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Tankyrase (PARP5)-mediated
PARsylation is a post-translational pro-
tein modification that creates a recogni-
tion site for the E3-ubiquitin ligase ring
finger protein 146 (RNF146), leading to
ubiquitylation and proteasomal degra-
dation of its substrates, such as the
adaptor protein SH3-domain binding
protein 2 (3BP2).

Missense mutations in SH3BP2, which
are associated with the autosomal
dominant disorder Cherubism, are clus-
tered in the binding motif for tankyrase
and uncouple 3BP2 from tankyrase-
mediated negative regulation. Stabiliza-
Modification of proteins by ADP-ribose (PARsylation) is catalyzed by the poly
(ADP-ribose) polymerase (PARP) family of enzymes exemplified by PARP1,
which controls chromatin organization andDNA repair. Additionally, PARsylation
induces ubiquitylation and proteasomal degradation of its substrates because
PARsylation creates a recognition site for E3-ubiquitin ligase. The steady-state
levels of the adaptor protein SH3-domain binding protein 2 (3BP2) is negatively
regulated by tankyrase (PARP5), which coordinates ubiquitylation of 3BP2 by
the E3-ligase ring finger protein 146 (RNF146). 3BP2 missense mutations uncou-
ple 3BP2 from tankyrase-mediated negative regulation and cause Cherubism, an
autosomal dominant autoinflammatory disorder associated with craniofacial
dysmorphia. In this review, we summarize the diverse biological processes, includ-
ing bone dynamics, metabolism, and Toll-like receptor (TLR) signaling controlled by
tankyrase-mediated PARsylation of 3BP2, and highlight the therapeutic potential of
this pathway.
tion of 3BP2 due to Cherubism muta-
tions results in the activation of SRC
and SYK kinases in osteoclasts, leading
to craniofacial dysmorphic features in
patients with Cherubism.

Other tankyrase substrates, including
the tumor suppressor genes AXIN,
AMOT, PTEN, and LKB1, suggest that
tankyrase inhibitors have potential
therapeutic benefit in selected tumors.
However, recent in vivo studies show
that mice lacking tankyrase in the
myeloid-monocytic lineage develop
severe systemic inflammation, demon-
strating potential toxicities associated
with tankyrase inhibition.
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PARsylation-mediated ubiquitylation: updated research history
PARsylation is a reversible post-translational protein modification in which covalently linked
PAR polymers are added to lysine, aspartic acid, and glutamic acid residues of substrates.
PARsylation is hydrolyzed by PAR hydrolase or PAR glycohydrolase (PARG) [1–3]. The PARP
family (see Glossary) has 18 members, which share a conserved PARP catalytic domain [4–7].
PARP1 and PARP2 are required components of the non-homologous end joining (NHEJ) repair
pathway, recruiting DNA repair proteins to sites of single-stranded breaks. Inhibition of PARP1
manifests synthetic lethality with tumors that are deficient in homologous recombination [4–6].

PARP5a (tankyrase 1; TNKS1) and its paralog PARP5b (tankyrase 2; TNKS2) trigger
proteasomal-mediated degradation of protein substrates whereby PARsylation creates a recogni-
tion site for the recruitment of the E3-ubiquitin ligase RNF146, leading to ubiquitylation and prote-
asomal degradation of target proteins. This has been best exemplified by tankyrase-mediated
degradation of the adaptor protein 3BP2 [8,9] and β-catenin inhibitor AXIN [10]. It has been further
shown thatmutations in 3BP2 specifically uncouple tankyrase binding andmodification of 3BP2by
PARsylation, revealed as the pathogenic mechanism underlying Cherubism, a rare hereditary
syndrome characterized by severe craniofacial developmental defects in children [8,11]. In this
review, we summarize the roles of the tankyrase-3BP2 pathway in controlling bone homeostasis,
metabolism, and immune activation.

3BP2 is required for ABL kinase activation and osteoblast differentiation
The adapter protein 3BP2 was originally identified as an Abelson murine leukemia viral oncogene
homolog 1 (ABL) kinase SH3 domain-binding protein [12]. 3BP2 contains an N-terminal phos-
pholipid-binding pleckstrin homology (PH) domain, a central proline-rich (PR) SH3 binding region,
and a C-terminal binding SRC-homology 2 (SH2) domain [13] (Figure 1A). 3BP2 nucleates a
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Figure 1. Structure and general functions of SH3-domain binding protein 2 (3BP2). (A) Schematic of the structure
of 3BP2, which contains an N-terminal phospholipid-binding pleckstrin homology (PH) domain, a central proline-rich (PR)
region, and a C-terminal phosphotyrosine-binding SRC-homology 2 (SH2) domain. 3BP2 binds to the SH3 domain of
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Glossary
Cherubism: rare hereditary syndrome
associated with severe craniofacial
developmental defects in children.
Cherubism arises from missense
mutations in SH3BP2, which stabilize
the steady-state protein levels of the
adapter protein 3BP2.
Poly(ADP-ribose) polymerase
(PARP): superfamily that catalyzes the
addition of ADP-ribose (PARsylation)
from NAD+ to its substrates, leading to
modification of their function and
metabolism. PARP1 inhibitors have
been developed for the treatment of
breast and ovarian cancers carrying
mutations in BRCA1/2. To date, out of
18 enzymes, PARP1, 2, 5a, and 5b
similarly modify their substrates with
PAR polymers.
Ring finger protein 146 (RNF146):
RING-domain E3-ubiquitin ligase that
contains a RING domain and WWE
domain, through which it recognizes
iso-ADP-ribose in PARsylated proteins,
leading to conformation changes in, and
activation of, the RING domain. This
allosteric switch increases the enzymatic
activity of RNF146 and catalyzes the
formation of a K48-linked polyubiquitin
chain, which leads to degradation of its
substrates by the 26S proteasome.
SH3-domain binding protein 2
(3BP2): adaptor protein, originally
identified as an Abelsonmurine leukemia
viral oncogene homolog 1 (ABL) kinase
SH3 domain-binding protein; essential
for activation of substrates including
ABL, SRC, VAV, and SYK.
Tankyrase 1/2 (TNKS1/TNKS2;
PARP5a/PARP5b): members of the
PARP family, which catalyze the addition
of ADP-ribose from NAD+ to its
substrates. TNKS1 was originally
identified as a repressor of the
telomerase inhibitor TRF1/TERF1 and
TNKS2 as a binding partner to Grb14.
Double knockout of Tnks1 and Tnks2 in
mice is embryonic lethal, whereas
knockout of either Tnks1 or Tnks2
results in only mild phenotypes,
demonstrating that tankyrases share
some functional redundancy.
Tankyrases share an 85% amino acid
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signaling complex including ABL, SRC, VAV, PLCγ, and SYK. Engagement of the ABL and SRC
SH3 domains by the PR region of 3BP2 enforces an open active configuration of these ki-
nases [14]. Sh3bp2–/– mice were generated to further elucidate the normal function of 3BP2
in controlling bone homeostasis. 3BP2 is an ABL-binding protein, as revealed by knockout studies
showing that 3BP2 is essential for normal osteoblast differentiation; thus, the skeletal system in
Sh3bp2–/– mice was found to be osteopenic. These data suggest that 3BP2 and ABL are on a
common genetic pathway regulating osteoblast function [15]. 3BP2 is required for ABL kinase
activation in primary calvarial osteoblast progenitors in in vitro culture and re-expression of consti-
tutively active ABL rescued defective osteoblastogenesis observed in Sh3bp2–/– cells. To elucidate
the function of ABL in osteoblasts, it was shown that ABL is required for the assembly and activa-
tion of the RUNX2-TAZ osteoblast lineage master transcription factor complex and for the forma-
tion of the TAZ-TEAD complex required for osteoblast expansion, while active ABL suppresses
adipogenesis [16] (Figure 1B).

