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ABSTRACT Malicious hosts have come to play a significant and varied role in today’s cyber attacks. Some
of these hosts are equipped with a technique called cloaking, which discriminates between access from
potential victims and others and then returns malicious content only to potential victims. This is a serious
threat because it can evade detection by security vendors and researchers and cause serious damage. As such,
cloaking is being extensively investigated, especially for phishing sites. We are currently engaged in a long-
term cloaking study of a broader range of threats. In the present study, we implemented Stargazer, which
actively monitors malicious hosts and detects geographic and temporal cloaking, and collected 30,359,410
observations between November 2019 and February 2022 for 18,397 targets from 13 sites where our sensors
are installed. Our analysis confirmed that cloaking techniques are widely abused, i.e., not only in the context
of specific threats such as phishing. This includes geographic and time-based cloaking, which is difficult to
detect with single-site or one-shot observations. Furthermore, we found that malicious hosts that perform
cloaking include those that survive for relatively long periods of time, and those whose contents are not
present in VirusTotal. This suggests that it is not easy to observe and analyze the cloaking malicious hosts
with existing technologies. The results of this study have deepened our understanding of various types of
cloaking, including geographic and temporal ones, and will help in the development of future cloaking
detection methods.

INDEX TERMS Cloaking, cyber security, geofencing, malcious host, time-series.

I. INTRODUCTION
Today’s cyber attacks utilize various types of malicious
hosts to carry out attacks. For example, there are cases in
which files on infected terminals are uploaded to external
servers using Hypertext Transfer Protocol (HTTP) communi-
cation [1], and others where attack modules are downloaded
or attack commands are received [2]. In addition to use as
C2 servers, malicious hosts have various other roles such as
malware distribution [3], [4], phishing [5], [6], [7], fraudulent
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services [8], [9] spam distribution [10], and fake Anti-Virus
(AV) scanner distribution [11], [12]. The number of these
malicious hosts has been increasing exponentially year by
year [13]. In such circumstances, it is important to block
communications to suspicious servers used for cyber attacks
in order to limit the damage.

In response, attackers have implemented evasion tech-
niques against malicious host detection techniques. Such eva-
sion techniques are known as cloaking. Cloaking determines
whether the access is from the target organization or region
and then returns benign content if not, i.e., if the access
is from outside the target, including security researchers.
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Such techniques bypass security researcher investigations
and automatic malicious host detection systems, resulting in
threat information not being shared and action being delayed.
For example, an extensive study of phishing in [14] examined
the possibility that there may be some attacks that cannot be
observed due to cloaking.

Several prior studies have investigated the characteristics
of cloaking, especially those related to phishing, ad net-
work exploitation, fake AV distribution, etc. [5], [6], [7],
[15], [16], [17]. On the other hand, cloaking for non-human-
mediated items, which differs from these methods, is less
well understood. Websites using evasion techniques for these
attacks achieve cloaking mainly by distinguishing between
automated crawler visits and potential human victims to
determine whether they are attack targets or not [15]. How-
ever, other communications in a generic attack flow, such as
communication with a C2 server or downloading an attack
module, do not involve human intervention, and thus the
distinction between attack targets and others does not nec-
essarily correspond to the distinction between humans and
crawlers. Examples include cloaking based on the country
or IP address of the access source or short-term enabling
of C2 servers. For example, a study examining malware
distribution via Pay-Per-Install (PPI) showed that some mal-
ware families are biased toward geographic areas of distri-
bution [18]. Another study examining malware distributed
via PPI from U.S. IP addresses demonstrated that results
may differ when observed from non-U.S. IP addresses [19].
There are also reports that some malware families and exploit
kits are distributed or C2 servers are enabled only in spe-
cific regions [20], [21], [22]. Therefore, assuming that cloak-
ing is based on the discrimination of crawlers or humans,
as suggested by the results of previous studies, may lead
to overlooking malicious hosts. This results in the risk of
serious damage to the organization or region targeted by the
cloaking.

Although the several existing studies discussed above
have pointed out the importance of defenses against cloak-
ing, we still lack knowledge on the long-term and regional
tendencies of malware distribution and C2 servers, which
makes it difficult to implement efficient and effective
countermeasures. To address this issue, we conducted a mea-
surement study of temporal and regional cloaking, focus-
ing primarily on malware distribution hosts and C2 servers.
This was done by implementing Stargazer, a platform that
enables multiple sensors deployed around the world to
observe simultaneously and in parallel over a long period
of time, avoiding temporal and regional cloaking (known
as geofencing). We utilized Stargazer by extending the pre-
liminary experiments (continuous observation using moni-
toring sensors from around the world) conducted in [23].
Specifically, we implemented a mechanism to automati-
cally detect cloaking from observation results, and also
increased the number of observations and observation sensors
to conduct large-scale observation experiments, analysis, and
discussion.

In the observation process, Stargazer keeps periodically
accessing a set of suspicious hosts from sensors installed in
several different regions to analyze how the temporal and
regional differences of the access origins affect the character-
istics and contents of the responses from the hosts. The spe-
cific observation items are executing HTTP GET, obtaining
Domain Name System (DNS) records, obtaining a screen-
shot, and sending a ping. We also used Stargazer to con-
duct observations from November 2019 to February 2022 on
18,397 targets from 13 locations, and obtained 30,359,410
observations. We analyzed these observations and found that
approximately 15% of the suspicious hosts were attempt-
ing geofencing, and approximately 17% were attempting
time-based cloaking. Our analysis confirms that cloaking
techniques are widely exploited. It includes geofencing and
time-based cloaking, which is difficult to detect with single-
site or one-shot observations.

