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PAPER
Superposition Signal Input Decoding for Lattice Reduction-Aided
MIMO Receivers

Satoshi DENNO†a), Senior Member, Koki KASHIHARA†, Nonmember, and Yafei HOU†, Senior Member

SUMMARY This paper proposes a novel approach to low complexity
soft input decoding for lattice reduction-aided MIMO receivers. The pro-
posed approach feeds a soft input decoder with soft signals made from hard
decision signals generated by using a lattice reduction-aided linear detec-
tor. The soft signal is a weighted-sum of some candidate vectors that are
near by the hard decision signal coming out from the lattice reduction-aided
linear detector. This paper proposes a technique to adjust the weight adapt
to the channel for the higher transmission performance. Furthermore, we
propose to introduce a coefficient that is used for the weights in order to
enhance the transmission performance. The transmission performance is
evaluated in a 4 × 4 MIMO channel. When a linear MMSE filter or a serial
interference canceller is used as the linear detector, the proposed technique
achieves about 1.0 dB better transmission performance at the BER of 10−5

than the decoder fed with the hard decision signals. In addition, the low
computational complexity of the proposed technique is quantitatively eval-
uated.
key words: soft decision, weighted sum, lattice reduction, linear detectors,
low computational complexity

1. Introduction

Transmission speed of wireless communications has been
raised to several Gbps to comply with the demand that
higher quality services should be provided in wireless net-
works. The fifth generation cellular system provides users
with several Gbps wireless communication, for instance.
Many techniques have been introduced for achieving such
high speed wireless communications, such as orthogonal
frequency division multiplexing (OFDM), adaptive modula-
tion and coding (AMC), error correction coding, and multi-
antenna techniques. Among those techniques, multi-input-
multi-output (MIMO) spatial multiplexing, one of multi-
antenna techniques, has played a main role in increasing
the transmission speed of wireless communication systems.
The MIMO spatial multiplexing is regarded as a key tech-
nique to achieve higher speed wireless transmissions even in
the sixth generation cellular system. Although many tech-
niques have been proposed for MIMO spatial multiplexing,
linear detectors have been widely applied in those systems
because of their low computational complexity. Because
linear detectors can not achieve the optimum performance
that the maximum likelihood detection attains, many tech-
niques have been considered for the performance improve-
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ment. One of them is the lattice reduction that makes lin-
ear detectors achieve higher diversity gains with small addi-
tional computational complexity [1]–[4]. However, the lat-
tice reduction has linear detector output signals transformed
to hard decision signals. On the other hand, channel cod-
ing is one of the techniques to improve the transmission
performance. Especially, soft input decoding attains better
transmission performance than hard input decoding. The
log likelihood ratio (LLR) is usually applied as soft signals
to soft input decoders [5]. Although channel decoders at-
tain the optimum performance with the input of the LLR,
because high computational cost is necessary to calculate
the LLR, MAX-log approximation has been widely applied.
The LLR calculation still requires high computational com-
plexity even if the MAX-log approximation is used, because
the calculation is implemented with the brute force search.
Some techniques have been proposed to reduce the compu-
tational cost of the LLR calculation with assistance of lat-
tice reduction-aided linear receivers [6]–[11]. They shrink
the vector space searched by the brute force search, which
reduces the computational cost. This approach has been ex-
tended to iterative receivers [12]. Though those techniques
achieve superior transmission performance with less com-
putational complexity than the original technique, the trans-
mission performance is easily degraded as the vector space
is a little bit too shrunk.

This paper proposes a novel approach to soft input de-
coding, which is completely different from the conventional
approach described above. The proposed approach gener-
ates some vectors near by a linear detector output signal
vector, which are summed with appropriated weights. The
weighted sum is fed to the channel decoder as a soft input
signal. We propose a technique to adjust the weights adapt
to the channels, which makes the noise power in the soft in-
put signal equal to that in the linear detector output signal.
While most channel decoders achieve the optimum decod-
ing performance with input signals that are distributed with
the Gaussian distribution, actually, the soft input signals are
not Gaussian distributed, which degrades the performance
even though the weights are adjusted. To mitigate perfor-
mance degradation, we introduce a coefficient that is used
to modify the adjusted weights for the transmission perfor-
mance enhancement.