3BP2 is required for SRC activation and osteoclastogenesis
Observations of the ability of macrophages derived from 3BP2-knockout mice showed that
they failed to form normal osteoclasts when cultured in the presence of RANK ligand (RANKL)
and M-CSF. Moreover, macrophages lacking 3BP2 were unable to activate SRC in response
to osteopontin or integrin signaling [15]. Thus, 3BP2 is necessary for macrophage fusion required
for multinucleated osteoclast differentiation and the formation of the resorption lacunae needed
for bone resorption.

Single missense mutations in SH3BP2 cause Cherubism
Cherubism, an autosomal dominant disorder, was originally reported by Jones et al. in 1950 [11]
and named to describe the ‘heavenly gaze’ of affected children, reminiscent of the cherubs
depicted in Raphael’s Sistine Madonna (1512). Patients with Cherubism experience formation
of destructive boney cystic lesions of the mandibular, zygomatic maxillary bones, and bones of
quadrangular pyramidal cavern of the eye socket (Figure 2A). Failure of teeth to erupt or only
partially erupt and displaced tooth eruption are due to cystic bone lesions. Teeth roots do not
find hold in the bone lesions and/or are resorbed; thus, patients frequently have severe periodontal
disease. Of note, bone destruction observed in patients with Cherubism occurs only in craniofacial
bones, and this clinical manifestation generally progresses until puberty, followed by spontaneous
partial regression [11]. Histological analysis of the boney cysts observed in patients with Cherubism
shows the presence of multinucleated osteoclast-like giant cells, influx of inflammatory cells, and
fibrosis. The diagnosis of Cherubism is made based on the presence of clinical manifestations
and radiographic and histological findings.

The genetic analysis of patients with Cherubism identified single missense mutations in SH3BP2
on chromosome 4p16.3 [17–19]. Most Cherubism mutations have been reported to affect one
of three amino acids within the hexapeptide sequence (RSPPDG) between the PH and SH2
domains in exon 9 of SH3BP2 [19] (Figure 2A). Genetically engineered mice carrying a single
Sh3pb2mutant allele found in patients with Cherubism (P416R, equivalent to P418R in humans)
show phenotypic similarity to the human syndrome [20]. Homozygous Cherubism knock-in mice
identity and contain N-terminal five
ankyrin repeat clusters (ARC1–5), a
sterile-alpha motif (SAM) domain
mediating tankyrase oligomerization,
and aC-terminal PARP catalytic domain.
Toll-like receptors (TLRs): recognize
pathogen-associated molecular
patterns (PAMPs) derived from various