In addition, we analyzed observations from hosts labeled
as cloaking to determine the details of cloaking. Specifically,
we systematically revealed the existence of seven different
methods: three types of time-based cloaking and four types
of geofencing. Furthermore, we confirmed that the malicious
hosts for cloaking include those that survive for a relatively
long period of time by using their detection evasion ability as
a shield and those whose contents do not exist in VirusTotal.
This suggests that it is not easy to observe and analyze the
cloaking malicious hosts using existing technologies, and
that they are a threat not only to general users but also to
researchers.

These analyses have advanced our understanding of
geofencing and time-based cloaking of malicious hosts,
which had previously been discussed only qualitatively.
We believe that Stargazer not only automatically reveals
geofencing and time-based cloaking, thus making it more
difficult for attackers to evade detection, but also con-
tributes to the development of future cloaking detection
methods. In summary, the contributions of this paper are as
follows:

• To conduct a measurement, we designed and imple-
mented Stargazer, which enables time-series analysis
and regional analysis of malicious hosts. Stargazer
observes malicious hosts from multiple geolocations,
which makes it difficult for adversaries to evade obser-
vation through cloaking (§III).

• We conducted observations by Stargazer from Novem-
ber 2019 to February 2022 for 18,397 targets from
13 locations, and obtained 30,359,410 observation
results. We quantitively analyzed the observation results
and confirmed that cloaking is omnipresent amongmali-
cious hosts related to various threats. Our measurement
study also clarified that there are seven major types of
cloaking types: three types of time-based cloaking and
four types of geofencing. We also found that cloaked
content had significantly fewer submissions to reputa-
tion sites such as VirusTotal than those that were not
cloaked (§IV).
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• We qualitatively deep-dived into the more characteristic
observations as case studies. We showed a host that
survived for a long time in total by restarting after being
inactive once, and a host that attempted to avoid detec-
tion by frequently changing its IP address and contents
in a short period of time. We also showed that among
the cloaking sites of the same campaign, the malware
distribution site, which can be easily detected, has a
relatively short survival time and is disposable, while
the C2 server in the latter stage has a long survival
time and is reused, and thus has different characteristics
depending on the host role (§V).

II. BACKGROUND
A. CLOAKING TECHNIQUES IN CYBER ATTACKS
Some Internet services change the content they provide
according to the visitors to the site. For example, some
systems identify the visitor’s device or browser and return
content for mobile devices and PCs, while others identify
the visitor’s region and change the language of the con-
tent accordingly. These are benign, taking into account the
improvement of usability. On the other hand, these iden-
tification techniques have been exploited in cyber attacks,
as mentioned above, by cloaking.

A typical cloaking scheme identifies whether a visitor is a
bot or not and returns benign content for bots and malicious
content for people. Others return malicious content only to
the target region or to targets that may contain vulnerabilities
to be exploited. This enables the distribution of malicious
content only to the right target, and delays or avoids detection
by automatic detection systems or security researchers.

In summary, existing research often focuses on specific
categories of attacks, especially phishing. In addition, these
studies are tailored methods that utilize features specific
to hosts with web pages, including cloaking sites, such
as screenshot differences and JavaSript structures. On the
other hand, there are reports of cloaking being performed on
malicious hosts that are not limited to these attacks. Thus,
although there is evidence that cloaking is universally utilized
in a wide range of attack categories, prior research has con-
ducted few large-scale investigations.

B. CHALLENGES IN CLOAKING OBSERVATION
With the above background, many cloaking detection meth-
ods have been proposed and cloaking methods have been
investigated. In particular, cloaking tends to be implemented
for phishing sites because of the conflicting demands of
the search engines to rank them higher through Search
Engine Optimization in order to reach more attack targets,
while at the same time not wanting them to be analyzed by
researchers. Thus, research on this issue is also active [15],
[16], [24], [25].

On the other hand, cloaking has also been conducted on
malicious hosts that are not limited to these types of threats.
One survey implementing manual analysis [18] showed that

some families and types of malware have regional charac-
teristics. Specifically, a technique called geofencing is some-
times used to evade detection by distributing malicious con-
tent only to the target region and returning harmless content
or not responding to accesses from other regions. There
are also reports of geofencing being used in Sharkbot [20],
Gamaredon [21], and Purple Fox [22] to target specific
regions. Cloaking using browser user agents has also been
reported [26].

Malicious hosts do not always continue to behave in a
malicious manner; they may be activated only at the time of
an attack, or they may become temporarily dormant, or they
may be permanently destroyed. In particular, cloaking that is
activated only when an attack is to be carried out is referred to
as timing-based cloaking in this paper. Many existing studies
have only observed each host at a certain point in time, and
the changes over time and the cloaking within them have not
been clarified.

