence that mutations in non-HLA loci can be significant co-

factors to autoimmune disease susceptibility. The advancement of sequencing, genotyping 

technology, and bioinformatics tools have made it only recently possible to robustly conduct 

genetic association analysis accross many alleles and phenotypes with large cohorts, that have the 

capacity to provide novel insights into the genetic architecture of diseases which have a heritable 

component. The current study aims to agnostically search for signals of autoimmune disease 

associations, using the cohort of the EsBB, which would be suggestive of the presence of possible 

gene-gene interactions between HLA and non-HLA protein-encoding genes.  

To satisfy this aim, a GWAS (using mixed logistic regression) was designed in this project which 

comprises of two types of case-control study groups: HLA-specific study groups, where individuals 

are the carriers of a specific HLA type (at least one allele copy), and a study group comprising of 

the whole EstBB population. The effect sizes of the autoimmune-disease-associated variants from 

the HLA-specific GWASs were compared against the effect sizes of these variants from the whole-

population GWAS; the variants were considered relevant to the aim if the 95% confidence intervals 

did not overlap in the comparison between the groups.  

The present research does not aim to make the distinction whether the genetic patterns are due to 

multiplicative (epistatic) or additive effects, but a locus that has a significantly stronger association 

with a disease in a HLA-specific cohort would be deemed of interest in the context of further 

analysis, and the results of this work can prioritise a set of variants to be subject to studies that 

involve more complex modeling of gene-gene interactions between HLA and non-HLA proteins.  
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4 EXPERIMENTAL PART 

4.1 MATERIALS AND METHODS 

4.1.1 Association Testing Software  

The association test software used for this study was Regenie [61] with saddle point approximation 

(SPA) correction.  

The cohort covariates included in the mixed logistic regression were sex, age, age-squared + 10 

principal components.  

The association test software was run in the University of Tartu High-Performace Computing 

server.    

 

4.1.2 EstBB hg19 Cohort Data  

The Estonian Biobank is a population-based biobank with 212,955 participants (data freeze 

2022v2). All biobank participants have signed a broad informed consent form and information on 

ICD-10 codes is obtained via regular linking with the national Health Insurance Fund and other 

relevant databases, with majority of the electronic health records having been collected since 2004 
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[96]. The analyses in this work were only carried out on participants with reliably imputed HLA 

alleles (n=196,293).  

All EstBB participants have been genotyped at the Core Genotyping Lab of the Institute of 

Genomics, University of Tartu, using Illumina Global Screening Array v3.0_EST. Samples were 

genotyped and the PLINK format files were created using Illumina GenomeStudio v2.0.4. 

Individual sample exclusion criteria was: call-rate < 95% (2.52% of the samples); sex based on 

heterozygosity of X chromosome not matching sex in phenotype data; HWE p-value < 1e-4 

(autosomal variants only), and minor allele count = 0. Genotyped variant positions were in build 

hg19. Phasing was performed using the Eagle v2.4.1 software. Imputation was performed with 

Beagle v5.4 software and default settings, in batches of 10,000. A population specific reference 

panel consisting of 2,056 WGS samples was utilized for imputation and standard Beagle hg37 

recombination maps were used. Altogether, 30,367,921 SNPs are imputed per individual from 

296,903 SNP markers that overlap between the chip array and the WGS reference panel. Based on 

principal component analysis, samples who were not of European ancestry were removed. 

Duplicate and monozygous twin detection was performed with KING 2.2.7 [PMID:20926424], and 

one sample was removed out of the pair of duplicates. Imputation INFO score was calculated using 

bcftools +impute-info command. The HLA alleles are imputed using the SNP2HLA software [97]. 

PCA was performed in PLINK on LD-pruned variants (LD-pruning performed using PLINK 

function --indep-pairwise with 100kb window size; variant count step-size 10; r2 threshold 0.1): 

plink2 --extract plink2.prune.in --pca 50 approx.   

