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a b s t r a c t

A recurrent neural network (RNN) can generate a sequence of patterns as the temporal evolution of the
output vector. This paper focuses on a continuous-time RNN model with a piecewise-linear activation
function that has neither external inputs nor hidden neurons, and studies the problem of finding the
parameters of the model so that it generates a given sequence of bipolar vectors. First, a sufficient
condition for the model to generate the desired sequence is derived, which is expressed as a system
of linear inequalities in the parameters. Next, three approaches to finding solutions of the system
of linear inequalities are proposed: One is formulated as a convex quadratic programming problem
and others are linear programming problems. Then, two types of sequences of bipolar vectors that
can be generated by the model are presented. Finally, the case where the model generates a periodic
sequence of bipolar vectors is considered, and a sufficient condition for the trajectory of the state
vector to converge to a limit cycle is provided.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Recurrent neural networks (RNNs) (Aihara et al., 1990; Amari,
972; Chua & Yang, 1988a; Elman, 1990; Hochreiter & Schmid-
uber, 1997; Hopfield, 1982, 1984; Jordan, 1997) have been ex-
ensively studied in the past decades due to their important
pplications in various areas such as associative memory (Amari,
972; Hopfield, 1982, 1984; Michel & Farrell, 1990), combina-
orial optimization (Hertrich & Skutella, 2021; Hopfield & Tank,
986), image and video processing (Chua & Yang, 1988b; Pan
t al., 2016; Takahashi et al., 2010), acoustic modeling (Sak et al.,
014), natural language processing (Lawrence et al., 2000; Lee
Dernoncourt, 2016) and time series prediction (Hewamalage

t al., 2021). Unlike feedforward neural networks, RNNs have
eedback connections between neurons. Hence the output of each
euron depends not only on the current input but also on the
nternal state. This property allows an RNN to exhibit temporal
ynamic behavior and to generate a sequence of patterns as the
emporal evolution of the outputs of the neurons. For more details
n the history and recent advances in RNNs, the readers are
eferred to some survey papers (Lipton et al., 2015; Salehinejad
t al., 2017; Yu et al., 2019).
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As with feedforward neural networks, the universality of RNNs
has been theoretically proved from various perspectives. Siegel-
mann et al. proved that there exists a discrete-time RNN with
hidden neurons and external inputs that simulates an arbitrary
Turing machine (Kilian & Siegelmann, 1996; Siegelmann & Son-
tag, 1991, 1994, 1995). Hammer proved that any measurable
function from lists of real vectors to a real vector space can be ap-
proximated arbitrarily well in probability by an RNN with hidden
neurons (Hammer, 2000). Schäfer and Zimmermann proved that
open dynamical systems can be approximated by a discrete-time
RNN in state space model having external inputs with an arbitrary
accuracy (Schäfer & Zimmermann, 2007). This result was recently
extended to the case of stochastic inputs (Chen et al., 2022).
Funahashi and Nakamura proved that any finite time trajectory
of a given continuous-time dynamical system can be approxi-
mately realized by a continuous-time RNN with some hidden
neurons (Funahashi & Nakamura, 1993). Takahashi et al. proved
that all of the 256 possible local pattern sets can be realized by a
one-dimensional two-layer cellular neural network model (Taka-
hashi et al., 2008). Li et al. recently studied the approximation
properties and optimization dynamics of continuous-time lin-
ear RNNs when applied to learn input–output relationships in
temporal data (Li et al., 2022).

Although RNNs have been proved to be universal, finding the
parameters of an RNN so that it generates given sequences of
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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atterns is not an easy task. Hence a large number of studies
elated to this issue have been conducted. Amari studied the
tability of discrete-time RNNs with the sign activation function,
nd presented a condition for such an RNN with parameters
etermined from some sequences of bipolar vectors using Heb-
ian rule to generate each of the sequences (Amari, 1972). Mori
t al. considered the same type of RNNs as Amari, and evaluated
hrough numerical experiments their sequence retrieval capa-
ility when the parameters are determined from some periodic
equences of bipolar vectors using Hebbian rule (Mori et al.,
989). Williams and Zipser considered a class of discrete-time
NNs with external inputs, and proposed a real-time learning
lgorithm for such an RNN based on the gradient descent on
he error defined as the difference between the target outputs
nd the actual outputs of the RNN at each time step (Williams &
ipser, 1989). Pearlmutter considered a class of continuous-time
NNs with external inputs, and proposed a learning method for
uch an RNN based on the gradient descent on the error defined
s the difference between the target trajectory and the state
rajectory of the RNN for a given period of time (Pearlmutter,
989). Yoneyama et al. proposed a linear programming-based
esign method for a class of continuous-time RNNs with the sign
ctivation function to generate one or more periodic sequences
f bipolar vectors, and demonstrated that an RNN generating two
iven periodic sequences of four dimensional bipolar vectors can
e obtained (Yoneyama et al., 2001).
Despite considerable efforts by many researchers, it is still not

ully understood what kind of sequences can be generated by
NNs having neither external inputs nor hidden neurons. Finding
nswers to this question is an important step not only to gain a
eeper understanding of the fundamental properties of RNNs but
lso to take full advantage of the potential capabilities of RNNs
or various applications.

In this paper, we focus our attention on a continuous-time
NN model, which uses the piecewise-linear activation function
(x) = (|x+ 1| − |x− 1|)/2 and has neither external inputs nor

hidden neurons, and study the problem of finding the parameters
of the model so that it generates a given sequence of bipolar
vectors. Here, the term ‘‘bipolar’’ means that each entry of the
vector is either +1 or −1. In order to make the problem more
recise, we need to discuss two issues. One is the gap between the
esired sequence of bipolar vectors and the actual output vector
f the RNN. Since the model is described by a system of ordinary
ifferential equations, the output vector varies continuously with
ime, that is, it cannot jump from one bipolar vector to another.
e thus assume that two consecutive bipolar vectors in the
esired sequence differ in one and only one entry, and allow the
utput vector of the RNN to take intermediate values between
hose two bipolar vectors. The other issue is the correspondence
etween the output and state vectors of the RNN. A bipolar output
ector does not determine a unique state vector, due to the
aturation property of the activation function. We thus need to
onsider all state vectors corresponding to the first bipolar vector
n the desired sequence as the initial condition.

The contributions of this paper are summarized as follows.
irst, we derive a sufficient condition for the model to generate a
iven sequence of bipolar vectors, which is expressed as a system
f linear inequalities in the parameters. Second, we propose three
pproaches to finding the parameters with certain properties
hile satisfying the system of linear inequalities: one is formu-

ated as a convex quadratic programming problem and the others
re linear programming problems. The differences among these
hree approaches are demonstrated through an example. Third,
e present two types of sequences of bipolar vectors that can be
enerated by the model. In one type, the sequence starts with

he vector of all 1’s, replaces 1 with −1 one by one in order

589
rom the first entry to the last one until the vector of all −1’s
is obtained, and replaces −1 with 1 one by one in the same order
until the initial vector is obtained. In the other type, the sequence
starts with the vector of all 1’s, replaces 1 in the first entry with
−1, moves −1 toward the last entry, and returns to the initial
vector. Finally, we consider the case where the model generates
a periodic sequence of bipolar vectors, and provide a sufficient
condition for the trajectories of the state vector to converge to a
limit cycle.

The RNN design approaches proposed in this paper have po-
tential applications in associative memory, binary image process-
ing and central pattern generators, for example. RNNs designed so
that they generate multiple sequences of bipolar vectors may be
applicable to auto- or hetero-associative memory. As for image
processing, it is well known that a special class of the RNN
model considered in this paper can perform various image pro-
cessing tasks (Chua & Yang, 1988b; Takahashi et al., 2010). So
the proposed approaches may expand the range of applications
in image processing. RNNs designed so that they generate a
periodic sequence of bipolar vectors may be used as central
pattern generators for robot locomotion (Ijspeert, 2008), because
the trajectories of the state vector of such an RNN are likely to
converge to a limit cycle.

In the previous studies on nonlinear dynamics of continuous-
time RNNs, the main focus was on the convergence of the trajec-
tories of the state vector to equilibrium points (Liu et al., 2021).
For example, for the RNN model considered in this paper, it is
known that if the weight matrix satisfies a certain condition
then the trajectories of the state vector converges to one of the
equilibrium points for any initial condition (Takahashi & Chua,
1998). Also, for RNN models with different types of piecewise-
linear activation functions, stability and instability of multiple
equilibrium points have been investigated (Deng et al., 2023;
Nie & Zheng, 2015a, 2015b, 2016). In contrast, this paper studies
the convergence of the trajectories of the state vector to a limit
cycle. In particular, it is shown through some examples that we
can design RNNs having a stable limit cycle using the methods
developed in this paper. Generation of stable limit cycles is a fun-
damental research topic in the field of control systems (Azhdari
& Binazadeh, 2021; Benmiloud et al., 2018). The results of this
paper may provide a new direction in this field.

Preliminary results of this work were presented in two inter-
national conference papers (Takahashi & Minetoma, 2008; Taka-
hashi et al., 2005). However, these papers consider only the case
where the desired sequence is periodic, that is, the last bipolar
vector in the sequence is equal to the first one. Hence the results
in Section 3 are slightly different from the ones in those papers.
Also, the sufficient condition for the convergence of the state
trajectories to a limit cycle presented in Section 6 is different
from the one in the paper (Takahashi & Minetoma, 2008) because
the latter requires infinite number of steps to test. In addition,
the development of the three design methods in Section 4 and
the discovery of the realizable sequences of bipolar vectors in
Section 5 are original contributions of this paper.

Throughout this paper, we use the following notations. The set
of real numbers is denoted by R. The set of positive integers is
denoted by Z++. For a function g of time t , the time derivative is
denoted by ġ(t). Square brackets are used to form vectors and
matrices. Also, comma separated lists of scalars enclosed with
parentheses are used to form column vectors. Therefore, by x =
(x1, x2, . . . , xn), we mean that

x =

⎡⎢⎢⎣
x1
x2
...

⎤⎥⎥⎦ = [x1 x2 · · · xn]T
xn
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here the superscript T denotes transposition. For a square ma-
rix J , the matrix norm induced by ℓ2-norm or the Euclidean norm
f vectors is denoted by ∥J∥2. The natural logarithm is denoted by
n. For a subset M of Rn, the boundary of M is denoted by ∂M .

. Recurrent neural network model and problem statement

We consider a continuous-time recurrent neural network
RNN) model described by the system of differential equations:

˙i(t) = −xi(t)+
n∑

j=1

wijf (xj(t))+ bi, i = 1, 2, . . . , n (1)

ith

(x) =
1
2
(|x+ 1| − |x− 1|), (2)

where xi(t) ∈ R and f (xi(t)) ∈ [−1, 1] represent the state and
utput of neuron i at time t respectively, ẋi(t) denotes the time
erivative of xi(t), wij ∈ R is the weight of the connection from
euron j to neuron i, bi ∈ R is the bias of neuron i. Throughout
his paper, we assume that

ii = 2, i = 1, 2, . . . , n. (3)

q. (1) can be rewritten in vector form as

˙(t) = −x(t)+Wf (x(t))+ b

here

(t) =

⎡⎢⎢⎣
x1(t)
x2(t)

...

xn(t)

⎤⎥⎥⎦ , f (x(t)) =

⎡⎢⎢⎣
f (x1(t))
f (x2(t))

...

f (xn(t))

⎤⎥⎥⎦ ,

W =

⎡⎢⎢⎣
w11 w12 · · · w1n
w21 w22 · · · w2n
...

...
. . .

...

wn1 wn2 · · · wnn

⎤⎥⎥⎦ , b =

⎡⎢⎢⎣
b1
b2
...

bn

⎤⎥⎥⎦ .

In what follows, x(t) is called the state vector, f (x(t)) the output
vector, W the weight matrix, and b the bias vector. The trajectory
of the state vector x(t) passing through a point x0 ∈ Rn at
t = 0 is denoted by φ(t, x0) = (φ1(t, x0), φ2(t, x0), . . . , φn(t, x0)).
Since f is Lipschitz continuous with the Lipschitz constant 1,
the existence and uniqueness of φ(t, x0) are guaranteed by the
Picard–Lindelöf theorem.