Next section describes a system model, and the pro-
posed technique is introduced in Sect. 3. The performance
of the proposed technique is confirmed in Sect. 4, and Sect. 5
remarks conclusions.

Copyright c© 2023 The Institute of Electronics, Information and Communication Engineers
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Throughout the paper, E
[
ζ
]
, j, and c∗ represent the en-

semble average of a variable ζ, the imaginary unit, and com-
plex conjugate of a complex number c. < [c] and = [c] rep-
resent a real part and an imaginary part of a complex number
c, respectively. Superscript T and H indicate transpose and
Hermitian transpose of a matrix or a vector, respectively. In
addition, A−1, A−H, Am and A(k,n) indicate an inverse matrix
of a matrix A, that of a matrix AH, an mth column vector
and a (k, n) element of a matrix A, respectively.

2. System Model

We assume a wireless link where a transmitter with NT an-
tennas sends spatially multiplexed signal streams for a re-
ceiver with NR antennas without any precoding. The num-
ber of the signal streams is the same to that of the trans-
mit antennas. The information bit stream is encoded with
a convolutional code, the encoded bit stream is provided to
modulators via an interleaver. The modulator output signals
are transmitted from the antennas. The transmitted signals
are received at the receiver. We apply linear detectors to
the receiver, such as MMSE filters and serial interference
cancellers (SICs). Because the performance of linear re-
ceivers is inferior to that of the optimum receiver, i.e., the
maximum likelihood estimation (MLD), we apply the lattice
reduction to those detectors for performance improvement.
Let X ∈ CNT×1 denote a transmission signal vector, if we use
the LLL algorithm to implement the lattice reduction [13],
a received signal vector Y ∈ CNR×1 can be written with a
unimodular matrix T ∈ CNT×NT as,

Y = ĤX + N = ĤT T−1X + N
= HZ + N (1)

Ĥ ∈ CNR×NT and N ∈ CNR×1 in (1) denote a channel ma-
trix between the transmitter and the receiver and an additive
white Gaussian noise vector. In addition, H ∈ CNR×NT and
Z ∈ CNT×1 represent a transformed channel matrix and a
transformed transmission signal vector defined as H = ĤT
and Z = T−1X, respectively. In this paper, the unimodular
matrix is calculated based on the LLL algorithm as follows. Ĥ

√
2σ
σd

INT

 T = QR (2)

In (2), σ ∈ R, σd ∈ R, INT ∈ C
NT×NT , Q ∈ C(NR+NT)×NT , and

R ∈ CNT×NT represent a standard deviation of the AWGN,
amplitude of the modulation signals, the NT dimensional
identity matrix, an orthogonal matrix, and an upper trian-
gular matrix. The orthogonal matrix satisfies the following,
QHQ = INT . The linear detectors estimate the transformed
vector Z from the received signal vector, which is provided
to a slicer. Let Ẑ ∈ CNT×1 denote an estimated signal vector
by the linear detectors, the slicer outputs a hard decision sig-
nal vector Z̄0 ∈ C

NT×1, which is defined as Z̄0 = bẐc where
b•c indicates the floor function that searches possible near-
est integer to the input. The transmission signal vector is
estimated as X̄ = TZ̄0

As is described above, when the LLL algorithm is used
for the performance improvement, the slicer has to be ap-
plied to detector output signals. The output signals from
the slicer are regarded as hard decision signals. We propose
a low complexity technique that converts the hard decision
signals into the soft signals for achieving a higher coding
gain.