 

4.1.3 Selecting the SNPs for the study  

The analyses in this project concentrated on protein structure-altering genetic variants, as these 

SNPs generally provide the most straightforward biological interpretation options. From the total 

number of 39,274,267 SNPs in the Estonian Biobank for the hg19 genome assembly, this study 

included only exonic variants that had MAF>0.05 and the imputation INFO score ≥ 0.9. After 

applying MAF and INFO score filters, 5,886,414 entries remained. To select variants residing in 

exome, overlapping chromosome and position numbers (hg19 genome assembly contains only one 

variant per genomic position) with the exome sites from GnomAD 

(gnomad.exomes.r2.1.1.sites.vcf.bgz; contains 17,209,972 sites) were obtained. There were 

655,342 positions that matched the selection criteria for this study.  
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4.1.4 Variant Effect Prediction  

The variant effect prediction was done with Ensembl Variant Effect Predictor (VEP) web interface; 

the input to VEP was a VCF file in standard format for all the 655,342 exonic variants that were 

selected from the Estonian Biobank (section 4.1.3).  

This study considered the following variant types: missense, frameshift, stop-gained, stop-lost, 

start-lost, inframe deletion, inframe insertion. The most_severe VEP output filter was applied, 

which gives only the most severe consequence per input variant as predicted by VEP. 

From the 655,342 exonic variants, 224,799 were missense; 6,957 were frameshift; 5,740 were stop-

gained; 3,184 were inframe deletions; 1,157 were inframe insertions; 892 were start-lost; 452 were 

stop-lost. 

 

4.1.5 Defining the Relevant Findings  

The GWAS summary statistics were filtered with a significance level 5×10-8 . 

To satisfy the aim of finding effects that are tied to specific HLA loci (indicative of epistasis), a 

comparison of the effect sizes was done between the GWAS with the whole EstBB population and 

the GWASs of HLA-specific study groups. The variant associations were considered relevant to 

the study aim if the 95% confidence intervals of the effect sizes did not overlap between the HLA 

and population groups.  

Variant associations in the HLA locus on chromosome 6 were excluded form the summary statistics 

as the study focuses only on epistatic interactions that happen between HLA and non-HLA genes. 

 

 

4.1.6 Ethics 

The activities of the EstBB are regulated by the Human Genes Research Act, which was adopted 

in 2000 specifically for the operations of EstBB. Individual level data analysis in EstBB was carried 

out under ethical approval 1.1-12/624 from the Estonian Committee on Bioethics and Human 
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Research (Estonian Ministry of Social Affairs), using data according to release application 6-

7/GI/8592 from the Estonian Biobank.  

 

4.1.6 Data Handling Tools   

The filtering and handling of the variant and cohort data was done using R v. 3.6.0; R data.table v. 

1.14.2; R dplyr v. 1.0.8. The bar plots and the heatmap were done using R ggplot2 v. 3.4.2. The 

UpSet plot was done using R ComplexHeatmap from BioConductor.  

 

 

 

 

4.2 RESULTS 

 

Previously, EstBB has identified HLA associations to different diseases by carrying out PheWAS 

association analyses between 507 imputed HLA alleles against 193 different ICD-10 based 

diagnoses using logistic-regression-based analyses [98].  

To compile study groups with HLA types that are most relevant to autoimmune disease 

susceptibility, the HLAs were selected based on the PheWAS (Figure 4). The criterium of an allele 

being included in the current project was that the number of associated diseases according to the 

PheWAS ≥ 1, and the imputation score DR2 ≥ 0.8 (see section 4.1.2 for imputation methods in 

EstBB). 42 HLA types were included in the project; the current project considered the HLA alleles 

with 2-digit resolution (see section 1.1.1 for HLA nomenclature).  

The study groups were selected from the EstBB cohort based on the specific HLA allele dose: 42 

groups were formed for every HLA allele type included in the study, with every individual in a 

group having an imputed/genotyped HLA allele dose of >0.9; (Figure 5). The GWASs done with 

the HLA study groups included only the autoimmune diseases which were associated with the HLA 

type in the PheWAS (Figure 4). In total, 245 GWASs were conducted across the 42 HLA-type 

groups and 52 diseases (as defined by ICD10 annotation) included in the study.  
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Figure 4 Heatmap showing the PheWAS results previously done on EstBB population. This 

heatmap includes all the alleles, and their respective disease-associations (as odds-ratios), 

according to which the HLA-specific groups were made.    
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Figure 5 The HLA-specific groups that were included in the study, along with their allele frequency 

(AF) and imputation score (DR2; imputed with SNP2HLA) 

 

The GWASs gave 221 hits that reached the p=5×10-8 (-log10(p) = 7.3) significance level. 220 of 

them were in the variant class „missense“ (as annotated in VEP; see METHODS 4.1.4) and 1 hit 

was in the variant class „inframe deletion“. For other variant classes included in the study, none of 

the GWASs produced hits above the significance level.  