The problem we consider in this paper is, roughly speaking,
to find W and b of the RNN model so that it generates a given
sequence of bipolar vectors as the temporal evolution of the
output vector. For simplicity, we assume that two consecutive
bipolar vectors in the sequence differ in one and only one entry.
Also, since all trajectories of the output vector of the RNN model
is continuous, we allow the output vector to take intermediate
values during the transition from one bipolar vector to another.
Then the problem is formally stated as follows.

Problem 1. Given a sequence S = {α0, α1, . . . ,αm
} of n-

dimensional bipolar vectors such that

1. αk+1 differs from αk in one and only one entry for k =
0, 1, . . . ,m− 1, and

2. αk
= αk′ holds only if k = 0 and k′ = m,

find the weight matrix W and the bias vector b of the RNN model
described by (1)–(3) so that if f (x(0)) = α0 then there exists a
sequence 0 = t0− ≤ t0+ < t1− ≤ t1+ < · · · < tm− < ∞ such
that f (x(t)) = αk (tk− ≤ t ≤ tk+) and f (x(t)) ∈ {θαk

+(1−θ )αk+1
|

0 < θ < 1} (tk+ < t < t (k+1)−) for k = 0, 1, . . . ,m − 1 and
f (x(tm−)) = αm.
590
Let us consider the case where S = {(1, 1), (1,−1), (−1,−1),
(−1, 1), (1, 1)}. It is clear that this sequence satisfies the condi-
tions in Problem 1. In this case, we have to find W and b of
the RNN model so that if f (x(0)) = (1, 1) then there exists a
sequence 0 ≤ t0+ < t1− ≤ t1+ < · · · < t4− such that
f (x(t)) = (1, 1) (0 ≤ t ≤ t0+), f (x1(t)) = 1 and |f (x2(t))| < 1
(t0+ < t < t1−), f (x(t)) = (1,−1) (t1− ≤ t ≤ t1+), |f (x1(t))| < 1
and f (x2(t)) = −1 (t1+ < t < t2−), f (x(t)) = (−1,−1) (t2− ≤
t ≤ t2+), f (x1(t)) = −1 and |f (x2(t))| < 1 (t2+ < t < t3−),
f (x(t)) = (−1, 1) (t3− ≤ t ≤ t3+), |f (x1(t))| < 1 and f (x2(t)) = 1
(t3+ < t < t4−), and f (x(t4−)) = (1, 1).

It should be noted that the initial value x(0) of the state vector
is not uniquely determined from the assumption f (x(0)) = α0.
In fact, the assumption holds if and only if xi(0)α0

i ≥ 1 for
i = 1, 2, . . . , n. We thus formulate the problem more precisely
in terms of the trajectories of the state vector. Let the intervals
(−∞,−1], (−1, 1) and [1,∞) be denoted by I−1, I0 and I1, re-
spectively. For any n-dimensional vector v = (v1, v2, . . . , vn) with
vi ∈ {−1, 0, 1} for all i, let the region Rv ⊂ Rn be defined as

Rv :=
{
(x1, x2, . . . , xn) | xi ∈ Ivi , i = 1, 2, . . . , n

}
. (4)

Using these notations, the problem is stated in a more precise
way as follows.

Problem 2. Given a sequence S = {α0, α1, . . . ,αm
} of n-

dimensional bipolar vectors satisfying the two conditions in Prob-
lem 1, find the weight matrix W and the bias vector b of the
RNN model described by (1)–(3) so that for any x0 ∈ Rα0

the trajectory φ(t, x0) of the state vector visits R(α0+α1)/2, Rα1 ,
R(α1+α2)/2, . . . ,Rαm in this order.

In what follows, we say that the RNN model generates the
sequence S of bipolar vectors in Problem 2 if the trajectories of
the state vector behave as described in Problem 2.

Let us consider, for example, a two-neuron RNN having the
following weight matrix and the bias vectors:

W =
[

2.0 −1.6
1.7 2.0

]
, b =

[
−0.5
0.5

]
. (5)

Fig. 1 shows three trajectories φ(t, (1, 1)), φ(t, (5, 1)) and φ(t,
(1, 5)) of the state vector generated by this RNN. It is seen that
these trajectories visit R(0,1), R(−1,1), R(−1,0), R(−1,−1), R(0,−1),
R(1,−1), R(1,0) in this order and return to the starting region
R(1,1). It is also seen that they converge to the same limit cy-
cle passing through the eight regions. As we will see later, it
is true that any trajectory φ(t, x0) with x0 ∈ R(1,1) exhibits
the same dynamical behavior as these three. Therefore, we can
say that this RNN generates the sequence S = {(1, 1), (−1, 1),
(−1,−1), (1,−1), (1, 1)}. In other words, it generates the se-
quence {(1, 1), (−1, 1), (−1,−1), (1,−1)} repeatedly.

3. Analysis

We present a sufficient condition for the RNN model described
by (1)–(3) to generate a given sequence of bipolar vectors satis-
fying the conditions in Problem 2. We first analyze the dynamical
behavior of the RNN model when it consists of only two neurons,
and then extend the results to the general case where the number
of neurons is not restricted to two.

3.1. Two-neuron case

As the first step, we consider the RNN model consisting of two
neurons. The dynamics of the RNN model is described by{

ẋ1(t) = g1(x1(t), x2(t)), (6)
ẋ2(t) = g2(x1(t), x2(t)),
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Fig. 1. Three trajectories φ(t, (1, 1)), φ(t, (5, 1)) and φ(t, (1, 5)) generated by the
two-neuron RNN with the parameters given by (5).

where

g1(x1, x2) = −x1 + 2f (x1)+ w12f (x2)+ b1,
g2(x1, x2) = −x2 + 2f (x2)+ w21f (x1)+ b2.

The next lemma provides a sufficient condition for the trajectory
φ(t, (1, 1)) of the state vector of the RNN model to reach R(−1,1).

Lemma 1. If the parameters of the RNN model described by (6)
satisfy

w12 + b1 < −1, (7)

w21 + b2 > −1, (8)

b2 ≥ −1, (9)

then the trajectory φ(t, (1, 1)) of the state vector passes through the
interior of R(0,1) and reaches R(−1,1).

Proof. It follows from (7) and (8) that

g1(1, 1) = 1+ w12 + b1 < 0,
g2(1, 1) = 1+ w21 + b2 > 0.

Hence the trajectory φ(t, (1, 1)) first enters the region R(0,1). As
long as φ(t, (1, 1)) ∈ R(0,1), the trajectory φ(t, (1, 1)) is explicitly
expressed as

φ1(t, (1, 1)) = (w12 + b1 + 1)et − w12 − b1, (10)

φ2(t, (1, 1)) =
[w21

2
(w12 + b1 − 1)− b2 − 1

]
e−t

+
w21

2
(w12 + b1 + 1)et − w21(w12 + b1)+ b2 + 2.

(11)

We see from (7) that the right-hand side of (10) is a monotone
decreasing function of t , and takes the value of −1 when

t = t∗ := ln
(

w12 + b1 − 1
w12 + b1 + 1

)
. (12)

n order to understand the behavior of φ2(t, (1, 1)), we consider
he time derivative of it, which is given by

˙2(t, (1, 1)) = −
[w21 (w12 + b1 − 1)− b2 − 1

]
e−t
2
591
+
w21

2
(w12 + b1 + 1)et

=
e−t

2

[
w21(w12 + b1 + 1)e2t

− w21(w12 + b1 − 1)+ 2(b2 + 1)] . (13)

aking the assumptions (7)–(9) into account, we can make the
ollowing observations: (i) if w21 < 0 then the right-hand side
f (13) is monotone increasing for t ≥ 0 because it follows from
13), (7) and (8) that

e−t

2

[
w21(w12 + b1 + 1)e2t − w21(w12 + b1 − 1)+ 2(b2 + 1)

]
≥

e−t

2
[w21(w12 + b1 + 1)− w21(w12 + b1 − 1)+ 2(b2 + 1)]

= e−t (w21 + b2 + 1)
> 0,

(ii) if w21 = 0 then the right-hand side of (13) is monotone
ondecreasing for t ≥ 0 because it follows from (9) and (13) that

e−t

2

[
w21(w12 + b1 + 1)e2t − w21(w12 + b1 − 1)

+2(b2 + 1)] = e−t (b2 + 1) ≥ 0

and (iii) if w21 > 0 then the right-hand side of (13) is monotone
increasing for 0 ≤ t < T where

T :=
1
2
ln
(
−w21(w12 + b1 − 1)+ 2(b2 + 1)

−w21(w12 + b1 + 1)

)
nd monotone decreasing for t > T . Furthermore, substituting
12) into (11), we have

2(t∗, (1, 1)) = 1−
2(b2 + 1)

w12 + b1 − 1
hich is greater than or equal to 1 by (7) and (9). From these
bservations, we can say that φ1(t, (1, 1)) decreases monotoni-
ally for 0 ≤ t ≤ t∗ and becomes −1 when t = t∗, φ2(t,(1,1))
oes not decrease for 0 ≤ t ≤ t∗ if w21 ≤ 0 or if w21 > 0 and
≥ t∗, and φ2(t, (1, 1)) increases monotonically for 0 ≤ t < T

nd then decreases monotonically for T < t ≤ t∗ if w21 > 0
nd T < t∗. The behavior of the trajectory φ(t, (1, 1)) in R(0,1) is
hown in Fig. 2. Therefore, if the assumptions (7)–(9) hold then
2(t, (1, 1)) ≥ 1 for all t ∈ [0, t∗], which means that φ(t, (1, 1)) is

in the interior ofR(0,1) for all t ∈ (0, t∗) and φ(t∗, (1, 1)) ∈ R(−1,1).
his completes the proof. □

A key point in the proof of Lemma 1 is that φ2(t∗, (1, 1)) is
expressed in a simple formula. We now show that this occurs
only when w11 = 2. Let us first consider the case where w11 ̸= 1
and w22 is not necessarily equal to 2. In this case, φ(t, (1, 1))
enters the region R(0,1) if w11 > 1, w11 + w12 + b1 − 1 < 0 and
w21+w22+ b2− 1 > 0. Moreover, as long as φ(t, (1, 1)) ∈ R(0,1),
the trajectory φ(t, (1, 1)) is explicitly expressed as

φ1(t, (1, 1)) =
(

w12 + b1
w11 − 1

+ 1
)
e(w11−1)t −

w12 + b1
w11 − 1

, (14)

φ2(t, (1, 1)) =
[

w21

w11
(w12 + b1 − 1)− (w22 + b2 − 1)

]
e−t

+
w21

w11(w11 − 1)
(w11 + w12 + b1 − 1)e(w11−1)t

−
w21

w11 − 1
(w12 + b1)+ w22 + b2. (15)

The right-hand side of (14) takes the value of −1 when

t =
1

ln
(
−w11 + w12 + b1 + 1

)
.

w11 − 1 w11 + w12 + b1 − 1
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Substituting this into the right-hand side of (15), we have[
w21

w11
(w12 + b1 − 1)− (w22 + b2 − 1)

]
×

(
w11 + w12 + b1 − 1
−w11 + w12 + b1 + 1

)1/(w11−1)

w21

w11
(w12 + b1 + 1)+ w22 + b2

hich can be simplified only when w11 = 2. Let us next consider
he case where w11 = 1 and w22 is not necessarily equal to 2.
n this case, φ(t, (1, 1)) enters the region R(0,1) if w12 + b1 < 0
nd w21 + w22 + b2 − 1 > 0. As long as φ(t, (1, 1)) ∈ R(0,1), the
rajectory φ(t, (1, 1)) is explicitly expressed as

1(t, (1, 1)) = (w12 + b1)t + 1, (16)

2(t, (1, 1)) = [w21(w12 + b1 − 1)− (w22 + b2 − 1)] e−t

+ w21(w12 + b1)t − w21(w12 + b1 − 1)+ w22 + b2.
(17)

he right-hand side of (16) takes the value of −1 when t =
2/(w12 + b1). Substituting this into the right-hand side of (17),
e have

[w21(w12 + b1 − 1)− (w22 + b2 − 1)] e2/(w12+b1)

− w21(w12 + b1 + 1)+ w22 + b2

hich cannot be simplified further.
Using Lemma 1, we obtain the next lemma which shows that

ll trajectories φ(t, x0) with x0 ∈ R(1,1) reach R(−1,1) under the
ame condition.

emma 2. If the parameters of the RNN model described by (6)
satisfy (7)–(9) then for any x0 ∈ R(1,1) the trajectory φ(t, x0) of the
state vector passes through the interior of R(0,1) and reaches R(−1,1).