3. Superposition of Hard Decision Vectors as Soft Sig-
nals

When the AWGN is added in the system shown in (1), the
AWGN is also included in the output signal vector from the
linear detector. If the AWGN is big, the output signals are
less reliable. When we believe that the hard decision signal
vector Z̄0 ∈ C

NT×1 is the same to the transmission signal
transformed with the unimodular matrix, we can define a
reliability of the hard decision vector Z̄0 in the following
equation.

P(0) = exp
−|Ẑ − Z̄0|

2

2σ2
p

 =

NT∏
n=1

exp
−|ẑ(n) − z̄0(n)|2

2σ2
p

 (3)

In (3), P(0) ∈ R, ẑ(n) ∈ C, and z̄i(n) ∈ C represent the
reliability of the vector Z̄0, an nth entries of the vector Ẑ
and Z̄0, which are defined as Ẑ = (ẑ(1) · · · ẑ(NT))T and
Z̄0 = (z̄0(1) · · · z̄0(NT))T. In addition, σ2

p ∈ R denotes an
equivalent variance, which is defined in the following sec-
tion.

If the noise is bigger than half of the minimum Eu-
clidean distance in the modulation signal constellation, the
linear detector output signal will not be correct and one of
the other signals will be correct. Since Z̄0 is the hard deci-
sion signal vector provided by the slicers, the other vector
can be defined as,

Z̄m = Z̄0 + ∆Zm. (4)

Z̄m ∈ C
NT×1 and ∆Zm ∈ C

NT×1 in (4) denote an mth candidate
vector and an mth difference vector which is defined below.
Since the modulation signals are designed to locate on the
integer lattice, the element of those vectors are Gaussian in-
tegers. Let bm(l) ∈ N be defined as 0 ≤ bm(l) ≤ 2NT − 1
where l represents an index of the non-zero term in the mth
difference vector ∆Zm

†, a variable ζ(m) ∈ N is defined as
follows.

ζ(m) =

NL−1∑
l=0

bm(l) (2NT)l (5)

subject to
{

bm (l1) , bm(l2) l1 , l2
bm (l1) < bm(l2) l1 < l2

NL represents the number of the non-zero terms in the real
and the imaginary parts of the vector ∆Zm. bm (l1) expresses
a location of the l1th non-zero element in the mth difference

†The index l ranges as 0 ≤ l ≤ NL − 1 where NL is defined
afterwards.
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vector ∆Zm. In addition, when we define a set that con-
tains all the indexes ζ(m), the m1th biggest element in the
set is denoted by ζ(m1). For example, if the real part and the
imaginary part of the nth entry in the vector ∆Zm are only
non-zero values, we will regard that 2 non-zero terms are
included in the vector ∆Zm. In other word, while the index
m denotes the index that specifies the candidate vector, ζ(m)
defines the vector explicitly with bm (l) as follows.

Let am(i) ∈ N and cl,m(i) ∈ N i = 0 · · · ,NT − 1, l =

0, · · · ,NL−1 indicate integers taking 0 or 1, the nth element
of the vector ∆Zm is defined as follows.

cl,m(i) = δ(bm(l) − i)

am(i) =

NL−1∑
l=0

cl,m(i)

n=int
( i
2

)
+ 1

∆zm(n) =
(
r2n−1am(2n − 1) + j · r2n−2am(2n − 2)

)
Λ (6)

In (6), ∆zm(n) ∈ C, int (α), and δ() denote the nth element of
the vector ∆Zm, a function to output integer part of the in-
put α ∈ R, and the Kronecker’s delta function†. In addition,
Λ ∈ N and rn ∈ N represent a Euclidean distance between
the possible modulation signals, and a random coefficient,
i.e., rn = ±1. As is shown in (6), am(i) expresses a location
of a non-zero term in the difference vector ∆Zm. In other
words, If am(2n − 1) is 1, the real part of the nth element
in the difference vector ∆Zm is set to the non-zero term. In
this paper, we assume that the candidate signal vectors com-
ing from the detectors are only neighbor to the transmission
signal vector in spite of the AWGN variance. In a word,
the distance Λ is set to the minimum Euclidean distance be-
tween the possible adjacent modulation signals.