III. METHOD
A. OVERVIEW
This section introduces Stargazer, a system that actively mon-
itors malicious hosts to obtain an overall understanding of
their characteristics. The objective of Stargazer in the present
study is to investigate the tendencies of the geofencing and
time-based cloaking mentioned in the previous section. First,
to enable detection of time-based cloaking, observations
of malicious hosts are made periodically and continuously,
rather than once. In this case, the same site is managed with a
unique ID and maintained in a form that allows time series
analysis for each site. In addition, to enable the detection
of geofencing, observation sensors that observe malicious
hosts are installed in multiple regions. This improves the
observability of hosts that return malicious responses only to
accesses from specific regions.

Fig. 1 shows an overview of Stargazer based on the above.
It consists of three components: an observation server, obser-
vation sensors, and an analysis system, and executes obser-
vation and analysis of malicious hosts by the following pro-
cesses.

1) The observation server orders observation sensors to
start monitoring with the targets’ URLs periodically.

2) Observation sensors monitor the targets’ URLs on the
basis of the order.

3) After the observation is completed, the observation
results are analyzed using the analysis system.

4) The results of observation and analysis are stored in the
observation server’s database.

Each component is described in detail in the following
sections.

B. OBSERVATION SERVER
The observation server is the command center. It sends URLs
to be periodically and continuously observed to observation
sensors installed all over the world and then orchestrates
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FIGURE 1. Overview of stargazer.

the sensors. After sensor observation is completed for each
period, the server receives the results of the observation and
analysis and saves them in its database. The periodic and con-
tinuous observation enables us to detect time-series changes
of malicious hosts and to obtain changes in their status.

C. OBSERVATION SENSORS
The observation sensor monitors the malicious host on the
basis of the observation command from the observation
server. The specific observation items are as follows:

• Executing HTTP GET
• Obtaining A/AAAA records
• Obtaining a screenshot
• Sending a ping

As mentioned above, HTTP communication is one of the
main communication methods used in attacks. By executing
HTTP GET for each destination, the status code and con-
tents of each malicious host can be obtained. In addition,
the A/AAAA record is obtained as an HTTP GET-related
item, and a screenshot is obtained using a headless browser.
A record is an IPv4 address assigned to the target host,
such as 192.0.2.1. The AAAA record is an IPv6 address
assigned to the target host, such as 2001:db8::1. Pings are
then sent to check the operational status of the adversaries’
server. Furthermore, DNS records are obtained at irregular
intervals to determine whether domain is sinkholed (sinkhole
determination method is detailed in section IV-A).

The observation results are then sent to the observation
server. If a redirect is detected, the same observation will be
executed recursively for the redirected page.

To make observation sensors resistant against geofencing,
we deployed them in multiple geolocations and conducted
observations from each sensor simultaneously and in par-
allel. We set up the observation sensors in 13 geolocations
with the motivation of covering a wide area. Twelve of the
sensors were installed at each geolocation of Amazon Web
Services (AWS), and the remaining sensor was installed on-
premise in Japan. Table 1 shows the breakdown of the instal-
lation geolocations and platforms (PFs). We confirmed the
IP address of each sensor was correctly associated with the
geolocation shown in Table 1 by using the GeoIP2 database.1

In this experiment, the observation sensor is implemented as

1https://www.maxmind.com/en/geoip2-databases

TABLE 1. Location of observation sensors and platforms (PFs).

a Python program. The on-premises sensor runs on Ubuntu
18.04 LTS VM on ESXi 6.7, and the AWS sensor runs on
Ubuntu 18.04 LTS VM on Amazon Elastic Compute Cloud
(Amazon EC2).

D. ANALYSIS SYSTEM
The analysis system executes time series and geofencing
analyses on the observed data. Each analysis item is described
in the following sections.

1) TIME-SERIES ANALYSIS
In the time-series analysis, the change rate from time t-1
to time t at the same observation sensor is calculated using
formula 1, and if the change rate is higher than a threshold,
it is extracted as a change in the time series. Formula 1 was
inspired by the Jaccard index, which measures the similarity
of sets. It takes the set similarity of the observation results
S and detects no change when the similarity is high (i.e.,
there is no difference in the observation results) and detects
change when the similarity is low (i.e., there is a difference).
S consists of the observation items described in Section III-C.
For example, when the status code is 200, the content is html,
and the response to the ping is yes, as S = {200, html, ping :

yes} (other factors such as the hash value of the content are
also included). St then means the observation result observed
at time t in this measurement. After forming a set of discrete
values at each time, the similarity of the sets is calculated to
determine whether the response has changed over time.

There are two types of change regarding the content: small,
such as a site that contains variable information (e.g., time
information), and large, such as a change from a harmless
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FIGURE 2. ROC curves to detect cloakings.

file to malware. If we treat both changes as the same, we may
induce false positives caused by the small ones. Therefore,
for content, instead of using discrete values of whether the
hash values are different, we use fuzzy hashing to calculate
the similarity between content as a continuous value and
integrate it into the aggregate similarity. The fuzzy hashes
are used to calculate the similarity between content in con-
tinuous values and integrated into the set similarity. The set
similarity of the content of t-1 and the content of t is defined
as Sim(Content(t − 1),Content(t)) in formula 1. We utilized
ssdeep2 as a fuzzy hash, which can calculate the similarity
between two contents as a continuous value. By using it,
the aforementioned file similarity can be incorporated into
formula 1.

change_rate(t − 1, t)