Proof. Let x0 be any point in R(1,1). As long as φ(t, x0) ∈ R(1,1),
φ1(t, x0) decreases monotonically because

g1(x1, x2)|(x1,x2)∈R(1,1)
= −x1 + 2+ w12 + b1|x1≥1
≤ w12 + b1 + 1 < 0

follows from (7). Also, φ(t, x0) does not move from R(1,1) to R(1,0)
nor R(0,0) because

g2(x1, x2)|(x1,x2)∈R(1,1), x2=1 = −1+2+w21+b2 = w21+b2+1 > 0

follows from (8). Hence φ(t, x0) moves from R(1,1) to R(0,1).
As long as φ(t, x0) ∈ R(0,1), φ1(t, x0) decreases monotonically
because
g1(x1, x2)|(x1,x2)∈R(0,1)

= −x1 + 2x1 + w12 + b1||x1|<1
≤ w12 + b1 + 1 < 0 b

592
follows from (7). In addition, due to the uniqueness of the solu-
tion of (6), φ(t, x0) does not intersect φ(t, (1, 1)). Since φ(t, (1, 1))
passes through the interior of R(0,1) and reaches R(−1,1) as shown
in Lemma 1, so does φ(t, x0). □

Lemma 2 is generalized as follows.

Lemma 3. Let α = (α1, α2) and α′ = (−α1, α2) be two bipolar
vectors that differ only in the first entry. If the parameters of the
RNN model described by (6) satisfy

α1α2w12 + α1b1 < −1, (18)

α1α2w21 + α2b2 > −1, (19)

α2b2 ≥ −1, (20)

then for any x0 ∈ Rα the trajectory φ(t, x0) of the state vector passes
through the interior of R(α+α′)/2 and reaches Rα′ .

Proof. Let us change the variables from x1(t) and x2(t) to x̃1(t) =
1x1(t) and x̃2(t) = α2x2(t). Then we can rewrite (6) as

˙̃x1(t) = g̃1(x̃1(t), x̃2(t)),
˙̃x2(t) = g̃2(x̃1(t), x̃2(t)),

(21)

here

˜1(x̃1, x̃2) = −x̃1 + 2f (x̃1)+ α1α2w12f (x̃2)+ α1b1, (22)

˜2(x̃1, x̃2) = −x̃2 + 2f (x̃2)+ α1α2w21f (x̃1)+ α2b2. (23)

t follows from Lemma 2 that if the parameters in (22) and (23)
atisfy (18)–(20) then for any x̃0 ∈ R(1,1) the trajectory φ(t, x̃0)
f the RNN model (21) passes through the interior of R(0,1) and
eaches R(−1,1). This means that for any x0 ∈ Rα the trajectory
(t, x0) of the RNN (6) passes through the interior of R(α+α′)/2
nd reaches Rα′ . □

The next lemma immediately follows from Lemma 3.

emma 4. Let α = (α1, α2) and α′ = (α1,−α2) be two bipolar
ectors that differ only in the second entry. If the parameters of the
NN model described by (6) satisfy

1α2w12 + α1b1 > −1,

1α2w21 + α2b2 < −1,
α1b1 ≥ −1,

hen for any x0 ∈ Rα the trajectory φ(t, x0) of the state vector passes
hrough the interior of R(α+α′)/2 and reaches Rα′ .

xample 1. We find the parameters of the RNN model described

y (6) so that it generates the sequence S = {(1, 1), (−1, 1),
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(−1,−1), (1,−1), (1, 1)}. It follows from Lemmas 3 and 4 that
if the parameters of the RNN model satisfy

w12 + b1 < −1, w21 + b2 > −1, b2 ≥ −1,
−w12 − b1 > −1, −w21 + b2 < −1, −b1 ≥ −1,

w12 − b1 < −1, w21 − b2 > −1, −b2 ≥ −1,
−w12 + b1 > −1, −w21 − b2 < −1, b1 ≥ −1,

then for any x0 ∈ R(1,1) the trajectory φ(t, x0) of the state
vector visits R(−1,1),R(−1,−1),R(1,−1),R(1,1) in this order. Since
he parameters w12 = −1.6, w21 = 1.7, b1 = −0.5 and b2 = 0.5
iven in (5) satisfy all of these inequalities, it is theoretically
uaranteed that the RNN with these parameters generates the
equence S. The regions of the parameters corresponding to the
bove inequalities are the points corresponding to the parameters
iven in (5) are shown in Fig. 3.

.2. General case

We extend the results obtained in the previous subsection to
he general case where n is not restricted to two.

emma 5. Let α = (α1, α2, . . . , αn) and α′ = (α1, . . . , αi∗−1,
αi∗ , αi∗+1, . . . , αn) be two bipolar vectors that differ only in the

i∗-th entry. If the parameters of the RNN model described by (1)–(3)
satisfy

αi∗

⎛⎝ n∑
j=1,j̸=i∗

αjwi∗j + bi∗

⎞⎠ < −1, (24)

αi

⎛⎝ n∑
j=1,j̸=i

αjwij + bi

⎞⎠ > −1, ∀i ̸= i∗, (25)

αi

⎛⎝ n∑
j=1,j̸=i,i∗

αjwij + bi

⎞⎠ ≥ −1, ∀i ̸= i∗, (26)

hen for any x0 ∈ Rα the trajectory φ(t, x0) of the state vector passes
hrough the interior of R(α+α′)/2 and reaches Rα′ .

roof. The dynamics of the RNN model is expressed as

˙i(t) = gi(x1(t), x2(t), . . . , xn(t)), i = 1, 2, . . . , n

here

i(x1, x2, . . . , xn) = −xi+2f (xi)+
n∑

wijf (xj)+bi, i = 1, 2, . . . , n.

j=1,j̸=i

593
n what follows, we assume without loss of generality that i∗ = 1.
s long as φ(t, x0) ∈ Rα, α1φ1(t, x0) decreases monotonically
ecause

α1g1(x1, x2, . . . , xn)|x∈Rα
= α1

⎛⎝−x1 + 2α1 +

n∑
j=2

w1jαj + b1

⎞⎠⏐⏐⏐⏐⏐⏐
α1x1≥1

≤ 1+ α1

⎛⎝ n∑
j=2

w1jαj + b1

⎞⎠
< 0

ollows from (24). Also, as long as φ(t, x0) ∈ Rα, αiφi(t, x0) is not
ess than 1 for i = 2, 3, . . . , n because

αigi(x1, x2, . . . , xn)|x∈Rα,xi=αi
= αi

⎛⎝−αi + 2αi +

n∑
j=1,j̸=i

wijαj + bi

⎞⎠
= 1+ αi

⎛⎝ n∑
j=1,j̸=i

wijαj + bi

⎞⎠
> 0

ollows from (25). Hence φ(t, x0) moves from Rα to R(α+α′)/2. As
ong as φ(t, x0) ∈ R(α+α′)/2, α1φ1(t, x0) decreases monotonically
ecause

α1g1(x1, x2, . . . , xn)|x∈R(α+α′)/2

= α1

⎛⎝−x1 + 2x1 +
n∑

j=2

w1jαj + b1

⎞⎠⏐⏐⏐⏐⏐⏐
|x1|<1

< 1+ α1

⎛⎝ n∑
j=2

w1jαj + b1

⎞⎠
< 0

ollows from (24). Now we shall prove that φ(t, x0) moves from
(α+α′)/2 to Rα′ by contradiction. Assume this is not true. Then
here exist a positive number t∗ and an integer i′ ∈ {2, 3, . . . , n}
uch that φ(t, x0) ∈ Rα ∪ R(α+α′)/2 for all t ∈ [0, t∗], −1 <

1φ1(t∗, x0) < 1 and αi′φi′ (t∗, x0) = 1. We assume without loss
f generality that i′ = 2. Then the behavior of neurons 1 and 2
or 0 ≤ t ≤ t∗ is described by

ẋ1(t) = −x1(t)+ 2f (x1(t))+ w12f (x2(t))+ b̃1,
˜

(27)

ẋ2(t) = −x2(t)+ 2f (x2(t))+ w21f (x1(t))+ b2
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here b̃1 =
∑n

j=3 w1jαj + b1 and b̃2 =
∑n

j=3 w2jαj + b2. We see
from (24)–(26) that the parameters of (27) satisfy the following
inequalities:

α1α2w12 + α1b̃1 < −1,

α1α2w21 + α2b̃2 > −1,

α2b̃2 ≥ −1.

Also, x0 ∈ Rα implies that (x01, x
0
2) ∈ R(α1,α2). From these ob-

servations and Lemma 3, we see that (φ1(t, x0), φ2(t, x0)) passes
hrough the interior of R(0,α2) and reaches R(−α1,α2). However,
his contradicts the fact that−1 < φ1(t∗, x0) < 1 and φ2(t∗, x0) =
2. Therefore, φ(t, x0) moves from R(α+α′)/2 to Rα′ . □

The next theorem immediately follows from Lemma 5.

heorem 1. Let S = {α0, α1, . . . ,αm
} be a sequence of n-

imensional bipolar vectors satisfying the following conditions.

1. αk+1 differs from αk only in the ik-th entry for k = 0, 1, . . . ,
m− 1.

2. αk
= αk′ holds only if k = 0 and k′ = m.

f the parameters of the RNN model described by (1)–(3) satisfy

k
ik

⎛⎝ n∑
j=1,j̸=ik

αk
j wikj + bik

⎞⎠ < −1 (28)

αk
i

⎛⎝ n∑
j=1,j̸=i

αk
j wij + bi

⎞⎠ > −1, ∀i ̸= ik (29)

αk
i

⎛⎝ n∑
j=1,j̸=ik,i

αk
j wij + bi

⎞⎠ ≥ −1, ∀i ̸= ik (30)

or k = 0, 1, . . . ,m − 1 then for any x0 ∈ Rα0 the trajec-
ory φ(t, x0) of the state vector passes through Rα0 ,R(α0+α1)/2,

α1 ,R(α1+α2)/2,Rα2 , . . . ,R(αm−1+αm)/2 and reaches Rαm .

The sufficient condition given in Theorem 1 is expressed as
system of linear inequalities in the parameters of the RNN
odel, and thus easy to test whether it has a solution or not.
e should note that this simple form of the condition is due to

he assumption that wii = 2 for i = 1, 2, . . . , n. A more general
ondition may be obtained if this assumption is removed, but it
s not clear whether the condition can be expressed in a simple
orm.

. Design

We consider the problem of finding the parameters of the
NN model described by (1)–(3) generating a given sequence
= {α0, α1, . . . ,αm

} of bipolar vectors satisfying the conditions
iven in Theorem 1. A simple way is to solve the system of
inear inequalities described by (28)–(30). However, when the
ystem of inequalities is feasible, it has an infinite number of
olutions in general. It is thus natural to formulate the problem
s a constrained optimization problem in which an objective
unction has to be minimized or maximized subject to the linear
nequality constraints (28)–(30). In this paper, we consider three
ypes of constrained optimization problems. One is formulated as
convex quadratic programming (QP) problem and the others are
inear programming (LP) problems. We examine the advantages
nd disadvantages of these three approaches by using an example

f sequence of bipolar vectors.