This paper propose a soft signal vector that is a
weighted sum of the candidate signal vectors with the
weight of the reliability as,

Z =

NS−1∑
m=0

P (m) Z̄m (7)

In (7), NS ∈ N, Z ∈ CNT×1, and P (m) denote the number
of the candidate vectors, the soft signal vector, and the re-
liability defined in (3) where Z̄m and P(m) replace Z̄0 and
P(0), respectively. The soft signal vector can be uniquely
obtained when the equivalent noise variance σ2

p is given. We
propose the equivalent noise valiance estimation technique
in the following section.

3.1 Equivalent Noise Variance

If we believe that the linear detector output hard decision
signal vector Z̄0 is correct, the noise power in the soft signal
vector Z can be defined as follows.

†The Kronecker’s delta function δ(n) is defined as,

δ(n) =

{
1 n = 0
0 n , 0 .

eZ

(
σ2

p

)
= E

[∣∣∣∣Z − γ (
σ2

p

)
Z̄0

∣∣∣∣2] = E


∣∣∣∣∣∣∣
NS−1∑
m=1

P(m)
(
Z̄m − Z̄0

)∣∣∣∣∣∣∣
2

'

NS−1∑
m=1

E[P(m)2] |∆Zm|
2 (8)

In the above equation, eZ

(
σ2

p

)
∈ R and γ

(
σ2

p

)
∈ R represent

the noise power in the soft signal vector and the average
amplitude of the hard decision signals Z̄0, which is defined
as,

γ
(
σ2

p

)
=

NS−1∑
m=0

P (m)

 (9)

In the derivation of (8), we use the assumption that the dif-
ference vectors ∆Zm m = 0, · · · ,NS−1 are uncorrelated with
each other as is defined in (6). As is described above, the lin-
ear detector output signal ẑ(m) consists of the transmission
signals and the AWGN. Therefore, the ensemble average of
square of the reliability P(m) can be calculated in (10). In
(10), G−1 (m) denotes a amplitude of the AWGN in the mth
element of the detector output vector Ẑ.

As the number of the candidate vectors NS increases,
the complexity of the proposed technique becomes higher.
As is shown in (6), the number of the candidates vector in-
dex m gets higher as the number of the non-zero terms NL
increases. For low computational complexity, the number
of the non-zero terms NL in the vector is restricted to be
less than 3 in this paper, i.e., NL ≤ 2. Because the real part
and the imaginary part are dealt as the independent terms, in
other words, two terms are at most not zero in all the terms,
< [∆zm (1)], = [∆zm (1)], < [∆zm (2)], · · · , = [∆zm (NT)]. If
the restriction is applied, the noise power ez(σ2

p) can be de-
rived theoretically as shown in (11).

Channel decoders achieves the optimum performance
with soft input signals in the AWGN channel. We can ex-
pect that the best decoding performance can be achieved by
making the soft signals have the similar characteristics of
received signals in the AWGN channel. When linear fil-
ters are employed in MIMO channels, however, the signal
power to noise power ratio (SNR) of some detector output
signal streams could become much lower than that of the
other signal streams, which degrades the overall transmis-
sion performance. The lattice reduction can almost equalize
the SNR of all the signal streams, i.e., all the element of
the vector Ẑ. The proposed decoding makes the soft signal
vectors Z have the SNR performance of the estimated signal
vector Ẑ.

For the aim, the proposed technique makes the noise
power eZ

(
σ2

p

)
equal to the noise power in the estimated sig-

nal vector Ẑ by adjusting the equivalent variance σ2
p.