nonreceptor tyrosine kinases, including Abelson murine leukemia viral oncogene homolog 1 (ABL) and SRC through its PR
motif and enforces an open active configuration of these proteins, leading to kinase activation and subsequen
phosphorylation and functional modification of their substrates. (B) Schematic showing that 3BP2-mediated ABL kinase
activation potentiates the assembly and activation of the RUNX2-TAZ master transcription factor complex required fo
osteoblastogenesis, and the formation of the TAZ-TEAD complex required for osteoblast expansion. By contrast, 3BP2-
mediated ABL activation suppresses adipogenesis.
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microbes and nucleic acids. Activated
TLRs interact with the adaptor protein
myeloid differentiation factor 88 (MyD88),
which results in phosphorylation of IL1
receptor-associated kinase 1 (IRAK-1)
and subsequent phosphorylation and
proteasomal degradation of inhibitor κBα
(IκBα). NF-κB,which is sequestered in the
cytoplasm by IκBα, then translocates to
the nucleus and binds to the promoter
region of the target genes associatedwith
inflammation. Dysregulated TLR signaling
enhances the severity of septic shock and
inflammatory disorders, including
rheumatoid arthritis, systemic lupus
erythematosus, and inflammatory bowel
disease.
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Figure 2. Mechanism of the SH3-
domain binding protein 2 (3BP2)
degradation pathway and
Cherubism. (A) Single missense
mutations in SH3BP2 cause Cherubism.
Mutations are generally located within
a hexapeptide upstream of the SH2
domain. (B) Domain organization of
human tankyrase (TNKS)-1 and TNKS2.
Tankyrases comprise the C-terminal
catalytic poly(ADP-ribose) polymerase,
the sterile-alpha motif (SAM) domain,
and the ankyrin domain divided into
five ankyrin domain clusters (ARC1–
5), which mediate the recognition of, and
binding to, substrates. TNKS1 also
contains an HPS region with unknown
function. (C) Schematic showing that
tankyrases bind to (1) and PARsylate
(2) 3BP2, which creates a recognition
site for E3-ubiquitin ligase ring finger
protein 146 (RNF146) (3), leading to
3BP2 ubiquitylation (4) and subsequent
proteasomal degradation (5). (D) Both
3BP2 and AXIN are similarly ubiquitylated
and degraded in a tankyrase-mediated
PARsylation-dependent manner. (E) 3BP2
missense Cherubism mutations within
the tankyrase-binding site disrupt the
interaction of 3BP2 with tankyrase,
leading to the accumulation of 3BP2.
(F) Accumulated 3BP2 leads to
hyperactivation of SRC, SYK, and
VAV in macrophages, which results
in hyperosteoclastogenesis through
activation of the tyrosine kinase signaling
pathway. Images in (A) reproduced
from [19].
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carrying two alleles of P416R have systemic inflammation with elevated levels of TNFα
and osteopenia due to highly active osteoclasts [20], demonstrating that 3BP2 functions as a
checkpoint for the production of inflammatory cytokines and osteoclast activity.
Trends in Molecular Medicine, May 2023, Vol. 29, No. 5 393
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Tankyrase and RNF146 regulate the steady-state expression of 3BP2
To clarify the molecular mechanism by which 3BP2 mutations cause Cherubism, a yeast two-
hybrid system with full-length 3BP2 was used as bait to identify 3BP2-binding proteins from a
hematopoietic cell library; a paralog of TNKS1, TNKS2, was identified as a potential 3BP2-
binding partner [8]. TNKS1 and TNKS2 belong to the PARP family, the 18 members of which
share a conserved PARP catalytic domain [4–7]. Tankyrase uses NAD+ as a substrate and
releases nicotinamide following the transfer of ADP-ribose onto substrate proteins. TNKS1 was
originally identified as a repressor of the telomerase inhibitor TRF1/TERF1 through ubiquitylation-
dependent degradation [21,22], involved in telomere elongation [23] and control of mitosis [24].
In mice, single knockout of either Tnks1 or Tnks2 shows mild phenotypes [25–29], while double
knockout of Tnks1 and Tnks2 is embryonic lethal, demonstrating that tankyrases are functionally
redundant. Tankyrases share 85% amino acid identity [30] and contain N-terminal five ankyrin
repeat clusters (ARC1–5) [9,31], a sterile-alpha motif (SAM) domain mediating tankyrase oligo-
merization [32] and a C-terminal PARP catalytic domain [21,33,34] (Figure 2B). Structural
analysis using NMR spectroscopy revealed that the catalytic activity of TNKS1 and TNKS2
is controlled by the formation of extended homo- and heterofilamentous structures [35]. ARC
domains 1, 2, 4, and 5 share strong structural similarity and bind to tankyrase substrates
through an optimal recognition sequence, REAGDGEE [9]. The hexapeptide sequence
RSPPDG in the interdomain region of 3BP2 binds to tankyrase ARC4 an affinity of 5 μM [9].
Recruitment of 3BP2 to tankyrase enables its PARsylation, which triggers ubiquitylation by
the E3-ligase RNF146 and its subsequent proteasomal-mediated degradation (Figure 2C).
RNF146 contains a WWE domain, which recognizes iso-ADP-ribose and alleviates repression
of the catalytic activity of the RING domain [36,37]. Y156 and R157 in the WWE domain are
required for PAR binding [38]. Activation of the RNF146 RING domain triggers the formation
of K48-linked polyubiquitin chains on substrate proteins [37,39]. Thus, RNF146 is a PAR-
regulated E3-ligase [39]. It contains several tankyrase-binding motifs and is itself a tankyrase
substrate, as well as being PARsylated [40]. Similarly, tankyrase is a substrate of RNF146
and is ubiquitylated. Tankyrase and RNF146 form a large degradation complex that, when ac-
tivated, controls the expression of both proteins and engulfs tankyrase substrates, such as
3BP2 or AXIN, in a proteasomal degradation pathway [8,10] (Figure 2D).

Cherubism mutations uncouple 3BP2 from the negative regulation of tankyrase
Cherubism mutations disrupt binding to the preformed substrate recognition site on the surface
of the tankyrase ARC domains, resulting in the loss of 3BP2 PARsylation and proteasomal
degradation (Figure 2E). Thus, Cherubism mutant 3BP2 leads to increased steady-state expres-
sion, which potently activates the 3BP2 signaling module containing SRC and ABL kinases, and
associated enzymes VAV and SYK [8,9]. The accumulation of 3BP2 protein and hyperactivation
of SRC, SYK, and VAV in macrophages drives accelerated osteoclastogenesis, leading to bone
loss in vivo and the excessive production of inflammatory cytokines (Figure 2F). Thus, Cherubism
mutations result in a hypermorphic gain-of-function alteration in 3BP2 and explain the autosomal
dominant mode of inheritance of the syndrome.

RANKL signaling regulates RNF146 expression during osteoclastogenesis
The 3BP2 E3-ubiquitin ligase, RNF146, has a role in controlling osteoclast formation. Studies of
osteoclastogenesis in genetically engineered mice lacking RNF146 due to LysM-Cre deletion in
the myeloid monocytic lineage showed that these mice had osteopenia resulting from
accelerated osteoclastogenesis [41]. In vitro studies showed that RNF146 is a critical switch
controlling SRC activation and β-catenin signaling during osteoclastogenesis. RANKL activates
NF-κB, and NF-κB directly represses the transcription of RNF146, leading to stabilization
of 3BP2 and subsequent activation of SRC and SYK required for osteoclast differentiation
394 Trends in Molecular Medicine, May 2023, Vol. 29, No. 5
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(Figure 3A). In addition, repression of RNF146 by RANKL stabilizes AXIN1 [41], thereby inhibiting
the osteoclast suppressive effect of β-catenin signaling [42–44] (Figure 3B).