594
.1. Minimization of sum of squares of parameters

The first approach is to minimize the sum of squares of the
arameters of the RNN model described by (1)–(3) under the
onstraints (28)–(30). By doing so, we may be able to make the
alues of unnecessary weights and biases zero, which means
hat we obtain an RNN with a simple structure. This approach
s formulated as the optimization problem:

minimize
∑n

i=1
∑n

j=1, j̸=i w
2
ij +

∑n
i=1 b

2
i

subject to αk
ik

(∑n
j=1,j̸=ik

αk
j wikj + bik

)
≤ −1− ϵ, ∀k,

αk
i

(∑n
j=1,j̸=i α

k
j wij + bi

)
≥ −1+ ϵ, ∀i ̸= ik, ∀k,

αk
i

(∑n
j=1,j̸=ik,i

αk
j wij + bi

)
≥ −1, ∀i ̸= ik, ∀k,

(31)

where ϵ is a small positive constant.
Let Ki(S) := {k | ik = i} and K̄i(S) := {k | ik ̸= i}. It is clear that

Ki(S)∩ K̄i(S) = ∅ and Ki(S)∪ K̄i(S) = {0, 1, . . . ,m−1}. Hence the
problem (31) can be decomposed into n independent problems of
the form:

minimize
∑n

j=1, j̸=i w
2
ij + b2i

subject to αk
i

(∑n
j=1,j̸=ik

αk
j wij + bi

)
≤ −1− ϵ, ∀k ∈ Ki(S),

αk
i

(∑n
j=1,j̸=i α

k
j wij + bi

)
≥ −1+ ϵ, ∀k ∈ K̄i(S),

αk
i

(∑n
j=1,j̸=ik,i

αk
j wij + bi

)
≥ −1, ∀k ∈ K̄i(S).

(32)

Since the objective function is quadratic and convex, and the
constraints are linear, the problem (32) is a convex QP problem,
which can be easily solved by using a QP solver. For example,
an infeasible-interior-point algorithm (Potra, 1996) can find an
approximate solution of (32) in polynomial time if it is feasible.
In order to derive the time complexity of the algorithm, we
convert (32) into the standard form. We first write each variable,
which is not restricted to be nonnegative, as the difference of
two new nonnegative variables. We then convert each inequality
constraint to an equality constraint by adding or subtracting
a nonnegative slack variable. Since the number of inequality
constraints in (32) is at most 2m, the number of slack vari-
ables needed is at most 2m. As a result, we obtain the standard
form with at most 2(n + m) variables and at most 2m equality
constraints. Therefore, the time complexity of the infeasible-
interior-point algorithm is O((n + m)4L), where L is the length
of a binary string encoding the standard form.

4.2. Minimization of sum of absolute values of parameters

The second approach is to minimize the sum of absolute values
of the parameters of the RNN model described by (1)–(3) under
the constraints (28)–(30). By replacing the sum of squares in
the first approach with the sum of absolute values, we may be
able to make the weight matrix and the bias vector sparser in
the sense that more entries equal to zero, just like the ℓ1-norm
minimization for recovering sparse signals (see, for example, a
survey paper (Zhang et al., 2015) and references therein). This
approach is formulated as the optimization problem:

minimize
∑n

i=1
∑n

j=1, j̸=i |wij| +
∑n

i=1 |bi|

subject to αk
ik

(∑n
j=1,j̸=ik

αk
j wikj + bik

)
≤ −1− ϵ, ∀k,

αk
i

(∑n
j=1,j̸=i α

k
j wij + bi

)
≥ −1+ ϵ, ∀i ̸= ik, ∀k,

αk
i

(∑n
j=1,j̸=ik,i

αk
j wij + bi

)
≥ −1, ∀i ̸= ik, ∀k,

(33)
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here ϵ is a small positive constant. As in the previous ap-
roach, the problem (33) can be decomposed into n independent
roblems of the form:

minimize
∑n

j=1, j̸=i |wij| + |bi|

subject to αk
i

(∑n
j=1,j̸=ik

αk
j wij + bi

)
≤ −1− ϵ, ∀k ∈ Ki(S),

αk
i

(∑n
j=1,j̸=i α

k
j wij + bi

)
≥ −1+ ϵ, ∀k ∈ K̄i(S),

αk
i

(∑n
j=1,j̸=ik,i

αk
j wij + bi

)
≥ −1, ∀k ∈ K̄i(S).

(34)

urthermore, this problem can be recast as the optimization
roblem:

minimize
∑n

j=1, j̸=i(w
+

ij + w−ij )+ b+i + b−i
subject to αk

i

(∑n
j=1,j̸=ik

αk
j (w
+

ij − w−ij )+ b+i − b−i
)

≤ −1− ϵ, ∀k ∈ Ki(S),
αk
i

(∑n
j=1,j̸=i α

k
j (w
+

ij − w−ij )+ b+i − b−i
)

≥ −1+ ϵ, ∀k ∈ K̄i(S),
αk
i

(∑n
j=1,j̸=ik,i

αk
j (w
+

ij − w−ij )+ b+i − b−i
)

≥ −1, ∀k ∈ K̄i(S),
w+ij , w

−

ij ≥ 0, ∀j ̸= i,
b+i , b−i ≥ 0,

(35)

where w+ij , w
−

ij (j = 1, 2, . . . , i−1, i+1, i+2, . . . , n), b+i and b−i are
new variables. Since the objective function and the constraints are
all linear, the problem (35) is an LP problem, which can be easily
solved by using an LP solver. For example, an infeasible-interior-
point algorithm (Mizuno, 1994) can find an approximate solution
of (35) in polynomial time if it is feasible. Since the standard form
of (35) has at most 2(n + m) variables and at most 2m equality
constraints, the time complexity of the algorithm is O((n+m)4L),
here L is the length of a binary string encoding the standard

orm.

.3. Maximization of margin in inequality constraints

The third approach is to maximize the margin in the inequal-
ty constraints in order to ensure robustness against parameter
ariations. This is particularly important for the analog circuit
mplementation of the RNN because the values of circuit ele-
ents differ from the desired ones in general and may change
epending on the environment. This approach is formulated as
he optimization problem:

maximize
∑n

i=1 δi

subject to αk
ik

(∑n
j=1,j̸=ik

αk
j wik j + bik

)
≤ −1− ϵ − δi, ∀k,

αk
i

(∑n
j=1,j̸=i α

k
j wij + bi

)
≥ −1+ ϵ + δi, ∀i ̸= ik, ∀k,

αk
i

(∑n
j=1,j̸=ik,i

αk
j wij + bi

)
≥ −1+ δi, ∀i ̸= ik, ∀k,

|wij| ≤ U, ∀i ̸= j,
|bi| ≤ U, ∀i,
δi ≥ 0, ∀i,

(36)

here δ1, δ2, . . . , δn are additional variables, and ϵ and U are
ositive constants. Note that the fourth and fifth constraints are
ecessary because otherwise the problem has no optimal solu-
ion. To be more specific, the value of the objective function is
ot bounded above when the first three constraints are feasible.
ote also that the value of ϵ should be sufficiently smaller than

hat of U .
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As in the first and second approaches, the problem (36) can be
ecomposed into n independent problems of the form:

maximize δi

subject to αk
i

(∑n
j=1,j̸=ik

αk
j wij + bi

)
≤ −1− ϵ − δi, ∀k ∈ Ki(S),

αk
i

(∑n
j=1,j̸=i α

k
j wij + bi

)
≥ −1+ ϵ + δi, ∀k ∈ K̄i(S),

αk
i

(∑n
j=1,j̸=ik,i

αk
j wij + bi

)
≥ −1+ δi, ∀k ∈ K̄i(S),

|wij| ≤ U, ∀j ̸= i,
|bi| ≤ U,

δi ≥ 0.

(37)

ince the objective function and the constraints are all linear,
he problem (37) is an LP problem, which can be easily solved
y using an LP solver. Since the standard form of (37) has at
ost 4n + 2m + 1 variables and 2(n + m) equality constraints,

he infeasible-interior-point algorithm (Mizuno, 1994) can find an
pproximate solution of (37) in O((n+m)4L) time if it is feasible,
here L is the length of a binary string encoding the standard

orm.

.4. Examples

In order to demonstrate the differences among the proposed
hree design methods, we apply them to the same sequence of
ipolar vectors to obtain three different RNNs, and compare the
rajectories of the state vector generated by these RNNs for the
ame initial condition.

xample 2. Let S = {α0, α1, . . . ,α8
} with α0

= (1, 1, 1, 1),
1
= (−1, 1, 1, 1), α2

= (−1,−1, 1, 1), α3
= (1,−1, 1, 1),

4
= (1,−1,−1, 1), α5

= (1, 1,−1, 1), α6
= (1, 1,−1,−1),

7
= (1, 1, 1,−1) and α8

= (1, 1, 1, 1). First, using the method
o minimize the sum of squares of the parameters, that is, solving
he QP problem (32) with ϵ = 0.01 for i = 1, 2, 3, 4, we obtain

=

⎡⎢⎣ 2.000 −1.010 −0.010 −0.010
0.505 2.000 −0.505 0.000
−0.010 0.505 2.000 −0.505
0.005 −0.010 1.010 2.000

⎤⎥⎦ , b =

⎡⎢⎣ 0.020
0.000
0.010
0.005

⎤⎥⎦ .

(38)

Note that the values of w24 and b2 are zero. The time evolution
of φ(t, (2, 2, 2, 2)) for the designed RNN is shown in Fig. 4. Gray
boxes indicate the time intervals in which f (φ(t, (2, 2, 2, 2))) is
a bipolar vector contained in the sequence S. It is easily seen
that the given sequence S is certainly generated by the RNN. It
is also seen that the trajectory does not stay the regions Rα3 , Rα5

and Rα8 even for a moment, so these bipolar vectors could go
unnoticed. This is because some of the inequality constraints in
(31) holds with the equal sign.

Next, using the method to minimize the sum of absolute
values of the parameters, that is, solving the LP problem (34) with
ϵ = 0.01 for i = 1, 2, 3, 4, we obtain

W =

⎡⎢⎣ 2.000 −1.010 −0.010 −0.010
1.000 2.000 −0.010 0.000
−0.010 1.000 2.000 −0.010
0.010 −0.010 1.010 2.000

⎤⎥⎦ , b =

⎡⎢⎣ 0.020
0.000
0.010
0.000

⎤⎥⎦ .

(39)

Note that the values of w24, b2 and b4 are zero. As expected, we
obtained a sparser solution than the previous method. The time
evolution of φ(t, (2, 2, 2, 2)) for the designed RNN is shown in

Fig. 5. It is seen that the given sequence S of bipolar vectors is
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Fig. 4. Time evolution of the entries of φ(t, (2, 2, 2, 2)) generated by the RNN
with the parameters given by (38).

Fig. 5. Time evolution of the entries of φ(t, (2, 2, 2, 2)) generated by the RNN
with the parameters given by (39).

Fig. 6. Time evolution of the entries of φ(t, (2, 2, 2, 2)) generated by the RNN
with the parameters given by (40).

certainly generated by the RNN. It is also seen that the trajectory
does not stay the regions Rα3 , Rα4 , Rα5 , Rα6 and Rα8 even for a
moment, so these bipolar vectors could go unnoticed. The reason
for this is the same as in the previous method.
596
Finally, using the method to maximize the margin in the
inequality constraints, that is, solving the LP problem (37) with
ϵ = 0.01 and U = 1.5 for i = 1, 2, 3, 4, we obtain

W =

⎡⎢⎣ 2.000 −1.500 −0.500 −0.990
0.670 2.000 −0.670 0.330
−1.000 0.505 2.000 −1.000
1.000 −0.990 1.500 2.000

⎤⎥⎦ , b =

⎡⎢⎣ 1.490
−0.330
1.000
−0.010

⎤⎥⎦,
(40)

and δ = (δ1, δ2, δ3, δ4) = (0.490, 0.330, 0.495, 0.490). Note that
all entries of W and b take nonzero values. The time evolution of
φ(t, (2, 2, 2, 2)) for the designed RNN is shown in Fig. 6. It is seen
that the given sequence S of bipolar vectors is certainly generated
by the RNN. It is also seen that, unlike the previous two methods,
every bipolar vector in S appears for at least a certain amount of
time. This is because the first three inequality constraints in (36)
are satisfied with the maximum margin. As for the robustness
against parameter variations, it can be said from the value of δ
that the RNN with the parameter values changed by ∆wij and ∆bi
still generates the sequence S if the following inequalities hold:

max{|∆w12|, |∆w13|, |∆w14|, |∆b1|} ≤ 0.490/4 = 0.1225,
max{|∆w21|, |∆w23|, |∆w24|, |∆b2|} ≤ 0.330/4 = 0.0825,
max{|∆w31|, |∆w32|, |∆w34|, |∆b3|} ≤ 0.495/4 = 0.12375,
max{|∆w41|, |∆w42|, |∆w43|, |∆b4|} ≤ 0.490/4 = 0.1225.