σ̄2
p = arg min

σ2
p

[∣∣∣∣J(H) − eZ

(
σ2

p

)∣∣∣∣2] (12)

J(H) ∈ R in (12) indicates the noise power in the esti-
mated signal vector Ẑ with a channel matrix H. Although
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E[P (i)2] =

∫ ∞

−∞

· · ·

∫ ∞

−∞

NT∏
n=1

exp
−|ẑ(n) − z̄i(n)|2

σ2
p

P
(
t1, · · · , t2NT

)
dt1 · · · dt2NT

=

∫ ∞

−∞

· · ·

∫ ∞

−∞

NT∏
n=1

exp

−
∣∣∣∣ t2n−1
G(n) −< [∆zi(n)]

∣∣∣∣2 +
∣∣∣∣ t2n
G(n) − = [∆zi(n)]

∣∣∣∣2
σ2

p


(

1
√

2πσ

)2NT 2NT∏
n=1

exp
(
−

tn2

2σ2

)
dt1 · · · dt2NT

=

NT∏
n=1

exp

−
(∣∣∣< [∆zi (n)]

∣∣∣2 +
∣∣∣= [∆zi (n)]

∣∣∣2)G2(n)

2σ2 + σ2
p


 σ2

pG2(n)

2σ2 + σ2
pG2(n)

 (10)

NS−1∑
m=1

E[P(m)2] |∆Zm|
2 =

3
NT∑
n=1

Λ2 exp
− Λ2G2(n)

2σ2 + σ2
pG2(n)


+ 4

NT∑
n1<n2)

Λ2 exp
− Λ2G2(n1)

2σ2 + σ2
pG2(n1)

−
Λ2G2(n2)

2σ2 + σ2
pG2(n2)

 NT∏
n=1

 σ2
pG2(n)

2σ2 + σ2
pG2(n)

 (11)

the minimization should be achieved by the stochastic gra-
dient method for accelerating the minimization, we apply
dichotomizing search algorithm for the minimization, be-
cause the differential of the error eZ

(
σ2

p

)
with respect to σ2

p

is a little bit complex. Because the power eZ

(
σ2

p

)
increases

monotonically as the equivalent power variance σ2
p becomes

higher, the optimum σ2
p can be found easily without being

trapped by local minima.

3.1.1 Soft Decoding with LR-MMSE

While the proposed soft decoding can be applied to any
types of lattice reduction-aided linear detectors, we show
a configuration of the proposed soft decoding with a lat-
tice reduction-aided minimum means square (MMSE) filter
(LR-MMSE). As is well known, an MMSE weight matrix
W ∈ CNR×NT , an estimated signal vector Ẑ from the linear
detector, and a hard decision signal vector Z̄0 are obtained
as follows.

W = H
(
RHR

)−1

Ẑ = WHY
Z̄0 = bẐc (13)

The noise power in the estimated signal vector is shown in
the following.

J (H) = E
[∣∣∣Z −WHY

∣∣∣2]
= σ2

d tr
[
T−1T−H(INT −WHH)

]
(14)

The term G(n) has to be set as,

G(n) =
σ2

σ2
d
(
T−1T−H (

INT −WHH
))

n,n

. (15)

3.1.2 Soft Decoding with LR-SIC

We show a configuration of the proposed soft decoding ap-

plied with a lattice reduction-aided serial interference can-
celler (LR-SIC). An SIC transforms the received signal vec-
tor with an orthogonal matrix Q defined in (2). The trans-
mission signals are detected serially from the transformed
received signal Ŷ ∈ CNT×1, which is written in the follow-
ing.