RNF146 is required for osteoblast differentiation, osteocalcin secretion, and
β-islet development
To determine the role of RNF146 selectively in the osteoblast lineage, RNF146 was deleted using
Osterix-Cre recombinase. Mice with RNF146-deleted osteoblasts display a phenotype similar to
cleidocranial dysplasia (CCD) [45,46], an autosomal dominant disorder characterized by a
calvarial closure defect and short stature mainly due to impairment of intramembranous bone
formation by osteoblasts [47]. Loss of RNF146 in calvarial osteoblasts resulted in stabilization
TrendsTrends inin MolecularMolecular MedicineMedicine

Figure 3. PARsylation-mediated
ubiquitylation of SH3-domain binding
protein 2 (3BP2) and AXIN by ring
finger protein 146 (RNF146) controls
bone and energy metabolism
(A) Schematic showing that RANK ligand
(RANKL) integrates multiple pathways
controlling osteoclastogenesis through
repression of RNF146. In macrophages
RANKL transcriptionally represses
RNF146 through activation of NF-κB
leading to stabilization of 3BP2 and
subsequent activation of SRC-mediated
osteoclastogenesis. (B) In addition to
stabilization of 3BP2 (A), repression
of RNF146 by RANKL leads to
stabilization of AXIN, which triggers
osteoclastogenesis through inhibition
of β-catenin. (C) Schematic showing
that RNF146 controls bone, glucose, and
lipid metabolism through regulation o
the Wnt/β-catenin and Hippo pathways
In osteoblasts, loss of RNF146 causes
stabilization of AXIN1, a negative regulato
of the Wnt/β-catenin pathway, which
results in suppression of β-catenin-
induced Fgf18 expression. Reduction
of Fgf18 expression fails to induce
ERK-mediated TAZ expression, which
results in disruption of the formation o
TAZ with RUNX2 and TEAD, leading to
defective osteoblast differentiation and
expansion, respectively. Additionally, mice
with RNF146-deficient osteoblasts show
fatty bone marrow and are glucose
intolerant due to enhanced adipogenesis
and defective insulin secretion as a
consequence of reduced osteoblast-
mediated osteocalcin production.
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of AXIN1 and suppression of β-catenin signaling. Diminished β-catenin signaling in RNF146-
deficient osteoblasts resulted in defective Fgf18 expression, a growth factor required for osteo-
blast formation (Figure 3C). Loss of Fgf18 expression in turn led to failure to induce expression
of TAZ, which forms a transcriptional complex with RUNX2 and TEAD1, required for osteoblast
differentiation and expansion, respectively [47] (Figure 3C). Mutations in RUNX2 cause CCD
[48–53], demonstrating that RNF146 and RUNX2 share a common biochemical and genetic
pathway.

Deletion of RNF146 in osteoblasts resulted in perturbations of mesenchymal cell lineage determi-
nation, leading to reduced osteoblast formation while favoring enhanced adipogenesis in the
bone marrow. Moreover, failure of osteoblast formation resulted in reduced secretion of the
osteoblast factor osteocalcin, which is involved in pancreatic β-islet cell differentiation. Deletion
of RNF146 in the osteoblast lineage not only manifested profound defects in skeletal formation,
but also led to defective insulin secretion secondary due to β-islet atresia [54], resulting in
a glucose-intolerant state (Figure 3C).

Recent studies reported that SOX9, a master transcription factor controlling chondrogenesis
[55–57], is regulated by tankyrase-mediated PARsylation [58]. Tankyrase inhibitors amelio-
rated osteoarthritis in mice, and transplantation of tankyrase-depleted mesenchymal stem
cells resulted in regeneration of cartilage damage [58], suggesting the tankyrase-SOX9 axis
as a therapeutic target for the treatment of osteoarthritis.

The tankyrase-3BP2 pathway regulates TLR signaling
Mice carrying two alleles of the Cherubism mutations develop lethal autoinflammation with
activated myeloid cell infiltration into the skin and visceral organs associated with high serum levels
of inflammatory cytokines [8,20]. TLRs [59–61] on macrophages derived from Cherubism mice
secrete high levels of TNFα and IL6 in response to their ligands [8,20,62,63], suggesting that the
3BP2 signaling module regulates TLR signaling. Mice lacking both Tnks1 and Tnks2 in the
myeloid monocytic lineage develop severe multiorgan autoinflammation and succumb to inflamma-
tory bowel disease [64]. Macrophages derived from these tankyrase-deficient mice produce high
levels of TNFα and IL6 cytokines in response to TLR2 ligands. 3BP2-mediated activation of SRC
and SYK leads to phosphorylation of a regulatory tyrosine (tyrosine 647) in the TIR domain of
TLR2, which potentiates its signaling and activation of NF-κB (Figure 4), explaining the hyperactivity
of TLR2 signaling in the absence of tankyrase [64]. These data suggest that inflammation in the gut in
tankyrase-deficient mice is due to dysregulated TLR signaling in response to commensal bacteria.

3BP2 is required for neutrophil activation
Neutrophils derived from 3BP2-deficient mice fail to polarize their actin cytoskeleton or migrate in re-
sponse to a gradient of the chemotactic peptide, fMLF, and fail to adhere, crawl, and emigrate out of
the vasculature in response to fMLF superfusion [65]. 3BP2 is required for optimal activation of SRC
family kinases, small GTPase Rac2, and neutrophil superoxide anion production, and for Listeria
monocytogenes clearance in vivo. The functional defects observed in 3BP2-deficient neutrophils
may partially be explained by the failure to fully activate the VAV1 guanine nucleotide exchange factor
(GEF) and properly localize the P-Rex1GEF at the leading edge of migrating cells [65]. Thus, 3BP2 is
required for G protein-coupled receptor-mediated neutrophil function [65,66].

The roles of 3BP2 in B cell and T cell functions
The 3BP2 SH2 domain binds to the tyrosine phosphorylated cytoplasmic tail of the B cell co-
stimulatory molecule CD19 [67,68], suggesting that B cell co-stimulation through CD19 is
mediated, in part, by the 3BP2 signaling module [69]. 3BP2-deficient mice exhibit increased splenic
396 Trends in Molecular Medicine, May 2023, Vol. 29, No. 5
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Figure 4. PARsylation-mediated ubiquitylation of SH3-domain binding protein 2 (3BP2) controls the innate
immune system. Schematic showing that tankyrase controls cytokine production and inflammation. In macrophages,
3BP2-mediated activation of SRC and SYK leads to phosphorylation of a regulatory tyrosine (tyrosine 647) in the TIR
domain of Toll-like receptor (TLR)-2, which activates the downstream signaling pathway through phosphorylation of
inhibitor κBα (IκBα), an inhibitory component of NF-κB, leading to its proteasomal degradation, release of active NF-κB to
the nucleus, and induction of cytokine production.
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marginal-zone B cells [70] and reduction of peritoneal CD5+ B1 B cells and a thymus-independent
type 2 (TI-2) antigen response [69,71,72]. 3BP2-deleted B cells demonstrate defective proliferation
and cell survival following cross-linking of the B cell receptor (BCR) as a consequence of impaired
SYKphosphorylation [69]. B cells lacking 3BP2 showed enhancedBCR-induced death via a caspase
3-dependent apoptotic pathway compared with wild-type cells [69]. Shukla et al. found that engage-
ment of BCR induces 3BP2 phosphorylation. They identified that tyrosine 183 in 3BP2 is a major site
of SYK phosphorylation, which creates a docking site for VAV1 andPLC-γ2 required for the activation
of NFAT in B cells [74].