After the comparison of the effect sizes between the HLA-specific and whole-population groups 

(see METHODS 4.1.5), 4 out of the 221 results remained as having a significantly different effect 

size in between the HLA and whole-EstBB-population study groups.  

All of the significant comparison results were for the SNP rs2476601 in the gene PTPN22. The 

associated HLA types were DRB1*03 (diseases T1D and retinopathy), DQA1*05 (thyroiditis) and 

DQB1*02 (T1D) (Figure 6)  

The PolyPhen2 score predicts rs2476601 as BENIGN, score = 0.029; CADD score = 18.22; 

ClinVar identifies the variant as „risk factor“ for T1D and thyroiditis (no rs2476601 ClinVar data 

found for retinopathy).    
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Figure 6 The effect sizes (y axis) and their respective 95% confidence intervals showing the effect 

size comparison between HLA-specific and the whole EstBB population sample group GWASs. The 

table depicts all (34) of the R620W hit comparisons from the total of 221 that reached GWAS 

significance. See Table 1 for ICD10 code definitions. All of the 4 results with significant effect size 

differences were with the PTPN22 variant R620W.  

 

There was also a large number of loci, which had a relatively large effect size difference in the 

HLA-specific groups, but which did not reach statistical difference in the current framework due 
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to overlapping 95% confidence intervals in the comparison with the whole-population GWAS 

(Figure 7)  

 

 

Figure 7 The effect size comparison data for all the gene loci which had the mean effect size at 

least 1.25-times different from the effect sizes in the whole-population GWAS. See Table 1 for 

ICD10 code definitions. 
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ICD10 DISEASE 

E10 Type 1 diabetes mellitus 

H36 Retinopathy, unspecified 

E06 Thyroiditis 

E78 Disorders of lipoprotein 

metabolism and other lipidemias 

J45 Asthma 

D50 Iron deficiency anemia 

E03 Hypothyroidism 

D51 B12 deficiency anemia 

L80 Vitiligo 

Table 1 The ICD10 code definitions for all the diseases that are included in figures 6 and 7 

 

The overlap of disease cases between the EstBB cohort and the HLA-specific groups was also 

examined. The total number of T1D cases in EstBB is 2,733, of which ~1/3 are present in the HLA 

DRB1*03 and DQB1*02 groups (Figure 8). The amount of thyroiditis cases in the DQA1*05 group 
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was 8,604, which is 49% from the 17,469 cases in EstBB (data not shown); the amount of 

retinopathy cases in the DRB1*03 group was 925, which is 24% of the 3,849 (data not shown).  

 

 

 

Figure 8 an UpSet plot showing overlap between T1D cases between the EstBB population 

reference group (POP) and the two HLA-specific group where the R620W signal reached 

significance. The sample overlaps are in „intersect“, meaning that the overlaps are not mutually 

exclusive; see the intersection modes in the ComplexHeatmap R package documentation [99] 
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5 DISCUSSION 

 

These findings agree with the literature, which concludes that autoimmune disease heritability is 

explained 2-30% by HLA alleles, strongest which is known to be for T1D by the HLA DR and DQ 

haplotypes (~30%) [6]. The PTPN22 variant R620W has been identified as one of the strongest 

non-HLA genetic risk factors in several autoimmune diseases [113].  

The PTPN22 variant R620W was first published as a T1D associated variant in 2004 [100] and it 

has been since determined to have a strong association with several autoimmune diseases [101] 

[102] [103] [104] [105]. The PTPN22 gene on chromosome 1 encodes the lymphoid-specific 

tyrosine phosphatase (Lyp) which has an important role in the activation pathway of T-cells. Lyp 

negatively regulates (dephosphorylates) the Syk and Src family kinases, which are the main 

mediators of T-cell activation triggered by TCR engagement [106] [107]. The variant rs2476601 

(also named C1858T; R620W; 1858C>T) is a missense C → T mutation at position 1858 of the 

PTPN22 gene that results in arginine → tryptophan amino acid change at position 620 of Lyp. 