Ŷ = QHY = RZ + QHN

ẑ(n) =

ŷ(n) −
NT∑

i=n+1

R(n, i)z̄0 (i)

R (n, n)
z̄0(n) = bẑ(n)c n = NT, · · · , 1 (16)

In (16), ŷ(n) ∈ C and R(n, i) ∈ C denote the nth entry of the
vector Ŷ and the (n, i) entry of the matrix R. If we neglect
the error propagation in the SIC, the power of the AWGN
included in output signals from the SIC can be obtained as,

J (H) = E
[∣∣∣Z − Ẑ

∣∣∣2]
=

NT∑
n=1

2σ2

|R(n, n)|2
(17)

Hence, the term G(n) has to be set as,

G(n) = |R(n, n)| (18)

3.2 Coefficient for Equivalent Variance

As is described above, soft input decoders achieve the op-
timum decoding performance when the soft input signal is
distributed with the Gaussian distribution. Actually, as is
shown below, the distribution of the soft input signals is a
little bit different from the Gaussian distribution in the pro-
posed soft decoding. The distribution of the soft input sig-
nals is wider than the Gaussian distribution even though the
variance of the Gaussian distribution is exactly the same to
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the noise power. To mitigate the performance degradation
due to the non-Gaussian distribution, we introduce a coef-
ficient κ (≤ 1) which is multiplied with the equivalent vari-
ance σ2

p to get the distribution narrower. The optimum coef-
ficient κ is searched through computer simulation.

4. Simulation

The proposed soft decoding is evaluated by computer simu-
lation in a MIMO channel where a transmitter with 4 anten-
nas sends spatially multiplexed signal streams to a receiver
with 4 antennas, i.e., NT = NR = 4. Quaternary phase shift
keying (QPSK) and a half rate convolutional code with con-
straint length of 3 are employed. Independent identically
distributed (i. i. d.) channel is applied, and every channel is
modeled with Rayleigh fading based on Jakes’ model [14].
As is explained, the number of the non-zero terms in the
vector ∆Zm is at most 2, i.e., NL ≤ 2. When the number of
the non-zero terms NL is 1, i.e., NL = 1, the number of the
candidates vectors is 8 (= 8C1). If the number of the non-
zero terms is increased to 2, the number of the candidates
vectors becomes 28 (= 8C2). Hence, if the number of the
non-zero terms is less than 3, NL ≤ 2, the number of the
candidate vectors except for the filter output vector Z̄0 is 36,
i.e., NS = 36. When the number of the non-zero terms is
1, NL = 1, the number of the candidate vectors except for
the filter output vector Z̄0 is 8, i.e., NS = 8. Simulation
parameters are listed in Table 1.

4.1 BER Performance

Figure 1 shows the BER performance of the proposed soft
decoding. In the figure, “MMSE” and “LR-MMSE” indi-
cate the performance of the soft decoding with the soft sig-
nal vector from the MMSE and that of the hard decoding
with the hard decision signal vector from the LR-MMSE,
respectively. The soft decoding with the MMSE are much
inferior to the hard decoding with the LR-MMSE. In a word,
the lack of the lattice reduction causes severe performance
degradation, which exceeds the performance gain given by
the soft decoding. The performance gain of the proposed
soft decoding with NS = 8 and that with NS = 36 are about
0.7 dB and 1.0 dB at the BER of 10−5, respectively.

Figure 2 shows the BER performance of the proposed
soft decoding where the LR-SIC is applied as a linear detec-
tor. In the figure, “SIC” and “LR-SIC” indicate the perfor-
mance of the soft decoding with the soft signals ẑ(m) from
the SIC defined in (16) and that of the hard decoding with
the hard decision signals z̄0(m) from the LR-SIC, respec-
tively. The lack of the lattice reduction also deteriorates the
performance even when the SIC is deployed. The BER per-
formance of the proposed soft decoding with NS = 8 is al-
most the same to that with NS = 36. The proposed soft de-
coding achieves a gain of about 1.0 dB at the BER of 10−5.

Table 1 Parameters in computer simulation.

Channel model Rayleigh fading
Modulation QPSK / Single carrier

Number of antennas (NT,NR) (4, 4)
Detector MMSE & SIC

Lattice reduction LLL (δ = 0.75)
Block interleaver size 96 × 68

Number of candidate vectors NS 8, 36
Forward error collection Convolutional code (K = 3,R = 1/2)

Decoder Soft input Viterbi algorithm

Fig. 1 BER performance of proposed soft decoding with MMSE.