We give another example to show that the proposed design
methods can be easily extended to the case where a single RNN
generates different sequences of bipolar vectors depending on the
initial output vector.

Example 3. Let us consider three sequences of bipolar vectors
S1 = {α1,0, α1,1, . . . ,α1,4

} with α1,0
= (1, 1, 1), α1,1

= (−1, 1, 1),
α1,2
= (−1,−1, 1), α1,3

= (1,−1, 1) and α1,4
= (1, 1, 1) = α1,0,

S2 = {α2,0, α2,1
} with α2,0

= (−1, 1,−1) and α2,1
= (1, 1,−1),

and S3 = {α3,0, α3,1, α3,2
} with α3,0

= (−1,−1,−1), α3,1
=

(1,−1,−1) and α3,2
= (1, 1,−1) = α2,1. For each l ∈ {1, 2, 3}

and k ∈ {0, 1, . . . ,ml − 2} where ml is the length of S l, αl,k+1

differs from αl,k in one and only one entry. Let the index of the
entry be denoted by ik(S l). Also, let Ki(S l) = {k, | ik(S l) = i} and
K̄i(S l) = {k | ik(S l) ̸= i}. Then the maximization of the mar-
gins in the inequality constraints is formulated as n independent
optimization problems of the form:

maximize δi

subject to α
l,k
i

(∑n
j=1,j̸=ik(Sl)

α
l,k
j wij + bi

)
≤ −1− ϵ − δi, ∀k ∈ Ki(S l), l = 1, 2, 3,

α
l,k
i

(∑n
j=1,j̸=i α

l,k
j wij + bi

)
≥ −1+ ϵ + δi, ∀k ∈ K̄i(S l), l = 1, 2, 3,

α
l,k
i

(∑n
j=1,j̸=ik(Sl),i

α
l,k
j wij + bi

)
≥ −1+ δi, ∀k ∈ K̄i(S l), l = 1, 2, 3,
|wij| ≤ U, ∀j ̸= i,
|bi| ≤ U,

δi ≥ 0.

Solving this problem with ϵ = 0.01 and U = 1.5 for i = 1, 2, 3,
we obtain

W =

⎡⎣ 2.000 −1.500 −1.500
1.336̇ 2.000 −0.336̇
0.000 0.000 2.000

⎤⎦ , b =

⎡⎣ 1.500
0.336̇
0.000

⎤⎦ , (41)

and δ = (δ1, δ2, δ3) = (0.490, 0.326̇, 0.990), where 6̇ means that
the digit 6 repeats infinitely. The time evolution of φ(t, (3, 3, 3)),
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(t, (−3, 3,−3)) and φ(t, (−3,−3,−3)) for the designed RNN
s shown in Fig. 7. It is seen that the given sequences S1, S2
nd S3 of bipolar vectors are certainly generated by the designed
NN. It is also seen that φ(t, (−3,−3, 3)) and φ(t, (−3,−3,−3))
onverge to the same constant point (3.5, 4.01,−2) which is a
table equilibrium point in R(1,1,−1).

. Some classes of realizable sequences of bipolar vectors

Theorem 1 provides a sufficient condition for a given sequence
f bipolar vectors to be generated by the RNN model described by
1)–(3). However, it is not clear what kind of sequence of bipolar
ectors guarantees the existence of a solution to the system of
nequalities (28)–(30). In this section, we give two types of such
equences.
The sequence of the first type starts with the vector of all 1’s.

ext the first entry changes from 1 to −1. Then −1 spreads from
he first entry to the last entry as k increases, and the vector of all
1’s is obtained when k = n. In the next vector, 1 appears in the

irst entry. Then 1 diffuses from the first entry to the last entry
s k increases, and the vector of all 1’s is obtained when k = 2n.
or example, when n = 4, the sequence of this type consists of
0
= (1, 1, 1, 1), α1

= (−1, 1, 1, 1), α2
= (−1,−1, 1, 1), α3

=

−1,−1,−1, 1), α4
= (−1,−1,−1,−1), α5

= (1,−1,−1,−1),
6
= (1, 1,−1,−1), α7

= (1, 1, 1,−1) and α8
= (1, 1, 1, 1).

The next proposition gives a formal statement of the result and
complete proof.

roposition 1. Let n be any integer greater than 1. Let S =
α0, α1, . . . ,α2n

} be the sequence such that αk is given by

k
=

⎧⎪⎪⎨⎪⎪⎩
(

k  
−1,−1, . . . ,−1,

n−k  
1, 1, . . . , 1), if 0 ≤ k ≤ n,

(

k−n  
1, 1, . . . , 1,

2n−k  
−1,−1, . . . ,−1), if n+ 1 ≤ k ≤ 2n.

hen the RNN model described by (1)–(3) can generate S.

roof. See Appendix A.1.

The sequence of the second type starts with the vector of all
’s. Next the first entry changes from 1 to −1. Then −1 moves
rom the first entry to the last entry as k increases, and the vector
aving −1 only in the last entry is obtained when k = 2n − 1.
inally the sequence returns to the vector of all 1’s when k = 2n.
or example, when n = 4, the sequence of this type consists
f α0

= (1, 1, 1, 1), α1
= (−1, 1, 1, 1), α2

= (−1,−1, 1, 1),
3
= (1,−1, 1, 1), α4

= (1,−1,−1, 1), α5
= (1, 1,−1, 1),

6
= (1, 1,−1,−1), α7

= (1, 1, 1,−1) and α8
= (1, 1, 1, 1)
597
The next proposition gives a formal statement of the result and
complete proof.

roposition 2. Let n be any integer greater than 1. Let S =
α0, α1, . . . ,α2n

} be the sequence such that αk is given by

k
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1, 1, . . . , 1), if k = 0 or k = 2n,

(

(k+1)/2−1  
1, 1, . . . , 1,−1,

n−(k+1)/2  
1, 1, . . . , 1), if k is odd and 1 ≤ k ≤ 2n− 1,

(

k/2−1  
1, 1, . . . , 1,−1,−1,

n−k/2−1  
1, 1, . . . , 1), if k is even and 2 ≤ k ≤ 2n− 2.

hen the RNN model described by (1)–(3) can generate S.

roof. See Appendix A.2.

If a sequence S can be generated by the RNN model described
y (1)–(3), we immediately see that any sequence obtained from
by permuting entries of bipolar vectors. This is formally stated
nd proved as follows.

roposition 3. Let S = {α0, α1, . . . ,αm−1
} be a sequence of

-dimensional bipolar vectors satisfying the conditions given in The-
rem 1. If S can be generated by the RNN model described by (1)–(3)

then, for any permutation matrix P of order n, the sequence S̃ =
{Pα0, Pα1, . . . , Pαm−1

} can also be generated by the RNN model.

Proof. Let W = W ∗ and b = b∗ be the parameters of any
RNN that generates the sequence S. We consider the RNN with
the parameters W = PW ∗PT and b = Pb∗ where P is any
permutation matrix of order n. The dynamics of this RNN is
described by

ẋ(t) = −x(t)+ PW ∗PTf (x(t))+ Pb∗.

Multiplying both sides by PT from left and setting x̃(t) = PTx(t),
we have

˙̃x(t) = −x̃(t)+W ∗f (x̃(t))+ b∗.

Since this RNN generates S, all trajectories φ̃(t, x̃0) of the state
vector x̃(t) such that x̃(0) = x̃0 ∈ Rα0 visits R(α0+α1)/2, Rα1 ,

R(α1+α2)/2, . . . ,R(αm−2+αm−1)/2 and Rαm−1 . This means that all tra-
jectories φ(t, x0) of the state vector x(t) such that x(0) = x0 ∈
RPα0 visits R(Pα0+Pα1)/2, RPα1 ,R(Pα1+Pα2)/2, . . . ,R(Pαm−2+Pαm−1)/2
and R . □
Pαm−1
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Fig. 8. Relationships among Pk , Q k , Pk+1 , ρk and σ k in the case where n = 3.

6. Convergence of state trajectories of recurrent neural net-
works generating a periodic sequence

Suppose that, for a periodic sequence S = {α0, α1, . . . ,αm (=
α0)} of bipolar vectors, an RNN described by (1)–(3) satisfies (28)–
(30) for k = 0, 1, . . . ,m − 1. Then all trajectories φ(t, x0) of the
state vector of the RNN such that x0 ∈ Rα0 visit R(α0+α1)/2,Rα1 ,

R(α1+α2)/2, . . . ,R(αm−1+αm)/2 and Rαm
(
= Rα0

)
repeatedly. How-

ever, it is not clear whether they converge to limit cycles or
chaotic attractors. In this section, we analyze the behavior of
such trajectories and derive a sufficient condition under which
all of them converge to the same limit cycle. We also show
through some examples that the sufficient condition is certainly
satisfied.

In this section, we always use the following assumption.

Assumption 1. The sequence S = {α0, α1, . . . ,αm
} satisfies the

following conditions.

1. αk+1 differs from αk in one and only one entry for k =
0, 1, . . . ,m− 1.

2. α0, α1, . . . ,αm−1 are different from each other, and αm
=

α0.
3. For each i ∈ {1, 2, . . . , n}, there exists at least one k ∈
{0, 1, . . . ,m− 1} such that αk

i α
k+1
i = −1.

4. There exist W and b that satisfy (28)–(30) for k = 0, 1, . . . ,
m− 1.

6.1. Positively invariant set

For an RNN described by (1)–(3), we define the sets Ωi ⊂ Rn

for i = 1, 2, . . . , n by

Ωi := {x = (x1, x2, . . . , xn) ∈ Rn
| li ≤ xi ≤ ui}

where li = −
∑n

j=1 |wij| + bi and ui =
∑n

j=1 |wij| + bi. We further
define the set Ω ⊂ Rn by

Ω := Ω1 ∩Ω2 ∩ · · · ∩Ωn = [l1, u1] × [l2, u2] × · · · × [ln, un].

The next lemma shows that if an RNN generates S then the
union of Ω and Rv, which defined in (4), is not empty for all
v ∈ {−1, 0, 1}n.
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Lemma 6. If an RNN described by (1)–(3) satisfies (28)–(30) for
k = 0, 1, . . . ,m− 1 then li < −1 and ui > 1 for i = 1, 2, . . . , n.

Proof. See Appendix A.3.

The next lemma shows that Ω is a positively invariant set for
any RNN.

Lemma 7. The set Ω is positively invariant for any RNN described
by (1)–(3), that is, if x0 ∈ Ω then the trajectory φ(t, x0) of the state
vector belongs to Ω for all t > 0. Moreover, if an RNN described
by (1)–(3) satisfies (28)–(30) for k = 0, 1, . . . ,m − 1 then for any
x0 ∈ Rα0 there exists a T ∈ [0,∞) such that φ(T , x0) ∈ Ω .

Proof. See Appendix A.4.

6.2. Convergence of state trajectories

In what follows, we focus our attention on RNNs described by
(1)–(3) that satisfy (28)–(30) for k = 0, 1, . . . ,m− 1. For such an
RNN, we define the sets Pk and Q k for k = 0, 1, . . . ,m− 1 by

Pk
:= ∂R(α(m−1+k) mod m+αk)/2 ∩ ∂Rαk ∩Ω,

Q k
:= ∂Rαk ∩ ∂R(αk+αk+1)/2 ∩Ω.

We further define the mapping ρk from Pk to Q k by ρk(x) :=
φ(t∗, x) where x is a point in Pk and t∗ is the smallest nonnegative
number t satisfying φ(t, x) ∈ Q k, and the mapping σ k from Q k to
P (k+1) mod m by σ k(x) := φ(t∗, x) where x is a point in Q k and t∗ is
the smallest positive number t satisfying φ(t, x) ∈ P (k+1) mod m.
Relationships among Pk, Q k, Pk+1, ρk and σ k are illustrated in
Fig. 8. Using these notations, we define the mapping π from P0

to itself as follows:

π := σm−1
◦ ρm−1

◦ · · · ◦ σ 0
◦ ρ0.

For each k ∈ {0, 1, . . . ,m − 1}, the Jacobian matrices of the
mappings ρk

: Pk
→ Q k and σ k

: Q k
→ P (k+1) mod m are

denoted by Jρk and Jσ k , respectively. Also, the Jacobian matrix of
the mapping π : P0

→ P0 is denoted by Jπ .
The next lemma guarantees the existence of a closed trajec-

tory of the state vector passing through P0,Q 0, P1,Q 1, . . . , Pm−1,

Qm−1.