3BP2 is a component of the T cell receptor (TCR) signaling complex and binds to LCK, ZAP-70,
PLCγ1, LAT, and Grb2 in in vitro biochemical studies [73]. Therefore, the 3BP2 signaling complex
Trends in Molecular Medicine, May 2023, Vol. 29, No. 5 397

Image of &INS id=
CellPress logo


Trends in Molecular Medicine
OPEN ACCESS
recapitulates many signaling components proximal to the TCR. 3BP2 is expressed at a low level in
resting T cells and its expression is induced following TCR and CD28 co-stimulation [75]. Successful
antiviral responses require the sustained activation and expansion of CD8+ T cells for periods that far
exceed the time limit of physical T cell interactions with antigen-presenting cells (APCs). The
expanding CD8+ T cell pool generates the effector and memory cell populations that provide viral
clearance and long-term immunity, respectively. 3BP2 is recruited to cytoplasmic microclusters
and nucleates a signaling complex that facilitates MHC:peptide-independent activation of signaling
pathways downstream of the TCR [75]. Induction of the adaptor molecule 3BP2 sends a second
wave of TCR-like signals [75] that is critical for sustaining CD8+ T cell proliferation and regulating ef-
fector and memory differentiation [76–79].

Tankyrase controls the expression of multiple tumor suppressor proteins
Ninety percent of human colorectal tumors are driven by the active Wnt/β-catenin signaling
pathway caused by the mutations in the oncogene CTNNB1, the tumor suppressor genes
encoding adenomatous polyposis coli (APC) or AXIN. β-catenin is negatively regulated by a
destruction complex that includes AXIN [80], glycogen synthase kinase 3β (GSK-3β), APC, and
the E3-ubiquitin ligase β-TrCP [80]. AXIN1 and AXIN2 contain two tankyrase-binding motifs
that mediate a bivalent interaction with the ARC domains of tankyrase [83,84]. AXIN can be
PARsylated by tankyrase, which triggers ubiquitylation by RNF146 and proteasome-mediated
degradation (Figure 2D). Tankyrase-mediated suppression of AXIN expression leads to activation
of β-catenin signaling [10,85]. Tankyrase inhibitors were developed to restore AXIN expression as
a strategy to suppress the Wnt signaling pathways in colon cancer.

Tankyrase regulates the expression levels of other tumor suppressors, including PTEN, angiomotin
(AMOT), and LKB1. PTEN contains a single canonical tankyrase-binding site at the N-terminal
region and is PARsylated by tankyrase. PTEN contains three lysine residues, Lys342, Lys344,
and Lys349, which are ubiquitylated by RNF146 [86]. Knockdown of tankyrase in HCT116 and
RKO cells impaired cell proliferation and xenograft tumor formation, and antagonized AKT phos-
phorylation. Tankyrases are upregulated and are negatively correlated with PTEN status in colon
tumors [86].

Tankyrase promotes tumorigenesis through activation of the Hippo pathway oncoprotein Yes-
associated protein (YAP) [87–89], which is associated with the epithelial–mesenchymal transition
(EMT) and activation of the transcription factor TEAD, leading to cell proliferation and invasion
[90–92]. Inhibition of tankyrase-mediated ubiquitylation stabilizes AMOT family proteins [93–95],
which interact with, and sequester, YAP in the cytoplasm, leading to cytoplasmic sequestration
of YAP and a reduction in its activity and tumorigenesis [96].

The LKB1/AMPK pathway has an important role in tumor suppression, and its inhibition is asso-
ciated with several human cancers. AMPK activation by LKB1 is tightly regulated by tankyrase-
mediated PARsylation and subsequent K63- but not K48-linked ubiquitination by RNF146. The
expression levels of tankyrase negatively correlate with phosphorylated-AMPK levels and poor
survival in patients with lung cancer. LKB1 activation by tankyrase inhibitors induces AMPK
activation and suppresses tumorigenesis [97].

Breast tumor associated gene 1 (BRCA1) regulates homologous recombination, while PARP1
controls NHEJ DNA repair pathways. Both proteins recruit accessory proteins that participate
in repair of DNA at damaged sites [98,99]. PARP1 inhibitors have shown clinical utility for the
treatment of breast and ovarian cancers in tumors carrying mutations in BRCA1/2 [4,100–102].
PARP1 is a tankyrase substrate that is degraded following RNF146-mediated ubiquitylation
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[37]. Tankyrase thereby controls PAPR1 protein expression levels necessary for the fine-tuning of
the DNA repair process. Chemotherapy-induced DNA damage leads to increased PARP1
expression and PARP1-mediated PARsylation of a tumor suppressor protein bromodomain-
containing protein 7 (BRD7), which increases cancer cell resistance to DNA-damaging agents
by the repression of BRD7 expression following RNF146-medaited ubiquitylation. One of the
functions of the PARP1/2 inhibitor olaparib is to restore the expression of BRD7 and sensitivity
of BRD7-positive cancer cells to chemotherapeutic drugs [103].

In view of these studies, PARP-mediated ubiquitylation promotes tumorigenesis through regulation
of the different substrates and, therefore, PARP-specific inhibitors have been investigated as a
potential therapeutic target for cancer therapy [81,104].