= 1 − (
St−1 ∧ St
St−1 ∨ St

∗Sim(Content(t − 1),Content(t))) (1)

2) GEOFENCING ANALYSIS
In geofencing analysis, the difference between the observa-
tion results of sensors s1 to sn at the same time is calcu-
lated using formula 2, and if the difference is higher than
a threshold, the sensor is considered to have geofencing
characteristics, i.e., cloaking is executed in accordance with
the access source. For example, s1 means a sensor located
at US West (AWS) and Ss1 means an observation result of
s1. Formula 2 takes the set similarity of S and detects that
there is no regionality when the set similarity is high, and that
it is geofenced when the set similarity is low. For content,
similarity is calculated as a discrete value using ssdeep, the
same as for time-series changes. In geofensing analysis, a site
that changes its language depending on the access source may
be judged as a cloaking even if its change is minor and it is not
malicious. Thus, we utilize ssdeep as fuzzy hash to suppress
false positives.

geofenced_rate(s1, . . . , sn)

= 1 − (
Ss1 ∧ . . . ∧ Ssn
Ss1 ∨ . . . ∨ Ssn

∗Sim(Content(s1), . . . ,Content(sn))) (2)

2https://ssdeep-project.github.io/ssdeep/

E. PRELIMINARY EVALUATION
In this section, we evaluate the accuracy of formulas 1 and
2 described in section III-D and attempt to determine the
threshold for each formula. For the evaluation, we constructed
a dataset by extracting from a subset of Stargazer’s obser-
vations those of malicious hosts for which manual geofenc-
ing and time-based cloaking were performed. Specifically,
we checked whether the observation results of the cloaking
and non-cloaking targets were malicious and benign, respec-
tively, and confirmed that the cloaking seems to be malicious
and targeted. The benign observation results include simple
error pages and default web server pages such as Apache, and
the malicious observation results include pages that contain
malicious code or pages that download malware.

We then applied formulas 1 and 2 to the data set, cal-
culated the time-series change and geofencing scores, and
created Receiver Operating Characteristic (ROC) curves. The
results are shown in Fig. 2. We selected the thresholds of
0.35 (true positive rate: 81.2%, false positive rate: 5.0%) for
time-based cloaking and 0.23 (true positive rate: 92.1%, false
positive rate: 2.2%) for geofencing, respectively. Increasing
the threshold increases the true positive rate but also increases
the miss rate, as a greater number of possible cloaked items is
extracted. Conversely, lowering the threshold results in fewer
misses but more false positives, thus creating a trade-off.
Since the purpose of this measurement study was to clarify
the actual situation of the cloaking method, the thresholds
were selected so that false positives could be tolerated to some
extent and yet the number of missed cases would be reduced.
In the following sections, we will use the above threshold
values in our analysis.

IV. MEASUREMENT AND ANALYSIS
In this section, we describe the results of continuous observa-
tion of malicious hosts from multiple locations and analysis
of the observation results to determine the effectiveness of
Stargazer.

A. OBSERVATION DATA
As a preliminary step in observation and analysis, we col-
lected observation targets. Most malicious hosts are relatively
short-lived [27], i.e., the time from when a host is activated as

52754 VOLUME 11, 2023



S. Fujii et al.: Stargazer: Long-Term and Multiregional Measurement of Timing/Geolocation-Based Cloaking

a malicious host to when it becomes inaccessible or changes
to a benign host (survival time) is short. Thus, it is desirable to
add malicious hosts to the observation targets as early as pos-
sible. Therefore, we collected observation targets from vari-
ous information sources by selecting those that are relatively
fast. Specifically, we collected 18,397 malicious URLs from
malicious URL sharing sites such as URLhaus3 and social
media sites such as Twitter4 in which many security ana-
lysts/vendors share indicators of compromise. For the Twitter
information, suspicious URLs shared by prominent analysts
were periodically collected. We also collected candidates of
observation targets by using hash tags (e.g., #IOC and #mal-
ware). We then selected observation targets from the candi-
dates, refanged them (e.g., converted hxxp://example[.]com
into http://example.com), and registered them to the obser-
vation server. Observations were conducted once a day from
November 2019 to February 2022 for the aforementioned tar-
gets, and 30,359,410 observations were obtained. This means
that in this experiment, one day (24 hours) is definitively
used as the length of the time series in formula 1. Note that
not all the hosts were observed from the beginning of the
period because the targets were added as needed during the
operation.

The analysis system was applied to the aforementioned
observations, and time-series and geofencing analyses were
conducted. Stargazer was designed to improve the observ-
ability of malicious hosts by continuous observations from
multiple geolocations. We quantitatively evaluated their
observability by referring to the observation results.

Note that the results of observations with a high probability
of sinkholes were excluded. The determination of whether
or not a sinkhole is in fact a sinkhole was performed using
observation data and DNS information inspired by [28] and
[29]. In the flow using observed data, a sinkhole list of
content hash values, domain names, and A/AAAA records
is created and compared with the list to determine whether
or not a sinkhole is present. The list was constructed and
updated by adding sinkholes discovered during the operation
of Stargazer. DNS information was periodically obtained,
and when NS records, CNAME records, and TXT records
contained keywords such as sinkhole, they were judged to
be sinkholes. NS records define authoritative name servers,
and sinkholed domain name servers may contain the keyword
sinkhole. CNAME record defines a canonical name for a
domain, and the sinkholed domain is sometimes mapped to
domains that contain the keyword sinkhole. TXT record reg-
isters an arbitrary string, and the TXT record of the sinkholed
domain sometimes indicates the domain has been sinkholed.
Therefore, by referring to these records and checking whether
they contain strings such as sinkhole, we can determine
whether the observation target is sinkholed.