Lemma 8. There exists at least one point x0 ∈ P0 such that φ(t, x0)
forms a closed curve.

Proof. It is clear that P0 is a compact convex set in Rn and π is a
continuous mapping from P0 to itself. Therefore, by the Brouwer’s
fixed point theorem, there exists at least one point x0 ∈ P0

such that π (x0) = x0 which means that φ(t, x0) forms a closed
curve. □

In order to examine the convergence of the trajectories φ(t, x0)
with x0 ∈ P0 to the same limit cycle, we derive explicit formulas
for the mappings ρk and σ k and the matrix norm ∥Jρk∥2 and
∥Jσ k∥2 of their Jacobian matrices for k = 0, 1, . . . ,m − 1, where
∥ · ∥2 denotes the matrix norm induced by ℓ2-norm of vectors.
The results are shown in the next four lemmas.

Lemma 9. For k = 0, 1, . . . ,m− 1, the mapping ρk
: Pk
→ Q k is

explicitly expressed as

ρk
i (x) =

(
αk
ik
− Ck

ik

) (
xi − Ck

i

)
xi − Ck + Ck

i , i = 1, 2, . . . , n (42)

k ik
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here

k
i :=

n∑
j=1

wijα
k
j + bi, i = 1, 2, . . . , n. (43)

roof. See Appendix A.5.

emma 10. For k = 0, 1, . . . ,m − 1, the matrix norm ∥Jρk∥2 is
iven by

Jρk∥2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⏐⏐⏐skik ⏐⏐⏐ , if n = 2,

1
√
2

√∑3
i=1

(
ski
)2
+

√(∑3
i=1

(
ski
)2)2
− 4

(
skik s

k
ik−1

)2
, if n = 3,

max

⎧⎨⎩⏐⏐⏐skik ⏐⏐⏐, 1
√
2

√∑n
i=1

(
ski
)2
+

√(∑n
i=1

(
ski
)2)2
− 4

(
skik s

k
ik−1

)2⎫⎬⎭, otherwise

(44)

here

k
i = ski (x) =

(
αk
ik
− Ck

ik

) (
xi − Ck

i

)
(
xik − Ck

ik

)2 , i = 1, 2, . . . , n

ith Ck
i being given by (43).

roof. See Appendix A.6.

emma 11. For k = 0, 1, . . . ,m − 1, the mapping σ k
: Q k

→
(k+1) mod m is explicitly expressed as

k
i (x) = −

(
αk
ik + Dk

ik

) (
xi − Dk

i

)
αk
ik
− Dk

ik

+ Dk
i , i = 1, 2, . . . , n (45)

where

Dk
i :=

n∑
j=1,j̸=ik

wijα
k
j + bi, i = 1, 2, . . . , n. (46)

roof. See Appendix A.7.

emma 12. For k = 0, 1, . . . ,m − 1, the matrix norm ∥Jσ k∥2 is
iven by

Jσ k∥2 =

⏐⏐⏐⏐⏐α
k
ik
+ Dk

ik

αk
ik
− Dk

ik

⏐⏐⏐⏐⏐ (47)

here Dk
i is given by (46).

roof. See Appendix A.8.

We are now ready to present two results about the con-
ergence of the trajectories φ(t, x0) with x0 ∈ Rα0 . The first
ne shows that when n = 2 the trajectories always converge
o the same limit cycle. The second one provides a sufficient
ondition for the trajectories to converge to the same limit cycle.
his sufficient condition can be tested algorithmically in a finite
umber of steps, while the condition provided in the previous
ork (Takahashi & Minetoma, 2008) requires an infinite number
f steps.

roposition 4. If n = 2, all trajectories φ(t, x0) with x0 ∈ Rα0

onverge to the same limit cycle.
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Algorithm 1 Computation of an upper bound for ∥Jπ (x0−)∥2
Input: A sequence S = {α0, α1, . . . ,αm

} of n (≥ 3) dimensional
bipolar vectors satisfying Assumption 1 (let ik be the unique
index i such that αk

i α
k+1
i = −1 for k = 0, 1, . . . ,m − 1

and let i−1 be equal to im−1 for convenience), a weight matrix
W ∈ Rn×n and a bias vector b ∈ Rn satisfying (28)–(30) for
k = 0, 1, . . . ,m− 1.

utput: An upper bound for ∥Jπ (x0−)∥2 with x0− ∈ P0

1: Set B0−
← [l0−1 , u0−

1 ] × [l
0−
2 , u0−

2 ] × · · · × [l
0−
n , u0−

n ] where

[l0−i , u0−
i ] =

⎧⎨⎩
[α0

i , α
0
i ], if αm−1

i αm
i = −1,

[1,
∑n

j=1 |wij| + bi], if αm−1
i = αm

i = 1,
[−
∑n

j=1 |wij| + bi,−1], if αm−1
i = αm

i = −1.

2: Set k← 0.

3: Set J̄kρ ←
1
√
2

√∑3
i=1

(
s̄ki
)2
+

√(∑3
i=1

(
s̄ki
)2)2
− 4

(
skiks

k
ik−1

)2
where

s̄ki = max
x∈Bk−

⎧⎪⎨⎪⎩
(αk

ik
− Ck

ik
)(xi − Ck

i )(
xik − Ck

ik

)2
⎫⎪⎬⎪⎭ , ski = min

x∈Bk−

⎧⎪⎨⎪⎩
(αk

ik
− Ck

ik
)(xi − Ck

i )(
xik − Ck

ik

)2
⎫⎪⎬⎪⎭

and Ck
i =

∑n
j=1 wijα

k
j + bi for i = 1, 2, . . . , n.

4: If n ≥ 4 and s̄kik > J̄kρ then set J̄kρ ← s̄kik .
5: Set Bk+

← [lk+1 , uk+
1 ] × [l

k+
2 , uk+

2 ] × · · · × [l
k+
n , uk+

n ] where

lk+i = min
x∈Bk−

{
(αk

ik
− Ck

ik
)(xi − Ck

i )

xik − Ck
ik

}
+ Ck

i ,

uk+
i = max

x∈Bk−

{
(αk

ik
− Ck

ik
)(xi − Ck

i )

xik − Ck
ik

}
+ Ck

i

for i = 1, 2, . . . , n.

6: Set J̄kσ ←
⏐⏐⏐⏐ αk

ik
+Dk

ik
αk
ik
−Dk

ik

⏐⏐⏐⏐ where Dk
ik
=
∑n

j=1,j̸=ik
wikjα

k
j + bik .

7: Set B(k+1)−
← [l(k+1)−1 , u(k+1)−

1 ] × [l(k+1)−2 , u(k+1)−
2 ] × · · · ×

[l(k+1)−n , u(k+1)−
n ] where

l(k+1)−i = min
x∈Bk+

{
−

(αk
ik
+ Dk

ik
)(xi − Dk

i )

αk
ik
− Dk

ik

}
+ Dk

i ,

u(k+1)−
i = max

x∈Bk+

{
−

(αk
ik
+ Dk

ik
)(xi − Dk

i )

αk
ik
− Dk

ik

}
+ Dk

i

and Dk
i =

∑n
j=1,j̸=ik

wijα
k
j + bi for i = 1, 2, . . . , n.

8: If k = m − 1 then return
∏m−1

k=0 J̄kρ J̄
k
σ and stop. Otherwise set

k← k+ 1 and return to Step 3.

Proof. See Appendix A.9.

Proposition 5. Let n be an integer greater than 2. If Algorithm
returns a number less than 1 then all trajectories φ(t, x0) with

x0 ∈ Rα0 converge to the same limit cycle.

Proof. See Appendix A.10.

We finally give three examples to demonstrate the usefulness
of the sufficient condition in Proposition 5. In each example,
the parameters of the RNN model are determined from a given
periodic sequence using the method to maximize the margin in
the inequality constraints. Then the sufficient condition is tested
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Table 1
The values of J̄kρ and J̄kσ for k = 0, 1, . . . ,m − 1 obtained by Algorithm 1 with
he sequence S, the weight matrix W and the bias vector b given in Example 4

k 0 1 2 3 4 5 6 7

J̄kρ 7.7978 1.8988 1.0521 1.3142 1.3124 1.3127 1.2434 0.9976

J̄kσ 0.2000 0.1453 0.2000 0.2016 0.1453 0.2000 0.2016 0.2000

Table 2
The values of lm−i and um−

i for i = 1, 2, . . . , n obtained by Algorithm 1 with the
equence S, the weight matrix W and the bias vector b given in Example 4.

i 1 2 3 4

lm−i 1.7202028706 1.6554950975 2.5480797697 1

um−
i 1.7202031875 1.6554953742 2.5480800928 1

Table 3
The values of J̄kρ and J̄kσ for k = 0, 1, . . . ,m − 1 obtained by Algorithm 1 with
he sequence S, the weight matrix W and the bias vector b given in Example 5

k 0 1 2 3 4 5

J̄kρ 4.8153 2.6057 2.1177 1.9612 1.9277 1.9216

J̄kσ 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111

k 6 7 8 9 10 11

J̄kρ 1.9206 1.9204 1.9204 1.9204 1.9204 1.9204

J̄kσ 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111

by running Algorithm 1 with the sequence and the obtained
parameters.

Example 4. Let S be the sequence of nine bipolar vectors con-
sidered in Example 2, and W and b be given by (40). Running
lgorithm 1 with these inputs, we obtain
7

k=0

J̄kρ J̄
k
σ ≈ 2.91853608× 10−4

here the values of J̄kρ and J̄kσ for k = 0, 1, . . . , 7 are shown
n Table 1. Since ∥Jπ (x0)∥2 is less than 1 for all x0 ∈ P0, the
apping π has a unique fixed point x∗ ∈ Bm−

= [lm−1 , um−
1 ] ×

lm−2 , um−
2 ]× · · ·× [l

m−
n , um−

n ] where the values of lm−i and um−
i for

= 1, 2, . . . , n are shown in Table 2, and hence all trajectories
(t, x0) with x0 ∈ P0 converges to the same limit cycle formed
y φ(t, x∗).

xample 5. Let S be the sequence considered in Proposition 1
ith n = 6 and

=

⎡⎢⎢⎢⎢⎢⎣
2.00 −0.25 −0.25 −0.25 −0.25 −0.25
0.25 2.00 −0.25 −0.25 −0.25 −0.25
0.25 0.25 2.00 −0.25 −0.25 −0.25
0.25 0.25 0.25 2.00 −0.25 −0.25
0.25 0.25 0.25 0.25 2.00 −0.25
0.25 0.25 0.25 0.25 0.25 2.00

⎤⎥⎥⎥⎥⎥⎦ , b = 0.

he values of W and b are based on the proof of Proposition 1,
nd thus S, W and b satisfy the conditions (28)–(30). Running
lgorithm 1 with S, W and b given above, we obtain
13

k=0

J̄kρ J̄
k
σ ≈ 1.43752864× 10−7

here the values of J̄kρ and J̄kσ for k = 0, 1, . . . , 11 are shown
n Table 3. Since ∥Jπ (x0)∥2 is less than 1 for all x0 ∈ P0, the
apping π has a unique fixed point x∗ ∈ Bm−

= [lm−, um−
] ×
1 1

600
lm−2 , um−
2 ]× · · ·× [l

m−
n , um−

n ] where the values of lm−i and um−
i for

= 1, 2, . . . , n are shown in Table 4, and hence all trajectories
(t, x0) with x0 ∈ P0 converges to the same limit cycle formed
y φ(t, x∗).

xample 6. Let S be the sequence considered in Proposition 2
ith n = 6 and

=

⎡⎢⎢⎢⎢⎢⎣
2.000 −1.167 −0.167 −0.167 −0.167 −0.167
1.000 2.000 −0.500 0.000 0.000 0.000
−0.500 1.000 2.000 −0.500 0.000 0.000
0.000 −0.500 1.000 2.000 −0.500 0.000
0.000 0.000 −0.500 1.000 2.000 −0.500
0.000 0.000 0.000 −1.000 2.000 2.000

⎤⎥⎥⎥⎥⎥⎦ ,

b =

⎡⎢⎢⎢⎢⎢⎣
0.750
0.000
0.500
0.500
0.500
1.500

⎤⎥⎥⎥⎥⎥⎦ .