Tankyrase represses the 3BP2 signaling pathway required for mouse models of
rheumatoid arthritis, lupus, and hepatic steatosis
In vivo analysis of two rheumatoid arthritis (RA) mouse models using either the human TNFα-
transgenic (hTNF-Tg) or collagen-induced arthritis (CIA) has shown the association between
3BP2 expression and development of RA. Bone erosion observed in hTNF-Tg mice was amelio-
rated in Sh3bp2–/–/hTNF-Tg mice, and 3BP2 deficiency suppressed induction of arthritis through
reduction of autoantibody production in the CIA model [105]. By contrast, heterozygous
Cherubism mutant mice showed exacerbation of bone loss with increased osteoclast formation
in the hTNF-Tg arthritis or CIA mouse model [106,107], demonstrating that 3BP2 expression
controls osteoclast activity and the production of inflammatory cytokines that could contribute
to the pathogenesis of RA.

Systemic lupus erythematosus (SLE) is a polygenic systemic autoimmune disease characterized by
the production of autoantibodies and immune complexes that lead to tissue inflammation and
damage. MRL/MpJ-Faslpr/lpr mice carry a loss-of-function mutation in the death receptor
Fas/CD95 in the MRL/MpJ background and are a classic mouse model of systemic autoimmunity
and autoinflammation seen in lymphoproliferativemonogenic disorder. Thesemice exhibit earlymor-
tality, develop anti-double-stranded DNA (dsDNA) antibodies, and have nephritis, splenomegaly,
and lymphadenopathy. The role of 3BP2 was examined by intercrossing 3BP2-deficient mice
with C57BL/6J (B6) mice carrying Faslpr/lpr [108]. 3BP2 deficiency significantly improved the spleno-
megaly and glomeruloproliferative changes observed in the B6.Faslpr/lpr mice and reduced serum
anti-dsDNA antibody levels. B cell lineage-specific deletion of 3BP2 in the B6.Faslpr/lpr background
did not improve the lupus-like phenotype or the production of autoantibodies. Importantly, 3BP2
deficiency reduced the number of dendritic cells in the spleen. These data suggest that the lupus-
like phenotype observed in B6.Faslpr/lpr mice is contingent on the role of 3BP2.

Hepatic steatosis is a common disorder of liver injury associated with metabolic syndrome and
insulin resistance and can predispose patients to hepatocellular cancer. Chronic hepatic inflam-
mation and injury can lead to fatty infiltration of the liver and hepatocyte dysfunction. Innate
immune cells, including macrophages and neutrophils, are frequently present in the liver with
fatty infiltration and can be activated by pathogen- and damage-associated molecular pattern
receptors (PAMPs and DAMPs), which can lead to inflammation and fibrosis. Luci et al. examined
the role of the 3BP2 signaling module in animal models of hepatic steatosis [109]. They found that
the hepatic expression of 3BP2 and SYK correlated with metabolic steatohepatitis severity in
mice. 3BP2 deficiency and SYK deletion in myeloid cells were protective against liver inflamma-
tion, tissue damage, and subsequent fibrosis. Silencing 3BP2 or SYK in primary hepatocytes
decreased the expression of inflammatory cytokines, including TNFα, IL6, IL1β, and CCL2. By
contrast, Cherubism mice developed severe hepatitis and liver fibrosis following a high-fat diet
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Clinician’s corner
Although no diagnostic criteria of
Cherubism have been established,
detecting single allele mutations of
exon 9 in SH3BP2 is helpful to
confirm the diagnosis in ~80% of
patients clinically diagnosed in the
presence of clinical manifestations
and radiographic and histologic
findings. Mutations in Pro418 (to Leu,
Arg, or His) are the most common,
while other mutations are also observed
in Arg415 (to Pro or Gln) and Gly420 (to
Glu or Arg). Approximately 20% of
Cherubism patients who present with
clinical features may be caused by
mutations in other genes that are
associated with the 3BP2 signaling
pathway. Candidate genes include
loss-of-function mutations in TNKS1,
TNKS2, and RNF146.

Genetic studies demonstrate the
association between 3BP2 and various
biological processes, including bone
metabolism and inflammation. Bone is a
highly dynamic organ that constantly
undergoes remodeling regulated by
osteoblast-mediated bone formation
and osteoclast-mediated bone resorp-
tion. RUNX2 is a master transcription
factor for osteoblast differentiation, and
TAZ, a transcriptional co-activator, inter-
acts with RUNX2 and activates its tran-
scriptional activity. 3BP2-mediated ABL
kinase activation induces RUNX-TAZ
complex formation, which results in
bone formation. In contrast to osteo-
blasts, osteoclasts arise from the macro-
phage lineage following M-CSF and
RANKL stimulation. Normal osteoclasto-
genesis requires 3BP2-mediated SRC
activation.

3BP2-mediated cytokine production is
controlled through activation of TLR
signaling. More than ten TLRs have
been identified in humans. TLR2 sig-
naling is controlled by 3BP2-mediated
phosphorylation of its TIR domains.
Genetic knockout of tankyrase leads
to hyperactivation of TLR2 as a result
of hyperactivation of SRC and SYK
kinases and phosphorylation of TLR2,
which results in the production of cyto-
kines, such as IL6 and TNFα.

Wnt/β-catenin signaling is highly
conserved and controls cell-fate de-
termination, tissue homeostasis, and
organogenesis. β-catenin is negatively
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(HFD) or methionine choline-deficient (MCD) diet. SYK expression is elevated in the liver of
patients with hepatic steatosis and correlates with the severity of disease. These data demon-
strate the central role of the 3BP2 signaling module in modulating hepatic inflammation, injury,
and fibrosis in models of hepatic steatosis [109].

The role of tankyrase in regulating the antiviral interferon-sensing apparatus
Xu et al. recently showed that tankyrase regulates the viral RNA-sensing protein virus-induced
signal adaptor (VISA), also known as MAVS, to control interferon response to viral infection.
Tankyrase translocates to mitochondria and interacts with the mitochondrial adaptor protein
VISA through a canonical tankyrase-binding motif RNPDGG. Tankyrase PARsylates VISA at
Glu137, which creates a binding site for RNF146, resulting in the ubiquitylation and degradation
of VISA. Pharmacological inhibition or genetic knockout of tankyrase increases the RNA virus-
triggered induction of interferon effector genes, which impair viral replication. Tnks1- or Tnks2-
deficient mice produced higher levels of type I interferons after encephalomyocarditis virus infec-
tion and reduced virus loads in the brain and lungs of knockout animals. This study demonstrates
an essential role for PARsylation in virus-triggered innate immune signaling and the role of
tankyrase in buffering the production of inflammatory cytokines [110].