In the following sections, we describe the results of each
analysis.

3https://urlhaus.abuse.ch/
4https://twitter.com/

FIGURE 3. Time-series change of status code.

TABLE 2. Types of time-based cloaking and number of observations for
each technique.

B. TIME-SERIES ANALYSIS
In this section, we describe the changes in the time series of
each malicious host observed using Stargazer.

As shown in Table 2, changes that appear to be due to
cloaking were observed in 3,128 hosts in the time series. The
changes in time were identified to be divided into three main
types. Specifically, the number of cases of revival from no
response (1,860), change of status code from non-2xx to 2xx
(2,419), and change of content (2,535). Note that the total
number of each does not equal the number of unique cloaking
sites (3,128), since a single host may use multiple methods.

We also checked the time-series changes in more detail
from the viewpoint of status code and content. The transitions
of the status codes in a time series are shown in Fig. 3 and
those of the content are shown in Fig. 4, where the state before
and after the transition are shown. More detailed transition
figures are available in the Appendix. The content is rounded
for the same type. For example, DOS-MZ, PE, and ELF
are included as executable files in this observation, and all
of them are listed together as executable in the figure. The
breakdown of each item is shown in Table 3. The status code
is also rounded for the same type. For example, 400, 401,
403, etc. are listed together as 4xx in the figure. The most
common status code was the transition from 200 OK to the
no-response state. This is thought to occur when the host is
abandoned as the attack ends. However, there were cases in
which the host revived from the unresponsive state. Many of
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FIGURE 4. Time-series change of content.

TABLE 3. Components of each category.

the transitions within the intermediate states go back and forth
between 200 OK, 404 Not Found, and no-response. A certain
number of status code changes to 2xx, which Stargazer detects
as a sign of the start of an attack, also existed, suggesting
that it is necessary to consider the possibility of re-activation
even once there is no response. Next, as with the status codes,
the most common transition to the unresponsive state was
for the contents. This is also thought to be caused by the
end of the attack when the host is abandoned. Regarding
other changes, the change to HTMLwas frequently observed.
In other cases, as a type of observation evasion, executable
files were distributed once and replacedwith harmless HTML
after the second time. The detection of these more dangerous
changes should improve the response speed and resolution
against attacks.

To summarize, several time-based cloaking methods are
observed and we defined three categorize of them. In addi-
tion, continuous observation makes it possible to observe
even hosts that show highly suspicious characteristics only
temporarily and with changes. We have demonstrated that it
is possible to detect the re-activation of malicious hosts by
using changes in status codes and content, together with case
studies.

TABLE 4. Types of geofencing and number of observations for each
technique.

FIGURE 5. Number of geofencing hosts’ TLDs.

TABLE 5. Number of target geolocations.

FIGURE 6. Correlation coefficients for each geolocation.

C. GEOFENCING ANALYSIS
In this section, we describe the hosts with geofencing detected
using Stargazer.

The geofencing observed in this study is shown in Table 4.
In this observation, we observed four major evasion meth-
ods related to geofencing. The most common method was
to return contents with different hash values depending on
the geolocation, with 2,708 cases. We found 1,467 cases of
changing the content format in accordance with the geolo-
cation. For example, this method returns executable content
only to certain geolocations and harmless content, such as
simple HTML files, to other geolocations. There were 1,553
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hosts that returned a 200 OK status code only to a specific
geolocation and 1,102 hosts that responded only to a specific
geolocation and not to other geolocations. Since a single host
may have multiple methods, e.g., changing both content and
status codes depending on the geolocation, the total number
of all methods shown in Table 4 does not equal the unique
number of hosts with regional characteristics, which is 2,716.

Fig. 5 shows the ratio of top-level domains (TLDs) to
geofenced domains. Seventy-four TLDs were identified, with
.com being the most common (1,001) and .net the third most
common (33), indicating that many well-known TLDs were
observed. However, relatively new TLDs, such as .cyou and
.club, were also found in the top rankings. Since domain
names in these TLDs are relatively cheaper to acquire than
those in well-known TLDs, it is assumed that adversaries are
using them as disposable domain names.

The number of geolocations targeted by the cloaking hosts
is shown in Table 5. Most, 83.98%, targeted a single geoloca-
tion, but there were those that targeted two or more geoloca-
tions. The Japan sensor was the only one deployed in a PF that
is not AWS, which may have something to do with this obser-
vation. For example, since the IP address range of AWS is
public,5 it is possible that cloaking is implemented to prevent
malicious content from being returned for accesses from this
IP address. The correlation coefficients for each geolocation
are shown in Fig. 6. As mentioned above, most are single
targets, but there is a loose correlation between Frankfurt,
Milan, and Bahrain. We checked the hosts that simultane-
ously targeted these and found that many were reported as
belonging to the TA551/Shathak group, which targeted at
least German and Italian speakers [30], [31]. In addition,
although we have not been able to find any information on
this, it is possible that Bahrain may also have been targeted
in the same attack campaign.