The values of W and b are based on the proof of Proposition 2,
and thus S, W and b satisfy the conditions (28)–(30). Running
Algorithm 1 with S, W and b given above, we obtain
11∏
k=0

J̄kρ J̄
k
σ ≈ 2.40378494× 10−6

where the values of J̄kρ and J̄kσ for k = 0, 1, . . . , 11 are shown
in Table 5. Since ∥Jπ (x0)∥2 is less than 1 for all x0 ∈ P0, the
mapping π has a unique fixed point x∗ ∈ Bm−

= [lm−1 , um−
1 ] ×

[lm−2 , um−
2 ]× · · ·× [l

m−
n , um−

n ] where the values of lm−i and um−
i for

i = 1, 2, . . . , n are shown in Table 6, and hence all trajectories
φ(t, x0) with x0 ∈ P0 converges to the same limit cycle formed
by φ(t, x∗).

In all the examples above, the output of Algorithm 1, an upper
bound for ∥Jπ (x0−)∥2, is much smaller than 1. Also, the authors
have not found so far any RNN such that it generates a periodic
sequence of bipolar vectors while Algorithm 1 returns a number
greater than or equal to 1. This indicates the possibility that the
trajectories φ(t, x0) with x0 ∈ P0 always converge to the same
limit cycle if the parameters of an RNN satisfy (28)–(30) for a
periodic sequence of bipolar vectors.

7. Conclusions

We have studied the problem of finding the parameters of a
continuous-time RNN model with a piecewise-linear activation
function so that it generates a given sequence of bipolar vectors.
First, we have derived a sufficient condition for the model to gen-
erate the given sequence under the assumption that all diagonal
entries of the weight matrix are 2. This assumption makes the
analysis tractable and allows us to obtain the sufficient condition
in a simple form. A more general sufficient condition may be ob-
tained if this assumption is removed, but it is not clear at this time
what it would be. Second, we have proposed three methods based
on mathematical programming to find the parameter values of
the model that satisfy the sufficient condition, and observed that
the method based on the maximization of the margin in the
inequality constraints is better than others because the designed
RNNs are not only robust against parameter variations but also
able to output each bipolar vector for at least a certain period
of time. Third, we have presented two types of sequences of
bipolar vectors that can be generated by the model. Although
only two types of sequences were considered in this paper, there
may be other realizable sequences that are easy to characterize.
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Table 4
The values of lm−i and um−

i for i = 1, 2, . . . , n obtained by Algorithm 1 with the sequence S, the weight matrix W and the
bias vector b given in Example 5.

i 1 2 3 4 5 6

lm−i 1.0555411257 1.5553824164 2.0536366974 2.5344346961 2.8232226602 1

um−
i 1.0555411278 1.5553824187 2.0536367000 2.5344346998 2.8232226674 1
.

w
t
−

s

A

W
a

w

Table 5
The values of J̄kρ and J̄kσ for k = 0, 1, . . . ,m − 1 obtained by Algorithm 1 with
he sequence S, the weight matrix W and the bias vector b given in Example 6

k 0 1 2 3 4 5

J̄kρ 6.3771 1.2695 0.6558 2.2358 1.9560 2.0684

J̄kσ 0.0408 0.2000 0.1107 0.2000 0.2000 0.2000

k 6 7 8 9 10 11

J̄kρ 2.2182 1.8658 2.5425 1.0325 1.9937 2.4784

J̄kσ 0.2000 0.2000 0.2000 0.2000 0.2000 0.4286

Finally, focusing on the case where the model is designed so
that it generates a periodic sequence of bipolar vectors, we have
provided a sufficient condition for the trajectories of the state
vector to converge to the same limit cycle. We also confirmed
that this sufficient condition is satisfied for all the examples
considered in this paper. This indicates the possibility that the
trajectories always converge to the same limit cycle if we design
an RNN using one of the proposed mathematical programming
problems.

Future directions of this research are to derive a more general
ufficient condition for the model to generate a given sequence
f bipolar vectors without the assumption about the diagonal
ntries of the weight matrix, to develop new design procedures
ased on the general sufficient condition, to explore realizable
equences of bipolar vectors, and to conduct further analysis of
he convergence of the trajectories of the state vector to a limit
ycle.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request

cknowledgments

The authors would like to thank anonymous reviewers for
heir valuable comments and suggestions to improve the quality
f the paper. This work was supported by JSPS KAKENHI, Japan
rant Number JP21H03510.

ppendix. Proofs

.1. Proof of Proposition 1

As shown in Example 1, the sequence S for n = 2 is realizable.
We thus assume hereafter that n ≥ 3. Let the weight matrix W
nd the bias vector b be set as

wij =

{
1/(n− 2), if j < i,

(A.1)

−1/(n− 2), if j > i,

601
and

b = (0, 0, . . . , 0). (A.2)

The values of the left-hand side of (28)–(30) for the sequence
S and the parameters given above are shown in Table A.7. For
example, the left-hand side of the inequality (28) is given by

αk
ik

⎛⎝ n∑
j=1,j̸=ik

αk
j wikj + bik

⎞⎠ = − ik−1∑
j=1

wikj +

n∑
j=ik+1

wikj + bik

= −
1

n− 2
· (ik − 1)+

(
−

1
n− 2

)
× (n− ik)+ 0

= −
n− 1
n− 2

.

hich is less than −1. Also, it is easily seen from Table A.7 that
he minimum value of the left-hand side of (29) and (30) is
(n − 3)/(n − 2) and −1, respectively, for all i. Therefore the
ystem of inequalities (28)–(30) is satisfied for all n ≥ 3. □

.2. Proof of Proposition 2

As shown in Example 1, the sequence S for n = 2 is realizable.
e thus assume hereafter that n ≥ 3. Let the weight matrix W

nd the bias vector b be set as

ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1− 1/n, if i = 1 and j = 2,
−1/n, if i = 1 and 3 ≤ j ≤ n,
1, if i = 2 and j = 1,
−1/2, if i = 2 and j = 3,
0, if i = 2 and 4 ≤ j ≤ n,
0, if 3 ≤ i ≤ n− 1 and 1 ≤ j ≤ i− 3,
−1/2, if 3 ≤ i ≤ n− 1 and j = i− 2,
1, if 3 ≤ i ≤ n− 1 and j = i− 1,
−1/2, if 3 ≤ i ≤ n− 1 and j = i+ 1,
0, if 3 ≤ i ≤ n− 1 and i+ 2 ≤ j ≤ n,
0, if i = n and 1 ≤ j ≤ n− 3,
−1, if i = n and j = n− 2,
2, if i = n and j = n− 1,

(A.3)

and

bi =

⎧⎪⎪⎨⎪⎪⎩
1− 3/2n, if i = 1,
0, if i = 2,
1/2, if 3 ≤ i ≤ n− 1,
3/2, if i = n.

(A.4)

The values of the left-hand side of (28), (29) and (30) for the
sequence S and the parameters given above are shown in Ta-
bles A.8–A.10, respectively. It is easy to see from these tables that
the system of inequalities (28)–(30) is certainly satisfied for all
n ≥ 3. □

A.3. Proof of Lemma 6

We first prove that li < −1. It follows from Assumption 1
that, for each i ∈ {1, 2, . . . , n}, there exists at least one k ∈
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Table 6
The values of lm−i and um−

i for i = 1, 2, . . . , n obtained by Algorithm 1 with the sequence S, the weight matrix W and the bias
vector b given in Example 6.

i 1 2 3 4 5 6

lm−i 1.2082127674 2.5000321964 2.5017550850 2.6831717299 2.4180760249 1

um−
i 1.2082127751 2.5000321975 2.5017550908 2.6831717537 2.4180760715 1
Table A.7
The values of the left-hand side (LHS) of (28)–(30) for the sequence
S in Proposition 1 and the parameters W and b given in (A.1) and
(A.2) when n ≥ 3.
Eq. Value of k LHS

(28) 1 ≤ k ≤ 2n− 1 −(n− 1)/(n− 2)

(29) 1 ≤ k ≤ i− 2 −(n− 2(i− k)+ 1)/(n− 2)
i ≤ k ≤ n− 1 (n+ 2(i− k)− 1)/(n− 2)
n ≤ k ≤ n+ i− 2 (n+ 2(i− k)− 1)/(n− 2)
n+ i ≤ k ≤ 2n− 1 (3n+ 2(i− k)− 1)/(n− 2)

(30) 1 ≤ k ≤ i− 2 −(n− 2(i− k)+ 2)/(n− 2)
i ≤ k ≤ n− 1 (n+ 2(i− k)− 2)/(n− 2)
n ≤ k ≤ n+ i− 2 (n+ 2(i− k)− 2)/(n− 2)
n+ i ≤ k ≤ 2n− 1 (3n+ 2(i− k)− 2)/(n− 2)

Table A.8
The values of the left-hand side (LHS) of (28) for the
sequence S in Proposition 2 and the parameters W and b
given in (A.3) and (A.4) when n ≥ 3.
Value of k LHS

k = 0 −1− 1/2n
k = 2 −1− 3/2n
k = 1 or 3 ≤ k ≤ 2n− 2 −3/2
k = 2n− 1 −5/2

Table A.9
The values of the left-hand side (LHS) of (29) for the sequence S in Proposition 2
nd the parameters W and b given in (A.3) and (A.4) when n ≥ 3.
Value of i Value of k LHS

i = 1 k = 1 1+ 1/2n
k = 3 1+ 3/2n
k = 4 1+ 7/2n
k ∈ {2ℓ− 1 | ℓ = 3, 4, . . . , n} −1+ 3/2n
k ∈ {2ℓ | ℓ = 3, 4, . . . , n− 1} −1+ 7/2n

2 ≤ i ≤ n− 1 0 ≤ k ≤ max{0, 2i− 7} or 2i+ 3 ≤ k ≤ 2n− 1 1/2
k ∈ {2i− 6, 2i− 5, 2i− 2, 2i+ 1, 2i+ 2} ∩ Z++ 3/2
k ∈ {2i− 4, 2i− 1} ∩ Z++ −1/2

i = n 0 ≤ k ≤ max{0, 2n− 7} 5/2
k ∈ {2n− 6, 2n− 5} ∩ Z++ 9/2
k = 2n− 4 1/2
k = 2n− 2 3/2

{0, 1, . . . ,m − 1} such that αk
i = −1. So, for such a k, we have

from (29) that

−

⎛⎝ n∑
j=1,j̸=i

wijα
k
j + bi

⎞⎠ > −1.

The left-hand side of this inequality can be rewritten as

−

⎛⎝ n∑
j=1,j̸=i

wijα
k
j + bi

⎞⎠ = −
⎛⎝ n∑

j=1

wijα
k
j − wiiα

k
i + bi

⎞⎠
= −

⎛⎝ n∑
j=1

wijα
k
j + 2+ bi

⎞⎠ .
602
Table A.10
The values of the left-hand side (LHS) of (30) for the sequence S in Proposition 2
and the parameters W and b given in (A.3) and (A.4) when n ≥ 3.
Value of i Value of k LHS

i = 1 k = 1 −1/2n
k = 3 1+ 5/2n
k = 4 5/2n
5 ≤ k ≤ 2n− 2 −1+ 5/2n
k = 2n− 1 −1+ 1/2n

2 ≤ i ≤ n− 1 k = 0 (only if i = 2) −1/2
0 ≤ k ≤ 2i− 8 or 2i+ 3 ≤ k ≤ 2n− 1 1/2
or k ∈ {2i− 5, 2i− 2} ∩ Z++
k = 0 (only if i = 3) 1
or k = 2i+ 1 (only if i = n− 1)
or k ∈ {2i− 7, 2i+ 2} ∩ Z++
k ∈ {2i− 6} ∩ Z++ 3/2
or k = 2i+ 1 (only if i ≤ n− 2)
k ∈ {2i− 4, 2i− 1} ∩ Z++ −1

k = n 0 ≤ k ≤ 2n− 8 or k = 2n− 5 5/2
k = max{0, 2n− 7} 7/2
k ∈ {2n− 6} ∩ Z++ 9/2
k ∈ {2n− 4, 2n− 2} −1/2

Hence we have
n∑

j=1

wijα
k
j + bi < −1

which implies that li < −1. We next prove that ui > 1. It follows
from Assumption 1 that, for each i ∈ {1, 2, . . . , n}, there exists
at least one k ∈ {0, 1, . . . ,m − 1} such that αk

i = 1. So, for such
a k, we have from (29) that

n∑
j=1,j̸=i

wijα
k
j + bi > −1.