The role of tankyrase-mediated PARsylation in modulating neuronal stress
granule formation
Amyotrophic lateral sclerosis (ALS) is associated with the redistribution of RNA-binding protein
TDP43 from the nucleus to cytoplasm in response to stress pathways. Cytoplasmic TDP43
can accumulate in stress granules in response to short-term stress, where it is sequestered
from being modified by phosphorylation. Stress granule assembly occurs via condensation of
RNA–protein complexes into dynamic liquid droplets, a process called liquid–liquid phase
separation (LLPS). Importantly, PAR polymers promote LLPS and stress granule formation.
McGurk et al. showed that the TDP43 nuclear localization sequence (NLS) contains two PAR-
binding motifs, and that TDP43 binds directly to PAR polymers [111]. Moreover, they showed
that the ability of TDP43 to bind to PAR polymers determined its ability to undergo LLPS and
be recruited to stress granules. By contrast, N-terminal truncated mutant forms of TDP-43 asso-
ciated with ALS were unable to bind to PAR, and failed to undergo LLPS or be recruited to stress
granules. Therefore, the N-terminal region of TDP-43 is important for the recruitment of the
protein to stress granules and suggests that, in ALS, stress-granule recruitment of TDP-43 is
impaired. McGurk showed in a Drosophila genetic screen that downregulation of tankyrase
increased nuclear and decreased cytoplasmic levels of TDP43 and mitigated TDP43-induced
degeneration of the nervous system. The authors then showed that the tankyrase inhibitor
XAV939 [85] markedly reduced the formation of stress-induced cytoplasmic foci of TDP43
without altering the formation of stress granules. These data show that tankyrase is a key regula-
tor of the partitioning of TDP43 into stress fibers and that inhibition of tankyrase activity mitigates
ALS-associated degeneration by reducing the cytoplasmic localization of TDP43 and subse-
quent neurodegeneration.

Proteomic analysis elucidates new tankyrase substrates
Proteomic analysis has identified new potential uses for tankyrase-binding proteins [9,112,113]
(Table 1, Key table). Tankyrase-binding motif-containing proteins, which are increased following
Tankyrase inhibition, are associated with Wnt signaling, glucose transport, miRNA processing,
Notch signaling, and Hippo signaling. The Rab11 GTPase proteins, required for cytokinesis,
ciliogenesis, and lumenogenesis, are activated by Rab11-specific GEFs SH3BP5 and
SH3BP5L. Tankyrase-mediated ubiquitylation of SH3BP5 and SH3BP5L by RNF146 sup-
presses Rab11a-mediated epithelial cyst lumen formation, demonstrating a role for tankyrase
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regulated by a multiprotein destruction
complex involving AXIN, GSK3β, CK1,
and APC. Mutations in β-catenin or
APC, which lead to the stabilization of
β-catenin, can drive colon tumor forma-
tion. Tankyrase PARsylates AXIN and
stimulates its destruction, thereby
potentiating the β-catenin pathway.
Tankyrase inhibitors designed to stabi-
lize AXIN have been developed to
antagonize β-catenin signaling.
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in regulating epithelial morphogenesis and polarity [114]. In Drosophila, tankyrase is a positive
regulator of the JNK signaling pathway, whereby it interacts with, and PARsylates, JNK, resulting
in the addition of K63-ubiquitin chains that activate JNK kinase, required for stress tolerance, en-
ergy homeostasis, and lifespan prolongation [115].

Therapeutic potential of targeting tankyrase and the 3BP2 signaling module
The first tankyrase inhibitor, XAV939, was identified in a screen to suppress the Wnt/β-catenin
pathway through stabilization of AXIN [85]. Subsequently, numerous tankyrase inhibitors have
been developed that target the NAD-binding site, the adenosine binding pocket, or both [34].

New inhibitors designed to disrupt the interaction of tankyrase with its substrates in the ARC
domain-binding groove have recently been developed. This concept is based on elucidation of
the interaction between the fourth ARC domain of tankyrase and 3BP2 hexapeptide, provided
by the co-crystal structure [9]. These peptide interaction-blocking inhibitors show potential to
suppress the Wnt/β-catenin pathway [116]. The therapeutic potential of tankyrase inhibitors to
treat human tumors driven by β-catenin is contingent on a functionally intact destruction complex
involving AXIN, APC, andGSK3β. Unfortunately, many colon tumors arise frommutations in APC,
AXIN, or β-catenin itself, which renders them impervious to regulation from the destruction
complex. Thus, tankyrase inhibitors would be of little value in these patients.

One of the concerns facing the deployment of tankyrase inhibitors is any resulting adverse side
effects [117], given that genetic studies have shown that depletion of Tnks1 and Tnks2 in the
myeloid lineage leads to severe inflammatory bowel disease and systemic autoinflammation
[64]. TNKS1 and TNKS2 are involved in the nervous system and are detected in the soma and
neurites in hippocampal neurons. The tankyrase inhibitor XAV939 inhibits neurite outgrowth
and synapse formation through stabilization of AXIN and subsequent suppression of the Wnt/β-
catenin pathway in neurons [118]. Thus, these studies suggest that tankyrase inhibitors could
have unexpected neuronal toxicities.

Additionally, pharmacological inhibition of tankyrase may affect bone metabolism. Diminished
β-catenin signaling in RNF146-deficient osteoblasts results in defective osteoblastogenesis
through suppression of β-catenin-induced Fgf18 expression [47] (Figure 3C) and deletion of
RNF146 in macrophages leads to increased osteoclastogenesis [41] (Figure 3B), both of
which trigger bone loss through inhibition of β-catenin. Sclerostin, a negative regulator of the
Wnt/β-catenin pathway, is now the therapeutic target for osteoporosis [119], demonstrating
that long-term use of tankyrase inhibitors may cause bone loss due to suppression of osteo-
blastogenesis but enhancement of osteoclastogenesis.