In summary, by conducting observations from multiple
observation sites, it is possible to observe even hosts with
regional characteristics. We compared the observation results
among the observation sensors and clarified the analysis-
avoidance method.

D. OBSERVABILITY
In this research, we verified the observability of malicious
contents. Specifically, the hash values of the observed con-
tents were used to query VirusTotal6 to verify their existence.
In this experiment, 2,208 contents were randomly selected
and counted on two perspectives: whether they were present
in VirusTotal and whether they had been cloaked. Note that
HTML contents were excluded in this experiment because
most of them are benign.

The verification results are shown in Table 6. First, 1,224
contents (81.06%) of non-regional contents were found in
VirusTotal. This is because the contents are not cloaked and
can be accessed from any geolocation or in any time; as

5http://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
6https://www.virustotal.com/

TABLE 6. Presence/absence of geofenced contents in VirusTotal.

FIGURE 7. Examples of cloaked malicious host. The left one is accessed
from Milan and Bahrain and right one is accessed from other locations.

a result, a high percentage of the contents were submitted
to VirusTotal. However, 60.32% of the cloaked contents
were not found in VirusTotal. Thus, contents distributed by
cloaking hosts had a lower presence rate in VirusTotal than
those distributed by non-cloaking hosts. The null hypothesis
that there is no association between the presence or absence
of cloning and the presence or absence of VirusTotal was
rejected by the chi-square test at the 0.05 level of significance
(p ≒ 3.22E-83 < 0.05). From these point of view, we can say
that Stargazer improves observability.

As described above, we have shown that the observability
of malicious hosts can be improved by continuously observ-
ing them from multiple geolocations.

V. CASE STUDY
In this section, we discuss case studies related to time-series
changes of malicious hosts and cloaking. Typical examples
include observation evasion, such as the transition between
active and dormant states described above, and observation
evasion by geofencing using methods such as those listed in
Table 4. Our case studies explore some of the more charac-
teristic examples.

A. CASE 1: TIMING-BASED CLOAKING
In the first case, the malicious host was taken down and then
restored. This site was reported around November 19, 2020 as
a site distributing Dridex executables disguised as pdf exten-
sions. The site suspended malware distribution on November
20, 2020, went down for about three weeks with HTTP status
code 503, and started distributing the same malware again
on December 11, 2020. Finally, it became 404 Not Found on
or around March 25, 2021, and was not activated until the
domain was destroyed. However, it became 503 once imme-
diately after the report, and was re-activated after an interval,
meaning that it survived for about four months in effect.
This is one of the longest-lived attacking hosts, which are
typically said to be relatively short-lived. From the attacker’s
perspective, the simple operation of reactivating the site after
it has been down for several weeks prolongs the life of the
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attack site associated with a single domain and improves the
return on investment against attacks.

B. CASE 2: GEOFENCING
The second case is a site that provides clients accessing
from Milan and Bahrain with a script that downloads a
secondary sample (Ursnif) (Fig. 7, left), and returns a 403
Forbidden (Fig. 7, right) for clients from other locations.
Several hosts with similar characteristics were observed at
the same time. Some malicious hosts with similar charac-
teristics returned 404 Not Found instead of 403 Forbidden,
and some returned empty files with 200 OK unless the
client was the attack target. Some of them did not return
any response, throwing errors such as ‘Connection aborted.’,
RemoteDisconnected(‘Remote end closed connection without
response’), except for the attack target. Some returned mali-
cious responses, such as executable files only for the first
access from the attack target, and returned harmless responses
for the second and subsequent accesses, just like accesses
from other non-attack areas. In all cases, the attackers down-
loaded Dynamic Linking Libraries (DLLs) placed on file-
sharing services with randomized file names.

As for the group of sites that seemed to be related to the
above-mentioned campaign, both the malware download site
and the C2 server were cloaked. However, while the malware
download site had a survival time of about one week, the C2
server had a survival time of more than two weeks and was
shared as the C2 server for each malware. It is assumed that
the first malware distribution site, which is relatively easy
to detect due to its accessibility, has a short survival period,
while the C2 server in the latter stage is used by multiple
samples with a long survival period, thereby reducing the cost
of the attack.

C. CASE 3: MULTIPLE TIMING-BASED CLOAKING WITH
AWS DETECTION
The third case was a combination of multiple time-based
cloaking and AWS detection. We present two similar exam-
ples identified in different paths under the same domain.
Fig. 8 shows the status code, IP address, content type, and
hash value (SHA256/ssdeep) of the executable file for each
observation timing. These were all reported around May 20,
2021 as distribution hosts for RedLine Stealer, and Stargazer
began observations on June 16, 2021. First, as shown in
the figure, the IP address changes in a short span, and the
status code (200OK, 404Not Found, 503 Service Temporarily
Unavailable) changes depending on the access destination
according to the IP address, and even when the IP address
is 200 OK, it is different. We confirmed that different exe-
cutable files come down from the server, which suggests the
attacker manipulates files on the server at any time. Also,
different executables are downloaded at different times and
with different status codes, even for the same IP address. All
of these samples were packed, and a simple calculation of the
similarity between each sample using ssdeep showed a result
of 0. However, when we checked each sample’s behavior

report in JoeSandbox,7 we found that for those that existed,
they were all determined to be RedLine and connected to
the same C2 server. Therefore, it can be said that they are
basically equivalent or similar samples.