Fig. 2 BER performance of proposed soft decoding with SIC.

4.2 Distribution of Detector Output Signals

Figure 3 shows a cumulative distribution function (CDF)
of the soft signals multiplied with the transmit signals, i.e.,
<

[
x∗(m)

(
T−1

)
m

Z
]

and =
[
x∗(m)

(
T−1

)
m

Z
]
, which are re-

garded as the real part and the imaginary part of the received
signal when the modulation signal x(m) = 1 + j is sent. This
means that the negative values of those signals are regarded
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Fig. 3 CDF of MMSE detected signals.

Fig. 4 CDF of SIC detected signals.

as erroneous signals. The LR-MMSE is applied to the pro-
posed soft decoding in the figure. The Eb/N0 is 10 dB. In
the figure, the performance with NS = 8 is compared with
that with NS = 36. In addition, the CDF of the Gaussian
distributions with the variance of eZ

(
σ2

p

)
and the mean of

γ
(
σ2

p

)
are added as a reference. The distribution of the soft

signal in the proposed soft decoding with NS = 8 is almost
the same to that with NS = 36. Those distributions are quite
different from the Gaussian distributions. As is expected,
while the soft signal level at the CDF of about 0.5 almost
agrees with that of the Gaussian distribution, negative soft
signals occur with higher probability than those of the Gaus-
sian distribution. Because the negative signals are regarded
as the error signals as described above, the error signal de-
fined as, x(m)−

(
T−1

)
m

Z, is distributed wider than the Gaus-
sian signals. Figure 4 shows a CDF of the soft signals multi-
plied with the transmit signals, i.e.,<

[
x∗(m)

(
T−1

)
m

Z
]

and

=
[
x∗(m)

(
T−1

)
m

Z
]
, when the LR-SIC is applied to the pro-

posed soft decoding. In the figure, the distributions with
NS = 8 and NS = 36 are compared. As is done in Fig. 3, the
Gaussian distributions are also added. Similar as the dis-
tributions in Fig. 3, the distribution with NS = 8 is almost

Fig. 5 BER v.s. Coefficient κ.

Fig. 6 BER v.s. Coefficient κ.

the same to that with NS = 36. However, the proposed
decoding with the LR-MMSE generates the negative soft
signals with higher probability than that with the LR-SIC,
which means that the proposed soft decoding based on the
LR-MMSE outputs the erroneous soft signals with bigger
amplitude than that on the LR-SIC. The distribution of the
soft signals are different from the Gaussian distribution in
spite of the linear detectors used for the soft signal genera-
tion. This is the reason why we introduce the coefficient κ
for the reliability p (i) in the soft signal generation.

4.3 Performance with Respect to Coefficient κ

We analyze the performance with respect to the coefficient
κ. Figure 5 and Fig. 6 show the BER performances v.s. the
coefficient κ when the LR-MMSE and the LR-SIC are used
in the proposed soft decoding, respectively. The number of
the candidate vectors NS is set to 8 for low complexity im-
plementation, since the increase in the number of the vec-
tors NS achieves just a small performance gain as shown in
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Fig. 7 MMSE based soft decoding compared with MLD based ones.

Fig. 1 and Fig. 2. The BER performance is minimized at
about κ = 0.4 in the both the soft decoding with the LR-
MMSE and that with the LR-SIC, even if the optimum κ
value slightly depends on the Eb/N0. Therefore, we apply
the coefficient κ value of 0.4 to the proposed soft decoding
with not only the LR-SIC but also the LR-MMSE in the fol-
lowing performance evaluation.