Although the development of tankyrase inhibitors has garnered considerable interest given the
pleiotropic pathways that it regulates in cancer, clinical deployment of these inhibitors has been
challenging. There are no current clinical trials studying tankyrase inhibitors.

Regulation of tankyrase
The upstream regulatory mechanisms controlling Tankyrase activity have also been investigated
(Table 1). GDP-mannose 4,6-dehydratase (GMD), which is a cytoplasmic protein required for the
first step of fucose synthesis, interacts with, and sequesters, TNKS1 in an inactive stable
form [120]. The Wnt inhibitor kinase inhibitor 4 (WIKI4) inhibits TNKS2 enzymatic activity
[121], and prostate-associated gene 4 (PAGE4), which is selectively expressed in stromal
prostate fibroblasts, acts as a tissue-specific tankyrase inhibitor by competitively binding to its
substrate AXIN1. Both WIKI4 and PAGE4 inhibit AXIN1 degradation, which results in the
Trends in Molecular Medicine, May 2023, Vol. 29, No. 5 401
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Outstanding questions
Recent research identified the structural
determinant for tankyrase substrate
recognition. However, not every protein
with canonical tankyrase-binding motifs
is PARsylated, ubiquitylated, and
destroyed. What are the fundamental
rules that determine the fate of
PARsylated proteins mediated by
tankyrase: destroyed by RNF146, in-
activated, or activated?

Recent cryo-electron microscopy struc-
tural studies showed how tankyrase
catalytic and noncatalytic functions de-
pend on its filamentous polymerization.
How is tankyrase assembly and activity
regulated by upstream signaling
pathways?

What are the biochemical and biological
differences between TNKS1 and its
paralog TNKS2?

Many of the clinical questions regarding
the natural history of Cherubism remain.
Why does bone destruction occur in
craniofacial bones?

Do patients with Cherubism havemore
widespread osteopenia?

Why does Cherubism manifest in
children at age 2–5 years, progress
until puberty, and then spontaneously
regress?

Genetically engineered models of
Cherubism manifest widespread
autoinflammation and autoimmunity
with the production of autoantibodies.
What is the immune dysfunction
present in patients with Cherubism?

PARP inhibitors have been developed for
tumors with homologous recombination
defects. Some PARP inhibitors can
inhibit tankyrase activity. Is there any
evidence of perturbation of tankyrase-
regulated pathways in patients treated
with PARP inhibitors?

Key table

Table 1. Functions of substrates regulated through PARsylation-mediated
ubiquitylation
Regulation Substrate(s) Function of substrates Refs

TNKS1/2

Activation JNK Required for lifespan, stress tolerance and energy homeostasis in
Drosophila

[115]

Destabilization TRF1 Telomere binder and negative regulator of telomere elongation [21,22]

AXIN1/2 Tumor suppressor through regulation of Wnt signaling pathway [10,85]

Activate osteoclastogenesis through regulation of Wnt signaling
pathway

[41]

Suppress osteoblastogenesis through regulation of Wnt signaling
pathway

[47]

Suppress neurite outgrowth and synapse formation through
regulation of Wnt signaling pathway

[118]

3BP2 Adaptor protein in tyrosine kinase signaling; mutated in Cherubism [8,9,19]

Required for both osteoblastogenesis and osteoclastogenesis [15,16]

Activates TLR signaling and cytokine production [20,62–64]

Required for neutrophil activation [65]

Required for proliferation and survival of both B and CD8+ T cells [69,75]

Exacerbates collagen-induced arthritis [106,107]

Deletion of 3BP2 improves SLE [107]

Pathogenesis of metabolic steatohepatitis [109]

RNF146 E3-ubiquitin ligase for AXIN1/2 and 3BP2 [8,10]

SOX9 Master transcription factor of chondrogenesis [58]

PTEN Tumor suppressor through regulation of AKT signaling pathway [86]

AMOT Tumor suppressor through regulation of YAP activity [96]

LKB1/AMPK Tumor suppressor [97]

PARP1 Required for DNA repair [37]

SH3BP5 Required for cyst lumen formation [114]

VISA Critical component in antiviral IFN-β signaling pathways [110]

Stabilization TDP43 Causes amyotrophic lateral sclerosis and frontotemporal
degeneration

[110]

Unknown GMD Sequesters TNKS1 in inactive stable form [120]

PARP1

Destabilization BRD7 Tumor suppressor [103]
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suppression ofWnt/β-catenin signaling [120]. The ubiquitin-specific protease 34 (USP34), which is
a component of the β-catenin destruction complex, deubiquitylates AXIN to antagonize tankyrase-
mediated PARsylation and RNF146 ubiquitylation to inactivate the Wnt/β-catenin pathway [121].
These studies demonstrate that tankyrase-mediated PARsylation and subsequent proteasomal
degradation of its substrates is controlled under a variety of distinct physiological states.

Concluding remarks
Since the original cloning of TNKS1 as a regulator of the telomerase complex and TNKS2 as a
regulator of the adapter protein Grb14, there has been a growing appreciation of the importance
of tankyrase-mediated PARsylation coupled to the RNF146 E3-ubiquitin ligase. These studies
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highlighted a previously underappreciated role for reversible PARsylation as a form of post-
translational modification in the cytoplasmic compartment that is distinct from the well-
established role of PAR modification in the nucleus catalyzed by PARP1 and PARP2 during
DNA repair. Numerous studies have contributed to the emerging view of the pleiotropic biological
processes that tankyrases participate in, including the control of inflammatory pathways, bone
dynamics, metabolic control, suppression of tumor suppressor pathways, control of polarity
and epithelial morphogenesis, telomere and mitotic spindle function, and the regulation of stress
granules in neurons. We have highlighted the importance of the tankyrase-3BP2 pathway as first
exemplified in Cherubism, a rare human developmental syndrome. Recent cryo-electron micros-
copy structural studies have shown how tankyrase catalytic and noncatalytic functions depend
on its filamentous polymerization [124], while there remains much still to understand especially
regarding the upstream regulatory pathways controlling tankyrase activation and the biochemical
and biological differences between TNKS1 and its paralog TNKS2. Many of the clinical questions
of why, for example, bone destruction occurs in craniofacial bones in Cherubism, remain. The
development of potent and highly selective tankyrase inhibitors will serve as chemical probes to
address some of these questions (see Outstanding questions).
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