For this case, we checked the first submission of each
executable file in VirusTotal and found that most of them
were later than the date and time of the first observation.
We assume that the intention was to evade hash value-
based detection by constantly distributing new specimens that
were not in the VirusTotal at the time of the observation.
In addition, at 34[.]75[.]49[.]***, we observed a behavior that
would lead to the detection of AWS Specifically, 503 Service
Temporarily Unavailable was returned when accessed from
AWS, whereas an executable file was returned with 200 OK
when accessed from the on-premises environment. Since no
AWS detection behavior was observed at other times on the
same host, we confirmed that AWS can be detected and,
in some cases, the behavior can be changed accordingly,
although there is a possibility of unintentional discrimination
due to misconfiguration, etc.

In addition, screenshots taken with a headless browser
showed that only html with 404 Not Found was displayed,
regardless of the timing of access or the actual status code.
This was presumably done to avoid detection by making it
look like a 404 when accessed from a browser. This host was
in operation until July 11, 2021, which means it had survived
about two months from the date of the report.

This example demonstrates an attempt to evade detection
by using a variety of techniques, including content, status
code, AWS detection, and browser detection, in addition to a
technique known as fast-fluxing [32], which involves briefly
reassigning IP addresses. As a result, it survived about two
months, providing an increased return on investment for the
attacker.

The case studies presented in this section were chosen
to represent the more common characteristics of each of
the cloaking techniques described in the previous sections.
Although Stargazer was able to observe some of the species in
this study, they were all likely to slip past detection by simple
observation, and in fact most of them had survived for a
relatively long period of time. This highlights the importance
of utilizing Stargazer for early detection of such items as well.

VI. DISCUSSION
A. OBSERVABILITY
In Stargazer, cloaking in accordance with the access source
is made difficult by installing observation sensors in multiple
geolocations. However, another cloaking method involves
collecting the IP addresses of researchers, creating a reject
list, and returning harmless content to accesses from the IP
addresses in the list [33]. We actually found a host, which
denied accessing from AWS’s IP address range, as shown
in the case study. There is a method of returning mali-
cious content only to the IP address of a malware-infected

7https://www.joesandbox.com/
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FIGURE 8. Time-series changes of a domain name about assigned IP address and its HTTP status code with AWS detection. Note that a part
of URLs and IP addresses are anonymized.

terminal [34]. However, Stargazer can make this avoidance
more difficult by changing the IP address of the observation
sensor periodically or by placing the sensor in a location other
than the AWS (i.e., in another Infrastructure as a Service
(IaaS) or Virtual Private Network (VPN)). The Onion Router
(Tor) could also be used. By utilizing different types of obser-
vation sensors, we should be able to improve observability by
making it more difficult to avoid observation by cloaking, and
to estimate the target of cloaking and extract more suspicious
sites.

Moreover, limitations on the monitoring resources make
it difficult to perform monitoring indefinitely. Although we
conducted observations over an even span of time, we expect
to maximize scalability by focusing on hosts that are con-
sidered to have higher maliciousness (e.g., hosts with time-
series changes or regional characteristics) and reducing the
frequency of observation of hosts that are not. In addition,
while some malicious hosts may change their behavior in a
short period of time, others may not change their behavior at
all for a long period of time. Thus, it is desirable to somehow
determine the time-series length for each malicious host in
the future.

Furthermore, the observation results are subject to selec-
tion bias. For example, many executable files were observed
in this experiment, but this was partly due to the fact that
URLhaus, where the information was collected, had a high
concentration of executable file postings during the collec-
tion period. Although it is inherently difficult to solve this
problem, we are trying to mitigate it by using Twitter and
other information sources in addition to URLhaus. Also, the
selection bias should be alleviated as we continue to collect
and add observation targets.

B. FALSE POSITIVE
Stargazer can potentially be fraught with false positives. For
example, in time-series analysis, a dormant site reactivated as
a harmless site may be erroneously determined as dangerous.

In the same way, if the file-sharing function of a rental server
or a benign site is temporarily abused, it may be over-detected
as a change or activation because each site returns 404 Not
Found, etc. after being destroyed. However, such false pos-
itives can be suppressed by adding those benign sites to the
allow list.

In this study, the monitoring targets were set based on
information from general users on sites such as URLhaus
and Twitter, so there is a possibility that the information is
incorrect or that incorrect information is intentionally reg-
istered. However, both URLhaus and Twitter require user
registration and are thus more reliable than anonymous infor-
mation. Another potential limitation is that registering benign
hosts for monitoring based on incorrect information would
overwhelm Stargazer’s monitoring resources. However, this
problem can be mitigated by utilizing allow lists to exclude
benign hosts.

C. RESEARCH ETHICS
In the observation of Stargazer, we use HTTP GET, ping,
etc., which can occur in normal use, and we do not use
malicious communication. Due to the fact that we try to
access malicious hosts, wemay receive alerts and requests for
various responses from the sinkhole administrators and IaaS
providers. We organized a team to respond to these commu-
nications as we conducted the observation. We received three
inquiries during the observation period and responded to all
of them within 24 hours.