The left-hand side of this inequality can be rewritten as
n∑

j=1,j̸=i

wijα
k
j + bi =

n∑
j=1

wijα
k
j − wiiα

k
i + bi =

n∑
j=1

wijα
k
j − 2+ bi.

Hence we have
n∑

j=1

wijα
k
j + bi > 1

which implies that ui > 1. □

A.4. Proof of Lemma 7

We first prove the first statement. Let i be any integer in
{1, 2, . . . , n}. If xi = li, we have

−xi +
n∑

wijfj(xj)+ bi ≥ −li −
n∑
|wij| + bi = −li + li = 0.
j=1 j=1
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lso, if xi = ui, we have

xi +
n∑

j=1

wijfj(xj)+ bi ≤ −ui +

n∑
j=1

|wij| + bi = −ui + ui = 0.

These inequalities mean that −x + Wf (x) + b belongs to the
angent cone of the closed and convex set Ωi for all x ∈ ∂Ωi.
Hence it follows from the Nagumo Theorem (Nagumo, 1942) that
Ωi is positively invariant. Therefore Ω = Ω1 ∩ Ω2 ∩ · · · ∩ Ωn is
also positively invariant.

We next prove the second statement. Suppose that (28)–(30)
hold for k = 0, 1, . . . ,m − 1, and let x0 ∈ Rα0 . Then it follows
from the third condition of Assumption 1 that for each i ∈
{1, 2, . . . , n} there exists a ti ∈ [0,∞) such that φi(ti, x0) ∈
[−1, 1] ⊂ [li, ui] or φ(ti, x0) ∈ Ωi. Moreover, because Ωi is
positively invariant, φ(t, x0) ∈ Ωi for all t ≥ ti. Therefore, if we
set tmax := max{t1, t2, . . . , tn} <∞, we have φ(tmax, x0) ∈ Ω . □

A.5. Proof of Lemma 9

Let x ∈ Pk. Since the dynamics of the RNN in Rαk is expressed
as

ẋi(t) = −xi(t)+ Ck
i , i = 1, 2, . . . , n,

we have

φi(t, x) =
(
xi − Ck

i

)
e−t + Ck

i , 0 ≤ t ≤ t∗, i = 1, 2, . . . , n

where t∗ is the minimum nonnegative t such that φ(t, x) ∈ Q k.
Note that the mapping ρi(x) is given by φi(t∗, x) and that t∗ is the
unique solution of the following equation:(
xik − Ck

ik

)
e−t + Ck

ik = αk
ik .

Therefore, we have

ρk
i (x) = φi(t∗, x)

=
(
xi − Ck

i

)
e−t
∗

+ Ck
i

=
(
xi − Ck

i

)
·
αk
ik
− Ck

ik

xik − Ck
ik

+ Ck
i , i = 1, 2, . . . , n

hich completes the proof. □

.6. Proof of Lemma 10

It follows from (42) that the (i, j)-th entry of Jρk is given by

Jρk
)
ij =

∂ρk
i

∂xj
=

⎧⎨⎩
skik , if i = j and i ̸∈ {ik−1, ik},
−ski , if i ̸= j and j = ik,
0, otherwise.

Also, the (i, j)-th entry of (Jρk )TJρk is given by

(
(Jρk )TJρk

)
ij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
skik

)2
, if i = j ̸∈ {ik, ik−1},∑n

i=1,i̸=ik

(
ski
)2

, if i = j = ik,
−skiks

k
i , if i ̸∈ {ik, ik−1} and j = ik,

0, otherwise.

It is easy to see that the characteristic polynomial of (Jρk )TJρk is
expressed as⏐⏐λI − (Jρk )TJρk

⏐⏐
=

⎧⎪⎨⎪⎩
λ

(
λ−

(
skik
)2)

, if n = 2,

λ

(
λ−

(
skik
)2)n−3 (

λ2
−
∑n

i=1

(
ski
)2

λ+

(
skik s

k
ik−1

)2)
, if n ≥ 3.
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Hence (Jρk )TJρk has nonnegative eigenvalues 0 and
(
skik

)2
if n = 2,

and 0,
(
skik

)2
(with algebraic multiplicity n− 3) and

1
2

⎛⎜⎝ n∑
i=1

(
ski
)2
±

√( n∑
i=1

(
ski
)2)2

− 4
(
skiks

k
ik−1

)2⎞⎟⎠
if n ≥ 3. Since ∥Jρk∥2 is equal to the square root of the largest
eigenvalue of (Jρk )TJρk , we have (44). □

A.7. Proof of Lemma 11

Let x ∈ Q k. Since the dynamics of the RNN in R(αk+αk+1)/2 is
expressed as

ẋi(t) = −xi(t)+ wiikxik (t)+ Dk
i , i = 1, 2, . . . , n,

we have

φik (t, x) =
(
αk
ik + Dk

ik

)
et − Dk

ik , 0 ≤ t ≤ t∗

and

φi(t, x) =
1
2
wiik

(
αk
ik + Dk

ik

)
et +

[
xi −

1
2
wiik

(
αk
ik − Dk

ik

)
− Dk

i

]
e−t

− wiikD
k
ik + Dk

i , 0 ≤ t ≤ t∗, i ̸= ik,

where t∗ is the minimum nonnegative t such that φ(t, x) ∈ Pk+1.
ote that the mapping σ k

i (x) is given by φi(t∗, x) and that t∗ is
he unique solution of the following equation:

αk
ik + Dk

ik

)
et − Dk

ik = −αk
ik .

herefore we have
k
i (x) = φi(t∗, x)

=
1
2
wiik

(
αk
ik + Dk

ik

)(
−

αk
ik
− Dk

ik

αk
ik
+ Dk

ik

)

+

[
xi −

1
2
wiik

(
αk
ik − Dk

ik

)
− Dk

i

]
×

(
−

αk
ik
+ Dk

ik

αk
ik
− Dk

ik

)
− wiikD

k
ik + Dk

i

=
(
xi − Dk

i

)(
−

αk
ik
+ Dk

ik

αk
ik
− Dk

ik

)
+ Dk

i

for i ̸= ik. This expression is valid also for i = ik because
ubstituting xi = αk

ik
into it we obtain −αk

ik
. □

.8. Proof of Lemma 12

It follows from (45) that the (i, j)-th entry of Jσ k is given by

Jσ k )ij =
∂σ k

i

∂xj
=

{
−
(
αk
ik + Dk

ik

)
/
(
αk
ik − Dk

ik

)
, if i = j and i ̸= ik,

0, otherwise.

Hence (Jσ k )TJσ k has nonnegative eigenvalues 0 and
(
αk
ik
+ Dk

ik

)2
/(

αk
ik
− Dk

ik

)2
(with algebraic multiplicity n − 1). Since ∥Jσ k∥2 is

equal to the square root of the largest eigenvalue of (Jσ k )TJσ k , we
have (47). □

A.9. Proof of Proposition 4

When n = 2, any sequence S satisfying the conditions in
Theorem 1 and Assumption 1 consists of five bipolar vectors. So
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e assume hereafter that m = 4. Since all trajectories φ(t, x0)
with x0 ∈ Rα0 reach P0 within a finite period of time, it suffices
for us to consider the case where x0 ∈ P0. For each x0 ∈ P0, the
point at which the trajectory φ(t, x0) first returns to P0 is given
by π (x0) = σ 3

◦ ρ3
◦ · · · ◦ σ 0

◦ ρ0(x0). Then we haveJπ (x
0)

2 =

Jσ3
(
x3+

)
Jρ3
(
x3−

)
· · · Jσ0

(
x0+

)
Jρ0 (x0)


2

where x0+ = ρ0(x0−), x1− = σ 0(x0+), . . ., x3− = σ 2(x2+)
nd x3+ = ρ3(x3−). From Lemmas 10 and 12 and the sub-
ultiplicativity of the matrix norm ∥ · ∥2, we have

Jπ (x
0)

2 ≤

Jσ3
(
x3+

)
2

Jρ3
(
x3−

)
2 · · ·

Jσ0
(
x0+

)
2

Jρ0 (x0)

2

=

⏐⏐⏐⏐⏐α
3
i3
+ D3

i3

α3
i3
− D3

i3

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐ α

3
i3
− C3

i3

x3−i3 − C3
i3

⏐⏐⏐⏐⏐ · · ·
⏐⏐⏐⏐⏐α

0
i0
+ D0

i0

α0
i0
− D0

i0

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐α

0
i0
− C0

i0

x0i0 − C0
i0

⏐⏐⏐⏐⏐ .
Here, it follows from (28) and (46) that⏐⏐⏐⏐⏐α

k
ik
+ Dk

ik

αk
ik
− Dk

ik

⏐⏐⏐⏐⏐ =
⏐⏐⏐⏐⏐1− 2

1− αk
ik
Dk
ik

⏐⏐⏐⏐⏐
≤ 1−

2
1−mink∈{0,1,2,3}{α

k
ik
Dk
ik
}

< 1

or k = 0, 1, 2, 3. Also, it follows from (28) and (43) that

αk
ik
− Ck

ik

xk−ik − Ck
ik

⏐⏐⏐⏐⏐ ≤
⏐⏐⏐⏐⏐α

k
ik
− Ck

ik

αk
ik
− Ck

ik

⏐⏐⏐⏐⏐ = 1

for k = 0, 1, 2, 3. Thus we have

Jπ (x
0)

2 ≤

(
1−

2
1−mink∈{0,1,2,3}{α

k
ik
Dk
ik
}

)4

< 1

or all x0 ∈ P0, which implies that π is a contraction map-
ing from P0 to itself (Philips & Taylor, 1973). By the Banach
ixed-point theorem, π has a unique fixed point x∗ ∈ P0 and
iml→∞ π l(x0) = x∗ for all x0 ∈ P0. Therefore, the trajectory
(t, x0) converges to the limit cycle formed by φ(t, x∗) for all
0
∈ P0. □

.10. Proof of Proposition 5

It follows from Theorem 1 and Lemma 7 that all trajectories
(t, x0) with x0 ∈ Rα0 reach P0

= ∂R(αm−1+α0)/2∩∂Rα0∩Ω within
finite period of time. So we assume without loss of generality

hat x0 ∈ P0. Algorithm 1 first computes B0− which is equal to
0, and then J̄kρ , B

k+, J̄kσ and B(k+1)− for k = 0, 1, . . . ,m − 1.
s for Bk+ and B(k+1)−, we see from Lemmas 9 and 11 that
hey satisfy {ρk(x) | x ∈ Bk−

} ⊆ Bk+
⊆ Q k and {σ k(x) |

∈ Bk+
} ⊆ B(k+1)−

⊆ Pk+1 for k = 0, 1, . . . ,m − 1, which
eans that all trajectories φ(t, x0) with x0 ∈ P0 pass through
0+,B1−,B1+, . . . ,B(m−1)−,B(m−1)+ and reach Bm−

⊆ B0−
= P0.

e thus can restrict the domains of the mappings ρk and σ k to
k− and Bk+, respectively, for k = 0, 1, . . . ,m − 1 to evaluate
Jπ (x0)∥2. Furthermore, we see from Lemmas 10 and 12 that J̄kρ

and J̄kσ are upper bounds for the matrix norm of the Jacobian
matrices of the mappings ρk

⏐⏐
Bk− : Bk−

→ Bk+ and σ k
⏐⏐
Bk+ :

Bk+
→ B(k+1)−, respectively. Therefore

∥Jπ (x
0)∥2 ≤

m−1∏
k=0

J̄kρ J̄
k
σ

holds for all x0 ∈ P0. If the right-hand side, which is the output
of Algorithm 1, is less than 1 then we have ∥Jπ (x0)∥2 < 1 which

0
implies that π is a contraction mapping from P to itself (Philips

604
& Taylor, 1973) and thus the trajectory φ(t, x0) converges to the
same limit cycle. □
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