4.4 Performance with Optimized Coefficient

Figure 7 shows the BER performance of the proposed soft
decoding with the optimized coefficient κ of 0.4, where the
LR-MMSE is applied to the proposed soft decoding. The
number of vectors NS is set to 8 for the reason described
in the previous section. The performance of the conven-
tional soft decoding with the Max-log MAP approximation
is drawn in the figure as a reference. In addition, the perfor-
mances of the hard decoding with the hard decision signals
fed by the MLD and the LR-MMSE are added. The pro-
posed soft decoding achieves a gain of about 1.5 dB at the
BER of 10−5. However, the performance of the soft decod-
ing is about 4 dB inferior to that of the conventional soft
decoding.

Figure 8 shows the BER performance of the proposed
soft decoding with the optimized coefficient κ = 0.4, where
the LR-SIC is applied to the proposed soft decoding. The
number of vectors NS is also set to 8 for low complexity
implementation. The performances of the conventional soft
decoding and that of the hard decoding with the MLD are
drawn in the figure. The proposed soft decoding achieves
about 2.0 dB better BER performance than the LR-SIC, and
outperforms the hard decoding with the MLD. The soft de-
coding with the LR-SIC approximately attains 0.5 dB higher
gain than that with the LR-MMSE. The performance gap be-
tween the proposed soft decoding and the conventional soft
decoding is reduced to about 2.5 dB.

Fig. 8 SIC based soft decoding compared with MLD based ones.

Fig. 9 Complexity of the proposed soft decoding.

4.5 Complexity Analysis

As is usually done, the computational complexity is evalu-
ated in term of the number of multiplications in this section.
The complexity of the proposed soft decoding is compared
with that of the conventional soft decoding with the max-log
MAP approximation in Fig. 9. The abscissa and the ordinate
mean the number of the multiplexed signal streams and the
number of the multiplications, respectively. The complex-
ities of the LR-SIC and the LR-MMSE are added to show
how the proposed decoding itself increases the complexity.
This figure shows that proposed decoding needs small addi-
tional complexity, which is much smaller that the complex-
ity of the linear detectors. When the number of the signal
streams is less than 3, our proposed soft decoding requires
more number of the multiplications than the conventional
soft decoding. However, the proposed soft decoding has
lower computational complexity than the conventional soft
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decoding as far as the number of the streams is more than
2. While the complexity of the conventional soft decod-
ing grows exponentially as the number of streams increases,
the complexity of the proposed soft decoding increases just
parabolically. For instance, when the number of streams is
4, the complexity of the proposed soft decoding is about one
tenth as much as the conventional soft decoding.

5. Conclusion

This paper has proposed a novel approach for the soft input
decoding in MIMO systems. The proposed soft input decod-
ing applies a linear filter assisted with the lattice reduction
to get a hard output signal vector. Some hard decision vec-
tors near by the hard output signal vectors are summed with
weights, and the weighted sum are provided as a soft in-
put signal to a soft input decoder. The soft decoding on the
approach makes the soft input signals have the same vari-
ance to that of the detector output signals. We derive the
variance of the soft signals theoretically and show how the
variance is made to agree with the variance of the detec-
tor output signals. Although soft input decoders achieve the
best performance if the soft input signals are distributed with
the Gaussian distribution, the distribution of the soft signals
is different from the Gaussian signals in the proposed soft
decoding. We introduce a coefficient to adjust the distribu-
tion of the soft signals to maximize the transmission perfor-
mance.

The transmission performance is evaluated in a 4 × 4
MIMO channel by computer simulation. The proposed soft
decoding achieves a gain of about 1.0 dB at the BER of 10−5

when the linear filters such as the LR-MMSE and the LR-
SIC are applied, as long as the number of the candidate hard
decision vectors is less than 37. If the coefficient is intro-
duced to the proposed soft decoding, the proposed soft de-
coding achieves a gain of about 2.0 dB. The proposed soft
decoding with the LR-SIC outperforms the hard decoding
with the MLD. The performance gap between the conven-
tional soft decoding and the proposed soft decoding is re-
duced to about 2.5 dB, while the complexity of the proposed
soft decoding is one tenth as much as that of the conven-
tional soft decoding.
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