Studies with cells from patients with T1D, rheumatoid arthritis and thyroiditis are reporting reduced 

IL-2 production and decreased TCR signal response (blunted calcium flux and transcription factor 

activity), but an expanded pool of memory T-cells [108]. Mice expressing Ptpn22R619W (the mouse 

orthologue of R620W) have been shown to have an expanded population of CD4+ and CD8+ 

effector T-cells, and a downregulated population of the immunosuppressing Treg cells [109].  

The published data on gene-gene interactions suggests that the joint-effect between HLA locus and 

PTPN22 in autoimmune diseases may be additive (not epistatic) [110] [111] [112] [113] [114], 

however, the precise role of PTPN22 variants in the development of autoimmune diseases is 

generally not very well defined and still under active research, thus the locus should be kept in 

relevance for further studies. Furthermore, the current study resulted in several loci within the 221 

statistically significant hits, which, although, did not pass the criterium of synergy under current 

framework (due to overlapping 95% confidence intervals in the whole-population comparison), 

still should be considered as potential candidates for further gene-gene interaction analysis. Such 

as the NANS gene locus (lead SNP rs1058446), which showed a 2-fold mean effect size increase 

in HLA-DRB1*04 group for thyroiditis, and the NKPD1 locus (lead SNP rs28469095) showing 

1.65-fold mean effect increase in the DRB1*01 group in association with lipoprotein metabolism 

disorders (Figure 7). In the result interpretation, it should be taken into account that the EstBB 
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population reference did not exclude the disease cases that were also the study group HLA carriers, 

and considering that the disease case overalp is substantial (Figure 8), there is likely some inflation 

in type 2 error rate. Moreover, since it’s been determined that single amino acid substitutions in 

the HLA peptide binding groove can have dramatic effects on the TCR/antigen interactions, a 

future study should consider the HLA alleles with higher resolution to increase power. Also, the 

present study included only non-synonymous variants in protein-coding regions, and future 

analysis could benefit from also investigating the pathogenic associations involving regulatory 

DNA regions (with the inclusion of appropriate fine-mapping measures [69] [70]) 

Inherently, the agnostic GWAS results in the framework of this analysis are only suggestive of 

gene interactions, and the distinction between epistatic and additive genetic interactions cannot be 

inferred from these results directly, but instead these results serve to guide further studies with 

loci/variants where gene-gene interaction may be present. For future studies, the use of specialized 

statistical frameworks should be examined, such as the Partial Least Squares Path Modeling 

statistic mPLSM [115] or PCA-based approaches [116]. Recently these statistical methods have 

also been pointed out to have inferior power to detect gene-gene interactions compared to deep 

learning methods, which may be more suitable for this task instead [117]. 
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6 SUMMARY 

 

The project’s HLA-specific GWAS design and the subsequent variant effect size comparison with 

the EstBB population reference was aimed at detecting variants that would differ in their 

association strength to autoimmune diseases in individuals that carry specific HLA types. The 

analysis resulted in the detection of significant synergy between the PTPN22 gene variant R620W 

with T1D (HLA study groups DRB1*03 and DQB1*02), retinopathy (HLA study group DRB1*03) 

and thyroiditis (HLA study group DQA1*05). Based on the results, as well as the relevant 

published literature, it’s feasible to suggest that the variant R620W may involve synergy with 

certain HLA types. 

The present study also detected several loci with substantial mean effect difference in the HLA-

specifc groups, despite having overlapping 95% confidence intervals with the EstBB population 

GWAS reference, which should also be prioritized in epistatic effects modeling.  

In summary, the present work concluded that several non-HLA variants show substantially stronger 

GWAS effect sizes with respect to autoimmune diseases among the carriers of certain HLA types. 

These variants are suggested to be subjected to further gene-gene interaction analysis which can 

lead to more precise mapping of the genetic architecture behind these diseases.    
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