VII. RELATED WORK
There has been extensive research on cloaking detection,
particularly on the cloaking of phishing sites and fake AV
distribution sites, as they have conflicting requirements: on
the one hand, they want to appear at the top of search
engines by Search Engine Optimization in order to reach
more attack targets, and on the other hand, they do not want
to be analyzed by researchers. CrawlPhish [15] has detected
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cloaking in phishing and conducted a large-scale analysis.
Invernizzi et al. [16] proposed a cloaking detection method
and conducted a large-scale survey and analysis of cloaking
related to URLs associated with search and advertising.Wu et
al. proposed a method for detecting semantic cloaking pages
by using content differences retrieved by web crawlers and
web browsers [24]. Mansoori et al. [35] attempted to detect
geofencing by concurrently accessing malicious hosts from
clients located in six geolocations and revealed the correlation
between TLDs and targeted locations. Drury et al. analyzed
the life cycle of phishing sites to determine their survival time
and campaign-specific characteristics [14]. Bijmans et al.
identified attacks using off-the-shelf phishing kits, observed
them, and derived TTPs [17]. However, most studies are
tailored to use features specific to hosts with web pages
(including cloaking sites), such as screenshot differences and
JavaScript structures. In this study, we did not limit ourselves
to specific types of malicious hosts but rather presented a
general method that uses the differences of long-term obser-
vations from multiple geolocations. There is some studies
that observes cloaking without limiting it to specific types
of attacks. However, continuous observation and analysis
of the cloaking content was not conducted. In this study,
we improved the observability by continuous observation
using observation sensors with wider coverage.

Much research has been conducted on the observation
of suspicious hosts. CyberProbe [36] uses active scanning
to detect C2 servers and bots in the Listen state, while,
Soska et al.’s method uses observation data to predict whether
a site will be compromised [37]. EvilSeed [38] collects
malicious hosts by generating efficient patrol queries used
by client-based honeypots on the basis of known mali-
cious host information. Although these methods are use-
ful, they do not target continuous observation. In contrast,
Stargazer shows that it is possible to detect changes in time
series and to improve observability by conducting continuous
observations.

Many other studies have focused their observations on
malware distribution. Rossow et al. [39] observes malware
downloaders over a long period of time and discusses the pos-
sibility that the source IP addresses are blocked by attackers
during long-term observations. Jaun et al. [18] observed mal-
ware distributed via PPI and determined that some malware
families are biased in the regions where they are distributed.
Thomas et al. [19] similarly observed malware distributed
via PPI. Inspired by these studies, we conducted systematic
measurement study focusing on cloaking malware distribu-
tion hosts and C2 servers.

TARDIS [40] is a method for detecting attacks targeting
Contents Management Systems (CMSs). It uses content con-
tinuously retrieved from websites to detect attacks. Barron
et al. operated honeypots deployed in multiple geolocations
and analyzed attacks from the perspective of honeypot loca-
tions [41]. Another study using honeypots [42] showed that
the characteristics of attacks vary depending on the region.
The results of Spoki [43], a method for observing Internet

FIGURE 9. Time-series change of status code (sankey diagram).

FIGURE 10. Time-series change of content (sankey diagram).

scanning activity, showed that different regions have differ-
ent scanning activity characteristics. Augur [44] detects the
beginning and end of censorship by continuously observing
websites from multiple geolocations. ICLab [45] and Cen-
sored Planet [46] are also censorship-detection systems with
sensors installed in multiple geolocations. These systems are
similar to Stargazer in that they execute observations contin-
uously and from multiple locations, but they have different
objectives. Stargazer detects changes in the time series in
a manner robust against cloaking by using the observation
results from multiple locations, thus demonstrating improve-
ment in observability against malicious hosts.

VIII. CONCLUSION
In this study, we observed a total of 18,397 malicious hosts
for over two years using Stargazer, which actively observes
malicious hosts Internet-wide and detects geofencing and
time-based cloaking, to elucidate its actual characteristics.
Our observations confirmed that cloaking techniques are
omnipresent among malicious hosts. These include mali-
cious hosts that evade detection through time-based cloaking,
geofencing, and a combination of the two, which are diffi-
cult to detect without long-term, multiregional observations,
which Stargazer can provide.

In addition, we confirmed that malicious hosts performing
cloaking include those that survive for relatively long periods
of time and those whose contents are not present in VirusTo-
tal. These results clarify the mechanisms underlying cloaking
technology and suggest that there are cloaking sites that are
not easy to observe with existing technology. We believe our
findings will be helpful for the design of future observation
systems and contribute to the development of cloaking detec-
tion methods.
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APPENDIX TIME-SERIES CHANGES
This appendix further details the time-series changes of the
contents and status codes discussed in Section IV-B. The
detailed transitions of the status codes in a time series are
shown in Fig. 9, and the transitions of the content are shown
in Fig. 10 as a Sankey diagram. In each figure, the left end is
the first observation, the center is the intermediate state, and
the right end is the final observation. The transitions from
the intermediate state to another intermediate state are also
included. As in Section IV-B, we can confirm here that many
of the transitions of status codes within the intermediate states
go back and forth between 200 OK, 404 Not Found, and no-
response.
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